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Abstract 

In this thesis, a novel block decentralized MPC approach is implemented in order to 

coordinate the control of interacting process units (blocks) in a chemical plant. The goal of 

this research is to develop coordinated control that enables each block to optimize its own 

performance by adjusting only is manipulated variables while accounting for interactions 

among blocks. 

A simultaneous algorithm, termed D-MPC, is proposed that replaces multiple 

optimizations (from several, interacting MPC controllers) with one set of equations, yielding 

a single-level optimization problem. Given the complexity of the resulting problem 

consisting of linear and complementarity equations, an efficient active set heuristic is 

proposed for real time computations. The approach is computationally tractable, yielding a 

small set of convex problems to be solved sequentially and providing reliable solutions with 

good dynamic performance for the cases studied. 

Integrity is important for control designs, and generally, block designs with negative 

and zero Block Relative Gains (BRG) have poor integrity and cannot be controlled with 

published approaches. In contrast, the D-MPC approach successfully provides good integrity 

for processes with all BRG signs while maintaining the desired autonomy of each individual 

block. 

The solution existence, uniqueness, and stability of the proposed controller are also 

discussed in order to delimit what kind of processes can be controlled using the proposed 

D-MPC controller. A shuple D-MPC formulation is analyzed to demonstrate that specific 

ranges of controller tuning can lead to the loss· of nominal stability for negative BRG 

systems. Therefore, a step-wise D-MPC design procedure was developed that integrates a 

stability analysis first proposed for centralized MPC and successfully adapted for the D-MPC 

controller. 
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The dynamic performance and integrity demonstrated in case studies with all signs of 

BRG and sizes from 2x2 to 4x4 demonstrate the computational tractability, good dynamic 

performance of D-MPC controller designs developed with the design procedure and 

implemented with the heuristic algorithm. 
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Chapter 1 

Introduction 

Most industrial processes are formed by different unit operations interconnected by a 

set of process streams that can include streams and energy integration. This process 

integration introduces interacting effects that cannot be isolated to a part of the process. In 

the past, processes with recycle streams employed many surge tanks to buffer disturbances 

and minimize interaction (Luyben et al1998). Even though this method slows interactions, it 

does not eliminate them, and it introduces additional capital and operating costs. Current 

design practice is to take full advantage of process integration without buffering and include 

advanced controls to provide adequate dynamic performance. 

Historically, plantwide control was obtained by means of multiple SISO controllers 

usually in the form ofPID (proportional Integral Derivative) controllers. The strategy was to 

establish all the loops for each individual unit operation and then combine them together 

expecting that any conflict that may arise could be reconciled (Stephanopolous, 1984). 

In the 1980's plantwide control was drastically improved by the successful 

application of centralized model predictive controllers (MPC). This type of controller 

optimizes the future trajectory of controlled variables using dynamic models that predict the 
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effects of manipulated and measured disturbance inputs on the controlled variables. 

However, it is important to mention that there are not many published reports that discuss 

the application of MPC to an entire complex chemical plant. Instead, the current practice in 

process control of continuous operating process uses multiple block controllers (MPC) that 

do not consider interactions among blocks (Wagler, 2007; Jakhete et aI, 1999). Figure 1.1 

shows a sketch of the current practice of Block Decentralized MPC. (Here, we consider a 

block to be any combination of manipulated and controlled variables in a centralized block, 

so that even a single-input-single-output loop is a block.) A large MPC controller involving 

all plant controlled variables is not usually considered as an acceptable alternative, even if the 

computing power is available (Wagler, 2007). 
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Figure 1.1 Local Control in Block Decentralized MPC 

Ys 

Based on the current state of industrial practice, this thesis deals with the 

coordination of multiple MPC controllers, which for the purposes of this thesis are defined 

as Block Decentralized MPC. Thus, the well-established MPC algorithm will be employed 

for each block, and the block controllers will be "coordinated" in a manner that will 

compensate for the deleterious effects of interactions among blocks. }l..S we will see, hllls 

approach also expands successful application of block controllers to some processes that 

would otherwise be excluded. 
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1.1 Objective 

The goal of this work is to develop a method for implementing block decentralized 

control based on the MPC algorithm for each block controller. To accommodate process 

interactions, the method will coordinate among the various blocks to provide good dynamic 

performance of the decentralized control systems. 

Block Decentralized control could have one of two possible goals; (a) to emulate 

centralized control, or (b) to provide autonomy for each block controller. This work 

addresses the second, in which each controller achieves the best performance for its block, 

which is naturally subject to interactions for other.blocks in the plant. 

When considering block controllers, we must address two challenges; (a) the design 

of the blocks, which assigns measured controlled variables and manipulated variables to each 

block and (b) the real-time algorithm to implement block control. This research addresses 

the second challenge, while the first has been addressed in other research by, among others, 

Cai (2009). 

It is important to note that this research does not seek to develop implementation 

approaches that (1) reduces the empirical modeling effort or (2) reduces real-time 

computations. As we will see, the modeling for decentralized MPC is the same as for 

centralized, because of the need to "coordinate" interactions. Also, the computations for 

block decentralized MPC must be acceptable for today's computing, not less than any other 

controller. 

This thesis focuses on the development of a Novel Model Predictive Controller 

called D-MPC, which is used for the coordination of a set of Block Decentralized MPC 

Controllers. It addresses existence, stability, integrity, tuning and dynamic performance of 

the proposed controller. 

3 
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1.2 Reason to Implement a Block Decentralized MPC (D-MPC) 

Industrial practice typically employs multiple single-loop controllers (which could be 

considered block centralized) or a few block MPC. However, today's computing enables us 

to implement fully centralized for many plants. Therefore, it is worthwhile to explicitly 

address the reasons for selecting block decentralized MPC for some implementations. This 

research considers the following motivations for maintaining the implementation of Block 

MPC over a plantwide centralized MPC. 

Block Autonomy: Each block controller should be able to achieve the best 

performance for that block, without considering the effect on other blocks. This 

approach follows the management goals in many companies, even though a more 

centralized approach might provide a better (global) optimum. In addition, the 

integration of automation between individual companies due to tight integration of 

production and consumption (for example, utilities or one product being the 

downstream raw material) and vendor-managed inventories (where a supplying company 

manages the inventory of their products in the customers plant). 

Disturbance Isolation: In some cases, the best performance in a single company 

involves maintaining the effects of a significant disturbance in one block of the plant, 

rather than using all manipulated variables to attenuate the disturbance. For example, it 

might be better maintain products in all other blocks (not directly affected by the 

disturbance) "on specification", with only some variables in the directly-affected block 

having a few products "off-specification". 

Fault Tolerance: In the case of undetected sensor faults, the control system will make 

incorrect adjustments to essential all manipulated variables under management of the 

controller (because of interactions). Therefore, a larger sized block will lead to a greater 

immediate effect of the fault transmitted through the controller. 

4 
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Management: As the number of variables in a block decentralized controller increases, 

the monitoring and diagnosis of the controller actions becomes more challenging. This 

important factor works against fully centralized MPC control. 

Dynamic Performance: Naturally, good dynamic performance is important for 

disturbance rejection and set point changes. Generally, blocks contain highly interactive 

combinations of manipulated and controlled variables, with weak interactions among 

blocks. Again, the block design is not addressed in this research, but the products of this 

research should be able to function for essentially any block stmcture. 

In addition to the previous characteristics the controller must guarantee the existence 

of a controller solution and closed loop stability. 

1.3 Main Contributions 

The major contributions of this thesis are summarized as follows: 

1. Unconstrained D-MPC formulation: The D-MPC controller applies a strategy 

similar to that of multilevel optimization. Here, several optimization problems at a same 

level are replaced with their respective optimality conditions and solved simultaneously. 

2. Constrained Block D-MPC: The basic unconstrained D-MPC is extended to solve 

the constrained cases. The objective of implementing this strategy is to enhance the D­

MPC formulation in a way that removes the non-convexity of the resulting controller. 

The modified strategy consists in a systematic method that iteratively detects constraints 

violations and automatically inc01"porates required bounds (active set) into the controller 

formulation. The approach is computationally tractable (yielding a small set of convex 

problems to be solved sequentially) and provides reliable solutions with good dynamic 

performance for cases studied. 
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3. Dominant interactions and integrity: In conventional block decentralized control 

(without coordination), strong interactions can lead to designs with poor integrity, so 

that turning one controller off (on) can cause another controller to become unstable. 

The previously-published Block Relative Gain (BRG) provides integrity analysis in the 

same manner as RGA does in multiloop control. The controller developed in this 

research is able to stabilize systems with positive, negative, and zero BRG control 

structures, which extends the range of processes and block designs for which block MPC 

is possible. 

4. Closed loop stability: Once the existence of the controller has been achieved the 

next step is to guarantee the stability. Perhaps sU11Jrisingly, inappropriate tuning 

parameters can yield an unstable D-MPC controller, even without model mismatch. The 

stability analysis involves the application of classical linear stability analysis for discrete 

systems. When these results demonstrate nominal stability for selected tuning, they also 

provide a certificate for the existence (non-singularity) of the controller calculation. 

1.4 Thesis Overview 

Chapter 2 - Literature review 

This chapter begins with a description of Model Predictive Control and specifically the 

Quadratic Dynamic Matrix Control (QDMC) version considered for this thesis. Then 

concepts of communication and cooperation between different controllers are 

introduced, followed by the competing technologies that employ such concepts. Finally 

the concepts of optimization required for this work such as bilevel optimization, interior 

point methods and the active set strategy are briefly described. This thesis is based on 

the idea of multiple controllers that maintain local autonomy and integrity. Their 

description as well as the concept of block relative gain (BRG) is presented in this 

chapter. 

Chapter 3 - A Novel Block Decentralized Model Predictive Control (D-MPC). 

6 
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The methodology to develop the D-MPC controller is here presented, starting with a 

QDMC controller and extending to the coordinated D-MPC controller. Unconstrained 

and constrained formulations are presented as well the heuristic approach to remove the 

non-convexity in the constrained case. Finally, a modified D-MPC is formulated that is 

able to achieve performance between centralized and block decentralized MPC. 

Chapter 4 - Controllability and Stability Analysis. 

This chapter presents a controllability criterion that defines what kind of plants can be 

controlled using the D-MPC. Then, the stability analysis for nominal unconstrained D­

MPC is introduced. The analysis demonstrates that some D-MPC designs with 

"reasonable" tuning are not nominally stable, a result that was not anticipated. A 

procedure is developed to determine whether a nominally stable D-MPC can be 

achieved. 

Chapter 5 - Block D-MPC Performance (Case Studies). 

In this chapter a two by two distillation column is used as the mam test case to 

demonstrate the capabilities of the D-MPC controller. First, independent objectives are 

defined and different design configurations (positive, negative and zero BRG) are tested. 

Then the effect of tuning for stability is considered. A couple of extra cases with higher 

dimensions are also considered. 

Chapter 6 - Contributions and Future Work. 

Finally this chapter presents a summary of the findings of this work as well as 

conclusions based on the results achieved. Recommendations for future work are also 

presented. 

7 



Chapter 2 

,Technology Survey 

In the prev10us chapter it was stated that industrial plants have many block 

decentralized decision-making systems for automatic control and optimization. Since these 

systems interact, the performance of the integrated system could deviate from the required 

dynamic performance. Therefore, a coordination scheme is sought that retains the desired 

block decentralized autonomous decision-making but accounts for interaction. 

In this chapter a review of the different concepts and technologies employed for the 

development of the coordinated Block D-MPC controller is presented. Additionally, a 

review of the published literature on the coordination of MPC is presented. This review 

introduces the reader to the main research lines involved in the coordination of MPC 

controllers. 

2.1 Model Predictive Control 

This entire work is based on the use of Model Predictive Control as the control 

algorithm. MPC is the most widely used advanced controller in industry and it refers to a 

class of control algorithms where dynamic process models are used to predict and control a 

process. MPC is well suited for high performance control of constrained multi variable 
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processes because explicit pairing of controlled variables (CV) and manipulated variables 

(MV) is not performed and constraints are direcdy embedded in the problem formulation 

(Qin and Badgwell, 2003, Nath and Alzein 2002). 

Theoretically, we might have a single centralized MPC controller for each large 

process plant. However, this is not the case found in practice, especially in cases where each 

plant section (block) desires to maintain the absolute control over its decision variables. 

Usually multiple MPCs are employed for dynamic control. These controllers can be 

coordinated through a steady state optimizer (LP or QP), which finds a feasible final steady 

state but does not account for dynamics. 

An important part of the MPC application is definitively the process model 

embedded in the algorithm. Chemical processes are inherendy nonlinear; however the most 

common approach in the MPC design is to express the model equations in a linear form. 

These models may be generated by empirical identification, first principle equations or a 

combination of both. These models are usually employed in the form of linear time invariant 

models (LTI) and are very common in industry. 

Problem (2.1) shows a typical formulation of an MPC controller for a continuous 

process, the objective usually seeks to minimize the error between the controlled variables 

and the reference trajectories obtained from the economic optimizer. 

s.t. 

Y = f(LJu,d,if) 

Ymin S Y S Ymax 

(2.1) 

In this case a set of manipulated variables are adjusted to drive the process to the 

desired steady-state operating point without violating constraints. The manipulated variable 

9 
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values for the first time step are implemented in the plant, and the problem is repeated at 

each controller execution time. 

The weights of the quadratic norms in (2.1) are used to modify or "tune" the 

dynamic behaviour of the system and to achieve a MPC that is robust in the presence of 

model mismatch. The process output, Y E mn is a function of input moves, Llu E mm 

measured disturbances, d and the estimated unmeasured disturbance, N. The input variable 

u is obtained by adding Llu to its current value. 

From the numerous MPC technologies available this work makes use of the 

Dynamic Matrix Control (DMC) algorithm (Cutler and Ramaker, 1980), which is widely used 

in the process industry for unconstrained control. For constrained control this work 

considers the Quadratic Dynamic Matrix Control (QDMC) algorithm as presented by Garcia 

and Morshedi (1986). Some of the key features of both algorithms that made it suitable for 

this research are the following: 

• 

• 

• 

Linear step response models for the plant. 

Quadratic performance objective 

Optimal input computed as the solution of a convex Quadratic Programming 

problem. 

Maybe the most important feature of QDMC is the ease with which constraints are 

incorporated in the problem, which are a key part of this work. The QDMC methodology 

will be described in detail in Chapter 3. 

"" " ... , '" . :t...:t.. l\..ey l...oncepts 

The plantwide control stmcture considered for this work is the so-called Block 

Decentralized Structure, which is a combination of several controllers that can be single- or 

multi-variable (Cai, 2009). In a chemical plant a typical structure contains multiple (Block) 

10 
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MPC controllers; usually each of them is handled in a decentralized way regarding the other 

controllers. This research states and solves the coordination of this problem in a way that 

preserves the autonomy of the controllers for each plant block. 

It is worth emphasizing that this "decentralization" is not aiming for the reduction of 

the computational effort as main objective, but enforcing the decentralized independent 

goals. Some concepts required to understand the goals of this research are described next. 

In this thesis, the controller resulting from the coordination of different autonomous 

MPC controllers will be referred to as Block D-MPC or just D-MPC. In the same way and 

for the purposes of this thesis the conventional technology, which addresses block MPC 

without coordination is referred as independent block MPc. 

2.2.1 Local Autonomy 

One of the key concepts that drive this research is maintaining local autonomy of the 

different sections of the plant. Basically, this means that each plant section (block) desires 

the absolute control over its decision (manipulated) variables. Although the goals of each 

block are independent their behaviour is definitely not because of the process interactions 

among plant blocks. This situation suggests that the problem should not be addressed as a 

set of independent subproblems. 

The autonomy of the controllers mentioned above is achieved when each MPC 

adjusts the manipulated variables of its own process unit to optimize its own objective 

function. In Figure 1.1 a typical portion of a chemical plant composed by a reactor and two 

distillation columns is shown. Here, each unit has a local MPC controller. In case a 

manipulated variable of column Cl loses control or gets saturated, the response of a 

plantwide centralized MPC controller would be to adjust a manipulated variable in column 

C2 leading to a loss in performance on that column. On the other hand, the proposed 

coordinated D-MPC scheme has the objective to avoid a controller adjusting one of its 

manipulated variables to control a controlled variable of a different block. 
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Maintaining this local autonomy in the coordination scheme preserves disturbance isolation 

and fault tolerance of the control system. These two characteristics are the main reasons why 

independent block MPC is widely used in practice, although current methods suffer from 

dynamic interaction. 

2.2.2 Integrity and Block Relative Gain 

Decentralized controllers are widely used in industry because of their simplicity. 

They are easier to understand and to implement. However, the performance of a 

decentralized controller can be poor in the presence of severe process interactions. The same 

situation occurs with Block MPC structures like the one shown in Figure 1.1. 

In decentralized SISO control the concept of integrity becomes important. Basically 

the system has integrity if the system is stable without changing signs of any feedback 

controller gains once one of the loops is placed in manual. We definitely want integrity, 

which requires that the sign of the process gain (Lly / Llu ) is independent of the onloff status 

of other controllers. Additionally, Campo and Morari (1994) developed a series of integrity 

definitions for closed-loop systems. For the purposes of this work the Decentralized 

Integral Controllability (DIC) definition is the most suitable. Basically DIC implies that 

each controller can be detuned or put in manual independently, and the remaining closed­

loop system will remain stable. The main requirement for DIC is that the relative gains 

(RGA) of the process must be positive. 

When dealing with block decentralized control structures, integrity is addressed 

through the use of Block Relative Gain (BRG) (Manousiouthakis et al., 1986). BRG is an 

extension of the classical RGA pairing method presented by Bristol (1966). The use of Block 

Relative Gain (BRG) concepts provides a guideline for selection of suitable block structures 

in block decentralized control systems. Similar to the previous case the necessary condition 

for integrity in block decentralized structures is to have a BRG with a positive determinant 

(Chiu and Arkun, 1990). A brief introduction ofBRG can be found in Appendix B. 

12 



~ 
I 

I 

I 
I 

M.A.Sc. Thesis - Alberto J. Olvera-Salazar McMaster University - Chemical Engineering 

2.2.3 Dynamic Performance 

A major objective of the proposed Block D-MPC controller is to improve the 

dynamic performance of block decentralized structures. In this research it is a premise that 

the dynamic performance obtained via Block D-MPC coordination should be better than the 

solution obtained from an independent block MPC control system. Dynamic performance is 

a very rich concept and a single metric is never enough to measure it. Ideally a closed loop 

system must satisfy the following performance criteria (e.g., Seborg et aI, 2003): 

1. Closed Loop System must be stable. 

2. Provide good disturbance rejection and set point tracking. 

3. Steady-state error (offset) eliminated. 

4. Excessive control action is avoided. 

5. Must be insensitive to change in process conditions (Robust control). 

Most of these performance criterions are embedded in the MPC objective function. 

For example the deviation of the controlled variable from the set point, the excessive control 

action as well as the offset requirement are enforced in the first two terms of the objective 

function as described in (2.1). 

For a given control structure the problem of achieving good dynamic performance is 

reduced to the tuning problem. Shridhar and Cooper (1998) derived an analytical expression 

that computes appropriate move suppression factors for multivariable MPC, and it is based 

on keeping a low target value of the condition number of the system dynamic matrix. The 

optimal tuning of MPC controllers however, is a challenging problem, and it requires an 

explicit evaluation of the dynamic transient. Recently, Cai (2009) developed a combinatorial­

based methodology to select both the optimal control structure and optimal tuning for 

independent block MPC designs. However, probably the fattest and most reliable way to 

obtain the best tuning of the controller would require evaluating the dynamic performance 

offering some robust stability. 
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Robust MPC is another active research area that considers several types of 

uncertainty (i.e. parametric, sttuctural). To tackle this problem several methodologies have 

been developed, Warren (2004) proposed a chance constraint method where the uncertainty 

in the closed-loop model is characterized by an ellipsoidal uncertainty description. 

Parametric programming has also been used for Robust MPC (K .. akalis et aI, 2004). 

Both Robust MPC and the optimal structure/tuning of MPC controllers are beyond 

the scope of this research. The proposed D-MPC controller will make use of trial-and-error 

tuning in order to satisfy the first four criterions described above. 

2.3 Decentralized (Block) MPC 

Coordination of Decentralized MPC control has received attention in recent years. 

In industry some of the most common methods ignore dynamic interactions among 

subsystems. Jakhete et aI, (1999) published an industrial application where two processing 

units in a refinery, a fluid catalytic cracking unit (FCCU) and a gas processing unit (GPU) 

were coordinated. Although the main objective was the coordination of two Block MPC 

controllers, one for each unit, their implementation completely ignores the dynamic 

interactions and focused only on the steady state target coordination. 

In this review two major categories are used to group the several Block 

Decentralized MPC approaches found in literature. The first category aims to solve the 

coordination of different controllers each of them having an independent objective function. 

The second category of approaches intends to match or approximate the centralized MPC 

performance by optimizing an objective function that is similar to the centralized MPC 

objective function. 

The first category has been named as Communication MPC and incorporates a 

Block Design strategy. Here, each controller communicates part of its knowledge to other 

controllers by exchanging predictions for their local states and control moves. The second 

category is called Cooperation MPC, and it enforces a Centralized Design. In these 
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formulations, the computations are decentralized among the individual MPC controllers, 

which cooperate towards achieving performance close to a conventional centralized MPC. 

Generally, the goal is to minimize computational effort or allow the computation to be 

distributed to several local processors. Figure 2.1 depicts several methods that fall under 

these two categories. Some of the most important works are briefly described in the next 

sections. 

Figure 2.1 Technologies in Coordinated MPC 

The work in this thesis has no intention to obtain a centralized performance; 

therefore it falls under the Block Design category and could be deemed as a Communication 

MPC approach. 

2.3.1 Game Theory and the Concept Nash Equilibrium 

Several authors have mentioned that the coordination of decentralized control is 

based on concepts from Game Theory such as Nash Equilibrium (NE) (Ba~ar and Olsder, 

1982; Van Shupp en, 2000; Negenborn et al 2004). Although game theory provides 

descriptive concepts, it not always tells us how to compute solutions. The characteristics of 

the decentralized MPC problem addressed in this research suggest that it may be classified as 

and Extensive Game with perfect information and simultaneous moves (Osbourne, 1994). 
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However not much insight other than the concept of Nash equilibrium can be obtained 

from the theory behind these games. 

Negenborn et al (2004) described the MPC controller as an agent that has abilities to 

act and communicate with other agents to solve a given problem. Each agent has a reaction 

set that contains all the possible actions that an agent would make when it knows what the 

other agents will do. Two possible solutions to the multiagent problem are identified. (1) 

The Nash Equilibrium point identified as the intersection of the reaction sets of all agents. 

(2) The Pareto optimal solution included in the Pareto Set of solutions, which is the set of all 

feasible solutions to the overall problem. These two solutions for two, one-variable MPC 

controllers with interaction are depicted in Figure 2.2. The dashed ellipses represent the 

objective contours for each independent controller, with the other controller off. The dash­

dot lines are to locations of the optimum for one controller, with the move by the other 

controller known. 

Figure 2.2 Nash and Pareto Optimal Sets (Giovanini. 2007) 

Here it is important to mention a couple of observations: 

(1) The elements of the Pareto set represent possible trade-offs among the multiple 

objectives of the subproblems. 
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(2) The solution of the overall centralized problem and the decentralized control 

problems are two extremes. These solutions correspond to the Pareto optimal (po) 

and the Nash Equilibrium solution (N E ), respectively. 

For the purposes of this work a group of control decision 

U NE (k) = (UfE ,UfE , ... u~E ) is called to be Nash optimal solution if the following relation is 

held (Du et al. 2001). 

J tuNE ... UNE "'U NE )< J tuNE ... UNE U u NE "'U NE ) ;~ 1 ' ,; , N - ;~ 1 ' , ;-1' ;, HI N' Vu;, i=1,2,.··N (2.2) 

When the Nash solution is achieved, each agent (i) has achieved the local optimum; 

any change in its control decision (u; ) will degrade the local performance index (J; ). 

Once the theoretical concepts of Nash Equilibrium and Pareto Optimum have been 

introduced the next step is to present the different approaches available in literature that 

address the decentralized MPC problem. 

2.3.2 Block Design - Communication MPC 

Communication MPC methods focuses on MPC controllers for individual blocks 

integrated with an approach to handle interactions among blocks. The solution sought in this 

approaches is that of a Nash equilibrium point. 

Maybe one of the first works that addressed the decentralized MPC problem is from 

Charos and Arkun (1993). In this work the authors proposed a new formulation of the 

QDI\1C controller based on the decomposition of the original problem into 

subproblems, which then can be solved sequentially. The formulation relies in the 

fundamental assumption that each other controller will keep the already implemented inputs 

constant for the next prediction horizon. The approach uses a sequential solution of MPC 

problems, with each subsequent controller having knowledge of the previously calculated 
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optimization results. Since this approach does not include multiple iterations, most control 

calculations do not have full knowledge of other block results, and the dynamic performance 

could be poor. 

Later Jia and Krogh (2001) and Camponogara et al. (2002) studied state-space based 

distributed MPC formulations and their stability characteristics. They presented a 

Distributed MPC algorithm where each subsystem applies a local MPC. The local state 

predictions are communicated to other subsystems and incorporated in the control 

calculations. This approach is similar to the one proposed by Charos and Arkun (1993), in 

the sense that interactions among processes are considered based on a similar assumption (a 

one-step delayed exchange prediction). The controllers are solved sequentially using the state 

predictions from other subsystems evaluated with information from the previous execution 

time. 

These previous methods can be classified as one-way interaction strategies where 

some kind of feed forward control is implemented. The next set of formulations considers 

two-way interactions and proposes some strategies to obtain the solution of the problem. 

Du et al. (2001) and later Li et al (2005) in the same group studied the input coupling 

among step-response models for distributed MPC solutions based on Nash optimality. In 

this formulation, the controller calculations are performed iteratively, until convergence is 

obtained. In addition, these studies include a stability analysis. However, only unconstrained 

MPC is considered. An important shortcoming in this work is that the proposed iterative 

algorithm is only effective for systems with diagonal dominant gain matrix narrowing its 

application to positive BRG configurations. 

Another formulation presented by Shigueo and Hong (2005) introduced a 

methodology based in the formulation of Charos and Arkun (1993) for QDMC. The 

procedure consists of an iterative algorithm where the key idea is to make use of available 

future prediction in order to calculate the next control actions. There is no proof that this 
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method will converge to global optima or even to a local solution. However the "warm 

start" strategy seems to have a positive impact in the solution strategy. 

More recently AI-Gherwi et a1 (2008) proposed a method to assess the robustness of 

communication based MPC. Basically it finds the control structure that better handles model 

errors by minimizing a variability metric trough input weights manipulation. 

2.3.3 Centralized Design - Cooperation MPC 

Cooperation MPC consists of a decentralized control structure where each MPC 

controller has a global objective function. The objective is to achieve "close" to a centralized 

performance. The cooperation MPC approaches are based on the assumption that 

computing the centralized solution may not be practical or reliable for large systems. These 

methods emerge to solve the sub-optimality (in the plantwide sense) obtained with 

communication-based MPC. 

Venkat et al (2004) presented a cooperation-based MPC approach that challenged 

the existing communication MPC formulations from a stability and optimality perspective. 

They claimed that the Nash Equilibrium solutions are unstable and proposed a formulation 

where the local MPC objectives were replaced with global performance measures. With this 

modification each controller minimizes a projected objective involving all plantwide 

variables. A weighted sum of the local objective function is proposed for plantwide 

objective. It is important to mention that if the objective function of every subsystem is the 

same (i.e. Quadratic) the global objective matches exactly a centralized quadratic objective 

function. Therefore, the solution could be similar to that of a plantwide Centralized MPC. 

Regarding the solution strategy, this is the same as in the communication MPC 

approach. Thus an iterative algorithm is implemented to find the optimal solution. Because 

the iterative procedure may not converge during the execution time, some modifications are 

made in order to guarantee feasibility of the method even if the algorithm does not converge 
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at all. Another characteristic is the inclusion of terminal constraints to obtain closed-loop 

nominal stability for open-loop unstable plants. 

Recenciy, Zhang and Li (2007) presented an approach called Network MPC, which is 

very similar to the cooperation MPC described above. It basically makes use of a centralized 

objective function that it is optimized in each local controller. 

2.3.4 Decentralized LP-MPC 

Almost all industrial MPC controllers consider an upper level steady-state optimizer, 

which usually consists of a target calculation problem posed as a linear programming (LP) or 

quadratic programming (QP) problem. The inclusion of upper-level problem maintains the 

feasibility of the controlled actions. This local optimizer may serve either as an integrating 

level between the steady-state RTO and regulatory level. 

Cheng and Forbes (2004) proposed an approach to address the steady-state 

coordination of MPC controllers focusing on the steady state target calculations. In this 

method the ultimate goal is to find a coordinating strategy that obtains the same solution as 

the centralized approach. They follow the Dantzing-Wolfe decomposition principle to 

coordinate the interactions among decentralized MPC blocks. The resulting master problem 

would be the same as that of a plantwide centralized problem. The ultimate goal of this 

method is to reduce the computational requirements without any consideration of the 

dynamic performance. 

A follow up work presented by Cheng et al. (2007) proposed a price adjustment 

method to solve the coordination of the LP-MPC problem. In this case the objective is not 

necessarily obtaining a centralized performance but maintaining the decentralized 

independence of the process units while coordinating the interactions. 
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2.4 Optimization Technologies 

This work considers different optimization technologies in order to approach the 

Decentralized MPC problem. The main goal is to overcome the limitations encountered in 

the current communication-based MPC formulations, which are due to the use of an 

iterative algorithm. 

First, multilevel optimization is discussed in order to present the framework on 

which the proposed D-MPC controller is developed. A couple of optimization algorithms 

are then discussed: (1) Interior Point and (2) Active Set Strategy. 

2.4.1 Multilevel Optimization 

Multilevel optimization problems are structured in a hierarchical way, where the 

upper level is executed first, and the solution influences the objective and feasible set for the 

lower levels. This may be contrasted with decomposition techniques, where a single 

objective is used to describe all decisions. 

For the sake of simplicity multilevel optimization can be described using a bilevel 

problem; mathematically the problem can be stated as follows. 

max P(x,y) 
XE9tnJ 

s.t. g(x,y) ~ 0 
(2.3) 

min f(x,y) 
YE9t

n2 

st. h(x,y) ~ 0 

A common method to solve this bilevel problem is to transform the problem into a 

single-level optimization problem by substituting the lower-level problem with its first order 

Karush-Kuhn-Tucker (KI<1) conditions. The resulting problem is the following. 
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max P(x,y) 
x,y,w 

s.t. g(x,y):o; 0 

I 
\lyf(x,y)+w·\lyh(x,y)=O ) -"----KKT 
h(x,y):o; 0 ...---

w·h(x,y)=O 

w~O 

(2.4) 

Even under suitable convexity assumptions of both levels, the above mathematical 

program 1S very difficult to solve, due mainly to the nonconvexities that occur in the 

complementarity and Lagrangian constraints (Clark and Westerberg, 1990). While the 

Lagrangian constraint is linear in certain important cases (linear or convex quadratic 

functions), the complementarity constraint is intrinsically non-convex, and it is best 

addressed by enumeration algorithms, such as branch-and-bound or more recently by 

Interior Point Methods (Colson et aI, 2005). 

This methodology that replaces an optimization problem by its I<lZT conditions is 

the central part of the proposed D-MPC controller. As stated above the solution of this 

multilevel problem deals with complementarity constraints that cannot be solved using 

conventional NLP methods, such as SQP. 

2.4.2 Interior Point Methods (IPM) and Complementarity Constraints 

Interior Point or Barrier Methods are optimization methods that transform a 

constrained problem into a series of unconstrained ones. These methods follow a barrier 

approach where the inequality constraints are replaced by a barrier term (i.e. logarithmic 

function) that is added to the objective function. 

Consider an Original NLP optimization problem: 
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min f(x) 
XE~lt" 

s.t. c(x) = 0 

x?O 

(2.5) 

Using a barrier term to replace the bounds the problem is transformed into the 

following Interior Point (IP) problem: 

min tp(x) = f(x) - J1z)og(xU)) 
XElR n i (2.6) 
s.t. c(x) = 0 

For the resulting problem the objective function becomes arbitrarily large as 

X approaches the boundary defined by the inequality constraints, therefore the local solution 

of this problem lies in the interior of the constraints set. Then as J1 approaches to zero the 

solution of the interior point (IP) problem approaches the optimal solution of the original 

problem. The strategy for solving the original NLP is to solve a sequence of barrier 

problems for a decreasing parameter J1 . 

The complexity of the problem increases when complementarity conditions are 

introduced (i.e. multilevel optimization). For these cases the optimization problem is the 

following: 

min f(x, w,y) 
XElRn

, WElR
m ,YElRm 

st. 

c(x, w,y) = 0 

x,w,y?O 

w(i)y(i) =0, i=l...m 

(2.7) 

Where w(i)y(i) = 0 are the complementarity constraints. Then, by applying the barrier 

terms the original problem is transformed in the following IP problem: 
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min f(x, w,y) 
XEWn 

, WEW
m ,YEWm 

st. 
(2.8) 

c(x, w,y) = 0 

wCi)/i) = 0, i = l...rn 

As mentioned above this problem is highly non-convex, thus difficult to solve. 

Recently Raghunathan and Biegler (2003) developed an algorithm called IPOPT-C able to 

handle optimization problems with equilibrium constraints (MPEC). The main strategy is to 

relax the complementarity constraints wCi) yU) = 0 in the following way. 

wU) yCi) + sCi) = Oil 

sCi) , wei) ,yCi) ~ 0 
(2.9) 

Where Il is the positive barrier parameter that is progressively reduced to zero. 

More recently, Baker (2006) reported that this method performed better than the most 

common NLP solvers such as CONOPT and MINOS. 

2.4.3 Active Set Strategy 

Quadratic Programming (QP) methods are widely used in process control 

applications. For example the QDMC algorithm used in this research is a QP problem where 

the (output) constraints are represented by the linear dynamic model. The solution method 

behind most QP solvers is based on the selection of working sets of active constraints, 

hence the name active set strategy. 

Active set solvers for quadratic programming commonly consist of two phases. In 

Phase I a first calculation is performed to find an initial feasible point. Then, in Phase II the 

KKT matrix is updated as constraints are added or dropped while the algorithm reduces the 

objective function and maintains feasibility (Bartlett and Biegler, 2006). 
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The general formulation of a QP problem is: 

(2.10) 

Where X,XL,XU E m n , g E m n , G = GT 
E mnxn is positive definite, Ac E m nxlIl and 

C L, Cu E mill. The Q P algorithm attempts to solve the first-order KKT optimality conditions, 

which include the feasibility of the constraints and the stationary constraint. 

g+GX+AC+A+,u=O (2.11) 

The solution consists of the primal variables x and the multipliers v T = lAr ,uT j. At 

the optimum the elements of v will satisfy the complementarity conditions: v;::: 0 for an 

active upper bound, v:::; 0 for an active lower bound, and v = 0 for an inactive constraint. 

An active-set strategy searches through different working sets of active constraints 

until the optimality conditions are met. At every working set (iteration) the problem (2.10) is 

transformed into an optimization problem with equality constraints. 

(2.12) 

Where Aws contains the information of the active constraints and bws is either the 

upper or level bound for the working set. The methodology used to select which constraint 

is added or dropped is basically what distinguish the different solvers available. 
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Later in Chapter 3 a heuristic method based on the concepts described in this section 

is proposed to solve the constrained version of the decentralized MPC problem. 
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Chapter 3 

A Novel Block Decentralized MPC (D­
MPC) 

In this chapter the Block D-MPC controller is presented in detail. Recall that the 

goal of the D-MPC is to provide block-decentralized control with autonomy within blocks 

and good dynamic performance of all blocks. Here, the D-MPC is formulated for 

unconstrained and constrained cases. A heuristic method based on an active set strategy is 

introduced as a way to remove the nonconvexity of the coordination problem and facilitate 

real-time computation. Finally an extended controller capable of achieving either a D-MPC 

or a fully centralized (conventional) performance is presented. 

3.1 Unconstrained D-MPC Formulation 

This section describes the formulation of the Block Decentralized MPC (D-MPC). 

The Unconstrained D-MPC formulation begins by formulating each MPC controller as a 

MIMO DMC controller as desct-ibed in Cutler and Ramaker (1980). This formulation is 

based on the s'tandard MPC technology presented in Appendix A. 
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The D-MPC formulation considers two or more MPC controllers to be coordinated 

to meet the specified goals. These controllers and their associated processes are referred to 

as blocks throughout this thesis. A block may encompass either a MIMO or a SISO process, 

with the manipulated and controlled variables defining each block. In the first chapter Figure 

1.1 showed a schematic of a typical D-MPC problem. 

A couple of important assumptions that are used in this thesis are now made. 

1. Eve1Y controller has the same prediction (p) and control horizon (m), which is not 

required but done consistently in this work for ease of notation. 

2. Every controller must have the same execution period. (This is not strictly 

necessary; controllers could have execution periods that are integer multiples, which 

would complicate the programming, tuning, etc.) 

Following the basic formulation for Dynamic Matrix Control, the MPC controller in 

block i has the following formulation. 

where 

y; = A;;Au; + E; + yf + d; 

N 

E; = LAij ·Auj 
j=i 
iFi 
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Equation (3.2) represents the linear dynamic model; the term Au contains either a 

SISO or a MIMO dynamic mattix that describes the effect of inputs in block i to outputs in 

block i. The sttucture of Au has been described in Appendix A. The term Ei described in 

(3.3) contains the effect from inputs in blocks j =1= i to outputs in block i, which represents 

the interaction among processes; changes to the manipulated variables in blocks j =1= i are 

measured disturbances for the block i conttoller. 

Parameters Pi and mi are the prediction and conttol horizon of block i 

respectively. In the same way Pi and Mi are the number of process output and input 

variables of block i. The previous assumptions indicate that the prediction and input 

horizons are the same for every conttolled block, therefore Pi and mi can be represented as 

P and m. 

It is important to emphasise that the optimization variables are Llui, which consists 

of the conttol actions of only the input variables defined for block i . 

The effect on the predicted output Yi from past inputs Llui and Llu j (j =1= i) is 

included in the vector yf. The output feedback is the vector d i and corresponds to the 

"model error", which includes effects of unmeasured disturbances and model mismatch. 

This vector di can be calculated in different ways, the most common method, which is used 

in this thesis, is the difference between the measured and predicted values of Yi at the time 

of the conttoller execution, which is assumed constant throughout the entire horizon. 

It is important to note that the sttucture of the vectors is properly handled by 

stacking multiple variables. For example for a specific block i variables are handled as 

follows. 
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LlUi J,(k+m-J) 
---LiUi~~~)--

McMaster University - Chemical Engineering 

!!.W_+y)_ 
Yi2,(k+l) 

Llui = . 

_~~Y'-(~~III=-~t 

YiP;,(k+p) 

Finally matrices Qi and Ri are the block tuning parameters and in this formulation 

Qi is defined as diagonal and positive definite matrix (PD) and Ri is defined as diagonal 

positive semidefinite (PSD) or definite (PD) matrix. These tuning parameters are deemed 

local because they only account for input and output variables of block i . 

3.1.1 Control Calculation for Each Individual Block (QDMC formulation) 

Looking ahead, we recognize that we will be solving the optimization for multiple 

blocks simultaneously. To avoid a multi-level optimization problem that would be 

intractable, we will reformulate the individual block optimizations so that multiple blocks 

can be optimized in a tractable manner. The first step in this formulation is the 

transformation of the optimization problem into a well-posed problem for real-time 

solution. An important part is to explicitly express the interaction effects. 

Expanding the first term of (3.1). 

Where. 

- P d sp ei - Yi + i - Yi 
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It is important to mention that e; contains the feedback information effects of past 

control outputs and forecast of the future set points and is not influenced by future control 

decisions. 

The second term is easily transformed. 

Finally the objective function J; can be expressed as. 

The resulting problem is an unconstrained QP of the following form. 

Min qJ(x) = xT 1: x + cT x + h 
x 

(3.5) 

The solution of this unconstrained optimization problem must satisfy the following 

stationary condition. 

d~~. = (A/ QiAU +Ri )LlUi +A/ Qi(Ei)+Au
T 

Qi(e;)= 0 
I 

(3.7) 

The second order condition basically reqwres that in order to have a convex 

optimization problem, the Hessian matrix 1: = (A/ QiAU + Ri ) must be at least positive 

semidefinite, which is the case for a typical well-posed MPC problem. Therefore, a local 

minimum is a global minimum. 

Note that. 
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Ii We will require that the inverse of the Hessian (1;) in equation (3.7) exist through 

selection of appropriate process applications and values of tuning parameters. This 
topic is developed in the next chapter. 

• 

• 

• 

If there is no interaction, the problem simplifies to a single loop MPC where the 
solution is the following. 

(3.8) 

This set of linear equations can be solved for the optimization values of future 
adjustments of the block-manipulated variables. 

If this optimization problem is solved independent of other block controllers, the 
term Ei is treated as a zero (no coordination) or as a constant term (sequential 
coordination) . 

• The term ej contains the feedback information and the effect from past inputs. 

3.2 Simultaneous Solution for the Unconstrained D-MPC 

The proposed approach for the coordination of Decentralized Block MPC 

controllers starts with the MPC formulation of each of the blocks that will be coordinated, 

i.e., equation (3.8). We note that this control problem is unconstrained, so that bounds on 

manipulated variables will be addressed in the subsequent section. With all controllers solved 

simultaneously, the communication among blocks will be through the interaction terms. 

These controllers are designed in a way that only the blocks' input variables (Lluj) are the 

optimization variables for that block's controller, i.e., are the variables adjusted to minimize 

the blocks controller objective function. 

The optimality conditions for all block controllers take the same form and can be 

combined and solved simultaneously as a set of linear equations, as given in the following. 

i=l,···,N (3.9) 

The interactive term in equation (3.9) is given in the following expression. 
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N 

Au T Qi (Ei) = AuT Qi L AijL1u j 
j=l 
i*j 

Expanding the interactive term for system (i = 1) yields. 

(3.10) 

(3.11) 

Repeating for i = 2,,,,, N results in equation (3.9) being rearranged to a set of linear 

equations. 

T 
All QIAII +RI 

T 
All QIA12 

T 
All QIAlN AUI T 

All QI·eI 0 
T 

A22 Q2A2I 
T 

A22 Q2A22 + R2 
T 

A22 Q2A2N AU2 T 
A22 Q2 ·e2 0 

+ (3.12) 

T 
ANN QNANJ 

T 
ANN QNAN2 

T 
ANN QNANN + RN AUN T 

ANN QN ·eN 0 

Then, defining the following matrices. 

fAll A" ... Am 1 fQ, 
0 0 

jJ A2] A22 ... A2N 0 Q2 0 
Ac = . Q= 

0 ...... ... 0 

AN]'" ANN 0 0 0 

(3.13) 

R~f1 
0 0 

jJ e{~1 R2 0 

0 

0 0 

Equation (3.12) can be also expressed in a condensed form as follows. 

(3.14) 

Where AD contains only the diagonal blocks (Aii) elements of Ac. 
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o 
A22 
o 
o 

(3.15) 

And the decision variables of all blocks are in the stacked vector defined as 

In conclusion the simultaneous set of equations for the unconstrained D-MPC can 

be expressed in the following way. 

Where 

ADMPC Au = bDMPC 

ADMPC = (ADT Q Ac +R) 

bDMPC = ADT Q{- e) 

Finally, the controller actions are calculated by using the following expression. 

(3.16) 

(3.17) 

The resulting Block D-MPC has a similar structure to that of the Centralized MPC 

as shown below. 

C-MPC 

The differences between C-MPC and D-MPC are obviously a result of designing the 

D-MPC controller to achieve different performance goals. 
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A geometrical interpretation of this problem is shown schematically in Figure 3.1 for 

a two-dimension problem. The solution obtained by the D-MPC controller is derived by 

allowing each controller to optimize its own objective, without regard for other objectives. 

The approach is shown as the intersection of the optimality conditions (dashed lines) for the 

two individual controllers. This optimization approach reaches a solution that is commonly 

called as the Nash Equilibrium point c:v an Shupp en, 2004), shown as N E in the figure. 

Equation (3.17) calculates the intersection of the optimality conditions, in this case the 

solution of a linear set of equations in the Llu space. 

On the other hand the Pareto optimal path is the set of points (u I, u 2) obtained by a 

centralized controller adjusting both manipulated variables to minimize the weighted 

function J = (WIJI + W2J2) for each 0 ~wj, W2 ~ 1, wI + w2 = 1. The curve describing the 

range of Pareto solutions is designated by Po. In this way the Pareto optimal solution 

obtained when WI, W2 = 0.5 corresponds to the solution of the C-MPC using the common 

tuning of equal weighting of controlled variables. 

UI 

Figure 3.1 Nash (D-MPC) and Pareto Optimal (C-MPC) Solution 

In this section it has been shown that when unconstrained QDMC controllers are 

considered for D-MPC, the solution is obtained ftom the stationary conditions, and the 
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solution corresponds to solving a set of linear equations. This is the simplest situation, and 

no more than a linear solver is required for its real-time implementation. 

3.3 Constrained Block D-MPC 

In this section the control algorithm is extended to deal with the coordination of a 

set of MPC controllers with bounds on the manipulated variables. Again, the main approach 

for solving this problem is to replace each optimization problem (MPC) with its equivalent 

set of optimality conditions, thus yielding a single-level problem. 

The QDMC formulation for the controller in block i, which incorporates hard input 

constraints, is the following. 

where 

subject to 

Yi = AULlui +Ei + YPi + di 

Llu;uin :::; Llui :::; Llu;Uax 

uffiin < u. < u~ax 
I - I - I 

N 

Ei = LAi,j . Llu j 
j=1 
fFi 

(3.18) 

This formulation maintains the same stmcture as in problem (3.1) with the same 

dimensions for all arrays and the addition of input bounds u~in u~ax Llu~in Llu~ax E m(m.Mi ) 1 'I , I , I • 

3.3.1 Input Constraints 
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Following the procedure used in Section 3.1.1 the next step is to represent the 

constraints in a suitable matrix form. First, the fth input constraints in block i, 

u~in sUi S u~ax can be described as follows. 
If f If 

f.l 

u~in S u· + " Llu. S u max 
If I f,{k) L..J I f,{k+j) If 

j=O (3.19) 
for f1 = l,2 .. ·,m-l 

Where u· is the current value of UI' • This constraint can be expressed in matrix 
~w f 

form as. 

1 1 0 0 0 Au· 
If,{k) 1 

1 1 1 0 0 Au· 
If, (k+J) 1 

:(min )< 1 1 1 0 S (u
max 

-u· ) • U. -Ui -
• If f,{k) if If,{k) (3.20) 

0 

1 1 1 1 1 1 Llu· 
If, (k+m-J) 1 

Throughout this section, v denotes the vector of appropriate dimension of all ones. 

Then, defining V E mlll,XIIl, as follows. 

1 0 0 0 

1 1 0 0 

V= 1 1 1 0 
(3.21) 

0 

1 1 1 1 1 

The input constraint can be expressed as the following. 

[ V] [v'(U
maxi 

-ui ) 1 . Llu. + f f,{k) < 0 
-V If -v.(u. _umini)-

If,{k) f 
(3.22) 
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In a further condensed way the constraints for the fth input variable in the ith block 

are the following. 

VB . Llu· + r· 5" 0 
'f 'f (3.23) 

[ 

V'(Umaxi -u· ) 1 
and r· = f 'fY> E 91 2111 

'f ( mill ) -v· u· -u i 
'f.(k> f 

contains the current value of 

the fth input variable. Finally, combining the expressions for all the variables in block i a 

condensed expression is obtained. 

f: 
0 

01[AU] [r] 
,} I} 

VB o Llu· r· 
• .'2 + ~2 5" 0 

0 ;B LlU~m , ri:', , (3.24) 

or 

WB ·Llui +ri 5,,0 

Where WB E 912I11,.M,XIII,.M, and ri E 91 2I11,.M, contains the current values of the all the 

input variables in block i. Using the very same analysis on the input change constraints, 

Llu;uin 5" Llui 5" Llu;Uax can be expressed as follows. 

01 [LlU'] [8.] 
,} ,} 

o Llu· 8· '2 '2 0 . : + : 5" . . . 
I Llu· 8· B Imj Imj (3.25) 

Which can be further condensed as follows. 

(3.26) 
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composed of two identity matrices with opposite signs and II B E m.2mi'MiXmi'Mi . 

Finally the optimization problem (3.18) can be rewritten in the following way. 

subject to 

WB ·Llui +Yi sO 

II B . Llui + 8i S 0 

N 

Ei = LAi,} . Llu} 
}=] 
1'14 

The Lagrangian of this problem is given in the following. 

Li(LJui,Ai,¢i )=.lLJu/ (A/ QiAii + Ri )LJUi + [A/ Qi(ei + Ei )] LJui 
2 

+1(ei +EiY Qi(ei +Ei) 

+ Af . (WB . LJui + Yi) 

+ ¢T . (II B . LJui + 0i) 

(3.27) 

(3.28) 

Where Ai E m. 2mi'Mi and ¢i E m. 2mi'Mi are the Lagrange multipliers for the input and 

move size constraints respectively. The solution to this convex quadratic optimization 

problem must satisfy the following first-order KKT conditions (Biegler et al. 1997). 
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[A] 

[B] 

[C] 

[D] 

~ff . (WB . Llui + ri)jf = 0 

rAJ! . (lIB ·Lluj +OJ)jf =0 

(Ai,¢J~: 0 

(3.29a) 

(3.29b) 

(3.29c) 

(3.29d) 

(3.2ge) 

(3.29f) 

The first-order KKT conditions have five different components that are necessary 

for optimality: [A] Stationary or Linear dependence of gradients [B] Feasibiliry [C] Complementariry [D] 

Nonnegativiry. Finally [E] covers two separate issues that can also be considered. (a) A 

constraint qualification can be considered to account for degeneracy problems of the active 

constraints. Basically a strict local minimizer, Llu; must also satisfy a Strict complementarity 

condition, which state that exactly one either the constraint or its associated Lagrange 

multiplier is Zero but not both. (b) A second order condition to distinguish local minimizer 

from other stationary points requires the Hessian matrix at Llu; to be positive definite on the 

null space of the active constraints. 

[E (a)] 

[E (b)] 

Strict complementarity 

and 

Where Z is a null-space matrix for the matrix of active constraints at Llu;. These 

conditions are only necessary and does not require that the Hessian of the Lagrangian itself 

be positive definite. It is a less stringent requirement. However if the Hessian of the 

. *.. . .. .. I ~ \.. 
Lagrangian at Lluj 1s pos1tive semidefinite, ~eig(Y'~uL;)'~ 0 j, which 1s the case for a weil-

l 

posed MPC problem, then of course the second condition will be satisfied. 

3.3.2 Simultaneous Solution for the Constrained D-MPC 
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The main idea behind the coordination method proposed in this work is to 

transform several optimization problems (MPC) into a single-level problem by replacing 

each problem with its optimality conditions, and then, simultaneously solving the resulting 

set of equations. Section 3.2 showed that for an unconstrained D-MPC only a set of linear 

equations is to be solved. The constrained case on the other hand becomes more challenging 

due to the set of complementarity conditions (3.29d) and (3.2ge) that arise from the inequality 

constraints. These conditions introduce nonconvexity into the problem thus making the 

solution of the problem much more difficult. The simultaneous D-MPC problem is 

described in (3.30). 

In order to demonstrate the simultaneous procedure for the constrained case let us 

consider the simplest case that involves two blocks (N = 2), each block with a single input 

single output controller ( M I, PI ,M 2, P2 = 1) and a single input and output horizon 

(mj,pJ,mbP2 = 1). 

KKT1 

[A] {AJlT QjAU + Rj )L!lIj + (AUT QjA12 ~1I2 + AUT Qj(e]) 

+wI 'Aj +IIk .¢] =0 

[B] WB ·L1l1j+Yj<{,O 

lIB ·L!Uj +8j <{'O 

Alff (WB · ,1u] + YJ)ff = 0 if = 1 ... ·.M]·n/ 
[C] 

¢Jjf (IIB . ,1u] + 8Jff = 0 if = 1 ... ·.M]'m 

[D] (A.I'¢I)~ 0 

KKT2 

{A2l Q2A22 + R2 )L1U2 + (A2l Q2 A2] ~u] + A2l Q2(e2) 

+wI 'A2 +1/£ '(h =0 

WB ·L!U2 +Y2 <{'O 

lIB ·L!u2 +82 <{'O 

A2ff (WE' ,1U2 + Y2)ff = 0 if = 1 ... ·.M2 ·m 

¢2jf(IIB ·,1u2 + 82)ff = 0 if = 1 ... ·.MJ·m 

(A.2'¢2)~ 0 

The geometrical interpretation of this problem can be visualized in Figure 3.2 for the 

rvVo=di.1TIension problem where the presence of regulatory constrah~ts can modiff the 

number and location of the equilibrium points. 
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Regulatory 
cons train ts 

Figure 3.2 Intersection of KKT Conditions 

The solution of the simultaneous D-MPC problem in (3.30) is challenging due to the 

complementarity conditions that introduce a combinatorial feature to the problem. This 

could be formulated as a mixed integer optimization problem, which would grow in size 

exponentially. Alternatively, one could formulate this problem with all continuous variables. 

Recenciy, several works (Raghunathan et al. 2003; Baker and Swartz, 2008) have reported 

successful solution of this class of problems using continuous variables by using an interior 

point solver called IPOPT-C. This solver has a specific modification in order to handle the 

complementarity equations. An important advantage in this methodology is that the 

simultaneous approach overcomes the necessity of an iterative algorithm. A disadvantage 

however is the non-convexity of the problem, which makes assurance of a global solution 

using IPOPT -C problematic. 

Problem (3.31) has zero degrees of freedom for optimization. Therefore, in this work 

and in order t~ use the capabilities of the IPOPT -C solver a "false" objective function is 

incorporated. The resulting D-MPC problem is the following. 
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min F(Llu,A,¢) = c 
(LlU,A,¢) 

subject to 

[ 

[AL I [Bli 

[Cli 

[Dli 

McMaster University - Chemical Engineering 

(3.31) 
i=l,···,N 

Where c is just a constant and [Al,[Bli'[Cl and [Dl; are the first-order KI<:T 

conditions of the controller in block i as described in (3.29). 

The approach was successful in test cases for systems with positive Block Relative 

Gain. However, in systems with a negative BRG configuration (3.31) achieved solutions that 

were obviously incorrect based on engineering insight. For example in one of the Negative 

BRG simulations, offset was often obtained even when no input saturation needed to be 

active. The details on the case studies will be addressed in Chapter 5. 

In order to overcome the complexity caused by the complementarity constraints an 

alternative approach was developed to ensure tractable real-time computation. This 

alternative approach basically consists in implementing a heuristic active set strategy that is 

able to remove non-convexity of the problem while achieving the autonomy sought for the 

D-MPC and retaining the coordination among blocks. 

3.4 Heuristic Approach to Constrained D-MPC 

The first attempt to remove the complementarity problem was to use the so-called 

DMC Heuristic, first presented by Prett and Gillete (1980). This method consists in 

incorporating input constraints as they are becoming active. However their method does 

not include the Lagrange multipliers for the active constraints Ll1 the stationary equations. 

This method has been proven to be effective in practice for single (centralized) MPC. 

However the Prett and Gillete DMC heuristic is not viable for the Decentralized MPC 

proq,lem because not including Lagrange multipliers will cause the lost of local autonomy. 
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An alternative method is then proposed to solve the Decentralized MPC problem. 

This method is also based on an active set strategy, which has been used in MPC QP solvers. 

A similar method was developed for the Model Predictive Heuristic Controller developed by 

Richalet et al. (1987) for centralized MPC applications. 

The first step in the development of the heuristic method is to define the way the 

constraints are addressed. Prett and Gillete, (1980) call them time variant constraints and 

described them as follows. 

"They are not always active. Depending on plant measurements and conditions they may or 

may not be activated. Hence, they become integral parts of the control system model only 

when they have been activated. At all other times, they are invisible to the control model. In 

case one manipulated variable hits high or low limits, in that case it can only move in one 

direction away from the limit." 

These equations represent the set of constraints that have become active, and 

therefore must be enforced. Assume for the moment that the status of every inequality 

constraint is known, i.e. the active set is known. 

The optimization problem for block i including the active constraint is the following. 

Min J i =-2
1 

.t1u/ (A/ QiAU +Ri ).t1ui + [A/ Qi(ei + Ei )] .t1ui +-2
1 

(ei +~iY Qi(ei +Ei) 
LlUi 

subject to 
(3.32) 

Where the equality constraints represent only the known active constraints. The 

Lagrangian of tJ:-.js problem is. 

L;(L1u;,A;)=1L1U/ (A/ Q;Aii +R;)L1Ui + [A/ Q;(e; +E;)] L1ui +1(e; +EiY Q(ei +E;) 

+ A; . (Hi' L1ui - B;) 
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And the corresponding optimality conditions are the following. 

[A] 
V L!UiLi(Llui,Ai) = (Al QiAU +Ri )LlUi + tAl Qi(ei + Ei)J+HT '/4 = 0 

V' Ai Li (LlUi,Ai) = Hi ·LlUi -Bi =0 

This can be rearranged in the following linear system for block i . 

(3. 34a) 

(3.34b) 

(3.35) 

For each active constraint an extra row is added to the linear system along with its 

respective Lagrange multiplier in the vector of variables. 

For example consider having the following active constraint on the second time step 

(k + 2) of the input variable (j = 1) in block i. 

U· =U' +Llu· +Llu· =u~ax 
11,(k+2) 11,(k) II,(k) II,(k+l) 11 

This constraint can be extracted from the matrix form. 

Ui},(k+}) Ui},(k) 1 0 0 0 ,du· I},(k) 

Ui},(k+2) Ui},(k) 1 1 0 0 ,dU· I},(k+l) 

+ 1 1 1 0 
(3.36) 

0 

Ui},(k+lII) Ui1,(k) 1 1 1 1 ,du, 
'l.(k+m-J) 

In this case where the calculated variable Ui ill block },(k+2) is active, the 

corresponding row (2nd) is selected as a constraint and added to Hi' 

(3.37) 
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Repeating the same procedure for each block MPC controller (i = 1, ... ,N) to be 

coordinated results in a set of the stationary and feasibility conditions, which in turn is an 

augmented version of the unconstrained D-MPC controller presented in (3.16). The 

controller including the active constraints may be expressed as follows. 

(3.38) 

Where A is the Lagrange multiplier that appears due to the active constraints. The 

term B contains the collection of maximum changes for each input variable (i.e. 

BiJ = U~ax - UiJ,(k) ), and H contains the collection of coefficients for the active constraints. 

(3.39) 

The variables and parameters (Ai,Hi,B i ) have the corresponding information for the 

active constraints in block i. Again, this is just a system of linear equations; where in order 

to have a solution matrix ADMPC must be a full rank matrix. 

Equations (3.38) provide the solution for a known active set. Now the basic logic of 

the complete algorithm that includes determining the active set is described. 
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Active Set Iterative Algorithm. 

1. Initialization: Solve unconstrained optimization formulation. 
2. Find initial working set of active constraints. 

2.1. Start Iterations. 
Pick the first active constraint along the input time horizon. 

Add the active constraint Hu(J) ·L\u = Bu (J) to the unconstrained problem 

(3.16). 
Solve a resulting linear system in the form on (3.38) 
2.2. If there are constraint violations at 2.1.3 go to 2.1.1 if not to go to 3. 

3. Done 

The heuristic algorithm provides a feasible active set for the constrained problem. 

The main difference in this strategy with a classic active set strategy is that once a constraint 

is fixed it never becomes inactive. The advantage is that a feasible solution is obtained within 

a finite number of iterations. A disadvantage is a possible non-optimal solution. 

There is the possibility of several input violations at the same time. For such cases, 

the order in which an input variable (u) with violations is selected is based on the distance 

from its current value to the active bound; if two input variables have violations, the one 

closer to the active bound is selected to be set to its bound value. 

It is important to mention that this strategy only considers hard input constraints. 

The addition of soft output constraints would requite a different approach to handle the 

slack variables. 

In conclusion, this very simple strategy only requites the solution of a linear set of 

equations at each iteration and a finite number of iterations. Computational experience 

comparitlg Lllls method with a. method solving t..~e full non-linear KI<'T conditions is 

presented in the performance of the case studies in Chapter 5. 
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3.5 Comparison of D-MPC with Conventional Centralized MPC 

Controller 

A common subject that often comes to mind is whether the D-MPC performance 

can be achieved by simply tuning a centralized MPC controller. In this section that question 

is addressed. First, the mathematical differences among controllers are presented with the 

objective to find if there is a way to achieve an equivalent dynamic performance, i.e., the 

same adjustments to the manipulated variables, using a centralized MPC formulation. 

Second, the role of the tuning parameters is explored and conclusions are drawn. 

For the sake of simplicity, a two by two example without inequality constraints is used 

to compare both controllers, the analysis assumes perfect models. This case considers a 

controllable plant that includes dynamic interaction matrices Ai,2 and A2,l that are nonzero, 

i.e., process interaction exists. The corresponding set of optimality conditions for the D­

MPC and the C-MPC are presented in (3.40) and (3.41) respectively. The centralized MPC 

formulation is described in detail in Appendix A. 

D-MPC (3.40) 

C-MPC 
(3.41) 

We begin by comparing both equations element by element. It can be seen that every 

element of the C-MPC controller has an extra term. Now, the objective is to show that for a 

given set ofD-MPC tuning parameters (QD,RD) , there is not a simple procedure to obtain a 

set of C-MPC tuning parameters (Qc,Rc) that would drive both controllers to produce the 

same input action Llu with e;j:. 0 . 
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(3.42) 

The term simple within the context of this analysis refers to obtaining tuning 

parameters by some direct algebraic procedure that does not involve a complex optimization 

problem. In this context the next discussion considers the most evident case in which both 

controllers could match each other. Such case would require every block element on both 

equations (3.40) and (3.41) to be exactly the same. 

3.5.1 Tuning Parameters Effects. 

The tuning parameters Q define the relative importance of the control of a specific 

output variable. In this way if Qi is set to zero then outputs in block i are not controlled at 

all. For the case in question we will first consider the effect of this tuning parameter Q while 

setting the other tuning parameter R to zero. In order for the C-MPC in (3.41) to have the 

same performance as the D-MPC, the second term on each element of the first row must be 

zero. In the same way the first term of each element of the second row must be zero as 

shown below. 

However, the only way to obtain this result would require setting the tuning 

parameters 0:1 and QC2 equal to zero, which in turn would make the entire matrix equal to 

zero and therefore singular. From this observation it can be concluded that there is no way 

to match both controllers in an element-by-element fashion by means of changing parameter 

Q with a fixed parameter R . 

The suppression factor, R on the other hand has the function of penalizing the 

magnitude of change of an input variable. From (3.40) and (3.41) it can be observed that R 

has no effect on the off-diagonal block elements of the matrix nor on the feedback 
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information terms. Therefore, the suppression factor has no effect on the off-diagonal 

blocks of the controllers, and consequently, these off-diagonal terms would never be equal in 

both controllers. 

However, it is important to mention that if a there were to exist a combination of 

tuning parameters (Qc, Rc) and (QD' RD) that makes equation (3.42) hold, obtaining such 

parameters would require the solution of complicated nonlinear problem with no guarantee 

of solution. 

More importantly, the tuning would only be valid for one scenario. This would 

require the solution of a non-linear, non-convex tuning problem as part of every MPC 

controller execution. We deem this to be an unacceptable burden for real-time 

implementation. 

In summary, by means of simple tuning the typical formulation of a centralized 

MPC is not able to reach autonomous decentralized goals just as the D-MPC controller is 

not able to reach centralized goals. 

This section made clear that no simple tuning procedure and maybe no procedure at 

all exist in order to achieve autonomous goals using a centralized MPC controller. 

3.6 Extended D-MPC Formulation 

In this section an extended D-MPC cOhtroller is presented with the aim of achieving 

the range of solutions between D-MPC and C-MPc. The controller is formulated using the 

same method as the D-MPC controller described in Section 3.1. Basically, each local 

controller is formulated separately and then is replaced with its optimality conditions. The 

difference is that this time each local controller includes a term that accounts for the effect 

on other blocks' output control performance with its importance determined by a different 

weighting factor matrix (~,j)' This tuning parameter ~,j indicates the weighting factors for 
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outputs in block j::f. i to be used in the objective function of block i. In this manner, the 

unconstrained MPC controller in block i has the following formulation. (Here, we will 

consider the controller without inequality constraints.) 

Where 

Yi = Ai,iL1ui + Ei + yf + di 

Yj = Aj ,jL1uj +Ej + yf +dj j::f. i 

N 

Ei = L Ai,k . L1uk 
k=l 
Mi 

Y· y~P yP d· E m(p"P;) 
PI' l' P 

N = Number of Blocks 

(3.44) 

(3.45) 

(3.46) 

Applying the same procedure described in Section 3.1 (i.e. evaluating the stationary 

conditions for the interacting controllers with coordinated variables and solving them 

simultaneously) for a two block example results in the following linear system of equations. 

(3.47) 

The similarities of this Extended D-MPC and the C-MPC controller in (3.41) are 

evident. The resulting controller can be separated as follows. 
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(3.48) 

Then it can be easily redefined in the following way 

(3.49) 

Where the following matrices can be defined. 

w=r :,,, 
W],2 W],N 

T [ 0 
A1,2 

0 A2] 0 

WN-],N 
and AoD = .. : 

wN,l WN,N-] 0 AN,1 AN ,2 

And n is a permutation matrix that switches the block-rows of matrix Ac. Finally, 

the control actions are calculated as follows. 

Llu=[~+~l-]·[~+~l·(-e) 
I II I II 

(3.51) 

The terms underlined with I refer to the D-MPC formulation and the terms with II 

are the additional terms required to achieve the C-MPC performance. The following 

observations can be made. 

• 

• 

As W2,l and W],2 approach zero the performance approaches that of the D-MPC 

controller. 

As W2,1 and W1,2 approach QJ and Q2 respectively a C-MPC controller is 

approached. This can be easily visualized by comparing equations (3.47) with (3.41). 
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Figure 3.3 presents a sketch of the range of performance for the Extended D-MPC 

controller as the parameter W is modified. For example, if parameter W is set equal to a 

certain percentage of parameter Q then the solution will fall between the points Po (the 

original C-MPC solution) and N E (the D-MPC solution) depicted in the figure. 

C-MPC 

~W=Q 

Figure 3.3 Effect of Tuning Parameter W 

It is important to mention that the case where W = Q results in the Cooperative 

MPC controller developed by Venkat and Rawlings (2004), which from its conception has a 

different design objective. This objective is to have distributed computation in a 

decentralized MPC that has performance close to the centralized controller, C-MPC. 

Clearly, this is a different goal, centralized versus local autonomy; therefore, we will not 

apply the Venkat and Rawlings controller. 

A concluding remark regarding the Extended D-MPC presented in this section is 

that the spectrum of possibilities that ranged form D-MPC to C-MPC can be readily 

analyzed by means of a simple parameter (Wi,j), which is also useful to understand and 

define the goals of the coordinated controller. 
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3.7 Summary and Conclusion 

The D-MPC controller is developed parting from a strategy similar to that of 

multilevel optimization. Here several optimization problems at a same level are replaced with 

their respective optimality conditions and then solved simultaneously. It can be concluded 

that applying this strategy to a set of unconstrained MPC controllers will result in a D-MPC 

controller with a well-defined structure that is easier to visualize and analyze. Additionally 

the way tuning is addressed remains the same as in conventional MPC control. 

Another important concluding remark is that there is not a practical way to achieve 

an autonomous D-MPC performance by means of tuning a conventional centralized MPC 

controller. In the same way it is impossible for the D-MPC controller to achieve a C-MPC 

performance. 

Finally, implementing constrained control required more work. The strategy that 

includes KKT conditions is correct, however its implementation was sometimes 

unsuccessful in cases with negative BRG configurations. Although tuning and solver 

adjustments may help it was decided to try to remove the non-convexity by implementing a 

heuristic strategy to enhance the D-MPC formulation. The improved strategy consists in a 

systematic method that detects constraints violations and automatically incolporates required 

bounds (active set) into the controller formulation. The approach is computationally 

tractable yielding a small set of convex problems to be solved sequentially. 
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Chapter 4 

Controllability and Stability Analysis 

. In this chapter, controllability and stability analysis of the D-MPC controller 

structure is presented. Controllability provides basic criteria that must be satisfied by the 

process for application of the D-MPC; it does not provide insight regarding the quality of 

control performance, but only a guarantee that feedback control is in some sense possible. 

Once a process has been deemed suitable for the application of the D-MPC controller, the 

next step is to analyze if the controller can provide closed loop stability. Classical stability 

criteria for discrete control systems are applied to the D-MPC controller formulated in state 

space. Different control structures such as multiple SISO controllers or sets of multivariable 

blocks can be easily tested for nominal stability. As a result, this chapter provides methods 

for selecting process applications that could be suitable for D-MPC. Control performance 

will be evalu~ted in the next chapter. 

4.1 Definitions of the Plants to be Controlled by the D-MPC. 

We begin the analysis by refining the objectives of the implementation of a Block D­

MPC that were presented in Chapter 1. By using the D-MPC controller we want to apply D­

MPC to processes that can be controlled by a centralized MPC (C-MPC) controller. 
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Therefore, we consider any process for which C-MPC can be applied as a candidate for D­

MPC, which provides autonomy for each block controller. In this wayan implementation of 

the D-MPC controller must be able to: 

1. 

2. 

Achieve output controllability, not full state controllability. 

Maintain the steady-state output variable equal to the set point for changes in 
disturbances and set points by adjusting input variables u for unconstrained 
applications. 

3. Achieve a good dynamic performance. 

Two important characteristics must be analyzed in order to define the applicability of 

the D-MPC controller. First, the controllability, which is a characteristic of the process and 

second the existence of the controller solution. 

4.1.1 Classical Controllability Definitions. 

Several definitions of controllability can be found in literature, with the proper 

choice depending on the control application. We start with a simple definition of steady­

state controllability, which is independent of the control algorithm (Marlin, 2000). 

A system is controllable if the controlled variables can be maintained at their set points, 

in the steady-state, in spite of disturbances entering the system. 

In this way a square process is controllable if the determinant of the steady-state 

gain matrix is nonzero. Moreover, square systems are not controllable if any of the following 

conditions occurs: 

1. Any process inputs are linearly dependent (giving dependent columns) 

2. Any process outputs are linearly dependent (giving dependent rows) 

3. A process input does not influence any output (giving rows of zeros). 
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4. A process output is not influenced by any input (giving column of zeros) 

In the same way a non-square system is controllable as long as the (column) rank of 

the gain matrix is equal to number of controlled variables. 

Table 4.1 describes two other important definitions (Skogestad and Postlethwaite, 

1996). However, it is important to note that these common controllability criteria are too 

restrictive for many process control applications. 

Table 4.1 Controllability Definitions 

Defmition Shortcoming Potential application 

Indicates if an input It does not imply 
variable is able to bring the states (outputs) 

1. Pointwise State (or the states from any can be maintained 
Batch control 

Output) Controllability initial value to any final at the "final 
value within some time conditions" at 

window steady state. 

A system is functional 
The term suitable 

controllable if given 
is too restrictive Continuous processes 

2. Functional 
any suitable 1 output 

and therefore can't where the entire defined 
Controllability 

sequence there exists an 
be applied to trajectOlY must be 

input sequence which 
systems with RHP achieved without error 

generates the output 
zeros. 

sequence. 

In this work, only the simple, steady-state controllability criterion will be applied. 

The other dynamic criteria are deemed too restrictive. However, steady-state controllability 

may not provide sufficient insight to applications of D-MPC. Therefore, we proceed to 

further analysis that includes information about the controller as well as the process, so that 

it is not precisely controllability analysis. 

4.1.2 Existence of a Centraiized MPC Controi Soiution 

1 A suitable sequence is one, which does not ask for nonzero output in less time that the inherent time delay 
of the system, and which also has a z-transform (Rosenbrock, 1974). 
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As mentioned above the application of D-MPC proposed in this work is going to be 

limited to processes that have been deemed suitable for a C-MPC controller implementation. 

In this way the analysis in this section is based on the C-MPC controller. The C-MPC 

controller requires the inversion of a matrix in order to calculate the control law. If that 

matrix cannot be inverted then the control action cannot be implemented. The 

unconstrained C-MPC controller is described in Appendix A, and the control law for the 

unconstrained case can be expressed by the following equation. 

(4.1) 

(4.2) 

Where parameter Q is the output weighting matrix and has the form of a diagonal 

positive definite matrix. The matrix R is the move suppression factor and is a positive 

semidefinite matrix. In order for the centralized MPC controller to exist matrix ACMPC as 

defined in (4.2) must be non-singular and therefore invertible for any suitable value of the 

tuning parameters Rand Q which are diagonal matrices with positive (or non-negative) 

coefficients on their diagonals. 

When determining whether ACMPC is non-singular, a following useful matrix 

properties for positive definite matrices will be applied (Horn and Johnson, 1976). 

P.1. The sum of any Positive Definite (PD) matrices of the same size is positive 

definite. More generally, any nonnegative linear combination of positive 

semidefinite matrices is also positive semidefinite. 

P.2. Let IEMn (Matrix of nxn dimension) be Positive Definite. If eEMnm 

(Matrix of nxm dimension) then e T I·e is positive definite if and only if 

ehas rank m. 
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Based on property P.l and on the fact that parameter R is at least a positive 

semidefinite matrix the singularity analysis of expression (4.2) can be reduced to the 

following expression. 

(4.3) 

r.:w e note that even a process with no causal relationships between the manipulated 

and controlled variables can have a non-singular controller matrix by setting the move 

suppression elements to positive values. We would deem this situation non-controllable, as 

the solution would simply be a minimum effort controller, with all changes to the 

manipulated variables being zero.) 

Furthermore, by applying property P.2 it can be guaranteed that as long as the 

dynamic matrix, Ac has a rank equal to its number of columns then the matrix (ACT Q Ac) 

is positive definite and therefore non-singular. In this way the condition for invertibility of 

ACMPC is the following: 

Rank(Ac)=m·M (4.4) 

Where M is the total number of input (manipulated) variables and m is the 

controller input horizon. 

In summary, as long as the Q matrix is positive definite, which is the case for C­

MPC controllers, the dynamic matrix Ac alone defines the applicability of the C-MPC 

controller. It is important to bear in mind that this matrix, Ac is built from step weights 

models t..nat relate the dynatpic effect of a specific input variable to a specific output variable. 

4.1.3 Minimum Prediction Horizon 
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The objective of this section is to define the minimum prediction horizon necessary 

to ensure the full rank of Ac. In this way the first requirement is to use an output horizon, 

p, sufficiently large to reach the steady-state of the all the outputs in the dynamic model. 

Equivalently, the prediction horizon must be such that the last column of each dynamic 

matrix reaches the steady-state (or within some arbitrary small deviation from steady state). 

We propose that the proper predi,ction horizon can be calculated in the following way. 

p = SSmax +m-i (4.5) 

Where SSmax is the number of samples required to reach the steady-state of the 

slowest input-output process. This will generate a dynamic matrix as described in (4.6), 

which in turn guarantees a full column rank even for pure dead time processes. 

a] 0 0 

a2 a] 

' .. : a2 0 (4.6) 
, 

Ac f = g, ass"',· a] 
, 

ass ass',,· a2 
.:- ...... : .......... , , 

ass ass ass 

Where ass is the corresponding steady-state gain. A simple two by two example with 

pure dead time (r~ dynamics exemplifies the importance of this minimum horizon. The 

steady-state gain matrix and the MPC design for this hypothetical example is the following, 

with the gains from a distillation tower problem that will be considered throughout the 

thesis. 

K = (0.07474 - 0.0667) 
p 0.1173 - 0.1253 

Input horizon 
Output horizon 

Sampling time 

60 

(
200 200) 

'Cd = 200 200 

m=5 
p=5 

L1 t = 50 
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Basically, the dead time is equal to four sampling times and then an input horizon 

m = 5 is selected. The output horizon is chosen to reach steady-state, in this case p = 5. For 

this selection the multivariable dynamic matrix will have the following form. 

0 0 0 0 0 0 0 0 0 0 

0 000 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0.0747 0 0 0 o -0.0667 0 0 0 0 
AC= 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 000 

0 0 0 o 0 0 0 000 

0 0 0 0 0 0 0 0 0 0 

0.1173 0 0 0 0 -0.1253 0 0 o 0 

This matrix is not full (column) rank, which in turn leads to a rank deficient ACMPC 

matrix. This situation combined with a zero suppression factor (R = 0) will produce a 

singular C-MPC controller. Evidently, choosing such tuning combination is to be avoided at 

all times. However, the intention in this section is to demonstrate the conditions that could 

lead to a non-singular matrix, Ac. The simplest solution is to modify the controller design 

by selecting the prediction horizon as defined in (4.5) 

The matrix has now the following form. 
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0 0 0 o· 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0.0747 0 0 -0.0667 0 0 0 0 

0.0747 0.0747 0 o -0.0667 -0.0667 

0.0747 0.0747 0.0747 0 o -0.0667 -0.0667 -0.0667 

0.0747 0.0747 0.0747 0.0747 0 -0.0667 -0.0667 -0.0667 -0.0667 0 

0.0747 0.0747 0.0747 0.0747 0.0747 -0.0667 -0.0667 -0.0667 -0.0667 -0.0667 

o 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 

0.1173 0 0 -0.1253 0 0 0 0 

0.1173 0.1173 0 0 -0.1253 -0.1253 0 0 0 

0.1173 0.1173' 0.1173 0 -0.1253 -0.1253 -0.1253 0 0 

0.1173 0.1173 0.1173 0.1173 0 -0.1253 -0.1253 -0.1253 -0.1253 

0.1173 0.1173 0.1173 0.1173 0.1173 -0.1253 -0.1253 -0.1253 -0.1253 -0.1253 

Taking the 10 rows containing the steady-state gain information forms a submatrix, 

Asx , which can be easily visualized to be full column rank. 

0.0747 0 0 0 0 -0.0667 0 0 0 0 

0.0747 0.0747 0 0 0 -0.0667 -0.0667 0 0 0 

0.0747 0.0747 0.0747 0 0 -0.0667 -0.0667 -0.0667 0 0 

0.0747 0.0747 0.0747 0.0747 0 -0.0667 -0.0667 -0.0667 -0.0667 0 

0.0747 0.0747 0.0747 0.0747 0.0747 -0.0667 -0.0667 -0.0667 -0.0667 -0.0667 
ASX= 

0.1173 0 0 0 0 -0.1253 0 0 0 0 

0.11730.1173 0 0 0 -0.1253 -0.1253 0 0 0 

0.1173 0.1173 0.1173 0 0 -0.1253 -0.1253 -0.1253 0 0 

0.1173 0.1173 0.1173 0.1173 0 -0.1253 -0.1253 -0.1253 -0.1253 0 

0.1173 0.1173 0.1173 0.1173 0.1173 -0.1253 -0.1253 -0.1253 -0.1253 -0.1253 

A minimum singular value (amin = 0.004) of Asx, proves that the sub matrix is non­

singular. Based on the matrix property P.2 described above this design in turn guarantees 

matrix (ACT Q.Ac ) to be positive definite and therefore a non-singular C-MPC controller. 

4.1.4 Summary of Applicability Requirements. 
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In summary, in Section 4.1.1 was defined that as long as the Q matrix is positive 

definite, which is the case in C-MPC controllers, the dynamic matrix, Ac alone defines the 

applicability of the C-MPC controller. 

Based on the dynamics of the process and on the existence of the controller the 

following is required in order to implement a C-MPC controller. Note that the first three 

points come from the "controllability" of the process and are necessary to guarantee the 

existence of the C-MPC controller. 

1. Square systems or systems with more inputs than outputs. 

2. Stable processes due to its step weight formulations. 

3. For square systems the inverse of the steady-state gain matrix (Kp )-1 must exists. 

For nons quare systems the rank of the steady-state gain must be equal to the 

number of output variables. rank(Kp) = P 

4. Use a sufficiently large output horizon, p = SSmax + m -1, which reaches the 

steady-state on the last column of every SISO dynamic matrix. 

The fourth requirement on the other hand it is just sufficient in order to guarantee 

the existence of the C-MPC controller. As stated above the implementation of a D-MPC 

controller will be restricted to systems that can be controlled by a C-MPC controller. 

4.2 Stability Analysis 

This section focuses on analysing the nominal stability of the D-MPC control 

system. This analysis applies the classical linear stability analysis for discrete systems. The 

technical details are described along with a couple of numerical examples. 
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Inappropriate tuning parameters can yield an unstable D-MPC control system, even 

without model mismatch. Therefore, the selection of tuning parameters (Q, R, p) is restricted 

to the conditions described in the previous section. The stability analysis discussed in this 

section involves the application of a state space formulation. Additionally, when these results 

demonstrate nominal stability for a selected tuning they also provide a certificate for the 

existence (non-singularity) of the unconstrained D-MPC controller. 

4.2.1 State Space Representation for C-MPC Using Step Response Models 

The nominal stability of the coordinated D-MPC follows the methodology first 

proposed by Lee et al. (1994) for C-MPC controllers. This subsection briefly describes 

nominal stability analysis for C-MPC controllers, then in the next subsection the method is 

extended to D-MPC. Basically, the step weight model is transformed into a state space 

approximation, then the closed loop expression using an MPC controller is formed and the 

poles are analyzed. Thus the resulting state space model has p states where p is the 

prediction horizon for the controller. Finally it is important to note that in this work only 

nominal stability, which considers a perfect model, is considered. 

First, let ae, .e = 1,2, .. ·,p denote the step response coefficients of a stable process. 

Then, the step response model As is defined as. 

(4.7) 

N ow we define a recursive relationship for estimating the current and future value of 

the process output using step response models. Assume that at some point in time (k -1) the 

p elements of the state vector X(k -1) are known. (Note that the states are represented by 

captial X(k), while the inputs and outputs are represented by the lower case Llu and y 

respectively. For example, X(k -1) may be an initial steady state. Now assume that a change 

in the input variable at time (k -1) is made, Llu(k -1). The predictions X(k) can be estimated 

using the previous predictions, X(k -1) as follows. 

64 



M.A.Sc. Thesis - Alberto J. Olvera-Salazar McMaster University - Chemical Engineering 

Xj(k) = X 2 (k -1)+ ajLlu(k -1) 

X 2 (k) = X 3 (k -1)+ a2L1u(k -1) 

Extending to the entire trajectory, f! = 1,2"", P -1 gives. 

(4.8) 

(4.9) 

Where f! refers to a time step in the future prediction performed at time ~ 

(i. e. ~ = k, k -1) and k refers to a time step in the state space model. 

The effect of Llu(k -1) on the states X£(k) for (f!;?: p) is constant. Therefore, the 

effect for a unit step gives a£ = ap for f!;?: p. 

or (4.10) 

It is important to note that for the purposes of this work, p is greater or equal to 

the minimum prediction horizon as defined in Section 4.1.3. 

Equations (4.9) and (4.10) can be put in the following compact notation: 

X(k) = Fo . X(k -1) + As . Llu(k -1) 
(4.11) 

Remark: Each element of the state vector X(k) , y£(k) has the following 

interpretation: it denotes the next output value y at time k + f! assuming the input and 

disturbance remain constant starting at time k -1 . 
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Then Llu{k-1) is the manipulated variable change at time k-1 andFo EmPxP is a 

matrix of the following form. 

(4.12) 

In this way the next output value is. 

y{k) = [1 0 .. , OlX(k) 

(4.13) 
y{k) = Ns ·X(k) 

The next step is to calculate the control law for an MPC controller. The controller 

action at time k is computed based on the predicted state values. The future state values, 

X(k + 1) depend on the past predicted state values, X(k) the current and future disturbance, 

LJd and the future manipulated variable changes, LJu. Then, the state values over a 

prediction p are defined as follows. 

X(k +1) = Fa ·X(k)+ A· Llu + Ad . LId (4.14) 

Where Ad E mPx1 may contain the step response coefficients generated from the 

disturbance model or a vector of all ones when considering only a constant disturbance 

estimation, LId is the disturbance entering the system at instant k, and the vector LJu E mm is 

the manipulated variable change vector, consisting of controller moves in the control 

horizon m. 

(4.15) 

Finally, A E mPxm is the dynamic matrix as described in Section 3.2. 
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The controller action is computed by minimizing a quadratic norm of the difference 

between the predicted output and the set point. 

NJ~n J = 1· (ilX(k + 1)-Xsp(k +1)11~ +IILlull~) (4.16) 

Where Xsp(k + 1) = [Ysp(k + 1) ... Ysp(k + p)f is the future output reference vector. 

Remark: Due to the form in which the state vector X(k+1) is defined it also 

corresponds to the minimization of the predicted output feedback error that can also be 

expressed as follows. 

In this way the solution of the MPC controller using the state-space representation 

of a step model results in an expression of the following form (Lee et aI, 1994). 

Llu = K MPC . (- e(k») 

K MPC = (AT Q A+Rt AT Q 

e(k) = Fo .X(k)+Ad . Lld(k)-Xsp(k) 

(4.17) 

Where K MPC E Wnxp is the MPC controller matrix that results from solving a least 

squares optimization problem and e(k) E 9F is the feedback vector entering the controller 

at each execution time. In general, this term e(k) is composed of disturbance effects as well 

as the difference between the predicted output based on past-implemented changes in u and 

the set point. 

67 



i 
i 

M.A.Sc. Thesis - Alberto J. Olvera-Salazar McMaster University - Chemical Engineering 

Finally a closed loop dynamic equation for stability analysis is obtained. The input to 

this dynamic system is X sp (k-1) and the output is y(k). The dynamic system is defined by 

the following set of equations that results from combining equations (4.14) and (4.17). 

Where C = N sand. 

X(k) =.Ii. X(k -1) + B· Xsp(k -1) 

y(k)=C.X(k) 

.Ii = [Fa - As . (K MPC ). Fa] 

(4.18) 

The stability of the closed loop system is then determined by the eigenvalues of 

matrix A (Strang, 1980). The closed loop equation is stable whenever all the eigenvalues lie 

strictly within the unit circle (Lee et aI, 1994). Naturally, the eigenvalues depend upon the 

tuning parameters. 

4.2.2 Nominal Stability of Block D-MPC 

The structure of the D-MPC controller allows for a straightforward application of 

the linear stability analysis described in detail above. An important characteristic of this 

stability analysis is that the block structure of the controller can be easily modified without 

affecting the structure of closed loop expression. 

In this way the closed loop expression is maintained and only one term (L. K DMPC ) 

is modified depending on the control stiucture. For example multiple SISO controllers, 

multivariable controllers or a combination of both can be easily evaluated for stability. An 

illustration is presented in Figure 4.1. 
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HSS =F-As .(L.KDMPC)·F 
~ 

--------------~--------------r--- ~ 

@So] 
!SISO] 

• • 
• !sisg 

Figure 4.1 Stability expression for Different Control Structure 

The unconstrained block D-MPC as described in Section 3.1 has a very similar 

structure to that of the Centralized MPC controller and can be expressed as follows: 

Llu = KDMPC . (- e(k») (4.19) 
Where 

( 
T \-1 T 

KDMPC = AD Q Ac +R) AD Q 

Then, based on (4.18) the closed loop equation for a multivariable system with 

multiple blocks using a D-MPC controller is the following. 

X(k) = [F - As' (L ·KDMPC ).F].X(k-1)+ [As ·KDMPC ].Xsp(k -1) 

Y(k) = C· X(k) 
(4.20) 

Hence the closed loop system is stable if and only if all the eigenvalues of the 

following expression H ss lie strictly inside the unit circle. 

H ss = [F - As . (L . K DMPC ). F ] (4.21) 

Where F is now a square matrix with dimensions equal to of the total number 

output variables times the prediction horizon. 
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o o 

Fa 
o 

: J E mP'Pxp,P 

Fa 

(4.22) 

With Fa as defined in (4.12) and As now containing the step response models As f g, 

arranged in the following way. 

h [A~l'l As = : 
A s P.l 

and 

[

La 0 

L= ~ .~ tl (4.23) 

La E ill lxm La = [1 0 0 ] 

OEm1xm 0=[00 0] 

Therefore, the closed loop stability of the multivariable system using a D-MPC 

controller is a function of the tuning parameters (Q,R). Again it is important to note that the 

structure of the vectors is properly handled by stacking multiple variables. 

A couple of illustrative cases are now presented. 

4.2.3 Stability of D-MPC - Numerical Cases 

Case 1- Single-variable Blocks: In order to show the capabilities of the D-MPC 

stability analysis consider the distillation column (Ogunnaike and Ray, 1994) where tray 

temperatures act as inferential variables for composition control. The outputs T21 ,T7 are the 

temperatures of trays 21 and 7, respectively and the inputs FR , Fv denote the reflux 
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flowrate and the vapor boilup flowrate to the distillation column. The nominal plant model 

is shown in (4.24). 

[ 

32.63 -33.89 1 
(
T2J)= (99.6s +IX0.35s +1) (98.02s+1X0.42s+1) (Fv) 
T7 34.84 -18.85 FR 

(110.5s + lXO.03s + 1) (75.43s + lXO.3s + 1) 

(4.24) 

It is worth mentioning that Venkat and Rawlings (2004) used this case to prove that 

no communication MPC approach is able to stabilize a system with a negative RGA 

configuration. This system is then intentionally paired using (FR - T2J) and (Fv - T7 ), 

resulting in the following RGA matrix. 

A=(-1.087 2.087) 
2.087 -1.087 

(4.25) 

Note that the pairing gives poor integrity and violates the common convention of 

pairing on positive relative gains and BRG determinant. 

For each MPC controller, an execution time of 10 sec is used, and the input and 

output horizon are m = 25 and p = 125 respectively. The tuning parameters used for this case 

are Q = G ~) and R = (~ :). Figure 4.2 depicts the unit circle analysis using the stability 

expression in (4.21). It can be observed that D-MPC poles lie strictly inside the unit circle, 

which is not the case for the independent block (fully decentralized) MPC controller which 

has a couple of poles outside the unit circle. 
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Figure 4.2 Unit Circle Analysis for Distillation Problem. 

Figure 4.3 shows the closed-loop performances of centralized MPC (C-MPC), D-

MPC and a fully decentralized MPC for a temperature change of -rc and rc on trays 21 

and 7 , respectively. 
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Figure 4.3 Closed Loop Performance for Distillation Problem. 
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It can be observed that the D-MPC not only is stable for a negative RGA 

configuration but it is also able to achieve acceptable performance. Additionally the D-MPC 

controller has a superior performance when compared to the independent block MPC (with 

no communication), which is unstable. 

The D-MPC is also compared to another approach found in the literature, the 

Distributed MPC controller developed by Ii et al. (2005). Basically, they propose an iterative 

approach to obtain a Nash equilibrium solution where the next iterate of the control action, 

Ltu can be calculated as follows. Their approach allows distributed computation of the 

controller calculations, which is the chief difference from the current work. 

For the two by two case Do is calculated as follows. 

Thus in order to apply the iterative Distributed MPC the spectral radius must be less 

than one. This requirement will guarantee a convergent computation. 

Using the parameters for the distillation example above the convergence condition 

results in a spectnl1n radius of j p(Do)j= 1.359. This result indicates that the iterative method 

(Distributed MPC) presented by Li et al (2005) is not able to converge the algorithm for a 

negative RGA, much less to guarantee its closed loop stability. In addition, they have a 

stability criteria based on a contraction principle that guarantee nominal stability if and only 

if the norm of the eigenvalues is less than one. 
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II eig(F-As .(L.KDMPC)·F ~I <] 

This stability criterion is more restrictive that the one presented in the Section 4.2.2. 

Case 2 - Multivariable Blocks: The previous distillation column example showed 

the stability analysis of two Ix] block controllers using the D-MPC approach. In order to 

show the stability criteria in a multi block system the next problem published by Lu (2001) is 

also analyzed. The nominal model is the following. 

Block 1 

Block 2 

This problem consists of two blocks each of which has a two by two MPC controller. 

The control configuration has a positive BRG. The base parameters used in the MPC 

controllers are shown in Table 4.2. Then, Figure 4.4 shows the closed loop simulation for set 

point changes using this set of tuning parameters. The dynamic response appears stable, 

which agrees with the stability analysis. 

Table 4.2 Case 2 - Tuning Parameters 

Block p m Q R 

[]~O ~] [30 0] 1 o 30 
100 20 

[]~O ~] 2 [3~ ~n] 
U :lU 
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Figure 4.4 Closed Loop Simulation - Stable Solution 

Next is a different case with a different set of tuning parameters where by trial and 

error and using the the stability expression in (4.21) it is possible to approximately detect a 

set of tuning parameters that results in having poles in the border of the unit circle as shown 

in Figure 4.5. For this case, the suppression factor for Block 2 was modified to 
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Figure 4.5 Unit Circle Analysis - Unstable Solution 

Figure 4.6 illustrates the closed loop simulation subject to a couple of set point 

changes. The results confirm that the stability criterion is readily applicable for the control of 

multivariable blocks under the proposed D-MPC approach. 
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Block 2 

Figure 4.6 Closed Loop Simulation - Unstable Solution 

The main result of this section is a stability analysis that is more general and less 

restrictive than the method published by Li et. al. (2005). The analysis of the closed loop 

stability was demonstrated for two different processes in which various control structures 

were defined through the controller matrix (L·KDMPC )' 

In addition, the D-MPC controller developed in this research was found to have a 

wider range of applicability than the Distributed D-MPC (Li et aI, 2005) and the 

communication MPC used by Venkat and Rawlings (2004) for cases with negative RGA and 

BRG configurations. Furthermore, the results shows that the D-MPC controller presents a 

major advantage over the conventional block MPC strategy currently used in industrial 

practice which is not able to stabilized the plant paired on negative RGA or BRG 

configurations. 

4.3 Existence and Stability Analysis of Single Horizon D-MPC 

The previous sections in this chapter provide general results for the controllability 

and stability of D-MPC. In this section, we present additional analysis for a simple process 

structure to gain insight into some perhaps unexpected results that demonstrate that care 

must be taken in the design of D-MPC controllers. The analysis considers very simple 

systems that facilitate algebraic relationships for solution existence and stability. 
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Here, we analyze the D-MPC for a specific case known as Single Horizon MPC (Ii, 

2005), which reaches steady-state in one MPC controller execution as depicted in Figure 4.7. 

More specifically a two by two case and a three by three case under a multiple SISO control 

structure are analyzed in detail. Both processes are steady-state controllable. The objective of 

this analysis is to identify the control design requirements that guarantee the existence and 

uniqueness of the D-MPC solution. 

I Set Point 
.... - - - - _.-=--+-... - - - -
I 
I : Predktl'd Output 

i\-Ieasured Output I 
I 
I 

I I 
I I 

~. I---=~ 
~ C'om(llltd Controllnp"! 

Past 

I I 

k 

I 
I 
I 
I 

k+J 

Figure 4.7 Single Horizon D-MPC 

k+2 
~ 

As presented in Chapter 3 the unconstrained D-MPC controller gain, (4.26) is a 

system of linear equations; therefore, the mathematical requirement in order to have a 

solution is to have a non-singular matrix, ADMPC ' 

K DMPC = ADMPC -1 .bDMPC 

ADMPC = (ADT Q Ac +R) 

4.3.1 Existence of Single Horizon D-MPC Applied to Controllable Process 

(4.26) 

The analysis presented in this section covers first a two by two case and then a three 

by three case. Basically, matrix A DMPC in (4.26) is expanded to investigate the existence and 
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uniqueness of the D-MPC controller solution, and then by means of algebraic manipulations 

an expression that maps the singularity of the ADMPC matrix for different tuning parameters 

is obtained. The results will demonstrate that for these two specific cases, the D-MPC 

controller always obtains a unique solution as long as the process is controllable and paired 

on a positive relative gain. However, for cases with negative (block) relative gains, the 

controller can be singular, and for non-singular controllers the feedback system can be 

nominally unstable; these are important new results. 

For the sake of simplicity we start the analysis with the same two by two system 

shown in Section 4.2.3. In order to guarantee a unique solution for D-MPC the determinant 

of matrix ADMPC must be nonzero. The single horizon controller has an input and output 

horizon of one (m, P = 1) and the dynamic model consists only of steady state gains. The 

matrix ADMPC is calculated as follows. 

(4.27) 

The analysis of the D-MPC controller for controllable systems (see Section 4.1.1) 

requires the next two expressions to be nonzero. 

IADMPcI = (KPllQ1KPll +R1) (KP22Q2 KP22 +R2)-(KP21Q2KP22 XKPllQI KPI2) 

IKpl =Kpll·Kp22 -Kp2I·KPI2 

(4.28) 

(4.29) 

The first expression is the determinant of the matrix ADMPC in equation (4.26). 

Having a nonzero determinant guarantees the existence and uniqueness of the solution. It is 

important to mention that the tuning parameters Qj and Rj (J = 1,2) can only take positive 

and nonnegative values, respectively. The second expression is the determinant of the steady 

state gain matrix of the system, which is nonzero for controllable systems. Since we have 

restricted the application of D-MPC to only controllable processes, no analysis is presented 

for non-controllable processes. 
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Expanding the D-MPC determinant (4.28) and setting it equal to zero results in the 

following. 

(Kp 11 QjKp 11KP22Q2KP22) + (Kp 11 Qj Kp 11R2)+ (KP22Q2KP22Rj) + RjR2 
- (KP2jQ2 KP22 XKp 11 Qj Kp 12) = 0 (4.30) 

Several cases are now analyzed with the objective of determining under which 

conditions equation (4.30) holds true. From (4.30) and dividing by the next expression: 

(4.31) 

The following equation is obtained: 

(4.32) 

The objective of this analysis is to find if there exists a combination of Qj and Rj 

(j = 1,2) that will make equation (4.32) hold true. If no combination exists then the D-MPC 

guarantees a uniqu.e solution for the entire set of tuning parameter values. This equation can 

be conveniently expressed in the following form. 

C+D=O 
(4.33) 

where 

(4.34) 

From (4.33) the following- can be observed: ,/ a - - --

• Terms in C can have different signs . 

• All terms in D have the same sign . 
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Several cases are now analyzed based on equation (4.33) 

Case 1: Zero Suppression Factors Qj > 0 and Rj = o. 

The common case of tuning in practice considers positive values of the parameters; 

however, zero move suppression tuning, Rj = 0 can also be found in practice. In this case 

the term D in the determinant equation (4.33) becomes zero. 

For the controller to be singular, the following expression must hold. 

(4.35) 

Equation (4.35) conflicts with the definition of a steady-state controllable process. 

Therefore, this equation will never hold for processes we have defined acceptable, and the 

D-MPC controller guarantees a unique solution for a controllable process with R j = 0 and 

any positive combination of Q j . This result applies to systems paired on either positive or 

negative RGA. 

Case 2: Weighting factors Q j = 0 and R j > 0 • 

From (4.30) and by setting Qj = 0 the following expression is obtained. 

(4.36) 

This situation is not possible because in this case only positive values of R j are 

considered. A trivial unique solution always exists for this case. We also note that setting 

Q j to zero turns off the controller; therefore, this case is of little practical importance. 

Case 3: One-way interaction. 
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In this case one of the interaction models is zero, (Kp 12 Kp 21 = 0) . 

(4.37) 

Since the sign of (Kp 11 . Kp 22) is the same as the sign of (KP;{p 22) both terms C 

and D have the same sign. This guarantees that the determinant is never zero, and therefore, 

the equation never holds and a unique solution always exists. This result also applies to 

systems paired on either positive or negative RGA. 

Case 4: Two-way interaction Paired on Positive RGA 

The RGA for a two by two system paired on (u 1 - Y 1) and (u 2 - Y2) can be 

calculated as following. 

(4.38) 

If the RGA is positive this means that the sign of the denominator and numerator 

must be the same. The positive RGA guarantees that both terms C and D in equation 

(4.33) have the same sign. This condition guarantees the existence of a unique solution for 

the D-MPC controller. 

Case 5: Two-way interaction Paired on Negative RGA 

The RGA expression for the same system paired on (u 1 - Y 1) and (u 2 - Y2) and 

having a negative RGA is the following. 
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(4.39) 

In order to have a negative RGA the denominator and numerator in equation (4.39) 

must have opposite signs. This condition indicates terms C and D in equation (4.33) also 

have opposite signs. In this situation there are multiple combinations of the tuning 

parameters that would make the D-MPC controller matrix singular. 

The next step is to identify and set the limits of the region where a singularity in the 

D-MPC gain matrix is possible. An expression of the ratio of tuning parameters that makes 

ADMPC singular is obtained from the determinant expression (4.28). The terms can be 

rearranged in the following way: 

(4.40) 

An expression that maps the tuning combinations that make ADMPC matrix singular 

is then obtained: 

(4.41) 

Some observations can be made from expression (4.41) 

• The extreme points of this singularity line (See Figure 4.8) are obtained by 

evaluating expression (4.41) for lR~lJ= 0 and lR'%2J= 0 respectively. Through 

algebraic manipulations these extreme points, which are now called upper 

bounds, are found to be related to the RGA as follows. 
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(4.42) 

• Once outside the bounds of the singularity line the requited value of [~J ] that 

will produce a singular ADMPC matrix would have to be negative which is 

excluded by tuning guidelines. 

• Inside the bounds just defined only the combination of tuning parameters that 

satisfies expression (4.41) produce a singular ADMPC mattix. 

The results are summarized in Table 4.3. It is important to again note that in order to 

have a workable system the values of the tuning parameter Q must be positive. Otherwise, if 

QJ and Q2 = 0 the system is undefined, and a trivial solution is achieved. 

Table 4.3 Uniqueness of Single Horizon D-MPC for Controllable Processes 

~ 
Two-way interaction One-way 

Tuning Negative RGA Positive RGA Interaction 

Rj =0, Qj >0 IADMPcl * 0, 
Rj >0, Qj =0 Unique Solution 

IADMPcl * 0, IADMPcl * 0, For some tuning 
combinations Unique Solution Unique Solution 

RJ >0, QJ >0 
IADMPcl = 0, 

*Singular Controller 
/=1,2 

If the two by two process is steady-state controllable, and it is paired on positive RGA 

then the D-MPC controller is able to guarantee a unique solution for any combination of the 

tuning parameters. On the other hand for processes with two-way interaction, and loops 

paired on a negative RGA a singularity will appear under certain circumstances. 

The results are illustrated in Figure 4.8 for a negative RGA configuration. These 

results also confirm that for positive RGA configuration no singularity region exists, since 

the upper bounds would be negative and the ratio [R~J ] can only take nonnegative values. 
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This figure could be calculated for any process by evaluating expression (4.41) for different 

values of lYoJ J and then plotting the corresponding lRYoJ 

[J~2/] /'1 22 UB 

[~~ ] 

~ Singularity Line [~J 
Figure 4.8 Singularity Line - Single Horizon D-MPC (Negative RGA) 

It is important to note that the results presented here have as main conditions that 

(1) the process is controllable and (2) each subsystem must be controllable. 

A similar treatment was performed on a three by three system under a multiple SISO 

control structure, a brief presentation is shown next and the results are then summarized. 

The ADMPC matrix for the three by three system is the following. Here it is important to 

mention that the block relative gain (BRG) for multiple blocks of SISO controllers is the 

same as the RGA. 

(

KPllQ]KPll +R] 

ADMPC = KP22 Q2 Kp2] 

Kp33Q3 Kp3] 

KPllQ]Kp]2 

KP22Q2 KP22 + R2 

Kp33Q3Kp32 

KPllQ3
K

P13 l 
KP22 Q3 Kp23 

Kp33Q3 Kp33 + R3 

(4.43) 

The procedure again is to expand the determinant and find and expression that relate 

the RGA of the system to the bounds of singularity region. The algebraic analysis begins 

with the following partition of the matrix. 
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1 = (KPllQ]KPll +R] KPllQ]KP12) 

KP21Q2 KP22 KP22Q2 KP22 + R2 
(4.44) 

The Schur complement is now used to calculate the determinant. 

(4.45) 

Considering that the first term 1.01 is always invertible for a controllable process, the 

proof for a nonzero determinant of ADMPC focuses on the determinant of the Schur 

complement, IScI = 11 -i3 . .0-] .61. A general expression that maps the singularity of the D­

MPC controller is now obtained by equating the Schur complement to zero. 

(4.46) 

Where Kp is the steady state gain matrix and M j j' M kk and M j j are the minors of 

elements Kpjj' KPkk and Kpj j respectively (i.e. Mjj is formed by deleting row j and 

column j of Kp). 

The extreme points also called upper bounds of this singularity expression are 

obtained by evaluating expression (4.46) for [~J = 0 and lR~J= o. 

(4.47) 
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Finally the RGA for a three by three system is calculated as follows. 

(4.48) 

Therefore, it is found that the bounds on the singularity line are again related to the 

RGA in the following way. 

(4.49) 

Again if a positive RGA lAI I> 0) is considered then the bound will fall in the 

negative part of the tuning spectrum. On the other hand a negative RGA lAI I < 0) will have 

at least three tuning combinations that will make the controller singular. 

4.3.2 Stability of the Single Horizon D-MPC 

Once the existence of the controller is analysed the next step is to analyze the 

nominal stability (no model mismatch) of D-MPC. This section applies the previous results 

for nominal stability of multivariable controllers; the analysis is tailored to (a) multiple blocks 

SISO control and (b) Single Horizon D-MPC controller. 

The closed loop system depicted in Figure 4.9 is considered. 
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e 

d 

Controller 
(GC=KDMPC) 

Plant 
(G) 

Figure 4.9 Closed Loop System 

* 

The D-MPC controller is defined as follows; the formulation details are presented in 

Section 3.2. 

( 
T \-1 T 

K DMPC = AD Q Ac +RJ AD Q (4.50) 

This controller is built from dynamic matrices (steady-state gains for this case) and 

tuning parameters. The state-space representation of the step weight model for the single 

input single output dynamic system is the following. 

X(k) = F· X(k -1) + As' Llu(k-1) 

(4.51) 

Again X(k) denotes the p predicted states starting from the value at time k, and 

Llu(k-1) is the manipulated variable change at time k -1. The step response coefficients are 

contained in As. For the case of single step horizon (p,m = 1) where the plant reaches 

steady-state in one execution the prediction model is reduced to: 

(4.52) 

Where a p corresponds to a steady-state gain Kp. 
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In this prediction the steady-state effect of the input change is added to the current 

predicted value. For a multivariable system with M inputs and P outputs the resulting 

prediction model will have the following form. 

[~~~:;;;l=[~l ~l ~ 
X(k+1)p 0 0 0 

OJ [X(k)ll [KPII o X(k)2 KP2l 

~ . X(~)p + K;Pl KPP2 

KPlMl [LlUll KP2M Llu2 
· . · . · . 

KPPM LlUM (4.53) 

X(k + 1) = F· X(k) + As . Llu 

The elements Kpgj are the steady-state gains, which correspond to element apgj of 

the corresponding step response model. The state space formulation for the D-MPC 

controller is defined by the following closed loop dynamic equation. 

X(k) = [F -8 .(L.KDMPC ).F].X(k-1)+ [As ·L ·KDMPC ].Xsp (k-1) 

y(k)=C·X(k) 

Where K DMPC is the control gain matrix defined in (4.50). 

(4.54) 

In this way the poles of the following expression define the stability of the closed 

loop system. 

(4.55) 

For this single horizon case the matrices, F,As and L are defined as follows. 
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And As contains the only the steady-state gains Kpg,f arranged in the following way. 

Finally i also becomes an identity matrix. 

La = [1] 
0=[0] . 

(4.56) 

(4.57) 

(4.58) 

Since both F and L are identity matrices the expression that analyzes the closed 

loop stability of a Single Horizon D-MPC can be simplified as follows. 

(4.59) 

Where I E m P is an identity matrix. 

A stable plant under a D-MPC that reaches steady-state in one execution period is 

stable if the eigenvalues of the matrix Hss defined in expression (4.59) lie inside the unit 

circle. 
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4.3.3 Relationship between RGA and Nominal Stability Regions 

In this section a specific case is considered, a two by two system is analyzed to 

explicitly delimit their stability regions under a Single Horizon D-MPC controller. Then, 

some conclusions are drawn relating negative RGA configurations to unstable regions. 

The analysis of the two by two case begins by evaluating the following equation. 

HSS = [1 -Ac .KDMPcl (4.60) 

All the matrices involved have a two by two dimension (m2X2 
). It is also observed 

that As has been replaced with Ac , which for single horizon MPC controllers consists 

merely of steady-state gains. 

The next step in the stability analysis is to substitute the D-MPC controller, K DMPC ' 

(4.61) 

For this two by two case the stability (boundary) line that divides the stable and 

unstable regions (See Figure 4.10) can be found by setting one of the eigenvalues to negative 

one (i.e. VI = -1) and then by using the following eigenvalues properties obtain the tuning 

parameter that will produce continuous oscillatory response. 

M 

L>f =tr(Hss) 
f=1 

Where M is the number of input variables. 

90 
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In this way for a fixed value of l%lJ the corresponding value of lR%2J on the 

stability limit can be obtained by solving the next set of nonlinear equations. 

Where H ss {R%J indicates H ss as function of {R%J. The solution of this set of 

equations provides the entire stability border. 

Figure 4.10 shows the boundary line that delimits the region for stability for a D­

MPC controller with negative RGA configuration. Additionally the singularity line described 

in Section 4.3.1-Case 5, which contains the tuning combinations that make the controllers 

singular is also illustrated. 

[~~ ] 
S.2 

o~~~~~~~~~~~~~~~~~ 
S.l 0 

--+- Singularity Line 
€>€) Stability 

S.2 

Figure 4.10 Stability Regions for a 2x2 Single Horizon MPC (Negative RGA) 

The region defined between the stability line and the singularity line results in an 

unstable behaviour with negative feedback. The points within this region have a maximum 

eigenvalue that lies outside the unit circle. Then, on the singularity line the matrix H ss 
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becomes singular and the K DMPC controller has no solution. Beyond this singularity line the 

matrix H ss becomes nonsingular but now the behaviour is unstable with a positive 

feedback. 

Figure 4.10 also points out the main tuning combinations that delimit the stability 

area (S.l and S.2) which are described as follows. 

Where 

S.l It can be observed that the stable reglOn will include the case where the 

suppression factor parameter is at its lower bound (R = 0 ). This in fact is the lower 

bound of the region; in this case matrix H ss becomes a zero matrix with eigenvalues 

equal to zero. 

( 
T \-1 T 

Hss =l-Ac AD Q Ac) AD Q 
(4.63) 

Hss =1-1=0 

S.2 The tuning combination that divides the unstable and stable regions on the axis 

can be easily obtained. First set one of the tuning parameter to zero (i.e. [R~1 ] = 0 ). 
The resulting H ss matrix is the following. 

Where A22 is the relative gain. This in turn produces a zero determinant IH ss 1= 0 . 

The next step is to set one eigenvalue to negative one (i.e. v 1 = -1) and then using the 

eigenvalue properties in (4.62) the following is obtained. 
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(-1).V2 =IHssl=O 

(-1)+V2 = trlH ss {R%J= l[f 

From the first equation v2 = 0, then the second equation is. 

Then by performing algebraic manipulations a general expression for the tuning 

combination that divides the unstable and stable regions on the axis is obtained. 

[!!L] = _(~) Kp} f f = 1,2 
QfUB 2Aff 

(4.64) 

From expression (4.64) it can be concluded that a two by two process paired on 

positive RGA cannot become unstable due to tuning. This is because the limits of the 

stability region are related to the relative gain (Af,f). 

[!!L] = _(l) Kp} f > 0 
Qf 2 Aff 

UB 

[!!L] = _(l) Kp} f < 0 
Qf 2 Aff 

UB 

(4.65) 

The previous statement proves that this specific Single Horizon D-MPC controller is 

stable for systems with integrity. 

4.3.4 The Shell Standard Control Problem (SSCP), a three by three case: 
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In order to test the previous result on a larger case a single horizon controller was 

used for the Shell Standard control problem, which is later described in Section 5.4. The 

nominal model considers only the steady state gains. 

(4.66) 

The BRG that corresponds exactly to the RGA is the following. 

[ 

2.08 (- 0.73) 

A = 3.42 0.93 

(-4.5) 0.79 

-0.35] 
(- 3.36) . 

4.71 
(4.67) 

In order to test the stability results for negative RGA presented above, the control 

structure was intentionally chosen with the following pairings, (XTD -FSD ), (XSD -FBR ) and 

(TBR - FTD)· For convenience and in order to use a (y f - U f) pairing configuration the input 

and output variables are named as follows (U] = FSD , U2 = FBR , U3 = FTD ) and 

(y] = XTD, Y2 = XSD, Y3 = TBR)· The resulting model can be expressed as follows. 

[
YI] [(1.77) 
Y2 = 5.72 

Y3 4.42 

5.88 

(6.9) 
7.2 

4.05] lUll [1.2 1.44] ( ) 5.39 . u2 + 1.52 1.83 . ~~ 
(4.38) u3 1.14 1.26 

(4.68) 

The idea is to apply the general expression described in (4.49) to obtain the bounds 

of the singularity line. 

In a similar way as for the two by two case the extreme points (on the axis) of the line 

that divides the stable and unstable regions can be obtained by fixing two of the three tuning 

parameters to zero (i.e. R~] =R~2 =0). For this case the resulting Hss matrix is the 

following. 
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HSS = 

Where 

o 
o 

IM]31 
-_.1[/ 

IM33 I 

o 0 

o 0 
IM23 I 
-_.1[/ 1[/ 

IM331 

Then by fixing one eigenvalue to negative one (i.e. v] = -1) and using the eigenvalue 

properties in (4.62) the following is obtained. 

From the first equation v2 . v3 = 0 , if we define V2 = V3 = 0 then the second equation is. 

Finally the general expression that obtains the tuning that divides the unstable and 

stable regions on the axis can be obtained by repeating the same procedure for the rest of 

the tuning parameters. 

(4.69) 

Where Aj j is the corresponding RGA as defined in (4.48). 

Finally Table 4.4 shows the tuning parameters that define the bounds on the axis of 

the singularity and stability regions for the Shell Problem. 
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Table 4.4 SSCP - Tuning Parameters, Upper Bounds 

Singularity Bounds Stability Bounds 
Block Rf IKpj ( r [Qf Lgltlar =-Aff iMffl 

Rj _ Ajj iKpi 

( J [Qf LWle -{-2 llMj fl 

1 [.&.] =(4.298,0,0) 
QJ. Singular 

[.&.] =(2.149,0,0) 
QJ Stable 

2 [R2] =(0,14.17,0) 
Q2 Singular 

[ R2 ] = (0,7.088,0) 
Q2 Stable 

3 [ R3 ] = (0,0,4.263) 
Q3 Singular 

[& ] =(0,0,2.132) 
Q3 Stable 

In order to test the stability bounds Figure 4.11 illustrates the unitary circle using the 

stability bound for Block 1. This tuning is then simulated subject to several set point changes. 

Figure 4.12 illustrate the performance of the closed loop simulation for the Single 

Horizon D-MPC. 

(4.70) 

0.5 

-0.5 

Figure 4.11 Unitary Circle, Single Horizon D-MPC 
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Block 1 Block 2 Block 3 

0.5 c 0.5 , e! 0.5 
c 

~ ~ 0 

~ .. 
0 8-8- a. E 

E 0 E 0 !! 0 0 0 " M " ~ 
:> 

~ '" " e! 
" -8 -0.5 Ii -0.5 g. -0.5 
f- iii is 
~ t: III 

~ 
-] 

0 20 40 60 80 ]00 
-] 

0 20 40 60 80 ]00 
-] 

0 20 40 60 80 ]00 

time time time 

0.5 0.5 0.5 

~ ~ ~ !! 
;t I! .g M ~ ;t ~ I! ~ " E 
" 0 " ~ is 

L",.,.,."""",JimlUlIIlifliJlfWlllIfU 

a. 0 
,.. III ~ 

~ B 

20 40 60 80 100 20 40 60 80 100 20 40 60 80 ]00 

time time time 

Figure 4.12 Closed Loop Simulation, Single Horizon D-MPC 

Although no further analysis was done for larger systems, the results obtained 

provide some insight about the relationship between the RGA, the singularity line and the 

stability regions for Single Horizon D-MPC. 

4.4 Application of Results for D-MPC Design and Tuning 

Based on the analysis made in this chapter a basic methodology for the 

implementation of D-MPC controller can be developed. Figure 4.13 illustrates the sequential 

steps required in order to produce a non-singular and stable D-MPC controller. 
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SallsjaclOI:V 

Figure 4.13 D-MPC Basic Steps ofD-MPC Design Method 

First, steady-state conttollability and the existence of a centtalized conttoller must be 

verified. If it is not possible to produce a nonsingular centtalized conttoller then the D-MPC 

conttoller is not implemented. The next steps require adjusting the tuning parameters in 

order to produce a nonsingular and stable D-MPC conttoller. Finally, simulations can be 

made in order to fine tune the conttoller. 

4.5 Summary and Conclusions 

In this chapter the D-MPC formulation was analysed in order to define the 

requirements to guarantee the existence and uniqueness of a conttol solution. In the same 

wayan important method to analyze closed loop stability was presented. Finally, several 

examples were analyzed including the Single Horizon D-MPC conttoller, for which 

interesting results relating mattix singularity and RGA were obtained. Some concluding 

remarks are now made based on the results obtained in this chapter. 

D-MPC/C-MPC Controllability: It was decided that only stable processes that can 

be conttolled by C-MPC conttol would be considered for D-MPC control. Since 

applications are for continuous processes that ttack their set points, the process must be 
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steady-state controllable, as defined in this chapter, with the column rank of the gain matrix 

being equal to the number of controlled variables. Furthermore, by analyzing the structure of 

the C-MPC controller some guideline can be followed. It was found that prediction horizon 

of the controller influences the controllability, and a minimum output horizon was defmed. 

Also, it was found that the dynamic matrix Ac alone defines the invertibility of the control 

matrix. No simple guideline or mathematical test less complex than evaluating the rank of 

Ac was found; however, the rank of Ac or of the controller gain matrix can be evaluated to 

ensure that a controller exists for the tuning selected. 

D-MPC Stability: The D-MPC approach that is built from simultaneous optimality 

conditions results in a controller with a well-defined stiucture. Furthermore, this defined 

structure made it easy to apply a classic discrete time stability analysis (Lee et al 1994). A 

couple of cases with different block structures (SISO, MIMO) proved the successful 

applicability of this stability analysis. However it is important to note that only nominal 

processes and unconstrained controllers are considered. 

Single Horizon D-MPC Controller: For this controller where the plant reaches 

steady state in one controller execution the following can be concluded: (1) D-MPC paired 

on positive RGA, have a unique stable solution for any controllable plant, ~Kpl =f:. 0). (2) On 

the other hand processes paired on negative RGA present both a stable (negative feedback) 

and an unstable (positive feedback) zone. This negative configuration may also present a 

singularity zone even for a controllable plant. A couple of numerical examples proved 

mathematically that at least on the extreme points (i.e. on the axis) the singularity line lies 

outside of the stability zone. 

In summaty the analysis presented in this chapter showed that certain D-MPC 

designs could be singular or nominally unstable depending on the control structure (BRG) 

and tuning. Since no general guarantees for existence and stability were derived, a design 

procedure was developed in order to guarantee a stable control system. 
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Chapter 5 

Block D-MPC Performance 

The fundamental approach to block MPC and control algorithms developed in 

Chapter 3 and the stability analysis developed in Chapter 4 are applied to several process 

control applications in this chapter. The cases have been selected to evaluate the ease and 

generality of application of D-MPC and to compute the dynamic performance achieved by 

D-MPC in comparison to centralized MPC and independent block MPC. 

In this section, we demonstrate the D-MPC controller first on a two by two 

distillation column example with the purpose of showing the main advantages of the 

controller. Then a benchmark process, the Shell Standard Control Problem and afour by four 

fire heater system are used to demonstrate how the method handles different control 

structures and multiple interactions. Several design configurations with different integrity 

(positive, negative and zero BRG) are evaluated. 

This work implements a coordination approach that improves the performance of 

decentralized control systems. This task begins by defining the objectives of the block 

controllers involved in the coordination. Recall that in this research each block has an MPC 
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controller with an independent objective, which in the context of this project means that 

only the output variables of the block are controlled by using the input variables of the same 

block. 

In order to illustrate the concept let's consider the formulation of the extended D­

MPC controller descl1bed in Section 3.6 where the objective function of each controller may 

incorporate output variables from another blocks weighted by using parameter Wij' The 

Block D-MPC controller considers the values of parameter Wij to be zero because no 

importance is assigned to control output variables from other blocks. 

It is important to point out that this algorithm does not intend to match the 

performance achieved by using a centralized MPc. In fact the goal is to obtain the good 

values for the individual block objective functions when each block controller adjusts only 

the manipulated variables within its own block. This goal is achieved with communication 

among blocks to reduce the negative affects of interaction. 

5.2 Dynamic Performance and Case Studies 

The goal of this research is to develop a Block MPC controller that provides 

autonomous control for each block with "good" dynamic behaviour for all variables. A 

direct comparison of performance among centralized MPC, independent block MPC and D­

MPC would require all controllers to be tuned optimally. Thus, each tuning would have to 

provide the best performance as limited by a specific robustness guarantee. Solving this 

optimal tuning problem is a research project in itself, involving non-convex optimization. In 

the studies reported here, the tuning is performed by trial-and-error to provide reasonable 

transient responses. Therefore, the relative performances among various control structures 

should be interpreted as indicating whether a small or large difference exists between 

achievable performances among structures. However, these results demonstrate that D-MPC 

provides well-behaved transient responses that are similar to centralized control and that D-
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MPC can stabilize some control systems that cannot be stabilized by independent block 

MPC. 

While the processes considered are non-linear, the simulations cases use linearized 

dynamic models to represent the plant in the closed loop simulation studies. The following 

issues are general and are used in all the cases unless otherwise noted. 

• The simulations studies have no mismatch between the model used by the 

controller and the model representing the plan. 

• No noise has been added to the measurements. 

• All controllers tuning has been performed by trial-and-error to provide 

reasonably fast responses of the controlled variables without undue variability 

(overshoot, oscillations, etc) in the manipulated variables. 

5.2.1 Computational Requirements. 

The computational requirements for the D-MPC controller are different for the 

constrained and the unconstrained cases. For example for the unconstrained D-MPC 

controller is important to note that the resulting system of linear equations is only of the 

(N J (N J "Lm·M· x "Lm·M· 
following size m i~l I I i~l I I ,where mi and Mi are the input horizon and number of 

input variables in block i respectively. Furthermore, since the controller gain matrix, K DMPC 

is known its calculation can be done in advance and only the corresponding rows of the 

K DMPC matrix are required to compute the control action. 

For the constraL11ed D-MPC t!>..is work considers t<;vo different approaches. 

(1) D-MPC that uses full set of I<I(T conditions: In this case the controller requires 

the solution of a system of nonlinear, non-convex equations. In this work this 
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problem is solved using the solver IPOPT-C. The largest problem solved was a 

3x3 with 150 variables and required an average CPU time of 0.032 sec per 

controller execution. 

(2) Heuristic D-MPC: Since every active constraint adds an equation and a 

corresponding Lagrange multiplier to the unconstrained linear system this 

method requires solving a linear system of equations that grows one size per 

iteration. Therefore the K DMPC matrix cannot be computed offline. Although 

the requirements of the heuristic D-MPC are larger than those of the 

unconstrained D-MPC the computations times remain so low that can be 

neglected, the largest problem solved required an average of 0.00015 CPU 

seconds per execution. 

Finally, Appendix E shows a schematic description of the software used for the 

implementation of the D-MPC controller. 

5.3 Case Study I: Binary Distillation Column. 

The first case study considered for this project is a two-product, binary distillation 

column as described in Marlin (2000), the intention is to understand and analyze the 

performance and characteristics of the D-MPC controller. This is a multivariable system 

consisting of two inputs and two outputs for the composition control of a distillation 

column. Figure 5.1 presents a sketch of the control problem along with the variable 

description. 

103 



M.A.Sc. Thesis - Alberto J. Olvera-Salazar McMaster University - Chemical Engineering 

F 
XF 

Y1 = Distillate mole fraction light key 
)12 = Bottoms mole fraction light key 
U1 = Reflux rate, kgmol/min 
U2 = Amount vaporized by reb oiler, 

kgmol/min 

Figure 5.1 Binary Distillation Column, (Positive BRG configuration) 

The nominal, linearized model along with the disturbance model is given by. 

[

0.0747e-2.5S 

X D _ 12s+1 
(xBJ- 0.1l73e-3.Os 

1l.75s+1 

- 0.0667 e-
3

.
5s J [0.07 e-

5s J 
15s+1 FR + 14.4s+1 X 

- 0.1253e-2.3s (Fv J 1.3e-3s ( F) 

10.2s+1 12s+1 

(5.1) 

In this case, two decentralized MPC controllers are used to control the column, the 

distillate composition is paired with the reflux flowrate (X D - F R) and the bottoms 

composition is paired with the reboiled vapour (X B - Fv ). The following RGA matrix 

suggests such pairing. 

A = [(6.094) - 5.094] 
- 5.094 (6.094) 

(5.2) 

The disturbance model represents the dynamic response of the process from 

changes in the feed composition. Reasonable tuning is used for the simulations, these 

parameters are assumed constant and are described in Table 5.1 unless other specified. 
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Table 5.1 Distillation Column Tuning Parameters 

Parameter Description Value 

m Input horizon 10 

P Output horizon 65 

LIt 
Execution and 

sampling time, (min) 2 

Q Output variable [1 1] 
weighting 

R 
Input Suppression [0.2 0.2 ] 

Factor 

5.3.1 Unconstrained D-MPC 

First, let's consider the unconstrained D-MPC case where a system of linear 

equations is solved at every execution time to obtain the control actions. Since this is an 

unconstrained problem, so that the complementarity conditions are not present and the 

active set heuristic is not applied. The resulting controller is described in Section 3.2, 

equation (3.17). 

In order to present a reference for the D-MPC performance the following plots 

show the simulation results of centralized MPC (C-MPC), D-MPC and independent block 

MPC controllers when subject to set point changes or disturbance changes. Each controller 

used the same tuning parameters during the simulations. Figure 5.2 shows a simulation for a 

set point change in X D and in X B. Both C-MPC and D-MPC controllers provide "well 

behaved responses, with little overshoot or oscillation and return to set points in a 

reasonable time. We can conclude that little performance in deviation from set point is lost 

by using the D-MPC in this case. The independent block MPC has the worst performance of 

t.he three controllers and presents a more sluggish dyna!Dic. 
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Figure 5.2 Dynamic Performance - Unconstrained D-MPC with Positive RGA 

In order to compare the overall performance of the controllers Table 5.2 shows the 

integral of the squared error (ISE) as a performance measure. In this specific example the D­

MPC presents a very good performance and the ISE is lower than that of the C-MPC 

controller. However, it is important to note that if we compare the performance of the input 

variables (i.e. the sum of squared movements, SSM) the performance of the D-MPC is not 

better, showing more aggressive adjustments of the manipulated variables. The SSM is 

calculated as the summation of all the squared input moves that were actually implemented 

in the process during the simulation. The behaviour obtained for this case is representative 

of most unconstrained cases. 

ISE 

SSM 

Table 5.2 ISE and SSM, Distillation Column (positive RGA) 

Variable C-MPC D-MPC 

1.9453E-03 1.6338E-03 

Independent 
BlockMPC 

3.0259E-03 

9.6852E-04 6.9976E-04 l.3709E-03 -----------------------------------------------------------------------------
Total 2.9138E-03 2.3336E-03 4.3968E-03 

u 1 (FR ) 2.8658E-02 4.4995E-02 1.5917E-02 

U2 (Fv ) 2.5520E-02 3.6852E-02 1.5068E-02 -----------------------------------------------------------------------------
Total 5.4178E-02 8.1847E-02 3.0985E-02 
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5.3.2 Control Under Different Blockings (Negative and Zero RGA) 

An important feature of a control design is integrity, which basically requires the sign 

of the process gain (LI%u) to be independent of the onloff status of the rest of the 

controllers. Integrity is not an absolute requirement for control design; we can accept 

designs without integrity for a substantial improvement in dynamic performance. A positive 

RGA or BRG is the minimum requirement for integrity in independent block MPCs 

involving SISO blocks. However, systems paired on variables with negative RGA elements 

can be controlled by this new D-MPC, while they cannot be stabilized with conventional 

independent block MPC technology. In addition, some coordination MPC methods cannot 

control negative RGA element pairings. As described in Section 4.2.3 Venkat and Rawlings 

(2004) analyzed a similar distillation column (Ogunnaike and Ray, 1994) considering a 

negative RGA configuration. They found that no communication approach (achieving Nash 

Equilibrium) is able to stabilize the plant. Additionally Li et al (2005) developed an iterative 

Communication-MPC approach where the successful convergence of the method was 

limited to with a diagonal dominant matrix. Here, the performance of D-MPC is 

demonstrated for cases with negative and zero RGA configurations. The D-MPC obtained 

successful results and was able to provide integrity for the system. The following case shows 

that the D-MPC is able to converge and stabilize the system even in configurations with 

negative RGA (BRG). For this example we intentionally consider pairing on a negative 

configuration where the interactions are dominant, resulting in the following pairings; 

(XB -FR ) and (XD -Fv)· 

The dynamic simulation is illustrated in Figure 5.3 it compares the performance of 

the D-MPC controller with the benchmark C-MPC controller and the independent block 

MPC technology. 
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Figure 5.3 Dynamic Performance - Unconstrained D-MPC with Negative RGA 

In this simulation the D-MPC controller is able to provide set point tracking while 

the independent block MPC is not even able to stabilize the plant. Without a doubt this is a 

big improvement to the current practice and one of the main advantages of the novel D­

MPC controller over the iterative algorithms presented in literature. Table 5.3 shows the ISE 

for the three different controllers. 

ISE 

Table 5.3 ISE, Distillation Column (Negative RGA) 

Variable C-MPC D-MPC 
Independent 
BlockMPC 

1.9453E-03 2.3917E-03 co 

9.6852E-04 2.0303E-03 co -----------------------------------------------------------------------------
Total 2.9138E-03 4.4220E-03 co 

To further analyze the previous case study, we consider the convergence criteria of 

Li et al. (2005), which requires that the spectral radius of the following expression must be 

less than one to guarantee a convergent computation Ip(Do ~ < 1. Where Do is computed as 

following. 
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Using the tuning parameters described in Table 5.1 the spectral radius calculated for 

this example is Ip(Do ~ = 1.141 which is in clearly violation of the convergence criteria. 

According to Li et al (2005) and Venkat and Rawlings (2004) iterative Communication-MPC 

approaches are not able to achieve control of this column. 

In contrast, the stability analysis method described in Section 4.2.2 validates the 

performance of the D-MPC controller. Figure 5.4 shows that the D-MPC controller has all 

the eigenvalues of the closed loop expression inside the unitary circle while the independent 

bloc~ MPC has at least one eigenvalue outside the circle. 

r 
Unstable 

Pole 

Figure 5.4 Nominal Stability - Unconstrained D-MPC with Negative RGA 

It is important to mention that while some tuning combinations for the D-MPC 

controller may result in unstable behaviour the simulation in Figure 5.3 and results in Figure 

5.4 proved that there exist tuning combinations that allows for stable behaviour. A more 
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extensive analysis of the stability region for this negative RGA configuration is presented in 

Appendix C. 

Another important case considered in this research is the case of zero RGA 

configurations. In these cases, the process has a zero gain matrix implying that there is no 

causal relation in one of the blocks (i.e. Y2 - u2 ) and the causal relation is only through 

interaction processes. In order to overcome this obstacle a relatively small model mismatch 

is introduced in the D-MPC controller. The distillation column is now modified to illustrate 

procedure; basically one of the process gains (KP22) is set to zero. It is important to mention 

that this is a hypothetical problem in order to test the capabilities of the D-MPC controller. 

(Process Gain Matrix) 

K = (0.0747 - 0.0667) 
P 0.1173 ° 

(Model Gain Matrix) 

K = (0.0747 - 0.0667) 
Pm 0.1173 & 

In order to solve the zero-gain problem parameter & = 0.001 is introduced in the 

model used in the controller. Here it is important 1.0 mention the reason why this mismatch, 

& is required. For this specific case study if & = ° then A22 = ° and the D-MPC controller 

will only produce arbitrary solutions determined merely by the move suppression factor of 

the second controller, R2 . Furthermore if the move suppression is zero (R2 = 0) the D-MPC 

controller becomes singular. This can be easily illustrated by expanding the D-MPC 

controller for this two by two case with & = ° (For full controller, see Section 3.5 equation 

(3.40)) 

Let us note that the magnitude of & was obtained by trial-and-error and using the 

stability analysis. In this way the sign of & is not important as long as the magnitude is 
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sufficiently small. Figure 5.5 shows that the performance of the D-MPC controller for a 

zero-gain system can be similar to that of the centralized controller. 
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Figure 5.5 Dynamic Performance - Unconstrained D-MPC with Zero RGA 

This is an interesting behaviour because the D-MPC controller was able to control 

both variables with a relatively small degradation of performance as illustrated in Table 5.4. 

Again it is important to mention that other published technology cannot control systems 

with a zero-RGA configuration. The D-MPC on the other hand and by means of a simple 

strategy is able to control the system. 

Table 5.4 ISE, Distillation Column (Zero RGA) 

Variable C-MPC D-MPC 
Independent 
BlockMPC 

Yl(XTD) 1.0100E-03 1.1071E-03 1.1407E-03 

ISE .. ( \ 
00* Y2\XSD) 2.8692E-05 2.1452E-03 

Total 1.0387E-03 3.2523E-03 00 

* ISE values are infinity for offset results. 

5.3.3 Constrained D-MPC 
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One of the main advantages of any MPC application is the capability to handle 

constraints. Basically the set of linear equations is now extended into a set of nonlinear 

equations that include complementarity equations, which can be replaced through the active 

set heuristic. However, it is important to note that the incorporation of input and output 

constraints and the presence of active constraints (saturation) may lead to loss of degrees of 

freedom that results in steady-state offset in the system. In the following examples the input 

bounds are adjusted accordingly. 

One of the main goals of the proposed D-MPC approach is clearly illustrated in the 

following simulation, which shows the D-MPC controller isolating a saturation effect within 

one block. This case is simulated using both D-MPC proposed methods, (1) the KI<'T 

approach with an IPOPT-C solver described in Section 3.3 and (2) the heuristic D-MPC 

described in Section 3.4. From Figure 5.6 it can be observed that with D-MPC, a steady state 

offset occurs only in the subsystem with input saturation, (X D - F R) while the other 

subsystem, (x B - Fv) returns its controlled variable to its set point by using its free input 

variable. 
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Figure 5.6 Dynamic Performance - Constrained D-MPC with Positive RGA 
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In contrast, the saturation reached in the reflux flow (F R) precludes the C-MPC 

controller from returning both controlled variables to their set points. As a result, the C­

MPC controller distributes the steady-state errors between both controlled variables, 

therefore neither controlled variable returns to the set point. The set points and final steady 

states of the C-MPC and both D-MPC controllers are described in Table 5.5. The 

performance of D-MPC (ISE) with first-order KI(T conditions and the heuristic D-MPC are 

practically the same with about a 5 % difference. This example shows how the D-MPC 

controller respects the local autonomy of each subsystem by not allowing the saturation 

problem in the one loop to affect the set point tracking of the second loop. 

Table 5.5 ISE and Final Steady States, Distillation Column (positive RGA) 

C-l\1PC D-l\1PC 
Heuristic Independent 

Variable 
D-l\1PC Block l\1PC 

Steady 
State 

ISE 
Steady 
State 

ISE 
Steady 
State 

ISE 
Steady 
State 

ISE 

X D (0.99) 0.9873** r:t:) 0.9866** r:t:) 0.9866** r:t:) 0.987** r:t:) 

X F (0.01) 0.0114** r:t:) 0.010 * 6.73E-04 0.010 * 6.39E-04 0.010 * 13.4E-04 
---------------------------------------------------------------------------------------------------------------_. 

F R 9.50 9.50 9.50 9.50 

FV 14.51 14.52 14.52 14.52 
* * Offset, * Set point tracking, 

The computational requirements althQugh larger than the unconstrained problem 

can be neglected for practical reasons. For this problem IPOPT-C reported an average of 

0.02 CPU seconds for each D-MPC execution. 

The D-MPC controller has shown to be effective when solving strongly interactive 

systems with positive RGA configurations. To further test the capabilities of this method 

constrained cases were also tested for negative and zero RGA configurations. However, on 

such cases the D-MPC controller was not able to solve the problem when the system 

encountered saturation. The solver (IPOPT-C) found a local solution that was obviously 

incorrect, e.g., it did not return controlled variables to set point when it was possible. 
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In order to achieve a reliable solution the active set heuristic methodology described 

in Section 3.4 was successfully employed. A test case with a negative RGA configuration is 

now presented. For this case the heuristic strategy requires the following linear system of 

equations to be solved in an iterative way at every controller execution. 

A2lQ2A22 0 

A]2T QJA]2 + R2 H/ (5.3) 

H2 0 

o 0 

(5.4) 

Where Hi are the time variant constraints that contain the information on the set of 

active constraints. Figure 5.7 shows the closed loop simulation of the distillation plant 

subject to a set point change on YJ(XD). The reboiled vapour, u2 which is now controlling 

YJ(XD ) gets saturated leading to an offset in this controlled variable. The other loop 

however maintains a satisfactory set point tracking. The set points and final steady states of 

both C-MPC and D-MPC controllers are reported in Table 5.6 along with the transient 

performance indexes. 
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Figure 5.7 Dynamic Performance - Constrained D-MPC with Negative RGA 

Table 5.6 ISE and Final Steady States, Distillation Column (Negative RGA) 

Variable (Set Point) 

X D (0.99) 

X F (0.02) 

** Offset, * Set point tracking. 

C-MPC D-j\t[pC 

Steady State 

0.988** 

0.02115** 

9.15 

14.1 

ISE 

00 

00 

Steady State 

0.987** 

0.02* 

9.14 

14.1 

ISE 

00 

0.000498 

This example shows the advantages of the heuristic strategy over the D-MPC that 

uses the full KK.T conditions. Let's recall some of the main characteristics that support this 

heuristic method. 

(1) The best control solution is not guaranteed but a feasible solution is always 

achieved. If the correct active set is reached, the heuristic will recognize this as a 

solution. 

(2) Finite and low number of iterations. 
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(3) Computational requirements are reduced to the sequential solution of a set of 

linear equations. 

(4) Good computation exper1ence for cases with different integrity (positive, 

negative and zero RGA) 

(5) Years of experience in industry with similar method applied to C-MPC (prett et 

al. 1980; Richalet et a11987) 

Finally, it is important to remark that all simulations where performed considering 

no model-mismatch or measurement noise in order to clearly illustrate the performance of 

the controllers. Appendix D shows a couple D-MPC examples that evaluate the dynamic 

performance when model-mismatch is present. 

5.4 Case Study II: Shell Standard Control Problem. 

We now apply the D-MPC controller to an industrial benchmark problem known as 

the Shell Standard Control Problem first proposed by Prett and Morari, (1987). The process 

is illustrated in Figure 5.8 it consists of a heavy oil fractionator with three product draws and 

three side circulating loops. The three circulating loops remove heat at high temperatures, 

rather than at the lower temperature of the condenser; they are called pumparounds. The 

pumparound heat exchangers in the top two circulating loops, which are mid-tower 

condensers, are used as reb oilers for other columns; their duties act as disturbances to the 

column. 
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Vapour Feed bottoms 

Figure 5.8 Schematic of the Shell Heavy Oil Fractionator. 

The dynamic model is given in the following, without engineering units to be 

consistent with the original citation. 

4.05e-27s 1. 77e-28s 5.88e-27s 1.20e-27s 1.44e-27s 

(~:]" 
50s+1 60s+1 50s+1 

(::]+ 
45s+1 40s+1 

5.3ge-18s 5.72e-14s 6.ge-15s 1.52e-15s 1.83e-15s 

-G~) 50s+1 60s+1 40s+1 25s+1 25s+1 (5.5) 
4.38e-2Os 4.42e-22s 7.20 1.14 1.26 

33s+1 44s+1 19s+1 27s+1 32s+1 

Where y] is the top draw composition (XTD), Y2 is the side draw composition (XSD) 

and Y 3 is the bottoms reflux temperature (TBR)' Manipulated inputs are the top (FTD ) and 

side (FSD ) draws which are u] and U2 respectively, and U3 is the bottoms reflux duty FBR . 

The disturbances I] and 12 are the heat duties from the top circulating loops. 

The RGA for this process is shown in (5.6), it suggest a diagonal control structure. 

[

2.08 -0.73 

A= 3.42 0.93 

-4.5 0.79 
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The control objectives considered for this case are pretty much the same as in the 

original problem (prett and Morari, 1987), except that we removed the control of U3 and 

added the control of Y3' The resulting control objectives are the following. 

(1) Maintain the output variables Y], Y2 and Y3 at specified set points (0.0 with 

tolerance of 0.005 at steady-state.) 

(2) Reject disturbances I] and 12 entering the columns. 

The control constraints are. 

(1) All control inputs must be maintained at: lu 11 ~ 0.5 (J = 1,2,3) unless other 

specified 

(2) Maximum input size control of ILlu 11 ~ 0.2 

A challenge problem considering the original control objectives will be addressed in 

Section 5.4.4. 

5.4.1 Block Control Structure 

Obtaining the best control structure for a specific problem is a very challenging 

problem because the possible number of block structures is greater than the multiloop 

structure and grows exponentially with the system dimension (Cai, 2009) because the block 

sizes and variables allocation to blocks must be decided. The structure design problem is 

beyond the scope of this work; therefore, only a couple of structures are considered to 

perform simulations. Figure 5.9 shows a scheme of some of the possible block stmctures for 

this three by three process, it ranges from the multiloop structure, (S.1) to the centralized 

structure, (S.S). The other structures (S.2-S.4) involve two blocks. 
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x X .x 
X X X 

X X X 

S.l S.2 S.3 SA S.5 

Figure 5.9 Block Structures for the Shell Heavy Oil Fractionator 

The block relative gain for structures S.2, S.3 and SA are presented in Table 5.7. 

Table 5.7 Block Relative Gain 

Control Structure 

(8.2) - [yjY2 -UjUJ[y3 -U3] 

(8.3) - [yj-ujl[Y2Y3 -U2U3] 

(8.4) - [Y2 -UJ[yjY3 -UjU3] 

BRG* 

IABll l=4.71 

IABlll = 2.08 

IABlll = 0.934 

All of these structures including S.1 have a positive BRG. However, this work will 

consider structure S.2 as the most challenging candidate for the simulations since it has the 

largest block relative gain of the three two-block control structures. The first block of 

structure S.2 consists of a multivariable composition controller [XTDXSD -FTDFsD ] while the 

second block consists of a temperature controller [TBR - FBR]' Figure 5.10 shows a scheme 

of the control structure for this case. 
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Figure 5.10 Block Structure S.2 (positive BRG) 

5.4.2 Block D-MPC Controller 

The unconstrained D-MPC controller required for this block structure (S.2) is the following. 

( 
T )-1 T Llu= AD Q Ac +R AD Q.(-e) 

(5.7) 

Where Block 1 is ,a two by two MPC controller with the following variables 

[y 1 Y 2 - u 1u 2] and Block 2 is a SISO MPC controller for [y 3 - u 3]' In order to implement this 

control structure, matrices Ac and AD are defined as follows. 

AD = (All I 0) 
~ 

(5.8) 

Wh A·· m(P;pxMjm) (. '--12) . ·th SISO MIMO d . ere I} E n I, ] , contams el er a or a ynamlc 

matrix that describes the effect of inputs in block j to outputs in block i . Moreover Ac can 

be defined as follows. 
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(5.9) 

Where Ag f E 9\(pxm) are the dynamic matrices relating the changes in output g due 

to changes in input f. In the same way AD can be defined as follows. 

(5.10) 

The tuning parameters Qi E 9\ (l}p xl}p) and Ri E 9\ (M;m xM; m) (i = 1,2) are diagonal 

matrices. Table 5.8 shows the tuning parameters to be used in the following simulations, 

they are kept constant unless other specified. 

Table 5.8 D-MPC tuning parameters for the Shell Oil Fractionator 

Parameter Description Value 

m Input horizon 5 

P Output horizon 80 

LIt 
Execution and sampling 

5 time 

Q Output variable weighting [1 1 It 
R Input suppression factor [10 10 lOY 

Figure 5.11 shows the dynamic response of the selected control structure when 

subject to the disturbance changes, l] = -0.5, l2 = 0.5. The response is plotted against 

independent block MPC and centralized MPC. 
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Figure 5.11 Dynamic Performance - Unconstrained D-MPC with Positive BRG 

The dynamic performance is relatively good with a set point tracking of all three 

controlled variables at steady state. Table 5.9 shows the integral of the squared error for the 

three different controllers. It can be observed that the performance of the D-MPC controller 

is between the centralized MPC and the independent block MPC. There appears to be no 

significant difference in performances. 

Table 5.9 Integral of the Squared Error [/]=-0.5, 12=0.5J 

Variable C-MPC D-MPC 
Independent 
BlockMPC 

Yl(XTD) 0.1199 0.1371 0.3045 

ISE yAxSD) 0.6151 0.6063 0.6273 

Y3(TBR ) 0.0106 0.1707 0.0357 

Total 0.746 0.914 0.967 

In order to test the constrained D-MPC controller a small modification is made to 

the manipulated variable bounds. Let's consider that the capacity of the bottoms reflux duty 

is reduced to I u31:::; 0.02. Due to the limited capacity of the bottoms reflux duty, it is not 
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possible to completely reject both disturbances (11 = -0.5,12 = 0.5); therefore, offsets are to 

be expected. Figure 5.12 shows the dynamic performance subject to the same set of 

disturbance changes, and Table 5.10 shows the final steady states achieved by both 

controllers. 
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Figure 5.12 Dynamic Performance - Constrained D-MPC with Positive BRG 

Table 5.10 Final Steady States [/1=-0.5, 12=0.5J 

Variable 

Yl(XTD) 

Y2(XSD) 

Y3(TBR ) 

C-MPC 

Steady State 

0.002 ** 
0.017 ** 

- 0.023 ** 

D-MPC 

ISE Steady State 

00 0.000 * 
00 0.000 * 
00 - 0.036 ** 

ISE 

0.217 

0.631 

00 . --------~iF;;-) -------------:6.-063 -----------------------:6.06166---------------------
.. ITO' \ 
U2V'SD} 

U3(FBR ) 
** Offset, * Set point tracking, 

0.011 

0.02 
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The D-MPC controller enforces the local autonomy of both blocks, it basically 

isolates the input saturation occurred in the temperature controller (Block 1) allowing the 

composition controller (Block 2) to successfully maintain output variables Yl and Y2 at their 

respective set points at steady state. The average CPU time required at each D-MPC 

execution was of 0.032 seconds. The centralized MPC controller on the other hand results in 

offsets to all three outputs; two of them even violate the maximum tolerance allowed. 

5.4.3 Zero and Negative BRG Configurations. 

We continue with the Shell Challenge Problem in this section. The first case in this 

section considers a Zero BRG control structure, which it is not usually employed in practice 

in part due to the fact that conventional technology is not able to control the process. In 

order to test this case a hypothetical version of the Shell problem is considered. Basically the 

steady-state gain matrices of the process (Kp) and model (KPm) are modified as follows. 

(

4.05 1.77 

Kp = 5.39 5.72 

4.38 4.42 

5.88] 
6.9 

o (

4.05 

KPm = 5.39 
4.38 

1.77 

5.72 

4.42 

5.88] 
6.9 

8 

(5.11) 

Where & = 0.01 introduces a small model mismatch sufficient for the D-MPC to be 

able to control the entire plant. The block structure remains the same with Block 1 as the 

multivariable composition controller and Block 2 as the temperature controller. The 

dynamic simulation is illustrated in Figure 5.13 and performance parameters are shown in 

Table 5.11, the following can be observed. 

(1) The independent block MPC controller is by no means able to provide control 

of Block 2. 

(2) The D-MPC uses the interaction models embedded in the controller to provide 

zero offset for Y3 in Block 2. However, it is important to mention that the 
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Figure 5.13 Dynamic Performance with Zero BRG 

Table 5.11 Integral ofthe Squared Error [1]=-0.5, 12=0.5J - Zero BRG 

ISE 

Va1'iable 

Yl(XTD) 
yixSD) 

yiTBR ) 

Total 

C-MPC 

0.0400 

0.1208 

0.0049 

0.1657 

D-MPC 

0.0571 

0.1336 

0.0229 

0.2137 

Independent 
BlockMPC 

0.0509 

0.1319 

co 

A more challenging test case where the interactions are so large that they become 

dominant is now addressed. It considers a less conventional block structure with a negative 

block relative gain ~ABlll = -4.5). Figure 5.14 shows a schematic of the proposed control 

structure (S.6). We note that both blocks keep the same structure regarding the output 

variables, and only the input variables are redirected to different blocks. 
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Figure 5.14 Block Structure S.6 - Negative BRG. 

Figure 5.15 illustrates the stability analysis of both the D-MPC controller and the 

independent block MPC controller. It can be observed that a pole of the independent block 

MPC controller lies outside the unit circle, which indicates closed loop unstability. 

0.8 

0.' 

-0.6 

·0. 

/ 
Unstable 

Pole 

Figure 5.15 Nominal Stability (Negative BRG) 

Figure 5.16 illustrates the dynamic performance of this negative BRG control 

structure. As predicted in the stability analysis the independent block MPC controller 

becomes unstable. The D-MPC however is able to achieve a zero steady state offset. The 

corresponding performance indexes are shown in Table 5.12. 
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Figure 5.16 Dynamic Performance with Negative BRG 

Table 5.12 Integral of the Squared Error [11=-0.5, 12=0.5J - Negative BRG 

Variable C-MPC D-MPC 
Independent 
BlockMPC 

Yl(XTD) 0.0240 0.0548 00 

ISE Y2(XSD) 0.1230 0.1383 00 

yiTBR ) 0.0021 1.3273 00 

Total 0.1491 1.5204 00 

From this section it is important to remark that designs that under independent 

block MPC are unstable are able to provide a satisfactory performance with D-MPC. D­

MPC performance is not much worse than that of a centralized MPC controller. These 

results demonstrate that D-MPC extends the range of processes and block designs for which 

block MPC is possible. 

5.4.4 Challenge Problem: Alternative Control Objectives. 

The original Shell Standard Control Problem considers different control objectives 

to those described in the previous section. The differences are the following. 
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(3) Maintain the input variable U3 as close to -0.5 as possible (This maximizes the 

steam made in the bottoms reflux condenser.) 

(4) Delete the control of output variable Y3' 

The change requires a modification in the objective function of the MPC controller. 

Basically a third term is added to minimize the difference between the input variable and its 

reference value. 

(5.12) 

The treatment of the controller is practically the same as described in Section 3.1.1. 

A brief development of this third term is now presented. First the input variable Ui must be 

put in terms of L!ui . 

(5.13) 

diagonal blocks of lower triangular matrices of ones, (V E mmjxm; as described in Section 

3.3.1, equation (3.21)). We can expand the third term in the objective function as follows. 

Where 

Finally substituting this term in the objective function, J i we get. 
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1 T (T -T - 1 [T ( ) T -] 1 ( )T ( ) Min J; = -2 L!u; A;; Q;Aii + V a;V + R; L!u; + Aii Q;\e; + E; + 17; V L!u; + -2 e; + E; Q; e; + E; 
Llu i '---v----' '---v---' 

(5.14) 

The solution of this unconstrained optimization problem must satisfy the following 

stationary condition. 

(5.15) 

Repeating for all the controllers i = 1"", N produces the following set of linear equations. 

AnTQ].e] 
-T v] a] '17] 

A2lQ2 ·e2 
-T 
V2 a2 '172 

+ + 

ANNTQN·eN 
- T 
VN aN '17N 

Then, defining the following matrices. 

~T ~ 

~ al~ 0 0 0 

0 
~T ~ 

0 0 V= V 2 a 2V 2 V= 
0 0 0 

0 0 0 
~ T ~ 

VN aNVN 

:1 

~T 

~ a 1 

0 

0 

0 

AnT Q]AJN 

A22T Q2AlN 

0 
~T 

V2 a 2 

0 

0 

0 

0 

0 

Equation (5.16) can also be expressed in the following condensed form. 

or 
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Llu = (ADT QAc +R+vt(ADT Q(-e)+V(-17))' 
A test case considering the additional control objective is now presented. This time 

the bottoms reflux temperature, Y3 is not considered a priority, instead maintaining the 

bottoms reflux duty, U3 close to -0.05 becomes a control objective. The tuning parameters 

that reflect these conditions are presented in Table 5.13. 

Table 5.13 Modified tuning parameters (Input Reference Control) 

Parameter DesC1'iption Value 

a Input variable weighting [0 0 o.lf 

Q Output va1'iable weighting [1 1 o.ooolf 

R Input suppression factor [10 10 lOY 

Figure 5.17 illustrates the simulation for this case, basically U3 is slowly driven to the 

reference point and the rest of the control objectives are quickly met due to the different 

weighting factors assigned in the tuning parameters. 
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Figure 5.17 Dynamic Performance (Input Reference Control) 

5.5 Case Study III: Fired Heater Box. 

The final case study considers a fired heater with four valves and four temperatures, 

and it was first published by Rosenbrock (1974). Accorcling to Kariwala et a1. (2003) the 

approximated number of the SISO structure alternatives for this control system is 

N s (4)r:::!4! 1.52=125. However, in this study a total of only four block structures are 

considered along with a fully centralized structure. Figure 5.18 shows a diagram of the fired 

heater and the set of block structures considered for this case. 
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Figure 5.18 Fired Heater Box and Block Structures (Cai, 2009) 

Rosenbrock (1974) reported that the dynamic models were obtained by injecting 

steps signals. However, only half the step responses were measured, and it was assumed that 

the geometric symmetry of the system would be reflected in the corresponding symmetry 

properties of the dynamic model. The process and a disturbance model are presented in 

(5.18). In this case study we treat all variables as dimensionless deviation variables to be 

consistent with the original citation. 

1 0.7 0.3 0.2 1 

4s+1 5s+1 5s+1 5s+1 4s+1 
0.6 1 0.4 0.35 1 

G(s) = 5s+1 4s+1 5s+1 5s+1 Gd(s) = 4s+1 (5.18) 
0.35 0.4 1 1 1 

5s+1 5s+1 4s+1 5s+1 4s+1 
0.2 0.3 0.7 1 1 

5s+1 5s+1 5s+1 4s+1 4s+1 

The RGA is the following and the block relative gains of the selected structures are 

shown in Table 5.14. 
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(S.2) 

(S.3) 

(8.4) 

[ 1748 
-0.686 -0.096 00034] 

-0.727 1.874 -0.092 -0.055 
A= 

-0.055 -0.092 1.874 -0.727 

0.034 -0.096 -0.686 1.748 

Table 5.14 Block Relative Gain 

Control Structure BRG 

[yjY2Y3 -UjU2u31[Y4 -U4] 

[yj-Ujl[Y2 -u21[Y3Y4 -U3U4] 

lAB 11 I = 1.748 

IAB331 = 1.213 

(5.19) 

The tuning parameters used for the dynamic simulations are described in Table 5.15 

and are taken from the thesis by Cai (2009). 

Table 5.15 D-MPC tuning parameters 

Parameter Description Value 

m Input horizon 10 
p Output horizon 60 

LIt Sampling time 0.5 

R Move Suppression factor [0.733 1.13 1.274 1.7f 

Q Output variable weighting [1 1 1 If 

The dynamic simulation is subject to a step set-point change in temperatures T2 , T3 

and T4 while Tj is subject to a first order dynamics set point change. Figure 5.19 shows the 

closed loop simulation. The objective is to identify which block structure with a D-MPC 

controller provides the best dynamic performance. 
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Figure 5.19 Dynamic Performance - Set Point Change with Positive BRG 

The results in Table 5.16 basically indicate that the D-MPC with a diagonal sttuctu.re 

(S.1) provides the worst performance while the D-MPC with sttuctu.re (S.3) gets closer to 

the centralized MPc. 

Table 5.16 Integral of the Squared Error, Set Point Changes 
D-MPC 

Output C-NIPC 8.1 8.2 8.3 8.4 
Variable 8.5 [Tl-Vl][T2-V2] [TlT2-VIV2] [TIT2T3.VtV2V3] [Tl-Vl] [T2-V2] 

[T3-V3][T4-V4] [T3T4-V3V4] [T4-V4] [T3T4-V3V4] 

Yl(T1) 0.753 0.797 0.752 0.749 0.795 

yAT2 ) 1.094 1.306 1.128 1.103 1.294 

yAT3) 1.130 1.335 1.244 1.110 1.287 

Y3(T4 ) 1.099 1.334 1.182 1.250 1.201 ---------------------------------------------------------------------------------------------------
Total 4.077 4.773 4.306 4.272 4.576 
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A second case is also considered, this time the same set of structures are subject to a 

disturbance change [/1 = 0.5]. Figure 5.20 illustrates the closed loop simulation while Table 

5.17 shows the performance index. 
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Figure 5.20 Dynamic Performance - Disturbance Change with Positive BRG 

This time the block structure with the closest ISE index to the C-MPC controller is 

structure S.2 that consists of a couple of two by two controllers. 

Table 5.17 Integral ofthe Squared Error, Disturbance Change [/1=0.5J 
D-MPC 

Output C-MPC S.l S.2 S.3 S.4 
Variable "., [Tl-Vl][T1-V2] [TIT1-VlV2] [TlT2T3 -VIV2V3] [Tl-Vl][T2-V2] o.J 

[T3-V3][T4-V4] [T3T4-V3V4] [T4-V4] [T3T4-V3V4] 

Yl(T1) 0.0092 0.014 0.011 0.0098 0.0137 

Y2(T2) 0.0093 0.014 0.0112 0.0103 0.0134 

Y3(T3) 0.0106 0.0162 0.0122 0.0133 0.0128 

Y3(T4) 0.0145 0.0194 0.0159 0.0178 0.0163 

Total 0.0436 0.0637 0.0503 0.0512 0.0562 
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Finally, a negative BRG structure (S.6) is considered. In this case the tuning reported 

previously produces an unstable controller; therefore, some changes are required in order to 

stabilize the process. In order to minimize the amount of parameters to be modified the 

suppression factor is adjusted by applying a multiplication factor, fJ = 3.4 . A stability analysis 

of this design was performed confirming nominal stability. Figure 5.21 shows the closed 

loop simulation. 

Coil Outlet Temperature Fuel Flow 
'15r---~---~----. o '\ 

-{)'I '\ 1""---Blcclto-IJPcl 

Vl .. , \ 
-<13 ", ...... "_ • .,., .......... ,.,.",, .... J 

"~, .... "'- ...... ,,"" ... ,. ..... 
" 

time" 15 

Figure 5.21 Dynamic Performance - Disturbance Change with Negative BRG 

Although the process is stabilized the negative BRG structure produces the worst 

dynamic performance with a total ISE=O.647. 

From the cases above it can be observed that structure S.2 is better for disturbance 

rejection while structure S.3 performs better when subject to a specific group of set point 

changes. 
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5.6 Summary 

In this chapter the proposed D-MPC controller was tested in three different case 

studies. All of the simulation performed for each case study used the same set of tuning 

parameters in order to have a base for comparison; however, and because each the C-MPC 

and the D-MPC controller have different goals it is important to mention that a suitable 

measure for comparison will require a robust control analysis which is beyond the scope of 

this research. 

An important advantage presented is that the unconstrained D-MPC could easily test 

the implementation of different control structure by performing a simply modification of 

matrix AD, which pretty much takes the form of the block structures as described in Figure 

5.9 and Figure S.lS. Then, by testing different control structures for the D-MPC it was 

confirmed that the closer the control stmcture gets to the centralized structure, the better 

the performance measured by ISE. However, the closer it gets to the centralized structure 

the farthest it deviates from local autonomy. In this way and in order to design a suitable 

control system a trade off must be evaluated. 

The D-MPC controller outperformed independent block MPC and in cases with 

negative and zero BRG it surpassed the capabilities of current iterative methods for 

coordinated block MPC. However, in the case of constrained D-MPC it also showed a 

situation where the KI(T approach described in Section 3.3.2 may encounter difficulties and 

therefore fail to provide a satisfactory response. Although some adjustments of the solver 

with additional strategies such as warm start might help in some circumstances, in this work 

it was preferred to implement a heuristic D-MPC strategy that could easily overcome such 

situations and provide tractable and reliable real-time computation. 

Finally, the addition of alternative control objectives was also addressed and the 

stability analysis developed in Chapter 4 was validated with closed loop simulations for 

different control structures. 
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Chapter 6 

Conclusions and Future Work 

This chapter presents a brief summary of the work presented, followed by the main 

contributions. The final section introduces some possible future research directions. 

6.1 Summary 

In this thesis, a novel block decentralized MPC approach is developed in order to 

coordinate the control of individual process units (blocks) in a chemical plant. Chapter 1 

addressed the problem definition, control objectives and the anticipated significance of the 

research. It clearly pointed out that even in these times of almost "unlimited" computational 

resources, decentralized MPC control is needed for block autonomy, disturbance isolation, 

fault tolerance, ease of management and most important, dynamic performance. 

In Chapter 2 the state of the art methods for the coordination of block MPC 

controllers were reviewed. The review distinguished two major categories: (1) the methods 

that implement a block design and enforce autonomy and (2) the methods that implement a 

centralized design and whose main objective is to emulate a centralized MPC controller by 

using some sort of distributed computational architecture. It also introduces the reader to 
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the key concepts required to understand the goals of the research such as: integrity, local 

autonomy and dynamic performance. 

In Chapters 3 and 4 the conceptual developments of this research were presented. In 

Chapter 3 the D-MPC controller is formulated by building on the QDMC algorithm (Garcia 

and Morshedi, 1986). The approach replaces multiple optimizations (from several, 

interacting MPC controllers) with one set of equations, yielding a single-level optimization 

problem. The implementation of the D-MPC controller makes use of the concepts of game 

theory, multilevel optimization, interior point methods and active set strategies. Some simple 

guidelines were developed to identify when D-MPC is appropriate; however, it was not 

possible to produce a set of explicit lUles that guarantee the existence and uniqueness of the 

controller. Therefore in Chapter 4 some requirements for the implementation of D-MPC 

were introduced such as benchmark (C-MPC) applicability, minimum prediction horizon and 

steady state controllability. Then, in the last part of Chapter 4 a nominal stability analysis was 

successfully adapted for the D-MPC controller. All of this analysis was integrated into a step­

wise application procedure to generate a non-singular and stable D-MPC controller with 

satisfactory dynamic performance. 

Finally in Chapter 5 all of the previous concepts and methodologies were evaluated 

in several cases studies, each considering multiple block control structures. The case studies 

confirmed the premise that the D-MPC produces a better performance than the 

independent block MPC. Additionally it also showed the ease with which multiple control 

structures can be implemented and the superiority of the proposed controller over other 

communication MPC methods. 

6.2 Contributions 

This section presents the specific contributions of this research. 
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• Formulation of the D-MPC Controller: The D-MPC controller makes use of 

local objective functions that are optimized in each block controller by adjusting 

only its manipulated variables. Additionally, interaction models are embedded in 

each controller. This provides the local autonomy sought while accounting for 

interactions. Due to the interaction models, processes with dominant interactions 

ijBRGI sO) can be successfully controlled using D-MPC. This distinctive 

• 

• 

characteristic extends the range of processes and block designs for which block 

MPC is possible. 

Solution Algorithm: The D-MPC controller applies a strategy similar to that of 

multilevel optimization. Here, several optimization problems (Block MPC) are 

replaced with their respective optimality conditions and solved simultaneously. 

An advantage of this method is that overcomes the necessity of an iterative 

algorithm. A disadvantage is the non-convexity of the problem, which makes 

assurance of a correct solution problematic for formulations including inequality . 

constraints, especially with negative and zero BRG configurations. A modified 

formulation was developed to deal with inequality constraints, which removes 

the non-convexity by implementing an active-set heuristic strategy to enhance 

the D-MPC formulation. The approach is computationally tractable yielding a 

small set of convex problems to be solved sequentially; however, global 

optimality cannot be assured. 

Design and Analysis: One analysis demonstrated that autonomous (D-MPC) 

performance cannot be achieved through tuning a conventional centralized (C­

MPC) controller. The next step determined the applicability of the D-MPC 

controller. It was concluded that minimum criteria are required for the D-MPC 

application, therefore it was proposed that: (1) only stable processes that can be 

controlled by C-MPC would be considered for D-MPC control, (2) since 

applications are for continuous processes that track their set points, the process 

must be steady-state controllable, with the column rank of the gain matrix being 
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• 

equal to the number of controlled variables, (3) finally, it was found that 

prediction horizon of the controller influences the controllability, and a 

minimum output horizon was suggested. 

Once the existence of the controller has been achieved the next step is to 

guarantee the stability. The analysis of nominal stability of the D-MPC controller 

is another important contribution of this work. The stability analysis is adapted 

from the work of Lee et al (1994) to analyze the closed loop stability of different 

block structures. It is also applicable to the other controllers considered in this 

work (i.e., independent block MPC, extended D-MPC and of course C-MPC). 

Finally, the design of the D-MPC controller is addressed by means of a step-wise 

application procedure that ultimately ensures a successful application: First, the 

steady-state controllability and the existence of a C-MPC are verified. Then, 

tuning adjustment is required in order to produce a nonsingular and nominally 

stable D-MPC controller. Finally, simulations are performed in order to fine-tune 

the controller and provide the desired dynamic performance. 

Case Studies: The capabilities of the proposed D-MPC controller were tested 

for 2x2 to 4x4 cases where it was demonstrated that: 

• Effects (i.e., offset) of manipulated variable saturation are isolated to the blocks 

where saturation occurs. 

• D-MPC successfully control block structures with positive, negative and zero 

BRG. 

• Nominal Stability can depend on tuning. 

• Good nominal dynamic performance is achieved for all cases. 
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• For Single Horizon D-MPC controller, processes paired on positive RGA, a 

unique stable solution for any controllable plant, ijKpl"* 0) always exists; and 

processes paired on negative RGA present both a stable (negative feedback) and 

an unstable (positive feedback) zone. 

6.3 Future Work 

The D-MPC proved to provide good performance for disturbances and set point 

changes while enforcing local autonomy. Moreover different control structures with 

different integrity and even different objective functions are easily coordinated. In order to 

further enhance the D-MPC controller there are several research opportunities to pursue. 

The author considers the following the most important future directions. 

• Inclusion of Soft output constraints: The very next step to enhance the D­

MPC controller is the inclusion of soft output constraints to the heuristic 

strategy. Taking into account soft output constraints results in a challenging 

problem. These constraints include a positive slack variable that expands the 

bound if necessary (y ~ Ymax + s). Thls slack value has to be included in the 

algorithm and its value cannot be easily fixed a priori. None of the other heuristic 

methods used in industry (prett et al 1980, and Richalet et al 1987) proposed a 

systematic method to solve this problem. In order to solve this problem 

alternative methods must be considered. 

• Model Uncertainty: An important issue that needs to be addressed is the 

uncertainty in the process model. In order to tackle this problem concepts of 

Robust MPC are necessary. Properties such as robust stability and performance 

could be adapted for the decentralized environment. Al-Gherwi et al (2008) 

proposed a methodology to select the best block structure based on robust 

performance. The resulting structure will be more resilient to model mismatch. 
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• 

• 

Coordination of Steady-State MPC: While autonomy is provided to each 

controller when solving the dynamic problem, it mayor may not be desired in 

the steady-state coordination problem. If autonomy is desired at the steady-state 

level, the previously described methodology could be extended to the steady state 

level. In fact if the steady state optimizers are formulated as QP problems, the 

results from the Single Horizon D-MPC might provide some insight and a head 

start regarding singularity and stability. However if the overall plant is to be 

optimized, an approach similar to current technology with a global steady state 

coordinator could be applied. The choice would be application dependent. 

State Space Formulation: Finally, another important improvement will be the 

development of a state space formulation to provide control for open loop 

unstable processes. Such formulation will also allow enhancing the simple state 

estimation approach by adding a Kalman filter. It is thought that the migration of 

D-MPC to a state space formulation could be relatively straightforward. 
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Nomenclature 

A· . I,J 

Agj 

Ac 

AD 

a 

As 

Ad 

B; 

d; 

E; 

e; 

H; 

Hss 

I 

J; 

KMPC 

KDMPC 

Kpgj 

L; 

m; 

M; 

Mjj 

N 

p; 

Dynamic matrix with the effect on outputs in block i from inputs in 

block j 

Dynamic matrix that relates output g and input f 

Full dynamic matrix 

Block diagonal dynamic matrix 

Step response coefficient 

Step response model 

Step response coefficients for disturbance model 

Vector of maximum changes in block i 

Vector of unmeasured disturbance in block i 

Effect of interactions in block i 

Vector of feedback information in block i 

Matrix of active constraints in block i 

Closed loop matrix for stability analysis 

Identity matrix of appropriate size 

Objective function in block i 

Control gain matrix for centralized MPC 

Control gain matrix for Block D-MPC 

Steady state gain that relates output g and input f 

Lagrange function in block i 

Input horizon in block i 

l\.Jumber of manipulated variables in block i 

Minor of element Kp j j 

Number of blocks to be coordinated 

Prediction horizon in block i 
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U~ax u~in 
I 'I 

ref ui 

v 

v 

Wi,} 

X(k) 

Xsp(k) 

yf 

Yi 

Subscripts 

i, j 

f 

g 

k 

f 

ff 

Greek letter 

Number of controlled variables in block i 

Weight factor for outputs in block i 

Suppression factor for inputs in block i 

Required samples to reach steady state of the slowest process. 

Bounds on input variables in block i 

Vector of input reference in block i 

Vector of input variables in block i 

Lower triangular matrix of ones. 

Block diagonal matrix built from V matrices 

Weighting factors for outputs in block j "* i to be used in the 

objective function of block i 

Dynamic state vector at time k 

Output reference vector 

Vector of (measured) controlled variables in block i 

Vector of output set points in block i 

Vector of past output in block i 

Vector of predicted values in block i 

Refers to control blocks. 

Refers to input variables. 

Refers to output variables. 

Refers to a time step 

Refers to a time step in prediction horizon 

Refers to an element of the input variable vector 

Lagrange multipliers in block i 

Weighting factor for input variables in block i 
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V 

li 

Ag,j 

AB · . 
1,} 

Llui 

Llu ~ax Llu ~in 
1 , I 

Acronyms 

BRG 

CV 

KI(T 

LP 

LTI 

MIMO 

MPC 

MV 

PD 

PID 

PSD 

QDMC 

QP 

RGA 

SISO 

Vector of eigenvalues 

Small gain mismatch 

Relative gain that relates output g and input f 

Block Relative Gain dlat relates block i and block j 

Vector of input moves in block i 

Bounds on input size variables in block i 

Block Relative Gain 

Controlled Variables 

Karush Kuhn Tucker 

Linear Programming 

Linear Time Invariant 

Multiple Input Multiple Output 

Model Predictive Controller 

Manipulated Variables 

Positive Definite 

Proportional Integral Derivative 

Positive Semidefinite 

Quadratic Dynamic Matrix Control 

Quadratic Programming 

Relative Gain Array 

Single Input Single Output 
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I Appendix A. Model Predictive Control 

This appendix addresses the basic Model Predictive Control algorithm used in this 

thesis. The main algorithm along with the most important assumptions and the tuning 

parameters are described. It is important to mention that the entire treatment of this 

controller is adopted in the development of the D-MPC controller. This presentation 

follows the explanation in Btosilow and Joseph (2002). 

A.I Mathematical Models in MPC 

The way in which dynamic models are handled in any MPC methodology is one of 

the most important aspects of the control algorithm. In this section the dynamic matrices 

used in the proposed controller are presented to demonstrate the mathematical framework 

behind the MPC models. 

The linear MPC algorithm developed in this work is based on step-weight models. A 

Single Input Single Output (SISO) step-weight model has the following form. 

o o 
o 
o 

ap - m r 
Llu j,(k) 1 

. Llu j,(~+m-l) (A.l) 

Here a vector, Llu j E wn representing the m future input moves of input variable 

f is related to the future p output changes, Y gEm P of output variable g through the 

step-weight matrix Agf E mpxm
. The expression can be expressed as follows. 
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(A.2) 

Where each input move is defined as: iJUj,(k)=Uj,(k+l)-Uj,(k) and Yg 1S given as a 

deviation variable that represents the deviation from the current steady-state. 

A 

This model gets its name from the fact that the first column of matrix Ag,j 

represents the response of the system to a unit step change in U at time, t = 0 . 

Figure A.1 shows the response of a first-order system to a unit step change in u. 

This response is compared with the values of the first column of the step-weight matrix that 

represents this process i.e. the step-weights. The solid line shows the continuous output 

response and the step weights are shown as bars. 

Output I"': I"'" r'" 
~Response ~ ~ 

\~v'r;' 
y t-- rI 

k k+1 k+p 

-
u 

-
I 

k k+1 time k+p 

Figure A.I Comparison of Step-Weights to the Continuous Step Response 

Using the step response coefficients we can predict changes in Y that are caused by 

any control moves. 
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Y g,(k+l) = a 1 . Llu j,(k) 

Y g,(k+2) = a2 . Llu j,(k) + al . Llu j,(k+l) (A. 3) 

"-

The step-weight matrix, AgJ is also called the Dynamic Matrix of the process. 

Observe that the number of rows represents the prediction horizon, p while the number of 

columns represents the input horizon, m or future input moves. The execution time, Ll t 

and p are usually selected so that Yg achieves steady state at the end of the horizon; thus, in 

most cases a p equals the steady-state gain. 

A.2.1 MPC Models for Multiple Input Multiple Output (MIMO) Systems 

The same concept presented for SISO systems is easily extended to multivariable 

systems. The basic equations remain the same, except that the matrices and vectors become 

larger and properly partitioned. 

Consider the multivariable process in Figure A.2. 

Figure A.2 Multiple Input Multiple Output Process 

The relation between outputs y and inputs u for a MIMO case can be modeled as follows. 

Lly = A ·Llu (A.4) 

Where A E mPPxmM is now a multivariable dynamic matrix that includes P output 

variables and M input variables. Each block element is a SISO dynamic matrix that can be 

expressed as follows. 
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o 

(A.S) 

Where Agf E m(pxm) is the dynamic matrix relating the changes in the gth output to 

thefth input. The MIMO Dynamic Matrix A will now have the following structure. 

All A]2 AIM 

A= 
A2] A22 A2M 

(A. 6) 

ApI ApM 

Finally the input and output vectors are properly handled in a stacked form. 

Llu I,(k) Y J,(k+I) 

Llu I,(k+m-J) YJ,(k+p) 
-------------------- --------------

Llu 2,(k) Y2,(k+I) 

Llu = 
Llu 2,(k+m-I) 

y= 
Y2,(k+p) 

CA.7) 
----------.---------- --------------

-------------------- -----------.--

LlUM,(k) YP,(k+J) 

Llu M,(k+m-I) YP,(k+p) 
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A.2 Overview of the Model Predictive Control 

The term Model Predictive Control does not designate a specific control strategy but 

a range of control methods, which make an explicit use of a model of the process to obtain 

the control signal by minimizing an objective function. Basically an MPC algorithm is 

composed of the following (Camacho and Bordons, 1999): 

• 

• 

• 

Explicit use of a dynamic model to predict process output at future time instants. 

Calculation of a control sequence minimizing an objective function. 

Use of a receding strategy, where the only the first input move of the control 

sequence is implemented and then the controller is resolved at the next execution 

time. 

Figure A.3 illustrates the two main steps of the basic MPC strategy, (1) First at time, 

k, the controller uses past information to predict the future, "open-loop" behavior of the 

process output. The output prediction assumes that future control actions are zero and 

includes the predicted effects of past input moves, measured disturbances and a feedback 

estimate of unmeasured disturbances. (2) Then the controller calculates a set of input moves 

that will minimize an objective function that in some manner measures the difference 

between the predicted output and the output set points. 

156 



M.A.Sc. Thesis - Alberto J. Olvera-Salazar McMaster University - Chemical Engineering 

(1) Set Point 

Measured Output 

Input 

k k+l k+m 
Future 

.. 
Past 

(2) Set Point 

Computed Ominl! .input , __ r 

k k+J k+m 
Future 

.. 
Past 

Figure A.3 Basic steps for MPC Strategy 

A.3.1 Description of the MPC Algorithm 

Let's begin the treatment of the MPC algorithm by illustrating the block diagram 

representation in Figure A.4. 
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Controller t--lI,,-k -.-~ Process ZOH~ 
lIV)L ___ ---' 

Process 
Model 

d k ,dk+l, ... d k+p Disturbance d k 
~-------------------' 

Prediction 

Figure A.4 Block Diagram of the MPC Algorithm 

y*v) 

At any arbitrary sample time, denoted by k, the problem can be stated as follows. 

Given a desired output trajectory YZ~1,yf!t2,· .. ,yf!tp' compute a predicted trajectory of the 

output ~f+l,Yf+2'''',Yf+p) based on past inputs. Then compute an estimate of the 

disturbances and finally compute the control actions 

(LlUk,Lluk+]>· .. ,Lluk+m) needed to bring the output to the desired trajectory and an estimate of 

the output trajectory, assuming that the current control action Lluk is implemented. 

Once all the parameters and variables are specified the MPC algorithm begins with 

the open loop prediction of the future output using past input information. This vector, yP 

contains the predicted values of the output over the horizon p and captures the state of the 

system. This prediction can be calculated as shown below. 

(A. 8) 

It is important to note that this calculation requires storing a number of past input 

values. Also, to limit the stored past measurements to a reachable size, Llu inputs for k + nss 

are summed and then multiplied by the steady-state gain. Where nss refers to the closed­

loop settling time of the process. 
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The next step is to estimate the current disturbance. Here the estimate is evaluated 

by calculating the difference between the prediction of yf and the current measured value 

(A. 9) 

One specific manner for estimating future disturbances commonly employs the 

assumption that the current error between the plant and the model will remain unchanged 

throughout the output horizon. 

(A.1D) 

Then using the Dynamic Matrix model, AE9tpxm the future output, YEmP can be 

calculated using the past predictions, yP EmP the disturbance estimates, dEmP and the 

future control actions LlUEm ll1 as follows: 

y == yP + ALlu + d (A. 1 1) 

The objective of the MPC controller is to reduce the deviations of these output 

predictions from the desired set points. This research considers the QDMC algorithm 

(Garcia and Morshedi, 1986), which for MIMO systems can be formulated as the following 

quadratic programming (QP) problem. 
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(A. 12) 

s.t. Y == ALiu + yP + d (A. 12a) 

Where A E 9t(p.P)x(IIl.M) 

Q E 9t(P'P)x(p,P) R E 9t(IIl·M)x(IIl·M) 

The control moves can be computed using the linear least square solution. 

(A. 13) 

Where A is the full dynamic matrix and vector e == yP - ySP + d contains the 

feedback information. The tuning parameters Q and R are discussed later in this appendix. 

Finally only the first element of each input variable, Llu /,(1) for f == 1,. .. ,M 1S 

implemented and the entire procedure is repeated. 

A.3.2 Constrained Model Predictive Control 

One of the main strengths of MPC is its systematic way to handle constraints. In this 

section input and output constraints are introduced, and the resulting QP optimization 

problem is described. 

First consider putting a constraint on the size of the control moves. 

(A. 14) 

These constraints preclude having severe control moves in order to bring the system 

back to the set point. Another approach typically employed in practice is to add some 

additional penalty terms to the objective function. This is called the move suppression 
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factor, referred in thesis with parameter R, and it basically serve the dual putpose of 

suppressing aggressive control action and conditioning the system matrix prior to inversion 

(Shridhar and Cooper, 1998). 

Another type of constraints on input variables account for the limits on the upper 

and lower values achievable by Uk' These constraints can be expressed as follows: 

i 

uk+i = uk-J + L,1Uk+ j (A.1S) 
j=O 

min max 
U '5, Uk+i '5, U for i = O,l,2, .. ·,m 

These constraints contain the entire input horizon m. 

Finally, the output constrains are incotporated by considering the effect of the 

control moves on the future output values. 

Or using the model. (A. 1 6) 

Adding this constrains to the input constraints may result in situations where there is 

no feasible solution to the QP problem. Softening the output constraints avoids this 

feasibility problem. Basically a nonnegative slack variable, z 20 is created and added to the 

output constraint. 

(A. 17) 

A corresponding weighting factor, Z is added to the objective function. The 

resulting constrained MPC problem is the following: 

(A.18a) 
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s.t. y=ALlu+yP +d 

z~o 

(A.18b) 

(A. 18c) 

(A.18d) 

(A.18e) 

(A.18f) 

The controller continuously 1TIlll11n1Zes the output constraint violations by 

minimizing the slack variable. The weighting matrices Q, Rand Z can be chosen to achieve 

a desired degree of control over the constraint violation. In this work this weighting matrices 

have the following characteristics: 

• Diagonal 

• Same weight per variable throughout horizon 

• Nonnegative values. 

A.3.3 Tuning Parameters 

This section presents a brief description of some of the tuning parameters used in 

the MPC algorithm. Some of these guidelines are taken from Marlin, (2000) and are followed 

throughout this thesis. 

Sample time, LIt, and prediction horizon, p. The output horizon should be as 

long as the closed-loop settling time of the process, to guarantee that the process has 

reached steady-state at the end of the horizon. And the sample time should be a small 

fraction of the closed-loop settling time of the process. 

The input horizon, m on the other hand should be kept small, typically one-quarter 

to one-third the length of the output horizon. Garcia and Morari (1982) showed that keeping 

p » m enhances the stability of the system. 
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As mentioned above the move suppression factors, R represent the relative 

importance of adjustments in each process input. These parameters are used to control the 

dynamic behavior of the system. The move suppression factors are also used to introduce a 

degree of robustness into the controller. 

Finally the weightings of the process outputs, Q represent the relative importance 

of each output deviation from its set point. 
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Appendix B. Block Relative Gain (BRG) 

The Block Relative Gain (BRG) generalizes the concept of RGA to handle 

multivariable block structures (Manousiouthakis, et aI., 1986); therefore, it is a useful method 

for finding suitable pairings for block decentralized control. The BRG measures the 

interaction among multivariable controllers and in this appendix is explained using two 

blocks, although it can be generalized to any number of blocks. 

(B.1) 

Where Yi and Ui are vectors of output and input variables, respectively, with dimension mi . 

The BRG for variable pairing (YJ,Uj) is defined as the ratio of the open-loop block 

gain matrix and the apparent gain matrix in the same loop when all other control loops are 

closed. 

(B.2) 

Where G]]{s) is the ml xml transfer function relating the first ml inputs and outputs 

of G(s) and lG-1 (s )J11 is the corresponding block of lG-1 (s)J. 

An alternative way to define the BRG is the following (Kariwala et aI, 2003). 

Consider the LTI process y{s) = G u{s)+ d{s) to be partitioned such that Gij (s) is a mi x m j 

transfer function matrix. 

(B.3) 

Y2 (s) = G21(s )Ul{S)+ G22 (s )U2{S)+ d2 (s) 

When (YbU2) is perfectly controlled and d(s)"" ° , at steady state, Y1 and U1 are 

related through the Schur complement of G22 . 
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(B.4) 

Now, The steady-state BRG between Y1 and U1 can be defined as follows. 

(B.5) 

BRG has some algebraic properties (Manousiouthakis, et aI., 1986): 

• Any permutation of rows and columns in the process open-loop process gain 

maW 

• 

• 

x G(O) results in the same permutation in the BRG . 

BRG is independent of input scaling but dependent on output scaling. However, 

the diagonal elements of BRG are invariant under input and output scaling. 

• The values of the diagonal elements of BRG are equal to the summation of all 

the relative gain values within the same rows. 

Similar to RGA, BRG has rigorous relation with closed-loop properties such as 

• Stability - Choosing a multivariable diagonal controller with negative 

determinant of BRG will cause at least one of three undesired situations: the 

• 

multivariable control system by itself is unstable, the whole closed-loop system is 

unstable or the closed-loop system without the multivariable controller is 

unstable. Therefore, the general loop pairing guideline is to choose multivariable 

controller with positive determinant of BRG. 

Robustness - The spectral radius of any BRG associated with the system is the 

lower bound of Euclidean condition number of the system. In general, a control 

system with large maximum singular value of BRG is difficult to control. 
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• Integrity - Selecting control with positive determinant of BRG is a necessary 

condition for Integral Controllability with Integrity for block centralized 

structure (Chiu and Arkun, 1990). 
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Appendix C. Nominal Stability - A Two by 
Two Case. 

In Chapter 4, the stability analysis of a "single-input horizon" two by two D-MPC 

controller was shown to be nominally unstable for negative BRG (RGA) for some values of 

the tuning constants. No rigorous analysis shows that this behaviour occurs for more 

complex D-MPC systems. However, we have encountered nominally unstable controllers, 

and this appendix documents some results obtained by numerical experimentation. 

In this appendix the D-MPC control system in Case Study I (two by two distillation 

column) is analyzed for nominal stability. The analysis considers a negative RGA 

configuration, where the interactions are dominant. The tuning parameters considered for 

this analysis are the same used in the simulations and with exception of the move 

suppression factor (R), which is modified to analyze the regions of nominal stability. Figure 

C.l shows the results of the analysis where three main regions are detected. 

The methodology used for the analysis was basically trial and error, where (1) a set of 

move suppression factors is selected, (2) then a closed loop simulation is performed and (3) 

the nominal stability is verified using the closed loop stability expression developed in 

Chapter 4. 

An important result is that the stable region is bounded between two different 

unstable zones. Therefore, we can state that when starting within the stable region, 

increasing or decreasing the values of R will produce an unstable controller. Figure C.2 

contains the small section referred Figure C.l and it shows an interesting behaviour. 
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I Unstable I 

0.6 

1 Stable I·.·· 

0.3 0.35 0.45 05 

Figure C.l Distillation Column - Stability Regions (Negative RGA) 

, 
1.5 

Figure C.2 Distillation Column - Stability Regions (Negative RGA) 
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In Figure C.2, it can be observed that the unstable region is surrounded between two 

different stable regions. Even more surprising is the fact that there is a small stable region 

within this unstable region. Finally the smallest region (stable) contains the origin (R = 0) 

which follows because the process in open-loop stable. 

Finally, it is important to remark that a considerable number of tuning combinations 

were evaluated to obtain the results illustrated in the figures; however, it is acknowledged 

that there could be other regions. 
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Appendix D. Distillation Column with Model 
Mismatch. 

The cases in the body of the thesis reported results for D-MPC control systems 

without mismatch. Therefore, this appendix presents the distillation column case study with 

model-mismatch. The different cases consider situations where the feed flow rate has either 

increased or decreased by a certain percentage. The process dynamic parameters for the two 

mismatch cases and the nominal case are given in Table D.l 

Table D.l Process Dynamic Parameters 

Parameter Description 
Case 1 Nominal Case Case 2 

(20% Feed Increase) (Model in Controller) (20% Feed Decrease) 

Steady State 
(0.0623 - 0.0556J (0.0747 - 0.0667J (0.0934 - 0.0834J Kp Gain, 

0.0978 -0.1044 0.1173 -0.1253 0.1466 - 0.1566 (kgmol/ min)-l 

Time constant, Co 12.5J ( 12 15 J ( 15 18.75J 
(min) 9.8 8.5 11.75 10.2 14.68 12.75 

() Dead time, (min) ( 2.5 
2.75 

1.67) 
1.67 (/3 ~J (3.75 

4.13 
2.5J 
2.5 

The case studies presented in this appendix have the objective to demonstrate to a 

certain extent that the D-MPC controller provides sufficient robustness to handle model 

uncertainty. The tuning for these cases is the same as reported in Section 5.3 for the D-MPC 

controller. 

The first case considers a situation where the feed flowrate has increased by 20%, 

let's note that because the levels on trays and accumulation vessels are assumed not to 

change significantly the dynamics of the process becomes faster. The process is simulated 

for set point changes in X D and X B' Input constraints and noise measurement are also 

considered. 
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Figure D.l illustrates the closed loop simulation using a positive RGA configuration 

and Figure D.2 shows the simulation using a negative RGA configuration. The results are as 

expected where the D-MPC produces offset only in the loop (block) in which the 

manipulated variables saturates. 

Te second case considers a feed flowrate decrease of 20%. Figure D.3 and Figure 

D.4 show the closed loop simulations for positive and negative RGA configurations 

respectively. 

In all cases, the dynamic behavior is satisfactory. The dynamic responses are stable 

and do not experience undesirable behavior (excessive oscillations or overshoot). While 

these results do not provide guarantees for robust performance, they demonstrate that the 

D-MPC controller has promise for realistic applications with mismatch. 
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Figure D.l Constrained Control- 20% Feed Flowrate Increase (positive RGA) 
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Figure D.2 Constrained Control- 20% Feed Flowrate Increase (Negative RGA) 
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Figure D.3 Constrained Control- 20% Feed Flowrate Decrease (positive RGA) 
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Figure D.4 Constrained Control- 20% Feed Flowrate Decrease (Negative RGA) 
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Appendix E. Software Implementation 

This appendix describes the basic structure of the software developed for the 

implementation of the D-MPC controller. Figure E.1 presents a schematic representation of 

the software structure for a given case study. 
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Figure E.1 Software Structure for a Given Process 

The core of the simulation is programmed in MATLAB, but the controller 

calculations could be performed of two different forms depending on the selected D-IvIPC 

strategy. 

(1) If the Heuristic D-MPC is selected an active set strategy programmed in 

MATLAB is executed. The basic active set algorithm is described in Section 3.4. 

(2) For the D-MPC that uses the full set of KKT conditions the software requires 

an interface program that links MA TLAB and the modelling language AM"PL, 

this in turn calls for the IPOPT-C solver and then return the control calculations 

to the MATLAB simulator. The MATLAB-AMPL interface developed for this 

research basically transforms a set of MATLAB variables into a set of data files 

(*.dat) that are stored and then accessed from a hard disk. 
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