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Abstract

In this thesis, a novel block decentralized MPC approach is implemented in order to
cootdinate the control of interacting process units (blocks) in a chemical plant. The goal of
this research is to develop coordinated control that enables each block to optimize its own

petformance by adjusting only is manipulated variables while accounting for interactions

among blocks.

A simultaneous algorithm, termed D-MPC, is proposed that replaces multiple
optimizations (from several, interacting MPC controllers) with one set of equations, yielding
a single-level optimization problem. Given the complexity of the resulting problem
consisting of linear and complementarity equations, an éfﬁcient active set heuristic is
ptoposed for real time computations. The approach is computationally tractable, yielding a
small set of convex problems to be solved sequentially and providing reliable solutions with

good dynamic petformance for the cases studied.

Integrity is important for control designs, and generally, block designs with negative
and zeto Block Relative Gains (BRG) have poor integtity and cannot be controlled with
published approaches. In contrast, the D-MPC approach successfully provides good integtity

for processes with all BRG signs while maintaining the desited autonomy of each individual
block.

The solution existence, uniqueness, and stability of the proposed controller are also
discussed in order to delimit what kind of processes can be controlled using the proposed
D-MPC controller. A simple D-MPC formulation is analyzed to demonstrate that specific
ranges of controller tuning can lead to the loss of nominal stability for negative BRG
systems. Therefore, a step-wise D-MPC design procedure was developed that integrates a
stability analysis first proposed for centtalized MPC and successfully adapted for the D-MPC

controllet.
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The dynamic performance and integrity demonstrated in case studies with all signs of
BRG and sizes from 2x2 to 4x4 demonstrate the computational tractability, good dynamic
performance of D-MPC controller designs developed with the design procedute and

implemented with the heutistic algorithm.

iv



TR EIRY

Acknowledgement

I would like to thank my wife Martha Ovalle de Olvera for het endless love and
support and for giving me those beautiful kids, J. Alberto and Eric D., who are the

motivation that keeps me going.

I would also like to thank my supervisor Dt. Thomas E. Marlin for his immense
guidance, teaching and patience and especially for his continuing support duting those

difficult parts of this project.

I would like to thank my peers in the process control group for their suppozt not
only for academic matters. I would also like to thank all those beautiful people who

gave us a hand and more at the beginning of our Canadian expetience (Salvadot,

Matilde, Matitza, Enid, Danielle, Zhiwen).

I also want to thank the Department of Chemical Engineeting, Conacyt-Mexico

and the Canadian Bureau of International Education for their financial support.

Finally T want to thank my parents Jose Olvera and Isabel Salazar de Olvera for

their continuing moral support and for all they have done for me.



Juiiadlilii): ik

Table of Contents

Abstract

........................................................................................................................ iii
AcKNOWIEdZemMENTt.....iuiiiiiinerienniiiien e s v
TADIE OFf CONLEMTS .uuvuruirrriirrirersreissrsrssssssssessssssssssssssessssseesessesessssessessssssssassssssssessssssssssas vi
List Of FigUIes ..ccvvveeriiiniiinieinniinincniisniinniininissasesnssissssessnsssessnssssessssssssesness ix
LISt OF T ADIES ceerereeerniireireerieeeeeererneeeerereiesesesesessssssssssssssssssssssssssssssssasssssssnssnnsassonsssnaseanse Xi
L. INtEOAUCTION 11rreeeerrrnruenreeereeeerrrrmmmassssessseossessnnesssssrsssssssssstesssrasssssssssessssssssssasssasssssessosses 1

1.1 Ob]ectlve ....................................................................................................... 3
1.2 Reason to Implement a Block Decentralized MPC (D-MPC) ..ot 4
1.3 Maint CONEIDUHONS 1iviviiiereieei it ettt st ere st erests et s ae st e stebssbesesba e s b e st st stesesbatesaesessentsbessasaressoreannne 5
114 ThesiS O VeIVIEW . uiviiiieeereeriereirtisessvessisseesessessassessesssssssessessesssssssssssesnesnessesaessessesbsstossossententassssensossossssonts 6
2. TechNOlogY SUIVEY w..cvereriiiiniiniiniininieninirssresesessisssssisssessssisssssssssssssesssses 8
2.1 MOdel PLediCtve CONLEOL vt sssssssessseessossssesessssessessosessssesessssssssssesessesessersssteseaes 8
2.2 KEY CONCEPLS weerrrririreiritiernri i bbb s bbb s bbb re b bbb bbb 10
2.2.1 LoCal AULONOMY cuvvvurrvinseirisiiiiiisiss st essssssssss s ssss s s sss st bbbt s ssssnss 11
2.2.2 Integrity and Block Relative Gaifl ..ot essessersecsessenes 12
2.2.3 Dynamic PerfOfMatiCe .viiiiiitiesissssstsesss s ssssesssesssse s sesssssessessessenssssonsas 13
2.3 Decentralized (Block) MPC ...ttt sesssssssssssssssssssssnes 14
2.3.1 Game Theory and the Concept Nash Equilibtiutni....cucvvcnccerccrniniiiececnsensnsiecoenne 15
2.3.2 Block Design - Communication MPC .......ccovrrirenrrneernmeenestninsesssssssansanssssssssssssssssssmsinns 17
2.3.3 Centralized Design - Coopetation MPC........cviienireeisseisisinsieemmseiessssssesssesssesosins 19
2.3.4 Decentralized LP-IMPC.....oo.cioiririieeereiieeeeestsesesessssessesestsessaresesseseseasessestesensssesensasssssessssssssssens 20
2.4 Optimization TechNOlOGIES v 21
2.4.1 Multilevel OpHIMIZAtION ..t e ssess s ssesssssssssssans 21
2.4.2 Interior Point Methods (IPM) and Complementatity CONStEAINLS ....vvveverrverrrersrersiieriissiaens 22
2.4.3 ACHVE SEt SHALEET cuvriireriiiiiiiiiicersisististiesusesese s seseessesessssssisesstas bbb stasaas s s st ssssasensssnsaneas 24

vi



3. A Novel Block Decentralized MPC (D-MPCQC)......cccccvviivrinnnnnnnnninninninnneinnieiin 27

3.1 Unconstrained D-MPC Formulation. ..o 27
3.1.1 Control Calculation for Each Individual Block (QDMC formulation) .......cccveerinverriinenns 30
3.2 Simultaneous Solution for the Unconstraified D-MPC........cooveiiiinicniiieinns 32
3.3 Constrained BIock D-MPC......cieniisisinin i sietissisisessssssisnsesesisasisissssssssssssssis 36
3.3.1 INPUL CONSLEANTS 1uvvvvrrresrernrrensintiessnssss st a st s bbb 36
3.3.2 Simultaneous Solution fot the Constrained D-MPC.......cocoimrininiininn. 40
3.4 Heuristic Approach to Constrained D-MPC ... 43
3.5 Compatison of D-MPC with Conventional Centralized MPC Controllet.......c.curimrinmirirnienes 48
3.5.1 Tuning Parameters Effects. ..ot 49
3.6 Extended D-MPC Fotmulation. . 50
3.7 Summary an1d COnCIUSION .ttt ettt e s s 54
4. Controllability and Stability ANalysis....c.ccceeniveinneenniniennnininiiinimmen. 55
4.1 Definitions of the Plants to be Controlled by the D-MPC......coocvevmerrnriniinnresnrninirnssssnnnens 55
4.1.1 Classical Controllability Definitions. ... 56
4.1.2 Existence of a Centralized MPC Control Solution ... 57
4.1.3 Minimum Prediction HOEIZOM co.eereeeerrernnrieeesesecerersrensssssesssersesesersensssnsssessssssnsosessssssesinis 59
4.1.4 Summary of Applicability ReqUITEMENtS. ..o 62
4.2 StabIlity ANALYSIS...cceeriiiierninririiii e st st bR 63
4.2.1 State Space Representation for C-MPC Using Step Response Models.......c.ocvvervcenricinnn, 64
4.2.2 Nominal Stability of Block D-IMPC.......ccccvimiiimiinininee. 68
4.2.3 Stability of D-MPC — Numetical Cases ... 70
4.3 Existence and Stability Analysis of Single Horizon D-MPC ..o 76
4.3.1 Existence of Single Horizon D-MPC Applied to Controllable Process.....c..cccoevesrniiiiiirens 7
4.3.2 Stability of the Single Hotizon D-MPC ... 86
4.3.3 Relationship between RGA and Nominal Stability Regions ... 90
4.3.4 The Shell Standard Control Problem (SSCP), a three by three case: .....covveecvirveinniinercnnns 93
4.4 Application of Results for D-MPC Design and Tuning.......cmiinen, 97
4.5 Summaty and CoNCIUSIONS e 98
5. Block D-MPC PetfOormance .....cccueenuiienniiniiecniiiimmmiciiimissmsemieisommees 100
5.1 Defining Independent ObJECVES ....couuruririereieieiiei e 100

vii



5.2 Dynamic Petformance and Case StUdIes ..o 101

5.2.1 Computational REGUIFEMENES. i siesssssiss s s srens 102

5.3 Case Study I Binary Distillation COIUmI. .o, 103
5.3.1 Unconstraifned D-IMPC ... sessessssssssssssssesssstsssesesssosssssssossesssssssssssssssssssesss 105

5.3.2 Control Under Different Blockings (Negative and Zeto RGA) ..o, 107

5.3.3 Constraifned D-IMPC ...t sreseecressstsssssssssassesssssssstsssssssssssss shossstossassssressonsnes 111

5.4 Case Study II: Shell Standard Control Problem. ... 116
5.4.1 BlOCk CONEOL SHUCTUL. .o veuiiiieiiricreirisreiseessseseressssssesssseesssssssesessessesssssessonsssssssessessessessssesssns 118

5.4.2 Block D-MDPC COREOIEE covvuiiiiiiiiiiiceesieiterteresieseesessessessessisessessessessessasssnsessosssssesassssssssenens 120

5.4.3 Zero and Negative BRG Configutations. ..o 124

5.4.4 Challenge Problem: Alternative Control ObJectiVes. ..., 127

5.5 Case Study I1L: Fired Heater BOX. ..o ssnsssssenens 131
5.0 SUIMNIALY cvuiteititeic st bbb bbb bbb bbb s bR 137

6. Conclusions and Future Work .....ccviiiiiiiiiiiniciieiiimmeiiismneeeeesesressssessens 138
6.1 SUIMMMIALY . ccevvvireriiiereresss sttt bbb bbb bbb bbb b d b b s R A e AR R 8 en 138
0.2 CONTIDUHONS e vvrrereiieeecsrerseseeerersessriaesshestsssesbessressessesssssssssseerstsneessesassssnsstsssssohesssesssonsossessrsersnstenns 139
0.3 TULULE WOTK 1vivviriiiiiiiececiiieessesrestesisecresenseroreersesenssesbesssbassssssssessesansssestonsatsssass sissenessersssensassssssssanaen 142

N OMENICIATULE cieuirenererasesnsiiiinirtniernenernsseeesesersssrsssessssssssstsscessnosssassssnsssssnssassenssssnsssens 144
RELEICIICES cevvreerrriveereernnreertsrersettinenesseennsssserensssessennesssrsssassssessansessansnssssssanassessssstossassone 147
Appendix A. Model Predictive Control........ceiiiniinniinniiininniemsiee. 152
Appendix B. Block Relative Gain (BRG) .....ccocvvviriniinnniiniiniiinninnnnnninnnone, 164
Appendix C. Nominal Stability — A Two by Two Case. ......cceovennrinrieninninsuensinseennnns 167
Appendix D. Distillation Column with Model Mismatch. ......ccoceenniniiisiiinsnninnnnnne, 170
Appendix E. Software Implementation ..., 174

viii



List of Figures

Figure 1.1 Local Control in Block Decentralized MPC .........ccccconnnivnnnininiinisiecnnnennnaes 2
Figure 2.1 Technologies in Coordinated MPC ........ccccovinrnnnnnenrnniinieniniiniinian. 15
Figure 2.2 Nash and Pareto Optimal Sets (Giovanini, 2007)........ccceeurvierniuvisinriannennnn. 16
Figure 3.1 Nash (D-MPC) and Pareto Optimal (C-MPC) Solution .......cceceeevuviiuninunea 35
Figure 3.2 Intersection of KKT Conditions .....c..ceeisvensvereisinsensinsinecsninennensesn 42
Figure 3.3 Effect of Tuning Parametetr W .....ccocvveiiiniinininiiniiininennimnienme. 53
Figure 4.1 Stability expression for Different Control SHUCULE ..vccvrererrererrsersrseresresens 69
Figure 4.2 Unit Circle Analysis for Distillation Problem. ......ccuvirisuranurennneeniieniinnnn 72
Figure 4.3 Closed Loop Performance for Distillation Problem. ........ccoccervuurriunnrnennnen. 72
Figutre 4.4 Closed Loop Simulation - Stable Solution..........ciiiniennienieininnsnnnnieennnn, 75
Figure 4.5 Unit Circle Analysis - Unstable SOIution ..., 75
Figure 4.6 Closed Loop Simulation — Unstable Solution .......ceeeveiirieniiesienrcnnininnenne, 76
Figure 4.7 Single Horizon D-MPC ........ccccoiiveniiniiiniiininnininnnininmneneeminememen, 71
Figure 4.8 Singularity Line - Single Hotizon D-MPC (Negative RGA)...........ccovueenne. 84
Figure 4.9 Closed LoOP SYStem ......cccviuiniiisnniinninneiiinnniiimiiiisieomesiessemssomisos 87
Figure 4.10 Stability Regions for a 2x2 Single Horizon MPC (Negative RGA) .......... 91
Figure 4.11 Unitary Circle, Single Horizon D-MPC  .....cccccoimnnmriniinnninnennnennienn, 96
Figure 4.12 Closed Loop Simulation, Single Horizon D-MPC...........cccevvivriiieniinenns 97
Figure 4.13 D-MPC Basic Steps of D-MPC Design Method........ccccuveiniiiisninsneennienn 98
Figure 5.1 Binary Distillation Column, (Positive BRG configutration) .......c..cceeeunens 104

Figure 5.2 Dynamic Performance - Unconstrained D-MPC with Positive RGA. ...... 106

ix



Figure 5.3 Dynamic Petformance - Unconstrained D-MPC with Negative RGA .... 108

Figure 5.4 Nominal Stability - Unconstrained D-MPC with Negative RGA............. 109
Figure 5.5 Dynamic Petformance - Unconstrained D-MPC with Zero RGA ............ 111
Figure 5.6 Dynamic Petformance - Constrained D-MPC with Positive RGA .......... 112
Figure 5.7 Dynamic Performance — Constrained D-MPC with Negative RGA......... 115
Figure 5.8 Schematic of the Shell Heavy Oil Fractionator. .........cccoveivinisvesnnensaeennn, 117
Figure 5.9 Block Structures for the Shell Heavy Oil Fractionator.......cevvensieesnenies 119
Figure 5.10 Block Structute S.2 (Positive BRG)......ccoocvvviiniiiiiinniiininnininiiininnenn, 120

Figure 5.11 Dynamic Petformance — Unconstrained D-MPC with Positive BRG.... 122

Figure 5.12 Dynamic Petformance - Constrained D-MPC with Positive BRG......... 123

Figure 5.13 Dynamic Petformance with Zero BRG.......cccccvviiiiiriniricinninnnennnnnnen 125
Figure 5.14 Block Structure S.6 — Negative BRG. ....cviiviiiiiniiiiininnnnnenienninnn, 126
Figure 5.15 Nominal Stability (Negative BRG).......cceennees feeeseeseniesesaneeressanssaaeaas 126
Figure 5.16 Dynamic Performance with Negative BRG........ccocccoviviiisiiniiennieeninnnnne 127
Figure 5.17 Dynamic Performance (Input Reference Control - BRG)......ccevurennnnee 131
Figure 5.18 Fired Heater Box and Block Structures (Cai, 2009) ......ccocvvverrneersrnreinnes 132
Figure 5.19 Dynamic Performance — Set Point Change with Positive BRG ............. 134
Figure 5.20 Dynamic Performance - Distutbance Change with Positive BRG ........ 135

Figure 5.21 Dynamic Performance - Disturbance Change with Negative BRG....... 136



List of Tables

Table 4.1 Controllability Definitions......ccuviveeiiiinnenniennineniniiiieenemmea. 57
Table 4.2 Case 2 - Tuning Parameters ...c..cueinnrennneenieninenininiiieiemesmsmes 74
Table 4.3 Uniqueness of Single Hotizon D-MPC for Controllable Processes............ 83
Table 4.4 SSCP - Tuning Parameters, Uppetr Bounds......coviveverennnennienniinennnnennnee 96
Table 5.1 Distillation Column Tuning Parameters......ccuvrreersvesensuenisnrienininninennene 105
Table 5.2 ISE and SSM, Distillation Column (Positive RGA).......ccceciviveniiiniinniannnns 106
Table 5.3 ISE, Distillation Column (Negative RGA) .....ccovuieiniivenniineiniinnnieniiieine, 108
Table 5.4 ISE, Distillation Column (Zero RGA) ......ccvveeeviiiiniirnininnnennnnnnsinninne. 11
Table 5.5 ISE and Final Steady States, Distillation Column (Positive RGA) ........... 113
Table 5.6 ISE and Final Steady States, Distillation Column (Negative RGA) ......... 115
Table 5.7 Block Relative GaiN.......ccciienniniiiiiniiiiniicnimimiimiieiemsmnmes 119
Table 5.8 D-MPC tuning parameters for the Shell Oil Fractionator ........cceeuvrvueerneens 121
Table 5.9 Integral of the Squared Error [[1=-0.5, 2=0.5]..ccccovvvurirrscrrcnssrosesasennns 122
Table 5.10 Final Steady States [[1=-0.5, L=0.5]...ccccvvvrrnrivninninrnnnncnnsnsisinnissnnnns 123
Table 5.11 Integral of the Squared Estor [l1=-0.5, .=0.5] - Zero BRG........coceurunene. 125
Table 5.12 Integral of the Squared Esror [l:=-0.5, =0.5] - Negative BRG............. 127
Table 5.13 Modified tuning parametets (Input Reference Control)........c.ccevurennnnee. 130
Table 5.14 Block Relative Gain .....ccocviiriinnniisiinsiisnninniniisnsiniessimmcsismsisso 133
Table 5.15 D-MPC tuning Parammeters ...eeeiieeneeinsienieiisisiesinimiomseomeimissmsis 133
Table 5.16 Integral of the Squared Error, Set Point Changes........cvivverivenivensuissnnnes 134
Table 5.17 Integral of the Squared Etrot, Distutbance Change [[i=0.5].....ccccvveuunee 135

Xi



|
I
|

Chapter 1

Introduction

Most industtial processes are formed by different unit operations interconnected by a
set of process streams that can include streams and energy integration. This process
integration introduces interacting effects that cannot be isolated to a patt of the process. In
the past, processes with recycle streams employed many surge tanks to buffer distutbances
and minimize interaction (Luyben et al 1998). Even though this method slows interactions, it
does not eliminate them, and it introduces additional capital and operating costs. Current
design practice is to take full advantage of process integration without buffering and include

advanced controls to provide adequate dynamic petrformance.

Historically, plantwide control was obtained by means of multiple SISO controllers
usually in the form of PID (Proportional Integral Derivative) controllets. The strategy was to
establish all the loops for each individual unit operation and then combine them together

expecting that any conflict that may arise could be reconciled (Stephanopolous, 1984).

In the 1980’s plantwide control was drastically improved by the successful
application of centralized model predictive controllers (MPC). This type of controller

optimizes the future trajectory of controlled variables using dynamic models that predict the

1
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effects of manipulated and measured disturbance inputs on the controlled variables.
However, it is important to mention that there are not many published reports that discuss
the application of MPC to an entire complex chemical plant. Instead, the current practice in
process control of continuous opetating process uses multiple block controllers (MPC) that
do not consider interactions among blocks (Wagler, 2007; Jakhete et al, 1999). Figure 1.1
shows a sketch of the cutrent practice of Block Decentralized MPC. (Here, we consider a
block to be any combination of manipulated and controlled vatiables in a centralized block,
so that even a single-input-single-output loop is a block.) A large MPC controller involving
all plant controlled variables is not usually considered as an acceptable alternative, even if the

computing power is available (Wagler, 2007).

b

Figure 1.1 Local Control in Block Decentralized MPC

Based on the current state of industtial practice, this thesis deals with the
coordination of multiple MPC controllers, which for the purposes of this thesis are defined
as Block Decentralized MPC. Thus, the well-established MPC algorithm will be employed
for each block, and the block controllers will be “cootrdinated” in a manner that will
compensate for the deleterious effects of interactions among blocks. As we will see, this
approach also expands successful application of block controllers to some processes that

would otherwise be excluded.
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1.1 Objective

The goal of this work is to develop a method for implementing block decentralized
control based on the MPC algorithm for each block controller. To accommodate process
interactions, the method will coordinate among the various blocks to provide good dynamic

petformance of the decentralized control systems.

Block Decentralized control could have one of two possible goals; (a) to emulate
centralized control, ot (b) to provide autonomy for each block controller. This work
addresses the second, in which each controller achieves the best petformance for its block,

which is naturally subject to interactions for other blocks in the plant.

When considering block controllets, we must address two challenges; (a) the design
of the blocks, which assigns measured controlled variables and manipulated variables to each
block and (b) the real-time algorithm to implement block control. This research addresses
the second challenge, while the first has been addressed in other research by, among others,
Cai (2009).

It is impottant to note that this reseatch does not seek to develop implementation
approaches that (1) reduces the empitrical modeling effort or (2) reduces real-time
computations. As we will see, the modeling for decentralized MPC is the same as for
centralized, because of the need to “coordinate” interactions. Also, the computations for

block decentralized MPC must be acceptable for today’s computing, not less than any other

controller.

This thesis focuses on the development of a Novel Model Predictive Controller
called D-MPC, which is used for the coordination of a set of Block Decentralized MPC
Controllers. It addresses existence, stability, integrity, tuning and dynamic performance of

the proposed controller.
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1.2 Reason to Implement a Block Decentralized MPC (D-MPC)

‘ Industrial practice typically employs multiple single-loop controllers (which could be
‘ considered block centralized) or a few block MPC. However, today’s computing enables us
to implement fully centralized for many plants. Therefore, it is worthwhile to explicitly

address the reasons for selecting block decenttalized MPC for some implementations. This

research considers the following motivations for maintaining the implementation of Block

MPC over a plantwide centralized MPC.

Block Autonomy: Each block controller should be able to achieve the best
performance for that block, without considering the effect on other blocks. This
approach follows the management goals in many companies, even though a more
centralized approach might provide a better (global) optimum. In addition, the
integration of automation between individual companies due to tight integration of
production and consumption (for example, utilities or one product being the
downstream raw material) and vendor-managed inventories (whete a supplying company

- manages the inventory of their products in the customers plant).

Disturbance Isolation: In some cases, the best performance in a single company
involves maintaining the effects of a significant disturbance in one block of the plant,
rather than using all manipulated variables to attenuate the distutbance. For example, it
might be better maintain products in all other blocks (not directly affected by the
disturbance) “on specification”, with only some variables in the directly-affected block

having a few products “off-specification”.

Fault Tolerance: In the case of undetected sensor faults, the control system will make
incorrect adjustments to essential all manipulated variables undet management of the
; controller (because of interactions). Thetefore, a latger sized block will lead to a greater

immediate effect of the fault transmitted through the controllet.
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Management: As the number of variables in a block decentralized controller increases,
the monitoting and diagnosis of the controller actions becomes more challenging. This

important factor works against fully centralized MPC control.

Dynamic Performance: Naturally, good dynamic performance is important for
distutbance rejection and set point changes. Generally, blocks contain highly interactive
combinations of manipulated and controlled variables, with weak interactions among
blocks. Again, the block design is not addressed in this research, but the products of this.

research should be able to function for essentially any block structure.

In addition to the previous charactetistics the controller must guarantee the existence

of a controller solution and closed loop stability.

1.3 Main Contributions

The major contributions of this thesis are summarized as follows:

1. Unconstrained D-MPC formulation: The D-MPC controller applies a strategy
similat to that of multilevel optimization. Here, several optimization problems at a same

level ate replaced with their respective optimality conditions and solved simultaneously.

2. Constrained Block D-MPC: The basic unconstrained D-MPC is extended to solve
the constrained cases. The objective of implementing this strategy is to enhance the D-
MPC formulation in a way that removes the non-convexity of the resulting controller.
The modified strategy consists in a systematic method that iteratively detects constraints
violations and automatically incorporates requited bounds (active set) into the controller
formulation. The approach is computationally tractable (yielding a small set of convex
problems to be solved sequentially) and provides reliable solutions with good dynamic

petrformance for cases studied.
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3. Dominant interactions and integrity: In conventional block decentralized control
(without coordination), strong interactions can lead to designs with poor integtity, so
that tutning one controller off (on) can cause another controller to become unstable.
The previously-published Block Relative Gain (BRG) provides integtity analysis in the
same mannetr as RGA does in multiloop control. The controller developed in this
tesearch is able to stabilize systems with positive, negative, and zero BRG control

structutes, which extends the range of processes and block designs for which block MPC

is possible.

4. Closed loop stability: Once the existence of the controller has been achieved the
next step is to guarantee the stability. Perhaps surprisingly, inappropriate tuning
patametets can yield an unstable D-MPC controller, even without model mismatch. The
stability analysis involves the application of classical linear stability analysis for discrete
systems. When these results demonstrate nominal stability for selected tuning, they also

provide a cettificate for the existence (non-singularity) of the controller calculation.

1.4 Thesis Overview

Chapter 2 — Literature review

This chapter begins with a desctiption of Model Predictive Control and specifically the
Quadtatic Dynamic Matrix Control (QDMC) version considered for this thesis. Then
concepts of communication and cooperation between different controllers are
introduced, followed by the competing technologies that employ such concepts. Finally
the concepts of optimization requited for this work such as bilevel optimization, intetior
point methods and the active set strategy are briefly described. This thesis is based on
the idea of multiple controllers that maintain local autonomy and integrity. Their

description as well as the concept of block relative gain (BRG) is presented in this

chapter.

Chapter 3 — A Novel Block Decentralized Model Predictive Control (D-MPC).

6
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The methodology to develop the D-MPC controller is hete presented, starting with a
QDMC controller and extending to the coordinated D-MPC controller. Unconstrained
and constrained formulations are presented as well the heuristic approach to remove the
non-convexity in the constrained case. Finally, a modified D-MPC is formulated that is

able to achieve petformance between centralized and block decentralized MPC.
Chapter 4 — Controllability and Stability Analysis.

This chaptet presents a controllability criterion that defines what kind of plants can be
controlled using the D-MPC. Then, the stability analysis for nominal unconstrained D-
MPC is introduced. The analysis demonstrates that some D-MPC designs with
“reasonable” tuning ate not nominally stable, a result that was not anticipated. A

procedure is developed to determine whether a nominally stable D-MPC can be

achieved.
Chapter 5 — Block D-MPC Performance (Case Studies).

In this chapter a two by two distillation column is used as the main test case to
demonsttate the capabilities of the D-MPC controller. First, independent objectives are
defined and different design configurations (positive, negative and zero BRG) are tested.

Then the effect of tuning for stability is considered. A couple of extra cases with higher

dimensions ate also considered.
Chapter 6 — Contributions and Future Work.
Finally this chapter presents a summary of the findings of this work as well as

conclusions based on the results achieved. Recommendations for future work ate also

presented.
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Chapter 2

‘Technology Survey

In the previous chapter it was stated that industrial plants have many block
decentralized decision-making systems for automatic control and optimization. Since these
systems interact, the performance of the integrated system could deviate from the required
dynamic petformance. Therefore, a coordination scheme is sought that retains the desired

block decentralized autonomous decision-making but accounts for interaction.

In this chapter a review of the different concepts and technologies employed for the
development of the coordinated Block D-MPC controller is presented. Additionally, a
review of the published literature on the coordination of MPC is presented. This review
introduces the reader to the main research lines involved in the cootrdination of MPC

controllers.

2.1 Model Predictive Control

This entite work is based on the use of Model Predictive Control as the control
algorithm. MPC is the most widely used advanced controller in industry and it refers to a
class of control algorithms where dynamic process models are used to predict and control a
process. MPC is well suited for high petformance control of constrained multivatiable

8
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processes because explicit pairing of controlled variables (CV) and manipulated variables

(MV) is not performed and constraints are directly embedded in the problem formulation
(Qin and Badgwell, 2003, Nath and Alzein 2002).

Theoretically, we might have a single centralized MPC controller for each large
process plant. However, this is not the case found in practice, especially in cases where each
plant section (block) desires to maintain the absolute control over its decision vatiables.
Usually multiple MPCs are employed for dynamic control. These controllers can be

coordinated through a steady state optimizer (LP or QP), which finds a feasible final steady

state but does not account for dynamics.

An important part of the MPC application is definitively the process model
embedded in the algorithm. Chemical processes are inherently nonlinear; however the most
common apptoach in the MPC design is to express the model equations in a linear form.
These models may be generated by empirical identification, first principle equations or a
combination of both. These models are usually employed in the form of linear time invariant

models (LTT) and are very common in industry.

Problem (2.1) shows a typical formulation of an MPC controller for a continuous
process, the objective usually seeks to minimize the error between the controlled variables

and the reference trajectories obtained from the economic optimizer.

2 2 2
mindlly— y*P| +|l4u +l|u—uref
ni {“y v, 14l .
st
) 2.1)
y = f(4u,d,N)
Ymin ¥ = Ymax
Upin S U S Upay

In this case a set of manipulated variables are adjusted to drive the process to the

desited steady-state operating point without violating constraints. The manipulated variable
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values for the first time step are implemented in the plant, and the problem is repeated at

each controller execution time.

The weights of the quadratic norms in (2.1) ate used to modify or “tune” the

dynamic behaviour of the system and to achieve a MPC that is robust in the presence of
model mismatch. The ptrocess output, pe®R” is a function of input moves, AueR"

measured distutbances, d and the estimated unmeasuted distutbance, N . The input variable

u is obtained by adding Au to its current value.

From the numerous MPC technologies available this work makes use of the
Dynatnic Matrix Control (DMC) algorithm (Cutler and Ramaker, 1980), which is widely used
in the process industty for unconstrained control. For constrained control this work
considers the Quadratic Dynamic Matrix Control (QDMC) algorithm as presented by Gatcia
and Motshedi (1986). Some of the key features of both algorithms that made it suitable for

this research are the following:

»  Linear step response models for the plant.
*  Quadratic petformance objective

®  Optimal input computed as the solution of a convex Quadratic Programming

problem.

Maybe the most important feature of QDMC is the ease with which constraints are

incotporated in the problem, which are a key patt of this work. The QDMC methodology
will be desctibed in detail in Chapter 3.

=

2.2 Key Concepts

The plantwide control structure considered for this work is the so-called Block
Decentralized Structure, which is a combination of several controllers that can be single- ot

multi-variable (Cai, 2009). In a chemical plant a typical structure contains multiple (Block)

10
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MPC controllets; usually each of them is handled in a decentralized way regarding the other
controllers. This research states and solves the coordination of this problem in a way that

preserves the autonomy of the controllers for each plant block.

It is wotth emphasizing that this “decentralization” is not aiming for the reduction of
the computational effort as main objective, but enforcing the decentralized independent

goals. Some concepts required to understand the goals of this research are described next.

In this thesis, the controller resulting from the coordination of different autonomous
MPC conttollets will be refetred to as Block D-MPC ot just D-MPC. In the same way and
for the putposes of this thesis the conventional technology, which addresses block MPC

without coordination is referred as independent block MPC.

2.2.1 Local Autonomy

One of the key concepts that drive this research is maintaining local autonomy of the
different sections of the plant. Basically, this means that each plant section (block) desires
the absolute control ovet its decision (manipulated) vatiables. Although the goals of each
block ate independent their behaviour is definitely not because of the process interactions
among plant blocks. This situation suggests that the problem should not be addressed as a

set of independent subproblems.

The autonomy of the controllers mentioned above is achieved when each MPC
adjusts the manipulated vatiables of its own process unit to optimize its own objective
function. In Figure 1.1 a typical portion of a chemical plant composed by a reactor and two
distillation columns is shown. Here, each unit has a local MPC controller. In case a
manipulated variable of column C1 loses control or gets saturated, the response of a
plantwide centralized MPC controller would be to adjust a manipulated variable in column
C2 leading to a loss in performance on that column. On the other hand, the proposed
coordinated D-MPC scheme has the objective to avoid a controller adjusting one of its
manipulated variables to control a controlled variable of a different block.

11
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Maintaining this local autonomy in the coordination scheme presetves disturbance isolation
and fault tolerance of the control system. These two characteristics are the main reasons why

independent block MPC is widely used in practice, although current methods suffer from

dynamic interaction.
2.2.2 Integrity and Block Relative Gain

Decentralized controllers are widely used in industry because of their simplicity.
They are easier to understand and to implement. However, the performance of a
decentralized controller can be poor in the presence of severe process interactions. The same

situation occurs with Block MPC structures like the one shown in Figure 1.1.

In decentralized SISO control the concept of integrity becomes important. Basically
the system has integrity if the system is stable without changing signs of any feedback
controller gains once one of the loops is placed in manual. We definitely want integrity,
which requites that the sign of the précess gain (A4y/Au) is independent of the on/off status
of other controllets. Additionally, Campo and Morati (1994) developed a seties of integrity
definitions for closed-loop systems. For the purposes of this work the Decentralized
Integral Controllability (DIC) definition is the most suitable. Basically DIC implies that
each controller can be detuned or put in manual independently, and the remaining closed-
loop system will remain stable. The main requitement for DIC is that the relative gains

(RGA) of the process must be positive.

When dealing with block decentralized control structures, integrity is addressed
through the use of Block Relative Gain (BRG) (Manousiouthakis et al., 1986). BRG is an
extension of the classical RGA pairing method presented by Bristol (1966). The use of Block
Relative Gain (BRG) concepts provides a guideline for selection of suitable block structures
in block decentralized control systems. Similar to the previous case the necessaty condition
for integrity in block decentralized structutes is to have a BRG with a positive determinant

(Chiu and Arkun, 1990). A brief introduction of BRG can be found in Appendix B.

12
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2.2.3 Dynamic Performance

A major objective of the proposed Block D-MPC controller is to improve the
dynamic performance of block decentralized structures. In this research it is a premise that
the dynamic performance obtained via Block D-MPC coordination should be better than the
solution obtained from an independent block MPC control system. Dynamic petformance is
a very rich concept and a single metric is never enough to measure it. Ideally a closed loop

system must satisfy the following performance ctiteria (e.g., Seborg et al, 2003):

Closed Loop System must be stable.
Provide good disturbance rejection and set point tracking.
Steady-state error (offset) eliminated.

Excessive control action is avoided.

SAREE SR o A

Must be insensitive to change in process conditions (Robust control).

Most of these performance criterions are embedded in the MPC objective function.
For example the deviation of the controlled variable from the set point, the excessive control

action as well as the offset requirement are enforced in the first two terms of the objective

function as described in (2.1).

For a given control structute the problem of achieving good dynamic petformance is
reduced to the tuning problem. Shridhar and Cooper (1998) detived an analytical expression
that computes appropriate move suppression factors for multivatiable MPC, and it is based
on keeping a low target value of the condition numbet of the system dynamic matrix. The
optimal tuning of MPC controllers however, is a challenging problem, and it tequites an
explicit evaluation of the dynamic transient. Recently, Cai (2009) developed a combinatotial-
based methodology to select both the optimal control structure and optimal tuning for
independent block MPC designs. However, probably the fairest and most reliable way to

obtain the best tuning of the controller would requite evaluating the dynamic petformance

offering some robust stability.

13
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Robust MPC is another active research area that considers several types of
uncertainty (i.e. parametric, structural). To tackle this problem several methodologies have
been developed, Warren (2004) proposed a chance constraint method whete the uncertai‘nty
in the closed-loop model is characterized by an ellipsoidal uncertainty desctiption.

Parametric programming has also been used for Robust MPC (Kakalis et al, 2004).

Both Robust MPC and the optimal structute/tuning of MPC controllets ate beyond
the scope of this research. The proposed D-MPC controller will make use of trial-and-etrror

tuning in otder to satisfy the first four criterions described above.

2.3 Decentralized (Block) MPC

Coordination of Decentralized MPC control has received attention in recent yeats.
In industry some of the most common methods ignore dynamic interactions among
subsystems. Jakhete et al, (1999) published an industrial application whete two processing
units in a refinery, a fluid catalytic cracking unit (FCCU) and a gas processing unit (GPU)
were coordinated. Although the main objective was the coordination of two Block MPC
controllers, one for each unit, their implementation completely ignotres the dynamic

interactions and focused only on the steady state target coordination.

In this review two major categories are used to group the several Block
Decentralized MPC approaches found in literature. The first categoty aims to solve the
coordination of different controllers each of them having an independent objective function.
The second category of approaches intends to match or approximate the centralized MPC

performance by optimizing an objective function that is similar to the centralized MPC

objective function.

The first category has been named as Communication MPC and incotporates a
Block Design strategy. Here, each controller communicates part of its knowledge to othet
controllers by exchanging predictions for their local states and control moves. The second

category is called Cooperation MPC, and it enforces a Centralized Design. In these

14
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formulations, the computations are decentralized among the individual MPC controllers,
which cooperate towards achieving performance close to a conventional centralized MPC.
Genetally, the goal is to minimize computational effort or allow the computation to be
disttibuted to several local processors. Figure 2.1 depicts several methods that fall under
these two categoties. Some of the most important works are briefly described in the next

sections.

Figure 2.1 Technologies in Coordinated MPC

The wotk in this thesis has no intention to obtain a centralized performance;
thetefore it falls under the Block Design categotry and could be deemed as a Communication

MPC approach.
2.3.1 Game Theoty and the Concept Nash Equilibrium

Several authors have mentioned that the cootdination of decentralized control is
based on concepts from Game Theory such as Nash Equilibrium (NE) (Bagar and Olsder,
1982; Van Shuppen, 2000; Negenborn et al 2004). Although game theoty provides
descriptive concepts, it not always tells us how to compute solutions. The characteristics of
the decentralized MPC problem addressed in this research suggest that it may be classified as

and Extensive Game with perfect information and simultaneous moves (Osbourne, 1994).
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However not much insight other than the concept of Nash equilibrium can be obtained

from the theoty behind these games.

Negenborn et al (2004) described the MPC controller as an agent that has abilities to
act and communicate with other agents to solve a given problem. Each agent has a reaction
set that contains all the possible actions that an agent would make when it knows what the
other agents will do. Two possible solutions to the multiagent problem are identified. (1)
The Nash Equilibtium point identified as the intersection of the reaction sets of all agents.
(2) The Pareto optimal solution included in the Pareto Set of solutions, which is the set of all
feasible solutions to the overall problem. These two solutions for two, one-variable MPC
controllets with interaction are depicted in Figure 2.2. The dashed ellipses represent the
objective contouts for each independent controller, with the other controller off. The dash-
dot lines ate to locations of the optimum for one controller, with the move by the other

controller known.

Ui

Figure 2.2 Nash and Pareto Optimal Sets (Giovanini, 2007)

Here it is important to mention a couple of observations:

(1) The elements of the Pareto set represent possible trade-offs among the multiple

objectives of the subproblems.
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(2) The solution of the overall centralized problem and the decentralized control
problems are two extremes. These solutions cotrespond to the Pateto optimal (7 )

and the Nash Equilibrium solution (N ), respectively.

For the purposes of this work a group of control decision
UNE (k) = (uf\’E ,uévE ,uxE ) is called to be Nash optimal solution if the following relation is

held (Du et al. 2001).

N N, N N N N, N .
Ji(uIE,---,u,- E,---uNE)SJi(uIE,-'-,uij,ui,uij---uNE), Vu;, i=12,N (2.2)

When the Nash solution is achieved, each agent (i) has achieved the local optimum;

any change in its control decision (u; ) will degrade the local petformance index (J; ).

Once the theoretical concepts of Nash Equilibrium and Pareto Optimum have been
introduced the next step is to present the different approaches available in literature that
address the decentralized MPC problem.

2.3.2 Block Design - Communication MPC

Communication MPC methods focuses on MPC controllers for individual blocks
integrated with an approach to handle interactions among blocks. The solution sought in this

apptoaches is that of a Nash equilibtium point.

Maybe one of the first works that addressed the decentralized MPC problem is from
Charos and Arkun (1993). In this work the authors proposed a new formulation of the
QDMC control i
subproblems, which then can be solved sequentially. The formulation relies in the
fundamental assumption that each other controller will keep the already implemented inputs
constant for the next prediction horizon. The approach uses a sequential solution of MPC

problems, with each subsequent controller having knowledge of the previously calculated

17
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optimization results. Since this approach does not include multiple iterations, most control
calculations do not have full knowledge of other block results, and the dynamic performance

could be poor.

Later Jia and Krogh (2001) and Camponogata et al. (2002) studied state—space based
disttibuted MPC formulations and their stability characteristics. They presented a
Distributed MPC algorithm where each subsystem applies a local MPC. The local state
predictions are communicated to other subsystems and incorporated in the control
calculations. This approach is similar to the one proposed by Charos and Arkun (1993), in
the sense that interactions among processes are considered based on a similar assumption (a
one-step delayed exchange prediction). The controllers are solved sequentially using the state

predictions from other subsystems evaluated with mformation from the previous execution

time.

These previous methods can be classified as one-way interaction strategies where
some kind of feed forward control is implemented. The next set of formulations considers

two-way interactions and proposes some strategies to obtain the solution of the problem.

Du et al. (2001) and later Li et al (2005) in the same group studied the input coupling
among step-response models for distributed MPC solutions based on Nash optimality. In
this formulation, the controller calculations are performed iteratively, until convergence is
obtained. In addition, these studies include a stability analysis. Howevet, only unconstrained
MPC is considered. An important shortcoming in this work is that the proposed iterative
algorithm is only effective for systems with diagonal dominant gain matrix nartowing its

application to positive BRG configurations.

Another formulation presented by Shigueo and Hong (2005) introduced a
methodology based in the formulation of Charos and Arkun (1993) for QDMC. The
procedure consists of an iterative algorithm where the key idea is to make use of available

future prediction in order to calculate the next control actions. Thete is no proof that this
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method will converge to global optima or ¢ven to a local solution. However the “warm

start” strategy seems to have a positive impact in the solution strategy.

Mote recently Al-Gherwi et al (2008) proposed a method to assess the robustness of
communication based MPC. Basically it finds the control structure that better handles model

errors by minimizing a vatiability metric trough input weights manipulation.
2.3.3 Centralized Design - Coopetation MPC

Cooperation MPC consists of a decentralized control structure where each MPC
controller has a global objective function. The objective is to achieve “close” to a centralized
petformance. The cooperation MPC approaches are based on the assumption that
computing the centralized solution may not be practical or reliable for large systems. These

methods emerge to solve the sub-optimality (in the plantwide sense) obtained with

communication-based MPC.

Venkat et al (2004) presented a cooperation-based MPC approach that challenged
the existing communication MPC formulations from a stability and optimality petspective.
They claimed that the Nash Equilibrium solutions are unstable and proposed a formulation
whete the local MPC objectives were replaced with global petformance measures. With this
modification each controller minimizes a projected objective involving all plantwide
variables. A weighted sum of the local objective function is proposed for plantwide
objective. It is important to mention that if the objective function of every subsystem is the
same (ie. Quadratic) the global objective matches exactly a centralized quadratic objective

function. Therefore, the solution could be similar to that of a plantwide Centralized MPC.

Regarding the solution strategy, this is the same as in the communication MPC
approach. Thus an iterative algorithm is implemented to find the optimal solution. Because
the iterative procedure may not converge during the execution time, some modifications are

made in order to guarantee feasibility of the method even if the algorithm does not converge
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at all. Another charactetistic is the inclusion of terminal constraints to obtain closed-loop

nominal stability for open-loop unstable plants.

Recently, Zhang and Li (2007) presented an approach called Network MPC, which is
very similat to the cooperation MPC described above. It basically makes use of a centralized

objective function that it is optimized in each local controller.

2.3.4 Decentralized LP-MPC

Almost all industrial MPC controllets consider an upper level steady-state optimizer,
which usually consists of a tatget calculation problem posed as a linear programming (LP) or
quadtatic programming (QP) problem. The inclusion of upper-level problem maintains the
feasibility of the controlled actions. This local optimizer may setve either as an integrating

level between the steady-state RT'O and regulatory level.

Cheng and Forbes (2004) proposed an approach to addtess the steady-state
cootdination of MPC controllers focusing on the steady state target calculations. In this
method the ultimate goal is to find a coordinating strategy that obtains the same solution as
the centralized approach. They follow the Dantzing-Wolfe decomposition principle to
coordinate the interactions among decentralized MPC blocks. The resulting master problem
would be the same as that of a plantwide centralized problem. The ultimate goal of this
method is to reduce the computational requirements without any consideration of the

dynamic performance.

A follow up work presented by Cheng et al. (2007) proposed a price adjustment
method to solve the coordination of the LP-MPC problem. In this case the objective is not
necessarily obtaining a centralized performance but maintaining the decentralized

mdependence of the process units while coordinating the interactions.
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2.4 Optimization Technologies

This work considers different optimization technologies in order to approach the
Decentralized MPC problem. The main goal is to overcome the limitations encountered in
the cuttent communication-based MPC formulations, which are due to the use of an

iterative algorithm.

First, multilevel optimization is discussed in order to present the framework on
which the proposed D-MPC conttoller is developed. A couple of optimization algorithms

ate then discussed: (1) Interior Point and (2) Active Set Strategy.
2.4.1 Multilevel Optimization

Multilevel optimization problems are structured in a hierarchical way, where the
uppert level is executed first, and the solution influences the objective and feasible set for the
lower levels. This may be contrasted with decomposition techniques, where a single

objective is used to desctibe all decisions.

For the sake of simplicity multilevel optimization can be desctibed using a bilevel

problem; mathematically the problem can be stated as follows.

max P(x,y)

xeR™

st glx,y)<0
2.3)
min f(x,y)
yeR™
st. h(x,y)<0

A common method to solve this bilevel problem is to transform the problem into a
single-level optimization problem by substituting the lowet-level problem with its first order

Karush-Kuhn-Tucker (IKIKT) conditions. The resulting problem is the following,.

21



BHIMAIEIIBLLY: J i

M.A.Sc. Thesis - Alberto J. Olvera-Salazar McMaster University - Chemical Engineering

max P(x,y)
X, Y, W
st glx,y)<0
V) +w-V, h(x,y)=0 2.4
h(x,y)<0 < KKT
w-h(x,y)=0
w20

Even under suitable convexity assumptions of both levels, the above mathematical
program is very difficult to solve, due mainly to the nonconvexities that occur in the
complementarity and Lagrangian constraints (Clatk and Westerberg, 1990). While the
Lagrangian constraint is linear in certain important cases (linear or convex quadratic
functions), the complementarity constraint is intrinsically non-convex, and it is best
addressed by enumeration algorithms, such as branch-and-bound or more recently by

Interior Point Methods (Colson et al, 2005).

This methodology that replaces an optimization problem by its KKT conditions is
the central part of the proposed D-MPC controller. As stated above the solution of this
multilevel problem deals with complementarity constraints that cannot be solved using

conventional NLP methods, such as SQP.
2.4.2 Interior Point Methods (IPM) and Complementarity Constraints

Interior Point or Barrier Methods are optimization methods that transform a
constrained problem into a seties of unconstrained ones. These methods follow a battiet

approach where the inequality constraints are replaced by a bartier term (i.e. logatithmic

function) that is added to the objective function.

Consider an Original NLP optimization problem:
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min f(x)

xeR"
stoe(x)y=0 2.5)
x>0

Using a bartier term to replace the bounds the problem is transformed into the

following Interior Point (IP) problem:

min p(x)= f(x) - 4y log(x")

xeR"

stoe(x)=0

(2.6)

For the resulting problem the objective function becomes atbitrarily large as
x approaches the boundary defined by the inequality constraints, thetefore the local solution
of this problem lies in the interior of the constraints set. Then as u approaches to zero the
solution of the interior point (IP) problem approaches the optimal solution of the original
ptoblem. The strategy for solving the original NLP is to solve a sequence of battier

problems for a decreasing parameter u .

The complexity of the problem increases when complementarity conditions are
introduced (i.e. multilevel optimization). For these cases the optimization problem is the

following:

min f(x,w, )
xeR", weR”, yeR”

St.
o(x,w,y)=0 2.7)
X, w,y20

w(i)y(i) =0,i=1...m

Whete wy® =0 are the complementarity constraints. Then, by applying the barrier

terms the original problem is transformed in the following IP problem:
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min fGw, )
xeR" weR"™ ,yeR”

) ) )

o (2.8)

c(x,w,y) =0
w(i)y(i) =0, i=1...m

As mentioned above this problem is highly non-convex, thus difficult to solve.
Recently Raghunathan and Biegler (2003) developed an algorithm called IPOPT-C able to

handle optimization problems with equilibrium constraints (MPEC). The main strategy is to

relax the complementarity constraints w®y) =0 in the following way.

wDy® 4 @ _ g,

S 2.9)
s@ w® 0 9
Where p is the positive barrier parameter that is progressively reduced to zero.

More recently, Baker (2006) reported that this method petformed better than the most
common NLP solvers such as CONOPT and MINOS.

2.4.3 Active Set Strategy

Quadratic Programming (QP) methods are widely used in process control
applications. For example the QDMC algorithm used in this reseatch is a QP problem whete
the (output) constraints are represented by the linear dynamic model. The solution method
behind most QP solvers is based on the selection of working sets of active constraints,

hence the name active set strategy.

ve set solvers for quadratic programming commonly consist of two phases. In
Phase I a first calculation is performed to find an initial feasible point. Then, in Phase II the
KKT matrix is updated as constraints are added or dropped while the algorithm reduces the

objective function and maintains feasibility (Bartlett and Biegler, 2006).

24



M.A.Sc. Thesis - Alberto J. Olvera-Salazar McMaster University - Chemical Engineering

~ The general formulation of 2 QP problem is:

min f(x)= gT x+ixTGx
xeR” 2

} N 2.10)
. LﬂsL}]stZ]

Where x,x7,xy €eR”, ge®R”, G=GT eR™ is positive definite, 4c € R™ and
L>¥U P c

cp,cy € R™. The QP algorithm attempts to solve the first-order KIKT optimality conditions,

which include the feasibility of the constraints and the stationary constraint.

g+Gx+Ac+2+pu=0 (2.11)

The solution consists of the primal variables x and the multipliers v’ = I_ﬂT ul l At

the optimum the elements of v will satisfy the complementarity conditions: v20 for an

active upper bound, v <0 for an active lower bound, and v =0 for an inactive constraint.

An active-set strategy searches through different wotking sets of active constraints
until the optimality conditions are met. At every working set (iteration) the problem (2.10) is

transformed into an optimization problem with equality constraints.

min f(x)= gT x+ixTGx

xeR" 2 (2.12)
T

st Ay x=byg

Where 4,,, contains the information of the active constraints and b, is either the

upper or level bound for the working set. The methodology used to select which constraint

is added or dropped is basically what distinguish the different solvets available.
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Later in Chapter 3 a heuristic method based on the concepts desctibed in this section

is proposed to solve the constrained version of the decentralized MPC problem.
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Chapter 3

A Novel Block Decentralized MPC (D-
MPC)

In this chapter the Block D-MPC controller is presented in detail. Recall that the
goal of the D-MPC is to provide block-decentralized control with autonomy within blocks
and good dynamic petformance of all blocks. Here, the D-MPC is formulated for
unconstrained and constrained cases. A heuristic method based on an active set strategy is
mtroduced as a way to remove the nonconvexity of the coordination problem and facilitate
real-time computation. Finally an extended controller capable of achieving either a D-MPC

or a fully centralized (conventional) petformance is presented.

3.1 Unconstrained D-MPC Formulation

This section describes the formulation of the Block Decentralized MPC (D-MPC).
The Unconstrained D-MPC formulation begins by formulating each MPC controller as a
MIMO DMC controller as described in Cutler and Ramaker (1980). This formulation is

based on the standard MPC technology presented in Appendix A.
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The D-MPC formulation considers two or more MPC controllers to be coordinated
to meet the specified goals. These controllers and their associated processes ate referred to
as blocks throughout this thesis. A block may encompass either a MIMO or a SISO process,
with the manipulated and controlled variables defining each block. In the first chapter Figure
1.1 showed a schematic of a typical D-MPC problem.

A couple of important assumptions that are used in this thesis ate now made.

1. Every controller has the same prediction (p) and control hotizon (m), which is not

required but done consistently in this work for ease of notation.

2. Every controller must have the same execution petiod. (This is not strictly
necessary; controllers could have execution petiods that are integer multiples, which

would complicate the programming, tuning, etc.)

Following the basic formulation for Dynamic Matrix Control, the MPC controller in

block i has the following formulation.

, 1 sp 2 2
win ;4= | 61
i = A du; + By + yF +d; (3-2)
N
Ei=) Aij-du (3.3)
Jj=1
i
M,
where Auy € M)

yi-yit,yF.di,e w(Pi-fi)
4; e gR(P,- -PYx(m;-M,)

4ij € g (PeB)(m;M )

J#i
Q’, e iR(pi'Pi)X(pi'Pi)

Ri c m(mi "M )x(m; M)
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Equation (3.2) tepresents the linear dynamic model; the term 4; contains either a
SISO ot 2 MIMO dynamic mattix that describes the effect of inputs in block i to outputs in

block i. The structure of 4;; has been desctibed in Appendix A. The term E; described in
(3.3) contains the effect from inputs in blocks j#/ to outputs in block i, which represents
the interaction among processes; changes to the manipulated variables in blocks j#i are

measured disturbances for the block i controller.

Parameters p; and m; are the prediction and control horizon of block i
respectively. In the same way P, and M; are the number of process output and input

variables of block i. The previous assumptions indicate that the prediction and input
hotizons atre the same for every controlled block, therefore p; and m; can be represented as

p and m.

It is important to emphasise that the optimization variables ate Au;, which consists

of the control actions of only the input variables defined for block 7.

The effect on the predicted output y; from past inputs Adu; and du; (j=i) is

included in the vector pf. The output feedback is the vector d; and cotresponds to the

"model error", which includes effects of unmeasured disturbances and model mismatch.

This vector d; can be calculated in different ways, the most common method, which is used
in this thesis, is the difference between the measured and predicted values of y; at the time

of the controller execution, which is assumed constant throughout the entire hotizon.
It is important to note that the structure of the vectors is properly handled by

stacking multiple variables. For example for a specific block i variables are handled as

follows.

29



M.A.Sc. Thesis - Alberto J. Olvera-Salazar McMaster University - Chemical Engineering

Auyy gy I Yij (k1)
i erm-1) Vit kp)
A iy Yiz (k1)

Au; = ' yi= '
U iz |7 | Yz
Aipg, iy Vip, (k1)
| Qg Germ-1) | | ViR (k+p) |

Finally matrices Q; and R; are the block tuning parameters and in this formulation
O; is defined as diagonal and positive definite mattix (PD) and R; is defined as diagonal

positive semidefinite (PSD) ot definite (PD) matrix. These tuning parameters are deemed

local because they only account for input and output vatiables of block 7.
3.1.1 Control Calculation for Each Individual Block (QDMC formulation)

Looking ahead, we tecognize that we will be solving the optimization for multiple
blocks simultaneously. To avoid a multi-level optimization problem that would be
intractable, we will reformulate the individual block optimizations so that multiple blocks
can be optimized in a tractable manner. The first step in this formulation is the
transformation of the optimization problem into a well-posed problem for real-time

solution. An impottant part is to explicitly express the interaction effects.

Expanding the first term of (3.1).

2
0 AT (AiiTQiAii )A”i +2 [AiiTQi (e; + E; )]A”z +(e; +E) 0ile; + E;) 34

i

IJ’;’ - J’fp
Where.

S
e;=yf +d;-y¥
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It is important to mention that e; contains the feedback information effects of past

control outputs and forecast of the future set points and is not influenced by future control

decisions.

The second term is easily transformed.
2 T
"Au, ||R1 = Aui Ri Aui (3.5)

Finally the objective function J;can be expressed as.

. 1 1
Ajfum Ji= Eé‘uiT (AiiTQiAii +R; )Aui + [AiiTQi (e +E; )] Au; + E(ei +E ) 0ile; + E;) (3.6)

The tesulting problem is an unconstrained QP of the following form.

Min (o(x)=xT2x+ch+h
P

The solution of this unconstrained optimization problem must satisfy the following

stationary condition.

aJ; T T T
;Aj=(Aii QiAii+Ri)Aui+Aii 0i(E;)+ 4,7 01(e;)=0 (3.7)
1
The second order condition basically requires that in order to have a convex
optimization problem, the Hessian matrix % =(A,~,-TQ,-A,~,- +R,~) must be at least positive

semidefinite, which is the case for a typical well-posed MPC problem. Therefore, a local

minimum is a global minimum.

Note that.
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"  We will requite that the inverse of the Hessian (Z) in equation (3.7) exist through

selection of appropriate process applications and values of tuning parameters. This
topic is developed in the next chapter.

* If there is no interaction, the problem simplifies to a single loop MPC where the
solution is the following.

1
Au; = (AiiTQiAii + RiT 4 Qi) (3.8)

* This set of linear equations can be solved for the optimization values of future
adjustments of the block-manipulated variables.

» If this optimization problem is solved independent of other block controllers, the
term E; is treated as a zero (no coordination) or as a constant term (sequential
cootdination).

®  The term ¢; contains the feedback information and the effect from past inputs.
3.2 Simultaneous Solution for the Unconstrained D-MPC

The proposed approach for the coordination of Decentralized Block MPC
controllers starts with the MPC formulation of each of the blocks that will be coordinated,
ie., equation (3.8). We note that this control problem is unconstrained, so that bounds on
manipulated variables will be addressed in the subsequent section. With all controllers solved
simultaneously, the communication among blocks will be through the interaction terms.
These controllers are designed in a way that only the blocks’ input vatiables (4u;) are the
optimization variables for that block’s controller, Le., ate the variables adjusted to minimize

the blocks controller objective function.

The optimality conditions for all block controllers take the same form and can be

combined and solved simultaneously as a set of linear equations, as given in the following.

T T .
(Aii O 4;; +Ri)Aui + 4" Qi (E; )+ 447 0,(e))=0 i=1,N (39)
The interactive term in equation (3.9) is given in the following expression.
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N
T T
4 O(E;)= 4" O, Z AyAu (3.10)
j1

i
Expanding the interactive term for system (i = 1) yields.
T |, T T
A" 0(E))= (Au QIAIZ)' Auy + (Au Q1A13)' Auz +++ (Au Q]AIN)‘ Auy (3.11)

Repeating for i=2,---,N results in equation (3.9) being rearranged to a set of linear

equations.
T T T
A1f Qrdpr + Ry 1‘;11 Opdp e A]ITQIAIN Auy 4170 ¢ 0
. T
Ay Ordyr  Ap Qpdp Ry i Ay Ordon Au, Ay Or-ep 0
: EI : 4 8 |+ : =it (3.12)
AT.A AL Onr A ..:AT A Ry | | 4u AT.. 0
vy OnAni vy OnAnz v OnAnw + Ry, N v On -en
Then, defining the following matrices.
Ay A o Ay g 0 0 0
Ay Ayy v Ay 0 g, 0 0
AC = . Q = .
‘e 0 0 . 0
Ani Ay 0 0 On
(3.13)
R0 0 0 es
e
R= 0 R2 0 0 e= 2
0 0
0 0 0 Ry en
al d in a condensed form as follows

(ADTQ Ac +R)Au+ADTQ-(e)= 0 (3.14)

Whete Ap contains only the diagonal blocks (4;;) elements of A .
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Ap = ot (3.15)
0 0 - Ay

And the decision variables of all blocks are in the stacked vector defined as

T T
Auz[AulT duyt e duy } .

In conclusion the simultaneous set of equations for the unconstrained D-MPC can

be expressed in the following way.

Apmpc 4u=bpypc

Where
(3.16)
Apmpc = (ADTQ g + R)
bpuec = 4p’ O-e)
. Finally, the controller actions are calculated by using the following expression.
Au = (ADTQ Ac + RTIADTQ - (3.17)

The resulting Block D-MPC has a similat structure to that of the Centralized MPC

as shown below.

C-MPC Au = (ACTQ Ac +RT1 470 (=e)

The differences between C-MPC and D-MPC ate obviously a result of designing the

D-MPC controller to achieve different petformance goals.
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A geometrical interpretation of this problem is shown schematically in Figure 3.1 for
a two-dimension problem. The solution obtained by the D-MPC controller is derived by
allowing each controller to optimize its own objective, without regard for other objectives.
The approach is shown as the intersection of the optimality conditions (dashed lines) for the
two individual controllers. This optimization approach reaches a solution that is commonly
called as the Nash Equilibrium point (Van Shuppen, 2004), shown as Ny in the figure.
Equation (3.17) calculates the intetsection of the optimality conditions, in this case the

solution of a linear set of equations in the Au space.

On the other hand the Pareto optimal path is the set of points (u;,u,) obtained by a
centralized controller adjusting both manipulated variables to minimize the weighted
function J=(w;J; +w,J,) for each 0<w;,wy<1, w;+wy=1. The curve desctibing the
range of Pareto solutions is designated by P, In this way the Pateto optimal solution
obtained when w;,w, =0.5 corresponds to the solution of the C-MPC using the common

tuning of equal weighting of controlled variables.

Uy
—— s, uz)

! 5]
! —J\u;,u
] I\#]42
., o
! =
i -

i /,f‘/

i JO -7

—_—

i i

i ,./’

i

f o

,i /'/.

l,./"

o 1'\"';'
R l
e I ul

Figure 3.1 Nash (D-MPC) and Pareto Optimal (C-MPC) Solution

In this section it has been shown that when unconstrained QDMC controllers ate

consideted for D-MPC, the solution is obtained from the stationaty conditions, and the
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solution cotresponds to solving a set of linear equations. This is the simplest situation, and

no more than a linear solver is required for its real-time implementation.

3.3 Constrained Block D-MPC

il JLLLELE,

In this section the control algorithm is extended to deal with the coordination of a
set of MPC controllers with bounds on the manipulated variables. Again, the main approach

for solving this problem is to replace each optimization problem (MPC) with its equivalent

set of optimality conditions, thus yielding a single-level problem.

The QDMC formulation for the controller in block i, which incorporates hard input

constraints, is the following.

2
¢+l

4

]4‘1{4’7 Ji= é(")ﬁ —Vsp;

subject to

3.18
Vi = A,-,-Au,- +Ei +yP/ + di ( )

- ' Auf™ < Au; < Au™™

u" <uy <u™

where

N
E,’ = ZAIJ 'Auj
j=1

J#i

This formulation maintains the same structure as in problem (3.1) with the same

dimensions for all arrays and the addition of input bounds ™, 1P, AyMi| 4, & R+Mi)

3.3.1 Input Constraints
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Following the procedure used in Sec_:tion 3.1.1 the next step is to represent the

constraints in a suitable mattix form. First, the f% input constraints in block i,

u™" < uj, < u™ can be described as follows.
7 1
. u
umln < U; + ZAHZ < umax
i FRORN. ren Ty
J=0 (3.19)
Jor p=12--m-1
Where Ui, is the cutrent value of Ui, . This constraint can be expressed in matrix
form as.

1 100 - o] Au,-f’(k) 1
1 11 -0 Uip wan 1
: |¢,,min : Sl —
(ui e Y, )s|11 I 0 =l (uif “irm ) (3.20)
C 0 :
] I 1 1 I 1 L uif,(k-un—l) i ]

Throughout this section, v denotes the vector of appropriate dimension of all ones.

Then, defining ¥ e R™™" as follows.

0 0 -~ 0

0 - 0

V= 1 0
3.21

A

The input constraint can be expressed as the following,.
ve(uM; g,
[V]"‘”fﬁ ) <

-V ~ve Gy, ~u™) (3.22)
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In a further condensed way the constraints for the f th input variable in the i" block

ate the following.

Vg -Au; +v; <0
B i, 7Vi, (3.23)

V- (u ip— u,-f,(k)

Whete Vg e R and Vi, = eR?™ contains the cutrent value of

min
_v‘(uif’(k) —u if)

the f™ input variable. Finally, combining the expressions for all the variables in block i a

condensed expression is obtained.

Vg 0 - 01| 4y 7i,
0 Vg - 0] Az:‘iz . 7:'2 <0
0 0 - Vy||4w, Vi, (3.24)
ot
Wg-Au;+y; <0

Whete Wy eR2™-MxmeMi 5nd 4 e ™M contains the cuttent values of the all the
input vatiables in block 7. Using the very same analysis on the input change constraints,

Aui™ < Au; < Auf™™ can be exptessed as follows.

]B 0 . 0 Aui, é‘il
R CANL Y
0 0 Iz | |4y 0;
B L I i (3.25>
I -V Au;nax
Ip _‘V ] i, = -
— I g . A,,mln
L i
Which can be further condensed as follows.
g du;+6;<0 (3.26)
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Whete IeR™™ is an identity matrix and Iy eR?™*™ is a stacked mattix
composed of two identity matrices with opposite signs and Iy e R Momi-Mi

Finally the optimization problem (3.18) can be rewritten in the following way.

. 1 1
Aﬁn Ji= EﬁuiT (AiiTQiAii + Ri)Aui + [AiiTQi (e + Ez)] Au; +E(ei +E) Oile; + E;)

subject to
WB . Au,- + Vi <0
g Au; +6; <0 (3.27)

S
e =yl +di -y

N

Ei = ZAi’j Auj
=1
J#i

The Lagrangian of this problem is given in the following.

1
L (Aui,liasﬁi):;AuiT (AiiTQiAii +R; )Aui + [AiiTQi (e; +E; )] Au;
1
+E(ei +E) Oile; + Er)
(3.28)
+ 2 g du;+y;)

+¢IT(IIB -Aui+5,~)

Where 4; e R¥™Mi and ¢; e R¥™Mi are the Lagrange multipliets for the input and

move size constraints respectively. The solution to this convex quadratic optimization

problem must satisfy the following first-order KIKT conditions (Biegler et al. 1997).
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[A] V au, Li (du;, 2y, 6;)= (AiiTQiAii +R; )Aui + A Qe + E)+W§ -4y + 1 ;=0 (3.292)

Wg - Au; +y;<0 (3.29b)
ol Iy du;+6; <0 (3.29¢)
. Aig W5 dus +7;) =0 f=1 M m (3.294)
! ¢, -(IIB-Au,-+6,-)ff=0 fF=leMy-my (3.29¢)
D] (4. 41)>0 (3.299

The first-order KKT conditions have five different components that ate necessaty
for optimality: [A] Stationary or Linear dependence of gradients |B) Feasibility [C| Complementarity [D]
Nonnegativity. Finally [E] covers two separate issues that can also be consideted. (a) A
constraint qualification can be considered to account for degeneracy problems of the active
constraints. Basically a strict local minimizer, Au;F must also satisfy a Strict complementarity
condition, which state that exactly one either the constraint or its associated Lagrange
multiplier is zeto but not both. (b) A second order condition to distinguish local minimizer
from other stationaty points requites the Hessian matrix at Au; to be positive definite on the

null space of the active constraints.

(E @)] Strict complementarity
and
[E®) zT (VZ J; (Au;k ))Z is positive definite

Whete Z is a null-space matrix for the matrix of active constraints at Au; . These

conditions are only necessary and does not requite that the Hessian of the Lagrangian itself

be positive definite. It is a less stringent requitement. However if the Hessian of the
. P - Cy e { 2 \ ) )
Lagtangian at Au; is positive semidefinite, leig(V% L;) >0/, which is the case for a well-
(]

posed MPC problem, then of course the second condition will be satisfied.

3.3.2 Simultaneous Solution for the Constrained D-MPC
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The main idea behind the coordination method proposed in this wotk is to
transform several optimization problems (MPC) into a single-level problem by treplacing
each problem with its optimality conditions, and then, simultaneously solving the resulting
set of equations. Section 3.2 showed that for an unconstrained D-MPC only a set of linear
equations is to be solved. The constrained case on the other hand becomes more challenging
due to the set of complementarity conditions (3.29d) and (3.29¢) that atise from the inequality
constraints. These conditions introduce nonconvexity into the problem thus making the

solution of the problem much more difficult. The simultaneous D-MPC problem is

described in (3.30).

In order to demonstrate the simultaneous procedure for the constrained case let us
consider the simplest case that involves two blocks (N =2), each block with a single input

single output controller (M;,P;,M,,P,=1) and a single input and output horizon

(my.pr,my, py =1).

KKT 1 KKT 2
T T T T T T
[A] (1411 Q4 +R1)A"1 + (Au Q14 )41"2 +4;7 0(e;) (Azz Q242 +R2)Au2 + (Azz QZAZJ)Au] + 45,705 (e,)
+wE a0k ¢ =0 +WE Ay + 1% -4, =0
[B] WB'AZII'I—}’ISO WB-Au2+7250
IIB‘Au1+51S0 IIB'AlI2+52$0
(3.30)
C ﬂJF(WB'41‘1+}’1)ﬂ=0 f=1eMpm Ao, Wy tuy+73) =0 =1 M;m
(€] b1, (Ulp - Ay +5) p =0 H=leMpom #2, Ul Auy +8,) =0 =1 Myom
O] (4.41)20 (A2.42)20
The geometrical interpretation of this problem can be visualized in Figure 3.2 for the
two-dimension problem where the presence of regulatory constraints can modify the

number and location of the equilibtium points.
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Figure 3.2 Intersection of KKT Conditions

The solution of the simultaneous D-MPC problem in (3.30) is challenging due to the
complementarity conditions that introduce a combinatorial feature to the problem. This
could be formulated as a mixed integer optimization problem, which would grow in size
exponentially. Alternatively, one could formulate this problem with all continuous vatiables.
Recently, several works (Raghunathan et al. 2003; Baket and Swartz, 2008) have reported
successful solution of this class of problems using continuous variables by using an intetior
point solver called IPOPT-C. This solver has a specific modification in order to handle the
complementarity equations. An important advantage in this methodology is that the
simultaneous approach overcomes the necessity of an iterative algorithm. A disadvantage
however is the non-convexity of the problem, which makes assurance of a global solution

using IPOPT-C problematic.
Problem (3.31) has zero degtees of freedom for optimization. Therefore, in this work

and in order to use the capabilities of the IPOPT-C solver a “false” objective function is

incorporated. The resulting D-MPC problem is the following.
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(Aﬂr}‘ﬁ)F(Au,/w) =c
subject to
[4];
[B]; (3.31)
i=1,N
[C];
[D];

Where ¢ is just a constant and [4],[B],[C], and [D] ate the first-order KKT

conditions of the controller in block i as desctibed in (3.29).

The approach was successful in test cases for systems with positive Block Relative
Gain. Howevet, in systems with a negative BRG configuration (3.31) achieved solutions that
were obviously incorrect based on engineering insight. For example in one of the Negative
BRG simulations, offset was often obtained even when no input saturation needed to be

active. The details on the case studies will be addressed in Chapter 5.

In ordet to overcome the complexity caused by the complementarity constraints an
alternative approach was developed to ensute tractable teal-time computation. This
altetnative approach basically consists in implementing a heuristic active set strategy that is
able to temove non-convexity of the problem while achieving the autonomy sought for the

D-MPC and retaining the coordination among blocks.

3.4 Heuristic Approach to Constrained D-MPC

The first attempt to remove the complementarity problem was to use the so-called
DMC Heutistic, first presented by Prett and Gillete (1980). This method consists in

incorporating input constraints as they are becoming active. However their method does

not include the Lapotan

This method has been proven to be effective in practice for single (centralized) MPC.
However the Prett and Gillete DMC heuristic is not viable for the Decentralized MPC

problem because not including Lagrange multipliers will cause the lost of local autonomy.
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An alternative method is then proposed to solve the Decentralized MPC problem.
This method is also based on an active set strategy, which has been used in MPC QP solvets.
A similar method was developed for the Model Predictive Heuristic Controller developed by
Richalet et al. (1987) for centralized MPC applications.

The first step in the development of the heuristic method is to define the way the
constraints are addressed. Prett and Gillete, (1980) call them time variant constraints and

described them as follows.

“They are not always active. Depending on plant measurements and conditions they may or
may not be activated. Hence, they become integral parts of the control system model only
when they have been activated. At all other times, they are invisible to the control model. In
case one manipulated variable hits high or low limits, in that case it can only move in one

direction away from the limit.”

These equations represent the set of constraints that have become active, and
therefore must be enforced. Assume for the moment that the status of every inequality

constraint is known, i.e. the active set is known.

The optimization problem for block i including the active constraint is the following.

. I r(,T T 1 N
IZ-Z"’ Ji=5 4 (Aii QiAii+Ri)Aui+[Aii Qi(ei+Ei)] Aui+3(ei+Ei) Oile +Ey)

subject to (3-32)

H,--Au,-—B,— =0

Whete the equality constraints represent only the known active constraints. The

Lagrangian of this problem is.

aliglall

1 1
Lildu;, 4:)= EAViT (AiiTQiAii +R, )Aui + [AiiTQi (e +E; )] Au; + E(ei +E) Qle; + ;)

3.33
+ AL -(H; - du; - B;) (3.33)
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And the cottesponding optimality conditions are the following,.

[A] V gu; Li (Auii’li)= (AiiTQiAii +R; )A”i + lAiiTQi (ei + Ei)J+ H zT A =0 (3.342)

V. Lildu;, 2)=H; - Au; - B; =0 (3.34b)

This can be rearranged in the following linear system for block i .

A Q4+ R, HT 14| — 4y Qe + E;) (3.35)
H, o LA B,

1

For each active constraint an extra row is added to the linear system along with its

respective Lagrange multiplier in the vector of variables.

Fot example consider having the following active constraint on the second time step

(k+2) of the input variable (f = 1) in block i.

umax

Aui1,(k) +Aui1,(k+1) =Y,

uiz,(k+z) =Y +

This constraint can be extracted from the matrix form.

r r 1 - _— ~
uil,(k+1) uil,(k) 100 0 uil,(k)
uil,(k+2) uil,(k) 0 - 0 ui},(ku)
: = + 7 - 0l :
(3.36)
- .0
Luil,(kHH) 1 Lu’},(k) 1 L] I 1 1 i Lduil,(kﬂn—l) ]

In this case where the calculated vatiable # -~ in block i is active, the

corresponding row (2') is selected as a constraint and added to H;.

Hy=[1 10 - 0] (537)
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Repeating the same procedure for each block MPC controller (i=],---,N) to be

cootdinated results in a set of the stationary and feasibility conditions, which in turn is an
augmented version of the unconstrained D-MPC controller presented in (3.16). The

controller including the active constraints may be expressed as follows.

A C HT ) Au _ bDMPC
|: DfIP , 1 [,’L]—I: 2 il (3.38)
Apupc = (ADTQ Ao+ R) bpupc = A4p’ O-e)

Whete 4 is the Lagrange multiplier that appears due to the active constraints. The

term B contains the collection of maximum changes for each input variable (ie.

B, = u;InaX ~ %9 ), and H contains the collection of coefficients for the active constraints.

A H 0 0 B
A=| i H={0 . 0 B=| ! (3.39)
Ay 0 0 Hy By

The variables and parameters (4;,H;,B;) have the cortesponding information for the

active constraints in block i. Again, this is just a system of linear equations; where in order

to have a solution matrix A4pype must be a full rank matrix.

Equations (3.38) provide the solution for a known active set. Now the basic logic of

the complete algorithm that includes determining the active set is desctibed.
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Active Set Iterative Algorithm.

=

Initialization: Solve unconstrained optimization formulation.
2. Find initial working set of active constraints.

2.1. Start Iterations.

Pick the first active constraint along the input time horizon.

Add the active constraint Hul) -y = Bu(j ) to the unconstrained problem
(3.16).
Solve a resulting linear system in the form on (3.38)

2.2. If there ate constraint violations at 2.1.3 go to 2.1.1 if not to go to 3.
3. Done

The heuristic algotrithm provides a feasible active set for the constrained problem.
The main difference in this strategy with a classic active set strategy is that once a constraint
is fixed it never becomes inactive. The advantage is that a feasible solution is obtained within

a finite number of iterations. A disadvantage is a possible non-optimal solution.

Thete is the possibility of several input violations at the same time. For such cases,
the order in which an input vatiable () with violations is selected is based on the distance

from its cuttent value to the active bound; if two input vatiables have violations, the one

closer to the active bound is selected to be set to its bound value.

It is important to mention that this strategy only considers hard input constraints.
The addition of soft output constraints would requite a different approach to handle the

slack variables.

In conclusion, this very simple strategy only requites the solution of a linear set of

equations at each iteration and a finite number of iterations. Computational expetience

~ iom oy ia P . R a atlen A anloims n Lall snmin Visnmos TETTT o 1ied o do
comparity this method with a method solvi ig the full non-lnear KKT conditions is

presented in the performance of the case studies in Chapter 5.
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3.5 Comparison of D-MPC with Conventional Centralized MPC

Controller

A common subject that often comes to mind is whether the D-MPC performance
can be achieved by simply tuning a centralized MPC controllet. In this section that question
is addressed. First, the mathematical differences among controllers are presented with the
objective to find if thete is a way to achieve an equivalent dynamic performance, ie., the
same adjustments to the manipulated vatiables, using a centralized MPC formulation.

Second, the role of the tuning parameters is explored and conclusions are drawn.

For the sake of simplicity, a fwo by two example without inequality constraints is used
to compare both controllers, the analysis assumes perfect models. This case considers a

controllable plant that includes dynamic interaction matrices 4; » and 45 ; that are nonzero,

ie., process Interaction exists. The corresponding set of optimality conditions for the D-
MPC and the C-MPC are presented in (3.40) and (3.41) respectively. The centralized MPC
formulation is described in detail in Appendix A.

T T T
A5 Opaday;  Axy Opadaz+Rpy | [Aua]| | 4y 5 Opaler)| L0

A1 Opidr 1+ R A1 OpiA 4 e 0
D-MPC [ 11" Op1d11+ Rpy 1,1 Op1d2 }[ u1j|+{ 11 QDI(QI)}:[ ] (3.40)

T T T T
A1 Qerdri+ 4z QezAz v Rer Ay Qcrdia+ Ay p Qo242 _[AVJ
T T T
C-MPC Ay Qoidg+ 425 Oc2dar A1 Qordy 2+ Ay s Qcada +Rep | L AUz
T T
+I:AI,I Ocien)+ 4z, ch(ez)} _ [O]

A12" Ocilep)+ 43,7 Ocalen)| 10

(3.41)

We begin by comparing both equations element by element. It can be seen that every

element of the C-MPC controller has an extra term. Now, the objective is

[l

o show that for a

given set of D-MPC tuning parameters (Qp,Rp), there is not a simple procedure to obtain a

set of C-MPC tuning parameters (Qg,Rc) that would drive both controllers to produce the

same input action Au with e#0.
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[ADAﬂ’C—I “bpupc J= Au = [ACA/E’C_I “bempe ] (3.42)

The term simple within the context of this analysis refers to obtaining tuning
parameters by some direct algebraic procedute that does not involve a complex optimization
problem. In this context the next discussion considers the most evident case in which both
controllers could match each othet. Such case would require every block element on both

equations (3.40) and (3.41) to be exactly the same.

3.5.1 Tuning Parameters Effects.

The tuning parameters @ define the relative importance of the control of a specific
output variable. In this way if (; is set to zero then outputs in block i are not controlled at
all. For the case in question we will first consider the effect of this tuning parameter Q while
setting the other tuning parameter R to zero. In order for the C-MPC in (3.41) to have the
same performance as the D-MPC, the second term on each element of the first 7w must be

zero. In the same way the first term of each element of the second 7w must be zero as

shown below.

A Qi+ [0+ Rer Ay Qcidip+[0] _[Auz} . 41 0ctep+[ 0] =[0] (3.43)
[0+ 4,7 0c2d; [0+ Az,zTchAz,z +Rey | [4uz] [0 ]+ 45,7 0co(ep)| L0 :

However, the only way to obtain this result would requite setting the tuning
parameters Qc; and Oy equal to zero, which in turn would make the entire matrix equal to
zero and therefore singular. From this observation it can be concluded that there is no way

to match both controllers in an element-by-element fashion by means of changing parameter

Q with a fixed parameter R.
The suppression factor, R on the other hand has the function of penalizing the
magnitude of change of an input variable. From (3.40) and (3.41) it can be obsetved that R

has no effect on the off-diagonal block elements of the mattix nor on the feedback
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information terms. Therefore, the suppression factor has no effect on the off-diagonal

blocks of the controllers, and consequently, these off-diagonal terms would never be equal in

both controllets.

However, it is important to mention that if a there wete to exist a combination of
tuning parameters (Qc,Rc) and (Qp,Rp) that makes equation (3.42) hold, obtaining such

parameters would require the solution of complicated nonlinear problem with no guarantee

of solution.

More importantly, the tuning would only be valid for one scenario. This would
require the solution of a non-linear, non-convex tuning problem as part of every MPC

controller execution. We deem this to be an unacceptable burden for real-time

implementation.

In summaty, by means of simple tuning the typical formulation of a centralized

MPC is not able to reach autonomous decentralized goals just as the D-MPC controller is

not able to reach centralized goals.

This section made clear that no sizple tuning procedure and maybe no procedure at

all exist in order to achieve autonomous goals using a centralized MPC controllet.

3.6 Extended D-MPC Formulation

In this section an extended D-MPC controller is presented with the aim of achieving
the range of solutions between D-MPC and C-MPC. The controller is formulated using the
same method as the D-MPC controller described in Section 3.1. Basically, each local
controller is formulated separately and then is replaced with its oi)timality conditions. The
difference is that this time each local controller includes a term that accounts for the effect
on other blocks’ output control performance with its impottance determined by a different

weighting factor matrix (W; ;). This tuning parameter ; ; indicates the weighting factors for
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outputs in block j#i to be used in the objective function of block i. In this manner, the

unconstrained MPC controller in block i has the following formulation. (Hete, we will

consider the controller without inequality constraints.)

N
; 1 sp|? | 2 (3.44)
MmJ-=—-‘ _— “ N —
Min J; =\ [y =7 JZ:; s =7,
i
yi = A du; + By + y] +d; (3.45)
yy=dpdui+Eptylvd; i
N N
By=) A E; =) Aty (3.46)
k=1 k=1
k#i k=j
Whete Au; e g (m; M) yi,y;vp,ylp’di,em(pi.g)
4y € RPENeM) yiyy.vi.d;.e R (PrF)
0; c j2-E)x(p-B) 4 gy (PrEI(my M ) i
Ri € ﬁR(mi'Mi)X(mi'Mi) VVI] c SR(pj'P/‘)X(Pj'Pj)

N= Number of Blocks

Applying the same procedure described in Section 3.1 (Le. evaluating the stationary
conditions for the interacting controllers with coordinated vatiables and solving them

simultaneously) for a two block example results in the following linear system of equations.

T T T T
Ay Qg+ Ao Wipda + Ry Ay Qrdjp+ Ay Wyodz ) .[AW]
T T T T
A Wy A+ Ay g Qadsy Ay Wagdia+ Ay 5 Ordyy+ Ry | |42
. T (3.47)
N { A5 Qilep)+ 4y 17 W 2(ez) } _ [0}

T T
A1 Wy le)+ 45 Qa(er)| L0

The similarities of this Extended D-MPC and the C-MPC conttoller in (3.41) are

evident. The resulting controller can be separated as follows.
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T T T
Ay Ordp + Ry A7 Qi _liAu]] REEARY: (en)
Az,zTQzAz,J Az,zTQzAz,z +Ry | LAz Az,zTQz (e3)

r T r (3.48)
L\ A2d Wiadar App Wipda, .[Auz] | A2r Wi2(e) | {0]
A1,2TW2,1A1,1 A],ZTWZ,IAI,Z Au, A1,2TW2,1 en)| L0
Then it can be easily redefined in the following way
- 3.49
[(ADTQ-AC + R)Au+ ADTQ-(e)]+ [(AODTW T A )Au + AODTW-H(e)]= 0 (3.49)
Where the following matrices can be defined.
0 W, o Wy T AO Aé,z jl’N
_| a0 and App =| 72! Ly (3.50)
. WN_J)N rew “ve
Wyi = Wyn-i 0 Avy; Ayz 0

And 7T is a permutation matrix that switches the block-rows of mattix A:. Finally,

the control actions are calculated as follows.

-1
du=|ApTQ - Ac + R+ App W -(IT 4c)| | ApTQ+ dop W - 1T |-(—e) (3.51)

The terms underlined with I tefer to the D-MPC formulation and the terms with II

are the additional terms required to achieve the C-MPC petrformance. The following

observations can be made.

As W,; and W;, approach zeto the performance approaches that of the D-MPC

controllet.

As W,; and W;, approach @Q; and Q, respectively a C-MPC controller is

approached. This can be easily visualized by comparing equations (3.47) with (3.41).
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Figure 3.3 presents a sketch of the range of performance for the Extended D-MPC
controller as the parameter W is modified. For example, if parameter W is set equal to a

certain percentage of parameter Q then the solution will fall between the points P (the

original C-MPC solution) and Ny (the D-MPC solution) depicted in the figure.

U,

Figure 3.3 Effect of Tuning Parameter W

It is important to mention that the case where W =Q results in the Cooperative
MPC controller developed by Venkat and Rawlings (2004), which from its conception has a
different design objective. This objective is to have distributed computation in a
decentralized MPC that has performance close to the centralized controller, C-MPC.
Cleatly, this is a different goal, centralized versus local autonomy; therefore, we will not

apply the Venkat and Rawlings controller.

A concluding remark regarding the Extended D-MPC presented in this section is
that the spectrum of possibilities that ranged form D-MPC to C-MPC can be readily

analyzed by means of a simple parameter (#;;), which is also useful to understand and

define the goals of the coordinated controllet.
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3.7 Summary and Conclusion

The D-MPC controller is developed parting from a strategy similar to that of
multilevel optimization. Here several optimization problems at a same level are replaced with
their respective optimality conditions and then solved simultaneously. It can be concluded
that applying this strategy to a set of unconstrained MPC controllers will result in 2 D-MPC
controller with a well-defined structure that is easier to visualize and analyze. Additionally

the way tuning is addressed remains the same as in conventional MPC control.

Another important concluding remark is that there is not a practical way to achieve
an autonomous D-MPC performance by means of tuning a conventional centralized MPC

controller. In the same way it is impossible for the D-MPC controller to achieve a C-MPC

performance.

Finally, implementing constrained control requited more work. The strategy that
includes KKT conditions is correct, however its implementation was sometimes
unsuccessful in cases with negative BRG configurations. Although tuning and solver
adjustments may help it was decided to tty to remove the non-convexity by implementing a
heuristic strategy to enhance the D-MPC formulation. The improved strategy consists in a
systematic method that detects constraints violations and automatically incorporates required
bounds (active set) into the controller formulation. The approach is computationally

tractable yielding a small set of convex problems to be solved sequentially.
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Chapter 4

Controllability and Stability Analysis

“In this chapter, controllability and stability analysis of the D-MPC controller
structure is presented. Controllability provides basic criteria that must be satisfied by the
process for application of the D-MPC; it does not provide insight regarding the quality of
control petformance, but only a guarantee that feedback control is in some sense possible.
Once a process has been deemed suitable for the application of the D-MPC controller, the
next step is to analyze if the controller can provide closed loop stability. Classical stability
criteria for discrete control systems ate applied to the D-MPC controller formulated in state
space. Different control structures such as multiple SISO controllers ot sets of multivariable
blocks can be easily tested for nominal stability. As a tesult, this chapter provides methods
for selecting process applications that could be suitable for D-MPC. Control petformance

will be evaluated in the next chapter.

4.1 Definitions of the Plants to be Controlled by the D-MPC.

We begin the analysis by refining the objectives of the implementation of a Block D-
MPC that were presented in Chapter 1. By using the D-MPC conttolletr we want to apply D-
MPC to processes that can be controlled by a centralized MPC (C-MPC) controller.
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Thetefore, we considet any process for which C-MPC can be applied as a candidate for D-

MPC, which provides autonomy for each block controller. In this way an implementation of

the D-MPC controller must be able to:

[EN

Achieve output controllability, not full state controllability.
2. Maintain the steady-state output variable equal to the set point for changes in
disturbances and set points by adjusting input variables # for unconstrained

applications.

3. Achieve a good dynamic performance.

Two impottant characteristics must be analyzed in order to define the applicability of
the D-MPC controller. First, the controllability, which is a charactetistic of the process and

second the existence of the controller solution.
4.1.1 Classical Controllability Definitions.

Several definitions of controllability can be found in literature, with the proper
choice depending on the control application. We start with a simple definition of steady-

state controllability, which is independent of the control algorithm (Matlin, 2000).

A system is controllable if the controlled variables can be maintained at their set points,

in the steady-state, in spite of disturbances entering the system.

In this way a squate process is controllable if the determinant of the steady-state

gain matrix is nonzero. Moreovet, square systems are not controllable if any of the following

conditions occuts:

1. Any process inputs are linearly dependent (giving dependent columns)
2. Any process outputs are lineatly dependent (giving dependent rows)

3. A process input does not influence any output (giving rows of zeros).
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4. A process output is not influenced by any input (giving column of zeros)

In the same way a non-squate system is controllable as long as the (column) rank of

the gain mattix is equal to number of controlled variables.
Table 4.1 describes two other important definitions (Skogestad and Postlethwaite,

1996). However, it is important to note that these common controllability criteria are too

restrictive for many process control applications.

Table 4.1 Controllability Definitions

1. Pointwise State (or

Definition Shortcoming Potential application
Indicates if an input It does not imply
variable is able to bring | the states (outputs)

the states from any

can be maintained

Batch control

Output) Controllability initial value to any final at the “final
value within some time conditions” at
window steady state.
A system is functional

2. Functional
Controllability

controllable if given
any suitable ' output
sequence there exists an
input sequence which
generates the output
sequence.

The term suitable
is too restrictive
and therefore can’t
be applied to
systems with RHP
ZEros.

Continuous processes
where the entire defined
trajectory must be
achieved without error

In this wotk, only the simple, steady-state controllability criterion will be applied.
The othet dynamic criteria are deemed too restrictive. Howevet, steady-state controllability
may not provide sufficient insight to applications of D-MPC. Therefore, we proceed to
further analysis that includes information about the controller as well as the process, so that

it is not precisely controllability analysis.

n

4.1.2 Existence of a Ceniralized MPC Conirol Solution

! A suitable sequence is one, which does not ask for nonzero output in less time that the inherent time delay
of the system, and which also has a z-transform (Rosenbrock, 1974).
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As mentioned above the application of D-MPC proposed in this work is going to be
litnited to processes that have been deemed suitable for a C-MPC controller implementation.
In this way the analysis in this section is based on the C-MPC controller. The C-MPC
controller requires the inversion of a matrix in order to calculate the control law. If that
mattix cannot be inverted then the control action cannot be implemented. The
unconstrained C-MPC controller is described in Appendix A, and the control law for the

unconstrained case can be expressed by the following equation.
T T
Au= (AC 0 Ac +R) 4:7Q (-e) 4.1)

Acype = (ACTQ Ac +R) 4.2)

Where parameter Q is the output weighting matrix and has the form of a diagonal
positive definite matrix. The matrix R is the move suppression factor and is a positive

semidefinite matrix. In order for the centralized MPC controllet to exist mattix Aqype as

defined in (4.2) must be non-singular and therefore invertible for any suitable value of the
tuning parameters R and Q which are diagonal matrices with positive (or non-negative)

coefficients on their diagonals.

When determining whether Acypc is non-singular, a following useful matrix

propetties for positive definite mattrices will be applied (Horn and Johnson, 1976).

P.1. The sum of any Positive Definite (PD) matrices of the same size is positive
definite. More generally, any nonnegative linear combination of positive
semidefinite matrices is also positive semidefinite.

P.2. Let YeM, (Matrix of nxn dimension) be Positive Definite. If CeM,,

(Matrix of nxm dimension) then CT.C is positive definite if and only if

C has rank m.
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Based on property P.1 and on the fact that parameter R is at least a positive

semidefinite mattix the singularity analysis of expression (4.2) can be reduced to the

following expression.

Acupe = (ACTQ AC) (4.3)

(We note that even a process with no causal relationships between the manipulated
and controlled variables can have a non-singular controller matrix by setting the move
suppression elements to positive values. We would deem this situation non-controllable, as
the solution would simply be a minimum effort controller, with all changes to the

manipulated variables being zero.)

Furthermote, by applying property P.2 it can be guaranteed that as long as the
dynamic matrix, 4- has a rank equal to its number of columns then the matrix (ACT 0 AC)

is positive definite and therefore non-singular. In this way the condition for invertibility of

Acype is the following:

Rank (Ac)=m-M (4.4)

Whete M is the total number of input (manipulated) variables and m is the

controller input hotizon.

In summary, as long as the Q matrix is positive definite, which is the case for C-
MPC controllers, the dynamic matrix A- alone defines the applicability of the C-MPC

controller. It is important to bear in mind that this matrix, A is built from step weights

models that relate the dynamic effect of a specific input vatiable to a specific output variable.

4.1.3 Minimum Prediction Horizon
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The objective of this section is to define the minimum prediction hotizon necessaty

to ensure the full rank of 4;. In this way the first requirement is to use an output horizon,
D, sufficiently large to reach the steady-state of the all the outputs in the dynamic model.

Equivalently, the prediction horizon must be such that the last column of each dynamic
mattix reaches the steady-state (ot within some arbitrary small deviation from steady state).

We propose that the proper prediction horizon can be calculated in the following way.
P=8Smax tm—1 (4.5)

Where SSpyaxis the number of samples required to reach the steady-state of the

slowest input-output process. This will generate a dynamic matrix as described in (4.6),

which in turn guarantees a full column rank even for pure dead time processes.

a 0 - 0
ay a;

Goa 0 “.6)
Acg r=lass~_. - @

N

D

« SN
~
~

|4ss 4dss * dgss |

ass ass~; @2

Whete agg is the cotresponding steady-state gain. A simple two by two example with

pute dead time (7, dynamics exemplifies the impottance of this minimum hotizon. The
steady-state gain matrix and the MPC design for this hypothetical example is the following,

with the gains from a distillation tower problem that will be consideted throughout the

thesis.

(0.07474 - 0.0667} (0 0) [200 200

01173 —0.1253 0 0 200 200
Input horizon m=35

Output hotrizon p=35
Sampling time At=350
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Basically, the dead time is equal to four sampling times and then an input horizon

m=5 1is selected. The output horizon is chosen to reach steady-state, in this case p=35. For

this selection the multivariable dynamic matrix will have the following form.

0 0000 0 0000
0 0000 0 0000
0 0000 0 0000
6 0000 0 0000
P 0.0747 0 0 0 0 -0.0667 0 0 0 0
0 0000 0 0000
0 0000 0 0000
0 0000 0 0000
0 0000 0 0000
01173 0 0 0 0 -0.1253 0 0 0 O

This matrix is not full (column) rank, which in tutn leads to a rank deficient Acypc
matrix. This situation combined with a zero suppression factor (R=0) will produce a

singular C-MPC controller. Evidently, choosing such tuning combination is to be avoided at
all times. However, the intention in this section is to demonstrate the conditions that could
lead to a non-singular matrix, A-. The simplest solution is to modify the controller design

by selecting the prediction hotizon as defined in (4.5)

The mattix has now the following form.
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0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
00747 0 0 0 0 -0.0667 0 0 0 0
0.0747 0.0747 © 0 0 -0.0667 -0.0667 0 0 0
0.0747 0.0747 0.0747 0 0 -0.0667 -0.0667 -0.0667 0 0

0.0747 0.0747 0.0747 0.0747 0  -0.0667 -0.0667 —0.0667 —0.0667 0
0.0747 0.0747 0.0747 0.0747 0.0747 -0.0667 ~0.0667 —0.0667 —0.0667 -0.0667

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
01173 0 0 0 0 01253 0 0 0 0
0.1173 0.1173 0 0 0 -0.1253 -0.1253 0 0 0
0.1173 0.1173°0.1173 0 0 -0.1253 -0.1253 -0.1253 0 0

0.1173 0.1173 0.1173 0.1173 0  -0.1253 -0.1253 —0.1253 —0.1253 0
0.1173 0.1173 0.1173 0.1173 0.1173 —0.1253 —0.1253 —0.1253 -0.1253 -0.1253

Taking the 70 rows containing the steady-state gain information forms a submatrix,

Agy , which can be easily visualized to be full column rank.

0.0747 0 0 0 0 -00667 O 0 0 0
0.0747 0.0747 0 0 0 -0.0667 -0.0667 0 0 0
0.0747 0.0747 0.0747 0O 0 -0.0667 -0.0667 -0.0667 0 0

0.0747 0.0747 0.0747 0.0747 0  -0.0667 -0.0667 —-0.0667 -0.0667 0

y 0.0747 0.0747 0.0747 0.0747 0.0747 -0.0667 -0.0667 —0.0667 —0.0667 -0.0667
SX =

01173 0 0 0 0 -01253 O 0 0 0
0.1173 0.1173 0 0 0 -0.1253 -0.1253 0 0 0
0.1173 0.1173 0.1173 0 0 -0.1253 -0.1253 -0.1253 0 0

0.1173 0.1173 0.1173 0.1173 0  -0.1253 -0.1253 -0.1253 -0.1253 0
0.1173 0.1173 0.1173 0.1173 0.1173 -0.1253 -0.1253 -0.1253 —0.1253 -0.1253

A minimum singular value (o, =0.004) of Agy, proves that the sub matrix is non-
singular. Based on the matrix property P.2 described above this design in tutn guarantees

mattix (ACT Q-AC) to be positive definite and therefore a non-singular C-MPC controllet.

4.1.4 Summary of Applicability Requirements.
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In summaty, in Section 4.1.1 was defined that as long as the Q matrix is positive
definite, which is the case in C-MPC controllers, the dynamic mattix, 4~ alone defines the
applicability of the C-MPC conttoller.

Based on the dynamics of the process and on the existence of the controller the
following is required in order to implement a C-MPC controller. Note that the first three

points come from the “controllability” of the process and are necessary to guarantee the

existence of the C-MPC controller.

—

Squatre systems or systems with more inputs than outputs.

2. Stable processes due to its step weight formulations.

3. For square systems the inverse of the steady-state gain matrix (Kp)™! must exists.

For nonsquare systems the rank of the steady-state gain must be equal to the

number of output variables. rank(Kp)=P

4. Use a sufficiently large output hotizon, p=SS;. +m—-1I, which reaches the

steady-state on the last column of every SISO dynamic matrix.

The fourth requirement on the other hand it is just sufficient in order to guarantee
the existence of the C-MPC controller. As stated above the implementation of a D-MPC

controller will be restricted to systems that can be controlled by a C-MPC controller.
4.2 Stability Analysis

This section focuses on analysing the nominal stability of the D-MPC control
system. This analysis applies the classical linear stability analysis for discrete systems. The

technical details are described along with a couple of numerical examples.
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Inapproptiate tuning parameters can yield an unstable D-MPC control system, even

without model mismatch. Therefore, the selection of tuning patameters (0.R, p) is restricted

to the conditions desctibed in the previous section. The stability analysis discussed in this
section involves the application of a state space formulation. Additionally, when these results
demonsttrate nominal stability for a selected tuning they also provide a certificate for the

existence (non-singulatity) of the unconstrained D-MPC controllet.
4.2.1 State Space Representation for C-MPC Using Step Response Models

The nominal stability of the coordinated D-MPC follows the methodology first
proposed by Lee et al. (1994) for C-MPC controllers. This subsection briefly describes
nominal stability analysis for C-MPC controllers, then in the next subsection the method is
extended to D-MPC. Basically, the step weight model is transformed into a state space
approximation, then the closed loop expression using an MPC controller is formed and the

poles are analyzed. Thus the resulting state space model has p states where p is the

ptediction hotizon for the controller. Finally it is important to note that in this work only

nominal stability, which considers a perfect model, is considered.

Fitst, let ap, £=12,--,p denote the step response coefficients of a stable process.

Then, the step tesponse model Ag is defined as.

dg=la ay - ap]T 4.7)

Now we define a recursive relationship for estimating the current and future value of
the process output using step response models. Assume that at some point in time (k1) the
p elements of the state vector X (k- 1) are known. (Note that the states ate represented by
captial X(k), while the inputs and outputs are tepresented by the lower case du and y
respectively. For example, X(k-7) may be an initial steady state. Now assume that a change
in the input vatiable at time (k- 1) is made, Au(k - I). The predictions X(k) can be estimated

using the previous predictions, X (k- 1) as follows.
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X;(k)= X5 (k= 1)+ a;Aulk - 1)
X, (k)= X3(k - 1)+ aydulk — 1) (4.8)

Extending to the entire trajectory, £=1,2,--,p—1 gives.

X,(k)= X gy (k= 1)+ apAulk - 1) 4.9)

Whete ¢ refers to a time step in the future prediction petformed at time &

(i.e. E=k, k- 1) and k tefets to a time step in the state space model.

The effect of Au(k-1I) on the states X,(k) for (¢£>p) is constant. Therefore, the

effect for a unit step gives a; =a, fotr £2p.

X,(k)=x,(k-1)

or (4.10)
Xp (k) = Xp—] (k)

It is important to note that for the purposes of this work, p is greater or equal to

the minimum prediction hotizon as defined in Section 4.1.3.
Equations (4.9) and (4.10) can be put in the following compact notation:

X(k)=Fy - X(k—1)+ Ag - dulk 1)
4.11)
| X®=Iyo®) y1(6) - yposN°

Remark: Fach element of the state vector X(k), y,(k) has the following

interpretation: it denotes the next output value y at time k+£ assuming the input and

disturbance remain constant starting at time k—1.
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Then Au(k-1) is the manipulated variable change at time k-1 and Fy e RP*P is a

matrix of the following form.

0 1 0 0
7 0 . .0 12
R EE A (12
0 o 0 1
In this way the next output value is.
we)=lr 0 w0} Xy
(4.13)

k)= Ng-X(k)

The next step is to calculate the control law for an MPC controller. The controller
action at time k is computed based on the predicted state values. The future state values,

X(k+1) depend on the past predicted state values, X (k) the current and future disturbance,

4d and the future manipulated vatiable changes, Au. Then, the state values over a

prediction p atre defined as follows.

X(k+D)=Fy-X(k)+A-du+ A% - Ad (4.14)

Where 4% e RP* may contain the step response coefficients generated from the

disturbance model ot a vector of all ones when consideting only a constant disturbance

estimation, 4d is the distutbance entering the system at instant %, and the vector AueR™ is

the manipulated variable change vector, consisting of controller moves in the control

hotizon m.
Au = [Au(k) Au(k+1) Au(k+m_1)]T (415)

Finally, 4 e RP" is the dynamic matrix as desctibed in Section 3.2.
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The controller action is computed by minimizing a quadratic norm of the difference

between the predicted output and the set point.

. 1 2 2
Min J =[G+ D~ Xsp e DI + 4.16)
Where Xgp(k+1)=[yg, (k+1) - Vsp (k+p)I is the future output reference vectot.

Remark: Due to the form in which the state vector X(k+1) is defined it also

cotresponds to the minimization of the predicted output feedback etror that can also be

expressed as follows.

D N K
Min ] == 0 [k +0)-y,, k+Z)Z+RZAuk+Z

=1 £=0

In this way the solution of the MPC conttoller using the state-space representation

of a step model results in an expression of the following form (Lee et al, 1994).

Au= K yp - (- ek))
Kype = (ATQ A+R) 479 (#17)

e(k) = Fy- X(k)+ 4% - 2d(k)- X gp (k)

Whete Kjppe e R™P is the MPC controller matrix that results from solving a least

squates optimization problem and e(k)e R? is the feedback vector entering the conttoller
at each execution time. In general, this term e(k) is composed of disturbance effects as well

as the difference between the predicted output based on past-implemented changes in » and

the set point.
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Finally a closed loop dynamic equation for stability analysis is obtained. The input to
this dynamic system is Xgp(k-1I) and the output is (k). The dynamic system is defined by

the following set of equations that results from combining equations (4.14) and (4.17).

X(k)y=A-X(k-1)+B- X, (k1)

Hk)=C- X (k) 19

Where C=Ng and.

A=[Fy- g -(Kypc) Fy]
B=[AS'KMPC]

The stability of the closed loop system is then determined by the eigenvalues of

matrix A (Strang, 1980). The closed loop equation is stable whenever all the eigenvalues lie
strictly within the unit circle (Lee et al, 1994). Naturally, the eigenvalues depend upon the

tuning parameters.
4.2.2 Nominal Stability of Block D-MPC

The structure of the D-MPC controller allows for a straightforward application of
the linear stability analysis desctibed in detail above. An important characteristic of this
stability analysis is that the block structure of the controller can be easily modified without

affecting the structure of closed loop expression.

In this way the closed loop exptession is maintained and only one term (L-K pypc)

is modified depending on the control structure. For example multiple SISO conttollers,
multivariable controllets or a combination of both can be easily evaluated for stability. An

llustration is presented in Figure 4.1.
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Hgg =F A5 (L-Kpype ) F

Figure 4.1 Stability expression for Different Control Structure

The unconstrained block D-MPC as described in Section 3.1 has a very similar

structute to that of the Centralized MPC controller and can be expressed as follows:

Su =K pype - (— e(k)) (4.19)
Where

( T 1 7
Kpupc =\Ap" Q Ac +R| Ap" Q

Then, based on (4.18) the closed loop equation for a multivariable system with

multiple blocks using 2 D-MPC controller is the following.

X =[F - 4s - (0 Kpppe) F| Xt~ +[As - Kpuge | Xop =)

4.20
Yoy =C-X(k) +20)

Hence the closed loop system is stable if and only if all the eigenvalues of the

following expression Hgg lie strictly inside the unit citcle.

Hgs = [F—ZS '(L'KDMPC)'F] (4.21)

Where F is now a squate matrix with dimensions equal to of the total number

output variables times the prediction hotizon.
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Fp 0 0 0
0 . .0

=l R o et (4.22)
0 « 0 F

With F, as defined in (4.12) and Ag now containing the step response models As,

arranged in the following way.

A Sl,l o AS[,A[
Ag=|
SP.] ASP.M
and
Ly 0 0 (4.23)
L={o . o0
0 0 I

LyeRP™ Ly,=[1 0 - 0]
oewr™™ o= 0o - 0]

Therefore, the closed loop stability of the multivariable system using a D-MPC

controller is a function of the tuning parameters (Q, R ). Again it is important to note that the

structure of the vectors is propetly handled by stacking multiple vatiables.
A couple of illustrative cases are now presented.
4.2,3 Stability of D-MPC — Numerical Cases

Case 1 — Single-variable Blocks: In order to show the capabilities of the D-MPC
stability analysis consider the distillation column (Ogunnaike and Ray, 1994) whete tray

temperatures act as inferential variables for composition control. The outputs 7,;,7; ate the

temperatures of trays 2/ and 7, respectively and the inputs Fp, Fy denote the reflux
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flowrate and the vapor boilup flowrate to the distillation column. The nominal plant model

is shown in (4.24).

32.63 ~33.89
Tor)_| (99.65+1)0.355+1) (98.02s+10.42s+1) | Fr (@.24)
7, )" 34.84 ~18.85 F

(170.55+1Y0.03s+1)  (75.435+1{0.35+1)

It is worth mentioning that Venkat and Rawlings (2004) used this case to prove that
no communication MPC approach is able to stabilize a system with a negative RGA
configuration. This system is then intentionally paired using (Fz-7,;) and (F, -T;),

resulting in the following RGA mattix.

(4.25)

_(-1.087 2.087
| 2,087 -1.087

Note that the pairing gives poor integrity and violates the common convention of

pairing on positive relative gains and BRG determinant.
For each MPC controller, an execution time of 70 sec is used, and the input and
output horizon are m =25 and p =125 respectively. The tuning patrameters used for this case
1 0 4 0 . . L . . -
are Q= 0 1 and R= 0 4l Figure 4.2 depicts the unit circle analysis using the stability

expression in (4.21). It can be observed that D-MPC poles lie strictly inside the unit citcle,
which is not the case for the independent block (fully decentralized) MPC controllet which

has a couple of poles outside the unit circle.
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0

LLLEIN B —

— Unitary circle
- eee Block D-MPC

OQ  Fully Decentralized

Figure 4.2 Unit Circle Analysis for Distillation Problem.
Figure 4.3 shows the closed-loop petformances of centralized MPC (C-MPC), D-

MPC and a fully decentralized MPC for a temperature change of —I°C and I°C on trays 21

and 7, respectively.

Y1 V2
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°
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<
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Figure 4.3 Closed Loop Performance for Distillation Problem.
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It can be obsetved that the D-MPC not only is stable for a negative RGA
configuration but it is also able to achieve acceptable performance. Additionally the D-MPC

controllet has a supetior performance when compared to the independent block MPC (with

no communication), which is unstable.

The D-MPC is also compared to another approach found in the literature, the
Distributed MPC controller developed by Li et al. (2005). Basically, they propose an iterative
approach to obtain a Nash equilibrium solution where the next iterate of the control action,
Au can be calculated as follows. 'Their approach allows distributed computation of the

controller calculations, which is the chief difference from the current work.

My = Dy - A’

For the two by two case Dy is calculated as follows.

T L N
Dy = 0 , -(AJJ 0145 +R1y Arr O14p2
T - T
—(Azz 0242 +R2) A" Q24 0

‘Thus in order to apply the iterative Distributed MPC the spectral radius must be less

than one. This requitement will guarantee a convergent computation.

| p(Dy)1< 1

Using the parameters for the distillation example above the convergence condition
results in a spectrum radius of | p(Dy)}=1.359 . This result indicates that the iterative method
(Distributed MPC) presented by Li et al (2005) is not able to converge the algotithm for a
negative RGA, much less to guarantee its closed loop stability. In addition, they have a

stability criteria based on a contraction principle that guarantee nominal stability if and only

if the norm of the eigenvalues is less than one.
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|eig(F - 45 (LK pppe)- F ) <1
This stability critetion is mote testrictive that the one presented in the Section 4.2.2.

Case 2 - Multivariable Blocks: The previous distillation column example showed

the stability analysis of two IxI block controllers using the D-MPC approach. In order to

show the stability criteria in a multi block system the next problem published by Lu (2001) is

also analyzed. The nominal model is the following.

Block 1 2 1

yi 2 E) uy 0.2 uy
1 1 — 0 1
- 167 + 85+ 1 . #1105+ 1 i
u u
1, ! 3 1, o o)\ %

55+1 105+ 1

2'8—61.-5 e 1215

" u
72y 75524205 +1 18052 +27s+1 || 1 las+1 22s+1 || "4
= . . .
Block 2 Y2, —p4e 3 2.0 117 ) | acF s 2,

25s+1 2Ts+1

10():2 +255+ 1 24052 +32s+1

This problem consists of two blocks each of which has a two by two MPC controller.
The control configuration has a positive BRG. The base parameters used in the MPC
controllets are shown in Table 4.2. Then, Figure 4.4 shows the closed loop simulation for set
point changes using this set of tuning parameters. The dynamic response appears stable,

which agtees with the stability analysis.

Table 4.2 Case 2 - Tuning Parameters

Block 4 m o R

| 100 0 30 0
0 1 0 30

100 20

[100 o}
2 n 1
v 1
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Figure 4.4 Closed Loop Simulation - Stable Solution

Next is a different case with a different set of tuning parameters whete by trial and
error and using the the stability expression in (4.21) it is possible to approximately detect a
set of tuning parameters that results in having poles in the border of the unit circle as shown

in Figure 4.5. For this case, the supptession factor for Block 2 was modified to

525 0
‘RZ = .
0 525

—— Unitarycircle
@8 Eigenvalues Coordinated D-MPC

Figure 4.5 Unit Circle Analysis - Unstable Solution

Figure 4.6 illustrates the closed loop simulation subject to a couple of set point
changes. The results confirm that the stability ctitetion is teadily applicable for the control of
multivariable blocks under the proposed D-MPC approach.
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Block 1 Block 2
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time

Figure 4.6 Closed Loop Simulation — Unstable Solution

The main result of this section is a stability analysis that is more general and less
restrictive than the method published by Li et. al. (2005). The analysis of the closed loop
stability was demonstrated for two different processes in which various control structures

were defined through the controller matrix (L-K pypc ).

In addition, the D-MPC controller developed in this research was found to have a
wider range of applicability than the Distributed D-MPC (Li et al, 2005) and the
communication MPC used by Venkat and Rawlings (2004) for cases with negative RGA and
BRG configurations. Furthermore, the results shows that the D-MPC controller presents a
major advantage over the conventional block MPC strategy currently used in industrial

practice which is not able to stabilized the plant paired on negative RGA ot BRG

configurations.

4.3 Existence and Stability Analysis of Single Horizon D-MPC

The previous sections in this chapter provide general results for the controllability
and stability of D-MPC. In this section, we present additional analysis fot a simple process
structute to gain insight into some perhaps unexpected tesults that demonstrate that cate
must be taken in the design of D-MPC controllers. The analysis considets vety simple

systems that facilitate algebraic relationships for solution existence and stability.
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Here, we analyze the D-MPC for a specific case known as Single Horizon MPC (Li,
2005), which reaches steady-state in one MPC controller execution as depicted in Figure 4.7.
More specifically a two by two case and a three by three case under a multiple SISO control
structure are analyzed in detail. Both processes ate steady-state controllable. The objective of

this analysis is to identify the control design requirements that guarantee the existence and

uniqueness of the D-MPC solution.

1 Set Point 1

Predicted OQutpud
Measured Output

Input T — e G
RetonooT ‘ TR TRIRR RS wswes
(’om]nn:ed Controt Inpat
1

1
1
1
1
1

N -

k+1 k2

3

Past Future

Figure 4.7 Single Horizon D-MPC

As presented in Chapter 3 the unconstrained D-MPC controller gain, (4.26) is a
system of linear equations; thetefore, the mathematical tequirement in order to have a

solution is to have a non-singular matrix, 4pypc .

Kpure = dpwpe™ -bpupe
Apypc = (ADTQ Ao+ R) (4.26)

bpuec = Ap' O
4.3.1 Existence of Single Horizon D-MPC Applied to Controllable Process

The analysis presented in this section covers first a two by two case and then a three

by three case. Basically, matrix Apype in (4.26) is expanded to investigate the existence and
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uniqueness of the D-MPC controller solution, and then by means of algebraic manipulations
an expression that maps the singularity of the Apype matrix for different tuning parameters
is obtained. The results will demonstrate that for these two specific cases, the D-MPC
controller always obtains a unique solution as long as the process is controllable and paired
on a positive relative gain. However, for cases with negative (block) relative gains, the

controller can be singular, and for non-singular controllers the feedback system can be

nominally unstable; these are important new results.

For the sake of simplicity we start the analysis with the same two by two system
shown in Section 4.2.3. In order to guarantee a unique solution for D-MPC the determinant
of mattix Apypc must be nonzero. The single hotizon controller has an input and output
hotizon of one (m,p=1) and the dynamic model consists only of steady state gains. The

matrix Apype 1s calculated as follows.

_ (KPIIQ]KPH +R;  KppQ1Kpp; ) 4.27)

Apmpc =
Kp1Q2Kp2;  Kp2pQ2Kppy +R;

The analysis of the D-MPC controller for controllable systems (see Section 4.1.1)

requites the next two expressions to be nonzero.

\4purc| = (Kp11Q1Kp 11 + Ry) (Kp22Q2Kp s + Ry)— (Kp21Q2Kp 22 XKp1101KP12) (4.28)

| Kp|=Kp;;-Kpas — Kpar - Kpi2 4.29)

The first expression is the determinant of the mattix Apype in equation (4.20).
Having a nonzero determinant guarantees the existence and uniqueness of the solution. It is
important to mention that the tuning patameters 0 and R, (f =12) can only take positive
and nonnegative values, tespectively. The second expression is the determinant of the steady
state gain matrix of the system, which is nonzero for controllable systems. Since we have

restricted the application of D-MPC to only controllable processes, no analysis is presented

for non-controllable processes.
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Expanding the D-MPC determinant (4.28) and setting it equal to zeto results in the

following,

(KPIIQ]KPIIKPZZQZKP22)+ (KPIIQIKPJIR2)+ (szzQZszle)-}- R1R2 .
~(Kp2102Kp 22 XKP1101KP12) =0 (4.30)

Several cases ate now analyzed with the objective of determining under which

conditions equation (4.30) holds true. From (4.30) and dividing by the next expression:

(Kp1101Kp220>) (4.31)

The following equation is obtained:

KpjiR, | KppyR R.R
(KPIIKPZZ_KPIZKP21)+( 1t | APpfy 1R, ]

=0 4,32
Kp202 KpiiQr KpiQiKp2:0Q; (432

The objective of this analysis 1s to find if there exists a combination of Oy and Ry

(f =1,2) that will make equation (4.32) hold true. If no combination exists then the D-MPC

guarantees a unique solution for the entire set of tuning parameter values. This equation can

be conveniently expressed in the following form.

C+D=0
4.33)
where
Kpi: ;R Kp,oR R;R
C =(Kp;1Kpy; - Kp12Kp)1) D=( Pi172 | 222 o — ] (4.34)
Kp»Q> KpiQr KpiiQiKp20Q;

From (4.33) the following can be obsetrved:

" Termsin C can have different signs.

®  Allterms in D have the same sign.
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Several cases ate now analyzed based on equation (4.33)

Case 1: Zero Suppression Factors QO >0 and Ry =0.

The common case of tuning in practice considers positive values of the parameters;

however, zero move suppression tuning, Ry =0 can also be found in practice. In this case

the term D in the determinant equation (4.33) becomes zero.
For the controllet to be singulat, the following exptession must hold.
(Kp11Kp22 —Kp12Kp2s)=0 (4.35)

Equation (4.35) conflicts with the definition of a steady-state controllable process.
Thetefore, this equation will never hold fot processes we have defined acceptable, and the

D-MPC controller guarantees a unique solution for a controllable process with R =0 and

any positive combination of . 'This result applies to systems paired on either positive ot
y p f pp ¥ P p

negative RGA.

Case 2: Weighting factors O, =0 and Ry >0.
From (4.30) and by setting O, =0 the following expression is obtained.

R;-Ry=0 (4.36)

This situation is not possible because in this case only positive values of R  are

considered. A trivial unique solution always exists for this case. We also note that setting

Qr to zero turns off the controller; therefore, this case is of little practical importance.

Case 3: One-way interaction.
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In this case one of the interaction models is zero, (Kp;, Kpy; =0).

=0 (4.37)

KpiR; . KppR R/R
(KPUszz)"‘[ P11k + D22 I+ 112 ]

Kpy:02 KpiiQr  Kp1Qi1Kp220»

Since the sign of (Kp;;-Kp,,) is the same as the sign of (Kp %(Pzz) both terms C

and D have the same sign. This guarantees that the determinant is never zero, and therefore,
the equation never holds and a unique solution always exists. This result also applies to

systems paired on either positive or negative RGA.
Case 4: Two-way interaction Paited on Positive RGA

The RGA for a two by two system paired on (4;-y;) and (4, -y,) can be

calculated as following,.

App=App = ( Kp11Rp2s ] (4.38)
Kp;1Kpyy —Kp12Kp)y

If the RGA is positive this means that the sign of the denominator and numerator
must be the same. The positive RGA guarantees that both terms C and D in equation

(4.33) have the same sign. This condition guarantees the existence of a unique solution for
the D-MPC controllet.

Case 5: Two-way interaction Paired on Negative RGA

The RGA expression for the same system paired on (u;-y;) and (u; -y,) and

having a negative RGA is the following.
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Kp 1 K
Ay = Ay =( PP 22 ]<0 (4.39)
Kp11Kpyy —Kp12Kp)

In order to have a negativé RGA the denominator and numerator in equation (4.39)
must have opposite signs. This condition indicates terms C and D in equation (4.33) also
have opposite signs. In this situation there are multiple combinations of the tuning

parameters that would make the D-MPC controller matrix singular.

The next step is to identify and set the limits of the region whete a singularity in the
D-MPC gain matrix is possible. An expression of the ratio of tuning parameters that makes
Apypc singular is obtained from the determinant expression (4.28). The terms can be

reatranged in the following way:

Kpig [RI QJ] ’ _Kpa [R%Qz]

_Kpa | (4.40)
Kpia  KppKppa Kpy1  KpiKpo)

An expression that maps the tuning combinations that make Apyp- matrix singular

is then obtained:

[R% ] _Kp12Kp11Kp21KD22 Kpy

Kp112 + [R/Qz] (441)

Some obsetrvations can be made from expression (4.41)

* The extreme points of this singulatity /ine (See Figure 4.8) are obtained by
evaluating expression (4.41) for [RAIJ=0 and [R%’J=0 respectively. Through

=2

algebraic manipulations these extreme points, which are now called upper

bounds, ate found to be related to the RGA as follows.
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"  Once outside the bounds of the singularity /ine the requited value of [R%f] that

will produce a singular Apype matrix would have to be negative which is

excluded by tuning guidelines.

* Inside the bounds just defined only the combination of tuning parameters that

satisfies expression (4.41) produce a singulat Apype mattix.

The results are summarized in Table 4.3. It is important to again note that in order to

have a workable system the values of the tuning parameter Q must be positive. Otherwise, if

QO; and 0, =0 the system is undefined, and a trivial solution is achieved.

Table 4.3 Uniqueness of Single Horizon D-MPC for Controllable Processes

RGA ‘Two-way interaction One-way
Tuning Negative RGA Positive RGA Interaction
Rf=0, Qf>0 IADMPCI;‘&o»
Rr>0,0r=0 Unique Solution
S S
For some tuning |ADMPC| #0, |ADMPCI #0,

combinations Unique Solution Unique Solution
R f >0, Q f >0

|4pupc|=0,

*Singular Controller

F=12

If the two by two process is steady-state controllable, and it is paited on positive RGA
then the D-MPC controller is able to guarantee a unique solution for any combination of the
tuning parameters. On the other hand for processes with two-way interaction, and loops

paired on a negative RGA a singularity will appear under certain circumstances.

The results are illustrated in Figure 4.8 for a negative RGA configuration. These

results also confirm that for positive RGA configuration no singulatity region exists, since

the upper bounds would be negative and the ratio [R%f] can only take nonnegative values.
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This figure could be calculated for any process by evaluating expression (4.41) for different

values of l%lj and then plotting the corresponding IR%Z]'

_ Kpy'
A2 e

[(R/ )= Kp1KpiKpKpyy Ky
1 R
KP112+( % 1)

!

0
=@== Singularity Line I:ﬁ
o]

Figure 4.8 Singularity Line - Single Horizon D-MPC (Negative RGA)

It is important to note that the results presented here have as main conditions that

(1) the process is controllable and (2) each subsystem must be controllable.

A similar treatment was petformed on a three by three system under a multiple SISO
control structure, a brief presentation is shown next and the results are then summarized.
The Apppc mattix for the three by three system is the following. Here it is important to

mention that the block relative gain (BRG) for multiple blocks of SISO controllers is the
same as the RGA. '

KpiQiKpii +R; KpQiKpio Kp11Q3Kp;3
; Apmpc =|  Kp2202Kpa1  Kp22QaKpap + Ry KppQ3Kp)s (443)
f Kp33Q3Kps; Kp3303Kpsy  Kp3sQ3Kpsz +Rs
@

3 The procedure again is to expand the determinant and find and expression that relate
the RGA of the system to the bounds of singulatity region. The algebraic analysis begins

with the following pattition of the matrix.
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e (KPJIQIKPII +R;  Kp;QiKpj2 J B= [KPHQIKPB )

Kpr1Q2Kpgy . Kp2xQ2Kpay + Ry Kp220>Kp)3 (4.44)
C =(Kp3303Kp3; Kp33Q03Kp3;) D =(Kp3305Kp33 + R3)
The Schur complement is now used to calculate the determinant.
| 4papc|= ID"A -B-p7-C (4.45)

Considering that the fitst term ‘DI is always invertible for a controllable process, the
proof for a nonzero determinant of Apypc focuses on the determinant of the Schur
complement, |Sd = |/'1 -B.-D™! CI A genetal expression that maps the singulatity of the D-
MPC controller is now obtained by equating the Schur complement to zero.

15, By Pt vy, Keys ,ﬁ,&i}

~Kpsr|[Rpl+ T
[ﬁ}= [ Kp;j Qi Kpowrw Orn Kpjj-Kppr O ri (4.46)

Kpjj R Kook Bp 1 .ﬁ.Rk}

Kppr O Kpj; Q7 Kpjj-Koww Q5 O

Whete Kp is the steady state gain mattix and M;;, My, and M, , ate the minors of

ji»
clements Kp;;, Kpxx and Kpy, tespectively (le. M, is formed by deleting row j and

column j of Kp).

The extreme points also called upper bounds of this singulatity expression are

obtained by evaluating expression (4.46) for [R%j] =0 and le QkJ= 0.

Ry |Xp|
. = _Kp — 447
{ 0, LB rf I I (4.47)
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Finally the RGA for a three by three system is calculated as follows.

Therefore, it is found that the bounds on the singularity line are again related to the

RGA in the following way.

2

Ry k7]

_J =—A e . (4.49)
{Qf i|UB ff[lefJ

Again if a positive RGA (Af > 0) is considered then the bound will fall in the
negative part of the tuning spectrum. On the other hand a negative RGA (4 7 < 0) will have

at least three tuning combinations that will make the controller singulat.
4.3.2 Stability of the Single Horizon D-MPC

Once the existence of the controller is analysed the next step is to analyze the
nominal stability (ho model mismatch) of D-MPC. This section applies the previous results
for nominal stability of multivariable controllets; the analysis is tailored to (a) multiple blocks

SISO control and (b) Single Hotizon D-MPC controllet.

The closed loop system depicted in Figure 4.9 is considered.
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|

Ysp e Controller Plant 6
(G=Kpure) (&)
Model Yo e
d (Gm:AC)

Figure 4.9 Closed Loop System

The D-MPC controller is defined as follows; the formulation details are presented in

Section 3.2.

1
Kpmpc = (ADTQ Ac + RT 4p'Q (4.50)

This controller is built from dynamic matrices (steady-state gains for this case) and
tuning parameters. The state-space representation of the step weight model for the single

input single output dynamic system is the following,

X(k)=F-X(k—I)+AS-Au(k_1)
4.51)
X(k)=[}’o(k) yl(k) yp—l(k)]

Again X(k) denotes the p predicted states starting from the value at time %, and

Aug_py is the manipulated vatiable change at time £-17. The step response coefficients are

contained in Ag. For the case of single step hotizon (p,m=1) whete the plant reaches

steady-state in one execution the prediction model is reduced to:
X(k+1)=1-X;(k)+a, - Au (4.52)
Where a, cotresponds to a steady-state gain Kp.
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In this prediction the steady-state effect of the input change is added to the current
predicted value. For a multivariable system with M inputs and P outputs the resulting

prediction model will have the following form.

Xk+0; [ 0 0o 0V[X®);] [Keiy Kpiz - Kpuw | [ 4u
X+ |_[0 [1] 0 of|x(h), L KP21 Kp2z - Kpoy | | Aup
: 0 0 . 0 : : : : :
X(k+Dp| |0 0 0 [1]] [ X(K)p| |Kpp1 Kppz - Kppur] |duy (4.53)

X(k+1)=F - X(k)+ Ag - Au

The elements Kp, ; are the steady-state gains, which correspond to element a Pef of

the cottesponding step response model. The state space formulation for the D-MPC

controller is defined by the following closed loop dynamic equation.

X&) =[F~8-(L-Kpypc) Fl X(k=D+[4s - L-Kpype ] X gp (k= 1) (4.54)
$0) = C- X(k) |

Whete K pypc is the control gain matrix defined in (4.50).

In this way the poles of the following expression define the stability of the closed

loop system.
Hgs =[F— 45 -(L-Kpppc ) F] (4.55)

For this single horizon case the matrices, F,4g and L are defined as follows.
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| 1 0
‘ 0 1 .
! F=|., . . 0 and FeRDF (4.56)
1 0 0 I

And 4g contains the only the steady-state gains Kp, » arranged in the following way.

j: Kpi; - Kpim
; Ag=| (4.57)
Kppy - Kppm
Finally L also becomes an identity matrix.
Iy 0 O
~ 5 Ly =[1]
L=|o ol 7 (4.58)
0O 0 I, B

Since both F and [ are identity matrices the expression that analyzes the closed

loop stability of a Single Horizon D-MPC can be simplified as follows.
Hgs =1 - 4s - Kpaec ] (4.59)
Whete IeR? is an identity mattix.

A stable plant under a D-MPC that reaches steady-state in one execution period is
stable if the eigenvalues of the mattix Hgy defined in expression (4.59) lie inside the unit

circle.
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4.3.3 Relationship between RGA and Nominal Stability Regions

In this section a specific case is considered, a two by two system is analyzed to
explicitly delimit their stability regions under a Single Hotizon D-MPC controller. Then,

some conclusions ate drawn relating negative RGA configurations to unstable regions.

The analysis of the fwo by two case begins by evaluating the following equation.
Hgs =[I-4c - Kpuec] (4.60)

All the matrices involved have a two by two dimension (‘}12"2 ) It is also observed
that 4g has been replaced with Ac, which for single hotrizon MPC controllers consists

metely of steady-state gains.

The next step in the stability analysis is to substitute the D-MPC controllet, Kpypc -
1
Hgg=1-Ac [(ADTQ Ao+ RT ADTQ] (4.61)

For this two by two case the stability (boundaty) line that divides the stable and
unstable regions (See Figure 4.10) can be found by setting one of the eigenvalues to negative
one (Le. v; =-1) and then by using the following eigenvalues propetties obtain the tuning

parameter that will produce continuous oscillatory response.

M

D vy =tr(Hgs)

f= (4.62)
M

[1vr =IHss]

r=1

Whete M is the number of input variables.
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In this way for a fixed value of lR%J the corresponding value of I_R%Z] on the

stability limit can be obtained by solving the next set of nonlinear equations.

(-1)+vy = ”[H ss {1%2 }J V2= ‘|H 5§ {]%21

Where Hgg {R%z} indicates Hgg as function of {R%z}. The solution of this set of

equations provides the entire stability border.

Figure 4.10 shows the boundary line that delimits the region for stability for a D-
MPC controller with negative RGA configuration. Additionally the singularity line desctibed
in Section 4.3.1-Case 5, which contains the tuning combinations that make the controllers

singular is also illustrated.

nstanle=

e

0 f £ }
S.1 S.2
== Singularity Line [51_]
€€ Stability o

Figure 4.10 Stability Regions for a 2x2 Single Horizon MPC (Negative RGA)

The region defined between the stability line and the singulatity line results in an
unstable behaviour with negative feedback. The points within this region have a maximum

eigenvalue that lies outside the unit citcle. Then, on the singulatity line the matrix Hgg
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becomes singular and the K pype controller has no solution. Beyond this singularity line the

matrix Hgg becomes nonsingular but now the behaviour is unstable with a positive

feedback.

Figure 4.10 also points out the main tuning combinations that delimit the stability
area (8.1 and 8.2) which are described as follows.

S.1 It can be observed that the stable region will include the case where the
supptession factor parameter is at its lower bound (R=0). This in fact is the lower
bound of the region; in this case matrix Hgg becomes a zero matrix with eigenvalues

equal to zero.

Hes =1~ o470 0] 470
! (4.63)

Heg=I-1=0

S.2 The tuning combination that divides the unstable and stable tegions on the axis
can be easily obtained. First set one of the tuning parameter to zero (i.e. [R%I} =0).

The resulting Hgg matrix is the following.

0 0
Hgg = [ﬂ]yf w
Kpy;

Whete

-1
o | 1 (R_zJ. 11 (R_g]]
Kp3,\ Q2 ) | 422 KpZ,\ Q2 )

Where A,, is the relative gain. This in tutn produces a zeto detetminant |Hg|=0.

The next step is to set one eigenvalue to negative one (i.e. v; =-1) and then using the

eigenvalue properties in (4.62) the following is obtained.
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(- 1)-v; =|Hgs|=0

D+vy = ”[HSS {R%z }]= 4

From the first equation v, =0, then the second equation is.

-1
1v0=| L [R_zJ A [R_z)
Kp22 Q2 A22 Kp22 QZ

Then by performing algebraic manipulations a general expression for the tuning

combination that divides the unstable and stable regions on the axis is obtained.

i

From expression (4.64) it can be concluded that a two by fwo process paited on

2
AR
- ‘(3) —LL o pai (4.64)

positive RGA cannot become unstable due to tuning. This is because the limits of the

stability region are related to the relative gain (4, /).

R Kp?
if Aff<0 —f— =—[1) I >
’ Qrllyy N/ Arr
5 (4.65)
. Ry NEry s
l — = - — —
UB

The previous statement proves that this specific Single Hotizon D-MPC conttollet is

stable for systems with integrity.

4.3.4 The Shell Standard Control Problem (SSCP), a three by three case:
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In order to test the previous result on a larger case a single hotizon controller was
used for the Shell Standard control problem, which is later desctibed in Section 5.4. The

nominal model considers only the steady state gains.

xpp) (405 1.77 588 (Fpp\ (12 144

Fr
xgp |=1539 572 69 || Fyp |+] 152 1.83 [F } (4.66)
Ter ) \4.38 442 7.20)\Fgp) \2.14 1.26) 'R

The BRG that corresponds exactly to the RGA is the following,.

208 (-0.73) -0.35
A=| 342 093 (-336)| (4.67)
(-4.5) 079 471

In order to test the stability results for negative RGA presented above, the control

structure was intentionally chosen with the following pairings, (xrp—Fsp), (xsp - Fpr) and
(Tgr - Frp). For convenience and in order to use a (y U f) paiting configuration the input
and output variables are named as follows (u; = Fgp, uy = Fgg, u3 = Frp) and

(1 =%7p» ¥2 =xsp, ¥3 =Tgg)- The resulting model can be expressed as follows.

yi) ((1.77) 5.88 4.05 ) (u;) (12 144

vai=| 572 {(69) 539 ||uy|+| 152 183 [ ’j (4.68)
vs) \ 442 72 (438))\us) \114 126) %72

The idea is to apply the general expression desctibed in (4.49) to obtain the bounds
of the singularity line.

In a similar way as for the fwo by two case the extreme points (on the axis) of the line

that divides the stable and unstable regions can be obtained by fixing two of the three tuning
parameters to zero (ie. R/Qz = R%z =0). For this case the resulting Hgg mattix is the

following.
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0 0 0
Hgg=| 0 0
|, [

— —Y ¥
ss] ot

Where
v133|( & W] R
oty
Kps3\ Qs Kp33\ O3
Then by fixing one eigenvalue to negative one (i.e. v; =~I) and using the eigenvalue

propetties in (4.62) the following is obtained.

(=1)-vzvs =|Hgs| =0

(= 1)+v, +v; = tr|_HSS {R%3 }J: @

From the first equation v, -v3 =0, if we define v, =v3 =0 then the second equation is.

. . -1
M M
e I_ﬂ(&]. |Kp,+M(&)
Kps33\ O3 Kp33\ O3
Finally the general expression that obtains the tuning that divides the unstable and

stable regions on the axis can be obtained by repeating the same procedure for the rest of

the tuning parameters.
2
[51]=_5LL._EE_. (4.69)
Where Ay s is the corresponding RGA as defined in (4.48).

Finally Table 4.4 shows the tuning parameters that define the bounds on the axis of
the singularity and stability regions for the Shell Problem.
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Table 4.4 SSCP - Tuning Parameters, Upper Bounds

Singularity Bounds Stability Bounds
Block R,] kol ) %, Ay [ I ]
_A —
[Qf Smgular f/{lefl I:Qf :ISIable { J |Mff‘
Lt [&—} ~(4.298,0,0) [ﬁ] =(2.149,0,0)
; Q Singular QI Stable '
2 [R_Z] =(0,14.17,0) [R_Z} =(0,7.088,0)
Q2 Singular Q2 Stable
3 [R ] =(0,0,4.263) [53_} =(0,0,2.132)
O3 Singular O3 Stable

In ordert to test the stability bounds Figute 4.11 illustrates the unitary circle using the

stability bound for Block . This tuning is then simulated subject to several set point changes.

Figure 4.12 illustrate the performance of the closed loop simulation for the Single
Horizon D-MPC.

(4.70)

= Uinitary Circle
©0®@ Poles

Figure 4.11 Unitary Circle, Single Horizon D-MPC
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Figure 4.12 Closed Loop Simulation, Single Horizon D-MPC

Although no further analysis was done for larger systems, the results obtained
provide some insight about the relationship between the RGA, the singularity line and the
stability regions for Single Horizon D-MPC.

4.4 Application of Results for D-MPC Design and Tuning

Based on the analysis made in this chapter a basic methodology for the
implementation of D-MPC controller can be developed. Figure 4.13 illustrates the sequential

steps required in order to produce a non-singular and stable D-MPC controller.
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Figure 4.13 D-MPC Basic Steps of D-MPC Design Method

First, steady-state controllability and the existence of a centralized controller must be
verified. If it is not possible to produce a nonsingular centralized controller then the D-MPC
controller is not implemented. The next steps require adjusting the tuning parameters in
order to produce a nonsingular and stable D-MPC controller. Finally, simulations can be

made in order to fine tune the controller.

4.5 Summary and Conclusions

In this chapter the D-MPC formulation was analysed in order to define the
requitements to guarantee the existence and uniqueness of a control solution. In the same
way an important method to analyze closed loop stability was presented. Finally, several
examples wete analyzed including the Single Horizon D-MPC controller, for which

intetesting results relating matrix singularity and RGA were obtained. Some concluding

D-MPC/C-MPC Controllability: It was decided that only stable processes that can
be controlled by C-MPC control would be consideted for D-MPC control. Since
applications are for continuous processes that track their set points, the process must be
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steady-state controllable, as defined in this chapter, with the column rank of the gain matrix
being equal to the number of controlled variables. Furthermore, by analyzing the structure of
the C-MPC controller some guideline can be followed. It was found that prediction horizon
of the controller influences the controllability, and a minimum output hotizon was defined.
Also, it was found that the dynamic matrix 4c alone defines the invertibility of the control
matrix. No simple guideline or mathematical test less complex than evaluating the rank of
Ac was found; however, the rank of 4~ or of the controller gain matrix can be evaluated to

ensure that a controller exists for the tuning selected.

D-MPC Stability: The D-MPC approach that is built from simultaneous optimality
conditions results in a controller with a well-defined sttucture. Futthermore, this defined
structure made it easy to apply a classic discrete time stability analysis (Lee et al 1994). A
couple of cases with different block structures (SISO, MIMO) proved the successful

applicability of this stability analysis. However it is important to note that only nominal

processes and unconstrained controllers are considered.

Single Horizon D-MPC Controller: For this controller where the plant reaches
steady state in one controller execution the following can be concluded: (1) D-MPC paired

on positive RGA, have a unique stable solution for any controllable plant, (]Kp| #* 0). 2) On

the other hand processes paired on negative RGA present both a stable (negative feedback)
and an unstable (positive feedback) zone. This negative configuration may also present a
singularity zone even for a controllable plant. A couple of numerical examples proved
mathematically that at least on the extreme points (l.e. on the axis) the singularity line lies

outside of the stability zone.

In summary the analysis presented in this chapter showed that certain D-MPC
designs could be singular or nominally unstable depending on the control structure (BRG)
and tuning. Since no general guarantees for existence and stability were derived, a design

procedure was developed in order to guarantee a stable control system.
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Chapter 5

Block D-MPC Performance

The fundamental approach to block MPC and control algotithms developed in
Chapter 3 and the stability analysis developed in Chapter 4 are applied to several process
control applications in this chapter. The cases have been selected to evaluate the ease and
genetality of application of D-MPC and to compute the dynamic petformance achieved by
D-MPC in compatison to centralized MPC and independent block MPC.

In this section, we demonstrate the D-MPC controller first on a two by two
distillation column example with the putpose of showing the main advantages of the
controller. Then a benchmark process, the Shell Standard Control Problem and a four by four
fire heater system ate used to demonstrate how the method handles different control
structures and multiple interactions. Several design configurations with different integrity

(positive, negative and zero BRG) are evaluated.

This work implements a coordination approach that improves the petformance of
decentralized control systems. This task begins by defining the objectives of the block
controllers involved in the coordination. Recall that in this research each block has an MPC
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controller with an independent objective, which in the context of this project means that

only the output variables of the block are controlled by using the input variables of the same
block.

In otder to illustrate the concept let’s consider the formulation of the extended D-
MPC controller described in Section 3.6 where the objective function of each controller may

incorporate output variables from another blocks weighted by using parameter ;. The
Block D-MPC controller considers the values of parameter W; to be zero because no

importance is assigned to control output variables from other blocks.

It is impottant to point out that this algorithm does not intend to match the
petformance achieved by using a centralized MPC. In fact the goal is to obtain the good
values for the individual block objective functions when each block controller adjusts only
the manipulated variables within its own block. This goal is achieved with communication

among blocks to reduce the negative affects of interaction.

5.2 Dynamic Performance and Case Studies

The goal of this reseatch is to develop a Block MPC controller that provides
autonomous control for each block with "good" dynamic behaviour for all vatiables. A
ditect comparison of performance among centralized MPC, independent block MPC and D-
MPC would require all controllers to be tuned optimally. Thus, each tuning would have to
provide the best petformance as limited by a specific robustness guatantee. Solving this
optimal tuning problem is a research project in itself, involving non-convex optimization. In
the studies reported here, the tuning is petformed by trial-and-error to provide reasonable
transient responses. Therefore, the relative performances among various control structures
should be interpreted as indicating whether a small or large difference exists between
achievable performances among structures. Howevet, these tesults demonstrate that D-MPC

provides well-behaved transient responses that are similar to centralized control and that D-

101



M.A.Sc. Thesis - Alberto J. Olvera-Salazar McMaster University - Chemical Engineering

MPC can stabilize some control systems that cannot be stabilized by independent block
MPC.

While the processes considered ate non-linear, the simulations cases use linearized
dynamic models to represent the plant in the closed loop simulation studies. The following

issues ate general and are used in all the cases unless otherwise noted.

" The simulations studies have no mismatch between the model used by the

controller and the model representing the plan.
= No noise has been added to the measurements.

» All controllers tuning has been petformed by trial-and-error to provide
reasonably fast tesponses of the controlled vatiables without undue vatiability

(ovetshoot, oscillations, etc) in the manipulated variables.

5.2.1 Computational Requirements.

The computational requirements for the D-MPC controller are different for the
constrained and the unconstrained cases. For example for the unconstrained D-MPC

controller is important to note that the resulting system of linear equations is only of the

N N
(.Zm,-Mi]x[.ZmiMi]
following size R\~ =1 , where m; and M; ate the input horizon and number of
input variables in block i respectively. Furthermore, since the controller gain matrix, K pipe

is known its calculation can be done in advance and only the cortesponding rows of the

K pypc matrix are required to compute the control action.

(1) D-MPC that uses full set of KIKT conditions: In this case the controller requires

the solution of a system of nonlinear, non-convex equations. In this wotk this
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problem is solved using the solver IPOPT-C. The largest problem solved was a
3x3 with 150 vatiables and requited an avetage CPU time of 0.032 sec pet

controller execution.

(2) Heuristic D-MPC: Since every active constraint adds an equation and a
corresponding Lagrange multiplier to the unconstrained linear system this
method requires solving a linear system of equations that grows one size pet
iteration. Therefore the Kpypc matrix cannot be computed offline. Although
the requirements of the heuristic D-MPC ate larger than those of the
unconstrained D-MPC the computations times remain so low that can be

neglected, the largest problem solved tequited an average of 0.00015 CPU

seconds per execution.

Finally, Appendix E shows a schematic desctiption of the softwate used for the
implementation of the D-MPC controller.

5.3 Case Study I: Binary Distillation Column.

The first case study consideted for this project is a two-product, binary distillation
column as described in Marlin (2000), the intention is to understand and analyze the
performance and characteristics of the D-MPC controller. This is a multivatiable system
consisting of two inputs and two outputs for the composition control of a distillation

column. Figure 5.1 presents a sketch of the control problem along with the vatiable

description.
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s = Distillate mole fraction light key

72 = Bottoms mole fraction light key

# = Reflux rate, kgmol/min

#. = Amount vaporized by reboiler,
kgmol/min

Figure 5.1 Binary Distillation Column, (Positive BRG configuration)

The nominal, lineatrized model along with the disturbance model is given by.

0.0747¢7235  —0.0667 3% 0.07¢7%
Xp)_| " 12541 ss+1 [FR),| 144541 |(x,) )
~3.0s ~23s + —3s |\AF
Xg) | 01173730 _0.1253¢7235 \Fy ) | 1.3e
11755+ 1 1025+ 1 12s+1

In this case, two decentralized MPC controllets are used to control the column, the
distillate composition is paired with the reflux flowrate (Xp,-Fg) and the bottoms
composition is paired with the reboiled vapour (X —Fy ). The following RGA matrix

suggests such pairing,

_ [(6.094) - 5.094} 62

| -5.094 (6.094)
The disturbance model represents the dynamic response of the process from

changes in the feed composition. Reasonable tuning is used for the simulations, these

parametets are assumed constant and are described in Table 5.1 unless other specified.
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Table 5.1 Distillation Column Tuning Parameters

Parameter Description Value
m Input hotizon 10
p Output horizon 65

Execution and

At sampling time, (min) ?
Output variable

0 weighting [1 1]

R Input Suppression [0_ 2 0 2]

Factor

5.3.1 Unconstrained D-MPC

First, let’s consider the unconstrained D-MPC case where a system of linear
equations is solved at every execution time to obtain the control actions. Since this is an
unconstrained problem, so that the complementarity conditions are not present and the
active set heuristic is not applied. The resulting controller is described in Section 3.2,

equation (3.17).

In order to present a reference for the D-MPC petformance the following plots
show the simulation results of centralized MPC (C-MPC), D-MPC and independent block
MPC controllers when subject to set point changes or distutbance changes. Each controller
used the same tuning parameters during the simulations. Figure 5.2 shows a sitmulation for a
set point change in X, and in Xpz. Both C-MPC and D-MPC controllers provide “well
behaved responses, with little overshoot or oscillation and return to set points in a
reasonable time. We can conclude that little petformance in deviation from set point is lost

by using the D-MPC in this case. The independent block MPC has the wotst petformance of

the three controllers and presents a more sh
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Figure 5.2 Dynamic Performance - Unconstrained D-MPC with Positive RGA

In order to compare the overall performance of the controllers Table 5.2 shows the
integral of the squared error (ISE) as a performance measure. In this specific example the D-
MPC presents a very good performance and the ISE is lower than that of the C-MPC
controller. However, it is important to note that if we compate the performance of the input
variables (L.e. the sum of squared movements, SSM) the performance of the D-MPC is not
better, showing more aggressive adjustments of the manipulated vatiables. The SSM is
calculated as the summation of all the squared input moves that were actually implemented
in the process during the simulation. The behaviour obtained for this case is representative

of most unconstrained cases.

Table 5.2 ISE and SSM, Distillation Column (Positive RGA)

. Independent
Variable C-MPC D-MPC Block MPC
Y1 (xTD) 1.9453E-03 1.6338E-03 3.0259E-03
ISE . volosp) 0.68528-04 . 69976804 13709E-03
Total 2.9138E-03 2.3336E-03 4.3968E-03
Uy (FR) 2.8658E-02 4.4995E-02 1.5917E-02
SSM wlFy) 25508:02 36852R-02 1.5068E-02
Total 5.4178E-02 8.1847E-02 3.0985E-02
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5.3.2 Control Under Different Blockings (Negative and Zero RGA)

An important feature of a control design is integrity, which basically requires the sign

of the process gain (A% u) to be independent of the on/off status of the rest of the

controllers. Integtity is not an absolute requirement for control design; we can accept
designs without integtity for a substantial improvement in dynamic performance. A positive
RGA or BRG is the minimum requirement for integrity in independent block MPCs
involving SISO blocks. However, systems paired on variables with negative RGA elements
can be controlled by this new D-MPC, while they cannot be stabilized with conventional
independent block MPC technology. In addition, some coordination MPC methods cannot
control negative RGA element pairings. As described in Section 4.2.3 Venkat and Rawlings
(2004) analyzed a similar distillation column (Ogunnaike and Ray, 1994) consideting a
negative RGA configuration. They found that no communication approach (achieving Nash
Equilibtium) is able to stabilize the plant. Additionally 1i et al (2005) developed an iterative
Communication-MPC approach where the successful convergence of the method was
limited to with a diagonal dominant matrix. Here, the petformance of D-MPC is
demonstrated for cases with negative and zero RGA configurations. The D-MPC obtained
successful results and was able to provide integrity for the system. The following case shows
that the D-MPC is able to converge and stabilize the system even in configurations with
negative RGA (BRG). For this example we intentionally considet paiting on 2 negative
configuration where the interactions are dominant, resulting in the following pairings;

(Xp-Fg) and (Xp - Fy).

The dynamic simulation is illustrated in Figure 5.3 it compares the performance of
the D-MPC controller with the benchmark C-MPC controller and the independent block
MPC technology.
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Figure 5.3 Dynamic Performance - Unconstrained D-MPC with Negative RGA

In this simulation the D-MPC controller is able to provide set point tracking while
the independent block MPC is not even able to stabilize the plant. Without a doubt this is a
big improvement to the current practice and one of the main advantages of the novel D-

MPC conttoller over the iterative algorithms presented in literature. Table 5.3 shows the ISE

for the three different controllers.

Table 5.3 ISE, Distillation Column (Negative RGA)

Variable D-MPC Indepenceat
yl(xTD) 1.9453E-03 2.3917E-03 ©
ISE  yalesp) 9.6852E-04 20303803 @
Total 2.9138E-03 4,4220E-03 0

To further analyze the previous case study, we consider the convergence critetia of
Li et al. (2005), which requires that the spectral radius of the following expression must be

less than one to guarantee a convetgent computation |p(Dy) <. Whete Dy is computed as

following.
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1

Dy = 0 ; (AJITQJA]] +R1T A1 Q14p;
T -l T

(Azz Q2422 +R2) Agy" Qa4 0

Using the tuning parameters described in Table 5.1 the spectral radius calculated for
this example is |p(Dy)}=1.141 which is in clearly violation of the convergence ctitetia.

According to Li et al (2005) and Venkat and Rawlings (2004) iterative Communication-MPC

approaches are not able to achieve control of this column.

In contrast, the stability analysis method desctibed in Section 4.2.2 validates the
petformance of the D-MPC controller. Figure 5.4 shows that the D-MPC conttoller has all
the eigenvalues of the closed loop expression inside the unitaty circle while the independent

block MPC has at least one eigenvalue outside the citcle.

= Unitary circle

* ** Centralized MPC

~ -+ Block DMPC

£ ## Independent Block MPC

d
12

'
o4
kS

Unstable
Pole

Figure 5.4 Nominal Stability - Unconstrained D-MPC with Negative RGA

it is important to mention that while some tuning combinations for the D-MPC
controller may result in unstable behaviour the simulation in Figure 5.3 and results in Figure

5.4 proved that there exist tuning combinations that allows for stable behaviout. A more
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extensive analysis of the stability region for this negative RGA configuration is presented in
Appendix C.

Another impottant case consideted in this reseatch is the case of zero RGA
configurations. In these cases, the process has a zero gain matrix implying that there is no
causal relation in one of the blocks (i.e. y, —u,) and the causal relation is only through
intetaction processes. In ordet to overcome this obstacle a trelatively small model mismatch
is introduced in the D-MPC conttroller. The distillation column is now modified to illustrate

procedute; basically one of the process gains (Kp,5) is set to zeto. It is impottant to mention

that this is a hypothetical problem in order to test the capabilities of the D-MPC controllet.

(Process Gain Matrix) (Model Gain Matrix)
0.0747 -0.0667 0.0747 —0.0667
Kp = P =
0.1173 0 0.1173 £

In otdet to solve the zero-gain problem parameter &=0.00 is introduced in the
model used in the controller. Here it is impottant to mention the reason why this mismatch,
¢ is tequited. For this specific case study if £ =0 then A4, =0 and the D-MPC controller
will only produce atbitrary solutions determined merely by the move suppression factor of

the second controller, R,. Furthermore if the move suppression is zero (R, = 0) the D-MPC

controller becomes singular. This can be easily illustrated by expanding the D-MPC
controllet for this two by two case with £ =0 (For full controller, see Section 3.5 equation
(3.40))

-1
( 1] (Au Q1411 + Ry AIITQIAD] (A]]TQ](_eI)]

0+R2 0

Let us note that the magnitude of ¢ was obtained by trial-and-etror and using the

stability analysis. In this way the sign of ¢ is not important as long as the magnitude is
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sufficiently small. Figure 5.5 shows that the performance of the D-MPC controller for a

zero-gain system can be similar to that of the centralized controller.
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Figure 5.5 Dynamic Performance - Unconstrained D-MPC with Zero RGA

This is an interesting behaviour because the D-MPC controller was able to control
both variables with a relatively small degradation of petformance as illustrated in Table 5.4.
Again it is important to mention that other published technology cannot control systems
with a zeto-RGA configuration. The D-MPC on the other hand and by means of a simple

strategy is able to control the system.

Table 5.4 ISE, Distillation Column (Zero RGA)

. Independe
Vatiable C-MPC D-MPC Bl wgt
1(xrp) 1.0100E-03 1.1071E-03 1.1407E-03
ISE  yalwsp) 2869205 2045803 ¥
Total 1.0387E-03 3.2523E-03 o0

* ISE wvalues are infinity for offset results.

5.3.3 Constrained D-MPC
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One of the main advantages of any MPC application is the capability to handle
constraints. Basically the set of linear equations is now extended into a set of nonlinear
equations that include complementarity equations, which can be replaced through the active
set heuristic. However, it is important to note that the incorporation of input and output
constraints and the presence of active constraints (saturation) may lead to loss of degtees of
freedom that results in steady-state offset in the system. In the following examples the input

bounds are adjusted accordingly.

One of the main goals of the proposed D-MPC approach is cleatly illustrated in the
following simulation, which shows the D-MPC controller isolating a saturation effect within
one block. This case is simulated using both D-MPC proposed methods, (1) the KKT
approach with an IPOPT-C solver described in Section 3.3 and (2) the heutistic D-MPC
described in Section 3.4. From Figure 5.6 it can be obsetved that with D-MPC, a steady state
offset occurs only in the subsystem with input saturation, (Xp-Fg) while the other
subsystem, (X - Fy ) returns its controlled variable to its set point by using its free input

variable.
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Figure 5.6 Dynamic Performance - Constrained D-MPC with Positive RGA
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In contrast, the saturation reached in the reflux flow (Fg) precludes the C-MPC
controller from returning both controlled variables to their set points. As a result, the C-
MPC controller distributes the steady-state etrors between both controlled variables,
therefore neither controlled vatiable retutns to the set point. The set points and final steady
states of the C-MPC and both D-MPC controllers are desctibed in Table 5.5. The
petformance of D-MPC (ISE) with first-order KICT conditions and the heutistic D-MPC are
practically the same with about a 5 % difference. This example shows how the D-MPC
controller respects the local autonomy of each subsystem by not allowing the saturation

problem in the one loop to affect the set point tracking of the second loop.

Table 5.5 ISE and Final Steady States, Distillation Column (Positive RGA)

Heutistic Independent
. C-MPC D-MPC D-MPC Block MPC
Variable Stead Stead Stead Stead
cacy ISE acy ISE cacy ISE cacy ISE
State State State State
Xp(0.99) 0.9873% ©  0.9866%* ©  0.9866%* 0 0.987* ©
Xp(0.0)  o0.0114% o 0.010 * 6.73E-04 0.010* 639E-04  0.010*  13.4E-04
Fg 9.50 9.50 9.50 9.50
Fy 14.51 14.52 14.52 14.52

** Offset, * Set point tracking,

The computational requirements although larger than the unconstrained problem
can be neglected for practical reasons. For this problem IPOPT-C reported an average of
0.02 CPU seconds for each D-MPC execution.

The D-MPC controller has shown to be effective when solving strongly interactive
systems with positive RGA configurations. To further test the capabilities of this method
constrained cases wete also tested for negative and zero RGA configurations. However, on
such cases the D-MPC controller was not able to solve the problem when the system
encountered saturation. The solver (IPOPT-C) found a local solution that was obviously

incorrect, e.g., it did not return controlled variables to set point when it was possible.
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In order to achieve a reliable solution the active set heutistic methodology desctibed
in Section 3.4 was successfully employed. A test case with a negative RGA configuration is
now presented. For this case the heuristic strategy requires the following lineat system of

equations to be solved in an iterative way at every controller execution.

Aup) Ay Qpdyr + Ry Ay Qpdn 0 H ] A" Oo(-e;)
duy | | A"y AR Qi+ Ry HYY 0 A" 0y ) (3.3
A 0 H, 0 0 B,
A2 H, 0 0 0 B,
1 0 0
H =} . 0
7 e 1 (5-4)

Whete H; are the time vatiant constraints that contain the information on the set of
active constraints. Figure 5.7 shows the closed loop simulation of the distillation plant
subject to a set point change on y;(Xp). The teboiled vapour, #, which is now controlling
yi(Xp) gets saturated leading to an offset in this controlled variable. The other loop

however maintains a satisfactory set point tracking. The set points and final steady states of

both C-MPC and D-MPC controllers are reported in Table 5.6 along with the transient

petrformance indexes.
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Figure 5.7 Dynamic Performance — Constrained D-MPC with Negative RGA

Table 5.6 ISE and Final Steady States, Distillation Column (Negative RGA)

‘ ‘ C-MPC D-MPC
Vatiable (Set Point)
Steady State ISE Steady State ISE
Xp (0.99) 0.988* 0 0.987%* ©
X5 (0.02) 0.02115%* 0 0.02% 0.000498
Fp 9.15 9.14
Fy 14.1 14.1

** Offset, * Set point tracking,

This example shows the advantages of the heuristic strategy over the D-MPC that
uses the full KK'T conditions. Let’s recall some of the main characteristics that suppott this

heuristic method.

(1) The best control solution is not guaranteed but a feasible solution is always
achieved. If the correct active set is reached, the heutistic will recognize this as a

solution.

‘

(2) Finite and low number of iterations.
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(3) Computational requitements are reduced to the sequential solution of a set of

linear equations.

(4) Good computation experience for cases with different integrity (positive,

negative and zero RGA)

(5) Years of expetience in industry with similar method applied to C-MPC (Prett et
al. 1980; Richalet et al 1987)

Finally, it is impottant to temark that all simulations where performed considering
no model-mismatch ot measurement noise in order to cleatly illustrate the performance of
the controllers. Appendix D shows a couple D-MPC examples that evaluate the dynamic

petformance when model-mismatch is present.

5.4 Case Study II: Shell Standard Control Problem.

We now apply the D-MPC controller to an industtial benchmark problem known as
the Shell Standard Control Problem first proposed by Prett and Moratri, (1987). The process
is illustrated in Figure 5.8 it consists of a heavy oil fractionator with three product draws and
three side circulating loops. The three circulating loops remove heat at high temperatures,
rather than at the lower temperature of the condenser; they are called pumparounds. The
pumparound heat exchangers in the top two circulating loops, which are mid-tower

condensers, are used as teboilers for othet columns; their duties act as distutbances to the

column.
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Figure 5.8 Schematic of the Shell Heavy Oil Fractionator.

The dynamic model is given in the following, without engineering units to be

consistent with the original citation.

4.05¢7%75 1776785 5.88e727° 1.20e7%75 1447775
o) | et Sel, S| (w) | e el
| 5.39 5.72e 6.9¢ 1.52¢ 1.83¢ L
Y05 Tsos+1 Teos+1 dos+1 | |2|T| 2ssal 23541 '[lzJ 5.5)
Y3) | 4.38¢7%05 44277 7.0 u3 1.14 1.26

33541 445 +1 19s5+1 27s+1  32s+1

Where y; is the top draw composition (xzp), », is the side draw composition (xgp )
and y; is the bottoms reflux temperature (Tg). Manipulated inputs ate the top (Frp) and
side (Fgp) draws which are u; and u, respectively, and u; is the bottoms reflux duty Fgp.

The disturbances /; and [, are the heat duties from the top citculating loops.

The RGA for this process is shown in (5.6), it suggest a diagonal control structure.

208 —0.73 -0.35
A=|342 093 -336] (5.0)
~45 079 471
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The control objectives considered for this case are pretty much the same as in the
original problem (Prett and Morati, 1987), except that we removed the control of u; and

added the control of yj. The resulting control objectives are the following.
(1) Maintain the output vatriables y;, y, and y; at specified set points (0.0 with
tolerance of 0.005 at steady-state.)

(2) Reject distutbances /; and [, enteting the columns.

The control constraints are.

(1) All control inputs must be maintained at: ‘uf|£0.5 (f=1,2,3) unless other

specified

(2) Maximum input size control of IAu fl <0.2

A challenge problem considering the original control objectives will be addressed in

Section 5.4.4.

5.4.1 Block Control Structure

Obtaining the best control structure for a specific problem is a very challenging
problem because the possible number of block structures is greater than the multiloop
structure and grows exponentially with the system dimension (Cai, 2009) because the block
sizes and vatiables allocation to blocks must be decided. The structure design problem is
beyond the scope of this work; therefore, only a couple of structures are considered to
petform simulations. Figure 5.9 shows a scheme of some of the possible block structures for
this three by three process, it ranges from the multiloop structure, (S.1) to the centralized

structure, (8.5). The other structures (S.2-S.4) involve two blocks.
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JRE IR [N

Figure 5.9 Block Structures for the Shell Heavy Oil Fractionator

The block relative gain for structures S.2, 8.3 and S.4 are presented in Table 5.7.

Table 5.7 Block Relative Gain

Control Sttucture BRG*

(82) - [y1y2 —upuallys - us] |4p =471
(8:3) - [y; ~w}[v2ys —ugus] |45, =2.08

(S4) - [z —uzby1ys —ugus] |45 ;| =0.934

*|4811|=|45.2]

All of these sttuctures including S.1 have a positive BRG. Howevet, this work will
consider structure S.2 as the most challenging candidate for the simulations since it has the
largest block relative gain of the three two-block control structures. The first block of
structure S.2 consists of a multivariable composition controller [xzpxgp — FrpFgp] while the
second block consists of a temperatute controller [Tz — Fgg]. Figure 5.10 shows a scheme

of the control structure for this case. (
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—
Vapour Feed bottoms

Figure 5.10 Block Structure S.2 (Positive BRG)

5.4.2 Block D-MPC Controller

The unconstrained D-MPC controller required for this block structure (S.2) is the following.

Au=(ADTQ Ao +R)_IADTQ-(— o) (-7

Where Block 1is ,a two by two MPC controller with the following watiables
[y1y2 —uuy)] and Block 2 is a SISO MPC controller for [y; —u3]. In order to implement this

control structute, mattices 4o and Ap are defined as follows.

Azp | A 0 | A4y

A = (Au AlzJ Ap = [Au 0 J (5.8)

Where 4 eiR(P"p xMm) (i,j=12) contains either a SISO or a MIMO dynamic
matrix that describes the effect of inputs in block j to outputs in block i. Moreover Aq can

be defined as follows.
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(5.9)

Whete Ay e R(P¥m) re the dynamic mattices relating the changes in output g due

to changes in input f . In the same way 4, can be defined as follows.

An Arz 0
Ap =|Ady Ay | 0 (5.10)

The tuning parameters @, enBr*Ap) and R & 1 (Mim xM;m) (i=12) are diagonal

matrices. Table 5.8 shows the tuning parametets to be used in the following simulations,

they are kept constant unless other specified.

Table 5.8 D-MPC tuning parameters for the Shell Oil Fractionator

Parameter Desctription Value
m Input hotizon 5
p Output hotizon 80
Execution and sampling '
At time 5
Output variable weighting 11
R ' Input supptression factor [] 0 10 1 O]T

Figure 5.11 shows the dynamic response of the selected control structure when
subject to the distutbance changes, [; =-0.5,1, =0.5. The response is plotted against

independent block MPC and centralized MPC.
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Figure 5.11 Dynamic Performance — Unconstrained D-MPC with Positive BRG

The dynamic petformance is relatively good with a set point tracking of all three

controlled variables at steady state. Table 5.9 shows the integral of the squared etror for the

three different controllers. It can be obsetved that the performance of the D-MPC controller

is between the centralized MPC and the independent block MPC. There appears to be no

significant difference in performances.

Table 5.9 Integral of the Squared Error [[,=0.5, [,=0.5]

Variable C-MPC D-MPC I&‘iﬁ?‘fﬁg
y(xerp) 0.1199 0.1371 0.3045
ISE yo(xsp) 0.6151 0.6063 0.6273
v3(Tz) 0.0106 0.1707 0.0357
Total 0.746 0.914 0.967

In order to test the constrained D-MPC controller a small modification is made to

the manipulated variable bounds. Let’s consider that the capacity of the bottoms reflux duty

is reduced to |u3|<0.02. Due to the limited capacity of the bottoms reflux duty, it is not
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possible to completely reject both disturbances (I; = -0.5, I, = 0.5); therefore, offsets are to

be expected. Figure 5.12 shows the dynamic performance subject to the same set of

distutbance changes, and Table 5.10 shows the final steady states achieved by both

controllets.
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Figure 5.12 Dynamic Performance - Constrained D-MPC with Positive BRG

Table 5.10 Final Steady States [/,=-0.5, [,=0.5]

Vatiable C-MPC D-MPC

Steady State ISE Steady State ISE
yi(erp) 0.002 ** 0 0.000 * 0.217
y2(xsp) 0.017 ** © 0.000 * 0.631

) 00 o 006 © .

u(Frp) -0.063 -0.06166
u{Fsp) 0.011 0.007
u3(Fgr) 0.02 0.02

** Offset, * Set point tracking,
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The D-MPC controller enforces the local autonomy of both blocks, it basically
isolates the input saturation occutted in the temperature controller (Block 1) allowing the
composition controller (Block 2) to successfully maintain output variables y; and y, at their
respective set points at steady state. The average CPU time requited at each D-MPC
execution was of 0.032 seconds. The centralized MPC controller on the other hand results in

offsets to all three outputs; two of them even violate the maximum tolerance allowed.
5.4.3 Zero and Negative BRG Configurations.

We continue with the Shell Challenge Problem in this section. The fitst case in this
section considers a zero BRG control structure, which it is not usually employed in practice
in part due to the fact that conventional technology is not able to control the process. In
ordet to test this case a hypothetical version of the Shell problem is considered. Basically the

steady-state gain matrices of the process (Kp) and model (Kp,,) are modified as follows.

4.05 177 588 4.05 177 5.88
Kp={539 572 6.9 Kp,, =|5.39 572 6.9 (5.11)
438 442 0 438 442 ¢

Whete &=0.01 introduces a small model mismatch sufficient for the D-MPC to be

able to control the entite plant. The block structure temains the same with Block 1 as the
multivariable composition controller and Block 2 as the temperatute controller. The

dynamic simulation is illustrated in Figure 5.13 and petformance patametets ate shown in

Table 5.11, the following can be obsetved.

(1) The independent block MPC controller is by no means able to provide control

of Block 2.

(2) The D-MPC uses the interaction models embedded in the controller to provide

zero offset for y; in Block 2. However, it is important to mention that the
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dynamic petformance of Block 2 suffers from the lack of direct causal effect

between y; and u3.
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Figure 5.13 Dynamic Performance with Zero BRG
Table 5.11 Integral of the Squared Error [/;=-0.5, [,=0.5] - Zero BRG

Independent
Block MPC

J’I(xTD) 0.0400 0.0571 0.0509
X
ISE yz( SD) 0.1208 0.1336 0.1319

Vatiable C-MPC D-MPC

A more challenging test case where the interactions ate so large that they become

dominant is now addressed. It considers a less conventional block structure with a negative

block relative gain 0/131 I| = —4.5). Figure 5.14 shows a schematic of the proposed control

structure (5.6). We note that both blocks keep the same structute regarding the output

vatiables, and only the input vatiables are redirected to different blocks.
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N LK1 |

Vapour Feed bottoms

Figure 5.14 Block Structure S.6 — Negative BRG.

Figure 5.15 illustrates the stability analysis of both the D-MPC controller and the
independent block MPC conttoller. It can be observed that a pole of the independent block

MPC controller lies outside the unit circle, which indicates closed loop unstability.
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{ Figure 5.15 Nominal Stability (Negative BRG)

Figure 5.16 illustrates the dynamic performance of this negative BRG control
structure. As predicted in the stability analysis the independent block MPC controller
becomes unstable. The D-MPC however is able to achieve a zero steady state offset. The

corresponding performance indexes are shown in Table 5.12.
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Figure 5.16 Dynamic Performance with Negative BRG
Table 5.12 Integral of the Squared Error [/,=-0.5, [,=0.5] — Negative BRG

500

Vatiable C-MPC D-MPC Iodependent
yilemp) 0.0240 0.0548 ®
ISE ¥alxsp) 0.1230 0.1383 %
y3(T3z) 0.0021 1.3273 ©
_metal o491 T 15204 w7

From this section it is important to remark that designs that under independent
block MPC are unstable are able to provide a satisfactory performance with D-MPC. D-
MPC petformance is not much worse than that of a centralized MPC controller. These

results demonstrate that D-MPC extends the range of processes and block designs for which

block MPC is possible.

5.4.4 Challenge Problem: Alternative Control Objectives.

The original Shell Standard Control Problem considets different control objectives

to those described in the previous section. The differences ate the following.
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(3) Maintain the input variable u; as close to —0.5 as possible (This maximizes the

steam made in the bottoms reflux condenser.)
(4) Delete the control of output variable y;.
The change requires a modification in the objective function of the MPC controller.

Basically a third term is added to minimize the difference between the input variable and its

reference value.

, i
Min J; =—-("y,~ -y?

2 2 ref
du; 2 o el +“ui i

g (5.12)
e;

The treatment of the controller is practically the same as desctibed in Section 3.1.1.
A brief development of this third term is now presented. First the input variable »; must be
put in terms of Au; .

U +I7,- - Au; (5.13)

PG

Whete u; = is the curtent value of u;, and 7, e RM™M*Mii ig 5 matrix built by M,
I(k) i 1 Y 1

diagonal blocks of lower triangular mattices of ones, (Ve R™™ as desctibed in Section

3.3.1, equation (3.21)). We can expand the third term in the objective function as follows.

2

a; ‘

P,

2

Iu,- ~uY

u,-(k) + Vz . Au,- —u;‘ef

o

T(3T e
Where = ! T o + 27

PRY
ref

= k”i(k) —U

Finally substituting this term in the objective function, J; we get.
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. I 7,7 ST 53 T 1 Ve
%f? Ji=Zdu [Aii Qi + V" eV + Ri]Aui + |:AiiTQi(ei +E)+n; V} Au; + E(ei +E) Oe; + &) (5-14)

The solution of this unconstrained optimization problem must satisfy the following

stationary condition.

dJ;
dAu,-

T ST T =T T
=| 4y Qudy + V" oV + Ry | Auy+ 4 OB )+ V7 o)+ 4" Oiles)=0 (5.15)
L= —

Repeating for all the controllers i=1,---,N produces the following set of lineatr equations.

A Qi+ (171T0!1171 )+ R; AIITfNIAIZ N A O Ay Au;
43570y 4y, AzgT Qpdpy + VzTa2V2)+ Ry i i Az Qr oy A{‘Z
Any" O A Ay OQndnz e Ayn" On Ay + (VNT‘ZN'VVN)““ Ry | L4un
41101 7y 0 (5-16)
A" 05 e 7y ey my 0
+ : + H =11
A" Onen| [Py"ay ] L0
Then, defining the following matrices.
A 0 0 0 Ve, 0 0 0
| 0 v,;a,V, 0 0 s_| 0 v a, 0 0
0 0 0 KR 0
0 0 0 7 a, ¥, 0 0 0 V(ay
Equation (5.16) can also be expressed in the following condensed form.
(ADTQ AC+V+R)Au+ADTQ-(e)+V.(n)=o (5.17)

or
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Au = (ADTQAC +R+I’/"f’ (ADTQ(— e)+7 (- 77))-
A test case considering the additional control objective is now presented. This time

the bottoms reflux temperature, y; is not considered a priotity, instead maintaining the
bottoms reflux duty, u; close to —0.05 becomes a control objective. The tuning parameters

that reflect these conditions are presented in Table 5.13.

Table 5.13 Modified tuning parameters (Input Reference Control)

Parameter Description Value
o Input variable weighting o o oif
0 Output vatiable weighting [1 1 0.0001]

R input suppression factor [] 0 10 1 O]T

Figure 5.17 illustrates the simulation for this case, basically u3 is slowly dtiven to the

reference point and the rest of the control objectives are quickly met due to the different

weighting factors assigned in the tuning parameters.
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Figure 5.17 Dynamic Performance (Input Reference Control)

5.5 Case Study III: Fired Heater Box.

The final case study considers a fired heater with four valves and four temperatures,
and it was first published by Rosenbrock (1974). According to Kariwala et al. (2003) the

approximated numbet of the SISO structure alternatives for this control system is
Ng(#)~411°2=125 . However, in this study a total of only four block structures are

consideted along with a fully centralized structure. Figure 5.18 shows a diagram of the fired

heater and the set of block structures considered for this case.
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Figure 5.18 Fired Heater Box and Block Structures (Cai, 2009)

Rosenbrock (1974) reported that the dynamic models were obtained by injecting
steps signals. Howevet, only half the step responses were measured, and it was assumed that
the geomettic symmetty of the system would be reflected in the corresponding symmetry
ptropetties of the dynamic model. The process and a disturbance model are presented in
(5.18). In this case study we treat all vatiables as dimensionless deviation variables to be

consistent with the original citation.

1 0.7 0.3 0.2 1
4s+1 Ss+1 Ss+1 Ss+1 4s+1
0.6 1 04 0.35 1
G(s)= 50.8:;-5] 43—;] 5S1+1 5.8‘1+] Gy(s)= 4S]+] (518)
Ss+1 S5s+1 4s+1 Ss+1 4s+1
0.2 0.3 0.7 1 1
Ss+1 Ss+1 S5s+1 4s+1 4s+1

The RGA is the following and the block relative gains of the selected structures are
shown in Table 5.14.
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" 1.748 —0.686 —0.096 0.034
—0.727 1874 -0.092 —0.055

“|-0055 -0.092 1874 -0727] (519
0.034 —0.096 —0.686 1.748

Table 5.14 Block Relative Gain

Conttol Structure BRG
(8.2) [1v2 —uea sy —usuy] |Ap | =1.213
(8.3) 1vays —upguslys —ug] |4g,;|=1.748
(S.4) 1 —urbly2 =z Mysvs —usu] |Ap 53| =1.213

The tuning parameters used for the dynamic simulations are described in Table 5.15

and are taken from the thesis by Cai (2009).

Table 5.15 D-MPC tuning parameters

Parameter Description Value
m Input hotizon 10
p Output hotizon 60
At Sampling time 0.5
R Move Suppression factor [0,733 113 1274 1 .7]T
0 Output variable weighting [] 111 ]T

The dynamic simulation is subject to a step set-point change in temperatures 75, T3

and T, while T; is subject to a first order dynamics set point change. Figure 5.19 shows the

closed loop simulation. The objective is to identify which block structure with a D-MPC

controllet provides the best dynamic performance.
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Figure 5.19 Dynamic Performance - Set Point Change with Positive BRG

The results in Table 5.16 basically indicate that the D-MPC with a diagonal structure

(S.1) provides the worst performance while the D-MPC with structure (S.3) gets closer to
the centralized MPC.

Table 5.16 Integral of the Squared Error, Set Point Changes

D-MPC
Output  C-MPC s.1 2 $3 S.4
Variable 8.5 [T1-V1][T2-V2] [TIT2-VIV2]  [TIT2T3-ViV2v3]  [TI-VI][T2-V2]
[T3-V3][T4-V4]  [T3T4-V3V4] _[T4-V4] [T3T4-V3V4]
yi(T7) 0.753 0.797 0.752 0,749 0.795
¥2(T3) 1.094 1.306 1.128 1103 1.294
y3(T) 1130 1.335 1.244 1170 1.287
@) o 1334 1182250 1201
Total 4.077 4773 4.306 4272 4576
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A second case is also considetred, this time the same set of structures are subject to a
disturbance change [/, =0.5]. Figute 5.20 illustrates the closed loop simulation while Table

5.17 shows the performance index.
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Figure 5.20 Dynamic Performance - Disturbance Change with Positive BRG

This time the block structure with the closest ISE index to the C-MPC controller is

structure S.2 that consists of a couple of two by two controllets.

Table 5.17 Integral of the Squared Error, Disturbance Change [/;=0.5]

D-MPC
Oujtput C-MPC S $2 s3 S
Vatiable 5.5 [T1-VI][T2-V2] . [T1T2-VIV2]  [TIT2T3-ViV2V3]  [Ti-VI][T2-V2]
[T3-V3][T4-V4]  [T3T4-V3V4] [T4-V4] [T3T4-V3V4]
yi(1;)  0.0092 0.014 0.011 0.0098 0.0137
y,(T;)  0.0093 0.014 .2 0.0112. 0.0103 0.0134
y5(T3)  0.0106 0.0162 0.0122 0.0133 0.0128
y;(T,) 00145 0.0194 0.0159 0.0178 0.0163
_Total  0.0436 00637 = 0.0503 0.0512 T 0.0562
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Finally, a negative BRG structure (5.6) is considetred. In this case the tuning reported
previously produces an unstable controller; therefore, some changes are required in ordet to
stabilize the process. In order to minimize the amount of parameters to be modified the
suppression factor is adjusted by applying a multiplication factor, f=3.4. A stability analysis
of this design was petrformed confirming nominal stability. Figure 5.21 shows the closed

loop simulation.
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Figure 5.21 Dynamic Performance - Disturbance Change with Negative BRG

Although the process is stabilized the negative BRG structure produces the worst
dynamic performance with a total ISE=0.647.

From the cases above it can be observed that structure S.2 is better for disturbance
rejection while structure S.3 performs better when subject to a specific gtoup of set point

changes.
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5.6 Summary

In this chapter the proposed D-MPC controller was tested in three different case
studies. All of the simulation performed for each case study used the same set of tuning
parameters in order to have a base for comparison; however, and because each the C-MPC
and the D-MPC controller have different goals it is important to mention that a suitable

measure for comparison will require a robust control analysis which is beyond the scope of

this research.

An important advantage presented is that the unconstrained D-MPC could easily test
the implementation of different control structute by performing a simply modification of
mattix Ap, which pretty much takes the form of the block structures as described in Figure
5.9 and Figure 5.18. Then, by testing different control structures for the D-MPC it was
confirmed that the closer the control structure gets to the centralized structure, the better
the petformance measured by ISE. However, the closer it gets to the centralized structure
the farthest it deviates from local autonomy. In this way and in order to design a suitable

control system a trade off must be evaluated.

The D-MPC controller outpetformed independent block MPC and in cases with
negative and zero BRG it sutpassed the capabilities of current iterative methods for
cootdinated block MPC. Howevet, in the case of constrained D-MPC it also showed a
situation whete the KKT approach described in Section 3.3.2 may encounter difficulties and
therefore fail to provide a satisfactory response. Although some adjustments of the solver
with additional strategies such as warm start might‘help in some citcumstances, in this work
it was preferred to implement a heuristic D-MPC strategy that could easily overcome such

situations and provide tractable and reliable real-time computation.
Finally, the addition of alternative control objectives was also addressed and the

stability analysis developed in Chapter 4 was validated with closed loop simulations for
different control structures.
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Chapter 6

Conclusions and Future Work

This chapter presents a brief summary of the work presented, followed by the main

conttibutions. The final section introduces some possible futute research directions.

6.1 Summary

In this thesis, a novel block decentralized MPC approach is developed in order to
coordinate the control of individual process units (blocks) in a chemical plant. Chapter 1
addressed the problem definition, control objectives and the anticipated significance of the
research. It clearly pointed out that even in these times of almost “unlimited” computational
resoutces, decentralized MPC control is needed for block autonomy, disturbance isolation,

fault tolerance, ease of management and most important, dynamic performance.

In Chapter 2 the state of the art methods for the coordination of block MPC
controllers were reviewed. The review distinguished two major categories: (1) the methods
that implement a block design and enforce autonomy and (2) the methods that implement a
centralized design and whose main objective is to emulate a centralized MPC controller by

using some sott of distributed computational architecture. It also introduces the reader to
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the key concepts required to understand the goals of the research such as: integtity, local

autonomy and dynamic performance.

In Chapters 3 and 4 the conceptual developments of this research were presented. In
Chapter 3 the D-MPC controller is formulated by building on the QDMC algorithm (Garcia
and Mortshedi, 1986). The approach replaces multiple optimizations (from several,
interacting MPC controllers) with one set of equations, yielding a single-level optimization
problem. The implementation of the D-MPC controller makes use of the concepts of game
theory, multilevel optimization, intetior point methods and active set strategies. Some simple
guidelines were developed to identify when D-MPC is approptiate; however, it was not
possible to produce a set of explicit rules that guarantee the existence and uniqueness of the
controllet. Therefore in Chapter 4 some requirements for the implementation of D-MPC
wetre introduced such as benchmark (C-MPC) applicability, minimum prediction hotizon and
steady state controllability. Then, in the last part of Chapter 4 a nominal stability analysis was
successfully adapted for the D-MPC controller. All of this analysis was integrated into a step-
wise application procedure to generate a non-singular and stable D-MPC controller with

satisfactory dynamic performance.

Finally in Chapter 5 all of the previous concepts and methodologies were evaluated
in several cases studies, each considering multiple block control structures. The case studies
confirmed the premise that the D-MPC produces a better petformance than the
independent block MPC. Additionally it also showed the ease with which multiple control
structures can be implemented and the superiority of the proposed controller over other

communication MPC methods.

6.2 Contributions

This section presents the specific conttibutions of this reseatch.
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* Formulation of the D-MPC Controller: The D-MPC controller makes use of
local objective functions that are optimized in each block controller by adjusting
only its manipulated vatiables. Additionally, interaction models are embedded in
each controller. This provides the local autonomy sought while accounting for
interactions. Due to the interaction models, processes with dominant interactions
QBRG| < 0) can be successfully controlled using D-MPC. This distinctive

chatactetistic extends the range of processes and block designs for which block

MPC is possible.

»  Solution Algorithm: The D-MPC controller applies a strategy similar to that of
multilevel optimization. Here, several optimization problems (Block MPC) are
replaced with their respective optimality conditions and solved simultaneously.
An advantage of this method is that overcomes the necessity of an iterative
algorithm. A disadvantage is the non-convexity of the problem, which makes
assutrance of a correct solution problematic for formulations including inequality
constraints, especially with negative and zero BRG configurations. A modified
formulation was developed to deal with inequality constraints, which removes
the non-convexity by implementing an active-set heuristic strategy to enhance
the D-MPC formulation. The approach is computationally tractable yielding a
small set of convex problems to be solved sequentially; however, global

optimality cannot be assured.

* Design and Analysis: One analysis demonstrated that autonomous (D-MPC)
petformance cannot be achieved through tuning a conventional centralized (C-
MPC) controller. The next step determined the applicability of the D-MPC
controller. It was concluded that minimum criteria are required for the D-MPC
application, therefore it was proposed that: (1) only stable processes that can be
controlled by C-MPC would be consideted for D-MPC control, (2) since

applications are for continuous processes that track their set points, the process

must be steady-state controllable, with the column rank of the gain matrix being
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equal to the number of controlled variables, (3) finally, it was found that
prediction horizon of the controller influences the controllability, and a

minimum output horizon was suggested.

Once the existence of the controller has been achieved the next step is to
guarantee the stability. The analysis of nominal stability of the D-MPC controller
is another impottant contribution of this work. The stability analysis is adapted
from the work of Lee et al (1994) to analyze the closed loop stability of different
block structures. It is also applicable to the other controllers considered in this

work (i.e., independent block MPC, extended D-MPC and of course C-MPC).

Finally, the design of the D-MPC controller is addressed by means of a step-wise
application procedure that ultimately ensures a successful application: First, the
steady-state controllability and the existence of a C-MPC are verified. Then,
tuning adjustment is required in order to produce a nonsingular and nominally
stable D-MPC controller. Finally, simulations ate petformed in order to fine-tune

the controller and provide the desired dynamic performance.

Case Studies: The capabilities of the proposed D-MPC controller wete tested

for 2x2 to 4x4 cases whete it was demonstrated that:

Effects (ie., offset) of manipulated vatiable saturation are isolated to the blocks

where saturation occurs.

D-MPC successfully control block structures with positive, negative and zero
BRG.

Nominal Stability can depend on tuning,.

Good nominal dynamic performance is achieved for all cases.
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" For Single Horizon D-MPC controller, processes paired on positive RGA, a
unique stable solution for any controllable plant, QKplqﬁO) always exists; and

processes paired on negative RGA present both a stable (negative feedback) and

an unstable (positive feedback) zone.

6.3 Future Work

The D-MPC proved to provide good petrformance for disturbances and set point
changes while enforcing local autonomy. Moteover different control structures with
different integtrity and even different objective functions are easily coordinated. In ordet to
further enhance the D-MPC controller there are several tesearch oppottunities to pursue.

The author considers the following the most important future directions.

* Inclusion of Soft output constraints: The very next step to enhance the D-
MPC controller is the inclusion of soft output constraints to the heuristic
strategy. Taking mnto account soft output constraints results in a challenging
problem. These constraints include a positive slack variable that expands the
bound if necessary (y< ymay +5)- 'This slack value has to be included in the
algorithm and its value cannot be easily fixed a ptioti. None of the other heutistic
methods used in industty (Prett et al 1980, and Richalet et al 1987) proposed a
systematic method to solve this problem. In otrder to solve this problem

alternative methods must be considered.

* Model Uncertainty: An important issue that needs to be addressed is the
uncertainty in the process model. In ordet to tackle this problem concepts of
Robust MPC are necessary. Properties such as robust stability and petformance
could be adapted for the decentralized envitonment. Al-Gherwi et al (2008)
proposed a methodology to select the best block structure based on robust

petformance. The resulting structure will be mote tresilient to model mismatch.
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f * Coordination of Steady-State MPC: While autonomy is provided to each
controller when solving the dynamic problem, it may or may not be desited in
the steady-state coordination problem. If autonomy is desired at the steady-state
level, the previously (iescﬂbed methodology could be extended to the steady state
level. In fact if the steady state optimizets are formulated as QP problems, the
results from the Single Horizon D-MPC might provide some insight and a head
start regarding singularity and stability. However if the overall plant is to be

optimized, an approach similar to current technology with a global steady state

coordinator could be applied. The choice would be application dependent.

» State Space Formulation: Finally, another important improvement will be the
development of a state space formulation to provide control for open loop
unstable processes. Such formulation will also allow enhancing the simple state
estimation approach by adding a Kalman filter. It is thought that the migtation of

D-MPC to a state space formulation could be relatively straightforward.
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Nomenclature

K pmpc

Dynamic matrix with the effect on outputs in block i from inputs in

block j

Dynamic matrix that relates output g and input s
Full dynamic mattix

Block diagonal dynamic matrix

Step response coefficient

Step response model

Step response coefficients for disturbance model
Vector of maximum changes in block i

Vector of unmeasured disturbance in block i
Effect of interactions in block i

Vector of feedback information in block i
Matrix of active constraints in block i

Closed loop matrix for stability analysis

Identity matrix of approptiate size

Objective function in block i

Control gain matrix for centralized MPC
Control gain matrix for Block D-MPC

Steady state gain that relates output g and input f
Lagrange function in block i

Input horizon in block i

Number of manipulated variables in block i
Minor of element Kp; ;

Number of blocks to be coordinated

Prediction horizon in block i
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B
o
R;
5Smax

max _ min
u?- U

X (k)
Xsp (k)
yi*
v
vl
Vi
Subscripts
L

f

g

¢
v

Greek letter

Ais @y

27

Number of controlled variables in block i
Weight factor for outputs in block 7
Suppression factor for inputs in block i

Required samples to reach steady state of the slowest process.
Bounds on input variables in block i

Vector of input reference in block i
Vector of input variables in block i
Lower triangular matrix of ones.

Block diagonal matrix built from ¥ matrices

Weighting factors for outputs in block j=i to be used in the
objective function of block i

Dynamic state vector at time £
Output reference vector

Vector of (measured) controlled variables in block i
Vector of output set points in block i

Vector of past output in block i

Vector of predicted values in block i

Refets to control blocks.
Refers to input variables.
Refers to output variables.
Refers to a time step

Refets to a tite step in prediction hotizon

Refers to an element of the input variable vector

Lagrange multipliers in block i

Weighting factor for input vatiables in block i
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v

&
Ag,f
Ap L

Au;

i

Auf™, Ay

Acronyms

BRG
Ccv
KKT
LP
LTI
MIMO
MPC

PD
PID
PSD
QDMC
QP
RGA
SISO

Vector of eigenvalues
Small gain mismatch

Relative gain that relates output g and input f
Block Relative Gain that relates block i and block j
Vector of input moves in block i

Bounds on input size variables in block i

Block Relative Gain

Controlled Variables

Karush Kuhn Tucker

Linear Programming

Linear Time Invatiant

Multiple Input Multiple Output
Model Predictive Controllet
Manipulated Variables

Positive Definite

Propotrtional Integral Detivative
Positive Semidefinite

Quadratic Dynamic Matrix Control
Quadratic Programming
Relative Gain Array

Single Input Single Output
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Appendix A. Model Predictive Control

This appendix addtresses the basic Model Predictive Control algorithm used in this
thesis. The main algorithm along with the most important assumptions and the tuning
parameters are described. It is important to mention that the entire treatment of this
controller is adopted in the development of the D-MPC controller. This presentation

follows the explanation in Brosilow and Joseph (2002).

A.1 Mathematical Models in MPC

The way in which dynamic models are handled in any MPC methodology is one of
the most important aspects of the control algorithm. In this section the dynamic matrices

used in the proposed controller are presented to demonstrate the mathematical framework

behind the MPC models.

The linear MPC algotithm developed in this wotk is based on step-weight models. A
Single Input Single Output (SISO) step-weight model has the following form.

a 0 -
Vet | g, a0 Au 1)
: =| . 0 . .
y A7 (s (A1)
) N P | CA )

Here a vector, duy e R™ representing the m future input moves of input variable
/ is related to the future p output changes, y, € R’ of output variable g through the

step-weight matrix 4, . € R™ . The expression can be expressed as follows.
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Vg =dg - duy A2

Whete each input move is defined as: Au FAK) = Ur(erl) —Us, (k) and yg Is given as a

deviation variable that represents the deviation from the current steady-state.

A

This model gets its name from the fact that the first column of matrix Ag’f

represents the response of the system to a unit step change in » at time, 7=0.

Figure A.1 shows the response of a first-order system to a unit step change in u.
This response is compared with the values of the first column of the step-weight mattix that
represents this process ie. the step-weights. The solid line shows the continuous output

response and the step weights are shown as bats.

Output T ]
~Response sl
el
%7‘
y
Step
I e 1t | : _LJL
lHl-p
u
— L
k k+1 ktp

time
Figure A.1 Comparison of Step-Weights to the Continuous Step Response
Using the step response coefficients we can predict changes in y that are caused by

any control moves.
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Vg (k+1) = a1  Auy (k)
Vg (k+2) = a2 Mg )+ ap-Aug (e (A.3)

Ve (ktp)=ap Bty (k) + ot Apm Al g (eam-1)

The step-weight mattix, /Alg’ s is also called the Dynamic Mattix of the process.

Observe that the number of rows represents the prediction horizon, p while the number of
columns reptresents the input hotizon, m ot future input moves. The execution time, At

and p are usually selected so that y, achieves steady state at the end of the horizon; thus, in

most cases a, equals the steady-state gain.

A.2.1 MPC Models for Multiple Input Multiple Output (MIMO) Systems

The same concept presented for SISO systems is easily extended to multivariable
systems. The basic equations remain the same, except that the matrices and vectors become

larger and propetly pattitioned.

Consider the multivariable process in Figure A.2.

Figure A.2 Multiple Input Multiple Qutput Process

The relation between outputs y and inputs # for a MIMO case can be modeled as follows.
Ay=A-Au (A.4)
Where AeRPP¥M is now a multivariable dynamic mattix that includes P output

variables and M input variables. Each block element is 2 SISO dynamic matrix that can be

expressed as follows.
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ag, 0 0
~ ag/2 agj . 0
Agr=| % _ . . (A.5)
agfp aﬂp—] " agp—nHI

Where ;{g s € RE) is the dynamic matrix relating the changes in the g” output to

the £ input. The MIMO Dynamic Matrix 4 will now have the following structure.

%11 %12 IE{JM
g | A2 A2z Aym (A6)
dpy e e o
Finally the input and output vectors are properly handled in a stacked form.
i Au{,(k) | I Y10t ]
A1) Vi),
Aug,(k) Y2,k D)
e __Af_’_%:qf:f__»z_—_f_z_ . _?'__2:_(_’:9“_3)__ A7
gy ek
| A4 (+m-1) | | VP (k+p) |
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A.2 Overview of the Model Predictive Control

'The term Model Predictive Control does not designate a specific control strategy but
a range of control methods, which make an explicit use of a model of the process to obtain
the control signal by minimizing an objective function. Basically an MPC algotithm is

composed of the following (Camacho and Bordons, 1999):

*  Explicit use of a dynamic model to predict process output at future time instants.
®  Calculation of a control sequence minimizing an objective function.

*  Use of a receding strategy, whete the only the first input move of the control
sequence is implemented and then the controller is resolved at the next execution

time.

Figure A.3 illustrates the two main steps of the basic MPC strategy, (1) First at time,
k, the controller uses past information to predict the future, “open-loop” behavior of the
process output. The output prediction assumes that future control actions ate zero and
includes the predicted effects of past input moves, measuted disturbances and a feedback
estimate of unmeasured disturbances. (2) Then the controller calculates a set of input moves
that will minimize an objective function that in some manner measures the difference

between the predicted output and the output set points.
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Figure A.3 Basic steps for MPC Strategy

A.3.1 Description of the MPC Algorithm

Let’s begin the treatment of the MPC algotithm by illustrating the block diagram

representation in Figure A.4.
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Figure A.4 Block Diagram of the MPC Algorithm

At any arbitrary sample time, denoted by &, the problem can be stated as follows.

Given a desired output trajectory y% ;. ¥, ¥, ,» compute a predicted trajectory of the
output (y,€+],y,f+2,---,ylf+p) based on past inputs. Then compute an estimate of the

disturbances dk+1,dk+2,---,dk+p and finally compute the control actions

(Auy, Aty g, Aty 1) needed to bring the output to the desired trajectory and an estimate of

the output trajectory, assuming that the current control action Aw; is implemented.

Once all the parameters and variables are specified the MPC algorithm begins with

the open loop prediction of the future output using past input information. This vectot, y?

contains the predicted values of the output over the hotizon p and captures the state of the

system. This prediction can be calculated as shown below.

a2 a3 Xl ap+]

a4 e a 2
I S A PR (A.8)

Auk"nss

Aug_;

14
Y
k+p ap ap+] ven ap+nss

It is important to note that this calculation requires storing a numbet of past input

values. Also, to limit the stored past measurements to a reachable size, du inputs for & + ng
are summed and then multiplied by the steady-state gain. Where ng refers to the closed-

loop settling time of the process.
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The next step is to estimate the current disturbance. Here the estimate is evaluated
by calculating the difference between the prediction of yf and the cutrent measured value

V¥
dk = y*k —yllz (A9)

One specific manner for estimating future disturbances commonly employs the
assumption that the cutrent etrotr between the plant and the model will remain unchanged

throughout the output hotizon.
A 1>@ps2> e p = dyy (A.10)

Then using the Dynamic Matrix model, AeRP™ the future output, yeR¥ can be

calculated using the past predictions, yeR? the distutbance estimates, de®R” and the

future control actions AueR™ as follows:

y=yP +Adu+d (A11)

The objective of the MPC controller is to reduce the deviations of these output
predictions from the desited set points. This research considers the QDMC algorithm
(Garcia and Morshedi, 1986), which for MIMO systems can be formulated as the following
quadratic programming (QP) problem. .
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i 2 2 (A12)
M'J=_.‘_SP +lla
raet | Y
st.  y=Aftu+y? +d (A.122)
Whete ’ A e R P)x(m-M)
Ny e RUmM) y,¥P,yP.d,e R(2-P)
Qe ER(P'P)X(P‘P) Re iR(m'M)x(m-M)
The control moves can be computed using the linear least square solution.
1
Au=(ATQ A+R) 470 (-e) (A.13)

Whetre A4 is the full dynamic matrix and vector e=y? -y% +d contains the

feedback information. The tuning parameters O and R are discussed later in this appendix.

Finally only the first element of each input vatiable, duy(;) for f=1-+M is

implemented and the entire procedure is repeated.
A.3.2 Constrained Model Predictive Control

One of the main strengths of MPC is its systematic way to handle constraints. In this

section input and output constraints are introduced, and the resulting QP optimization

problem is desctibed.

First consider putting a constraint on the size of the control moves.

|y g| < Au™ (A14)

These constraints preclude having severe control moves in order to bring the system
back to the set point. Another approach typically employed in practice is to add some
additional penalty terms to the objective function. This is called the move supptession
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factor, referred in thesis with parameter R, and it basically serve the dual putpose of

suppressing aggressive control action and conditioning the system matrix prior to invetsion

(Shridhar and Cooper, 1998).

Another type of constraints on input variables account for the limits on the upper

and lower values achievable by u; . These constraints can be expressed as follows:

i
Upy SUp—] + zﬁukﬂ' (A.15)
Jj=0
u™ <up <u™™ fori=0,1,2,.m

These constraints contain the entire input horizon m.

Finally, the output constrains are incorporated by considering the effect of the

control moves on the future output values.

ymin <y< ymax

Or using the model. (A.16)

YU < Ay + yP +d <y

Adding this constrains to the input constraints may result in situations whete there is
no feasible solution to the QP problem. Softening the output constraints avoids this
feasibility problem. Basically a nonnegative slack vatiable, z20 is cteated and added to the

output constraint.

YU < A+ yP +d <y 4 g (A17)

A cortesponding weighting factor, Z is added to the objective function. The
resulting constrained MPC problem is the following:

(A.182)

Au,z

. 2l + e
sins =2 (-2, ol o1
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st y=Atu+yP +d (A.18b)
ymin—z<y5ymax+z (A.18¢)
LN <) <, max (A.18d)
Au™0 < Ay < Ay (A-18¢)
220 (A.18f)

The controller continuously minimizes the output constraint violations by

minimizing the slack variable. The weighting matrices J,R and Z can be chosen to achieve

a desired degree of control over the constraint violation. In this work this weighting matrices

have the following characteristics:

* Diagonal
®  Same weight per variable throughout horizon

*  Nonnegative values.

A.3.3 Tuning Parameters

This section presents a brief desctiption of some of the tuning parameters used in
the MPC algorithm. Some of these guidelines are taken from Matlin, (2000) and are followed
throughout this thesis.

Sample time, Ar, and prediction hotizon, p. The output hotizon should be as

long as the closed-loop settling time of the process, to guarantee that the process has
reached steady-state at the end of the hotizon. And the sample time should be a small

fraction of the closed-loop settling time of the process.
The input hotizon, m on the other hand should be kept small, typically one-quarter

to one-third the length of the output horizon. Gatcia and Morati (1982) showed that keeping
p >>m enhances the stability of the system.
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As mentioned above the move suppression factors, R represent the relative
importance of adjustments in each process input. These parameters are used to control the
dynamic behavior of the system. The move suppression factors are also used to introduce a

degree of robustness into the controller.

Finally the weightings of the process outputs, O represent the relative importance

of each output deviation from its set point.
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Appendix B. Block Relative Gain (BRG)

The Block Relative Gain (BRG) generalizes the concept of RGA to handle
multivariable block structures (Manousiouthakis, et al., 1986); therefore, it is a useful method
for finding suitable pairings for block decentralized control. The BRG measutes the
interaction among multivariable controllers and in this appendix is explained using two

blocks, although it can be generalized to any number of blocks.

(J’](S)) _ [G]I(S) G2 (S))(W (S)) 5 s)(uz(s)] B.1)
2(8)) \Gals) | Goals) \ua(s) uy(s)
Whete y; and u; are vectors of output and input variables, respectively, with dimension m; .

The BRG for variable paiting (y;,%;) is defined as the ratio of the open-loop block

gain matrix and the apparent gain matrix in the same loop when all other control loops ate

closed.

[45()];; = G]](S)‘lG—I (S)Ju B2

Whete Gy(s) is the m;xm; transfer function relating the first m; inputs and outputs

of G(s) and lG'I(s)JI ; is the cortesponding block of lG‘I (s)l

An alternative way to define the BRG is the following (Katiwala et al, 2003).

Consider the LTI process y(s)=Gu(s)+d(s) to be partitioned such that Gy(s) is a mxm;

transfer function matrix.

y1(s)= Gy (s)uy(s)+ G o (s)uz (s)+ d; (s) 8.3)

¥2(8)=Gayls)us(s)+ G o s)uz(s) + dz (s)
When (y,,u;) is petfectly controlled and d(s)~0, at steady state, y; and u; are

related through the Schut complement of Gy, .
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Y= (_;11 uj (B-4)
= -1
G =Gy -GGy "Gy

Now, The steady-state BRG between y; and u; can be defined as follows.
[45],=G11-Gi ™’ B.5)
BRG has some algebraic properties (Manousiouthakis, et al., 1986):

* Any permutation of rows and columns in the process open-loop process gain

matri

= x G(0)results in the same permutation in the BRG.

* BRG is independent of input scaling but dependent on output scaling. Howevet,

the diagonal elements of BRG are invatriant under input and output scaling.

" The values of the diagonal elements of BRG atre equal to the summation of all

the relative gain values within the same rows.
Similar to RGA, BRG has tigorous relation with closed-loop properties such as

m  Stability - Choosing a multivariable diagonal controller with negative
determinant of BRG will cause at least one of three undesired situations: the
multivariable control system by itself is unstable, the whole closed-loop system is
unstable or the closed-loop system without the multivariable controller is
unstable. Thetefore, the general loop pairing guideline is to choose multivatiable

controller with positive determinant of BRG.

* Robustness - The spectral radius of any BRG associated with the system is the
lower bound of Euclidean condition number of the system. In general, a control

system with large maximum singular value of BRG is difficult to conttrol.

165



M.A.Sc. Thesis - Alberto J. Olvera-Salazar McMaster University - Chemical Engineering

" Integrity - Selecting control with positive determinant of BRG is a necessaty
condition for Integral Controllability with Integrity for block centralized
structure (Chiu and Arkun, 1990).
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Appendix C. Nominal Stability — A Two by

Two Case.

In Chapter 4, the stability analysis of a “single-input horizon” two by two D-MPC
controller was shown to be nominally unstable for negative BRG (RGA) for some values of
the tuning constants. No tigorous analysis shows that this behaviour occurs for more
complex D-MPC systems. However, we have encountered nominally unstable controllers,

and this appendix documents some results obtained by numerical experimentation.

In this appendix the D-MPC control system in Case Study I (two by two distillation
column) is analyzed for nominal stability. The analysis considers a negative RGA
configuration, where the interactions are dominant. The tuning parameters considered for
this analysis are the same used in the simulations and with exception of the move
suppression factor (R), which is modified to analyze the regions of nominal stability. Figure

C.1 shows the tesults of the analysis where three main regions are detected.

The methodology used for the analysis was basically trial and error, where (1) a set of
move supptession factors is selected, (2) then a closed loop simulation is performed and (3)
the nominal stability is verified using the closed loop stability expression developed in
Chapter 4.

An important result is that the stable region is bounded between two different
unstable zones. Therefore, we can state that when starting within the stable region,
mncreasing or decreasing the values of R will produce an unstable controller. Figure C.2

contains the small section referred Figure C.1 and it shows an intetesting behaviour.
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Ry

Unstable

Stable

Ry

0.01

Stable

Figure C.2 Distillation Column - Stability Regions (Negative RGA)
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In Figure C.2, it can be observed that the unstable region is surrounded between two
different stable regions. Even more sutprising is the fact that thetre is a small stable region
within this unstable region. Finally the smallest region (stable) contains the origin (R =0)

which follows because the process in open-loop stable.

Finally, it is important to temark that a considerable number of tuning combinations
wete evaluated to obtain the results illustrated in the figures; however, it is acknowledged

that there could be other regions.
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Appendix D. Distillation Column with Model
Mismatch.

The cases in the body of the thesis reported results for D-MPC control systems
without mismatch. Thetefore, this appendix presents the distillation column case study with
model-mismatch. The different cases consider situations whete the feed flow rate has eithet
increased or decreased by a certain percentage. The process dynamic parameters for the two

mismatch cases and the nominal case are given in Table D.1

Table D.1 Process Dynamic Parameters

Case 1 Nominal Case Case 2

Patameter Desctiption (20% Feed Increase) (Model in Controller)  (20% Feed Decrease)

© Steaély_State (0.0623 —0.0556) (0.0747 —0.0667] (0.0934 —0.0834)
p ain,
(kgmol /min) 0.0978 —0.1044 0.1173 -0.1253 0.1466 —0.1566
Time constant, 10 12.5) 2 15 15 18.75
’ (tin) 98 85 11.75 10.2 14.68 12.75
' . 2.5 1.67 3 2 3.75 2.5
6 Dead time, (min) .
2.75 1.67 3.3 2 4.13 2.5

The case studies presented in this appendix have the objective to demonstrate to a
certain extent that the D-MPC controller provides sufficient robustness to handle model

uncertainty. The tuning for these cases is the same as reported in Section 5.3 for the D-MPC

controller.

The first case considers a situation where the feed flowrate has increased by 20%,
let’s note that because the levels on trays and accumulation vessels are assumed not to
change significantly the dynamics of the process becomes fastet. The process is simulated
for set point changes in X, and Xp. Input constraints and noise measutement ate also

considered.
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Figure D.1 illustrates the closed loop simulation using a positive RGA configuration
and Figure D.2 shows the simulation using a negative RGA configuration. The results are as
expected where the D-MPC produces offset only in the loop (block) in which the

manipulated variables saturates.

Te second case considers a feed flowrate decrease of 20%. Figure D.3 and Figure
D.4 show the closed loop simulations for positive and negative RGA configurations

respectively.

In all cases, the dynamic behavior is satisfactory. The dynamic responses are stable
and do not experience undesirable behavior (excessive oscillations or overshoot). While
these results do not provide guarantees for robust performance, they demonstrate that the

D-MPC controller has promise for realistic applications with mismatch.

171



BEUNANL NS

M.A.Sc. Thesis - Alberto J. Olvera-Salazar

McMaster University - Chemical Engineering

0.98:

0.975

Distillate, XD (% Light key)

Reflux, FR (kgmol/min)

8.4
0

Y1
- ; . .
F
L og0f - —rnk —n — —
e |
L
o
par P
o 0.985 §F T T e e e At )
o~ l/ T,
E ’y 0 D 2 O o T G 5 00 R 8 ]
X ooollds
PR
s w
E ¥ %
®» 0975 % TRy,
4 '
a 0 50 100
time
Uy
95
E
£ L
o o e B VR R T B W ¥ S
E o &
£
2
[T
¥ 85f
=
T
Q
[+

0.99+

0.9851

9.4

Y1
I >
l- R
o
ae’}fi‘ e e e e )
2
o
nrs
0 50 100 150 200
time
Uy
50 100 150 200
time

Figure D.1 Constrained Control — 20% Feed Flowrate Increase (Positive RGA)

time

0 50 100 150 200

Reboiled Vapor, FV (kgmol/min)

Rottoms, XB (% Light key)

2
= 1l Set Point
£ o003 Centralized q
£ s 2D MPC
o * " Independent Block MPC
| Py
= 0 i,}wﬁ”
2l Kot
m A
><.. 0.02 wai"‘-&' .f! s
) 2% /
E VRS
[<] ‘_\ *
%'0.015 v
@ 0 50 100 150 200
time
E U
E
= —
g 1as
g
u>_ 142
5 ngm
=14 2 fﬁ'f 1
Q L7
s 153
= 13.8 f—f
° w
O 38} =
= [
S 134 :
o 0 50 100 150 200
fime

5,
0.02 N %
A S

)2
0.3} H Set Point 1
£ ——- Centralized
¢ == sen2D.MPC
0.025| ,ft ~*— Independent Block MPG | |
M,
4

145

13.5F

Figure D.2 Constrained Control — 20% Feed Flowrate Increase (Negative RGA)

172

A 200
titme
U
Eapme
E E
iE
L&
A
5,0 1.(')0 1El‘>0 200
time



M.A.Sc. Thesis - Alberto J. Olvera-Salazar

McMaster University - Chemical Engineering

Distillate, XD (% Light key)

Y1
= . . .
@ 5 R g
L ogof e .
s E
E £
x s
i } 794
R 0985 /4
s | F
= L f
g 08 1
k-
2 ool
a 0 50 100 150 200
time
Uy
E o4
£
=
9 92
E
g
— 9,
1o 2
™ £
’=<n 8.8 ?E}o
= &
[ 8.6}
1
8.4 -
0 50 100 150 200
time

Bottoms, XB (% Light key)

Y2
i
0.03- Set-Point 1
Centralized
a2 DMPC
0.025 “7 Ind dent Block MPC |

Figure D.3 Constrained Control — 20% Feed Flowrate Decrease (Positive RGA)

Y1

0.991

0.985

L
0.98

0.975} 5
0 50 100
time
L]
9.5
E
E ®
[=3 O R W G R W W T W W R % R R W
E o o7
= I
[n .".&'
o L
¥ 857 =
= L
&= p
[} -
0@ I -
8 d .
0 50 100 150 200
time

k1
®
®
®

Figure D.4 Constrained Control — 20% Feed Flowrate Decrease (Negative RGA)

173

%, 0
0.015} L_\?,_ T ]
» . i
0 50 100 150 200
time
£ ",
£ . |
(E: 14.4 ]
2
>
18
h.\ 4
=]
Q.
(]
>
o
2
=]
REY) . )
« 0 50 100 150 200
time
Y2
s :
E o8¢ ¢ Set Palnt g
E .-'5 Centralized
® ; -
:u‘ 0.025 ;.\ -~ |ndependent Block MPC
< £y,
g i . 3
o\ _
£ [N
g . 4 1‘ -
. O —tww.n:
V 100 150 200
time
£ ",
= 14.5
£
£ ®
=2 pose
ooou o :
- IF
5 7
Q. _j"‘l‘
& i
= 1357
3 %
[1] S
2 n v ,
o~ 0 50 1.00 150 200
time



Appendix E. Software Implementation

This appendix desctibes the basic structure of the software developed for the
implementation of the D-MPC controller. Figure E.1 presents a schematic representation of

the software structure for a given case study.

PEELTETEET PEEEN Control Design
i =~ — %¢ -~} Parameters

W | u (Structure; Tuning)
n

i [ : v

ii A 4 H -

i | Active Set Smﬁt;\%n

i Strategy |t | Fork=0.tha

n g
u ,'I'I Online Calculated
N\ 4 Variables:
ST fperliuyer : Feedbagk,v(e'k) :
(1) Heuristic D- MPC Currentvalues, (v, #y) (2) D- MPC with full set of KKT conditions

Figure E.1 Software Structure for a Given Process

The cote of the simulation is progtammed in MATLAB, but the controller
calculations could be petformed of two different forms depending on the selected D-MPC
strategy.

(1) If the Heutistic D-MPC is selected an active set strategy programmed in

MATLAB is executed. The basic active set algotithm is desctibed in Section 3.4.

(2) For the D-MPC that uses the full set of KKT conditions the software requires
an intetface program that links MATLAB and the modelling language AMPL,
this in turn calls for the IPOPT-C solver and then return the control calculations
to the MATLAB simulator. The MATLAB-AMPL intetface developed for this
research basically transforms a set of MATLAB variables into a set of data files
(*.dat) that are stored and then accessed from a hatd disk.
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