Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/10718
Title: Characterization of Fosfomycin-Resistant MurA from Borrelia burgdorferi, Fragment-based Inhibitor Design for AroA and DAHP Synthase
Authors: Jiang, Shan
Advisor: Berti, Paul
Giuseppe Melacini, Murray Junop
Giuseppe Melacini, Murray Junop
Department: Chemical Biology
Keywords: Asp-containing MurA;pH profile characterization;fosfomycin titration;fragment-based approach;transition state analog design;Biochemistry;Biochemistry
Publication Date: Oct-2011
Abstract: <p>MurA catalyzes the first committed step of peptidoglycan biosynthesis and it is the target of the antibiotic fosfomycin. Due to a Cys-to-Asp substitution in the active site, MurAs from a number of pathogenic bacteria, including <em>Mycobacterium tuberculosis</em> and <em>Borrelia burgdorferi</em> (Lyme disease), are fosfomycin resistant. His-tagged <em>Borrelia burgdorferi</em> MurA (Bb_MurA) and its D116C mutant have been successfully expressed, purified and characterized. The <em>k</em><sub>cat</sub> value of wild-type Bb_MurA was 0.74 ± 0.01 s<sup>-1</sup>. The D116C mutant’s <em>k</em><sub>cat</sub> decreased by 25-fold and was fosfomycin sensitive. The pH profiles of <em>k</em><sub>cat</sub> for both Bb_MurA and its mutant were characterized. There was little difference in p<em>K</em><sub>a1</sub> values, but the p<em>K</em><sub>a2</sub> value shifted from 7.4 ± 0.2 in wild-type enzyme to a value >11 in the mutant. This demonstrated that the p<em>K</em><sub>a2</sub> of 7.4 was due to D116, and that it must be protonated for activity. Fosfomycin inactivation of Bb_MurA<sub>H6</sub>(D116C) was time-dependent and only proceeded in the presence of UDP-GlcNAc. The dissociation constant, <em>K</em><sub>i</sub>, was 5.7 ± 0.4 µM and rate of covalent modification, <em>k</em><sub>inact</sub>, was 0.021 ± 0.003 s<sup>-1</sup>.</p> <p>DAHP synthase catalyzes the first committed step in the shikimate pathway, and its catalysis has been proposed to proceed through two oxacarbenium ion intermediates. Pyruvate oxime, glyoxylate oxime and 4-imidazolecarboxylic acid have been evaluated as inhibitors of DAHP synthase. In the presence of glycerol 3-phosphate, the fitted <em>K</em><sub>i</sub> values of pyruvate oxime and glyoxylate oxime were 7.6 (± 0.9) × 10<sup>-5</sup> M and 7.4 (± 1.7) × 10<sup>-5</sup> M, respectively. 4-Imidazolecarboxylic acid’s inhibition was cooperative, and its binding was competitive with respect to PEP, and uncompetitive with respect to E4P. Its equilibrium dissociation constant was 3.0 (± 0.2) × 10<sup>-3</sup> M.</p>
URI: http://hdl.handle.net/11375/10718
Identifier: opendissertations/5746
6627
2119320
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.51 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue