INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and

there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9° black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

®

800-521-0600

SUPPLY CONNECTED
LOCATION-ALLOCATION PROBLEM

By
GULCAN N. YESILKOKCEN

A Thesis
Submitted to the School of Graduate Studies in
Partial Fulfillment of the Requirements
for the Degree
Doctor of Philosophy

McMaster University
©Copyright by Giilcan N. Yesilkokcen, August 1997

SUPPLY CONNECTED
LOCATION-ALLOCATION PROBLEM

i

DOCTOR OF PHILOSOPHY (1997) McMaster University
(Management Science/Systems) Hamilton, Ontario

TITLE: Supply Connected Location-Allocation Problem
AUTHOR: Giilcan N. Yesilkokgen
M.Sc. Bilkent University
B.Sc. Bilkent University
SUPERVISORY COMMITTEE: Prof. George O. Wesolowsky (Chairman)
Prof. Robert F. Love

Prof. George Steiner
NUMBER OF PAGES: xxiii. 241

iii

Abstract

This study introduces a new model for a location distribution system,
which is called the Supply Connected Location Allocation Problem (SCLAP). The
problem involves locating p facilities with respect to n demand points and a supply
plant. The supply plant originates all material in the system and distributes it to
facilities along a route to be determined. Facilities then distribute the material to
demand points via direct shipments. The problem minimizes the cost of shipping
material from supply plant to all demand points via facilities.

A description of the model is given and its subproblems are discussed in
relation to well-known models in the literature. The problem is then investigated in
three avenues: First, some special cases on which the problem is efliciently solvable are
identified. For this, simple structured networks (e.g. a line and a tree) are considered.
A dynamic programming solution procedure with polynomial time complexity is
developed for the case on a line and it is extended to a special case of tree networks.

Second, the problem is considered on general networks and a single
assignment branch-and-bound algorithm is proposed to solve it. The algorithm is
tested on randomly generated networks for relatively small sizes of problem instances.
Discussions on the computational results are given with respect to computation time
and the size of the branch and bound tree.

Next, local search type heuristics are discussed briefly and two heuristic
approaches are developed. Two versions of algorithms are constructed for each of
those heuristics and they are tested on randomly generated networks, with respect to

computation time and closeness to optimality (when optimal solutions were available)

iv

or to closeness to the best solution found. Finally, the study is concluded with

recommendations for future research.

Preface

Findings of Chapters 2 and 3 of this thesis have already been prepared for
publication by the candidate, co-authored by Professor George O. Wesolowsky. The
first paper which includes the findings in Chapter 2 has been submitted for publication
to Location Science in November 1996, and the second paper which discusses the
findings in Chapter 3 is submitted to the ISOLDE VII Special Issue of Location
Science in December 1996. Both papers are currently under the refereeing process.
All the research and the findings in those papers were done by the candidate under

the supervision of Professor George O. Wesolowsky.

Acknowledgements

I would like to thank Professor George O. Wesolowsky, my supervisor. for
his invaluable guidance and support throughout the development of this research.

I wish to extend my thanks to the members of my supervisory committee.
Professor Robert F. Love and Professor George Steiner, for their helpful comments
and suggestions on this thesis.

Finally. I wish to thank my family for their continuous love and support

that reach me from thousands of miles away.

to my parents

Contents

1 Introduction and Literature Review

1.
1.

1.

1

2

o
i

1

2

3

4

1

Location-Allocation Problems

Network and Discrete Location Problems

................

1.2.1 The p-Median Problem

1.2.2 The Uncapacitated Facility Location Problem

.........

Routing Problems

.............................

1.3.1 The Traveling Salesman Problem (TSP)

1.3.2 The Time-dependent TSP

1.3.3 The Delivery Man Problem (DMP)

Location-Routing Problems and The Supply Connected Location-

Allocation Problem (SCLAP)

......................

SCLAP on a Line and a Tree

The Case on a Line

............................

2.1.1 Dynamic Programming Solution Procedure

2.1.2 Example

...........

.............................

............................

CONTENTS

ix

3 A Single Assignment Branch-and-Bound Algorithm 63
3.1 Problem Definition and Terminology 63
3.2 Boundsfor SCLAP 66
3.3 A Single Assignment Branch & Bound Algorithm for Solving SCLAP 74
331 Example 75

3.4 Computational Results 30

4 Heuristic Approaches to Solving SCLAP 95
4.1 Local Search Heuristics 96
4.2 Location-Routing-Allocation (LRA) Heuristic 99
4.3 Allocation-Routing-Location (ARL) Heuristic 104
4.4 Location-Allocation-Routing (LAR) Heuristic 111
1.5 Computational Testing and Performance Comparison of Heuristics . . 113

5 Conclusions and Future Research 128
5.1 Summary e e e e e e e e 128
5.2 Directions for Future Research 132
5.2.1 The Weighted Delivery Man Problem (WDMP) 132

5.2.2 Variationsof SCLAP 133

5.2.3 Effect of Scaling Factora 134

5.2.4 Tighter Bounds on the Optimal Objective Function Value .. 135

5.2.5 Mathematical Programming Approaches 135

5.2.6 Improvements on the Local Search Heuristics 136

53 Conclusion o . . e e e e e e e e e e e e 137

CONTENTS

A The Weighted Delivery Man Problem on Trees

B Comparisons for Each Test Problem: Exact vs Heuristic

B.1 Comparisons for Closeness to Optimality

B.1.1
B.1.2
B.1.3
B.1.4
B.1.5

Comparisons for Computation Times

B.2.1
B.2.2
B.2.3
B.2.4

B.2.5

................

Test Problems with 10 Demand Points

Test Problems with 20 Demand Points

Test Problems with 30 Demand Points

.............

Test Problems with 40 Demand Points

Test Problems with 50 Demand Points

..................

Test Problems with 10 Demand Points

Test Problems with 20 Demand Points

Test Problems with 30 Demand Points

.............

Test Problems with 40 Demand Points

Test Problems with 50 Demand Points

.............

C Comparisons for Each Test Problem: Heuristic vs Heuristic

C.1 Comparisons for Closeness the Best Solution Found

C.l1
C.1.2
C.13
Cl4

Comparisons for Computation Times

C.21
C.2.2

Test Problems with 20 Demand Points

Test Problems with 30 Demand Points

.............

Test Problems with 40 Demand Points

.............

Test Problems with 50 Demand Points

.............

..................

Test Problems with 20 Demand Points

.............

Test Problems with 30 Demand Points

.............

171
176
180
182

CONTENTS

xi

C.2.3 Test Problems with 40 Demand Points 204

C.2.4 Test Problems with 50 Demand Points 207

D Comparisons for Each Test Problem: LRA(A) vs LRA(B) 210
D.1 Test Problems with 30 Demand Points 210
D.2 Test Problems with 40 Demand Points 213

D.3 Test Problems with 50 Demand Points 218

List of Figures

3.1
3.2
3.3
3.4

11

Diagram of the Example Problem Network 76
Data for the Example Problem 76
B&B Tree of the Example Problem 79
Effect of a on Processing Time 87
Flowchart of Algorithm LRA(A) 103
Flowchart of Algorithm ARL(A) 110

List of Tables

2.1 Data for the Example Problem

o
[\

Stage 4 of DP Algorithm, j =4.t; =t; =9

Stage 3 of DP Algorithm. j = 3

!\J

(V]

Stage 2 of DP Algorithm, =2

[SV]
n

Stage 1 of DP Algorithm, j =1

.....................

3.1 Processing Times of B&B Algorithm for 10-node Examples

3.2 Processing Times of B&B Algorithm for 10-node Examples (continued)
3.3 Processing Times of B&B Algorithm for 20-node Examples
3.4 Processing Times of B&B Algorithm for 20-node Examples (continued)
3.5 Processing Times of B&B Algorithm for 30.40,50-node Examples . . .
3.6 Processing Times of B&B Algorithm for 30.40,50-node Examples

(continued)

................................

3.7 Number of Nodes in the B&B Tree for 10-node Examples

3.8 Number of Nodes in the B&B Tree for 10-node Examples (continued)
3.9 Number of Nodes in the B&B Tree for 20-node Examples

3.10 Number of Nodes in the B&B Tree for 20-node Examples (continued)
3.11 Number of Nodes in the B&B Tree for 30,40,50-node Examples

LIST OF TABLES

xiv

3.12 Number of Nodes in the B&B Tree for 30,40,50-node Examples
(comtinued) 94
41 CPUfor10nodeexamples 115
42 CPUfor 20nodeexamples 116
4.3 CPU for 30, 40 50 node examples 117
44 % Error for 10 nodeexamples 118
4.5 % Error for 20 nodeexamples 119
1.6 % Error for 30, 40 and 50 node examples 120
4.7 Average Processing Times of the Heuristic Algorithms. 122
1.8 Average % Difference from the Best Solution Found 123
1.9 Number of Times Best Solution was Found by Each Heuristic 124

1.10 Performance of Two Versions of the LRA Type Heuristic for Larger
Instances 126
B.1 % Error: Test Problem No. 1 (n=10) 144
B.2 % Error: Test Problem No. 2 (n=10) 145
B.3 % Error: Test Problem No. 3 (n=10) 145
B.4 % Error: Test Problem No. 4 (n=10) 146
B.5 % Error: Test Problem No. 5(n=10) 146
B.6 % Error: Test Problem No. 6 (n=10) 147
B.7 % Error: Test Problem No. 7(n=10) 147
B.8 % Error: Test Problem No. 8 (n=10) 148
B.9 % Error: Test Problem No. 9 (n=10) 148

B.10 % Error: Test Problem No. 10 (n=10)

LIST OF TABLES

B.11 % Error:
B.12 % Error:
B.13 % Error:
B.14 % Error:
B.15 % Error:
B.16 % Error:
B.17 % Error:
B.18 % Error:
B.19 % Error:
B.20 % Error:
B.21 % Error:
B.22 % Error:
B.23 % Error:
B.24 % Error:
B.25 % Error:
B.26 % Error:
B.27 % Error:
B.28 % Error:
B.29 % Error:

B.30 % Error:

B.31 % Error:

B.32 % Error:
B.33 % Error:
B.34 % Error:

Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No. 7
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.

Test Problem No.

Xv
L (R=20) © o oo 150
2(n=20) 151
3(n=20) 151
4(n=20) 152
5(n=20) . . .o 152
6(n=20) 153
T(=20) . .o 153
B(n=20) 154
9(n=20) 154
10(n=20) 155
1(n=30) 155
2(n=30) 156
3(n=30) 156
4(n=30) 156
5(n=30) 157
6 (n=30), 157
T(R=30) . oo 157
8(n=30), 158
9(M=30) . . e 158
I00(n=30) 158
1(n=40) 159
2(n=40) 159
3(n=40) 159
A(n=40) 159

LIST OF TABLES

B.35 % Error:
B.36 % Error:

B.37 % Error:
B.38 % Error:
B.39 % Error:

B.41 % Error:
B.42 % Error:
B.43 % Error:
B.44 % Error:
B.45 % Error:
B.46 % Error:
B.47 % Error:
B.48 % Error:
B.49 % Error:
B.50 % Error:

B.51 Processing Times:
B.52 Processing Times:
B.53 Processing Times:
B.54 Processing Times:
B.55 Processing Times:
B.56 Processing Times:
B.57 Processing Times:

B.58 Processing Times:

Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.

Test Problem No.

Test Problem No.
Test Problem No. :
Test Problem No.
Test Problem No. A
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.

Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.

xvi

5n=40) 160
6 (n=40) 160
Tn=40) 160
8(n=40) 160
9(n=40) 161
................. 161

L(n=50) . . o oo 161
2(n=30) 161
3(m=50) 162
4(n=50) 162
5(M=50) . . o v 162
6 (n=50) 162
TM=50) oot 163
8(n=50) 163
9(n=30) 163
10(n=50) 163
1(r=10). 165
2(n=10) . . . oo 166
3(n=10) 166
4(n=10)............. 167
5(Mm=10). 167
6(n=10) 168
T(M=10)o u... 168
8(n=10) 169

LIST OF TABLES

B.59 Processing Times:
B.60 Processing Times:
B.61 Processing Times:
B.62 Processing Times:
B.63 Processing Times:
B.64 Processing Times:
B.65 Processing Times:
B.66 Processing Times:
B.67 Processing Times:
B.68 Processing Times:
B.69 Processing Times:
B.70 Processing Times:
B.71 Processing Times:
B.72 Processing Times:
B.73 Processing Times:
B.74 Processing Times:
B.75 Processing Times:
B.76 Processing Times:

.77 Processing Times:
B.78 Processing Times:
B.79 Processing Times:
B.80 Processing Times:
B.81 Processing Times:

B.82 Processing Times:

Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No. 5
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.

Test Problem No.

9(n=10)............. 169
0(n=10) 170
1(n=20)............. 171
2(n=20) . . . 172
3(n=20)............. 172
1(n=20)............. 173
5(n=20)............. 173
6 (n=20) 174
T(n=20) 174
8 (n=20) 175
9 (n=20) 175
10(n=20) 176
1(n=30) 176
2(n=30) 177
3(n=30) 177
4(n=30)............. 177
5(Mn=30)............. 178
6(n=30)............. 178
T(n=30)............. 178
8(n=30)............. 179
9(n=30)............. 179
10(n=30) 179
1(R=40) . . . o o 180
2(n=40) 180

LIST OF TABLES

B.83 Processing Times:
B.84 Processing Times:
B.85 Processing Times:
B.86 Processing Times:
B.87 Processing Times:
B.88 Processing Times:
B.89 Processing Times:
B.90 Processing Times:
B.91 Processing Times:
B.92 Processing Times:
B.93 Processing Times:
B.94 Processing Times:
B.95 Processing Times:
B.96 Processing Times:
B.97 Processing Times:
B.98 Processing Times:
B.99 Processing Times:

B.10(Processing Times:

Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No. 2
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No. 7
Test Problem No.
Test Problem No.

Test Problem No.

C.1 % Difference: Test Problem No. 1 (n=20)

C.2 % Difference
C.3 % Difference
C.4 % Difference
C.5 % Difference

: Test Problem No. 2 (n=20)

: Test Problem No.
: Test Problem No.

: Test Problem No. 5

. .

. .

.............

............

.............

.............

.............

............

.............

.............

LIST OF TABLES

C.6 % Difference:
C.7 % Difference:
C.8 % Difference:
C.9 % Difference:
C.10 % Difference:
C.11 % Difference:
C.12 % Difference:
C.13 % Difference:
C.14 % Difference:
C.15 % Difference:
C.16 % Difference:
C.17 % Difference:
C.18 % Difference:
C.19 % Difference:
C.20 % Difference:
C.21 % Difference:
C.22 % Difference:
C.23 % Difference:
C.24 % Difference:
C.25 % Difference:
C.26 % Difference:
C.27 % Difference:
C.28 % Difference:
C.29 % Difference:

Test Problem No.
Test Problem No.

Test Problem No.

Test Problem No

Test Problem No

Test Problem No.
Test Problem No. 2
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.

Test Problem No.

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

xXix

LIST OF TABLES

C.30 % Difference:
C.31 % Difference:
C.32 % Difference:
C.33 % Difference:
C.34 % Difference:
C.35 % Difference:

C.36 % Difference:

Test Problem No.
Test Problem No.
Test Problem No. 2
Test Problem No.
Test Problem No. -
Test Problem No. 3

Test Problem No.

C.37 % Difference:
C.38 % Difference:
C.39 % Difference:
C.40 % Difference:
C.41 Processing Times:
C.42 Processing Times:
C.43 Processing Times:
C.44 Processing Times:

C.45 Processing Times:

C.46 Processing Times:
C.47 Processing Times:
C.48 Processing Times:
C.49 Processing Times:
C.50 Processing Times:
C.51 Processing Times:
C.52 Processing Times:

C.53 Processing Times:

Test Problem No.
Test Problem No.
Test Problem No.

Test Problem No.

Test Problem No.
Test Problem No.
Test Problem No. -
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.

Test Problem No.

...............

...............

...............

.............

.............

.............

.............

............

.............

.............

.............

LIST OF TABLES

C.54 Processing Times:
C.55 Processing Times:
C.56 Processing Times:
C.57 Processing Times:
C.58 Processing Times:
C.39 Processing Times:
C.60 Processing Times:
C.61 Processing Times:
C.62 Processing Times:
C.63 Processing Times:
C.64 Processing Times:
C.65 Processing Times:
C.66 Processing Times:
C.67 Processing Times:
C.68 Processing Times:
C.69 Processing Times:
C.70 Processing Times:
C.71 Processing Times:
C.72 Processing Times:
C.73 Processing Times:
C.74 Processing Times:
C.75 Processing Times:
C.76 Processing Times:

C.77 Processing Times:

Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.

Test Problem No.

Test Problem

Test Problem

Test Problem No.
Test Problem No. -
Test Problem No.
Test Problem No.

Test Problem No.

Test Problem
Test Problem

Test Problem

Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.
Test Problem No.

Test Problem No.

No.
No.

.............

.............

.............

.............

.............

.............

.............

.............

.............

LIST OF TABLES

xxii
C.78 Processing Times: Test Problem No. 8 (n=50) 208
C.79 Processing Times: Test Problem No. 9 (n=50) 209
C.80 Processing Times: Test Problem No. 10 (n=50) 209
D.1 Test Problem No. 1 (n=30) 210
D.2 Test Problem No. 2(n=30) 211
D.3 Test Problem No. 3(n=30) 211
D.4 Test Problem No. 4 (n=30) 211
D.5 Test Problem No. 5(n=30) 211
D.6 Test Problem No. 6 (n=30) 212
D.7 Test Problem No. 7(n=30) 212
D.8 Test Problem No. 8(n=30) 212
D.9 Test Problem No. 9(n=30) 212
D.10 Test Problem No. 10 (n=30) 213
D.11 Test Problem No. 1 (n=40) 213
D.12 Test Problem No. 2 (n=40) 214
D.13 Test Problem No. 3(n=40) 214
D.14 Test Problem No. 4 (n=40) 215
D.15 Test Problem No. 5(n=40) 215
D.16 Test Problem No. 6 (n=40) 216
D.17 Test Problem No. 7(n=40) 216
D.18 Test Problem No. 8 (n=40) 217
D.19 Test Problem No. 9(n=40) 217

D.20 Test Problem No. 10 (n=40) 218

LIST OF TABLES

D.21 Test Problem No.
D.22 Test Problem No. :
D.23 Test Problem No.
D.24 Test Problem No. -
D.25 Test Problem No. 5
D.26 Test Problem No.
D.27 Test Problem No. 7
D.28 Test Problem No.
D.29 Test Problem No.
D.30 Test Problem No.

.......................

.......................

Chapter 1

Introduction and Literature
Review

With businesses becoming larger and ever more complex, the problems that need to
be modeled. formulated and solved, also grow in their size and complexity. Real
life applications, in general, involve many aspects of a problem to be optimized
simultaneously. and therefore hybrid formulations of two or more "classical” types
of problems are common. Aside from the growing requirements of solutions to large
and complex real-life problems, advances in computer technology allow such problems
to be relatively more tractable. One example of such hybrid models is the Location-
Routing Problem (LRP). Consider a case where a factory has to ship its product to
warehouses. from where the goods will be distributed to customers. The problem to be
solved in this case, may involve determining the number of warehouses to be opened,
their locations, and the set of customers that each warehouse will serve, as well as
the routes for shipment for goods from factory to warehouses or from warehouses to
customers. LRPs therefore optimize routing, location, and allocation simultaneously.

In effect. LRPs incorporate the classical Location-Allocation and Routing problems.

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW

(0]

We will study each of these classical types of problems and discuss their relationship

to LRPs, before introducing the problem we study in this thesis.

1.1 Location-Allocation Problems

Location Problems arise in a variety of contexts. Location of stores, retail outlets.
warehouses, or factories is a crucial factor in costs and profitability of a company
in the private sector. Locations of emergency facilities, fire stations, ambulances,
and hospitals are important concerns for public sector entities. For example, even
individuals, when deciding to buy a new house, are faced with location problems.
Different aspects of a house’s location may increase or decrease its monetary value.
Closeness to amenities such as grocery stores. schools. parks, or distance from a
garbage dump site might add or deduct significant amounts to and from the value of
the property just as the physical aspects of the house would do.

A typical facility location problem addresses the questions of where to
locate. how many facilities to locate, etc. In some cases where there is more than one
facility to locate. the interaction between the customers and the facilities may not
be known a priori. and the decision to allocate customers to one of the facilities has
to be made simultaneously with the locational decisions. Those kinds of problems
are referred to as location-allocation problems (Love, Morris. and Wesolowsky 1988).
In most cases in the literature, however, location problems also refer to both pure
location and location-allocation problems. In this section of the thesis we focus our
attention on location-allocation problems and whenever the term "location problem”

is used it is assumed that the allocation component has to be determined as well.

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 3

Costs related to transportation constitutes an important component in
many [irms’ operations. Locational decisions are a major factor affecting these
transportation costs. Therefore, in many location problems, the typical measure
of quality of service is some function of distances between facilities and customers.

Quantitative approaches to formulating and solving location problems
date back to early seventeenth century. Fermat (1601-1653) proposed the question;
“given three points in the plane, {ind a fourth point such that the sum of its
distances to the three given points is minimum”. Wesolowsky (1993) gives a detailed
discussion of the origins of the problem and contributions to it in the literature
from a historical perspective. The problem, often called the Weber Problem (due to
Weber 1909) or the Fuclidean Minisum Problem, has attracted many researchers from
many [ields and numerous generalizations have been constructed. Today, the broader
area of location analysis involves many researchers from a wide variety of academic
fields which span computer science, economics, engineering, geography, management
science, mathematics, operations research, and urban planning and regional science.

As pointed out in the editorial of the first issue of the Location Science

journal (Church, Current, and Eiselt 1993), there are many factors which create this

tremendous interest in location analysis:

‘...First, location decisions are frequently made at all levels of human
organization from individuals and households to firms, governments,
and international agencies. Second, such decisions are often strategic

in nature; that is, they involve significant capital resources and their

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 4

economic effects are long term in nature. Third, they frequently impose
economic externalities. Such externalities include economic development,
as well as pollution and congestion. Fourth, location models are often
extremely difficult to solve, at least optimally. Even some of the most
basic models are computationally intractable for all but the smallest
problem instances. In fact. the computational complexity of location
models is a major reason that the widespread interest in formulating and
implementing such models did not occur until the advent of high speed
digital computers. Finally, location models are application specific. Their
structural form, “the objectives, constraints and variables”, is determined
by the particular location problem under study. Consequently, there does

not exist a general location model that is appropriate for all, or even most

applications.’

As reflected by the diversity of researchers from different fields, location
problems find applications in many different areas. While hospitals, factories,
warehouses, retail outlets. fire stations etc., are typical examples, applications
of location problems are also found in computer network design, circuit design,
automated manufacturing systems, exploratory oil drills, telecommunications, as well
as forestry, water irrigation systems, etc.

Location decisions are critical at almost every level of a private or a public
service enterprise. They range from location of relatively inexpensive facilities like
computer workstations, or tools in a workshop, to capital intensive investments like

factories, or major hospitals. They may involve location of a single facility or multiple

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW)

facilities. Facilities may also interact with each other (e.g. a plant-warehouse-retail
outlet network), or provide comparable service only to a given set of customers or
demand points. Location decisions may involve one or more sometimes conflicting
objectives. For example, not all facilities are “desirable”. In some cases facilities
like garbage dump sites, nuclear reactors, and waste treatment plants attract public
resistance because people do not want them near their homes. Therefore, they have to
be placed in remote areas: however this in turn results in greater transportation costs.
Additionally. location problems may be posed on a plane, on a transport network,
or sometimes the facilities are required to be located on predefined sets of discrete
points.

Location problems can be classified in a number of ways. depending on
many different aspects of the models. as discussed above. The classifications may
be done according to the location space used (planar vs network vs discrete location
problems), number of facilities to be located (single vs multiple), nature of inputs
(deterministic vs probabilistic). capacity restrictions on facilities (capacitated vs
uncapacitated) and so on. In the first chapter of the book by Daskin (1995). a
taxonomy of location problems and models are provided based on such classifications.
Similar taxonomies have been given by Brandeau and Chiu (1989) and Krarup and
Pruzan (1990). In (Brandeau and Chiu 1989), over fifty different location problems
have been reported. A Bibliography of Location Problems by Domschke and Drexl
(1985) includes well over 1500 entries. Additionally, the book edited by Drezner
(1995) provides a state of the art review of some of the location problems. At the
end of the overview section of (Drezner 1995) a list of fifteen books, sixteen review

articles and fourteen special volumes on location analysis that have been published

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 6

since about 1980 is provided. Some of those include reviews and other books on
location analysis like (Francis and Goldstein 1974), (Francis, L. F. McGinnis, and
White 1992). (Thisse and Zoller 1983), and (Love, Morris, and Wesolowsky 1988).
As it is already pointed out, there is a broad family of location problems.
The subject of this thesis falls into the category of network and discrete location

problems.

1.2 Network and Discrete Location Problems

Network and discrete location problems arise when the location space is a network
or a set of discrete points. In planar or continuous location models, facilities can be
located anywhere on the plane; the demands may also occur anywhere on the plane or
thev may occur at specific points on the plane. In network location models, however.
the demands are assumed to occur only on a network or graph composed of nodes
and links. Facilities can be located only on the nodes or the links of the network.
Networks of highways, railways, pipeline systems, computer communication networks
are examples of such networks used in location problems. In discrete location models.
demands occur at specific points. and facilities are to be located on some set of discrete
points serving as candidate sites. Chhajed, Francis, and Lowe (1993) provide further
discussions on discrete and continuous models and their differences. The reader is also
referred to books by Hurter and Martinich (1989) and Love, Morris, and Wesolowsky
(1988) for discussions on planar location models. For a focus on network and discrete
location models, the reader may consult the books by Handler and Mirchandani
(1979), Daskin (1995) and the book edited by Mirchandani and Francis (1990).

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 7

Among the innumerable extensions and generalizations of the location
problems, a few of the basic models (e.g. p-median, p-center, uncapacitated facility
location, and covering problems) play an important role, not only because they find
variable applications in real life problems, but also because they tend to appear as
subproblems or components of other generalizations (Mirchandani and Francis 1990:
Daskin 1995). We will discuss two of those models in detail, namely the p-median and
the uncapacitated facility location. This is because a special form of the problem we
study reduces to the p-median problem under certain conditions, and an immediate
extension. where the number of facilities to be located are not given and fixed costs

are associated with each facility site, includes uncapacitated facility location as a

special case.
1.2.1 The p-Median Problem

The p-median problem involves finding locations of p facilities among m candidate
sites to serve n demand points. The problem was first formulated by (ReVelle and
Swain 1970). Facilities provide comparable service, therefore each demand point
receives service from the nearest facility. The cost of serving a demand point is directly
proportional to the amount of demand at that point and the distance between the
demand point and the nearest facility. We say a demand point i is allocated to a

facility j, if it receives service from that facility. The problem can be formulated as

follows:

Let the parameters be denoted by
w; = weight (demand) at node i

d;; = distance between demand node i and candidate site j

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 8

p = number of facilities to locate
n = number of demand points
m = number of candidate sites for location of facilities

and the decision variables be denoted by

v 1 if demand point i is allocated to a facility at site
7 0 otherwise
7 1 if a facility is located at candidate site j
i =
0 otherwise

Y;;’s are termed the allocation variables and Z;'s are termed the location

variables. The formulation of the problem is now as follows:

Minimize ZZ w;d;;Y; , (1.2.1.a)
=1 j=1

subject to » Yy = 1 i=1,..n (1.2.1.b)
i

Yz, =p (1.2.1.c)
J=1

Yi—-2, £ 0 i=1l..n j=1..m (1.2.1d)

Y € {01} i=1,...n, j=1,.m (121l.e)

Z € {0,1} j=1..m (1.2.1.f)

The constraints (1.2.1.b) requires that each demand node is allocated to
exactly one facility. Constraint (1.2.1.c) states that there will be exactly p facilities
located. Constraint (1.2.1.d) ensures that a demand point i can only be allocated
to a facility at site j if there is a facility located at that site. Constraints (1.2.1.e)

and (1.2.1.f) are the standard integrality constraints. Based on those constraints, the

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 9

objective function (1.2.1.a) minimizes the total transportation cost (demand-weighted
distance) from each demand node to the nearest facility.

Constraints (1.2.1.d) that link the location and the allocation variables

can be replaced by constraints of the form:
n
Y V;-nZ; <0 . j=l..m (12.1d)
=1
to get an equivalent formulation of the problem (Efroymson and Ray 1966).

The former set of constraints with (1.2.1.d), are called the stronger version.
while the latter with (1.2.1.d’) are called the weaker version. The weaker version of
the constraints reduces the total number of constraints; however, the linear relaxation
of the weaker version obtained by replacing the integrality constraints (1.2.1.e) and
(1.2.1.f) by nonnegativity constraints, results in weaker lower bounds for the optimal
solution value than the stronger version. The linear relaxation of the stronger version
provides what ReVelle (1993) calls “integer friendly” solutions. That is, the results
obtained from the relaxation consists of mostly integer variables.

The p-median formulation given above assumes that there is a finite
number of candidate sites for facilities to be located. This is also true in the context
of networks. Even when the facilities are allowed to be located anywhere on the
network. Hakimi (1965) has shown that for the p-median problem, there ezists at least
one optimal solution such that all facilities are located on the nodes of the network.
This property, which is called the node-optimality property, allows us to formulate the
p-median problem on networks as an Integer Program, by selecting the set of nodes

of the network as candidate sites for the facilities.

The node-optimality property of the p-median problem has been extended

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 10

to several variants and generalizations of the problem. Handler and Mirchandani
(1979), Mirchandani and Odoni (1979), and Mirchandani (1990) discuss such
extensions with other references to the probabilistic demands, oriented networks,
and various transportation cost measures as well as multidimensional networks and
multiple commodities.

The p-median problem is AP-Hard on general networks (Kariv and
Hakimi 1979: Garey and Johnson 1979). Therefore, enumeration type approaches in
solving the problem may require unrealizable computational efforts for large instances
of the problem. Thus, researchers have developed several different approaches for
solving the p-median problem. Those can be classified as (i) graph-theoretic. (i)
heuristic, and (ii1) mathematical programming approaches.

One traditional approach to solving such problems on networks is to
identify simpler network structures on which the problem is efficiently solvable. Tree
networks are one of those network structures that allow efficient solvability for many of
the “difficult” combinatorial optimization problems. Kariv and Hakimi (1979) present
a dynamic programming type algorithm for the problem on trees. The computational
complexity of their algorithm is O(p®n?®), which is second order polynomial on the
number of facilities and the number of nodes of the tree.

Goldman (1971) gives a very simple and elegant algorithm of order O(n)
for the 1-median of a tree. His algorithm is based on the observation that the 1-
median of a tree is contained in a subtree of the tree which includes half or more
of the total demand in the system. The algorithm performs “folding” operations on
demands at tip nodes (i.e. it adds the amount of demand of a tip node to the amount

of the demand at the adjacent node and deletes the tip node and its incident arc).

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 11

The procedure is continued until a node of the new tree contains half or more of the
total demand. This node is identified as the 1-median.

For 2-medians of a tree, Mirchandani and Oudjit (1980) give an arc-
deletion method of order O(n®). The main idea is the partitioning of the tree into
two subtrees and solving 1-median problems on each of the subtrees. Since there are
(n-1) arcs on a tree. (n-1) partitions are considered, and the one with the minimum
objective value gives the solution. In addition to efficient algorithms for the p-median
problem, Dearing, Francis, and Lowe (1976) discuss some convexity properties of tree
networks. which partly explain why many of the difficult combinatorial optimization
problems are efficiently solvable on trees. Tansel, Francis, and Lowe (1983) provide a
detailed survey of several classes of location problems on networks with an emphasis
on the works utilizing the underlying network structure.

The heuristic approaches to solving the p-median problem include the
“myopic” approach (Kuehn and Hamburger 1963), the “node partitioning” algorithm
(Maranzana 1964). and the “node substitution” algorithm (Teitz and Bart 1968) as
well as several heuristic branch-and-bound schemes. The references cited above are
essentially the earliest studies of the greedy or myopic heuristics, neighborhood search
and ezchange heuristics for the p-median problem, respectively. The greedy algorithm
falls into the broader category of construction algorithms, while neighborhood search
and exchange heuristics fall into the category of improvement algorithms (Golden,
Bodin. Doyle, and Stewart 1980). The construction algorithms start from scratch
and try to build good solutions based on previously made location and allocation
decisions. The improvement algorithms on the other hand, start with a solution at

hand and try to improve the solution by moving either the locations of facilities or

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 12

the allocations of demand points at each iteration.

The myopic algorithm for the p-median problem starts with no facilities
located. In the first step, it locates a l1-median which can be found by complete
enumeration in polynomial time. In the second step, it tries to locate another facility
with respect to all demand points and the first facility whose location is already fixed.
The procedure continues in this fashion until all p facilities are located. At iteration
k of the algorithm the locations of k — 1 facilities are already fixed and the location
of the k-th facility is determined. This facility is located on the candidate site j*
which minimizes the cost of allocating all demand points to the previously located
k — 1 facilities and the k-th facility. At each iteration of the algorithm when a new
facility is located on an available site, some of the demand points that were allocated
to previously located facilities now become closer to the new facility. Hence there is
an improvement on the objective function value. The amount of this improvement is
maximized at each iteration. Although the solution found by this algorithm may not
be optimal. it is appealing because of its simplicity of implementation. Additionally, it
can find use in real life problems when a certain number of facilities is already located
and another facility is being considered for location. If the problem is to locate only
one additional facility this approach will find the optimal solution for the location of
the additional facility with respect to other facilities already existing. Note, however,
this is not an optimal solution for the p-median problem with the augmented number
of facilities.

Consider the structure of the solution to the p-median problem. When all
the facility locations are fixed (optimal or not), the demand points are allocated to the

nearest facilities. This is because the facilities are assumed to have unlimited capacity

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 13

and the objective is to minimize the total weighted distance. This, in effect, partitions
the demand point set into p subsets, such that those demand points that are in the
same subset are allocated to the same facility. Those nodes that are in the same subset
are referred to as the neighborhood of the facility to which they are allocated. Within
each neighborhood, one can locate its corresponding facility efficiently by solving a
l-median problem. The neighborhood search heuristic starts with an arbitrary set
of p facility sites and determines the allocation sets (neighborhoods) for those sites.
Then it finds the optimal 1-median within each allocation set. If any of the facility
locations change, then the demand points are reallocated to facilities to form new
neighborhoods. Similarly, if any of the allocation sets change. then the facilities are
relocated and so on. To improve the solution obtained by the myopic algorithm, one
can use the facility sites obtained from the myopic algorithm as the starting point
for the neighborhood search heuristic. The essential limitation of the neighborhood
search heuristic is that. at every iteration the relocations are based on the “local”
conditions, i.e. only on the neighborhood of the given facility. As a result, some of
the relocation possibilities which do not improve the local conditions but may, in fact,
be beneficial in the “global” sense, are being dismissed.

In the ezchange heuristic, the facilities are allowed to be located outside
their neighborhoods as well. The algorithm again initializes with an arbitrary set of
p facility locations. At each iteration the best replacement site for a given facility is
identified. If the objective function is reduced, the replacement site and the current
site are exchanged. The procedure is repeated until all of the facilities are considered
and none of the relocation movements can result in an improvement of the objective

function. Note that, one can also select to relocate a facility to a new site immediately,

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 14

when such relocation results in an improvement on the objective function, instead of
selecting the best replacement site at each iteration.

The mathematical programming approaches to solving the p-median
include linear relaxation (ReVelle and Swain 1970; ReVelle 1993), branch-and-bound
algorithms (Khumawala 1972), Dantzig-Wolfe decomposition (Garfinkel, Neebe. and
Rao 1974), variable upper bounding scheme (Schrage 1975), Lagrangian relaxation
(Narula, Ogbu, and Samuelson 1977: Cornuejols, Fisher, and Nemhauser 1977), and
the linear programming dual (Galvao 1980). Handler and Mirchandani (1979) provide

detailed discussions on some of these approaches.

1.2.2 The Uncapacitated Facility Location Problem

In all the models considered so far the number of facilities to be located was fixed
to a number p beforehand. By constraining the number of facilities we implicitly
incorporate the facility construction costs into the model. which may be imposed
by a budgetary constraint. However, by doing so we also assume that the facility
location costs are identical on each candidate site. As discussed in (Daskin 1995),
while such assumptions may be applicable in the public sector, where the cost bearers
and the beneficiaries of the facilities are two different groups, and costs and benefits
are incomparable, they may not be as useful in the private sector, where a single actor
pays for the costs and realizes the benefits at the same time with comparable costs
and benefits measured in monetary terms.

In those cases the problem objective is to minimize the total facility
location cost and the transportation costs. The problem is called the uncapacitated

facility location problem or the simple plant location problem in the literature. The

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 15

model utilizes

the parameters

c;j = transportation cost between demand point i and candidate site j

f; = fixed cost of location at candidate site j

decision variables

Y;; = fraction of demand at node i that is served by a facility at site j
7 1 if a facility is located at candidate site j
3 =

0 otherwise

The formulation of the problem is given as follows:

m n m
Minimize »_ f;Zj+ »_ Y ¢y (1.2.2.a)
Jj=1 i=l j=1
m
subject to ZYij =1 i=1l...n (1.2.2.b)
=1
Yii £ Z; i=1l...,n, j=1,...m (1.2.2.c)
Y 2 0 i=1..,n, j=1,...m (1.2.2.d)
Z, € {0.1} j=1l..m (1.1.4.¢)
The objective function (1.2.2.a) minimizes the total set-up cost and the

transportation cost. Constraints (1.2.2.b) ensure that all demand at each demand
point is served. Constraints (1.2.2.c) state that a demand point i receives service
from a facility j only if there is a facility located at that site. Constraints (1.2.2.d)

are the nonnegativity constraints for the allocation variables, and the constraints

be shown that the allocation variables will take integer values in the optimal solution.

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 16

Note the resemblance between the uncapacitated facility location problem
and the p-median problem we discussed before. The only difference between the two
models is the inclusion of set-up costs for facilities and the exclusion of the requirement
that a fixed number of facilities has to be located. Because of the apparent similarities
between the two models, the solution approaches to the uncapacitated facility location
problem are very similar to those used for the solution of the p-median problem.

The uncapacitated facility location problem has been studied extensively
and there is a vast amount of literature to date. Recently ReVelle and Laporte
(1996) proposed several extensions to the basic plant location problem under three
major categories including (i) new objectives, (ii) multiple product/multiple machine
plant locations. and (iii) plant location with spatial interactions. Krarup and Pruzan
(1983) provide a survey of the uncapacitated facility location problem, which also
explores the origins (first formulations) of the problem. They conclude that the
problem has been formulated independently by Balinski and Wolfe (1963), Kuehn
and Hamburger (1963), and Stollsteimer (1963). Cornuejols, Nemhauser, and Wolsey
(1990) discuss the problem in detail and provide a summary of several approaches
that were developed to solve the problem.

The uncapacitated facility location problem has been used in a variety of
applications ranging from bank account location (Cornuejols, Fisher, and Nemhauser
1977). to location of off-shore drilling platforms (Rosing and Odell 1978; Hansen,
Pedrosa Filho, and Ribeiro 1992) and many other applications.

The uncapacitated facility location problem is shown to be NP-Hard in

general (see Cornuejols, Nemhauser, and Wolsey 1990 for a proof by reducing node

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 17

cover problem ! to the uncapacitated facility location problem). The problem has
been shown to be polynomially solvable on tree networks (Kolen 1983), also when a
classical economic lot size problem is formulated as an uncapacitated facility location
problem (Krarup and Bilde 1977).

A variety of heuristic approaches to solving the uncapacitated facility
location problem has been developed in the literature. The construction type
algorithms include the ADD and DROP heuristics. These are also the greedy type
heuristics in which a maximum improvement is sought for at each iteration. The
ADD heuristic starts with no facilities open and locates a facility at each step until
opening another facility no longer improves the objective. Conversely, the DROP
heuristic starts with facilities open at all candidate sites and closes one facility at a
time until closing another facility does not improve the objective.

As in the case of the p-median problems, improvement heuristics, like the
exchange algorithms, can be developed to improve on the results obtained from any of
the greedy heuristics. Kuehn and Hamburger (1963) developed a heuristic consisting
of two subroutines. The first subroutine is basically the ADD heuristic and the second
subroutine is an exchange heuristic which they call the “bump and shift” routine.
The solution obtained from the “add routine” is first analyzed and any facility that
has become uneconomical because of presence of other facilities that are located
subsequently, is eliminated (bumped). This provides the starting feasible solution for
the exchange heuristic in which each open facility is considered for relocation to an

available candidate site. Cornuejols, Fisher, and Nemhauser (1977) gave bounds for

!Node Cover Problem: Given a graph G and integer k, does there exist a subset of k nodes
of G that cover all the arcs of G? (Node v is said to cover arc e if v is an end point of e). This
problem is N'P-Complete (Garey and Johnson 1979).

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 18

the greedy and exchange heuristics on their worst-case performance.

The solution approaches to solving the uncapacitated facility location
problem optimally include (i) Bender’s decomposition applied to the Mixed Integer
Programming formulation of the problem (Balinski and Wolfe 1963; Balinski 1965;
Magnanti and Wong 1981) (ii) Branch and Bound algorithms which utilize the fact
that the allocation variables need not be constrained to integrality (Efroymson and
Ray 1966; Spielberg 1969; Khumawala 1972). ReVelle and Swain (1970) observed
that the linear relaxation of the problem that uses the “strong” version (described
in Section 1.2.1) resulted in integral solutions very often, and therefore it provided
a better bound on the objective function. Although this significantly reduces the
size of the branch and bound tree. strong linear programming relaxation is quite a
bit larger in size, and this makes it difficult to solve it directly by simplex method.
Therefore, many researchers have focused on special purpose algorithms for solving a
strong linear programming relaxation of the uncapacitated facility location problem.
Several different approaches are studied by Garfinkel, Neebe, and Rao (1974), Schrage
(1975). Guignard and Spielberg (1977). and Cornuejols and Thizy (1982). Dual
based approaches are proposed by Bilde and Krarup (1977) and Erlenkotter (1978).
Erlenkotter’s DUALOC algorithm has been very effective and appears to outperform
all existing algorithms. Additionally, Lagrangian approaches have been studied by

Geoffrion (1974), Narula, Ogbu, and Samuelson (1977), Cornuejols, Fisher, and
Nembhauser (1977).

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 19

1.3 Routing Problems

Like locaticn problems. routing problems arise in a variety of contexts. An
example is package and mail delivery. In those cases the pick-up and delivery
functions are the basis of the operation, and the routing problem is especially
important. Routing problems also find applications in advanced manufacturing
systems. computer network design. VLSI design, cutting wall papers, clustering data
array, etc.

Typically, a routing problem is to find one or several routes so that the
traveller can start from a specific point and visit a set of given points with respect
to some criteria. In general, costs related to delivery time or length of the route are
the major components of the criteria for service quality. It is generally assumed that
the travel time between two points is directly related to the distance between them.
Therefore, in many routing problems, the typical measure of quality of service is
some function of distances between points (which are also referred to as “customers”
or “cities” in the literature).

Earliest formulations of routing problems date back to eighteenth century,
when both Euler (1759) and Vandermonde (1771) discuss the problem of knight’s tour
(Biggs, Lloyd, and Wilson 1976). Starting from a corner of the board, the problem is
to visit all 64 squares on a chess board exactly once with legal knight moves at each
step.

A cycle in a graph is defined to be the set of vertices of the graph such
that it is possible to move from vertex to vertex along edges of the graph so that all

vertices are encountered exactly once. The Hamiltonian cycle problem, named after

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 20

the Irish mathematician Sir William Rowan Hamilton, seeks to find such a cycle that
visits all the vertices of the graph. Kirkman (1856) gave a sufficient condition for
the existence of Hamiltonian cycles in a polyhedral graph. He also showed that a
polyhedron on an odd number of vertices, in which each face has an even number of
edges, cannot have a Hamiltonian cycle. The reader is referred to (Biggs, Lloyd, and
Wilson 1976) and {Lawler, Lenstra, Kan, and Shymoys 1985) for a detailed discussion
on the early history of routing problems.

Routing problems attracted the attention of researchers from a wide range
of backgrounds. An impressive number of variations of routing problems has been
formulated and studied in the literature. In the last half of the twentieth century.
advances in technology and demands for better and more efficient systems in all
areas of industry. from manufacturing to service. gave rise to many applications, and
consequently new formulations, of a wide variety of routing problems.

At the very core of the class of routing problems lies the Traveling
Salesman Problem (TSP). We can, in fact, say that the TSP is the prototype of
routing problems. Therefore. in the next section, we will discuss TSP and existing
research up to date related to it. We will mention some variants of the problem only
briefly, except the Delivery Man Problem (DMP) will be discussed in more detail,

because a variant of the DMP appears as a subproblem of the problem we study in

this thesis.

1.3.1 The Traveling Salesman Problem (TSP)

Given a graph G with n vertices, the traveling salesman problem involves finding

a tour that starts from a given vertex and visits all vertices exactly once before

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 21

returning to the starting vertex. Clearly, the existence of a Hamiltonian cycle has to
be guaranteed in this problem. A simple variant of this problem is to allow visiting
vertices more than once, and ask to find the minimal tour that visits all vertices at
least once. It is simple to show that the problem of visiting all vertices at least once
can be transformed to visiting all vertices exactly once (Garfinkel 1985) by simply
replacing the distance matrix with shortest path lengths between any two points.
instead of edge lengths. Traditionally, points to be visited in a TSP are called “cities”
in the literature. a designation related to the early history of the problem (Hoffman
and Wolfe 1985). We will use similar terminology in this section.

Menger (1930) presented a problem in connection with a “new definition

of curve length” that proposed:

"The length of a curve be defined as the least upper bound of the set of all
numbers that could be obtained by taking each finite set of points of the

curve and determining the length of the shortest polygonal graph joining

all the points.”

The problem of finding the shortest path joining all of the finite set of points, whose
pairwise distances are known, is called the messenger problem by Hoffman and Wolfe
(1985). They also identify it as a more direct precursor of the TSP, in which edge
lengths play a prominent role. It differs from the TSP by not requiring a cycle, but
rather a path. Hoffman and Wolfe (1985) provide some discussion on the first use of
the term " Traveling Salesman Problem” in mathematical circles, as well as its possible
origins from a book published in 1932 in Germany (Voigt 1831; Miiller-Merbach 1983).

The TSP has been studied by many researchers from a wide variety of

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 22

areas, such as operations research, management science, mathematics, computer
science, physics, and so on. There is a vast amount of literature on it. The book edited
by Lawler. Lenstra, Kan, and Shymoys (1985) focuses solely on this problem with
discussions on every aspect of it, from its history to motivation and modeling, to well-
solved special cases, as well as exact and heuristic solution methods. More recently
Jinger. Reinelt, and Rinaldi (1994) presented a survey article on the problem. Reinelt
(1994) published a book on TSP with an emphasis on the question of computation,
i.e. finding good or acceptable tours for large scale problems in shorter times. He
provided performance comparisons for many exact and heuristic algorithms developed
in the literature for solving TSPs.

Dantzig, Fulkerson. and Johnson (1954) were the first to solve a sizable
TSP. Since the 48-city problem solved in that seminal paper, a number of problems
have been reported to be solved to optimality: a 120-city problem (Grotschel 1980),
a 318-city problem (Crowder and Padberg 1980), a 532-city problem (Padberg and
Rinaldi 1987). a 666-city problem (Grotschel and Holland 1991) and a 2392-city
problem (Padberg and Rinaldi 1991). Of course. studies on larger examples of the
TSP have been reported. but those mentioned above are the ones that were proven to
be solved to optimality. With developments of heuristics, many large scale problems
were solved to find a tour within certain upper and lower bound values. However,
many of those solutions have not yet been proven to be optimal. This progress was
made possible by development of mathematical theory and efficient algorithms, as
well as advances in computer technology.

Despite these achievements, many aspects of TSP are still open to

question. Therefore, the problem attracts new research continually. Since TSP

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 23

algorithms also appear as components for many other combinatorial optimization
problems. efficient solution approaches to TSP might open up avenues for better
procedures to solve “harder” problems. Secondly, most algorithms that solve large
scale TSPs are not robust in the sense that solution times vary strongly for different
problems with the same number of cities.

The TSP can be formulated as a Linear Integer Program as follows:

Let z;; be the 0-1 variable indicating whether or not the salesman goes

directly from city i to city j. and c;; be the corresponding distance. Then we can

formulate the problem as follows:

n n
Minimize Y Y ¢z (1.3.1.a)
iil j=1
st. Y zy=1 i=1,..n (1.3.1.b)
i-;;l
Zx,-j =1 j=1,..n (1.3.1.¢)
=1

> Y z;<ISI-1 Sc{l...n}and S#0 (1.3.1.d)

i€S jE€S

The objective. (1.3.1.a), is to minimize the tour length subject to
constraints given in (1.3.1.b-d). Constraints (1.3.1.b) and (1.3.1.c) ensure that only
one city can be visited before a given city and only one city can follow a given city on
the tour. Constraints (1.3.1.d) are called the subtour elimination constraints which
ensure that no subtours are allowed in the solution, i.e. the TSP tour will consist
of a single tour that visits all cities. The above formulation without the subtour
elimination constraints describes the well-solved assignment problem. Solution to an
assignment problem may contain many subtours rather than a single tour visiting all

cities. Thus, the assignment problem is a relaxation of the TSP. Of course (1.3.1.d)

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 24

represent a large number of constraints (2" — 2 to be exact), and therefore this
formulation is inefficient in its complete form. However, it has at least one good
characteristic of having a well-solved relaxation, namely the assignment problem.

A more compact version of constraints (1.3.1.d) is proposed by Miller,
Tucker, and Zemlin (1960) allowing TSP to be modeled as a mixed integer program
in O(n®) constraints.

As is the case with many hard problems, solution approaches to the
TSP involve many heuristics as well as exact solution procedures. Exact solution
approaches include the use of cutting planes, branch-and-bound, and dynamic
programming procedures. Combinations of cutting planes and branch-and-bound
have been very successful. On the other hand, due to its enormous storage
requirements. dynamic programming can only solve relatively small problems.

Because the TSP is a major problem which is, almost always, used as
a basis to develop and test new ideas of heuristics for combinatorial optimization
problems. there is an incredibly large amount of research on heuristic approaches to
TSP (Reinelt 1994). Those approaches can be divided into two major categories;
(i) construction heuristics, (i¢) improvement heuristics. More recently, however. new
tvpes of heuristics including Simulated Annealing, Tabu Search, Neural Networks. or
Genetic Algorithms have also been applied to TSP.

Construction heuristics determine a tour according to some construction
rule, but do not try to improve upon this tour; a tour is successively built and parts
already built remain, in a certain sense, unchanged throughout the algorithm. For a
detailed discussion on construction heuristics and computational results, the reader

is referred to Golden and Stewart (1985), Arthur and Frendeway (1985), Johnson

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 25

(1990) and Bentley (1992).

There are many versions of construction heuristics applied to TSP.
However. they can be roughly placed in four major categories (Reinelt 1994): (7)
nearest neighbor heuristics, (i) insertion heuristics, (iii) heuristics based on spanning
trees, and (iv) savings heuristics.

In nearest neighbor heuristics, the salesman starts at some city, then visits
the city nearest to the starting city. From there, he visits the nearest city that was not
visited so far, etc. until all cities are visited, and the salesman returns to the starting
city. Rosenkrantz. Stearns, and Lewis (1977) show that no constant worst case can
be given for this simple heuristic. that is, no constant upper bound can be calculated
on the objective value of solutions found by this heuristic. Several variations have
been proposed to speed up and/or improve the standard nearest neighbor algorithm
(Reinelt 1994).

Insertion heuristics start with tours on small subsets (which may also
include “trivial tours” on one or two nodes) and then extend these tours by inserting
the remaining nodes. The choice of initial tour may be quite important. In the case of
Euclidean TSPs. the convex hull® of the nodes provides an excellent starting tour; it
was shown by Flood (1956) that the Euclidean TSP has an optimal solution that visits
the cities on the boundary of the convex hull in the same order as if the boundary
of the convex hull itself were traced. Therefore in many heuristics developed for
Euclidean TSP, vertices on the boundary of the convex hull and the boundary itself,
which forms a subtour, is used as the initial subtour (Wiorkowski and McElvain 1975:

Stewart 1977; Norback and Love 1977; Norback and Love 1979). Several variations

>The convex hull of a set of V vertices is the smallest convex set that includes V.

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 26

of the criteria for the insertion scheme have also been proposed and studied (Reinelt
1994). Rosenkrantz, Stearns, and Lewis (1977) show that the nearest insertion (insert
the node that is nearest to a tour node) and the cheapest insertion (among all nodes
not covered so far. choose a node whose insertion causes lowest increase in the length
of the tour) rules give tours that are less than twice as long as an optimal tour if the
triangle inequality holds.

Heuristics based on spanning trees use a minimurn spanning tree as a basis
for generating tours. In problem instances where the triangle inequality is satisfied.
performance guarantees of at most two times the optimal tour length are possible for
these tvpe of heuristics (Christofides 1976; Cornuéjols and Nemhauser 1978: Johnson
and Papadimitriou 1985). A variant of the minimum spanning tree heuristic proposed
by Christofides (1976) produces a tour which is at most 1.5 times as long as an optimal
tour.

Savings heuristics were originally developed for Vehicle Routing Problems
(Clarke and Wright 1964; Potvin and Rousseau 1990). This heuristic successively
merges short tours to eventually obtain a Hamiltonian tour. At every iteration, the
pair of subtours that give the largest savings is merged. A variation of this heuristic
is a greedy type heuristic where the algorithm starts with a system of n paths of
length 0. and then check, in each step, if the shortest edge not considered so far can
be used to join two paths. Frieze (1979) shows that for TSP instances where the
triangle inequality is satisfied, the greedy tour can be almost (logn) times as long as
an optimal tour.

The second type of heuristic approaches to solving the TSP, namely

improvement heuristics, is based on altering the current tour by certain type of basic

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 27

moves. A simple modification of the tour can be achieved, for example, by either
node insertion or edge insertion. The main idea is to consider changing the position
of a given node or an edge in the tour. At each iteration, the best insertion is selected
until no improvement is possible (Reinelt 1994).

Another type of tour modification procedure is to exchange r edges in a
feasible tour for r edges not in that solution, as long as the result remains a tour and
the length of that tour is less than the length of the previous tour. These type of edge
exchange procedures are called the r-opt procedures where r is the number of edges
exchanged at each iteration (Croes 1958; Lin 1965; Lin and Kernighan 1973). All
exchanges of r edges are tested until there is no feasible exchange that improves the
current solution. Of course, in general, the larger the value of r, the more likely it is
that the final solution is optimal. However, since the number of operations necessary
to test all r exchanges increases rapidly as the number of cities increase, the values
r =2 and r = 3. are the ones most commonly used.

Lin and Kernighan (1973) proposed a variable r-opt algorithm, in which
the number of edges to exchange is decided at each iteration. The empirical
performance of this algorithm seems to be quite successful. A more detailed discussion
of improvement heuristics can be found in (Golden and Stewart 1985; Johnson 1990;
Bentley 1992: Reinelt 1994).

A third heuristic approach to solve the TSP is to use a combination
of construction and improvement heuristics where the solutions obtained from
construction heuristics are used as starting tours for the improvement type heuristics.

Improvement heuristics discussed here are essentially local search

heuristics, where the solution found is locally optimal. That is, although the solution

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 28

is not optimal, no further improving moves can be generated. One way to obtain
better solutions is to start improvement heuristics from many different starting tours
to increase the chance of finding better local optima. Another possibility is to allow
moves that increase the length of the tour, to escape “bad” local optima, and to
restart the heuristic. Approaches using Simulated Annealing, Tabu Search. Genetic
Algorithms, or Neural Networks are those kinds of heuristics which allow random
“jumps” to a worse solution with respect to some criteria. For more information on
Simulated Annealing and its applications to TSPs the reader is referred to (Aarst and
Korst 1989a: Aarst and Korst 1989b; Johnson, Aragon, Mcgeoch, and Schevon 1991;
Collins. Eglese, and Golden 1988: Kirkpatrick 1984; Cerny 1985; Johnson 1990). For
Tabu Search see (Glover 1989: Knox and Glover 1989; Malek, Guruswamy, Owens,
and Pandya 1989). For Genetic Algorithms see (Goldberg 1989; Miihlenbein, Gorges-
Schleuter. and Kramer 1988: Ulder. Pesch. van Laarhoven, Bandelt, and Aarts 1990).
Finally more information on Neural Networks and its applications to TSP can be
found in (Durbin and Willshaw 1987: Fritzke and Wilke 1991; Potvin 1993).

When solving hard combinatorial problems, in addition to finding good
feasible solutions. one would like to have some guarantee on the quality of the solutions
found. Lower bounds (for minimization problems) on the optimal objective function
value provide such guarantees. In general, lower bounds are obtained by solving a
relaxation of the original problem. Since relaxations lift some of the constraints of the
original problem. their sets of feasible solutions include the feasible solution set of the
original problem as a (proper) subset. Thus the relaxed problem gives a lower bound
for the objective function value of the optimal solution of the original (minimization)

problem. Different relaxations give different lower bounds. In general, the main goal

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 29

is to find relaxations of the original problem which are efficiently solvable and which
are as tight as possible. Those lower bounds then provide practitioners an impression
of the performance of a heuristic on a particular problem. Lower bounds are also an
important ingredient in branch-and-bound (B&B) type solution algorithms which aim
to find the exact optimal solution. Lower bounds for the TSP are found from linear
programming relaxations, “combinatorial” relaxations which are derived directly as
obvious relaxations of the definition of a tour, or from Lagrangian relaxation methods.

The first and most straightforward relaxation of TSP is the assignment
problem with TSP objective or Lagrangian objective function, which is obtained by
relaxing the subtour elimination constraints (Little, Murty, Sweeney, and Karel 1963;
Murty 1968; Bellmore and Malone 1971; Smith, Srinivasan. and Thompson 1977;
Carpaneto and Toth 1980).

Another relaxation is the I-tree problem which is based on the observation
that a Hamiltonian tour consists of a special spanning tree (namely a path) on (n—1)
nodes of the network plus two edges connecting this spanning tree to the last node
(Held and Karp 1970: Held and Karp 1971; Christofides 1970; Helbig-Hansen and
Krarup 1974: Smith and Thompson 1977; Volgenant and Jonker 1982; Gavish and
Srikanth 1986: Mirchandani and Francis 1990; Fischetti and Toth 1993).

A third type of relaxation for TSP is the 2-matching problem where the
objective is to find a set of edges such that every node of the network is incident to
exactly two of those edges. n-path relazation of the TSP is obtained by a path of
length n (n edges) that starts and ends at a given node with possible repetitions of
the nodes (Houck, Picard, Queyranne, and Vemuganti 1980; Christofides, Mingozzi,

and Toth 1981). The subtour elimination relazation is obtained by forbidding short

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 30

cycles in the 2-matching relaxation (Padberg and Grotschel 1985; Grotschel, Lovisz,
and Schrijver 1988; Boyd and Pulleyblank 1990).

The lower bounds obtained from the relaxations given above are used in
B&B algorithms to solve TSP optimally (Balas and Toth 1985; Miller and Pekny
1991: Miller. Pekny. and Thompson 1991). A second type of exact solution procedure
called the branch-and-cut (B&C) method is one of the most effective methods for
exact solutions up to date (Reinelt 1994). In those algorithms, linear programming
lower bounds are obtained by optimizing the objective function over a polytope®
P such that Pr C P (where Pr is the traveling salesman polytope). To get tighter
bounds. a deeper knowledge of the polytope Pr is required. Unfortunately, finding the
complete description of Pr with linear equations and inequalities is almost impossible,
because the number of those equations and inequalities is too large to be listed
explicitly (Grotschel and Padberg 1985; Naddef and Rinaldi 1991; Naddef and Rinaldi
1993: Boyd and Cunningham 1991; Christof, Jiinger, and Reinelt 1991). One way to
overcome this difficulty is to generate inequalities “as needed” using the cutting plane
method. Since the entire description of the traveling salesman polytope cannot be
known. it is not possible to identify all violated inequalities describing Pr. Therefore,
the cutting-plane method provides a lower bound for the TSP. The next step is to
follow a B&B type approach. This procedure is called the Branch-and-Cut approach
(Crowder and Padberg 1980; Padberg and Rinaldi 1991; Grotschel and Holland 1991).

As discussed earlier, one of the most important characteristics of the TSP
is that it has a lot of variations and generalizations. One of the most well-known

is the Vehicle Routing Problem (VRP). In VRPs there is a fleet of vehicles at the

%a polytope is a bounded polyhedron (Nemhauser and Wolsey 1988).

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 31

starting point which may be the base location of the vehicles, and the objective
is to determine for each vehicle which customers should be served and in what
order. Vehicles may have capacity constraints or there may be time windows for
customers indicating the interval of time in which they can receive service. We will
not discuss many variations and generalizations of the TSP in this thesis. However.
we will introduce one generalization, namely the Time-Dependent Traveling Salesman
Problem (TDTSP), and study a special case of this problem, the Delivery Man
Problem (DMP) in more detail. This is because a variation of the DMP appears

as a subproblem of the problem we study in this thesis.
1.3.2 The Time-dependent TSP

Consider a variation of TSP where there are n time periods, indexed by k. where each
time period represents the travel between two cities on the tour. Let c;;r be the cost
of going directly from city i to city j in period k. Let the binary variables z;;x define
whether the travel from city i to city j is made at time period k. Thus the problem
can be written (Fox, Gavish, and Graves 1980) as:

Minimize an i ic"jkxijk (1.3.2.a)

i=l j=1 j=k
n n

s.t. Z ZI;‘jk =1 i=1,..n (132.b)

I=1 k=1
n n

Y zge=1 j=1,..n (1.3.2.c)
YN zp=1 k=1,.n (1.3.2.d)
zn: i kl‘ijk - i zn: kl?jik =1 i= 1, O () (1326)

j=1 k=2 j=1 k=1
where for notational simplicity. it is assumed that the tour begins and ends in city

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 32

1. Constraints (1.3.2.e) ensure that for all cities i, i = 1,...,n, the entering time in
a given city is one less than the leaving time. Clearly, this formulation contains n?
variables and 4n — 1 constraints. Fox, Gavish, and Graves (1980) also give a more

compact formulation with only n variables by replacing constraints (1.3.2.b, 1.3.2.c,

1.3.2.d) by

DI

i=1 j=1 j=k

Earlier studies and formulations of the problem were given by Miller,
Tucker. and Zemlin (1960). Hadley (1964), and Picard and Queyranne (1978).
Recently. Gouveia and Vo8 (1995) presented a classification of formulations for
TDTSP and Vander Wiel and Sahinidis (1996) introduced an exact solution approach.

Observe that if the cost ¢;;x depends only on the distance, d;; between
two cities, then the problem reduces to the standard TSP. Thus the formulation for
TDTSP provides a more compact formulation for TSP as well, at the expense of

3

having n3 variables instead of n? variables.

1.3.3 The Delivery Man Problem (DMP)

In the formulation of the TDTSP given in the previous section, consider the case where
¢ijk = (n—k+1)d;;. Now we have another special case of the TDTSP which is called
the Delivery Man Problem. DMP minimizes the sum of arrival times at each city (or,
equivalently, average arrival time at each city) in a path through all cities (Minieka
1989; Lucena 1990; Simchi-Levi and Berman 1991; Fischetti, Laporte, and Martello
1993). This problem has also been called the TSP with cumulative costs (Fischetti,
Laporte, and Martello 1993; Bianco, Mingozzi, and Ricciardelli 1993), the Traveling
Repairman Problem (TRP) (Afrati, Cosmadakis, Papadimitriou, Papageorgiou, and

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 33

Papakonstantinou 1986; Tsitsiklis 1992), as well as the Minimum Latency Problem
(MLP) (Blum, Chalasani, Coppersmith, Pulleyblank, Raghavan, and Sudan 1994;
Goemans and Kleinberg 1996).

Before formulating the problem, let G = (V, E) be an undirected network
with vertex set V' = {vy,...,vn} and edge set E = {(v;,v;) : v;,v; € V}. For any
r.y € G. let d(z. y) denote the length of a shortest path between r and y. Suppose
that a server located at vy must visit each vertex of G and return to vg. If the server
visits the vertices in sequence vy, ..., v, Where v, = vq, then the total distance traveled
by the server (or total length of the tour (vy,...vn)) is

n-1

d(vy.vn) = d(vg, v1) + Z d(v;. vigr)- (1.1)

i=1

The problem of finding the cour which minimizes the total traveling
distance is the well-known Traveling Salesman Problem (TSP) (see Section 1.3.1)

If we assume that the traveling time is directly proportional to the actual
distance traveled. then the TSP is to find the tour which visits all the vertices in the
least time. The Delivery Man Problem (DMP) is a variant of the TSP in which we
want to minimize the sum of the arrival times of the server at each vertex. In other
words we seek a tour that minimizes the total waiting time of all the vertices. Afrati,
Cosmadakis. Papadimitriou, Papageorgiou, and Papakonstantinou (1986) study a
variant of the problem and solve the problem on a line in polynomial time by a
dynamic programming procedure. Minieka (1989) shows that a simple route, in which
the nodes of the tree are visited according to the depth-first rule starting from the
root, is an optimal tour for the DMP on a tree with unit edge weights. He also

proposes an exponential time algorithm for the problem on tree networks. Bianco,

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 34

Mingozzi, and Ricciardelli (1993) and Lucena (1990) give exponential algorithms to
solve the problem on general metric spaces. Recently, Goemans and Kleinberg (1996)
gave algorithms which provide an approximation ratio of 21.55 for general metric
spaces and 3.5912 for trees. However, no known polynomial time algorithm yet exists
to solve the problem even on tree networks.

If the vertices are visited in the order vy, ..., u,, starting from vy, where

Un = Uo, then the time the server arrives at vertex v;, denoted by T(v;), is

1-1
T(v;) =) d(wi, vis). (12)
i=0
Now, the Delivery Man Problem is to find a tour that minimizes the sum

of the arrival times. i.e.
Min Y T(v;). (1.3)
=1
Since the TSP is concerned with minimizing only the last component of
(1.3). one would expect that the delivery man problem is at least as difficult as the

TSP. Indeed. (Sahni and Gonzalez 1976) show that the DMP is NP-Hard.

Let us rewrite each arrival time in its open form, i.e.

T(vni) = d(vo, 1)

T(U'l) = d(v0av1)+d(v11v2)

T(va) = d(vo,v1) +d(v1,v2) + - + d(Un-1,vn)-

The summation of all the arrival times then gives

n—1

> _T(w) =) (n~)d(vs, vira). (14)

j=1 i=0

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 35

Now. let us consider another variant of the DMP. Consider a case where
each vertex v;, i = 1, ..., n, has a nonnegative weight w; associated with it. This may
depend, for example, on the urgency of the job on a machine which the repairman
has to fix, or it may correspond to the amount of demand at customer points; thus
we may want to make sure that customers with more demands will receive service
earlier. That means we want to minimize the sum of weighted arrival times in the

system. Thus the problem (1.3) becomes
Min Z UJJ'T(UJ'). (15)
J=1

This variant of the DMP appears as a subproblem of the problem we study
in this thesis. which will be discussed further in Section 1.4. To our knowledge, this
variant has not vet appeared in the literature. Next, we introduce the problem more
formally. Since this problem is a special case of the problem we study and the findings
are not directly related to the main topic of this thesis. we leave discussions on a new
approach to solving it on tree networks to Appendix A. We develop a lower bound
for the problem on tree networks and propose a branch-and-bound type algorithm to
solve it.

We call this problem the Weighted Delivery Man Problem (WDMP).
Observe that one can in fact reduce the WDMP to the ordinary DMP by augmenting
the network in such a way that the new network has w; nodes for each original node
v; that are connected to each other with edges of length 0. Then solving the original
DMP over W = 3 w; nodes solves WDMP. This approach, of course, assumes
that the weights are either integers or rational numbers. Aside from that, it is also

possible that the problem size may increase very rapidly even for small problems when

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 36

the variation of weights associated with demand nodes is relatively large. Therefore,
it is still desirable to study solution approaches to the WDMP utilizing its original

formulation.

Following the steps of the previous analysis, and rewriting the arrival times
in their open form, the problem (1.3) becomes
n-1 n
Min) (Z w,-) d(v;, V1) (1.6)
J=0 \i=j+1
Let W = 3", w; denote the total weight in the system. Then the problem

becomes

Min "i (VV - i wi) d(vj. Vjs1). (L.7)

j=0 i=1

In the ordinary DMP or the TDTSP, the cost of travel on an edge depends
on the position of that edge in the given tour. However in the case of the WDMP the
cost of travel on a given edge not only depends on its position but also on the set of
vertices that are visited before the first travel began on the given edge (or equivalently
on the set of vertices that are visited after the first travel on the given edge).

[t is straightforward to show that when all weights are equal the problem

reduces to the ordinary DMP defined earlier. Thus the WDMP is at least as difficult
as the DMP. That is the WDMP is also NP-Hard.

1.4 Location-Routing Problems and The Supply

Connected Location-Allocation Problem
(SCLAP)

Up to now, we have discussed the problems in the literature which we believe are

directly related to the problem we consider in this thesis. In this section we will

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 37

first provide a brief discussion on Location-Routing Problems. This is because our
problem can be put in this category. Later we will introduce the problem we study
and explain its relation to the problems we have discussed so far.

There exist several practical situations where the need arises to locate
one or several facilities, allocate demand to be served to those facilities, and to
construct associated delivery routes to multiple users. In such contexts, location,
allocation and routing are intertwined decisions which must be modeled and optimized
simultaneously. These problems are called Location-Routing Problems (LRPs) in the
literature. A considerable number of recent studies in location theory deals with
several versions of LRPs. Laporte (1988) provides an extensive review of this class of
problems with examples and applications found in the literature.

We should also note, however. that the problem we study here does not
conform to the typical forms of location-routing problems found in the literature. The
main difference comes from the routing cost. Typically, in most LRPs, the routing
decision is represented by a Traveling Salesman Problem (see Section 1.3.1) type
objective where the total length of the delivery route is minimized. In our case. as
will be described in the following pages, the cost of the delivery route depends not
on the total length of the tour but the sum of all distances along the route from the
supply plant which is the starting point of the route as well as the sum of weights of
demand points that are allocated to each facility. Thus, the routing decision in our
problem is represented by a Weighted Delivery Man Problem type objective, which,
to our knowledge, is itself a new model that has not been studied in the literature.

As discussed in (Laporte 1988), many distribution systems can be

represented by several layers. Many systems have three layers where the layers are

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 38

identified as primary facilities, secondary facilities and users. The primary facilities
may represent factories, secondary facilities correspond to warehouses or depots, and
the users represent customers. Usually, primary facilities and users are located at
known and fixed locations and the number or location of the secondary facilities,
together with the associated distribution routes constitute decision variables. Of
course there may be other distribution systems which consist of two layers or more
than three layers. For example. in the p-median problem (see Section 1.2.1) the first
layer consists of facilities to be located and the second layer consists of demand points.

The problem in this study is a three layer distribution system. There is
one primary facility at a known location which we term as the “supply plant”, and
n “demand points” as users. p “facilities” are the secondary facilities to be located
at p of m predetermined sites (p < m). Note that the predetermined facility sites
can be a proper subset of the demand point locations. Throughout this study we
take all the demand point locations as candidate sites for facilities, i.e. m = n.
Facilities receive their supply from the supply plant and distribute to demand points.
The distribution modes from facilities to demand points are direct service-and-return
trips and facilities get their supply via a single round trip starting from the supply
plant.

The problem which we call the Supply Connected Location-Allocation
Problem (SCLAP) involves the location of p facilities with respect to n demand points
and a supply plant. The locations of the demand points and the supply plant are
known and fixed. There is a positive demand associated with each demand point,
and the objective is to provide service to demand points via facilities serving as

transshipment or distribution points. The supply plant originates all material and

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 39

ships it in bulk to facilities along a route to be determined. We call this route the
“supply route”. We assume that the shipment vehicle does not need to return to the
supply plant. This assumption may indeed be valid in many business applications
where the carrying of the shipment is done by an outside contractor. Thus the
shipment vehicle does not return to the supply plant, but rather to its base point at
some other location. In cases where there is a cost for an empty vehicle to return to the
supply plant. we simply add this cost to the objective function and construct a closed
tour instead of a path. In the following research, we assume that the supply route
consists of a single path originating at the supply plant and passing through all the
facilities. After the facilities receive their shipment from the supply plant, they then
distribute the material to demand points by direct service-and-return trips. Since
there are no capacity constraints on facilities. each demand point receives all of its
shipment from the facility which provides the lowest transportation cost. Any ties
can be broken arbitrarily.

The cost of transportation for a given demand point consists of two parts.
The first part is the cost of receiving the shipment from its designated facility. By
designated facility we mean the one to which that demand point is allocated. This
portion of the cost is directly proportional to the weight (amount of demand) of the
given demand point and the distance between that demand point and its designated
facility. The second part of the cost is the cost of sending that demand point’s
shipment from the supply plant to its designated facility on the supply route. The
cost of transporting the demand to be distributed by a facility from the supply plant,
is proportional to the total amount of demand allocated to this facility and the total

traveling distance to reach this facility on the supply route. The total traveling

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 40

distance to reach the given facility is determined by the sum of the distances traveled
between consecutive facilities on the supply route, starting from the supply plant
up to this facility. The shipments from the supply plant to facilities on the supply
route are done in bulk, that is all the material requirements for all the demand points
that are allocated to a facility are sent together in bulk to that facility. In practice,
bulk shipments are generally less costly. In accordance with this observation, in our
problem the cost of transportation on the supply route is discounted by multiplying
the cost by a factor @ (0 < @ < 1). Therefore the cost of shipping one unit of
material per distance on the supply route is 100(1 — o) percent cheaper than the cost
of shipping the same amount of material per distance elsewhere on the network. We
call a the "discounting factor”.

The following example illustrates the problem. Suppose that a petroleum
plant is operated at some distant location. The product is shipped in bulk to the
facilities along a route connecting them; it is then distributed to demand points that
are allocated to the facilities. Examples of bulk shipment could involve rail, containers
or a pipeline. Delivery from facilities could be in smaller volume (by truck) and thus
be more expensive.

Observe that when the cost of transportation on the supply route is zero
(@ = 0), the problem reduces to finding locations of p facilities that minimizes the
sum of weighted distances from each demand point to a nearest facility. This problem
is the well-known p-median problem which we studied in Section 1.2.1.

Now, consider the case when the transportation cost on the supply route
is not discounted (i.e a > 1). Then all the facilities would be located at the supply

plant and the demand points would receive their shipments directly from the supply

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 41

plant. This is because of the triangle inequality property of distance functions on any
metric space, including networks (when the distance between any two points in the
network is defined to be the length of a shortest path between them). The length of
the direct path (or the shortest path) from the supply plant to a given demand point
is always less than or equal to the length of any other path passing through one or
more intermediate points (facilities).

For another special case of the problem, consider that the locations of p
facilities and the allocations of demand points to facilities are somehow known. We
still have to determine a least cost route visiting all facilities at least once.

The total travel distance from the supply plant to a given facility depends
on the sequence of facilities visited before that facility. Let tox be the total traveling
distance from the supply plant to reach the facility which is positioned at k, ie.
traveling distance to reach that facility after k — 1 facilities are served before it. Let
j(k) denote the location of the facility which is visited at position k on the supply
route and let d;) (k1) denote the distance between any two facilities that are visited

by the service truck at consecutive positions k and & + 1. Then we have
tan = dojq
te = doj) +dj1).52)

ts = doju) + 451,52 + 452),53)

ton = dojy + i@ T ip-1.40)

Let w;() be the total amount of demand that is allocated to facility at site j which

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 42

is positioned at k in the supply route. Then the total cost of transportation from the
supply plant to all facilities will be
P P P
D aWimytor = Y Y obindice-1.ich)- (1.8)
k=1 k=1 I=k

The RHS of (1.8) gives an equivalent formulation of the transportation cost
on the supply route. That is the sum of the transportation costs between consecutive
facilities on the supply route (for now, consider the supply plant as a facility too). The
cost of transportation between consecutive facilities is proportional to the distance
between the facility pair, the demand in the system vet to be served. and a scale
factor a.

The problem of minimizing (1.8) over all possible routes visiting all
facilities at least once gives the Weighted Delivery Man Problem (see Section 1.3.3)
when we assume that we can return to the origin from any point without any cost.
thus having a complete tour instead of a path.

For another variant of the SCLAP, consider the case where the number of
facilities to locate is not known. Additionally, instead of including facility location
costs implicitly by constraining the number of facilities (see discussions in Section
1.2.2) in the model. there is now a cost of building the facility at each candidate
site. In this case. we want to open a certain number of facilities and assign demand
points to them, as well as construct a delivery route for supply from the supply
plant to facilities. with the least possible building and transportation cost. It is a
straightforward observation that, in the case when the cost of supplying facilities is

ignored. the problem reduces to the uncapacitated facility location problem discussed

in Section 1.2.2.

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 43

In this thesis, we formulate and develop solution approaches for a problem
which is a combination of two different class of problems that are considered in the
literature, namely the location-allocation and routing problems. By doing so, we hope
to be able to provide a basis for some of those problems that appear in practice which
require the location, allocation and routing decisions to be optimized simultaneously.
There are, of course, certain limitations to our model. First, we developed the model
for a deterministic problem. That is, we assume that the demands for each demand
point is known and [ixed. However, in practice, demands are often stochastic in
nature, which means that their exact values are not known. In those cases, objectives
become minimization of the expected value of the total transportation cost. Another
limitation in our model is the assumption that the facilities have unlimited capacity.
In some types of problems that assumption may be valid; for example, when the
facilities are warehouses where relatively small sized items, e.g. most postage mail
items, are stored for a short period of time before being rerouted to their final
destinations and the cost of building the warehouses does not increase significantly
with the increase in volume of material to be handled there. However, there are many
other cases where the assumption of unlimited capacity for facilities cannot be valid,
either due to financial or physical limitations.

Third, we assume, in our model, that the companies market share and
the demand points it will serve are already determined and will not change due to
presence of a competitor and its actions. Examples in which this assumption holds
can be found in many public service operations, where the facilities together serve
an entire community. However, especially in private sector, we can find many other

examples in which the assumption may no longer be valid. This is because the market

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 4

share and the operations of the company can be greatly effected by the actions of its
competitors in the same market. Approaches to relax those limitations of the model
can provide a basis for development of new models and variants of our problem.

Since the two special cases of SCLAP, namely the p-median and DMP
are .V P-Hard on general networks, the problem is quite difficult in general. In this
study we use two approaches. The first is to identify some solvable special cases of
the problem on simple networks, such as the line. The second is to provide an exact
algorithm to solve the problem together with some heuristic algorithms and test those
algorithms for performance in terms of closeness to optimality and run time.

In Chapter 2 we study SCLAP on a line and a tree and give efficient
solution procedures using dynamic programming (DP). The case on a tree is a
restricted version where we assume that facilities will be located on a single path to
avoid traveling the same distance more than once. In Chapter 3. we study the problem
on general networks and present a single assignment branch-and-bound algorithm to
solve it. In Chapter 4. we develop four local search type heuristics and provide
computational results. We compare the heuristics in terms of closeness to optimality
(whenever the optimum solutions are available) or to the best solution found and

run time. Finally, Chapter 5 gives a brief summary of the thesis and concludes with

remarks on further research.

Chapter 2

SCLAP on a Line and a Tree

In this chapter. we study the problem on a line and on a special case of a tree network.
A polynomial time backward dynamic programming solution procedure is provided
for the case on a line. The problem on tree networks is for the case where the facilities
are to be located on a single path. This problem. after certain steps, then reduces to
the case on a line. for which we already have a polynomial time solution algorithm.

The general form of the problem on tree networks is still an open question.
2.1 The Case on a Line

Assume that demand points are located on a line segment [0,¢] and that the main
supply facility is located at point ap = 0. Let a;, ¢ = 1,...,n, be the locations of
demand points. For ease of notation and further convenience we assume that demand
point locations are indexed such that g =0 < a; <a; <--- < a, ={ Let w; 2> 0,
i = 1,....n. denote the amount of demand at corresponding demand point i. We want
to locate p facilities and allocate demands to them such that the overall cost of serving
all the demand points as well as the facilities is minimized. Let X = {zy,...,z,} be

the set of facility locations. We now formulate the problem as follows:

45

CHAPTER 2. SCLAP ON A LINE AND A TREE 46

14 n p—1 p n
Minimize Z Z wiilz; —ail + Z Z Z WiilZ; — Tj41] + aWlz) — ap] (2.1.2)

j=1 i=1 j=1 k=j+1 i=1
P
subject to Z Wji = W; i=1,..,n (2.1.b)
j=1
wj; >0 j=1..,pi=1,..,n, (2.1.¢)

where

w;;: proportion of demand at demand point i served by the facility j
w;: total amount of demand at demand point i

W =37, w;: total demand in the system.

Before we introduce a solution procedure for this problem we should state
some of its fundamental properties.

Assume that all the locations of facilities and demand allocations are
known but that the sequence (or indexing) of the facilities is unknown. In this case we
have p known locations and we also know the amount of demand allocated to these
points. The problem then reduces to finding the best routing to satisfy demands
allocated at these points. The starting point is ag, the original supply plant location.
Although this problem is difficult to solve on general networks, it turns out to be
easily solvable on a line when the supply plant is located at one end of the line. The
fact that all the demand in the system that is not satisfied yet is transported to the
next facility forces the facilities to be visited according to their positions on the line

from the original supply plant. This property is stated in the next observation.

Observation 2.1 In the optimal solution, facilities will be located on [0, €] such that

0<r1 <1 <--- <z, <UL

The next lemma suggests that a demand point will be allocated to one of

CHAPTER 2. SCLAP ON A LINE AND A TREE 47

the facilities located nearest to it on each side. Note, however, that the one finally

selected may not be the nearest of the two.

Lemma 2.1 In the optimal solution, the demand at demand points will be fully

allocated to one of the two facilities that are adjacent from left and right.

Proof: Assume that the locations z,, ..., z, of facilities are given and we
want to allocate the demand optimally. According to Observation 2.1 we can consider
only the cases where 0 < z; < 75 < --- < 1, < €. Let d’ be the location of a given
demand point.

Since there are no capacity constraints, the demand at a demand point
will be fully allocated to the one facility which provides the lowest cost, unless a tie
occurs. In the case of a tie, however, we can still assume without loss of generality
that in one of the optimal solutions, each demand point will be fully allocated to one
facility only.

Now, let us allocate one unit of demand at a’ to one of the new facilities
with the least transportation cost. Assume that the demand is allocated to facility
r;. The unit cost of transportation will then be:

j=1

a'Il‘aol+aZ|zk—$k+1|+|Ij -d|, (2.1)
k=1

i.e. the scaled transportation cost from the supply plant up to the j-th facility via
previous transshipment points (lower indexed facilities) plus the cost of transportation
from j-th new facility to the demand point at a'.

Since we have 7, < 72 < --- < z,, the two nearest facilities to o’ from left

and right will be a consecutively indexed pair of facilities. Let j and j + 1 be the

CHAPTER 2. SCLAP ON A LINE AND A TREE 48

indexes of new facilities that are nearest to a’ from left and right. Consider a lower
indexed, say j — 1, facility than the j-th facility. Since the location space is a line

and facility locations are such that z; < 7, < --- < 7, we have:

2,1 = z5| + |z — @] = |zj-1 — | (

E\D
(S
N

Then the unit cost of allocating the demand at a’ to z,-, will be

j=2

alz, —GOI+QZ|Ik_Ik+1| +|zj1 —al, (2.3)
k=1

and the unit cost of allocating demand at @’ to z; will be

j=2
alzy - agl + @ Y _ |2k = Zeat| + alajy — 35 + |25 — o). (2.4)
k=1
Since a € [0.1].
alz;oy = 5| + |z, = d| < |zjo1 = 5] + |25 =], (2.5)

and (2.2) gives |z,-; — a’| for RHS. The unit cost of transportation will be less when
the demand at a’ is allocated to facility at r;. Hence. we need not consider any further
away (lower indexed) facilities on the left.

Now consider a higher indexed, say j+2. facility than (j+1)st. By similar

arguments as above we have
|Zj41 = Zjsol + |Zj1 — @' = |Tjpa — 0| (2.6)

The unit transportation cost for facility j + 1 is:

j
alz; - aol +) |z — Tes| + |21 — @, (2.7)
k=1

CHAPTER 2. SCLAP ON A LINE AND A TREE 49

and unit transportation cost for facility j + 2 is:
J
a|:¢:1 - aoi +« Z IIk — Tl + C!ll'j+1 - Ij+2| + ll’j.:,g - a']. (28)
k=1

Clearly from (2.6) and «a € [0, 1] the transportation cost for facility j + 1 is less than
or equal to that of a higher indexed facility. So we need not consider further away
facilities on the right of ¢’ as well. This means that all the demand at o’ will be
allocated to either of the two nearest facilities on the left and right of o’ m

Now we will explore to which one of the facilities nearest on the left and
right of @’ to allocate the demand. From (2.4) and (2.7) we can see that the cost
of transshipment up to the1 J-th facility is the same for both facilities 7 and 7 + 1,
which is a|r; — ao| + aJZ |zk — Zk«1|- Let A denote this cost: then the costs of

k=1
transportation for facilities j and j + 1 will be

A+|z; - d| (2.9)
A+alz; — zja| + |T541 — (2.10)

respectively.
Clearly. the relationship between (2.9) and (2.10) will determine the
facility to which a’ will be allocated, i.e. a’ will be allocated to the facility which gives

a lower transportation cost. By comparing costs (2.9) and (2.10) and rearranging the

inequalities. we can easily establish the following relationship.

Proposition 2.1 Let o’ be a demand point location between facility location z; and
Tjs1, then
(i) if @’ < 3[(1 — @)z; + (1 + @)z;41] then @’ is allocated to facility j

(ii) if @' > 3{(1 — a)z; + (1 + @)z;j41] then o is allocated to facility j + 1

CHAPTER 2. SCLAP ON A LINE AND A TREE 50

(iii) if o’ = 3{(1 — @)z; + (L + @)z;41] then @’ can be allocated to either facility j or
facility j + 1.

As a final step before introducing a dynamic programming solution
procedure for SCLAP we need to establish the following lemma which is essentially

the same as the fundamental insight in (Love 1976: Love, Morris, and Wesolowsky

1988).

Lemma 2.2 (Fundamental Insight) Assuming that the demand points are indered
such that ag = 0 < a), < a3 < -+ < a, = {. they will be optimally allocated to

facilities in sequence. i.e. if demand points 1 and 4 are allocated to a given facility

so will the demand points 2 and 3.

Proof: Assume that the locations of facilities are given. Let v be a
demand point location between facility locations z; and z;.;. We should prove that
if v is allocated to facility j then all the demand points on the path between z; and
v will be allocated to r; as well: and similarly if v is allocated to facility j + 1. then
all the demand points on the path between z; and v will be allocated to Z;+1 as well.

Case I: v is allocated to z;. Let p be a demand point located on the path

between r; and v. Then we have:

lz; —vl < alz; - zjl+ |z — v (2.11)
lz; —pl+lp—vl < elzj=zjn| + |0 — vl (2.12)
lz; —pl+lp—vl < elzj —zjm| + 12501 —v| +p— v (2.13)
|z; —pl < elz; —zjn| + |z — Pl (2.14)

CHAPTER 2. SCLAP ON A LINE AND A TREE 51

(2.11) comes directly from (i) and (iii) of Proposition 2.1, i.e. when (2.9) is less than
or equal to (2.10). Since the location space is a line and p is located between z; and
v. we have |z; — p| + |p — v| = |z; — v| which justifies (2.12). Adding |[p—v| >0 to
RHS of (2.12) gives (2.13). Finally dropping |p — v| from LHS of the inequality (2.13)
and substituting |z;,; — p| = |z; — v|+ |p — v| on the RHS gives (2.14) which suggests
that p is also allocated to ;.

Case 2: v is allocated to z;.,. Let g be an existing facility location
between v and r;.;. With similar arguments as above it is straightforward to show
that g will also be allocated to z;,.

Cases 1 and 2 complete the proof. o

2.1.1 Dynamic Programming Solution Procedure

In this section, we introduce a backward dynamic programming solution procedure
to SCLAP on a line which is similar in principle to the one given in (Love 1976) for
the standard location-allocation problem except that we use a backward procedure
instead of a forward one. It is also possible to set up the DP procedure presented
here as a forward procedure.

Let us first resolve some important considerations. Assume that we want

to locate the j-th facility optimally. Let demand points a,, ag.1, ..., a; be allocated to

it. The problem then reduces to

t n n
Minimize Y wilz; ~ ail + (> wlgj — gl + (D wilzy -zl (2.15)

i=s i=s i=t+1
Observe that if the locations z;_; and ;. of facilities j — 1 and j + 1 are known, the

problem becomes a well-known 1-median problem which can be solved very efficiently.

CHAPTER 2. SCLAP ON A LINE AND A TREE 52

Finding the optimal location for the 1-median problem on a line requires no knowledge
of distances because it has been shown to be the demand point location for which
the sum of the weights on one side becomes greater than or equal to the sum of the
weights on the other side when the weight of the given facility is added (Goldman
1971). This property and the following corollary to Lemma 2.2 makes it possible to
find the optimal location in {2.15) without knowing the actual locations of r;_, and

Ljrl-

Corollary 2.1 Lets.s+1,....t be indezes of the demand points that are allocated to

facility j. Then the locations of facilities j —1 and j +1 wnll be such that z;,_, < as <

r; < ar < Zjs.

Once we know that the r;_; and z;;, will be located further away from
the farthest allocated demand point to facility j on the left and right respectively. we
can simply add their weights to the existing facilities a, and a; and find the optimal
location for z;. Note that the weights for z;_, and rj4; will be (@} " w;) and
(@ > 0., wi), respectively.

However, to be able to apply a DP procedure to SCLAP we have to find
a way to set up a DP relation in terms of costs. We will use notation similar to the
one given in (Love 1976). Let a given stage of the DP formulation be the index of
the facility that is being located. The stage number is given by j, j =p,p—1,.... 1.
We start with locating the p-th facility first and locate the (p — 1)st facility next, and
work backward until we locate the first facility last. Let s denote the state defined by

the index of the lowest numbered unallocated demand point. Then j <s<n—p+jJ

if j >1and s =1if j = 1. Let A;(s) be the set of all possibly optimal subsets

CHAPTER 2. SCLAP ON A LINE AND A TREE 33

of allocations of demand points to the j-th facility, given s. Each such subset is
represented by an index t;, s < t; < n—p+jif j # pandt; = n otherwise.
Let C*(s.t;) denote the minimum “partial” weighted distance cost of j-th facility
optimally located with respect to demand points s.s + 1,...t; and facilities j — 1
and j + 1. Let z}(s.t;) be the optimal location of facility j with demand points
5.5 + 1....t; allocated to it. The cost of transportation between facilities j — 1, j.

and j + 1 added to the cost of shipment from facility j to demand points that are

allocated to facility j. is

ty n n
Z wilz; — a;} + OIZ wilzioy — Il + o Z wilT; = Tj (2.16)

i=s i=s i=t;+1

Since z*(s.t;) is defined to be the optimal location of facility j with demand points
s.s+1....t, allocated to it, z* (s, t;) is also a minimizer for (2.16). Let W(k) = >, w;
for 1 < k < n. We can split the cost of transportation between facilities j — 1 and j.

and also between the facilities j and j + 1 (i.e. second and third portions of (2.16))

into two and rewrite (2.16) as follows:

t;
3 wilz; — ol + aW(s)|z;-1 — agl + aW(s)|z; — ag| +

=3

aW (t; + 1)|z; = ap, 1] + W (t; + 1)|zj1 — ae, 1] =

aW(s)|zj—1 — as| + C(s.t;) + aW(t; + 1)|Tje1 — @41 (2.17)

where C(s.t;) is defined to be

t
C(s,t;) = aW(s)lz; —a + Z‘will’j - o] + aW (t; + 1)|z; — @y, 41| (2.18)

i=s

Then, C*(s,t;) will be the value of C(s,t;) when (2.16) is minimized by z;(s, ;).

CHAPTER 2. SCLAP ON A LINE AND A TREE 54

Assume that we are at the stage j of the DP procedure, i.e. we will locate
the j-th facility. Let the state be s. We have to consider all possible allocations from
s on: that is. the sets of demand points {s}, {s,s + 1}.....{s,s + 1,....,.n — p + j}.
At this point observe that the part of the cost of transporting all the demand for
facilities j, 7 + 1....,p from facility j — 1 to j will be the same up to demand point s
which is aVV'(s)ir;-1 — asi. Only the part aWW(s)|z; — a5 will change, depending on

the location of r;. So in order to find the best allocation configuration for facilities

J.Jj+ 1.....p from s on. we can minimize only the part of the cost without changing

the optimal solution. Hence the DP relation will be:

fi(s)= min){fj(satj)} (2.19)

t;€A;(s
where f;(s.t;) = C*(s.t;) + f;,1(t; + 1). For the beginning stage (stage p) of the
procedure we take f,_, = 0.

The next example will provide an illustration of the procedure.

2.1.2 Example

In the example below, we have 9 demand points on a line of length 25 units and
we want to locate 4 facilities. The scaling factor « is taken to be 0.5., ie. n =9,
p = 4. and o = 0.5. The locations, a; of demand points and the amounts of demand
(weight) at each demand point are given in Table 2.1. Note that the weight of the

supply plant located at ag = 0 equals QZZLI w;. Tables 2.2, 2.3, 2.4 and 2.5 show

the stages of the DP procedure.

We find f;(1) = 1755 with t] = 1, t; = 4, t3 = 6 and t; = 9, and an

optimal solution is:

CHAPTER 2.

SCLAP ON A LINE AND A TREE

ijo 123 4 53 6 7 8 9

;|0 4 7 8 12 17 19 21 24 25

w; (11 3 2 4 1 2 3 3 2 2

Table 2.1: Data for the Example Problem

$ fi(s.9) fi(s) z3(s,9)
9 0 0 ag =25
8 2 2 ag = 24
7 14 14 a; =21
6 28 28 ag = 19
5 44 4 ag =19
4 84.5 84.5 as = 19

Table 2.2: Stage 4 of DP Algorithm. j =4.¢; =t; =9

fa(s. t3)
| 8/t 3 S T 6 7 8 | f3(s) | t3 | z3(s.t3)
8 1 1 8 | ag =24
7 8 10 8 7 |ar =21
6 21 18 22 18 7 | ag =19
5 38 34 34 38 34 [67|a5=17
4 4 T3 715 TS5 T75 || 715 | 6,7 a5 =17
3 |J110.5 102 105 1145 128 143 | 102 | 4 | a3 =8

Table 2.3: Stage 3 of DP Algorithm, j =3

55

CHAPTER 2. SCLAP ON A LINE AND A TREE

o

fa(s. t2)
sfta || 2 3 4 5 6 7| f3(s) | t5 | z3(s.t5)
T 7 7 7T |ar=21
6 15 17 15 6 | ag =19
3 28 28 33 28 (56| as=17
4 64 63 65.5 70.5 63 9 | ag=12
3 97.5 92 95 108.5 127 92 4 | a3 =8

110.5 108 103 106.5 120 1385 103 { 4 | e =

Table 2.4: Stage 2 of DP Algorithm, j = 2

fi(s. th)
s/ty || 1 2 3 4 5 6 | fi(1) || zi(s.t5)

1 1755 176 181 180 190 207 (1755 |1 | a1 =

Table 2.5: Stage 1 of DP Algorithm, j =1

56

CHAPTER 2. SCLAP ON A LINE AND A TREE 57

r1=zi(1,1) =4, wj=w

ki

[
o W

3=13(2,4) =7 wh=wa=2 wp=wz=4 uwjh=ws=1l,

3 =13(5.6) =17, w3s =ws

2, wzs=ws =3,

ry=z3(7,9) =21, wip=w =3, wiy=wsg=2 wWi=wy=2,
with all other w;;'s equal to zero. That is, facility 1 is located at the location a; = 4

of demand point 1 and serves demand point 1, facility 2 is located at the location
a; = 7 of demand point 2 and serves demand points 2, 3 and 4. facility 3 is located
at the existing facility location as = 17 and serves demand points 5 and 6. Finally,
facility 4 is located at the demand point location a7 = 21 and serves demand points

7.8 and 9.

An alternative optimum solution is:
Ll)=4. wl=w =3,
2.4)=T7, wp=w=2 wh=wz=4 wy=ws=1,

3 =z7(5.7) = wis =ws =2, wip=ws=3, Wz =wr=3J,

1
r;=17(8.9) =24 wig=ws=2 wi=we=2,
with all other wj;’s equal to zero.

By similar arguments in (Love 1976) the DP procedure introduced here is
O(p(n - p)*).

2.1.3 Varying o

It is quite obvious from the formulation of SCLAP given in Section 2.1 that when
a = 0 the problem reduces to a well known location-allocation problem (Love, Morris,
and Wesolowsky 1988). It is also called the p-median problem on networks.

Since any unit of demand actually has to be shipped from the original

plant to its point of location via some path visiting some of the facilities, when

CHAPTER 2. SCLAP ON A LINE AND A TREE 58

a 2> 1, shipment via intermediate facilities becomes unprofitable because the length
of the direct path from the original supply plant to demand location is always less
than or equal to the length of any other path via intermediate transshipment points
(facilities). This is a direct consequence of the triangle inequality property of distance
function in any metric space. Hence, unless restricted otherwise, all the p facilities
will be located on top of the original supply plant when a > 1. For tree networks
and the line. the problem is actually equivalent to a 1-median problem. Since the
major plant supplies all the demand in the system, it has a weight o) _._, w; which is
greater (when a > 1) or equal (when a = 1) to half of the total weight in the system.
By the well-known solution procedure for the 1-median problem on trees (Goldman
1971). the optimal location is the supply plant location. When a = 1 there may be
other degenerate solutions: however, without loss of generality we can still take the
original plant location to be the optimal location.

Once we have found the optimal solution for SCLAP for a given value of
. the next question one may ask is to determine the range of a for which the current
solution is optimal. Proposition 2.1 readily suggests a way to determine such a range.
Observe that the cases (i),(ii), and (iii) of Proposition 2.1 can be written in terms of
fractions such that
(i) if W -(5,7%i41) ¢ o then o' is allocated to facility j

(Zj+1—z;)

(ii) if %’%2*)‘—‘) > o then ¢’ is allocated to facility j + 1

(iii) if %{Jﬁﬁ—‘) = ¢ then a’ can be allocated to either facility j or facility 7 + 1.
Let a” be the proportion of the distance |z;,; — z;| that o’ is from z;.

Then, equivalently, we obtain

(I) if @” < 142 then o’ is allocated to facility j

CHAPTER 2. SCLAP ON A LINE AND A TREE 59

(IT) if a” > 12 then o’ is allocated to facility j + 1
(III) if a” = 12 then o’ can be allocated to either facility j or facility 5 + 1.

Once the optimal solution is found, we only consider the demand points
between two consecutive facilities. For each of them we calculate the value of o for
which case 3 occurs. Define ¢; to be the value of a that is so calculated. For demand
points that are allocated to a facility on their left {cases i and iii), 1 > a > «; is the
range of a for which it will still be allocated to the same facility. For facilities that
are allocated to a facility on their right (cases ii and iii) 0 < a < «; is the range of
a for which it will still be allocated to the same facility. Let oy and ar be the lower

and upper bound on the value of a for which the current solution is still optimal.

respectively. Then we have

a € [C!L,CYU] (2.20)

where
ar = max{0,¢; : g, is allocated to a facility on its left} (2.21)
ay = min{l.¢;: g; is allocated to a facility on its right} (2.22)

Moreover. we can show that we do not need to consider all the demand
points. Only the pairs of consecutive demand points each of which are allocated to
different facilities will suffice to determine the range of @. So the p — 1 rightmost
demand points that are allocated to the first p — 1 facilities will determine the lower
bound ¢, and p — 1 leftmost demand points that are allocated to the last p — 1
facilities will determine the upper bound a,. Therefore, for a given optimal solution

we can determine the range of « in O(p) time.

CHAPTER 2. SCLAP ON A LINE AND A TREE 60

2.2 Location on a Tree

In this section we consider a slightly more general case where the location space
for demand points is a tree and facilities are restricted to be located on a linear
path. Let T = (V,E) be a tree with node set V = {vp,v1,....vn} and edge set
E = {(vi,vj) : 0 < i< j < n}. Let l;; denote the length of arc (v;,v;) of T. If z;, and
I, are any two points on T, then there exists a unique path P(z,,z,) joining z; to
I,. The distance between z, and r,, denoted d(z;, z,), is defined to be the length of
P(zy,1,). The degree of a node is defined to be the number of edges incident to it.
A node is called a leaf if its degree is one.

We assume that the demand points are located on the nodes of the tree
and the supply plant is located at a leaf node numbered 0 for notational convenience.
If the supply node 0 is not numbered 0 originally, we can renumber the nodes of the
tree such that the supply node has the number 0.

Next. we constrain all the facilities to be located on one path. Indeed,
this is not an unrealistic restriction. Since during bulk shipment all the demand in
the system is carried along the way until it is brought to the respective facility, it is
reasonable to prefer that none of the demand should travel the same distance twice,
i.e. only one way bulk shipment is allowed on any path. Restricting all facilities to
be located on a linear path will ensure one way bulk shipment.

Since all the demand originates from the supply plant at node vy, the new
facilities will be located on some path P(vg,z), z € T. Let P*(vg,z*) be the optimal
path. It is straightforward to adopt Observation 2.1 to this case, which suggests that

facilities are located on P*(vg,z*) such that d(ve, z1) < d(vo,Z2) < -+ < d(vo, Zp).

CHAPTER 2. SCLAP ON A LINE AND A TREE 61

That is, a higher indexed facility will be located further away from the supply plant
on the optimal path. Moreover. since all facilities are located on the same path and
there exists a unique path between any two points on a tree, we have
k
Z d(l‘i, Ii-{»—l) = d(l‘j, Ik) 1 S] <k <p. (223)
=3
Let v be a demand point node in T such that v ¢ P*(vg,z%). Let z; be the facility
to which v is allocated and w > 0 be the demand at that node. For each demand

point v € V we can split the cost of shipment from the supply plant up to the given

demand point into two. Define C(v) to be the cost of satisfying the demand at v.
Then

j-1

C(v) = awd(vg, 1,) + aw Z d(Zk. Tk+1) + wd(z;, v). (2.24)
k=1
Rearranging (2.24) we have
j-1
C(v) = awld(ve. £1) + Y _ d(zk, Tes1)} + wd(z;, v). (2.25)
k=1

From (2.23) and z; € P*(vo, z"). we can rewrite (2.25) as follows:
C(v) = awd(vg, z;) + wd(z;. v). (2.26)

Let vp € P*(vp.z") be a node such that P(vg, vp) = P*(vg, 2*) N P(vg, v).
That is. vp is the connection point of v to the path P*(v, £*). We can now decompose

the transportation cost in (2.26) into two parts:

Clv) = Cp(v) +Cp(v),

where

Q
v
—~
&
[

Q’lUd(’Uo, IJ) + Wd(xj’ UP)7

Cs(v) = wd(ve,v).

CHAPTER 2. SCLAP ON A LINE AND A TREE 62

Cp(v) is the cost of transportation on the bulk shipment line which includes both
the cost of a related bulk shipment and a portion of secondary transportation cost
from facility j to demand point at node v. Cp(v) is the transportation cost on the
non-bulk (or secondary) shipment route from the connection point on the optimal
path to node v.

Observe that Cp(v) does not depend on the location of z; on the path
P*(vg, z*). Hence, if we know the path on which facilities must be located. we can
simply add the weight w of all such nodes to their corresponding connection nodes
on the optimal path and use the DP approach discussed in the previous section to
solve the problem.

Since all the shipments originate from vy, we can confine our search for
the optimal path to only those that have vy as the starting point. Furthermore, since
all demand points are located on the nodes of the network, application of the DP
procedure to any path P(vg,z), £ € T is exactly the same for the path P(vq,v,)
where v, is the last node on the path from vy to z. Hence, it is sufficient to consider
only those paths which start at vy and end at a node of the tree. There are exactly
n such paths. In addition, one can show that the search can be further restricted to
paths P(uvp, v;) where v, is a leaf of the tree T. There can be at most n — 1 leaves of

a tree. This case occurs when the tree is a star, which is a tree in which all nodes

except the root node are leaves (i.e. have degree one).

Chapter 3

A Single Assignment
Branch-and-Bound Algorithm

In this chapter we present an implicit enumeration algorithm to solve SCLAP. Implicit
enumeration methods are often used to solve NP-Hard combinatorial problems
optimally. A Branch-and-Bound (B&B) type algorithm is one of the implicit
enumeration techniques that is widely used. In this chapter, we will describe a single
assignment B&B algorithm to solve SCLAP. In the single assignment approach, at
each step just one facility is opened at a location point and the lower and upper

bounds to the objective function including this assignment and previously located

facilities are computed.

3.1 Problem Definition and Terminology

Let G be a transport network with node set V' = {vg,v1,...,v,} and edge set E.
Each edge is considered to be an embedded edge (Dearing, Francis, and Lowe 1976)
with a positive length and G is the union of all embedded edges. A point z in G

is either a node or an interior point of some edge. For any two points z,y in G,

63

BRANCH-AND-BOUND ALGORITHM 64

let the distance, denoted d(z,y), be the length of a shortest path between z and y.
Distance so defined has the usual properties of nonnegativity, symmetry, and triangle
inequality of a metric (Rudin 1976). The supply plant is located at the node vg of the
network. Note that if the supply plant is located on any other node of the network,
the nodes of the network can be renumbered so that the supply plant is located at
vg. We call this node the supply node or the supply point. The demands occur at
the remaining nodes of the network. We call those the demand nodes as well as the
demand points.

Let I = {1....,n} be the index set of the demand nodes of the network and
J = {1,p} be the index set of facilities to be located. Let p: I — J be a mapping
and for a given i € I. let (i) denote the index of the facility to which demand point
i is allocated. Let IJ- be the index set of nodes which are allocated to facility j. i.e.
I, ={iel:¢(i)=j}and U_I; = I. There is a positive demand. called weight
and denoted wj;. associated with each demand node v;, ¢ € I of the network G. For
ease of notation we will use o = vg in the remaining part of the chapter. Now, the
problem of interest is written as follows.

SCLAP: Find the set of locations X = {zy,....z,} C V on the network
G and a partition of I into p subsets such that

[Zzwtzd(rk 1, Zk) } + X:X:w,d(xj,vt (3.1)

j=liel; k= Jj=li€l;
is minimized.
Zi=1 d(zx_1,Zk) gives the distance traveled on the supply route starting
from the supply plant up to the j-th facility. The demand at a given demand point

is first shipped to its designated facility from where it then receives its shipment

BRANCH-AND-BOUND ALGORITHM 65

directly. This cost is muitiplied by a factor a, 0 < o < 1, for interfacility or bulk
shipment. Note that no direct shipments are allowed from the supply plant to the
demand points. The supply route configuration and the distance traveled on the
supply route change with respect to the location of facilities on the network. This is
the routing decision portion of SCLAP.

Note that in this formulation it is assumed that the shipment vehicle does
not return to the supply plant (e.g. pipeline system) or the cost of vehicle’s empty
return is negligible. However, it is simple to extend the problem to the case where the
cost of empty return for the vehicle is significant: we simply add the cost ¢ d(z,, vo)
to the objective function and the supply route becomes a closed loop instead of a
path. The parameter c is defined to be the unit cost per distance for vehicle’s return
to supply plant empty after having served all facilities and d(z,,vq) is the distance
from the last facility visited to the supply plant located at vg.

Let us rewrite the first portion, which corresponds to the transportation
cost on the supply route, of (3.1) in an open form. Before we do that, for ease of

notation let W; = 3 ., w; denote the total amount of demand allocated to a given

facility. Now we have

p J
a z W; Z d(Zg-1,7) = aWid(ze, 1) +
j=1 k=1
aW, [d(l‘o, Il) + d(l'la IZ)] +

aWs [d(zo, 71) + d(11, T2) + d(z2, 73)] +

aW, [d(ze, 1) + d(z1, T2) + - - - + d(zp-1, Tp)] -(3.2)

BRANCH-AND-BOUND ALGORITHM 66

Reorganizing RHS of (3.2) gives:

p P
o Z W Z d(zTe-y1,z) = (Z aWk) d(zo,z1) + (2 aWk) d(zy,2,) +
=1 k=1

k=2
(Z aWk) d(z2, z3) + - - - + aWpd(Tp-1,z,) (3.3)

in closed form, we have
p b
az W, Zd(zk 1L,Tk) = Z ZaWkd(:rj_l,J:j). (3.4)
i=1 =1 k=j
Inserting (3.4) into (3.1) we get an equivalent formulation of the objective function
of SCLAP as follows:

PP
“=°‘ZZ Zw,)d(zj-1, ;) +ZZw, (z5, v1). (3.5)

3=1 k= i€l j=1 i€l
In this formulation we see another way to look at the problem: i.e. all the
demand in the system is shipped to the first facility on the supply route, the portion
of total demand that is allocated to this facility is unloaded here and the rest of
the demand is shipped to the second facility, the demand allocated to that facility is
unloaded there and the rest of the material is sent to the third facility on the supply

route, and so on.

3.2 Bounds for SCLAP

In SCLAP. supply plant zq originates all the material to be distributed in the system.
Therefore, for a given demand point in the system it is profitable to receive its
shipment via some facility (transshipment point) only when the cost of shipping

the material through the supply route is less than the cost of receiving the shipment

BRANCH-AND-BOUND ALGORITHM 67

directly from the supply plant itself (assuming direct shipments from the supply plant
were allowed). This is achieved by discounting the cost of transportation on the supply
route by the factor o as discussed in Chapters 1 and 2. In other words, if we were to
ship all the material originating in the supply plant directly to demand points along
the shortest path routes with the discounted rate, no other facilities would be used
as transshipment points and all of them would be located on top of the supply plant.
Although in the original problem direct shipments from the supply plant are not
allowed. clearly. this arrangement provides a lower bound on the optimal objective

value z* of (3.1). The following theorem defines this lower bound on SCLAP.
Theorem 3.1

n
2= Z wid(IO, vi)
=1

gwes a lower bound for SCLAP.

In the remaining part of this section we will give lower and upper bounds
for SCLAP under the condition that we know the locations of first K (K < p)
facilities on the supply route. Those bounds will be used in the Branch-and-Bound
algorithm described in the next section. But before we do that we will define the
optimal allocation solution when the locations of facilities are known.

Since we want to minimize the transportation cost and there are no
capacity constraints on facilities, demand points are allocated to the facility which
provides the least unit cost of transportation for their shipment. If there are ties,
they can be broken arbitrarily so that each demand point is allocated to one facility

only. We restate this observation more formally below.

BRANCH-AND-BOUND ALGORITHM 68

Theorem 3.2 Let 137, ...,z; be the fized locations of facilities. The facilities are
visited in the given order on the supply route. Then, a given demand point i is

allocated to a facility j* which gives

J
min o k;d(zk_l, z}) + d(z;, v);

ties are oroken arbitrarily.

Proof: Since there are no capacity constraints on facilities. it is clear that
in the optimal solution each demand point can be allocated to the one facility which
minimizes the transportation cost. Let j(i), i = 1....n, denote the facility to which
demand point : is allocated. Then the objective becomes

n i(®)
> wi|ad dizioy) + d(z5, v) | - (3.6)
i=1 k=1
To minimize this function. we have to find the facility indices j(¢) for each demand

point i. Since w; > 0. Vi, it is clear that minimizing the above function is equivalent

to finding _
n J
; w; (éljigpa ; d(zy_y, zf) + d(z], vi)> . (3.7)
The portion of (3.7) within the big parentheses gives us what is stated in Theorem
3.2. That is, to minimize total transportation cost each demand point i is allocated
to a facility which minimizes the cost of transporting one unit of demand from supply
plant to the given demand point. a
This theorem provides us with an efficient procedure to find the optimal
allocations when the locations of facilities and the route (not necessarily optimal) are

known. Since the sums & 3"3_, d(z¢-1,x) 1 < j < p are independent of the demand

BRANCH-AND-BOUND ALGORITHM "y 69

points we can compute them beforehand in O(p) time and then for each demand point

we can find the index of the facility which gives

J
lréljj.élpa ;_1 d(Z—1, zk) + d(zj, v3)
in O(p) time. When we do this for all demand points, then the computational
complexity is O(np). The overall computational time is O(p) + O{(np) which is also
O(np).

Suppose now that we know the locations of z7, ..., 2} of the first K (K <
p). which are visited according to the sequence. 1,2, ... K. facilities. Assume that the
shipments outside the supply route could also be done with the discounted rate. Then
all demand points would be allocated to the supply plant because now it provides
direct shipments with the discounted rate. However. in order to get a tighter lower
bound, we will use the rule described in Theorem 3.2 for allocating demand points
to facilities over K facilities. However, we calculate the transportation costs with the
“everywhere discounted” rate and we show that such configuration provides a lower
bound on the optimal objective function value of SCLAP.

Let the first K (K < p) facilities on the supply route be located at
1},r%. Define z(K) to be the optimal objective function value to SCLAP with
the locations of the first K facilities and their positions on the supply route fixed.
Let X* = {z7,...2%, .. 7, } be the given locations of all facilities. We know that each
demand point is allocated to a facility according to the allocation rule of Theorem
3.2. In this way we find the new allocation configurations for p facilities. When the

new allocation sets are constructed, a demand point will either be allocated to the

same facility in the optimal solution or it will be allocated to another facility j*,

BRANCH-AND-BOUND ALGORITHM 70

Jj* € {K +1,...,p}. Clearly, if a demand point changes its facility in the optimal
solution, it can only be one of the new facilities because according to the allocation
rule of Theorem 3.2 if there has been another facility in the first K facilities which
gave a lesser cost it would have already been chosen.

For the first case, when a demand point : is allocated to the same facility in
the optimal location-allocation and a partial location-allocation solution, it is simple
to show that the cost of transportation, for that demand point, is less than or equal
to the cost of transportation in the optimal solution. By partial location-allocation
solution we mean that only K < p facilities are located and demand points are

allocated to those K facilities. We rephrase this in the following observation.

Observation 3.1 Let X* = {zi....zk,.. Z,} be the given locations of all facilities,

where facilities are indezed according to the visiting sequence on the supply route.

Then

J J
aw; Z d(z_,. z) + cwid(z], v;) < aw; Z d(Tk—y, Tg) + wid(z], vi). (3.8)
k=1 k=1

Proof: Since 0 < a < 1, (3.8) is true. a
In the second case (when the facility to which demand point i is allocated
changes in the optimal solution), we have to show that the cost for demand point ¢
calculated in the partial location-allocation solution is less than or equal to the cost

calculated in the p-facility solution. We state this in the next observation

Observation 3.2 Let X* = {z},..,Tk,..Z;} be the given locations of all facilities,

where facilities are indezed according to the wisiting sequence on the supply route,

BRANCH-AND-BOUND ALGORITHM 71

and let j' denote the indez of the facility allocation for demand point i in the partial

location-allocation solution, and j* be the indez of the facility in the p-facility solution.

Then

7 J
ow; Z d(Zi_y: 23) + owid(z5, v;) < ow; Z d(zg_y, T) + wid(z3., vi). (3.9)
k=1 k=1

Proof: Since w; > 0 we can drop w; from both sides of the inequality.

Since we know that j* > K > j’, we can rewrite the RHS of the inequality (3.9) as
follows:

i

7" J J*
a Z d(z-1: T) + d(z5., v3) = @ Z d(zy_y. zx) + @ Z d(Zg—y, Ti) + A5, v3).

k=1 k=1 k=j'+1
(3.10)
From the triangle inequality property of distance we know that
i
d(z5ow) € Y dzie,. z3) +d(z),). (3.11)
k=j'+1

l.e. any “detour” in the new configuration will cost more. Since a > 0, this gives

]-1 J-/]v-
@) dzi_y,zi) + ad(z),v) < aZd(x;-l,z,:)wLZ d(zi_y, T7) + d(z5., v;)

k=1 k=1 =j'+1

i
= a)_d(zi_,,z}) + ad(z}e,)

k=1

-
< ay dzgi_y, i) + d(h,). (3.12)
k=1

The LHS of (3.12) is the transportation cost for a given demand point calculated

with the "everywhere” discounted rate by the partial location allocation solution and

BRANCH-AND-BOUND ALGORITHM 72

the RHS is the transportation cost calculated by the p-facility solution. Since w; > 0
(3.12) is equivalent to (3.9). Thus the proof is complete. a
Observations 3.1 and 3.2 lead to the following theorem which guarantees

a lower bound for the optimal objective function value when the optimal locations of

first K facilities are known.

Theorem 3.3 Let z3,....z}% be the locations of first K (K < p) facilities on the
supply route. Let I', 1 < j < K give the sets of demand point indices which are

allocated to facilities according to the rule given in Theorem 3.2 over K open facilities.

Then

K J K
2(K)=qa Z Z w; z d(zi_y. T}) + @ Z Z w;d(z], v;)
k=1

j=t iel! =1 icl!
giwves a lower bound on the optimal objective function value z2(K) of SCLAP with first

K facilities located at z7, ..., T%.

Proof: For each demand point u; either Case 1 or Case 2 occurs as
described earlier. It is shown in Observations 3.1 and 3.2 that, in either case, the cost
of transportation for the given demand point in the partial allocation solution with the
“everywhere discounted” rate will be less than or equal to the cost of transportation
in the optimal solution with the locations of first K facilities as given. Summation
of the costs with the “everywhere discounted” rate in the the partial allocation, over
all demand points gives z(K). Thus z(K) is a lower bound for the optimal objective

function value of SCLAP with first K facilities located at z1, ..., zk. < a

Theorem 3.3 gives a lower bound to the objective value of SCLAP with

respect to a preset partial location selection. Clearly, if the location of the first K

BRANCH-AND-BOUND ALGORITHM 73

facilities are optimal with respect to SCLAP, this theorem will give a lower bound on
the optimal objective function value of SCLAP.

Similarly, we will define upper bounds on the optimal objective function
value by allocating the demand points according to the partial location selection

given. This time the costs are calculated with no discount outside the supply route.

Theorem 3.4 Let zi,...,z}% be the locations of first K (K < p) facilities on the
supply route. Let I;, 1 < j < K give the sets of demand point indices which are

allocated to facilities according to the rule given in Theorem 3.2 over K open facilities.

Then

K
E(K)=aZZwtzd1‘k 1:Tk) +ZZw, (z3.u)

1=1 iel] k= Jj=1 zEI’

gtves an upper bound on the optimal objective function value of SCLAP.

Proof: To prove Theorem 3.4, it is sufficient to show that there exists
at least one demand point whose transportation cost 2(K), in the p-facility solution
containing first K facilities, is less than or equal to the cost calculated in Theorem 3.4.
Let v, be a demand point which is allocated to the K-th facility in the partial location-

allocation solution. Let the new facility r} ., be located on v, i.e. %, = vs. Then

we have
K K
aw Z d(zp_;y Tp) + wed(Tk, vs) > aw Z d(zp_1, Tp) + owed(Tk, vs). (3.13)
k=1 k=1

Since z%,, = vs, RHS of (3.13) is equal to aw, >, K+1 d(z;_,, z;) which is also equal

10 Qw; Zk;ll d(z_,,) + awid(zk, 1, Vs) because d(z%k,,,vs) = 0. Thus we have

K K+1

Qw, Z d(zy_;, Th) + wed(T), vs) 2 Qw; Z d(Zx_y, Tp) + wsd(Th 1, vs) (3.14)
k=1 k=1

BRANCH-AND-BOUND ALGORITHM 74

which states that for the demand node v, the cost of transportation calculated
according to Theorem 3.4 is greater than or equal to the cost calculated in the p-facility
allocation. Therefore Z(K') gives an upper bound on the p-facility objective function
value z(K) of SCLAP. Note that Z(K) is an upper bound for the p-facility location
solution with the first K facilities fixed anywhere and SCLAP is a minimization
problem. Therefore, Z(K') will be greater than or equal to the objective value of the
p-facility solution when the locations of the first K facilities are optimal with respect
to SCLAP, in which case the p-facility solution is the optimal solution to SCLAP.

Thus. 3(K) is an upper bound on the optimai objective function value of SCLAP. O

3.3 A Single Assignment Branch & Bound
Algorithm for Solving SCLAP

Let P represent a partial location selection indicating that 1,..,|P|-th facilities are
located. P is an ordered set of | P| facilities where |P| < p. That is, the node index in
the j-th position of the set P indicates that the j-th facility is located on that node.
With each partial selection P we associate a lower bound z(P) and an upper bound,
Z(P), which can be calculated by the methods described in the previous section.

To describe the B&B scheme for the single assignment algorithm, let z
denote the least upper bound on the optimal objective function value of SCLAP
calculated so far. We start with the partial selection corresponding to P = @. If. for
a given partial selection, z(P) < % holds, then we choose an index i € [— P and
replace P by PU {i}, i.e.

P — Pu {i}.

BRANCH-AND-BOUND ALGORITHM

-~}
(S

Then we derive new lower and upper bounds z(P), Z(P) for the updated P by applying

the procedures described in the previous section. If Z(P) < z then % is replaced by

3(P), i.e.

If |P| = p and

N

(P) < Zz, then this newly found solution is stored as a possible
candidate for the optimal solution and Z is improved.

If 2(P) > Z, one returns to the last found partial selection P with z(P) <
2. The assignment of facility j to be located on node i (denoted j ~» i), chosen at
the transition of P to its successor, is now blocked.

A favorable selection of an index i for a new branching can be made by

selecting the node which gives the smallest upper bound.

We next illustrate the above B&B Algorithm by a numerical example.

3.3.1 Example

The example network is given in Figure 3.1 and the corresponding cost data is given
in Figure 3.2. The discounting factor « is set to 0.50 and the number of facilities to

locate, p. is set to 2. The facilities are to be located on the nodes of the network.

5
For P ={ we have z = az w;d(vg, ;) = 31.5 by Theorem 3.1. Initially,
i=l1

define z = oo (in practice, of course. Z is set to a very large number). We now

calculate the upper bound Z(7) for each of the nodes given the partial set of locations

according to Theorem 3.4. Then we get
5(1) = 62
2(2) =75
Z(3) =86

BRANCH-AND-BOUND ALGORITHM

Figure 3.1: Diagram of the Example Problem Network

Edge Lengths Distances

01 23 45 01 2 3 45
0i(0 2 3 - - 4 0{0 2 3 6 6 4
1 0 2 - 46 112 0 2 5 4 6
2 0 3 - - 213 20 3 6 7
3 0 3 5 3Ji6 53 03 5
4 0 4 416 4 6 3 0 4
5 0 5/4 6 7 5 4 0

Figure 3.2: Data for the Example Problem

Weights

1
A‘)

2 3 4

3 2 35

5
9

76

BRANCH-AND-BOUND ALGORITHM 77

3(4) =82

5(5) =91
Since 3(1) = 62 is the smallest one. we choose the single assignment z; = v, for the
next branching. Also, since Z(1) = 62 < Zqrren = 00 We update the current upper
bound.

Next we move to branch (P = (1)) and calculate the lower bound by
Theorem 3.3. which gives:
z(1) = 38.

Since z(1) < Z we continue branching. Next we calculate the upper bounds for Z(1. i)

as follows:
3(1.2) =57
3(1,3) =57
Z(1.4) = 32
2(1.3) = 56

Since 2(1.4) = 52 is the smallest we choose the single assignment 2 ~» 4 for the next
branching. Now we have |P| = 2. then the upper bound is now the actual objective
function value for the given permutation of facility locations. Since 2(1.4) = 52 <
Zeurrent = 62 we update the current upper bound as well as keep the permutation as
a candidate solution. Since we have calculated all possible values for facility 2 given
facility 1 is located at node 1 and selected the minimum, we don't have to branch
further down on the node (P = (1),2 +» 4). Thus this branch is blocked.

Next we branch at (P = 0,1 % 1). We select the next smallest value of
%(i) which we have already calculated in the first branching. For the node (P = (2))

we calculate the lower bound which is z(2) = 48 This lower bound is not greater than

BRANCH-AND-BOUND ALGORITHM 78

the current upper bound, z = 50, therefore we have to continue on this branch. Next

we calculate the upper bounds (2, 1) as follows:

Note that. since now |P| = 2 = p, the upper bounds calculated here are also the
actual objective function values for the given candidate solutions. However, we have
already found a candidate solution, namely P = (1,4) whose objective function value
is less than the values calculated here. Therefore. the current branch is now blocked.

Next we branch at (P = 0.1+ 2). The rest of the procedure follows in a
similar fashion. Figure 3.3 gives the entire B&B Tree.

The optimal solution locates first facility on node 1 and second facility
on node 4. i.e. r; = v; and T2 = vy. And the facilities are visited as r, being the
first and r, being the second. Demand nodes vy, vq, v3, and vs are allocated to the
first facility located at z; = v; and demand point vy is allocated the second facility
located at 9 = v4. An alternate optimal solution locates the facilities at the same

locations with demand point v; being allocated to facility 2 instead of facility 1: all

other allocations are the same.

BRANCH-AND-BOUND ALGORITHM 79

node 1
P=0
=313
I=00
node 2 node 5
P=(1) P=0,1%1
(P) =38 2(P) =315
P)=62=: 3I=52=
node 3 node 4 node 6 node 7
= P =(2) P=0, 142
= (1,4 . ' -
5(;) =(52 =3 P = (l)v 2 7" 4 §(§)== 48 5(};)==5321.D
Candidate Sol. BLOCKED No candidate solution
OPTIMAL better than current
candidate, P = (1,4). node 8 node 9
BLOCKED P=(4) P=01%4
z(P) =62 z(P) =31.5
:=352 =352
BLOCKED
node 10 node 11
P = (3) P = (5),
z(P) = 64 2(P) =595
=52 3 =052

BLOCKED BLOCKED

Figure 3.3: B&B Tree of the Example Problem

BRANCH-AND-BOUND ALGORITHM 80

3.4 Computational Results

In this section we present the results for the computational experiments done on
randomly generated networks. We have generated 10 different problems for each of
the selected number of demand points (n=10.20,...,50). The weights for the demand
points and the edge lengths are generated randomly from a uniform distribution
between 1 and 100. We have solved these problems with 3 and 5 facilities to locate
and also observed problem behavior for different o values. All the problems were
solved on a Sun Sparc V. with uP 70MHz Processor.

Tables 3.1-3.6. gives the processing times (in CPU seconds) of all the
problems solved for different n, p, @ combinations. The last column of Tables 3.2,
3.4. 3.6, gives the average CPU time over 10 problems. Note that 0.0 means the
algorithm was able to solve all 10 problems in less than one second of CPU time.

Since the number of branches of the B&B tree increase exponentially with
n and p. the processing times increase rapidly as n or p increases. One interesting
point to note is the decrease in processing time as a moves from 0 to 1. This is not
unexpected since, as a gets closer to 1, the gap between the lower and upper bounds
becomes smaller, allowing more branches to be pruned early on. The computational
difficulty of the problem is clearly indicated when there are 30 demand points and
5 facilities to locate. The average processing time took a little less than an hour of
CPU time for @ = 0.2. In all cases, it is seen that the value of « plays a significant
role in the computational difficulty of the problems. Figure 3.4 illustrates this effect
clearly, for the example problem with n=20 demand points and p=5 facilities to

locate. In most practical cases however, it is more likely that « is closer to 0 than to

BRANCH-AND-BOUND ALGORITHM

! CPU (in seconds)
n|p|a|[Pr.1]Pr.2|{Pr.3|Pr.4flpr.5
10{310.1 0 0 0 0 1
1013]0.2 0 0 0 0 0
1013103 0 0 0 0 0
101304 0 0 0 0 0
10{3 0.5 0 0 0 0 0
1013 0.6 0 0 0 0 0
101307 0 0 0 0 0
1013108 0 0 0 0 0
101309 0 0 0 0 0
101501 3 3 2 1 1
01502 2 T 2 1
107503 0 2 I 0 1
10504 1 1 1 1 1
10{5]0.5 1 1 1 0 1
10|15 0.6 0 1 0 1 1
1015]0.7 1 1 1 0 0
105108 0 0 0 0 1
1015109 0 1 1 1 0

Table 3.1: Processing Times of B&B Algorithm for 10-node Examples

81

BRANCH-AND-BOUND ALGORITHM

| CPU (in seconds) Avg. |
n|p| o |Pr.6]Pr. 7[Pr. 8] Pr. 9 Pr. 10 | CPU
10]3}0.1 0 0 0 0 0 0.1
103 |0.2 0 0 0 0 0 0.0
10,303 0 0 0 0 0 0.0
10304 0 0 0 0 0 0.0
10;31(0.5 0 0 0 0 0 0.0
10306 0 0 0 0 0 0.0
1013107 0 0 0 0 0 0.0
103108 0 0 0 0 0 0.0
101309 0 0 0 0 0 0.0
10]5]01 5] 2] 3] 3 5 2.0
10(5]0.2 2 1 1 2 1 1.5
10(5]0.3 1 2 1 2 1 1.1
101504 1 1 1 1 1 1.0
101505 1 1 0 1 1 0.8
10{51(0.6 0 0 1 1 1 0.6
101510.7 0 1 0 0 0 0.4
10(510.8 1 0 0 1 1 0.4
10509 0 0 0 0 0 0.3

82

Table 3.2: Processing Times of B&B Algorithm for 10-node Examples (continued)

BRANCH-AND-BOUND ALGORITHM

l CPU (in seconds) 1
\ n|pla||Pr.l1|{Pr.2{Pr.3|Pr.4pr.5
2013 0.1 0 0 0 1 1
201 3]0.2 1 1 1 0 0
20131]0.3 0 1 0 1 1
201 3|04 0 0 1 0 0
201305 0 0 0 1 0
20130.6 1 0 0 0 0
201 3|0.7 0 1 0 0 0
2013108 0 0 0 0 1
2013109 0 0 0 0 0
2015(0.1 182 226 | 232 215 208
2015102 144 184 160 191 173
201503 95 123 94 120 144
2015 0.4 79 94 70 107 118
201505 67 87 53 89 72
2015106 34 63 32 64 33
20151 0.7 33 34 22 44 11
20508 23 33 12 22 13
201509 23 11 12 12 11

Table 3.3: Processing Times of B&B Algorithm for 20-node Examples

83

BRANCH-AND-BOUND ALGORITHM

I CPU (in seconds) Avg.
nip l @ | Pr.6|Pr. 7{Pr.8|Pr.9|Pr. 10] CPU
2013|0.1 0 1 1 0 0 0.4
201310.2 1 1 0 1 1 0.7
2013]0.3 0 0 1 0 0 0.4
20(304 1 0 0 1 1 0.4
2013105 0 1 0 0 0 0.2
2013106 0 0 0 0 0 0.1
2001307 0 0 0 1 0 0.2
2073108 0 0 1 0 0 0.2
2013109 0 0 0 0 0 0.0 |
2015[01] 220 230 211 210] 202 213.6]
20015102 182 175 143 165 132 || 164.9
2015103 156 117 112 143 112 || 121.6
2015(04 117 67 88 137 108 | 98.5
20151 0.5 64 61 78 103 102) 77.6
2015|0.6 46 57 68 67 68 | 53.2
2015107 45 32 45 61 55 38.2
2015]0.8 34 23 46 41 33| 28.0
2015109 22 22 22 11 11 15.7

84

Table 3.4: Processing Times of B&B Algorithm for 20-node Examples (continued)

BRANCH-AND-BOUND ALGORITHM

CPU (in seconds)
n|p|la|Pr.l|{Pr.2{Pr.3|Pr.4]pr3
301302 3 3 3 3 2
301|304 1 1 1 2 1
30306 1 1 1 0 1
3013108 0 0 0 1 0
301502 2431 2074 | 2329 | 2000 || 2476
30504 1016 823 | 1594 | 1142 || 1411
30| 5|06 373 | 229 | 359 T20 | 499
301508 285 191 193! 1941 279
401302 8 10 10 9 9
4013104 5 3 3 7 4
40|13 10.6 1 2 2 2 2
403108 1 0 0 1 0
50| 3]0.2 23 22 23 23 23
501304 15 11 10 11 8
50 ({306 5 4 5 3 3
5013038 3 1 1 1 1

Table 3.5: Processing Times of B&B Algorithm for 30,40,50-node Examples

85

BRANCH-AND-BOUND ALGORITHM 86

CPU (in seconds) 1 Avg.
n|p|a |[Pr.6|Pr.7{Pr.8{Pr.9[Pr. 10| CPU
30(310.2 3 3 3 3 3 2.9
301304 2 1 2 1 1 1.3
30(3]0.6 1 0 1 1 1 0.8
3013(0.8 0 1 0 0 0 0.2
3015]0.2| 2364 | 1900 | 2316 | 2116 2225 || 2223.1
301504 1162 854 | 1570 | 1123 806 || 1150.1
30506 675 481 869 385 289 507.9
30{5|0.8 191 192 288 291 187 229.1
403 0.2 10 9 9 9 9 9.2
401304 5 1 4 5 5 4.3
401310.6 2 3 1 2 2 1.9
401 3(0.8 1 1 0 1 1 0.6
50]3102] 24] 20| 22| 24| 23] 227
5013|104 15 12 13 12 17 12.4
50306 2 3 4 2 5 3.6
5013108 1 2 2 1 1 1.4

Table 3.6: Processing Times of B&B Algorithm for 30,40.50-node Examples
(continued)

BRANCH-AND-BOUND ALGORITHM

250 -

CPU (in seconds)

—e— Pr.1

—e— Pr.7

—e— Pr.2 —o— Pr.3 —=— Pr. 4 —o— Pr.§

—— Pr.8 —e— Pr.9 —s— Pr. 10 =@ Avg. CPU

Figure 3.4: Effect of a on Processing Time

—— Pr.6

87

BRANCH-AND-BOUND ALGORITHM 88

1, because it is generally expected that the cost of transportation on a “supply route”
be significantly less than the cost of transporting the goods directly to each demand
point.

Next, Tables 3.7-3.12 gives the number of branching nodes in the B&B
tree for all problems solved. The processing time of the B&B Algorithm is directly
proportional to the number of branches in the B&B tree. That is, the processing
time is the number of branches multiplied by the computation time at each branch.
The computation time at each branch is is O(n®p); the lower and upper bounds
are calculated in O(np) time for each candidate site and the site which gives the
smallest upper bound is selected as the next branch. The size of the branch and
bound tree increases exponentially as the size of the problem increases. for given
values of n and p the size of the B&B tree would be 2%, where P" represents the
Permutation(n, p) = (n+'p), if all the branches were traversed. Because of the direct
relation between the processing time and the size of the B&B tree. as one would

expect. Tables 3.7-3.12 provide results in direct relation with the processing times.

BRANCH-AND-BOUND ALGORITHM

| Number of Branch Nodes
n|p|a ||Pr.l1!Pr.2[Pr.3|Pr.4{Pr.5
10{310.1 194 | 202 202 202| 202
103(0.2 182 182 | 146 | 122 142
10{3(0.3 102 164 102 122 84
10304 62| 120 62 84 64
10(3]0.5 62 82 62 62 62
101306 42 82 62 42 62
10307 42 62 44 22 62
10{3]0.38 22 42 42 22 42
103109 22 42 42 22 22
10[5]0.1]f 9634 9332 7716 | 7380 | 7322
10502 6490 | 8474 | 5694 | 5008 | 4902
105103 4056 | 7430 | 5638 | 3548 | 3976
10(5]0.4 | 3350 | 5440 | 3418 | 3000 | 3380
10150514 2346 | 4536 | 3504 | 1838 | 3448
10506 || 2318 | 4508 | 3448 | 1174 | 3490
105074 2262 2346 | 2292 | 1174 | 3504
1015108 1174 | 2346 | 2332 | 1174 | 2218
10509 | 1174 | 2346 | 1174 | 1174 1146

Table 3.7: Number of Nodes in the B&B Tree for 10-node Examples

89

BRANCH-AND-BOUND ALGORITHM

l Number of Branch Nodes
l n|p|a |[Pr.6{Pr. 7] Pr.8| Pr. 9] Pr. 10
1013 0.1 202 202 202 202 202
10 310.2 142 142 182 202 138
10{3]0.3 122 122 158 202 102
1013104 82 32 84 148 102
101303 62 62 42 142 62
101 340.6 42 42 22 84 62
101 3] 0.7 22 22 22 42 62
101308 22 22 22 42 42
101309 22 22 22 22 42
1015 0.1 8966 | 8032 | 10142 | 11490 6952
105,021 7094 | 7062 7134 | 9710 5430
1051031 3726 | 6536 | 4300 | 7252 5114
101 5] 0.4 3518 | 4452 | 2818 | 6158 4008
101 51 0.5 3420 3434 | 2074 | 4072 3504
1015106 | 2262 | 2346 | 1174 3504 3518
101 50.74 1174 | 2346 | 1174 | 2346 3360
101510814 1174 | 2346 | 1174 | 2034 2346
1015109 | 1174 | 1174 1174 1174 2318

90

Table 3.8: Number of Nodes in the B&B Tree for 10-node Examples (continued)

BRANCH-AND-BOUND ALGORITHM

| P Number of Branch Nodes
ni|p|l « Pr.1{ Pr.2| Pr.3| Pr.4| Pr.5
201 3:i0.1 802 802 802 802 802
2013]0.2 642 800 802 740 682
20131]0.3 446 648 584 722 602
201310.4 322 446 322 442 442
2013(0.5 282 322 202 402 282
201 30.6 242 284 162 322 122
201307 122 164 82 162 82
20(310.8 82 122 82 82 42
2013109 82 42 42 42 42
201 5| 0.1 197626 | 246426 | 246030 | 231488 | 228144
20 | 51 0.2 || 154992 | 202996 | 174462 | 203622 | 188452
2015 0.3] 102140 | 133830 | 103748 | 131448 | 155152
2015104 86466 | 100808 | 77530 | 117500 | 127048
201510.5 73470 | 94768 | 57234 | 98564 | 80070
20151 0.6 37058 | 69692 | 34298 | 69588 | 36378
2015 |0.7 36820 | 37058 | 24706 | 45084 | 12354
20150.8 24706 | 36956 | 12354 | 24706 | 12354
201509 24706 | 12354 | 12354 | 12354 | 12354

Table 3.9: Number of Nodes in the B&B Tree for 20-node Examples

BRANCH-AND-BOUND ALGORITHM

Number of Branch Nodes

n|p| a Pr.6| Pr. 7} Pr.8| Pr.9| Pr. 10
20130.1 802 802 802 802 802
20(131]0.2 762 764 686 762 656
2013103 642 600 482 602 448
201304 524 282 402 522 402
201 31]0.5 284 242 282 478 362
2013106 162 202 282 242 322
201 310.7 162 162 162 242 202
20{3|0.38 122 82 162 162 162
2013109 82 82 82 42 42
20151 0.1 | 238338 | 244962 | 228038 | 229178 | 217252
20 | 51 0.2 || 200326 | 189010 | 153506 | 181362 | 145226
2015 10.3 || 171404 | 128546 | 121736 | 155196 | 123464
2015041 126694 | 74080 | 95928 | 147784 | 118890
2015]0.5| 69452 | 66344 | 85718 | 111666 | 111000
201506 49410 | 61660 | 75218 | 74114 | 73774
201 5|0.7|| 49206 | 34504 | 49410 | 67196 | 60570
2015108 37058 | 24706 | 48900 | 44808 | 36072
205109 24638 | 24706 | 24706 | 12354 | 12354

Table 3.10:

Number of Nodes in the B&B Tree for 20-node Examples (continued)

BRANCH-AND-BOUND ALGORITHM

Number of Branch Nodes
nip| a Pr.1| Pr. 2 Pr.3] Pr.4| Pr. 5
301302 1800 1624 1742 1742 1682
30/3(04 888 784 848 906 1084
3013{0.6 122 182 242 182 422
301308 244 122 122 122 182
30| 502 1128510 | 961426 | 1093968 | 945548 | 1096006
30 15|04 476596 | 383370 | 479078 | 544002 | 667196
301506 | 273140 | 107188 | 169156 | 341714 | 238280
305 |08 136544 | 91066 91066 | 91066 | 132436
401310.2 2882 3202 3146 3042 3042
403104 1530 1204 1124 2166 1528
4013106 482 486 402 728 400
40308 242 162 82 242 162
501302 5002 4900 4902 4902 4900
50| 3(0.4 3202 2402 2212 2406 1816
503106 1204 904 904 710 608
501308 502 202 304 202 302

Table 3.11: Number of Nodes in the B&B Tree for 30,40,50-node Examples

93

BRANCH-AND-BOUND ALGORITHM

! | Number of Branch Nodes
nlp|a Pr.6| Pr.7| Pr.8| Pr.9| Pr. 10
3013{0.2 1682 1622 1680 1680 1742
301304 974 670 1142 782 610
301306 422 362 662 242 182
3013|038 122 122 182 182 122
30| 5| 0.2 1095478 | 892288 | 1095618 | 992922 | 1029896
3015]0.4]| 540324 | 396744 | T45854 | 522754 | 376288
3015|0.6| 318726 | 227662 | 409304 | 182010 | 136598
3015038 91066 | 91066 { 136598 | 136598 89608
40131(0.2 3122 3042 3122 3124 3122
4013|104 1604 1444 1456 1684 1614
401306 722 802 408 642 722
4013]0.8 324 404 82 242 322
501302 3002 4406 4802 4848 5002
5013104 3214 2406 2706 2528 3596
5013106 506 802 804 606 1016
5013108 102 306 502 302 202

Table 3.12: Number of Nodes
(continued)

94

in the B&B Tree for 30.,40,50-node Examples

Chapter 4

Heuristic Approaches to Solving
SCLAP

In Chapter 3. we have studied the Supply Connected Location-Allocation Problem
on networks. We provided lower and upper bounds for the problem and presented a
single assignment branch-and-bound algorithm to solve it. The algorithm was then
tested on a set of problems and computational results were given. Since the number
of branches of the branch-and-bound tree increases exponentially with the number
of demand points (n) and the number of facilities to be located (p), the processing
times increase rapidly as one of those increases. An important observation is the
significance of the role of one of the problem parameters (a) on the computational
solvability of the problem: as a varies from 0 to 1. the computation times decrease
significantly. This comes from the fact that, as & moves away from 0 closer to 1,
the difference between lower and upper bounds decreases allowing more branches to
be pruned at the early stages of the branch-and-bound algorithm. However, in most

practical cases « is expected to be closer to 0, rather than to 1. The need thus arises

for other ways of solving problems in larger sizes.

95

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 96

In accordance with the observation above, the next step to take in this

problem is to look for efficient heuristics which might provide reasonable solutions in

shorter processing times.

4.1 Local Search Heuristics

Locai Search (LS) heuristics are based on searching a small subset of the solution
space. For a given point in the solution space, neighboring points within a restricted
neighborhood of this point are searched for 2 new point that is better with respect to
some measure. Termination occurs whenever the neighborhood of the current iterate
does not contain a better point. Note that the definition of the term "neighborhood”
in this chapter differs from the definition of neighborhood in Section 1.2 of Chapter 1,
where some existing heuristic algorithms for the location-allocation type problems in
the literature were being discussed. Namely, in Section 1.2 the term "neighborhood”
referred to the set of demand points (which also constituted the set of candidate
facility sites) that were nearest the specific facility location in a feasible solution. In
this chapter however. the "neighborhood” of a feasible solution is defined to be the set
of feasible solutions that can be derived from the current feasible solution by changing
a limited number of items of the solution vector. A more formal definition is given
below:

Let Z be the finite set of all possible feasible solutions. For a point z € Z
let N(z) denote the neighborhood of 2 and for any two points 2%,z € Z let d(2°, 2?)
denote the distance between points 2% 2! € Z. The distance is defined to be the

function d : Z x Z — R which satisfies the nonnegativity, triangle inequality, and

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 97

symmetry properties. The distance from any point to itself is zero, and this is the
only case when the distance is zero. For any parameter § > 0 the é-neighborhood
of 2% € Z is defined as Nj(2%) = {2} € Z — {2°} : d(2%,2!) < 8}. For the case of
discrete optimization problems. we have to use the following definition (Damberg and
Migdalas 1994):

Definition 1: Let Z be the set of all ordered v-dimensional vectors of
zeros and ones. The Hamming distance on Z is defined by dy(2°.z})= number of
positions where =° and 2! are different. The Hamming neighborhood is defined for
any positive integer & by N5(z°) = {z € Z {2°} : dy(2°, 2}) < 4}

Note that z € V5(2°) if it differs from z° in at most & positions. Hence the

size of the neighborhood is

N5(z2%)| = Z‘;l(;’). Examination of all points in such a

neighborhood requires at least O(v°) time. Therefore , in practice. one chooses § = 1
ord =2

For example. in the Location-Routing-Allocation heuristic which we will
discuss in the following pages, we have a vector X of size p x n. where each entry
of value zero or 1 represents the location assignment of facility j to candidate site i
which will be visited at the j-th position on the supply route. At each iteration of the
heuristic we assign a facility to another site or change the positions of two facilities
on the supply route. Thus, § is set to 2 in our study.

Two different approaches can be utilized to strengthen the solutions
obtained in the LS heuristics. The first is to consider larger neighborhoods at each
iteration. In this case computations in each iteration become more complex as the
size of the neighborhood increases. Secondly, a more balanced approach can be taken

where one would diversify the solution space of the problem’s essential variables. That

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 98

is. a set of initial points is generated uniformly over the solution space and the LS
algorithm is executed from each of these points. Clearly, execution of the algorithm
for a large number of starting points uniformly distributed over the solution space
increases the probability of finding a global optimum.

LRPs can be described as a combination of three distinct components:
(i) location of facilities; (ii) allocation of demand points to facilities; (iii) routing.
These components are closely interrelated and should be optimized simultaneously.
However. comprehensive mathematical programming formulations which incorporate
all aspects of the problem will generally contain too many variables and constraints to
be easily solvable. Therefore most of the non-Lagrangian heuristic algorithms used for
LRP exploit the decomposition of the problem into its components. Such approaches
in general belong to the family of local search procedures.

Next we will discuss three different types of heuristics, which we
call Location-Routing-Allocation (LRA). Allocation-Routing-Location (ARL). and
Location-Allocation-Routing (LAR) heuristics, depending on the relative sequence
of decisions. In these heuristics, the basic approach is to change the two decision
components with controlled movements within the neighborhood of a given feasible
solution and make the third decision optimally with respect to two previous decisions.
The procedure begins with a randomly selected starting feasible solution.

Before introducing the heuristics. let us define some of the terminology
we use in describing the algorithms. In relation to the three decision components
inherent in the problem we have to distinguish between a set of candidate sites (node
numbers) for facilities, a sequence (order) of visiting the facilities on the supply route,

and an allocation of demand points to facility sites. In this context, in the remaining

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 99

part of this chapter, whenever we use the terms site or location, they will refer to
the actual candidate points on which the facility can be built. The term position will
refer to the specific sequence in the supply tour according to which facility will be
visited. With this convention, we then define a relocation move which means that a
facility is assigned to another candidate site, but the order of visiting the facilities
on the supply route does not change. A pairwise interchange of facilities means that
the positions of two facilities on the supply route will be interchanged, but the set of
facility sites which contain an open facility does not change. Similarly, an allocation
of a demand point to another facility will mean that that demand point is allocated
to another facility according to its position on the supply route. Thus the allocation
sets change but the visiting sequence on the supply route remains the same. Finally,
when we use the term pairwise interchange for allocation sets, it will refer to the
pairwise change in the position of facilities to which the two specific allocation sets

are assigned: however the allocation sets themselves will not change.

4.2 Location-Routing-Allocation (LRA) Heuristic

The LRA heuristic starts with a set of open facility sites and a predetermined route
among them. Observe that in our problem. when the locations of facilities are fixed,
determining the supply route among facilities optimally in polynomial time is not
possible without knowing the demand point allocations. For that reason, we have
to set the sequence of the facilities visited on the supply route beforehand. Once
the locations of facilities and their positions on the supply route are known, optimal

allocations can be done in polynomial time by utilizing Theorem 3.2 in Chapter 3.

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 100

The cost of allocating one unit of demand of a demand point to a given
facility at a known position includes two components, say C; and C,. C; is the
cost of transporting one unit of demand from the facility to the demand point and
C, is the cost of bringing this demand from the supply plant to the corresponding
facility. We assume that the cost of transportation is directly related to the distance.
Hence C) is the shortest distance between the demand point and the facility and C,
is the distance on the supply route from supply plant to this facility multiplied by the
discount factor a. Since the locations and positions of all facilities are fixed, C; and
C; are easily computable for each demand point. The sum of C; and C, gives the
unit cost of transportation starting from the supply plant to the given demand point.
Thus each demand point is allocated to a facility on the supply route which gives the
least unit transportation cost. This can be done in O(p) time for each demand point
by evaluating all facilities. Hence, determining the best allocations for all demand
points can be done in O(np) time.

Now let us summarize the LRA algorithm. The LRA algorithm starts
with an arbitrary set of p facility sites and a preset order of visiting among them.
Since the locations and positions of the facilities on the supply route are given, the
demand points are then allocated to the facilities according to Theorem 3.2. At
each iteration of the search we change the location and routing components of the
problem and modify the allocation component accordingly. In order to utilize a larger
neighborhood, we incorporate a nested loop of two repetitive actions. That is, instead
of making relocation and interchange steps independently, we first make a relocation
move, and then we proceed with the pairwise interchange of facility positions. This

increases the size of the search neighborhood at each step. If all possible pairwise

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 101

interchange of facility positions do not give any reduction in the total transportation
cost., we evaluate the first relocation move which may still provide improvements in
the objective function. As soon as an improvement is reached, the best objective
function value so far is updated, and the new configuration of facility locations and
positions. together with the consequent allocations, is taken as the new starting
point and the procedure returns to the beginning. The algorithm continues until
all possible relocations and all possible interchanges within each relocation move of a
given configuration have been considered and no further improvements are possible.

We call this algorithm LRA(A) because we also study a slightly modified
version of the LRA heuristic in this chapter, which we call LRA(B). The steps of

the LRA(A) algorithm are given next. and Figure 4.1 shows the flowchart of the

algorithm.

Algorithm LRA(A)
0. Select an arbitrary set of p facility sites and assign a sequence among them.

1. If all facilities in this configuration have been considered for relocation,

then go to STEP 3,

else select a facility to relocate on an available site.

2. Ifall possible pairs of facilities have been considered for position interchange on

the supply route
then go to STEP 4,

else select the next pair of facilities to interchange their positions.

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 102

3. If the interchange move improves the objective function (i.e. reduces cost),

then select this solution as the next starting point and return to STEP 1,

else return to STEP 2.

4. If the relocation move improves the objective function value,

then select this solution as the next starting point and return to STEP 1.

5. Keep the best solution so far and STOP.

Steps 2 and 3 of the algorithm correspond to the inner loop of the

interchange operation and steps 1 and 4 correspond to the outer loop of the relocation

operation.

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP

Allocate demand
notes to facilities

Allgcate demand
notes to facilities

Input any ordered set
of p facility sites

¥

Select first facility

3 site to relocate

Y

[dentify an
ungccupied site for
relocation

¥

Select a patr of
facility sites for
posttion nterchange

been considered for

been considered for
relocation?

Select next facility
site for relocation

Figure 4.1: Flowchart of Algorithm LRA(A)

103

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 104

We also study a slightly modified version of the LRA heuristic, called
LRA(B) as mentioned earlier. In this version, instead of selecting the first
improvement point as the next starting configuration, we search all possible relocation
movements (i.e. the entire neighborhood with respect to relocation moves), as well
as all possible interchange movements within each relocation (i.e. for every solution
in the neighborhood of the starting point with respect to relocation, we search the
entire neighborhood of each solution with respect to position interchange) and select
the one that results in the greatest improvement in the objective function. Thus the

steps 3 and 4 of the algorithm are changed to:

3’. If the interchange move improves the objective function (i.e. reduces cost),
then store this solution as the current best solution.

Return to STEP 2.

4'. If the relocation move improves the objective function value,

then store this solution as the current best solution

Return to STEP 1.

In the algorithm LRA(B), we essentially search for the local minimum of

the neighborhood of the given starting point and select that local minimum as the

next starting point.

4.3 Allocation-Routing-Location (ARL) Heuristic

The second heuristic we study is called the Allocation-Routing-Location (ARL)
heuristic. The idea now is to update the allocation and routing decisions with moves

in the local search neighborhood and locate the facilities with respect to the given

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 105

allocation and routing configuration. For that we partition the demand set into p
subsets and assign a sequence to the given p subsets. That is, each subset is given
a unique position which determines the sequence by which the facility that serves
the demand points in this subset will be visited on the supply route. Once we know
the allocation sets and their relative sequence on the supply route, we can solve for
the actual locations of facilities by a backward dynamic programming procedure,
essentially similar to the one described for the case on a line described in Chapter
2. For algorithmic purposes note that when we want to locate, say, k-th facility,

(k — 1)st and (k + 1)st facilities behave like demand points to facility k£ with weights

(a Z w,-) and (a Z w,-) respectively, where I; denotes the set of indices

€U i €L i
of demand points which are allocated to the [-th facility. The transportation cost

between the (k — 1)st. k-th, and (k + 1)st facilities on the supply route is given by:

a Z wi) d(Tp-1,2) + | @ Z w; | d(Tk, Tk+1)- (4.1)

ief_. I ek
To solve for the locations via dynamic programming we first consider each candidate
site for the (p—1)st facility and find the location of the p-th facility with respect to the
(p—1)st facility’s given location. Then, for each candidate site of the (p—2)nd facility,

we find the location of the (p — 1)st facility and so on. The dynamic programming

relation is given by

fe(Te-1,2) = rrfér‘l/ Ew,—d(zk, v) + (a Z w,-) d(v, Tk) + fee1(Ths Thar)

i€l iGUlp___k I
(4.2)

where f;(v, ;) denotes the minimum transportation cost from a given point v to the

next facility k£ on the supply route and the cost of allocating demand points to the

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 106

k-th, (k+ 1)st,...,p-th facilities, as well as the respective transportation costs between
those facilities on the supply route. V) denotes the set of demand points that are
allocated to the k-th facility, and z; denotes the location of the k-th facility.

We start with the location of p-th facility for each candidate site, v, for

the (p — 1)st facility. Then we solve:

v ;) = ming ev {Z w;d(zp, v;) + (a Z w,~> d(v. xp)} . (4.3)

i€lp i€l

Next we solve for the (p — 1)st. the (p — 2)nd facility and so on. using the recursive
relation given (in 4.2). When we reach the location of first facility, we have only one
candidate site for the 0-th facility, so to speak, which is actually the supply plant
itself. Note that earlier in the thesis. we indicated that the supply plant is located
at a known point and for notational simplicity, we decided that this location would

be indicated by vg. Thus the final step in the dynamic programming procedure will

consist of solving

fi(vo, 1) = ming, ey {Z wid(zTk, Vi) + (aZw,) d(vg, 1) + f«;(zl,z;)} . (4.4)

i€l i€l
where [= U_ I;.

(4.4) gives the minimum transportation cost for the given allocation and
routing configuration. Once we solve (4.4) we can trace back the optimal locations,
Iy, T3 . Ty At each iteration of the DP algorithm we consider at most n available
sites for the given facility and compare the costs for each site. Computing the cost
for a given site can be done in O(n) time. Therefore at each iteration (4.2) can
be calculated in O(n?) time. Since the DP algorithm consists of p iterations, each

corresponding to location of a facility, the entire DP algorithm will take O(pn?) time.

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 107

Having established the procedure for locating the facilities for the given
allocation and routing configuration in the ARL heuristic, we developed a search
algorithm similar to the one described in the previous section. For the case of the
ARL heuristic we also consider two slightly different versions as we did in the LRA
heuristic. Namely, in the first case we restart the algorithm as soon as a solution that
improves the objective function value is reached, and in the second case, we search
for the best possible improvement in the neighborhood of the given starting solution
and select the one that gives the best improvement as the next starting point.

Algorithm ARL(A) starts with a given partition of demand points into p
subsets and a preset sequence among them. Given the allocation sets and positions for
the facilities. the locations of facilities are then calculated using the backward dynamic
programming procedure described above. At each iteration of the algorithm ARL(A)
we go to a neighboring point of the given solution with respect to the allocation
and routing changes. In order to accommodate a larger search neighborhood, we
first identify a pair of allocation sets to interchange their positions and then for the
given interchange move. we consider reallocating demand points one at a time to
a facility other than the current facility they are allocated to. If any reallocation
move results in an improvement of the objective function (i.e. reduces cost) we select
the given configuration (together with the demand reallocation and facility position
interchange, as well as the consequent location changes) as the next starting point
and restart the algorithm, otherwise we consider another demand point to reallocate
until all demand points are considered. If none of the reallocation moves results in an
improvement in the objective function value, we consider the initial interchange move

which may still result in a decrease in cost. If an improvement is possible, the given

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 108

configuration is selected as the next starting point and the algorithm is restarted;
otherwise another pair of allocation sets is considered for position interchange, until all
possible pairwise interchanges are considered. The algorithm continues in this manner
until no further improvements are possible. The steps of the algorithm ARL(A) is

given next and Figure 4.2 shows the flowchart of the algorithm.

Algorithm ARL(A)

0. Select an arbitrary partition of demand points into p subsets and assign a

sequence among them.

1. Ifall possible pairs of allocation sets in this configuration have been considered
for position interchange,
then go to STEP 5.

else select a pair of allocation sets to interchange their facilities’ positions on

the supply route.

2. Ifall demand points have been considered for reallocation to another facility

then go to STEP 4,

else select the next demand point to reallocate.

3. Ifthe reallacation move impr jective function (i.e. reduces cost),

then select this solution as the next starting point and return to STEP 1,

else return to STEP 2.

4. If the interchange move improves the objective function value,

then select this solution as the next starting point and return to STEP 1.

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 109

5. Keep the best solution so far and STOP.

Steps 2 and 3 of the algorithm correspond to the reallocation operation

and steps 1 and 4 correspond to the position interchange operation.

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 110

Input any ordered
partttion of demand
points into p subsets

v

= Select a pair of
allocation sets for <€
2 position interchange

¥

Select a demand
pomnt for reallocation
to another facility

v

Identify the facifty to | ¢

reallocate to

|| Locate facilities

within allocation sets

v Select next demand | |
been considered for pomnt for reallocation
relocation?
Locate facilities
withm allocation sets

Figure 4.2: Flowchart of Algorithm ARL(A)

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 111

As we mentioned earlier, we also study a slightly modified version of the
algorithm ARL(A). which we call ARL(B). In this version we search all possible
reallocation and position interchange operations for best improvement in the objective
function, before we select the next starting point. That is, we select the local minimum

of the given neighborhood as the next starting point. Thus the steps 3 and 4 of the

algorithm are changed to:

3”. If the reallocation move improves the objective function (i.e. reduces cost),
then store this solution as the current best solution.

Return to STEP 2.

4", Ifthe interchange move improves the objective function value.

then store this solution as the current best solution

Return to STEP 1.

4.4 Location-Allocation-Routing (LAR) Heuristic

The idea behind the heuristics described in this chapter is simple: namely, we change
the two decision components of the problem with movements in the neighborhood of
the starting solution and solve the third decision component optimally with respect to
the given two decision components. For example, in the LRA heuristic, we preset the
location and routing decision by movements in the single relocation or repositioning
movements in the neighborhood of each starting point and solved the allocation
decision with respect to the given location and routing decisions optimally. Similarly
in the ARL heuristic allocation and routing decisions were set by movements in the

neighborhood of the starting solution and the locations were found optimally with

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 112

respect to the given allocation and routing decisions.

This approach clearly suggests the idea of a third type of heuristic
which could be called Location-Allocation-Routing (LAR) heuristic, where one
would determine the location and allocation decisions by simple movements in the
neighborhood of the given feasible solution and solve the routing decision accordingly.
Although the idea is simple. there is an interesting complication from the viewpoint
of computational cost. Recall from the analysis in Chapter 1 that when the
locations of facilities and allocations of demand points to facilities are known, the
resulting problem. which corresponds to the routing decision component, is the
Weighted Delivery Man Problem (WDMP) which is NP-Hard. Additionally, no
known polynomial time algorithm exists to solve one of its special cases, the DMP.
even on tree networks. Thus the problem we have to solve at each iteration of the
LAR heuristic, is quite difficult to manage for large values of p (i.e. the number of
facilities) in reasonable computation time. For small values of p, this approach may
still be useful by solving the subproblem optimally with brute force approach. For
example when p is two there are only two possible route sequence and when p is three
there are six possible route configurations. Of course this number grows very rapidly
with the order of p! as p increases. Because of the computational difficulty mentioned
we did not provide computational testing and comparison for this heuristic in this
thesis.

As pointed out earlier. these heuristics preset the values for two decision
components and then optimize the third component accordingly. Clearly one would
ask if it was possible to set decisions for only one component of the problem and

then try to optimize the remaining two components simultaneously. Considering the

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 113

computational difficulty of even the subproblems, this approach may not seem very
promising. However, for very small values of p it may be possible to find the route
optimally by complete enumeration. A slightly modified version of ARL heuristic
can be obtained by predetermining the allocation decisions only, and then for each

allocation group. searching all possible route configurations and finding the optimal

locations.

4.5 Computational Testing and Performance
Comparison of Heuristics

The four algorithms discussed are coded in C++ and tested on a total of 50 randomly
generated networks. The networks considered consisted of 11,21....,51 nodes. one of
which represented the supply plant location and the others represented the demand
points as well as the candidate sites for facility locations; 10 different networks are
generated for each case. The edge lengths are drawn from a uniform distribution
between 1 and 100. The distances are calculated to be the length of the shortest
path between any two points on the network. Therefore, if an edge length does
not conform to triangle inequality property of a distance metric so defined, i.e. if
the length of the edge is greater than the length of the shortest path between its
endpoints. then the solutions simply would not include that edge. This is because
the transportation costs are calculated according to distances defined by the shortest
path lengths, which means any shipment not using the shortest path between two
points would cost more. The problems are then solved for different p (number of
facilities to locate) and o (scaling factor) values on each of the randomly generated

networks. To further improve the results of each heuristic, we ran all the heuristic

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 114

algorithms from 10 randomly generated starting points and selected the best solution
among them. For a more reliable comparison and to avoid effects of the starting point
selection, the two different (A and B) versions of each type of heuristic were started
from the same starting points. All the algorithms were run on a Sun Sparc V with
70 mHz processor.

The results of the heuristics and their computation times are compared
with the optimal results obtained by the B&B algorithm described in Chapter
3. whenever optimal results were available. Tables 4.1 through 4.6 compare the
performance of heuristics with respect to the B&B Algorithm and the resulting
optimal solutions. Tables 4.1. 4.2, and 4.3 give the average processing times of all
algorithms over 10 test problems for each n. p. a combination. Tables 4.4, 4.5. and
4.6 give the average results on percentage error (i.e. how far the heuristic solution is
away from the optimum). Tables 4.7. 4.8. and 4.9 compares the results of heuristics
between themselves for larger instances of the problem, where no optimal solutions
were available.

From Tables 4.1, 4.2, and 4.3 we see that for small instances of the problem
where n (number of facilities) and p (number of demand points) are relatively small,
B&B algorithm performs better in terms of computation time. However, of course. as
the problem size increases the time to solve each problem increases very rapidly and
falls behind the heuristic algorithms. Increase in computation time for all algorithms
both exact and heuristic is much more sensitive to an increase in p than in n. The
change in scaling factor a does not seem to affect the computation times of heuristics
as significantly as it does for B&B algorithm. Of course, the importance of a was

expected in the B&B algorithm because of the difference a causes between lower and

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP

Average CPU (in seconds)
n|p| o| B&B | LRA(a) | LRA(b) | ARL(a) | ARL(b)
10}3]0.1 0.1 0.0 0.2 0.7 0.5
10 3]0.2 0.0 0.2 0.1 0.2 0.5
10303 0.0 0.0 0.1 0.4 0.5
10304 0.0 0.2 0.2 0.5 0.3
10 3]0.5 0.0 0.1 0.0 0.2 0.6
10 3|06 0.0 0.0 0.1 0.2 0.4
10 3]0.7 0.0 0.0 0.2 0.4 0.2
101308 0.0 0.1 0.0 0.3 0.5
10309 0.0 0.2 0.0 0.0 0.3
10} 5]0.1 2.0 0.5 0.3 4.8 7.5
10{5(0.2 1.5 0.3 0.6 5.2 7.2
105103 1.1 0.4 0.2 5.2 6.3
10 5|04 1.0 0.5 0.8 6.0 6.3
101505 0.8 0.2 0.2 5.2 6.6
10{ 5|06 0.6 0.4 0.4 5.3 5.5
10} 570.7 0.4 0.3 0.5 5.5 5.8
10{ 508 0.4 0.5 0.4 5.2 6.0
10| 5|09 0.3 0.1 0.6 5.3 6.1

Table 4.1: CPU for 10 node examples

115

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP

Average CPU (in seconds)
n/p| alf B&B |LRA(a) | LRA(b) | ARL(a) | ARL(b)
2003101 0.4 0.6 0.2 4.2 6.7
20 3]0.2 0.8 0.3 0.9 3.6 5.3
201 31]0.3 0.5 0.7 0.1 3.4 4.5
201 3|04 0.4 0.3 0.8 2.6 4.1
2013(05 0.3 0.7 0.2 2.9 3.6
20/ 306 0.2 0.3 0.7 2.6 3.5
201 3]0.7 0.1 0.6 0.5 1.9 3.2
201 340.8 0.3 0.5 0.3 2.2 2.8
201 3(0.9 0.0 0.2 0.5 2.7 3.3
20] 5]0.1] 190.4 3.1 3.2 38.7 734
201 5[0.2| 1489 3.3 3.0 42.0 59.0
201503 112.2 3.3 2.9 45.3 53.2
201504 915 2.8 2.5 51.2 47.8
201505 723 2.3 2.3 49.0 43.6
2015(06| 50.0 3.0 2.5 48.4 43.8
20| 5407 36.0 2.5 24 47.6 38.4
20/5|08]| 268 2.7 2.4 45.6 41.3
205|109 145 2.2 2.4 43.2 44.7

Table 4.2: CPU for 20 node examples

116

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP

Average CPU (in seconds)
ni/p| a| B&B|LRA(a) | LRA(b) [ARL(a) [ARL(b)
30| 340.2 29 1.3 1.0 16.0 229
301 3|04 1.3 1.3 1.2 10.6 14.5
30| 31|06 0.8 1.2 1.2 10.1 11.9
3013108 0.2 1.6 1.1 11.9 11.4
301|502 2223.1 11.5 9.2 253.1 277.3
301504 | 1150.1 9.1 8.1 292.6 202.0
30| 506 5079 8.6 6.4 261.5 154.8
30| 5108 229.1 79 6.7 236.9 179.2
4013102 9.2 2.7 6.0 47.8 52.4
401 304 4.5 2.6 5.8 32.0 38.0
40| 3|06 1.9 3.1 4.5 214 28.5
40| 3|08 0.6 3.0 4.3 20.7 28.3
50302 22.7 5.4 3.7 120.7 113.3
50| 304 12.4 5.3 4.0 84.3 86.2
50| 3106 3.6 5.3 3.0 54.5 67.3
501308 1.4 5.0 3.1 55.0 62.6

Table 4.3: CPU for 30, 40 50 node examples

11

e d

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 118

upper bounds used at each iteration of the algorithm, as discussed in Chapter 3. One
important observation from processing time tables is that both LRA type heuristics
are much faster than both ARL type heuristics. This was expected because each
iteration of a LRA heuristic requires O(np) steps, whereas each iteration of an ARL
heuristic requires O(n®p) steps. Thus, on average, one might expect an ARL type

heuristic to be about O(n) times slower than the LRA type heuristics, this is shown

in Tables 4.1, 4.2, and 4.3.

% Error

n|{p| o LRA(a) | LRA(b) | ARL(a) | ARL(b)
10| 310.1 0.000 1.246 2.589 0.201
101 3(0.2 0.000 0.064 2.580 1.972
1013]03 0.165 0.219 4.780 5.526
103104 0.000 0.901 4.924 1.992
101305 0.000 0.276 3.277 3.426
1013106 0.000 0.837 5.499 3.268
10t 3{0.7 0.000 0.234 4.180 1.902
101308 0.000 0.152 2.240 1.448
10| 309 0.000 0.000 1.087 1.182
10 5]0.1 0.113 0.000 0.129 0.375
101 510.2 0.000 0.000 2.418 0.444
101503 0.474 0.151 1.399 0.157
10504 0.322 0.000 1.655 1.541
101 510.5 0.004 0.090 3.163 1.949
101506 0.003 0.004 2.919 2.438
1015(0.7 0.006 0.006 3.784 2.706
101 5]0.8 0.004 0.003 3.326 3.087
101509 0.002 0.002 3.069 2.920

Table 4.4: % Error for 10 node examples

Tables 4.4, 4.5, and 4.6 show. on average, how far the best solution found

by each heuristic was away from the optimum solution. The percentage error for each

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP

' % Error
n|!p| al| LRA(a) | LRA(b) ! ARL(a) | ARL(b)
201 31]0.1 0.000 0.052 2.591 2.255
201302 0.000 0.688 5.841 4.302
20(3)0.3 0.052 0.626 5.073 4.496
201 3(04 0.000 0.188 7.592 6.491
2013105 0.000 0.543 5.790 9.571
201306 0.000 0.446 6.374 5.538
201307 0.000 0.347 6.721 5.178
203|038 0.000 0.237 1.682 3.958
2013|109 0.009 0.201 2.132 2.032
20501 0014] 0101 1637] 2543
05|02 0.047| 0022]| 3.364] 2.858
205]03 0.202 | 0.356] 4.890 3111
20504 0500 | 0295| 4.114| 3.164
20505 0.235| 0.101] 3.065 3.634
20506 0.053| 0053| 3.682 7.603
20| 5|07 0.119 0.153 2.533 2.785
201 5]0.8 0.123 0.107 2.713 1.633
2015(09 0.046 0.035 1.164 0.889

Table 4.5: % Error for 20 node examples

119

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP

% Error
n;p| al|LRA(a) | LRA(b) | ARL(a) | ARL(b)
30 3|0.2 0.131 0.470 7.214 10.795
30, 3|04 0.022 0.484 9.451 8.437
30| 3]0.6 0.000 0.602 7.226 6.468
30308 0.002 0.280 3.559 3.537
30 5}0.2 0.000 0.151 7.194 8.817
301 5|04 0.231 0.583 3.777 8.334
3015|06 0.350 0.228 3.873 6.062
301508 0.116 0.123 2.874 3.261
0] 3}0.2 0.000 0.643 9.643 12.104
40{ 3104 0.110 0.911 8.597 8.911
4013106 0.000 0.264 9.526 8.771
401 3|08 0.005 0.342 5.304 9.665
5013102 0.000 0.276 12.008 13.561
30| 3104 0.129 0.592 10.617 11.495
50| 3106 0.000 0.674 8.354 9.114
3013108 0.000 0.221 4.883 4.739

Table 1.6: % Error for 30, 40 and 50 node examples

120

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 121

test problem was calculated by taking the ratio of the difference between best solution
found by the heuristic and the optimum solution found by the B&B algorithm, with
the objective value of the optimum. Note that 0.000 means that the algorithm was
able to find the optimum solution in all 10 test problems. % Error tables show a
clear dominance of the LRA type heuristics over ARL type heuristics in closeness to
optimality. In all cases, the LRA type heuristics found solutions which were close to
the optimum within 1% range on average, whereas ARL type heuristics would find
solutions up to about 12% closeness. For the problems we study in this group (i.e.
smaller problems where optimum solutions were available), interestingly, it seems
that heuristic LRA(A) performs better than the heuristic LRA(B), suggesting that
searching for the best solution in the neighborhood of a given solution may lead to
algorithm being stuck in a “bad” local minimum more easily. However, in the case of
ARL type heuristics ARL(B) performed better relative to ARL(A) for small problems.
However for larger problems ARL(A) outperformed ARL(B). The computation times
for ARL(B) were less than the computation times for ARL(A) for large problem sizes.
This may imply that the ARL(B) gets stuck in a "bad” neighborhood resulting in a
worse local minimum more easily.

We terminated the B&B algorithm for instances where the computation
time for a problem exceeded 1 hour of CPU. Therefore, we did not have optimal
results for larger problem sizes. However, we continued the four heuristics for some
larger problems and compared their performance with respect to each other. Tables
4.7. 4.8, and 4.9 provide the results for those instances. In this case percentage error
was calculated relative to the best solution found among all algorithms. Therefore we

also included the information of how many times the best solution was found by each

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP

Average CPU (in seconds)
n | p| « | LRA(A) | LRA(B) | ARL(A) | ARL(B)
20| 7101 13.0 10.9 239.8 350.6
2017102 134 9.8 291.9 308.4
2007103 10.6 8.3 258.7 273.8
200704 7.2 7.6 298.1 275.5
2017105 7.0 7.2 292.8 248.0
201706 8.5 7.6 271.3 240.9
20707 6.9 7.2 329.5 258.5
207108 6.2 7.5 300.3 259.2
200709 5.9 7.8 300.2 253.5
30| 702 43.7 27.0 1426.4 1336.8
3017104 28.0 21.9 1612.9 1098.3
30/7]06 23.6 21.7 1450.9 963.6
300|708 20.2 20.9 1349.5 946.7
40]5(0.2 25.7 38.3 1029.6 818.6
40504 23.8 31.8 908.3 541.1
40|51} 06 19.3 31.1 1033.8 538.0
4015 0.8 19.7 33.6 783.6 502.9
5015102 48.3 26.2 2442.0 1901.6
50504 49.5 23.2 2237.0 1334.5
501506 39.8 21.4 2161.1 1075.4
505108 36.0 20.2 2094.0 1051.7

Table 4.7: Average Processing Times of the Heuristic Algorithms

[SV]

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP

Average % Error
n | p| a || LRA(A) | LRA(B) | ARL(A) | ARL(B)
200701 0.116 0.036 2.235 2.149
2017102 0.565 0.089 2.387 2.876
2007103 0.412 0.127 3.102 3.538
207|104 0.495 0.257 2.120 1.474
2017105 0.424 0.057 3.376 4.177
2017106 0.060 0.040 3.030 3.896
20| 710.7 0.126 0.035 3.073 3.013
20| 7108 0.116 0.025 3.714 4.060
2007109 0.023 0.000 2.693 3.752
3017102 0.358 0.029 3.784 4.978
30,7104 0.453 0.033 4.336 4.920
30,7106 0.333 0.000 3.479 3.251
307108 0.124 0.000 3.172 3.424
40151]0.2 0.520 0.117 5.823 5.943
40| 5({04 0.291 0.137 5.511 7.871
405106 0.004 0.049 3.912 5.910
4015108 0.015 0.052 3.869 3.938
301502 0.074 0.333 6.144 8.135
50(5|04 0.000 0.172 6.040 7.392
501506 0.028 0.061 4.684 6.046
50508 0.013 0.013 3.296 3.959

Table 4.8: Average % Difference from the Best Solution Found

123

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP

Times the Best Found
nipj{ca||LRA(A)| LRA(B) | ARL(A) | ARL(B)
201 710.1 9 9 0 0
201 710.2 8 7 2 0
20({710.3 7 7 0 0
20 7|04 4 7 0 3
2017105 5 8 0 0
2017106 8 9 0 0
20 7 10.7 6 9 0 1
2017108 6 9 0 1
2017109 8 10 0 0
30| 7102 6 7 0 0
307104 6 9 0 0
30]71{0.6 5 10 0 0
3017108 7 10 0 0
4015(0.2 5 8 1 0
4015 |04 9 7 0 0
40| 506 9 7 0 0
40508 9 9 0 0
5015102 8 5 0 0
5015104 10 4 0 0
501506 8 8 0 0
501508 9 7 0 0

Table 4.9: Number of Times Best Solution was Found by Each Heuristic

124

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 125

algorithm over 10 test problems for each n, p, and o combination. Results discussed
earlier for ARL type algorithms seemed to hold the same here as well. What is
interesting to note is that algorithm LRA(B) started performing better than LRA(A)
for large problems, it found the best solution more times than LRA(A).

To have a better comparison for the LRA type heuristics between
themselves we tried even larger problem instances for these LRA(A) and LRA(B)
heuristics, the results of which are presented in Table 4.10. As the problem sizes
increased with respect to number of demand points and number of facilities to locate,
the algorithm LRA(B) found a better solution more times than the LRA(A). What is
also important to note is that the computation times were not significantly longer than
the LRA(A) algorithm. LRA(B) Algorithm had a relatively uniform computation
time with respect to changes in the value of o, whereas LRA(A) seemed to take
slightly less time as @ moved away from 0 closer to 1. Since LRA(B) searches the
entire neighborhood at each iterate, potential effect of « in its computation time is
less noticeable.

Finally we also present comparison of all those algorithms for each of the
10 problems for all n, p, and a combinations, individually in Appendices B, C, and
D.

From the analysis in this chapter, LRA type heuristics come out as a
winner both in terms of computation times and closeness to optimality or best
solution. Although LRA(A) seemed to perform better for small problem sizes, it later
became clear that LRA(B) gives better solutions for large problem sizes. However,
more testing has to be done with larger number of examples for each parameter

combination to be able to indicate whether there is a significant statistical difference

CHAPTER 4.

HEURISTIC APPROACHES TO SOLVING SCLAP 126
Avg. CPU % Error #. Best Find
n|p| e [LRA(A)|LRA(B) | LRA(A) [LRA(B) [LRA(A) | LRA(B)
30[1070.2 129.9 83.6 0.172 0.362 6 8
3010]04 69.1 73.9 0.867 0.058 4 9
30 [10] 0.6 59.9 74.6 0.151 0.000 6 10
30]10]0.8 54.1 72.5 0.099 0.000 7 10
0] 702 106.9 138.4 0.241 0.255 7 6
100704 86 112 0.547 0.082 8 5
10 7 (06 30.7 97 0.071 0.000 9 10
40 7 1038 53.8 93.5 0.064 0.000 9 10
10110702 281.9 239.7 0.720 0.129 6 7
40 [10] 0.4 227.1 247.3 0.018 0.021 8 7
10]10[0.6 130.1 207.8 0.033 0.007 9 8
101008 113.9 187.3 0.090 0.000 8 10
10712702 639.5 765.9 1.088 0.000 5 10
40 [12] 0.4 349.6 717.9 0.555 0.000 4 10
1012706 213.8 677.2 0.008 0.057 8 9
4012708 253.2 701.2 0.082 0.000 8 10
50] 7]0.2 217.3 94.7 0.128 0.187 9 5
50 7 | 0.4 171 90.5 0.071 0.083 8 6
50| 7 [0.6 121.3 74.3 0.136 0.037 7 7
50| 7 |08 98.5 66.6 0.026 0.005 9 9
50 [10] 0.2 762.8 319.6 0.639 0.191 3 7
50 | 10| 0.4 458 266.9 0.343 0.000 3 10
5010/ 0.6 346 266.4 0.032 0.168 8 6
50 | 10| 0.8 268.9 245.4 0.000 0.000 10 10
50 | 12]0.2 1191.7 545.5 0.805 0134 4 8
50 | 12] 0.4 774.2 519.1 0.110 0.141 7 7
50 | 12 0.6 552.4 496.6 0.169 0.040 8 8
50 | 12]0.8 459.8 465.1 0.035 0.000 8 10
50 | 15| 0.2] 2056.7] 1151.7 0.992 0.169 1 9
50| 15104 14296] 12274 0.271 0.045 3 9
50| 15(0.6] 1036.1| 1119.7 0.041 0.041 9 7
50 | 15 0.8 852.6 | 10174 0.015 0.000 9 10

Table 4.10: Performance of Two Versions of the LRA Type Heuristic for Larger

Instances

CHAPTER 4. HEURISTIC APPROACHES TO SOLVING SCLAP 127

between performances of LRA(A) and LRA(B), because in general the solutions found
by each algorithm were very close to each other. In most cases the difference was less

than 2% (see Appendix D) for larger problem sizes.

Chapter 5

Conclusions and Future Research

This chapter presents a summary of the research done in this study and discusses

some avenues for future research related to the topics investigated.
5.1 Summary

This research presents a new model that has not been previously studied in the
literature. The problem is first investigated for special cases where it is efficiently
solvable. Next, an exact solution procedure is developed to solve the problem in
its general form. The third approach is to develop heuristic algorithms to construct
"good” solutions for large problem instances, although they may not be optimal.
Chapter 1 presents a brief introduction to Location-Routing Problems
and discusses the two major components of LRPs, namely the class of Location (or
Location-Allocation) and the class of Routing problems, in detail. Certain problems
within each class are given special attention, because they appear as subproblems of
the SCLAP or they are closely related to variations of the problem. Those problems
are the p-median and the uncapacitated facility location problems within the class

of location problems and Traveling Salesman and Delivery Man Problems within the

128

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 129

class of routing problems. One of the subproblems of the SCLAP is also identified to
be a new model that has not been previously studied in the literature. It is called the
Weighted Delivery Man Problem and is closely related to the DMP. The WDMP is
a variation of the DMP, where each city in the tour has a positive weight associated
with it. and the problem is to minimize the sum of weighted distances traveled on
the tour from starting point up to each city (in the case where it is assumed that the
travel time is directly proportional to the distance traveled, the objective becomes
minimizing the sum of weighted waiting times). Later in Appendix A, this problem
is studied briefly and a lower bound is proposed on tree networks which could be
utilized in a branch-and-bound algorithm to solve the problem. Finally, the problem
that is discussed in this study, SCLAP, is introduced.

In Chapter 2, we study the problem on a line and present an efficient (i.e.
of polynomial time complexity) dynamic programming solution procedure to solve it.
The range of the discounting factor «, for which a given solution remains optimal, is
also determined. Next the problem is studied on tree networks and it is shown that
the dynamic programming procedure can be extended to solve it for a special case
where the supply route is constrained to consist of a single path.

In Chapter 3. we develop a single assignment branch-and-bound procedure
to solve the SCLAP on general networks. In single assignment. a new facility is
opened at each step on one of the available candidate sites. Then the lower and
upper bounds on the optimal objective function value involving this assignment and
previously located facilities are calculated. These bounds are then used in a branch-
and-bound algorithm to solve the problem optimally. The branching rule used is to
select the available facility site which gives the lowest upper bound. The algorithm

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 130

is then tested on randomly generated networks and the results with respect to the
computation time and the size of the branch-and-bound tree are presented. As one
would expect with nonpolynomial algorithms, the computation time and the size of
the branch and bound tree increased very rapidly as the size of the problem instances
increased with the number of demand points (n) and number of facilities to locate
{p). However. development of this type of algorithm is still justified, first because
it is more efficient than a brute force approach and lets relatively larger instances
of problem to be solved to optimality. More importantly, this algorithm provides a
concrete basis for comparing performances of heuristic algorithms and help us predict
their performance for larger problem instances.

In Chapter 4, we discuss three local search type heuristic approaches
for SCLAP. These heuristics are based on searching the neighborhood of a given
starting feasible solution, for improvement in the objective function. In each of
these heuristics, two of the decision components of the SCLAP are changed through
movements within the local neighborhood and the third decision component is
calculated optimally with respect to the two decisions made in this way. For
example, in the Location-Routing-Allocation (LRA) heuristic, the location and
routing decisions are changed by relocating a facility to another candidate site or
interchanging the positions of two facilities in the visiting sequence of the supply route.
The allocations are then calculated optimally (in O(np) time) with respect to changes
in the location and routing decisions. Similarly, in the Allocation-Routing-Location
(ARL) heuristic, allocation and routing decisions are updated through movements
within the neighborhood of the given feasible solution and the location component is

calculated optimally via a dynamic programming solution procedure in O(pn?) time.

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 131

Finally, the Location-Allocation-Routing (LAR) heuristic is based on movements
within the local neighborhood with respect to location and allocation decisions and
routing has to be calculated optimally with respect to these changes. However, as
discussed in Chapters 1 and 4, the resulting routing problem, the WDMP, turns out
to be quite difficult to solve as no known polynomial time algorithm exists to solve
it on general networks. Therefore. we did not provide detailed discussions for the
LAR heuristic. The two other heuristic approaches, namely the LRA and the ARL,
are studied in detail and two different algorithms are developed for each heuristic.
The first algorithm updates the current feasible solution as soon as another solution
which improves the objective function is found, whereas the second algorithm searches
for the best improvement within the given local neighborhood before updating the
current solution. The two versions of each heuristic are tested on randomly generated
networks and their performances are compared with respect to computation time
and closeness to optimality whenever optimal solutions were available. For larger
problem instances where the branch-and-bound algorithm was not able to solve the
problem within reasonable time (we terminated the algorithm when computation
time exceeded 1 hour of CPU time on Sun Sparc V with 70mHz processor), the
heuristics are compared with each other with respect to computation time, closeness
to best solution found, and the number of times the heuristic was able to find the
best solution.

As a result of computational testing and performance comparison of
heuristics, LRA type heuristics seem to outperform ARL type heuristics both in
computation time and closeness to optimality (or best solution found). Although

the second version of LRA heuristic, LRA(B), which searches for best improvement

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 132

within the given neighborhood before updating the current solution, does not seem to
perform better than the first version, LRA(A), for smaller problem instances, as the
problem size increases, it begins to outperform LRA(A) with respect to the number of
times each algorithm found the best solution. Moreover, it does not take significantly

longer computation time than LRA(A).

In the light of the research performed in this study, we will discuss

directions for future research in the next section.

5.2 Directions for Future Research

The problem considered in this study is introduced as a new model for a location
and distribution system. Thus, the research presented here is a first attempt to solve
the problem. There are many aspects of the problem still open to question. Next

we will discuss several directions for future research in connection with some of those

questions.

5.2.1 The Weighted Delivery Man Problem (WDMP)

As it was discussed in Chapter 1, when the locations of facilities and the allocations of
demand points to facilities are known, the remaining problem related to the routing
decision is the Weighted Delivery Man Problem. The problem is discussed briefly with
its relation to the well-known Delivery Man Problem. It appears that this problem
has not been previously studied in the literature either. Therefore the WDMP might
be a good direction for future research. Although the problem can be reduced to
the DMP when weights associated with the demand points are integers or rational

numbers, the problem size may increase very rapidly if the relative size of weights

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 133

is large. Therefore, we believe that studying the problem in its original formulation
may provide better solution procedures and also insights into the inherent difficulties
of the problem. The problem itself is quite difficult as no known polynomial time
algorithm exists to solve its special case, the DMP , when all weights are equal, even
on tree networks.

Additionally, better and efficient solution procedures for the WDMP may
lead to better heuristics for SCLAP as well. For example, the LAR heuristic discussed

in Chapter 4 can utilize algorithms developed to solve the WDMP at each iteration

of the local search procedure.
5.2.2 Variations of SCLAP

Clearly. one can come up With. many variations of SCLAP which can be studied in the
future. For example, the facilities may have capacities imposed on them, or multiple
commodities with different amounts of demand at each customer point has to be
distributed along the same route. Additionally, shipments from facilities to demand
points may be done along subroutes, instead of direct shipments. There may be more
than one vehicle to serve facilities and the demand points, which requires determining
more than one supply route, etc. Further variations can be studied for cases where
the demands are stochastic or the presence of a competitor in the market affect the
decisions of the company. Moreover, combinations of those variations can bring up
even more complex versions of the problem.

One immediate variation of SCLAP rises when the number of facilities
to locate is known beforehand and instead of including facility location costs in the

model implicitly through constraining the number of facilities to locate, there may be

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 134

different fixed cost values for facility location at each candidate site. This variation
is discussed in Chapter 1 briefly. As it was pointed out in Chapter 1, this problem
reduces to the uncapacitated facility location problem when the cost of shipment on
the supply route is ignored. This classical problem is discussed in Section 1.2.2 of
Chapter 1. Because of its obvious similarities to the p-median problem, in general,
the solution procedures developed for both problems in the literature are very similar
in nature. With this observation in mind, we believe that the solution approaches to

SCLAP may lead to relatively straightforward extensions to this variation and vice

versa.

5.2.3 Effect of Scaling Factor «

In the model we studied, we assume that the cost of shipment on the supply route
will be cheaper. because in most business applications, shipments between facilities
would be done in bulk and therefore be less costly. This is represented by multiplying
the cost of shipment on the supply route by a scaling factor a, 0 < o < 1, and it is
assumed to be uniform on all arcs of the network. The validity of this assumption
may be challenged when the reduction in cost varies along different parts of the route.

Moreover, this factor has a significant effect on the problem in its current
form as well. First, it changes the allocation sets for each facility as it varies between
0 and 1. For example, when a is closer to 0, one would expect that the demand points
would be allocated to facilities more uniformly, resembling a solution the the pure p-
median problem. In those cases, the solution to the associated p-median problem may
provide a good approximation of the solution to the original problem or it may provide

good initial starting points for local search type heuristics developed for SCLAP. On

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 135

the other hand, when « is closer to 1, one might expect that more demand points
will be allocated to facilities that are visited earlier on the supply route. In those
cases. construction type heuristics that start with no facilities open and add new
facilities one by one until p facilities are open, may give better approximations of the

optimal solution to SCLAP or provide good starting points for local search heuristics

tor SCLAP.

5.2.4 Tighter Bounds on the Optimal Objective Function
Value
A simple and immediate lower bound on the optimal objective function value of
SCLAP is obtained by assuming that all demand points will receive their shipment
from the supply plant directly with the discounted rate. as discussed in Chapter 3. For
better comparison of heuristics for large problem instances where an optimal solution
is not available, tighter and efficiently solvable bounds have to be developed to provide
tighter estimates of the difference of the heuristic solutions from a potential optimal
solution. Solutions to the subproblems of SCLAP or bounds already developed for

those problems may have potential uses for development of bounds for the SCLAP

itself.

5.2.5 Mathematical Programming Approaches

In this study, we apply a combinatorial approach to solving the SCLAP. Mathematical
Programming formulations of SCLAP, like many other location-routing problems,
may be quite complex, in that they involve too many variables and constraints as

well as nonlinearity in the objective function and/or in the constraints. Despite

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 136

this disadvantage of the Mathematical Programming approach, it may still be worth
investigating for good solution approaches to the SCLAP, through utilization of
relaxations and Lagrangian approaches. Insights gained from those formulations may
lead to development of relaxation approaches and consequently, development of a

branch-and-bound type algorithm based on bounds obtained through mathematical

programming relaxations.

5.2.6 Improvements on the Local Search Heuristics

The main disadvantage of local search type heuristics, discussed in Chapter 4, is that
they find solutions which are locally optimum. Thus. when the algorithm falls into an
unfavorable neighborhood. it may find very poor solutions which might be quite far
from the global optimum. Two approaches are used traditionally, to avoid “bad” local
optima. One is to start the algorithm from many starting points uniformly distributed
over the feasible solution space. Probabilistically, the more initial starting points are
used the more it is likely that a better solution will be found. This was addressed in
our studies by initializing the problem over 10 different starting points and selecting
the best solution found among all of them. Another approach used in the literature.
is to allow random “jumps” to a worse solution to avoid the neighborhood of bad local
optima. Simulated Annealing, Tabu Search. Genetic Algorithms, Neural Networks are
different approaches that are used to allow such random “jumps” through a controlled

process. Those approaches can also be applied to the local search heuristics developed
for SCLAP.

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 137

5.3 Conclusion

We introduced a new model in this study and attempted a step forward towards
solving the problem. There are many aspects of the problem still open to question,
some of which are discussed in the preceding section. The next step for us is to try

to further improve on the work presented here.

Appendix A

The Weighted Delivery Man
Problem on Trees

In this appendix. we present some new results for the Weighted Delivery Man Problem
(WDMP) on tree networks.

The problem was formulated in Chapter 1, as follows:
n-1 n
Min Z (Z w,—) d(vj, vj41). (A.1)
j=0 \i=j+1
where the function d(-,-) represents the distance between two points and w; denote
the weight (or amount of demand) at node v;.
Now. let T be a tree rooted at node vy with node set V' and edge set E.
We wish to find a tour starting at vp which minimizes the total weighted waiting time
in the system. Blum, Chalasani, Coppersmith, Pulleyblank, Raghavan, and Sudan
(1994) presented an algorithm which gave an approximation ratio of 3.5912 for the
DMP on tree networks. The algorithm is based on combining TSP routes of 1,2,...,.n
nodes on the tree in an intelligent way to get the final route for DMP. TSP is trivial on
tree networks, where any depth-first traversal of the edges give an optimal solution.

In this section, we will present a lower bound for the WDMP using k-shortest paths,

138

APPENDIX A. THE WEIGHTED DELIVERY MAN PROBLEM ON TREES 139

instead of TSP routes on trees. The k- shortest path problem (k-SPP) involves finding
the shortest path between an origin and a destination, visiting k-nodes. This problem
is .V P-Hard on general networks. However.it is can be solved in polynomial time on
tree networks..

Assume that we solve k-SPP on V for k = 1,2,..,n — 1. All paths start
at vp and end in one of the nodes of the network. Denote the paths so obtained by
Pi(vs). Pa(vj). Paci(v;) Vu; € V. Let Di(v;), Vo; € V and k = 1.2,...n - 1,
denote the length of the path Pi(v;).

Now. the lower bound on the optimal objective function value of the
WDMP is given by

Theorem A.1 Let z* denote the optimum objective value of WDMP on T. Then

-1

min w;D d(v;, v;) < z°. (A.2)
Z, a2 dy

=1 (v3,0;)€E

Proof: Let P* be the optimal tour for WDMP. Let P, k = 1. ..., n denote
the portions of the optimal tour that start from the origin and end at the k-th node on
the tour. Let vy denote the last node on the path P;. Let Di(v;) denote the distance
traveled on the optimum tour up to the k-th node. Then the optimal objective value
2" is given by .

=) wiDi(v). (A.3)
First, we have

Di(v}) < Di(v})- (A.4)

This is because Di(v;) is defined to be the length of the k-shortest path from origin

vp to the vertex vy visiting k nodes. Thus any other path between vg and v; passing

APPENDIX A. THE WEIGHTED DELIVERY MAN PROBLEM ON TREES 140

through k nodes has to be longer in length. This argument is true for all the nodes
in the optimal tour.
For the last node to be visited on the optimal tour (that is the origin), we
take the solution to the TSP on the given tree. Since the optimum TSP tour on a
tree is any depth-first tour, in which the nodes are visited according to the depth-first
rule and each edge is traversed twice, the length of the tour is two times the length
of the tree (i.e. sum of all edge lengths). So. we have
> d(vi v;) < Dj(un). (A.5)
(vi,0;)€E

From (A.3) and because the weights are nonnegative, we know that

wiDe(v;) < wiDj(vf)- (A.6)

It is then straightforward to show that

min w;D;(v;) < wiDe(vf) < wiDi(v})- (A7)
Y5

Clearly. the lower bound given in the theorem now follows directly from (A.5) and

(A.6). That is

n—-1
min w;Di(v;) + no Y du,y) < Zkak) (A.8)
k=1 vis (v, v;)EE
Thus, the proof is complete. d

Note that, when the first k vertices {v},..v;} to be visited on the optimal

tour are already known, then the lower bound can be updated as follows:

Corollary A.1 Let the first k vertices {v,..vu5} to be visited on the optimal tour be

fized beforehand, then the lower bound on the optimal objective function value is given

APPENDIX A. THE WEIGHTED DELIVERY MAN PROBLEM ON TREES 141

by

Zukav + Z

i=k+1

wj (Di(v;) + DEx(v5)) + 2w, Z d(vi, v;)

v;EV—- {”v uk} (veo)EE
1, U5

(A.9)

where DX _(v;) denotes the (i — k)-shortest path from the origin v to a vertez v;.

The above result follows from the observation that when first k£ nodes on
the optimal tour are known, then we can calculate the (i — k)-shortest paths from
the k-th vertex of the tour to the rest of the vertices that are not yet visited and still
have

Di(v) + Dii(v;) < D (w)) (A.10)
The rest of the analysis follows a similar fashion given in the proof of Theorem A.1.

Once we have the given updating mechanism for a lower bound, we can
devise a branch and bound algorithm that will solve the problem. We start with the
root node (or the origin) vy. At each step we visit a candidate vertex and update
the lower bound. If at any stage the lower bound becomes greater than the upper
bound that branch is pruned. For a starting upper bound we can choose an arbitrary
sequence of vertices and calculate the objective function value. Every time we reach a
whole sequence of vertices in the B&B tree. we calculate the objective function value.
If the objective value of the new sequence is less than the current upper bound. we
update the upper bound. We continue until all branches of the B&B tree are either
pruned or traversed.

This approach can also be extended to general networks. However, the
k-shortest path problem is not polynomially solvable on general networks. Thus the

branch and bound algorithm may quickly lead to inefficient computation times.

Appendix B

Comparisons for Each Test
Problem: Exact vs Heuristic

In Chapter 4. the comparisons of heuristics with respect to closeness to optimality
or the best solution found and the computation times were discussed via average
performances over 10 problems for each n, p, @ combination. In this and the following
two appendices. we provide the comparisons for each individual test problem.

For each value of n (10. 20, 30. 40. 50), 10 different networks were
randomly generated consisting of n demand points plus one supply plant node. The
edge lengths and weights at the nodes were drawn from a uniform distribution between
1 and 100. Each test problem for each n was then solved for different p and « values.

In this appendix, we compare the performances of heuristics on each of the
test problems with the branch and bound algorithm which gives the optimum solution.
Section B.1 reports the results for percentage error, that is, how far the solution found
by the heuristic is away from the actual optimum. Section B.2 provides the respective

computation times for each heuristic and the B&B algorithm.

142

COMPARISONS: EXACT VS HEURISTIC 143

B.1 Comparisons for Closeness to Optimality

The tables in the following pages clearly indicate the dominance of heuristics of type
LRA over the type ARL. In most cases both algorithms of LRA type heuristics found
solutions within about 2% of the actual optimum. However, of course there were
a few instances where the performance was much poorer. For example, as depicted
in Table B.1, Algorithm LRA(B) found a solution which was 10.95% far from the
actual optimum for p = 1 and a = 0.1 for the first test problem with n = 10 demand
points. ARL heuristics performed a lot poorer compared to LRA type heuristics, they
found solutions that were as much as about 19% away from the optimum (see Table
B.33). For the problem sizes in this appendix, LRA(A) seemed to perform better
than LRA(B). Although ARL(B) seemed to perform better than ARL(A), there was
a discrepancy in their performance against each other quite often. Even for the same
test problem. one would perform better than the other for certain p and a values.

and yet perform poorly for other values of p and a.

COMPARISONS: EXACT VS HEURISTIC

B.1.1

Test Problems with 10 Demand Points
Optimal % Error

n |p| a | Obj. val. [TRA{A) TLRA(B) | ARL(A) | ARL(B)
10301 8084.5 0.00 10.95 15.39 0.00
10302 9786.0 0.00 0.00 12.41 13.13
103103 114875 0.00 0.93 141 1047
0] 304 13189.0 0.00 0.00 912 9.08
10(3]05 148145 0.00 1.35 6.73 6.73
10306 16394 4 0.00 0.00 187 187
0307 179743 0.00 0.81 15 1.00
103038 19554.2 0.00 0.00 3.42 34
101309 20994.1 0.00 0.00 057 057
10]5]01 5965.5 0.00 0.00 0.00 3.75
10502 84724 0.00 0.00 0.00 122
101503 10604.6 0.00 0.00 6.17 0.00
10504 12664.0 0.00 0.00 5.07 3.04
101505 13377.0 0.00 0.00 6.26 3.55
10506 16044 4 0.00 0.00 778 1.95
10507 177118 0.00 0.00) 182
10508 19379.2 0.00 0.00 6.97 144
105109 30956.6 0.00 0.00 7.30 3.99

Table B.1: % Error: Test Problem No. 1 (n=10)

144

COMPARISONS: EXACT VS HEURISTIC

Optimal % Error
n | p| o || Obj. Val [TRA(A) | LRA(B) | ARL(A) | ARL(B)
103 0.1 7275.5 0.00 0.00 3.65 0.00
10 302 9481.0 0.00 0.00 4.18 0.00
103103 11659.0 0.00 0.00 4.98 3.06
101 3|04 13837.0 0.00 0.00 3.90 091
10131405 15562.0 0.00 0.00 2.37 2.37
10! 3 | 0.6 17161.0 0.00 0.00 2.65 1.94
101 31 0.7 18760.0 0.00 0.00 1.94 1.63
10303 20359.0 0.00 0.00 1.65 0.00
1013109 21958.0 0.00 0.00 1.24 0.00
1015]0.1 4793.8 1.13 0.00 1.13 0.00
105102 8314.6 0.00 0.00 0.22 0.22
10503 11131.0 4.74 0.22 0.00 0.39
101 5} 04 13405.0 3.22 0.00 0.66 0.31
10} 5103 15464.5 0.00 0.00 0.35 3.25
10|51 0.6 17083.0 0.00 0.00 0.62 0.44
10507 18701.5 0.00 0.00 0.84 0.72 |
101 5]08 20320.0 0.00 0.00 1.0 1.08
1015109 21938.5 0.00 0.00 1.16 1.16
Table B.2: % Error: Test Problem No. 2 (n=10)
Optimal % Error
n | p| a || Obj. Val. [TRA{A) | LRA(B) | ARL(A) | ARL(B)
10] 3] 0.1 4479.1 0.00 0.00 2.01 2.01
10| 3]0.2 6388.2 0.00 0.00 0.00 0.00
103703 8297.3 0.00 0.00 5.45 1.35
10 304 10206.4 0.00 0.00 8.95 0.00
101305 12115.5 0.00 0.00 7.21 0.00
10| 3| 0.6 14024.6 0.00 2.30 3.28 3.28
10| 3|07 15933.7 0.00 0.00 3.29 0.94
101 3]0.8 17842.8 0.00 0.59 0.90 0.90
10| 3109 19653.9 0.00 0.00 0.27 0.14
101 5]0.1 3270.6 0.00 0.00 0.00 0.00
10| 5] 02 5619.8 0.00 0.00 0.00 0.00
1015103 7776.2 0.00 0.00 1.53 0.00
10| 5|04 9932.6 0.00 0.00 0.89 0.00
101 5|05 11956.5 0.04 0.04 4.66 1.11
10| 51 0.6 138974 0.03 0.03 0.00 1.13
101 510.7 15838.3 0.02 0.02 2.11 0.00
10 5]0.8 17779.2 0.01 0.00 1.25 1.47
1015109 19622.1 0.01 0.01 1.21 0.68

Table B.3: % Error: Test Problem No. 3 (n=10)

145

COMPARISONS: EXACT VS HEURISTIC

Optimal % Error
n | p| a || Obj. Val. [TRATA) [LRA(B) | ARL(A) | ARL(B)
103701 6901.4 0.00 0.00 3.88 0.00
10302 8174.8 0.00 0.00 3.50 0.00
10303 94483 0.00 1.96 7.34 7.34
10 | 3| 04 107134 0.00 0.00 6.18 0.00
10305 11850.5 0.00 0.00 3.46 3.46
10306 12944 8 0.00 0.00 8.15 5.36
10| 310.7 13878.1 0.00 0.00 14.78 8.34
10| 308 148114 0.00 0.00 3.28 0.00
M0 73109 15744.7 0.00 0.00 0.63 5.97
10]5]0.1 47342 0.00 0.00 0.16 0.00
10]5]02 64621 0.00 0.00 13.30 0.00
105 0.3 3190.6 0.00 0.00 0.00 0.00
105 0.4 9918.8 0.00 0.00 0.00 0.12
10| 5105 112485 0.00 0.00 3.54 3.54
10| 5] 0.6 12547.2 0.00 0.00 1.39 4.97
10| 5107 13785.1 0.00 0.00 3.30 0.44
105 0.8 14749.4 0.00 0.00 3.79 5.90
105 0.0 15713.7 0.00 0.00 4.22 5.98
Table B.4: % Error: Test Problem No. 4 (n=10)
Optimal % Error
n | p| o || Obj. Val. [TRA(A) [LRA(B) [ARL({A) | ARL(B)
10] 3 0.1 3296.2 || 0.00 0.00 0.55 0.00
10302 1638.6 0.00 0.00 5.83 5.83
10| 3] 0.3 5858.5 1.65 0.00 9.73 4.59
101304 6902.0 0.00 0.00 6.87 0.27
10305 79455 0.00 141 5.23 1.97 |
10(3106 8989.0 0.00 2.8 1.56 1.25
10] 307 10032.5 0.00 1.53 3.06 0.84
10308 11076.0 0.00 0.92 1.94 0.92
10| 309 12119.5 0.00 0.00 0.55 0.90
105 0.1 2264.0 0.00 0.00 0.00 0.00
105 0.2 3843.0 0.00 0.00 4.02 0.00
10[5]0.3 5304.9 0.00 0.00 0.44 0.00
10504 6633.2 0.00 0.00 0.41 2.39
10{5]05 7730.0 0.00 0.00 0.39 0.21
10| 5]0.6 8816.6 0.00 0.00 0.37 0.65
10507 9903.2 0.00 0.00 2.97 2.97
10| 5|08 10989.8 0.00 0.00 2.12 0.00
10509 12076.4 0.00 0.00 1.32 0.92

Table B.5: % Error: Test Problem No. 5 (n=10)

146

COMPARISONS: EXACT VS HEURISTIC

Optimal % Error
n | p| a || Obj. Val. | LRA(A) [LRA(B) | ARL(A) | ARL(B)
1013]0.1 6593.1 0.00 0.00 0.00 0.00
103102 8592.2 0.00 0.00 0.00 0.00
10{3]03 9770.7 0.00 0.00 14.90 14.31
103104 10866.6 0.00 9.01 7.58 6.07
1013105 11962.5 0.00 0.00 9.20 6.95
1013]0.6 13058.4 0.00 2.66 9.12 6.74
1013107 14154.3 0.00 0.00 3.10 4.84
10! 370.8 15250.2 0.00 0.00 3.50 247
10 3,09 16346.1 0.00 0.00 2.10 1.35
10 5]0.1 4996.7 0.00 0.00 0.00 0.00
105102 7644.8 0.00 0.00 1.36 0.00
1015703 9469.8 0.00 0.00 1.27 0.00
10| 51|04 10672.2 0.00 0.00 3.62 4.54
101 5]0.5 11800.5 0.00 0.00 3.30 3.80
105106 12928.8 0.00 0.00 6.91 5.49
10} 5]0.7 14087.1 0.00 0.00 7.28 6.91
10| 5038 15185.4 0.00 0.00 7.02 7.02
10} 5109 16313.7 0.00 0.00 6.06 7.14
Table B.6: % Error: Test Problem No. 6 (n=10)
Optimal % Error
n|p| a || Obj. Val. | LRA(A) | LRA(B) | ARL(A) [ARL(B)
103 0.1 3608.2 0.00 0.00 0.41 0.00
1013102 5057.2 0.00 0.00 0.89 0.38
10303 5781.3 0.00 0.00 0.49 13.60
10304 6505.4 0.00 0.00 5.69 3.37
101 3]0.5 7229.5 0.00 0.00 10.68 10.81
1013106 7765.0 0.00 0.00 2.88 1.93
10] 310.7 8260.0 0.00 0.00 6.95 0.00
10 3108 8755.0 0.00 0.00 4.21 3.76
103709 9250.0 0.00 0.00 1.53 1.53
10501 2672.0 0.00 0.00 0.00 0.00
10| 5] 0.2 4194.8 0.00 0.00 0.00 0.00
1015103 5916.7 0.00 0.00 0.75 0.75
10} 5] 04 6278.6 0.00 0.00 1.%3 0.75
1015105 7040.5 0.00 0.00 5.70 0.88
10] 5106 7765.0 0.00 0.00 4.53 1.48
105107 8260.0 0.00 0.00 6.88 5.38
101 5108 8755.0 0.00 0.00 4.78 4.9_7_
10{5}09 9250.0 0.00 0.00 2.93 2.78

Table B.7: % Error: Test Problem No. 7 (n=10)

147

COMPARISONS: EXACT VS HEURISTIC

Optimal % Error
n | p| « | Obj. Val. | LRA(A) | LRA(B) | ARL(A) | ARL(B)
101 3]0.1 5040.5 0.00 0.64 0.00 0.00
16| 3 | 0.2 6290.0 0.00 0.64 0.00 0.00
10 3]0.3 7434.0 0.00 0.00 0.00 0.00
10 31]04 8285.0 0.00 0.00 0.00 0.00
101 3105 9089.5 0.00 0.00 7.72 1.43
101 3106 9894.0 0.00 1.13 15.46 6.32
10] 3 10.7 10698.5 0.00 0.00 3.79 0.00
10 3|08 11503.0 0.00 0.00 0.45 0.45
j 1013109 12307.5 0.00 0.00 1.71 0.00
10] 5] 0.1 3506.2 0.00 0.00 0.00 0.00
10| 5|02 5349.2 0.00 0.00 3.89 0.00
1015103 6838.3 0.00 0.00 0.00 0.44
10 5104 2027.4 0.00 Q.00 2.79 2.79
10 5105 9011.5 0.00 .00 227 2.44
10| 5106 9831.6 0.00 0.00 3.54 3.98
10 5] 0.7 10651.7 0.00 0.00 4.46 4.46
10 510.8 11471.8 0.00 0.00 5.25 3.25
1015109 12291.9 0.00 0.00 5.94 6.55
Table B.8: % Error: Test Problem No. 8 (n=10)
Optimal % Error
n|p| a | Obj. val. [TRA(A) | LRA(B) | ARL(A) | ARL(B)
10 310.1 11632.1 0.00 0.00 0.00 0.00
10 302 15451.4 0.00 0.00 0.00 0.38
101 3)03 19209.6 0.00 0.00 0.50 0.54
101 3|04 229067.8 0.00 0.00 0.00 0.22
1013105 26548.0 0.00 0.00 0.18 0.13
103106 29946.6 0.00 0.00 0.98 0.98
10| 3 | 0.7 33345.2 0.00 0.00 0.00 1.43
10 3108 36743.8 0.00 0.00 0.66 0.68
1013109 401424 0.00 0.00 1.19 0.40
105101 8390.0 0.00 0.00 0.00 0.00
10 510.2 13413.6 0.00 0.00 1.39 0.00
1015]03 17440.4 0.00 0.00 1.88 0.00
10| 5104 21462.2 0.00 0.00 0.00 1.14
10 505 25484.0 0.00 0.86 1.20 0.46
10 5106 29271.0 0.00 0.00 0.80 1.99
10] 5| 0.7 32838.5 0.00 0.00 0.40 1.36
10 508 36406.0 0.00 0.00 1.19 0.72
10509 39973.5 0.00 0.00 0.00 0.00

Table B.9: % Error: Test Problem No. 9 (n=10)

148

COMPARISONS: EXACT VS HEURISTIC

Optimal % Error
nip| ca i[|Obj Val. 'LRA(A) | TRA(B) | ARL(A) [ARL(B)
1013 70.1 5186.6 0.00 0.86 0.00 0.00
1013702 7059.2 0.00 0.00 0.00 0.00
10{3]03 8804.6 0.00 0.00 0.00 0.00
10| 3104 10421.8 0.00 0.00 0.65 0.00
10} 3|05 12039.0 0.00 0.00 0.00 0.42
1013106 13656.2 0.00 0.00 3.04 0.00
10| 3|07 15092.7 0.00 0.00 0.64 0.00
10{ 308 16436.8 0.00 0.00 2.38 1.85
1013109 17780.9 0.00 0.00 1.09 0.97
10/ 5]0.1 3593.9 0.00 0.00 0.00 0.00
10 502 5846.2 0.00 0.00 0.00 0.00
101503 7959.7 0.00 1.29 1.96 0.00
10504 9831.4 0.00 0.00 1.68 0.33
1013505 11547.0 0.00 0.00 3.46 0.23
10] 5] 0.6 13261.4 0.00 0.01 0.25 0.00
10| 5]0.7 14873.4 0.04 0.04 1.37 0.00
10 5 0.8 16290.6 0.03 0.03 0.52 0.03
10509 17707.8 0.01 0.01 0.54 0.00

Table B.10: % Error: Test Problem No. 10 (n=10)

149

COMPARISONS: EXACT VS HEURISTIC

B.1.2

Test Problems with 20 Demand Points

Optimal % Error
n | p| a || Obj. Val. | TRATA) [LRA(B) | ARL(A) | ARL(B)
20[3]0.1 6884.6 0.00 0.00 8.03 8.03
20 | 3] 0.2 9380.6 0.00 447 6.48 5.39
201303 11830.5 0.00 2.73 4.70 5.85
01304 14252.0 0.00 0.01 5.43 5.54
0305 16629.0 0.00 0.00 1.2 3.70
20 3| 0.6 18966.8 0.00 0.00 348 3.48
20| 3| 0.7 21199.1 0.00 0.00 2.49 3.13
20| 3108 23344.4 0.00 0.00 1.82 0.72
20 37]0.9 25445.5 0.00 0.13 0.81 0.75 |
201 5] 0.1 5766.2 0.00 0.00 1.86 3.32
20502 8587.6 0.06 0.06 1.36 1.76 |
20503 11196.7 0.07 0.07 2.31 4.33
201504 13677.6 0.00 0.27 2.60 1.27
205105 16118.5 0.00 0.00 2.86 3.64
20| 5] 06 18475.6 0.00 0.00 2.84 3.37
205 0.7 20827.7 0.13 0.23 2.68 1.96
05038 23141.2 0.25 0.29 1.90 1.57
20| 5] 0.9 25326.6 0.00 0.00 1.05 0.92

Table B.11: % Error: Test

Problem No. 1 (n=20)

150

COMPARISONS: EXACT VS HEURISTIC

Optimal % Error
n |p| a || Obj. Val. | LRA(A) | LRA(B) [ARL(A) | ARL(B)
201301 9391.4 0.00 0.00 13.25 8.32
2013102 11631.4 0.00 0.00 8.43 9.52
2013103 13422.8 0.00 1.33 9.68 6.00
20 3]04 15146.6 0.00 0.00 9.84 7.26
20305 16853.0 0.00 0.00 7.80 6.08
201306 18528.2 0.00 0.86 5.36 5.36
20]310.7 20101.7 0.00 0.00 3.57 2.75
2013108 21629.4 0.00 0.06 2.97 2.82
2013109 23037.7 0.00 0.03 2.94 2.86
2015701 7740.0 0.00 0.00 0.00 0.00
20015102 10170.4 0.00 0.00 3.60 3.80
201503 12439.1 0.00 0.00 3.15 0.33
2015104 14469.0 0.00 0.04 4.19 3.25
201 510.5 16322.0 0.00 0.00 1.15 1.15
2015106 18072.2 0.00 0.00 8.70 3.33
20135 1|0.7 19775.0 0.00 0.00 4.07 3.37
201351038 21431.0 0.00 0.00 4.28 1.93
20 5|09 22966.9 0.00 0.00 1.55 0.20
Table B.12: % Error: Test Problem No. 2 (n=20)
Optimal % Error
n |p| o || Obj. Val. [TRA(A) [LRA(B) | ARL{A) | ARL(B
201301 10444.4 0.00 0.00 0.00 3.25
2043102 11688.8 0.00 0.00 12.15 3.09
2013103 12899.9 0.00 0.00 4.70 4.44
20304 14059.2 0.00 0.00 10.83 7.59
20{3]05 15174.5 0.00 0.00 9.89 9.89
20413106 16131.4 0.00 0.00 13.75 13.47
2013 0.7 17079.5 0.00 0.05 15.25 6.52
20131038 17766.0 0.00 1.20 10.82 5.91
2013 |09 18452.5 0.00 0.58 1.33 2.00
30| 5|01 78884 5.06 0.00 0.00 6.38
201502 10068.8 0.00 0.00 6.53 5.36
2015103 11807.2 0.00 1.68 7.08 0.00
20| 5 (04 13122.6 0.00 2.82 7.50 13.04
2015705 14438.0 0.00 0.00 0.00 11.63
20151 0.6 15656.6 0.00 0.62 6.65 5.21
2015 1]0.7 16732.2 0.00 0.00 6.10 4.88
20| 5| 0.8 17666.0 0.00 0.00 3.50 3.50
201 51(09 18402.5 0.00 0.00 2.35 2.24

Table B.13: % Error: Test Problem No. 3 (n=20)

151

COMPARISONS: EXACT VS HEURISTIC

Optimal % Error

L n!p| a || Obj. Val. [LRA(A) | LRA(B) | ARL(A) | ARL(B)
20[3]0.1 9077.5 0.00 0.00 0.49 0.96
20| 302 111441 0.00 1.95 7.04 6.71
20 [3|0.3 13099.5 0.52 0.52 7.73 7.10
20 | 3|04 14911.0 0.00 1.50 7.80 8.08
301305 16704.5 0.00 1.13 6.33 5.63
20306 18462.0 0.00 0.81 6.41 5.11
20 | 3 | 0.7 20178.0 0.00 0.46 4.88 3.60
20| 3038 21811.0 0.00 0.77 3.52 7.36
2013709 33089.1 0.09 0.18 1.36 1.24
20501 6580.3 0.00 0.00 2.55 5.01
30 | 5] 0.2 9633.8 0.00 0.00 1.59 3.95
20 5 | 0.3 11857.8 0.00 0.00 1.88 224
30 |5 | 0.4 13848 4 0.00 0.00 3.24 215
20505 15821.0 0.00 0.00 4.76 7.23
20 (5] 0.6 17755.2 0.00 0.00 2.06 218
20 | 5] 0.7 19689.4 0.00 0.00 2.08 2.03
20503 21594.2 0.14 0.14 2.04 2.13
20 15|09 23063.5 0.11 0.03 0.21 0.03

Table B.14: % Error: Test Problem No. 4 (n=20)
Optimal % Error

nip|a n0bj. Val. ['TRA(A) [LRA(B) [ARL(A) | ARL(B)
20{3]0.L] 9866.6 0.00 0.00 1.77 4.36
201302 10600.4 0.00 0.00 9.95 0.11
203103 11325.6 0.00 0.00 11.07 6.86
20 | 3| 04 11876.8 0.00 0.21 6.09 9.46
20| 3105 12337.0 0.00 1.42 8.19 7.01
20 [3] 0.6 12797.2 0.00 1.09 9.33 6.66
20 | 3| 0.7 13257.4 0.00 0.00 11.12 11.90
20| 3 | 0.8 13717.6 0.00 0.39 6.15 6.15
203109 14177.8 0.00 0.25 3.20 5.44
20 [5] 0.1 7733.9 0.00 0.00 3.22 3.22
20 | 5 | 0.2 9314.0 0.00 0.00 5.04 3.38
20 | 5 | 0.3 10310.9 0.12 0.00 9.73 7.04
205 |04 11179.2 0.48 1.03 5.15 5.82
2015105 11863.0 0.00 0.00 3.76 1.03
20 |5 06 12431.6 0.00 0.00 3.50 3.38
20 | 5 | 0.7 13000.2 0.00 0.00 3.30 1.48
205 (08 13568.8 0.00 0.00 1.52 0.64
205 |09 14123.2 0.06 0.06 0.85 0.40

Table B.15: % Error: Test Problem No. 5§ (n=20)

152

COMPARISONS: EXACT VS HEURISTIC

Optimal % Error
n |p| a || Obj. val. | LRA(A) [LRA(B) | ARL(A) [ARL(B)
20 [3]0.1 7733.0 0.00 0.00 0.00 0.00
20| 3]0.2 9538.2 0.00 0.00 14.71 2.60
203103 11148.0 0.00 1.43 3.15 2.19
201304 12220.6 0.00 0.00 6.37 5.59
30| 3|05 13172.5 0.00 0.00 5.39 8.64
201 3|06 14111.2 0.00 0.00 4.67 1.10
20 | 3| 0.7 15049.9 0.00 1.54 7.67 767
20| 3| 0.8 15988.6 0.00 0.00 4.42 1.49
201 3109 16927.3 0.00 0.46 2.25 1.35
201 5] 0.1 6189.5 0.00 0.78 1.42 0.00
2015 | 0.2 8577.6 0.00 0.00 0.93 0.09
30503 10276.6 0.00 0.93 5.95 6.59
2015 |04 11698.4 1.20 0.43 6.01 5.35
20 5|05 12846.5 0.35 0.35 0.35 1.00
05|06 13900.8 0.00 0.26 1.49 1.34
205 | 0.7 14915.5 0.51 0.45 5.85 1.86
3015 | 08 15899.0 0.32 0.32 161 2.64
3015|009 16882.5 0.15 0.02 1.24 2.54
Table B.16: % Error: Test Problem No. 6 (n=20)
Optimal % Error
n |p| a || Obj. Val. [ERA(A) | LRA(B) | ARL(A) | ARL(B)
20301 10939.6 0.00 0.52 2.95 145
20| 3| 0.2 11696.8 0.00 0.45 5.41 1.98
30| 3|03 12377.7 0.00 1.58 6.41 5.07
20304 12984.4 0.00 0.16 8.07 6.52
201 3|05 13522.5 0.00 2.39 3.39 4.17
203106 14044.0 0.00 1.86 4.39 3.17
20 | 3 | 0.7 14524.0 0.00 1.37 5.93 4.94
201308 15004.0 0.00 0.00 3.39 3.39
201 3] 0.9 15484.0 0.00 0.43 1.30 1.51
20| 5] 0.1 8824.4 | 0.00 0.00 2.49 1.06
2015 | 0.2 10459.4 0.40 0.00 3.79 4.48
20| 5 | 0.3 11479.5 1.84 2.03 6.20 3.83
20504 12400.0 2.42 1.17 1.17 2.08
205105 13260.5 0.38 0.13 1.29 3.90
20| 5| 0.6 13891.8 0.00 0.00 2.53 2.44
90| 5| 0.7 14432.3 0.00 0.00 1.24 1.40
20| 5| 0.8 14936.2 0.00 0.00 3.04 1.57
20 | 5| 0.9 15450.1 0.00 0.00 2.31 0.45

Table B.17: % Error: Test Problem No. 7 (n=20)

153

COMPARISONS: EXACT VS HEURISTIC

Optimal %% Error
n | p| o | Obj. Val. [TRA{A) | LRA(B) | ARL(A) | ARL(B)
20301 8608.0 0.00 0.00 0.00 0.00
201 3]0.2 10402.0 0.00 0.00 0.16 6.59
2013103 12170.6 0.00 0.00 6.07 0.70
20| 304 13613.8 0.00 0.00 12.86 8.77
2013105 15057.0 0.00 0.00 3.13 3.35
20 1 3106 16437.2 0.00 0.00 4.84 5.95
2013107 17685.4 0.00 0.00 3.24 1.45
2013108 18864.6 0.00 0.00 3.25 3.25
20137109 20043 8 0.00 0.00 1.37 0.71
2015101 7172.5 0.14 0.23 1.08 3.36
201 5| 0.2 9178.0 0.00 0.16 2.44 5.13
205103 11115.1 0.00 0.533 7.48 4.05
2015 |04 12927.4 1.80 0.00 7.84 5.02
20 (5] 0.5 14485.0 1.34 0.00 8.98 3.93
2015106 16001.2 0.00 0.16 6.44 1.64
2015 § 0.7 17420.8 0.16 0.49 1.50 3.61
201508 18688.2 0.30 0.30 3.56 1.93
201509 19955.6 0.14 0.14 0.78 1.72
Table B.18: % Error: Test Problem No. 8 (n=20)
Optimal % Error
n | p| a || Obj. Val. [TRA(A) TLRA(B) | ARL(A) | ARL(B)
2013 0.1 12040.5 0.00 0.00 10.16 3.00
2013102 14092.6 0.00 0.00 10.34 11.19
201303 15961.1 0.00 0.00 3.66 7.17
2013404 17568.6 0.00 0.00 6.68 6.88
2013105 19171.5 0.00 0.50 7.02 7.02
2013 |06 20774.4 0.00 0.70 2.87 3.44
201 3107 22338.5 0.00 0.06 2.89 2.89
2013 |08 23732.8 0.00 0.00 0.72 3.55
2013 1|09 25084.4 0.00 0.00 2.13 | 1.58
205 (0.1 9148.2 0.00 0.00 375] 5.37 |
20|15 (0.2 12117.8 0.00 0.00 13.17 5.48
201503 14735.4 0.00 0.00 4.48 1.70
2015 |04 17035.4 0.00 0.00 7.30 0.10
20151 0.5 18941.0 0.00 0.54 3.39 4.27
2015 (0.6 20645.0 0.00 0.06 0.88 2.30
2015 |07 22269.5 0.02 0.00 3.49 4.43
2015 {08 23710.0 0.00 0.00 3.02 1.49
2015409 25082.5 0.00 0.00 1.98 0.24

Table B.19: % Error: Test Problem No. 9 (n=20)

154

COMPARISONS: EXACT VS HEURISTIC

B.1.3

Optimal ~ % Error
n!p! a |l Obj. Val. [LRA(A) |LRA(BY ARL{AY | ARL(B)
20| 3 0.1 5788.9 0.00 0.00 1.43 0.54
2013102 7056.8 0.00 0.00 2.17 1.63
2013103 8308.5 0.00 0.00 3.24 1.36
20304 9264.8 0.00 0.00 5.62 6.48
201305 10136.0 0.00 0.00 5.07 3.26
201306 10904.8 0.00 0.00 7.74 6.86
2013107 11673.6 0.00 0.00 5.96 5.43
2013108 12440.2 0.00 0.00 4.50 4.50
20013109 13204.6 0.00 0.00 1.28 1.31
201301 4626.8 0.00 0.00 0.00 1.08
2015102 6238.8 0.00 0.00 1.72 0.51
201503 7548.5 0.00 0.00 7.72 0.80
2015 | 04 8751.0 0.00 0.00 3.54 5.20
2015105 9875.3 0.27 0.00 4.10 4.89
205|056 10696.4 0.53 0.04 5.38 4.06
201507 11517.3 0.37 0.37 1.11 4.71
201508 12336.0 0.23 0.02 3.17 2.44
205109 13152.5 0.00 0.11 1.66 2.39

Table B.20: % Error: Test Problem No. 10 (n=20)

Test Problems with 30 Demand Points
Optimal % Error

n |p| o | Obj. Val [TRA{A) | LRA(B) | ARL(A) | ARL(B) |
307302 14564.0 0.00 0.00 13.68 8.35 |
30304 18726.6 0.00 0.45 1024 6.07
303106 22364.6 0.00 0.73 791 3.65
303038 35287.8 0.02 0.00 2.08 3.03
305102 13250.6 0.00 0.00 5.88 1.05
3015 |04 17970.8 017 0.40 1.81 10.16
30506 31800.0 0.96 0.85 113 7.0
30]5]08 34979.0 0.42 0.42 1.43 .65

Table B.21: % Error: Test Problem No. 1 (n=30)

135

COMPARISONS: EXACT VS HEURISTIC

Optimal % Error
n |p| a || Obj. Val RA(A) | LRA(B) | ARL(A) | ARL(B)
30302 10617.8 0.00 0.00 1.50 16.87
30]3]|04 13548.4 0.00 1.80 10.12 7.98
301306 15525.4 0.00 0.00 6.08 6.08
30308 17320.6 0.00 0.08 3.45 4.19
301502 9488.6 0.00 0.18 5.84 12.37
301504 12821.6 0.00 0.00 7.43 8.86
30| 5] 0.6 15199.8 0.80 0.00 1.87 6.25
30508 17206.0 | 0.00 0.00 3.07 3.81

Table B.22: % Error: Test Problem No. 2 (n=30)

Optimal % Error
n|p| a || Obj. Val |[[TRA{A) [LRA(B) | ARL(A) | ARL(E)
30]3]02 12763.6 0.00 1.70 7.5 7.40
301304 15792.6 0.00 0.68 8.12 6.70
301 3706 18162.8 0.00 0.00 8.43 3.22
30(3]08 20491.4 0.00 0.62 3.29 3.29
3051702 11317.6 0.00 0.00 11.75 8.43
30504 15088.4 0.00 0.00 5.65 3.51
30|51 06 17948.4 0.00 0.00 3.82 5.18
301508 20384.2 0.00 0.00 3.45 3.84

Table B.23: % Error: Test Problem No. 3 (n=30)

Optimal % Error
n |p| o || Obj. Val [TRA[A) [LRA(B) | ARL(A) [ARL(E)
303102 10881.2 0.00 0.28 8.03 14.47 |
301304 13793.6 0.00 0.18 12.08 14.45
30306 16222.6 0.00 3.16 8.54 9.25
30 | 3|08 || 1847538 0.00 0.18 3.90 176 |
305102 9131.8 0.00 0.00 12.02 17.89 |
301504 127214 0.00 1.52 5.66 10.90
30[5106 15900.2 0.59 0.59 2.64 4.00 |
30]5(08 18349.2 0.05 0.26 1.11 1.77

Table B.24: % Error: Test Problem No. 4 (n=30)

156

COMPARISONS: EXACT VS HEURISTIC 157

Optimal o Error
n | p| o || Obj. val [TRA(A) [TRA(B) | ARL(A) | ARL(B)
301302 15202.8 0.00 0.88 4.24 21.25
301304 18282.8 0.00 0.00 8.85 11.04
3013106 20653.8 0.00 0.14 8.56 7.31
301308 22624.4 0.00 0.00 3.15 3.28
305102 13387.6 0.00 0.00 3.62 7.56
30| 5104 17171.0 0.30 0.00 147 8.36
301506 19978.2 0.00 0.00 3.84 8.34
3005108 22453.4 0.00 0.00 1.01 | 3.61
Table B.25: % Error: Test Problem No. 5 (n=30)
Optimal % Error
n |p| a || Obj. Val. | LRA(A) J LRA(B) [ARL(A) | ARL(B)
301302 16442.8 0.00 0.00 2.98 2.95
303104 22192.4 0.00 0.00 5.98 5.67
3013706 27278.2 0.00 0.91 3.18 3.28
30308 31350.0 0.00 0.49 3.17 3.48
3015102 14619.0 0.00 0.49 4.23 7.04
305104 20780.4 0.00 0.00 3.96 3.94
3015|056 26625.4 0.47 0.47 2.42 4.01
30| 508 31215.6 0.00 0.00 3.68 2.72
Table B.26: % Error: Test Problem No. 6 (n=30)
Optimal % Error
n | p| a || Obj. Val. | LRA(A) | LRA(B) [ARL(A) [ARL(B
301302 11419.8 0.00 1.83 14.28 12.49
30304 13720.8 0.22 0.22 8.14 7.01
30306 15349.0 0.00 0.00 4.39 4.39
30(3]08 16881.2 0.00 0.00 3.30 2.53
3015102 9989.4 0.00 0.00 14.54 14.69
30504 12680.8 0.00 1.22 10.80 10.74
30506 15071.4 0.67 0.00 3.87 6.43
30 5(08 16765.2 0.22 0.00 2.76 2.72 |

Table B.27: % Error: Test Problem No. 7 (n=30)

COMPARISONS: EXACT VS HEURISTIC

Optimal o Error
n |p| a || Obj. Val. | LRA(A) [LRA(B) [ARL(A) [ARL(B)
303102 12155.8 0.00 0.00 6.78 9.05
30| 3|04 14908.6 0.00 0.00 9.87 6.28
30| 3]06 17563.8 0.00 0.05 6.50 6.19
30308 19607.0 0.00 0.00 3.42 3.42
301 5]0.2 10809.6 0.00 0.83 5.00 5.45
301 5|04 14092.6 0.00 0.00 3.63 3.79
30506 16966.8 0.00 0.19 5.08 3.02
3005108 19414 .4 0.47 0.47 2.66 3.35

Table B.28: % Error: Test Problem No. 8 (n=30)

Optimal % Error
n|p| a |[Obj Val. | LRA(A) | LRA(B) | ARL(A) | ARL(B)
301302 13081.2 1.31 0.00 0.88 2.06
30304 14979.0 0.00 1.51 4.90 4.87
30]13]06 16660.0 0.00 1.03 8.44 9.07
30308 18341.0 0.00 1.43 4.14 4.24
301502 11672.4 0.00 0.00 1.33 3.65
305 (04 14063.4 0.00 1.14 6.00 7.07
301506 16157.6 0.00 0.17 6.22 7.86
30]5|08 18089.8 0.00 0.08 3.73 4.21
Table B.29: % Error: Test Problem No. 9 (n=30)
Optimal % Error
n | p| a || Obj. Val. | LRA(A) | LRA(B) | ARL(A) [ARL(B)
30|13]02 15144.0 0.00 0.00 12.24 13.05
3013104 17548.6 0.00 0.00 16.22 14.29
30{3]06 19767.4 0.00 0.00 10.94 10.25
3013108 21738.4 0.00 0.00 4.79 3.14
301502 14146.4 0.00 0.00 7.73 6.13
30|5]04 16800.4 1.85 1.55 5.37 14.01
3015106 19369.6 0.00 0.00 4.83 8.44 |
30(5]08 21543.0 0.00 0.00 3.86 3.72

Table B.30: % Error: Test Problem No. 10 (n=30)

COMPARISONS: EXACT VS HEURISTIC

B.1.4 Test Problems with 40 Demand Points

Optimal % Error
n | p| a || Obj. Val. [LRA(A) | LRA(B) [ARL(A) | ARL(B)
4013 |02 11185.2 0.00 0.00 11.17 9.06
401304 14350.8 1.10 1.10 9.86 8.52
40306 16959.2 0.00 0.17 6.46 5.52
401308 19306.6 0.00 0.00 3.18 3.69
Table B.31: % Error: Test Problem No. 1 (n=40)
Optimal % Error
n ipl| « || Obj. Val. | LRA(A) [LRA(B) | ARL(A) | ARL(B)
401(3)02 17038.6 0.00 2.67 4.96 11.99
401304 19757.2 0.00 1.39 10.16 4.40
4013106 21927.2 0.00 1.51 13.49 12.57
4013108 24036.2 0.00 0.62 9.09 9.09
Table B.32: % Error: Test Problem No. 2 (n=40)
Optimal % Error
n | pj a |[|Obj Val. | LRA(A) [LRA(B) | ARL(A) [ARL(B)
401]3/(0.2 14109.0 0.00 0.00 18.39 16.20
4043 |04 16692.2 0.00 0.43 2.72 7.46
40 3] 0.6 18679.4 0.00 0.78 9.41 9.41
4013108 20585.0 0.00 0.38 7.89 8.53
Table B.33: % Error: Test Problem No. 3 (n=40)
Optimal % Error
n | p| a || Obj. Val. | LRA(A) | LRA(B) | ARL(A) [ARL(B)
401 302 16048.4 0.00 1.27 5.89 15.25 |
4013104 19356.0 0.00 1.60 7.45 13.75
401306 21884.4 0.00 0.00 13.02 12.62
4013108 24253.8 0.05 0.05 5.00 7.01

Table B.34: % Error: Test Problem No. 4 (n=40)

COMPARISONS: EXACT VS HEURISTIC

Optimal % Error
n !p| a || Obj. Val. [LRA(A) TLRA(B) | ARL(A) | ARL(B)
4013 0.2 17218.6 0.00 1.19 11.89 11.19
0] 304 22006.0 0.00 0.00 6.37 7.60
40| 3 | 0.6 26380.0 0.00 0.00 6.07 6.09
40 3} 0.8 30750.0 0.00 0.00 2.63 2.96
Table B.35: % Error: Test Problem No. 5 (n=40)
Optimal % Error
n | p| a || Obj. Val. [TRA(A) T TRA(B) | ARL{A) | ARL(E)
10]3]02 14259.4 0.00 1.21 11.61 10.53
4013]04 16769.8 0.00 3.67 11.54 11.54
40| 3 | 0.6 19280.2 0.00 0.00 10.64 6.52
401 3§08 21790.6 0.00 0.00 2.87 4.07
Table B.36: % Error: Test Problem No. 6 (n=40)
Optimal % Error
2 | p| a || Obj. Val. [TRA(A) [TRA(B) | ARL{A) | ARL(B)
40 (3] 0.2 18077.2 0.00 0.00 11.97 9.26
40 [3104 24083.2 0.00 0.90 7.38 6.63
4013106 29848.0 0.00 0.18 131 5.03
40 [3108 35241.2 0.00 0.31 2.96 3.49
Table B.37: % Error: Test Problem No. 7 (n=40)
Optimal % Error
o |p| o || Obj. val. [TRATAY TERA(B) | ARL{A) | ARL(E)
4013]0.2 15761.4 0.00 0.09 5.69 13.74
40304 17451.0 0.00 0.00 16.31 14.27 |
401]13]06 19021.0 0.00 0.00 13.49 12.37
4013]0.8 20550.0 0.00 0.92 9.04 8.74

Table B.38: % Error: Test Problem No. 8 (n=40)

COMPARISONS: EXACT VS HEURISTIC

Optimal % Error
n |p! o || Obj. val [TRA{A) TIRA(B) [ARL{A) | ARL(B)
40 (3102 13515.4 0.00 0.00 6.30 6.61
4013104 16612.6 0.00 0.01 5.62 9.93
40 [3] 0.6 18628.4 0.00 0.00 9.39 9.58
40 [3|08 20594.0 0.00 0.00 5.25 4.47

Table B.39: % Error: Test Problem No. 9 (n=40)

; | Optimal % Error
| n|p| o || Obj. Val. [TRA(A) TTRA(B) | ARL{A) | ARL(B)
4013]02 12738.0 0.00 0.00 8.56 17.20
401304 16445.0 0.00 0.00 8.55 5.01
40| 3|06 19538.6 0.00 0.00 8.99 8.01
4013108 22368.8 0.00 1.15 5.14 4.60

Table B.40: % Error For Test Problems 10 (n=40)

B.1.5 Test Problems with 50 Demand Points
Optimal % Error
n | p| a | Obj. Val. [CRA{A) [LRA(B) | ARL(A) | ARL(B)
50] 3102 18506.6 0.00 0.00 4.14 12.49
50 | 3| 0.4 22514.2 0.00 0.70 13.39 14.55
50 | 3 | 0.6 25540.0 0.00 0.10 9.15 9.62
50 | 3108 27871.2 0.00 0.00 7.19 7.06
Table B.41: % Error: Test Problem No. 1 (n=50)
Optimal % Error
n |p| a || Obj. Val. [TRA{A) [LRA(B) [ARL{A) [ARL(B) |
50 3]02 20555.4 0.00 0.00 11.08 15.74 |
50 | 3|04 23454.4 0.00 0.00 15.93 14.22
50| 306 26239.2 0.00 0.00 9.77 9.77 |
50 | 3|08 28808.6 0.00 0.00 4.05 5.64

Table B.42: % Error: Test Problem No. 2 (n=50)

COMPARISONS: EXACT VS HEURISTIC

Optimal % Error
n [p| a | Obj. Val. | LRA(A) [LRA(B) [ARL(A) [ARL(B)
5013102 13562.6 0.00 0.00 17.30 11.33
50 [3}04 16674.0 0.00 0.00 8.13 6.71
3013706 18889.4 0.00 1.07 6.79 6.19
5303408 20753.6 0.00 0.00 3.63 3.10
Table B.43: % Error: Test Problem No. 3 (n=>50)
Optimal % Error
n | p}| a || Obj. Val. | LRA(A) [LRA(B) | ARL(A) | ARL(B)
30 | 3]0.2 23798.0 0.00 0.75 15.08 16.53
301 3]04 27484.2 0.00 0.00 13.53 11.81
50306 30525.6 0.00 0.00 7.38 6.96
3013108 33334.8 0.00 0.00 3.79 3.29
Table B.44: % Error: Test Problem No. 4 (n=50)
Optimal % Error
n |p| a | Obj. Val. [TRA(A) TIRA(B) | ARL(A) | ARL(B)
503702 15526.2 0.00 1.23 17.07 14.97 |
50304 18029.2 0.00 0.92 9.83 10.27
501 3]0.6 20092.8 0.00 1.62 9.79 9.79
{95013 0.8 22060.0 0.00 0.62 4.60 3.71
Table B.45: % Error: Test Problem No. 5 (n=50)
Optimal % Error
n | pl a || Obj. Val. [TRA(A) TIRA(B) | ARL(A) | ARL(B)
50| 3]0.2 19683.2 0.00 0.00 15.63 15.63
501 3|04 24672.6 1.29 0.00 7.49 5.23
5013]0.6 29002.8 0.00 1.02 7.20 13.00
501308 31840.2 0.00 0.30 7.74 7.07

Table B.46: % Error: Test Problem No. 6 (n=50)

COMPARISONS: EXACT VS HEURISTIC

Optimal % Error
n |p! a || Obj. Val. | LRA(A) TLRA(B) | ARL(A) | ARL(B)
50| 3 (0.2 12286.0 0.00 0.60 17.55 15.92
501 3104 14964.4 0.00 0.00 9.10 12.53
5013 |06 17415.4 0.00 0.00 6.08 6.08
50| 3038 19710.2 0.00 0.00 2.33 1.54
Table B.47: % Error: Test Problem No. 7 (n=50)
Optimal % Error
n |pl a || Obj. Val. | LRA(A) | LRA(B) | ARL(A) | ARL(B)
50 | 3]0.2 18422.6 0.00 0.18 4.38 6.44
30304 21738.8 0.00 1.66 7.32 12.65
503} 0.6 24257.4 0.00 1.58 8.42 8.81
30(3]038 26442.8 0.00 0.68 4.76 4.76
Table B.48: % Error: Test Problem No. 8 (n=50)
Optimal 2 Error
o ip| a || Obj. Val. | LRA(A) | LRA(B) | ARL(A) | ARL(B)
50302 18082.8 0.00 0.00 10.64 13.28
501 3|04 21894.6 0.00 2.64 9.88 12.44
50 {3)06 25598.4 0.00 1.36 6.61 9.12
50| 308 29086.8 0.00 0.61 4.85 4.54
Table B.49: % Error: Test Problem No. 9 (n=50)
Optimal % Error
n|p| « | Obj Val |_ IRA(A) | LRA(B) | ARL{A) | ARL(B)
503102 19593.4 [0.00 0.00 7.21 13.28
5013 (04 24058.4 0.00 0.00 11.57 14.54
50 {3106 28326.0 0.00 0.00 12.37 11.80
30 (3|08 32408.8 0.00 0.00 5.89 4.68

Table B.50: % Error: Test Problem No. 10 (n=50)

COMPARISONS: EXACT VS HEURISTIC 164

B.2 Comparisons for Computation Times

This section gives the performance of heuristics with respect to computation times.
In all cases LRA type heuristics took less time than ARL type heuristic. However,
this is expected as discussed in Chapter 4, because at each iteration of the ARL type
heuristics determining the locations take O(pn?) time, where as at each iteration of
LRA type heuristics allocations are calculated in O(pn) time. Because of the effect
of n in the computation time ARL type heuristics took even longer than the B&B
algorithm for relatively large n and small p values. However, of course, B&B algorithm
is an exponential time algorithm and as n and p increases, the computation time
increase very rapidly. Therefore. for example, for n = 30 and p = 5 B&B algorithm

became much slower than ARL type heuristics.

COMPARISONS: EXACT VS HEURISTIC

B.2.1 Test Problems

with 10 Demand Points

CPU Times (in seconds)
n [p| a || BB || LRA(A) | LRA(B) | ARL{A) | ARL(B)
103101 0 0 0 0 0]
103]0.2 0 0 0 0 1
103103 0 0 0 1 0
10304 0 0 0 0 1
10 3105 0 0 0 1 0
1013106 0 0 0 0 1
10 31]0.7 0 0 0 0 0
1013]0.8 0 0 0 1 0
103109 0 0 0 0 1
101 510.1 2 0 1 5 8
10302 2 1 0 5 7
10503 1] 0 0 3 8
10} 5|04 1 1 1 4 8
105 (0.5 1 0 0 3 3
1015106 0 0 1 3 6
105107 1 1 0 2 6
101351038 0 0 0 4 6
10| 5| 0.9 0 0 1 3 6

Table B.51: Processing Times: Test Problem No. 1 (n=10)

165

COMPARISONS: EXACT VS HEURISTIC

CPU Times (in seconds)
n|p| a || B&BTLRA(A) [LRA(B) | ARL(A) | ARL(B)
10[3}0.1 0 0 1 0 0
1013702 0 l 0 1 1
1013103 0 1] 0 0 1
10| 3 { 0.4 0 0 0 0 0
101 31]0.5 0 0 0 0 1
101 3] 0.6 0 0 0 1 0
101 310.7 0 0 0 1] 0
101308 0 0 0 0 1
T10 131038 0 0 0 0 0
10| 5] 0.1 2 1 0 3 7
101502 2 0 1 3 6
10151703 2 0 0 4 5
10504 1 0 1 4 6
10| 51 0.5 1 1 0 5 6
10|57 0.6 1 0 0 6 6
10 510.7 1 0 1 6 7
105038 0 0 0 5 6
105109 1 0 1 4 6

Table B.52: Processing Times: Test Problem No. 2 (n=10)

CPU Times (in seconds)
n i p| a jjB&B || LRA(A) | LRA(B) [ARL(A) [ARL(B)
101 3]0.1 0 0 1 1 0
10302 0 0 0 0 0
10(3]0.3 0 0 0 0 0
10304 0 0 0 1 1
10{3]0.5 0 1 0 0 0
10]3]06 0 0 0 0 1
1001307 0 0 0 1 0
10(3]0.8 0 0 0 0 0
10{3]09 0 0 0 0 1
10 5]0.1 2 0 0 5 8
10/ 5]02 1 0 1 7 8
10| 5]03 1 1 0 5 8
10 {504 1 0 1 7 6
10| 5]05 1 0 0 4 8
10{5]06 0 1 0 6 5
101 5]0.7 1 0 1 6 6
1015108 0 0 0 3 6
10[{5]09 1 1 1 5 6 |

Table B.53: Processing Times: Test Problem No. 3 (n=10)

166

COMPARISONS: EXACT VS HEURISTIC

CPU Times (in seconds)
n ;p; c | BB LRA(A) [LRA(B) | ARL(A) | ARL(B)
101301 0 0 0 1 0
103]02 0 0 1 0 1
103103 0 0 0 1 1
10]3]04 0 0 0 0 0
101 3]03 0 0 0 0 0
1013 |06 0 0 0 1 1
10307 0 0 0 0 0
1013108 0 1 0 0 0
013109 0 0 0] 1
10501 1 1] 0 4 8
101 5]02 2 0 0 5 7
10| 5] 03 0 1 1 7 7
10504 1 0 0 8 7
10505 0 1 1 7 6
10| 5] 06 1 0 0 4 6
101507 0 0 1 7 6
10508 0 1 0 7 T
105109 1 0 1 7 6

Table B.54: Processing Times: Test Problem No. 4 (n=10)

CPU Times (in seconds)
n | p| a [BEBLRA(A) [LRA(B) | ARL(A) [ARL(B)
1073701 1 0 0 1 0
10302 0 0 0 0 1
1073103 0 0 1 0 0
10| 3|04 0 0 0 1 0
10 305 0 0 0 0 1
10 3|06 0 0 0 0 0
103107 0 0 0 0 1
10| 308 0 0 0 1 0
103109 ol 1 0 0 0]
10]5]0.1 1 0 0 5 7
105102 1 1 1 7 7
10| 5| 0.3 1 0 0 5 5
10]5 04 1 1 1 6 6
10| 5|05 1 0 0 5 6
105106 1 1 1 5 6
10| 5] 0.7 0 0 0 5 6
10| 508 1 1 1 4 7
10/ 5] 0.9 0 0 0 4 5

Table B.55: Processing Times: Test Problem No. 5 (n=10)

167

COMPARISONS: EXACT VS HEURISTIC

CPU Times (in seconds)
n | p| a || BB || LRA(A) | LRA(B) | ARL(A) [ARL(B)
101 31]0.1 0 0 0 0 1
1031702 0 0 0 1 0
1013103 0 0 0 0 0
101304 0 0 1 0 0
1013105 0 0 0 1 1
103106 0 0 0 0 0
10]3]0.7 0 0 0 0 0
1031038 0 0 0 1 1
T10 131009 0 I 0 0 0
10| 5]0.1 2 1 1 5 8
101502 2 0 0 5 7
1015103 1 0 1 S 6
10|51} 0.4 1 1 0 6 7
10| 5] 0.5 1 0 1 6 7
101506 0 0 0 5 6
10 {507 0 1 0 6 6
10{5]0.8 1 0 1 6 6
10 | 5 | 0.9 0 0 0 3 5

Table B.56: Processing Times: Test Problem No. 6 (n=10)

CPU Times (in seconds)
n p| a || BEBLRA(A) [LRA(B) [ARL(A) | ARL(B)
10] 3]0.1 0 0 0 1 1
10302 0 0 0 0 0
10303 0 0 0 0 1
10| 304 0 0 1 1 0
10305 0 0 0 0 1
10306 0 0 0 0 0
10| 307 0 0 0 1 0
101 308 0 0 0 0 1
1013109 0 0 0 0 0
10]5]0.1 p) 1 1 5 6
1015102 1 0 0 5 8
10| 5103 2 0 0 7 6
10504 1 1 1 6 7
1015105 1 0 0 5 6
10506 0 0 1 6 6
1015] 0.7 1 0 0 5 6
10] 5 | 0.8 0 1 1 7 7 |
10| 5]0.9 0 0 0 6 7

Table B.57: Processing Times: Test Problem No. 7 (n=10)

168

COMPARISONS: EXACT VS HEURISTIC

CPU Times (in seconds)
n ip| o || B&B] LRA(A) [LRA(B) | ARL(A) [ARL(B)
10| 3 (0.1 0 0 0 1 1
10| 3| 0.2 0 1 0 0 1
10303 0 0 0 1 0
103|004 0 0 0 1 1
10{3]0.5 0 0 0 0 1}
10§ 3| 0.6 0 0 1 0 1
10307 0 0 0 1 0
1013|038 0 0 0 0 1
1013109 0 0 9 0 0
10 5|0.1 3 0 0 5 7
101 5 0.2 1 1 1 S 9
10| 5103 1 0 0 5 6
101504 1 1 1 5 5
10|5] 05 0 0 0 5 6
105106 1 0 0 5 4
1015 |0.7 0 1 1 6 5
105108 0 0 0 6 4
10| 5|09 0 0 1 6 8

Table B.58: Processing Times: Test Problem No. 8 (n=10)

CPU Times (in seconds)
n | p| a [B&B LRA(A) | LRA(B) [ARL(A) | ARL(B)
10] 3701 0 0 0 1 1
10| 3 | 0.2 0 0 0 0 0
10303 0 0 0 0 1
10] 3|04 0 1 0 1 0
10305 0 0 0 0 1
101306 0 0 0 0 0
10| 3|07 0 0 1 1 0
10| 3|08 0 0 0 0 1
10| 309 0 0 0 0 0
10]5]0.1 3 1 0 5 7
10502 2 0 1 5 6
10503 3 1 0 5 5
10| 5] 04 1 0 1 6 5
105 |05 1 0 0 6 6
10| 5|06 1 1 0 5 6
10{5]0.7 0 0 1 6 5
10| 5| 0.8 1 1 0 5 5
10509 0 0 1 5 6

Table B.59: Processing Times: Test Problem No. 9 (n=10)

169

COMPARISONS: EXACT VS HEURISTIC

CPU Times (in seconds)
n p| a || B&B | LRA(A) TLRA(B) | ARL(A) [ARL(B)
1013}0.1 0 (0] 0 1 1
10302 0 0 0 0 0
10303 0 Q 0 1 1
103104 0 1 0 0 0
1013105 0 0] 0 0 1
10306 0 0 0 0 0
101307 0 0 1 0 1
1013108 0 0 0 0 0
103109 0 0 0 0 0
10]5]0.1 2 1 0 6 9
1015102 1 0 1 5 7
101503 1 1 0 6 7
1015] 04 1 0 1 8 6
101505 1 0 0 6 7
10| 5] 0.6 1 1 1 3 4
10135107 0 0 0 6 5
10]5]08 1 1 1 5 6
10 5|09 0 0 0 6 6

Table B.60: Processing Times: Test Problem No. 10 (n=10)

170

COMPARISONS: EXACT VS HEURISTIC

B.2.2 Test Problems with 20 Demand Points

CPU Times (in seconds)
n | p| a || B&B | LRA(A) T LRA(B) [ARL(A) | ARL(B)
203 |01 0 0 0 4 6
2013102 1 1 1 3 3
201303 0 1 0 4 7
201304 0 0 1 3 4
203403 0 1 0 2 3
2013] 0.6 1 1 1 3 4
201307 0 0 0 2 2
203038 0 1 1 2 3
201309 0 0 0 2 3
205 | 0.1 182 3 3 31 74
20]5]02 144 4 4 58 63
201503 95 4 2 66 53
205 |04 79 4 3 53 45
205105 67 4 3 31 41
20| 5] 0.6 34 3 3 43 38
2015 0.7 33 4 2 35 41
20| 5] 0.8 23 5 3 37 39
201509 23 4 3 34 38

Table B.61: Processing Times: Test Problem No. 1 (n=20)

1

-

i

1

COMPARISONS: EXACT VS HEURISTIC

CPU Times (in seconds)
o p; a || B&B jf LRA(A) [LRA(B) | ARL{A) | ARL(B)
201310.1 0 1 1 4 6
203102 1 0 0 4 3
201 3] 0.3 1 0 1 3 4
201 3|04 0 1 0 1 3
20 3|05 0 0 1 3 3
2013106 0 1 0 2 2
2013]0.7 1 0 1 2 3
20 3108 0 1 0 1 2
2013109 0 0 1 2 3
201 51]0.1 226 4 3 65 87
201 5]02 184 4 4 62 80
20503 123 4 3 48 64
201504 94 4 3 62 43
20| 5] 0.5 87 3 2 57 33
20{ 5| 0.6 63 3 3 30 45
2015)07 34 3 2 36 40
20 5] 08 33 4 3 37 38
20{ 5|09 11 2 2 25 46
Table B.62: Processing Times: Test Problem No. 2 (n=20)
CPU Times (in seconds)
o |p| o [BEB [LRA(A) | LRA(B) | ARL{A) [ARL(B) |
201301 0 1 0 9 7
2013102 1 0 1 b 4
20303 0 1 0 5 4
2073104 1 0 1 2 4
2013105 0 0 0 3 3
2013106 0 1 1 2 2
201307 0 0 0 1 3
20| 3]08 0 1 0 2 2
20 | 3 0.9 0 0 I 3 1
2015101 232 3 3 47 81
20502 160 4 3 58 66
20503 94 4 3 79 53
201 5|04 70 [2 53 56
20{ 5] 0.5 33 5 3 75 65
2015 0.6 32 4 2 66 53
2015107 22 3 2 74 53
20508 12 2 2 75 58
20509 12 2 2 63 52

Table B.63: Processing Times: Test Problem No. 3 (n=20)

COMPARISONS: EXACT VS HEURISTIC

CPU Times (in seconds)
n|p| a | BB] LRA(A) TLRA(B) [ARL(A) [ARL(B)
20(31}0.1 1 1 0 3 6
2013102 0 0 1 3 S
2013103 1 1 0 3 4
20(3 (04 0 0 1 [} 5
2013105 1 1 0 6 3
2013106 0 0 1 4 4
20103107 0 1 0 2 4
20| 3|08 0 0 1 2 2
5013 109 0 0 9 3 1
2075101 215 4 4 36 87
2015102 191 3 3 37 63
20(5 (0.3 120 4 3 66 74
2015 |04 107 3 2 64 63
20505 89 3 2 78 52
20)5 1|06 64 2 2 53 56
203 0.7 44 3 3 o7 45
2015 (08 22 3 2 56 46
2015109 12 2 3 53 56

Table B.64: Processing Times: Test Problem No. 4 (n=20)

CPU Times (in seconds)
n | p| o [[B&B [LRA{A) [LRA(B) | ARL(A) | ARL(B)
207301 1 1 1 3 6
203102 0 0 0 1 3
201303 1 0 1 3 2
20| 3 | 0.4 0 1 0 2 2
20| 3| 0.5 0 0 1 2 3
20 3| 0.6 0 0 0 2 2
20| 3 | 0.7 0 1 1 1 3
201 3 | 0.8 1 0 0 2 2
203109 0 0 0 2 2
3015] 0.1 208 1 3 31 83
205102 173 3 4 41 72
2015 |0.3 144 4 3 87 58
20504 118 3 2 67 57
20 | 5 | 0.5 72 2 2 76 50
015106 33 2 2 85 55
305 | 0.7 11 2 2 68 54
205] 08 13 3 3 70 65
20 | 5| 0.9 11 2 2 78 T

Table B.65: Processing Times: Test Problem No. 5 (n=20)

173

COMPARISONS: EXACT VS HEURISTIC

CPU Times (in seconds)
n |p| a {| B&B || LRA(A) [LRA(B) | ARL(A) [ARL(B)
20| 3]0.1 0 1 1 10 10
2013702 1 1 1 4 7
201303 0 0 0 3 5
20 3|04 1 1 1 2 5
2013105 0 1 0 2 3
20 3] 0.6 0 0 1 2 3
201 3]0.7 0 1 1 3 3
2013108 0 1 0 1 2
2013109 0 0 1) 3
201 510.1 220 4 4 40 94
2015702 182 4 3 48 66
2015)03 156 4 4 29 52
20504 117 3 2 38 48
2015 |05 64 3 2 52 47
201 5|06 46 4 2 56 40
2015 |07 45 3 3 59 36
2015108 34 2 2 38 42
201509 22 2 2 47 35

Table B.66: Processing Times: Test Problem No. 6 (n=20)

CPU Times (in seconds)
n |p| a [B&B | LRA(A) [LRA(B) | ARL(A) | ARL(B)
20 3] 0.1 1 1 0 3 6
201302 1 0 1 2 5
203103 0 1 0 4 3
201 3| 0.4 0 0 1 3 1
303105 1 1 0 6 3
201 3| 0.6 0 0 1 3 3
20| 3 10.7 0 1 0 1 3
20| 3| 0.8 0 1 1 2 3
20| 3] 0.9 0 0 1 3 3]
205101 230 3 5 53 74|
205 |02 175 3 3 41 50
20| 5] 0.3 117 2 3 32 60
20 | 5 | 0.4 67 3 3 74 68
201505 61 2 3 7 58
3015 0.6 57 3 3 74 54
20| 5| 0.7 32 3 3 56 44
20| 5 | 0.8 23 3 3 46 49
305009 22 3 4 50 59

Table B.67: Processing Times: Test Problem No. 7 (n=20)

174

COMPARISONS: EXACT VS HEURISTIC

CPU Times (in seconds)
n |p| o || B&B || LRA(A) [LRA(B) [ARL(A) | ARL(B)
201301 1 1 0 3 11
2013102 0 0 1 3 6
2013103 1 1 0 3 5
2013|104 0 0 1 2 3
201305 0 1 0 1 3
20} 3106 0 0 1 4 3
2013107 0 1 0 2 3
2013|038 1 0 0 2 3
2013109 0 1 1 2 2
0501 o211 3 3 35 76
0502 143 5 3 32 61
0503 112 1 1 28 51
201504 88 3 4 35 56
20| 51|05 78 2 2 34 45
2015106 68 b 3 37 48
2015 0.7 45 3 3 53 48
2051} 0.8 16 2 2 = 46
201509 22 2 2 44 46

Table B.68: Processing Times: Test Problem No. 8 (n=20)

CPU Times (in seconds)
n | p| o [B&BLRA(A) | LRA(B) [ARL{A) [ARL(B)
20 3]0.1 0 0 0 1 5
20| 3] 0.2 1 1 1 4 1
20 | 3] 0.3 0 0 0 2 3
20304 1 1 1 p) p)
2013105 0 0 0 1 2
20| 3|0.6 0 1 0 2 3
20 310.7 1 0 1 1 2
30| 308 0 0 0 4 2
2031009 0l 0 1 1 3
20[57]0.1 210 || 2 3 34 65
201502 165 3 3 42 71
20| 5] 0.3 143 3 3 48 49
205104 137 2 3 64 52
20505 103 2 3 57 47 |
201 51 0.6 67 3 2 57 57 |
201 5 | 0.7 61 P) 3 76 43
2051 0.8 41 2 2 64 56
20| 5109 11 2 3 52 53

Table B.69: Processing Times: Test Problem No. 9 (n=20)

175

COMPARISONS: EXACT VS HEURISTIC

CPU Times (in seconds)
n p| a || BB [LRA(A) [LRA(B) [ARL(A) | ARL(B)
203101 0 0 0 3 10
201302 1 0 1 3 6
2013}03 0 1 0 2 35
201304 1 0 1 2 4
2013103 0 1 0 2 4
2013106 0 0 1 2 3
201 3107 0 1 1 3 4
201 3]08 0 0 0 3 3
201309 0 1 0 3 4
2015} 0.1 202 4 4 42 94
20) 5| 0.2 132 3 3 59 64
2015103 112 4 4 49 71
2015104 108 3 3 55 46
201505 102 2 4 48 43
2015 0.6 68 3 4 49 45
20 5107 55 2 3 36 33
201 5]0.8 33 3 4 60 32
2005709 11 2 3 49 39

Table B.70: Processing Times: Test Problem No. 10 (n=20)

B.2.3 Test Problems with 30 Demand Points

CPU Times (in seconds)
n [p| a || B&B || LRA(A) [LRA(B) [ARL(A) | ARL(B)
303102 3 1 1 10 28
30| 3104 1 1 1 7 21
30 (3]0.6 1 1 1 7 13
3013038 0 2 1 5 9
30| 5| 0.2 2431 9 9 112 326
30| 5|04 1016 7 10 213 241
305} 0.6 973 10 7 152 130
30 5]0.8 285 7 6 192 157

Table B.71: Processing Times: Test Problem No. 1 (n=30)

176

COMPARISONS: EXACT VS HEURISTIC

CPU Times (in seconds)

n |p| a« | B&EBLRA(A) [LRA(B) [ARL{A) [ARL(B
303702 3 2 1 29 29
30304 1 1 1 10 11
30306 1 1 1 5 9
30308 0 1 1 6 10
30502 2074 13 8 292 270
30 [5]04] 823 8 6 305 164
30506 229 7 5 286 151
30 | 51081 101 11 8 190 177 |

Table B.72: Processing Times: Test Problem No. 2 (n=30)

CPU Times (in seconds)
n ! p| a || B&B || LRA(A) | LRA(B) | ARL(A) | ARL(B)
303102 3 1 1 15 24
301304 1 1 1 6 13
301 30.6 1 1 1 6 11
303038 0 2 2 11 13
301502 2329 11 10 81 235
30| 51041 159 9 7 206 208
30506 359 6 5 239 145
30508 193 6 5 191 181

Table B.73: Processing Times: Test Problem No. 3 (n=30)

CPU Times (in seconds)
nlp| a || B&B || LRA(A) | LRA(B) [ARL(A) | ARL(B)
303102 3 1 1 16 18
30 3|04 2 1 1 9 10
30 {306 0 1 2 10 16
3013108 1 2 1 8 8
30]5[02] 2000 10 9 204 235
30 5|04 1142 9 11 310 185
301506 720 6] 264 180
30508 194 8 9 318 212

Table B.74: Processing Times:

Test Problem No. 4 (n=30)

177

COMPARISONS: EXACT VS HEURISTIC

CPU Times (in seconds)
n p| a || B&B JLRA(A) | LRA(B) [ARL(A) | ARL(B)
30 3[0.2 2 1 1 21 12
30 {304 1 2 1 12 12
303106 1 2 1 9 10
301308 0 i 1 29 14
301 50.2 2476 10 9 501 305
30| 5|04 1411 9 9 503 254
30035 |06 499 10 3 383 216
3015108 279 8 3 261 250

Table B.75: Processing Times: Test Problem No. 5 (n=30)

CPU Times (in seconds)
nip| a &B [LRA(A) | LRA(B) | ARL(A) | ARL(B)
30 | 3]02 3 2 1 28 36
301304 2 1 2 15 17
30| 3]06 1 1 1 34 18
30131038 0 2 1 15 18
30 | 5102 2364 11 7 272 319
30504 1162 10 8 268 280
305108 675 7 7 298 180
305038 191 6 6 177 200

Table B.76: Processing Times: Test Problem No. 6 (n=30)

CPU Times (in seconds)
n | p| a || BB LRA(A) | LRA(B) [ARL{A) | ARL(B)
303102 3 1 1 7 18
30304 1 1 1 7 12
30 [306 0 1 1 5 8|
30 3 [08] 1) I 6 7
3015102 1900 10 10 380 238
30 [5]04 854 8 10 287 187
305106 481 9 8 305 102
30| 5]0.8 192 8 9 353 163

Table B.77: Processing Times:

Test Problem No. 7 (n=30)

178

COMPARISONS: EXACT VS HEURISTIC

CPU Times (in seconds)
n |p| a || B&B | LRA(A) [LRA(B)] ARL(A) | ARL(B)
301302 3 1 1 8 14
30| 3|04 2 2 2 14 18
301 3]06 1 1 1 11 15
303|038 0 1 1 11 11
30502 2316 14 11 250 285
30 5|04 1570 132 8 142 129
30| 5|06 869 13 7 166 187
1305108 2881 61 5 736 145

Table B.78: Processing Times: Test Problem No. 8 (n=30)

CPU Times (in seconds)
n | p| o jjB&B || LRA(A) | LRA(B) [ARL(A) | ARL(B)
301302 3 2 1 12 34
30 3[04 1 2 1 12 18
30§ 3]0.6 1 2 2 7 8
303108 0 2 1 7 9
301 502} 2116 17 9 197 261
3015]04 1123 14 7 418 225
30| 51|06 385 12 7 291 143
30| 5/08 291 12 7 176 143

Table B.79: Processing Times: Test Problem No. 9 (n=30)

CPU Times (in seconds)
n | p| a | BEBTLRA(A) [LRA(B) | ARL(A) | ARL(B)
30]3]02 3 1 1 14 1C
30 | 3104 1 1 1 14 13
30| 3106 1 1 1 7 11
30 308 o 1 1 21 15
30 [5]02]f 2225 10 10 242 209
30| 5|04 806 5 5 274 147
3015106 289 6 8 231 144
30| 5|08 187 7 7 375 164

Table B.80: Processing Times: Test Problem No. 10 (n=30)

COMPARISONS: EXACT VS HEURISTIC 180

B.2.4 Test Problems with 40 Demand Points

CPU Times (in seconds)
n p| o | BEB || LRA(A) [LRA(B) [ARL(A) [ARL(B)
40 {3 |02 8 2 4 31 50
40([31]04 5 2 7 20 39
40]3]06 1 4 5 17 32
4013108 1 3 3 24 37
Table B.81: Processing Times: Test Problem No. 1 (n=40)
CPU Times (in seconds)
n | p| o [BEBLRA(A) | LRA(B) | ARL(A) | ARL(E)
4013102 10 3 6 90 62
40| 3}04 3 2 9 46 56
403 | 0.6 2 3 4 33 34
40308 0 3 4 17 21
Table B.82: Processing Times: Test Problem No. 2 (n=40)
CPU Times (in seconds)
n p| o | B&B || LRA(A) [LRA(B) | ARL(A) [ARL(B)
403102 10 3 7 32 35
401 3|04 3 3 6 52 40
40306 2 3 3 22 21
4013038 0 3 3 16 25
Table B.83: Processing Times: Test Problem No. 3 (n=40)
CPU Times (in seconds)
n|p| . B&B || LRA(A) [LRA(B) [ARL(A) [ARL(B)
4013102 9 3 6 70 60
40 3}04 7 4 5 39 33
40 31} 0.6 2 3 5 16 19
40| 3|08 1 3 5 34 26
Table B.84:

Processing Times: Test Problem No. 4 (n=40)

COMPARISONS: EXACT VS HEURISTIC

CPU Times (in seconds)
n |p| a || B&B || LRA(A) TLRA(B) | ARL{A) [ARL(B)
401 3] 0.2 9 3 5 24 416
401 3|04 4 2 4 48 49
40 [3| 0.6 2 2 3 18 28
40 3] 0.8 0 2 4 17 23
Table B.85: Processing Times: Test Problem No. 5 (n=40)
CPU Times (in seconds)
n pjaj B&B | LRA(A) | LRA(B) | ARL(A) | ARL(B)
4013102 10 3 6 23 57
401304 5 4 6 15 27
4013 0.6 2 4 4 24 28
40308 1 S 4 21 28
Table B.86: Processing Times: Test Problem No. 6 (n=40)
CPU Times (in seconds)
n|p| o [B&B[IRA(A) | LRA(B) | ARL(A) | ARL(B)
4013102 9 3 10 22 48
403 (04 4 3 7 29 38
401 3 | 0.6 3 4 5 22 43
4013108 1 4 5 24 35
Table B.87: Processing Times: Test Problem No. 7 (n=40)
CPU Times (in seconds)
n |pl| a || B&B | LRA(A) | LRA(B) [ARL(A) | ARL(B)
4013402 9 3 4 58 46
30304 1 2 6 15 24|
401306 1 3 5 20 27
4013108 0 2 5 16 26
Table B.88: Processing Times: Test Problem No. 8 (n=40)

COMPARISONS: EXACT VS HEURISTIC

CPU Times (in seconds)
n!p| a | B«B I LRA(A) | LRA(B) [ARL(A) | ARL(B)
40]310.2 9 2 7 108 86
4013] 04 5 2 3 35 27
4013 1]0.6 2 2 6 21 24
403108 1 2 3 20 27

Table B.89: Processing Times: Test Problem No. 9 (n=40)

ot CPU Times (in seconds)
n|p| o |[B&ZBLRA(A) | LRA(B) | ARL(A) | ARL(B)
403102 9 2 5 20 34
4013104] 2 7 21 47
4013]0.6 2 3 5 21 29
4013|038 1 3 3 18 35
Table B.90

: Processing Times: Test Problem No. 10 (n=40)

B.2.5 Test Problems with 50 Demand Points

CPU Times (in seconds)
nip! a || BB || LRA(A) | LRA(B) [ARL(A) | ARL(B)
3013102 23 6 3 219 136
50 13|04 15 5 6 48 66
503106 5 6 3 45 74
50 | 3 | 0.8 3 5 ! 50 73 |
Table B.91: Processing Times: Test Problem No. 1 (n=50)

CPU Times (in seconds)
n | p| o [B&B [LRA(A) | LRA(B) | ARL(A) [ARL(B)
50 | 3]0.2 22 T 6 3 110 94
5013104 11 7 3 46 72
503106 4 7 3 38 61
50 | 3| 0.8 1 6 2 57 68 |

Table B.92: Processing Times: Test Problem No. 2 (n=50)

COMPARISONS: EXACT VS HEURISTIC

CPU Times (in seconds)
n|p| o [B&BLRA(A) | LRA(B) | ARL(A) | ARL(B)
5013102 23 5 4 79 148
501 304 10 6 4 53 101
303706 5 7 4 37 64
501308 1 5 2 40 66
Table B.93: Processing Times: Test Problem No. 3 (n=50)
CPU Times (in seconds)
n |p| o [BEBLRA(A) | LRA(B) | ARL{A) | ARL(B)
50| 31}0.2 23 4 3 159 77
301304 11) 4 38 79
3013106 3 3 4 72 67
301308 1 5 3 78 81
Table B.94: Processing Times: Test Problem No. 4 (n=350)
CPU Times (in seconds)
n p| a | B&B | LRA(A) | LRA(B) | ARL(A) | ARL(B)
5013102 23 6 4 53 82
50304 8 7 4 150 109
50306 3 6 2 49 75
5013038 1 5 3 58 66
Table B.95: Processing Times: Test Problem No. 5 (n=50)
CPU Times (in seconds)
nipja | B&B || LRA(A) | LRA(B) | ARL(A) | ARL(B)
50302 24 7 4 51 91
503704 15 4 4 137 135
501306 2 6 2 64 49
503108 1 4 3 39 64
Table B.96:

Processing Times: Test Problem No. 6 (n=50)

COMPARISONS: EXACT VS HEURISTIC

CPU Times (in seconds)
n pja |[[B&B [LRA(A) TLRA(B) [ARL(A) [ARL(B)
50 302 20 5 3 44 95
50 (3104 12 4 3 104 69
501 306 3 4 4 36 61
50 3]0.8 2 4 4 89 96
Table B.97: Processing Times: Test Problem No. 7 (n=50)
CPU Times (in seconds)
n p| a | B&B] LRA(A) | LRA(B) [ARL(A) | ARL(B)
30302 22 4 4 116 156
301304 13 4 4 112 72
30| 3]0.6 4 5 3 100 64
501308 2 3 4 37 39
Table B.98: Processing Times: Test Problem No. 8 (n=50)
CPU Times (in seconds)
n p| a |B&B]| LRA(A) [LRA(B) | ARL(A) | ARL(B)
5013102 24 6 3 47 74
30| 3}04 12 5 3 46 63
5013706 2 4 3 51 82
503108 1 5 3 53 63
Table B.99: Processing Times: Test Problem No. 9 (n=50)
CPU Times (in seconds)
n p| o || B&B jj LRA(A) | LRA(B) | ARL(A) | ARL(B)
50| 3|02 23] 4 329 160
30| 3|04 17 6 5 107 96
30| 3]06 5 5 2 53 76
501 3]08 1 6 3 49 63
Table B.100: Processing Times: Test Problem No. 10 (n=50)

Appendix C

Comparisons for Each Test
Problem: Heuristic vs Heuristic

In this appendix, we compare the heuristics between themselves for larger problem
sizes where the optimum solutions were not available. Section C.1 reports comparisons
with respect to the best solution found among all heuristics. Therefore, although the
percentage difference of a given heuristic solution from the best solution found gives a
basis for comparison for heuristics between themselves, it does not provide immediate
information with respect to the closeness of the results to the actual optimum. Section

C.2 gives the computation times of each heuristic algorithm for each of the test

problems.

C.1 Comparisons for Closeness the Best Solution
Found

In all the testing done in this section, LRA type heuristics again performed much
better compared to ARL type heuristics. In almost all cases, one of the LRA type

heuristics was the one the find the best solution among all four of the algorithms.

185

COMPARISONS: HEURISTIC VS HEURISTIC

Note here that a value of 0.00 for % Difference states that the best solution was
found by the given algorithm. Compared to the results in Section B.1, the results for

LRA(B) seemed to improve a bit, that is, LRA(B) found solutions that are as good

as or better than LRA(A) more often.

C.1.1 Test Problems with 20 Demand Points

Best Sol. » Difference
n|p| a Found j| LRA(A) | LRA(B) | ARL(A) | ARL(B)
201 7101 5172.1 0.00 0.00 0.67 0.95
201 71 0.2 8159.6 0.00 0.11 0.32 1.10
2017103 10883.0 0.87 0.00 2.77 1.15
201704 13508.8 1.25 0.00 1.31 0.68
2017105 16017.5 0.63 0.00 1.54 0.24
20 71 0.6 18299.6 0.00 0.00 2.16 2.75
20 7107 20818.1 0.00 0.00 1.11 1.19
201 71 0.8 23116.4 0.25 0.25 1.70 0.00
201 7109 25326.6 0.00 0.00 1.44 0.79
Table C.1: % Difference: Test Problem No. 1 (n=20)
Best Sol. o Difference
n|pl a Found || LRA(A) [LRA(B) [ARL(A) | ARL(B)
201 71 0.1 6897.0 0.00 0.00 3.09 2.70
20171 0.2 9801.6 0.00 0.00 0.94 1.41
207103 12189.0 0.00 0.00 1.77 1.93
2017104 14155.0 0.28 0.72 0.94 0.00
20017105 16209.0 0.00 0.21 1.32 5.83
201 71 0.6 18030.2 0.00 0.00 6.12 6.42
207 |0.7 19743.5 0.00 0.00 2.72 1.79
201 71 0.8 21410.0 0.00 0.00 6.13 1.31
201 7109 22966.9 0.00 0.00 3.65 4.71

Table C.2: % Difference: Test Problem No. 2 (n=20)

COMPARISONS: HEURISTIC VS HEURISTIC

Best Sol. % Difference
n|p| a Found || LRA(A) TLRA(B) | ARL(A) | ARL(B)
217101 7202.9 0.00 0.36 0.85 1.39
2017102 9727.2 0.00 0.00 0.81 3.42
2017103 11743.4 0.00 0.00 6.87 14.35
2017104 13118.2 0.00 0.00 7.60 6.40
207105 14438.0 0.00 0.00 10.80 9.98
201706 15613.4 0.00 0.00 2.70 10.26
2047107 16699.8 0.00 0.00 7.86 7.90
2017108 17666.0 0.00 0.00 7.75 12.56
20709 184025 0.00 0.00 3.43 13.01

Table C.3: % Difference: Test Problem No. 3 (n=20)

Best Sol. o Difference
nlp| a Found | LRA(A) [LRA(B) [ARL(A) [ARL(B)
20701 5857.2 0.00 0.00 0.81 2.95
20417102 9207.2 0.00 0.00 3.47 3.09
20| 7103 11670.6 1.30 0.00 2.33 4.45
2017104 13848.4 0.00 0.00 0.34 1.42
2007105 15821.0 0.00 0.00 0.35 3.68
207106 17755.2 0.00 0.00 0.92 2.53
20707 19689.4 0.00 0.00 0.46 1.66
20708 21544.4 0.37 0.00 2.12 2.00
201 7109 23060.3 0.12 0.00 0.92 0.95

Table C.4: % Difference: Test Problem No. 4 (n=20)

Best Sol. o Difference
Ilnlpla Found | TRA(A) | LRA(B) | ARL(A) | ARL(B)
20777701 6582.9 0.00 0.00 0.90 0.85
20 7102 8649.4 0.00 0.00 2.78 0.58
201 7103 10281.1 0.00 0.04 0.18 0.83
207104 11179.2 0.00 0.00 2.14 1.86
201 7105 11863.0 0.00 0.00 4.81 5.83
20| 71 0.6 12431.6 0.00 0.00 7.04 6.84
20) 71| 0.7 13000.2 0.00 0.00 10.52 5.07
201 7108 13568.8 0.00 0.00 6.24 4.62
207109 14131.0 0.00 0.00 3.81 2.94

Table C.5: % Difference: Test Problem No. 5 (n=20)

COMPARISONS: HEURISTIC VS HEURISTIC

Best Sol. % Difference
n|p| e Found || LRA(A) [LRA(B) | ARL(A) | ARL(B
2017101 5447.9 1.16 0.00 2.02 2.61
2017102 7916.6 0.00 0.00 2.10 7.85
20 7103 10179.4 0.00 0.00 1.70 0.84
2017104 11708.0 0.35 0.35 1.48 0.00
2017105 12763.5 1.00 0.00 1.98 3.06
20171 0.6 13936.8 0.00 0.00 2.22 3.16
20017107 14915.5 0.51 0.00 1.68 2.35
20101708 15899.0 0.32 0.00 0.84 1.67
12077109, 16908.1 | 0.00] 0Q.00 1.44 2.50 |
Table C.6: % Difference: Test Problem No. 6 (n=20)
% Difference
n | p| a || Found [TRA(A) [LRA(B) | ARL(A) | ARL(B)
207101 7600.9 0.00 0.00 3.24 2.97
20| 71 0.2 | 10024.4 0.00 0.00 3.88 1.68
20| 71 0.3} 11466.7 1.95 0.00 0.87 0.49
20| 7} 0.4 [| 12545.6 0.00 0.00 0.27 0.83
20| 7] 0.5 |j 13311.5 0.00 0.35 0.74 1.74
20 7 ¢ 0.6 [[13873.2 0.13 0.00 0.12 1.33
20| 7] 0.7 || 14422.3 0.00 0.00 0.76 0.47 |
20| 71 0.8 || 14936.2 0.00 0.00 1.04 8.60
201 71 0.9 || 15450.1 0.00 0.00 1.19 2.96
Table C.7: % Difference: Test Problem No. 7 (n=20)
Best Sol. ? Difference

n|p| a Found || LRA(A) | LRA(B) | ARL(A) | ARL(B)
201 7]01 6161.0 0.00 0.00 2.17 0.28
20[7]02 8512.0 4.67 0.00 0.00 5.96
2017103 10668.1 0.00 0.00 9.95 4.32
2017104 12736.4 1.90 1.50 0.14 0.00
20| 7105 14485.0 1.34 0.00 3.03 4.84
201 7]06 16001.2 0.00 0.00 5.91 1.56
2107407 17386.9 0.35 0.35 0.01 0.00
20 | 7 | O8] 1874456 0.00 0.00 3.72 3.49
2017109 19983.8 0.00 0.00 0.05 1.33

Table C.8: % Difference: Test Problem No. 8 (n=20)

COMPARISONS: HEURISTIC VS HEURISTIC

Best Sol. % Difference
nlp|a Found | LRA({A) | LRA(B) | ARL(A) | ARL(B)
20171701 7536.0 0.00 0.00 5.68 2.80
2017102 11141.0 0.00 0.40 9.57 3.53
201 7103 14319.9 0.00 1.17 4.20 6.48
201704 16946.0 0.53 0.00 2.79 2.07
201 7105 18941.0 0.36 0.00 5.81 3.52
20 7106 20645.0 0.00 0.40 0.34 0.09
201 7107 22269.5 0.02 0.00 1.39 .79
20| 7 (0.8 23710.0 0.00 0.00 3.32 4.24
201 7109 25082.5 0.00 0.00 2.14 6.17
Table C.9: % Difference: Test Problem No. 9 (n=20)
Best Sol. % Difference
n|p|a Found || LRA(A) [LRA(B) | ARL(A) | ARL(B)
20 7101 4133.8 0.00 0.00 2.91 3.98
217102 5999.0 0.98 0.38 0.00 0.15
201 7103 7331.9 0.00 0.06 0.37 0.54
20 7104 8601.2 0.65 0.00 4.19 1.49
20171035 9856.5 0.91 0.00 3.38 3.05
201706 10696.4 0.47 0.00 2.76 4.02
20| 7 | 0.7 11517.3 0.37 0.00 4.21 3.01
207108 12336.0 0.23 0.00 4.29 2.12
201 7109 13152.5 0.11 0.00 3.84 2.17

Table C.10: % Difference: Test Problem No. 10 (n=20)

189

COMPARISONS: HEURISTIC VS HEURISTIC

C.1.2

Test Problems with 30 Demand Points

Best Sol. ? Difference
nip| « Found || LRA(A) | LRA(B) | ARL(A) [ARL(B)
301 7]0.2 12740.0 0.00 0.07 2.59 1.97
30]7(04 17632.0 1.62 0.00 5.13 2.44
30706 21753.0 0.02 0.00 2.38 1.51
0] 708 25083.4 0.33 0.00 1.84 1.77
Table C.11: % Difference: Test Problem No. 1 (n=30)
Best Sol. % Difference
nip| a Found || LRA(A) | LRA(B) [ARL(A) [ARL(B)
30| 710.2 8991.4 0.00 0.16 3.43 5.19
307104 12821.6 0.00 0.00 4.47 3.86
30171(06 15181.6 0.92 0.00 2.72 2.56
30708 17189.0 0.00 0.00 3.37 2.06
Table C.12: % Difference: Test Problem No. 2 (n=30)
Best Sol. 2 Difference
n|pl| «a Found || LRA(A) | LRA(B) [ARL(A) [ARL(B)
30{7]0.2 10939.4 0.02 0.00 2.57 2.12
3017104 15019.4 0.00 0.00 4.64 8.30
30| 7106 17948.4 0.00 0.00 1.64 2.19
30| 7]0.8 20384.2 0.00 0.00 1.90 3.69
Table C.13: % Difference: Test Problem No. 3 (n=30)
Best Sol. % Difference
n|p| a Found || LRA(A) | LRA(B) | ARL(A) | ARL(B)
30702 8744.2 0.00 0.06 1.87 1.50
30704 12450.6 0.00 0.00 3.83 3.22
3017106 15817.6 1.12 0.00 1.69 4.02
30| 7108 18352.8 0.00 0.00 ~2.76 1.64

Table C.14: % Difference: Test Problem No. 4 (n=30)

190

COMPARISONS: HEURISTIC VS HEURISTIC

Best Sol. » Difference
n|p| a Found || LRA(A) | LRA(B) | ARL{A) [ARL(B)
30| 7102 12759.0 0.00 0.00 2.58 2.97
301 7104 17010.8 1.24 0.00 2.49 1.96
30| 7106 19920.6 0.29 0.00 4.12 4.90
30 7]0.8 22453.4 0.00 0.00 2.71 4.67 |
Table C.15: % Difference: Test Problem No. 5 (n=30)
Best Sol. e Difference
n|pl| a Found || LRA(A) | LRA(B) | ARL(A) | ARL(B) |
307 7102 13836.6 1.31 0.00 4.72 7.73 |
30| 7104 20268.6 0.00 0.33 3.05 6.65
30| 7106 26491.0 0.98 0.00 0.59 0.27
30| 7|08 31215.6 0.00 0.00 1.84 1.54
Table C.16: % Difference: Test Problem No. 6 (n=30)
Best Sol. %% Difference
nip| a Found | LRA(A) | LRA(B) | ARL(A) | ARL(B)
301702 9627.0 1.65 0.00 8.21 8.18
30 7104 12528.4 1.22 0.00 10.88 10.01
30} 7106 15071.4 0.00 0.00 4.67 4.28
30 7108 16765.2 0.22 0.00 6.12 5.77
Table C.17: % Difference: Test Problem No. 7 (n=30)
Best Sol. » Difference
n|p| a Found || LRA(A) | LRA(B) | ARL(A) [ARL(B)
30] 7102 10092.4 0.00 0.00 4.63 5.30
30704 13761.4 0.46 0.00 2.26 5.14
30706 16874.4 0.00 0.00 3.13 4.00
30 7]08 19371.8 0.70 0.00 0.67 2.11

Table C.18: % Difference: Test Problem No. 8 (n=30)

191

COMPARISONS: HEURISTIC VS HEURISTIC

C.1.3

Best Sol. e Difference
n|p! a Found || LRA(A) | LRA(B) | ARL{A) | ARL(B)
3017102 10779.6 0.00 0.00 6.07 11.21
30| 7104 14022.0 0.00 0.00 2.94 1.44
30{7]0.6 16100.0 0.00 0.00 5.00 2.59
307108 18061.0 0.00 0.00 5.84 6.34

Table C.19: % Difference: Test Problem No. 9 (n=30)

Best Sol. e Difference
nl|lp| a Found || LRA(A) | LRA(B) | ARL(A) | ARL(B)
301702 13540.0 0.60 0.00 1.18 3.60
307104 17111.2 0.00 0.00 3.67 6.17
30[7]0.6 19369.6 0.00 0.00 8.83 6.19
3017108 21543.0 0.00 0.00 4.66 4.66

Table C.20: % Difference: Test Problem No. 10 (n=30)

Test Problems with 40 Demand Points

Best Sol. © Difference
ni|p| a Found || LRA(A) | LRA(B) | ARL(A) | ARL(B) |
0502 10319.8 1.31 0.00 6.64 2.76 |
40 5104 13738.8 2.91 0.00 9.90 6.51
40| 5| 0.6 16590.8 0.00 0.00 6.16 6.13
40 5108 19168.2 0.00 0.00 4.23 J.11

Table C.21: % Difference: Test Problem No. 1 (n=40)

Best Sol. % Difference
n|pla Found [TRA(A) | LRA(B) [ARL(A) | ARL(B)
4015102 15220.2 0.79 0.00 8.77 5.89
40 [5104 18943.6 0.00 0.00 8.95 12.16
401 5]0.6 21605.6 0.00 0.01 7.15 8.58
40 5| 0.8 23875.4 0.00 0.00 6.65 8.65

Table C.22: % Difference: Test Problem No. 2 (n=40)

COMPARISONS: HEURISTIC VS HEURISTIC

Best Sol. o Difference
n | pi| a Found | LRA(A) | LRA(B) [ARL(A) | ARL(B)
405102 13124.6 0.00 0.00 5.46 5.68
40504 16232.0 0.00 0.30 3.21 3.35
40| 5106 18564.6 0.00 0.05 2.12 2.42
40 | 508 20532.2 0.00 0.00 2.04 2.36
Table C.23: % Difference: Test Problem No. 3 (n=40)
Best Sol. e Difference
n|pl| a Foundl LRA(A) | LRA(B) T ARL(A) | ARL(B)
40[570.2 142434 0.54 0.54 0.00 3.36
4015104 18288.8 0.00 0.00 4.79 4.78
4015106 21228.4 0.00 0.00 3.20 4.96
4051038 23927.0 0.00 0.00 3.25 2.35 |
Table C.24: % Difference: Test Problem No. 4 (n=40)
Best Sol. » Difference
alpla Found | TRA(A) [LRA(B) | ARL(A) | ARL(B)
0]5]02 15545.6 2.39 0.00 5.44 13.11
05|04 212296 0.00 0.00 115 9.37
10| 506 261028 0.00 0.00 2.89 5.08
4015038 30611.4 0.00 0.00 3.67 2.35
Table C.25: % Difference: Test Problem No. 5 (n=40)
Best Sol. % Difference
n|pl|a Found || TRA(A) JTRA(B) | ARL(A) | ARL(B)
405102 13150.8 0.00 0.00 4.23 5.24
40 5|04 16087.0 0.00 0.00 4.44 8.11
40| 506 18825.0 0.00 0.00 3.00 6.37
4015108 21553.8 0.00 0.00 4.01 3.91

Table C.26: % Difference: Test Problem No. 6 (n=40)

193

COMPARISONS: HEURISTIC VS HEURISTIC

Best Sol. o Difference
ni|ipj|a Found | LRA(A) | LRA(B) [ARL(A) | ARL(B)
401 5]0.2 16558.0 0.00 0.63 6.63 5.32
40 [5| 04 23006.6 0.00 0.07 5.96 8.20
40| 5106 29153.6 0.04 0.00 2.33 5.37
4015108 34871.8 0.15 0.00 4.37 4.30
Table C.27: % Difference: Test Problem No. 7 (n=40)
Best Sol. o Difference
nip|a Found || LRA(A) | LRA(B) | ARL(A) | ARL(B)
4075 | 0.2 13983.4 0.00 0.00 4.82 5.54
4015104 16394.2 0.00 0.99 7.33 13.53
40506 18425.0 0.00 0.00 5.97 5.96
401 51 0.8 20276.0 0.00 0.00 1.99 3.85
Table C.28: % Difference: Test Problem No. 8 (n=40)
Best Sol. % Difference
alp| a Found |[TRA(A) [LRA(B) | ARL(A) | ARL(B)
4015 (0.2 12287.2 0.15 0.00 11.18 10.20
40 | 5] 04 15925.8 0.00 0.00 8.18 5.95
4015106 18470.4 0.00 0.00 1.70 5.63
401 508 20515.0 0.00 0.00 4.25 4.10
Table C.29: % Difference: Test Problem No. 9 (n=40)
Best Sol. % Difference
nip| a Found || LRA(A) | LRA(B) | ARL(A) | ARL(B)
40[5]02 11640.6 || 0.00 0.00 5.06 2.32
40 | 5 | 04 15963.8 0.00 0.00 5.21 6.05
40| 5| 0.6 18923.8 0.00 0.44 4.60 8.59
40 5| 0.8 22123.4 0.00 0.52 4.23 4.40

Table C.30: % Difference: Test Problem No. 10 (n=40)

194

COMPARISONS: HEURISTIC VS HEURISTIC

C.14

Test Problems with 50 Demand Points

Best Sol. » Difference
n|p| a Found || LRA(A) | LRA(B) | ARL(A) | ARL(B)
501502 17089.4 0.73 0.00 4.73 8.32
50| 5|04 21822.0 0.00 0.00 7.53 11.18
301506 25217.2 0.19 0.00 3.25 8.29
30| 5108 27768.6 0.00 0.05 2.94 2.30
Table C.31: % Difference: Test Problem No. 1 (n=50)
Best Sol. % Difference
n|(p| «a Found || LRA(A) | LRA(B) | ARL(A) | ARL(B)
501 51]02 18488.8 0.00 0.00 6.07 7.55
50| 5|04 22378.8 0.00 0.12 4.58 12.85
505106 25694.0 0.09 0.00 9.03 6.22
501508 28553.2 0.00 0.00 2.78 2.69
Table C.32: % Difference: Test Problem No. 2 (n=50)
Best Sol. » Difference
n|p| a Found || LRA(A) | LRA(B) | ARL(A) | ARL(B)
501 5]02 12575.0 0.00 0.00 1.95 5.98
50| 5] 04 16044.8 0.00 0.00 11.88 11.80
50| 5|06 18546.8 0.00 0.00 2.93 4.24
501 51}08 20595.6 0.00 0.00 2.69 4.45
Table C.33: % Difference: Test Problem No. 3 (n=>50)
Best Sol. % Difference
n|p| a Found | LRA(A) | LRA(B) | ARL(A) | ARL(B)
501502 21484.8 0.01 0.00 7.45 6.64 |
50| 5] 04 25790.4 0.00 0.77 4.43 é.?g
50| 51|06 29469.6 0.00 0.00 6.08 7.53
50(5]08 32919.8 0.00 0.03 4.41 5.55

Table C.34: % Difference: Test Problem No. 4 (n=50)

195

COMPARISONS: HEURISTIC VS HEURISTIC

Best Sol. % Difference
nip| a Found || LRA(A) TLRA(B) [ARL(A) | ARL(B)
30| 5]0.2 14030.6 0.00 0.66 6.28 10.42
50| 5104 17083.0 0.00 0.00 7.63 9.55
50| 5] 0.6 19691.6 0.00 0.17 8.52 10.82
501 5]0.8 21913.8 0.00 0.00 4.57 5.64
Table C.35: % Difference: Test Problem No. 5 (n=50)
Best Sol. % Difference
n|pj| a Found j| LRA(A) TLRA(B) [ARL(A) | ARL(B)
5015]02 18019.2 0.00 0.50 6.90 11.15
50 | 5|04 23668.6 0.00 0.02 3.43 4.14
5015106 28527.4 0.00 0.44 2.10 2.76
505)08 31734.2 0.00 0.00 0.59 4.40
Table C.36: % Difference: Test Problem No. 6 (n=50)
Best Sol. e Difference
n|p| a Found || LRA(A) | LRA(B) [ARL{A) [ARL(B)
301502 11461.0 0.00 0.75 7.33 9.25
50| 5104 14436.0 0.00 0.30 5.69 6.03
50{ 506 17175.4 0.00 0.00 2.75 4.74
30| 5 (0.8 19611.8 0.13 0.00 3.51 2.69
Table C.37: % Difference: Test Problem No. 7 (n=>50)
Best Sol. % Difference
nlpla Found | TRA(A) [LRA(B) | ARL(A) | ARL(B)
50| 5]0.2 16683.6 0.00 0.35 7.41 9.59
50| 51|04 20609.0 0.00 0.39 11.76 4.79
50 [5]06 23679.0 0.00 0.00 5.54 6.49
5051038 26199.6 0.00 0.05 3.14 5.16

Table C.38: % Difference: Test Problem No. 8 (n=>50)

196

COMPARISONS: HEURISTIC VS HEURISTIC

Best Sol. o Difference
n|ip| a Found || LRA(A) | LRA(B) | ARL(A) | ARL(B)
5015702 16494.8 0.00 1.08 9.56 13.80
501504 21073.6 0.00 0.12 1.30 2.79
501506 25068.6 0.00 0.00 5.28 3.98
501 5108 28816.2 0.00 0.00 3.90 2.40

Table C.39: % Difference: Test Problem No. 9 (n=50)

1 || Best Sol. ? Difference
alpl| a Found | TRA{A) [LRA(B) | ARL(A) [ARL(B)
301 5|02 17438.6 0.00 0.00 3.76 6.40
30 (5] 04 23198.0 0.00 0.00 2.18 6.00
305106 27908.4 0.00 0.00 1.37 5.39
3015108 32234.8 0.00 0.00 4.43 4.31
Table C.40: % Difference: Test Problem No. 10 (n=50)

C.2 Comparisons for Computétion Times

197

As discussed earlier, both the LRA type heuristics found solutions much faster than

the ARL type heuristics in all the problem instances discussed in this section. ARL(B)

seemed to take less time than ARL(A) which may suggest that it gets stuck at a local

optimum easier than the ARL(A) heuristic. The computation times for LRA type

heuristics between themselves were in general close to one another.

COMPARISONS: HEURISTIC VS HEURISTIC

C.2.1 Test Problems with 20 Demand Points

Average CPU (in seconds)
n | p| a | LRA{A) | LRA(B) | ARL(A) | ARL(B)
201 710.1 12 12 355 294
201{7]02 14 13 310 273
2017103 10 9 320 280
2017104 8 9 321 253
21071]0.5 9 8 337 269
2017106 16 9 310 217
201 7] 0.7 9 6 290 225
2017108 10 8 212 240
2017109 12 10 205 251

Table C.41: Processing Times: Test Problem No. 1 (n=20)

Average CPU (in seconds)
nip| a LRA(A) | LRA(B) | ARL(A) | ARL(B)
2017101 14 11 346 378
201702 14 10 380 338
20(7103 12 9 346 291
201017104 10 8 408 249
20171035 10 8 310 190
2017106 9 8 162 231
2| 7(0.7 9 7 232 205
2017108 3 7 195 279
2017109 6 7 251 259

Table C.42: Processing Times: Test Problem No. 2 (n=2

0)

198

COMPARISONS: HEURISTIC VS HEURISTIC

Average CPU (in seconds)
n | p| a | LRA(A) [LRA(B) | ARL(A) | ARL(B)
201 710.1 16 9 230 395
20171 0.2 18 8 323 307
2017103 12 6 247 290
2017104 12 T 258 304
201 7105 9 7 317 268
20| 7106 11 6 307 229
20| 71 0.7 10 7 338 293
2017108 5 T 204 251
2017109 5 7 312 212

Table C.43: Processing Times: Test Problem No. 3 (n=20)

Average CPU (in seconds)
n | p| a [LRA(A) [LRA(B) [ARL{A) | ARL(B)
201 710.1 14 9 235 352
2017102 16 10 340 294
207103 9 7 267 279
2017104 7 7 276 308
20017105 6 7 375 226
20171 0.6 7 6 312 279
201|707 5 7 513 254
207108 6 7 349 294
201709 4 8 434 282

Table C.44: Processing Times: Test Problem No. 4 (n=20)

Average CPU (in seconds)
|p Pl & LRA(A) [LRA(B) ARL(é) ARL(B)
20 7] 0.1 13 12 174 356
201 7102 7 12 213 335
2017103 8 8 282 283
201 7104 5 7 346 328
2017105 6 6 330 263
2017106 4 7 312 292
2107107 S 7 232 299
201 7108 5 7 313 304
2017109 6 7 292 319

Table C.45: Processing Times: Test Problem No. 5 (n=20)

199

COMPARISONS: HEURISTIC VS HEURISTIC

Average CPU (in seconds)
n | p| o« [LRA(A)Y[LRA(B) | ARL(A) | ARL(B)
20701 11 12 205 365
20702 12 10 195 331
20| 7103 10 7 221 305
0704 6 7 285 281
20 7]05 7 7 254 297
20| 7106 7 8 276 297
20707 6 7 347 246
20| 71038 5 7 323 271 |
20709 6 | 7 [217 204 |

Table C.46: Processing Times: Test Problem No. 6 (n=20)

Average CPU (in seconds)
n |p| o | LRA(A) | LRA(B) | ARL(A) | ARL(B)
207101 15 12 219 336
201702 13 7 215 315
207703 5 8 231 262
2017104] 8 267 223
2017105 5 6 280 263
2017106 8 11 329 214
2017107 7 9 319 312
2017108 7 10 328 245
2017409 6 10 323 261

Table C.47: Processing Times: Test Problem No. 7 (n=20)

Average CPU (in seconds)
n |p| a || LRA(A) [LRA(B) | ARL(A) [ARL{B)
20701 13 11 227 330
207102 17 11 276 262
20,7103 17 11 136 252
20(7104 5 7 266 275
201 7105 7 7 219 241
201 7106 11 8 163 217
201707 8 7 277 300
20(7108 5 7 268 200
2017109 S 6 349 244

Table C.48: Processing Times: Test Problem No. 8 (n=20)

COMPARISONS: HEURISTIC VS HEURISTIC

Average CPU (in seconds)
n |p| a || LRA(A) | LRA(B) | ARL(A) | ARL(B)
2017101 9 9 218 385
20({ 7102 9 8 242 263
2017103 8 9 202 217
201 7] 04 3 8 268 255
201 7105 6 7 226 232
20 7 (0.6 6 6 284 263
20| 7|07 4 8 250 232
200 7108 5 8 308 257
207109 4 8 293 253

Table C.49: Processing Times: Test Problem No. 9 (n=20)

Average CPU (in seconds)
| n |p| o [TRA(A) [LRA(B) | ARL{A) [ARL(B) ||
[20] 7] 0.1 13 12 189 315
201 7|02 14 9 425 366
20 7103 15 9 335 279
20| 7 | 0.4 9 8 286 279
20 7105 5 9 280 231
07|06 6 7 258 240
20| 7 | 0.7 6 7 497 219
30 | 7 | 0.8 6 7 413 251
20| 7 | 0.9 5 8 326 250 ||

Table C.50: Processing Times: Test Problem No. 10 (n=20)

COMPARISONS: HEURISTIC VS HEURISTIC

C.2.2 Test Problems with 30 Demand Points

Average CPU (in seconds)
n |p| ¢ [LRA(A) [LRA(B) | ARL(A) | ARL(B)
307102 38 29 865 1394
30704 19 20 1884 1195
30| 7106 25 28 1082 710
3017108 19 17 689 859

Table C.51: Processing Times: Test Problem No. 1 (n=30)

Average CPU (in seconds)
n [p| e | LRA(A) | LRA(B) | ARL(A) | ARL(B)
307102 46 26 1433 1418
30]7(04 23 23 1186 960
30| 7106 15 17 1127 1067
3017108 33 27 874 747

Table C.52: Processing Times: Test Problem No. 2 (n=30)

Average CPU (in seconds)
n | p| a [LRA(A) | LRA(B) | ARL{A) | ARL(B)
30]7]02 10 27 570 1272
30| 7|04 21 19 1278 937
30| 706 17 17 1556 813
30708 15 19 2217 855

Table C.53: Processing Times: Test Problem No. 3 (n=30)

Average CPU (in seconds)
n | p| o [LRA(A) | LRA(B) [ARL(A) [ARL(B)
3017102 49 32 1471 1516
30{7]04 50 26 1742 1158
307106 15 19 1210 987
30| 70.8 18 18 1317 1041

Table C.54: Processing Times: Test Problem No. 4 (n=30)

COMPARISONS: HEURISTIC VS HEURISTIC

Average CPU (in seconds)
n | p| a | LRA(A) [LRA(B) [ARL(A) [ARL(B)
30] 702 10 26 1718 1344
0| 704 19 21 1864 1365
301 706 23 19 1777 1161
Jo| 7108 20 18 1635 1324

Table C.55: Processing Times: Test Problem No. 5 (n=30)

Average CPU (in seconds)
| n [p| a [LRA(A) [LRA(B) [ARL(A) | ARL(B)
T30 7]02 37 25 1822 909
301 7 | 0.4 39 19 1562 1012
30706 33 32 2677 1116
30] 7|08 15 18 1345 1348

Table C.56: Processing Times: Test Problem No. 6 (n=30)

Average CPU (in seconds)
n | p| a | LRA(A) JLRA(B) | ARL(A) [ARL(B)
30(|7([02 30 20 1326 1188
30| 7(04 19 25 2127 1271
30] 7106 23 19 1578 1084
3017108 22 21 1565 869

Table C.57: Processing Times: Test Problem No. 7 (n=30)

Average CPU (in seconds)
n |p| a || LRA(A) | LRA(B) [ARL{(A) [ARL(B)
3017102 58 29 1951 1002
30| 7104 39 25 1750 1023
30 7| 0.6 50 27 1513 734
30| 7108 14 18 1230 820

Table C.58: Processing Times: Test Problem No. 8 (n=30)

203

COMPARISONS: HEURISTIC VS HEURISTIC

Average CPU (in seconds)
n | p| a || LRA(A) TLRA(B) | ARL(A) [ARL(B)
301 7102 60 29 1854 1709
301 7104 40 23 1352 1153
30| 710.6 29 23 1217 922
3017108 31 27 1536 795

Table C.59: Processing Times: Test Problem No. 9 (n=30)

i b Average CPU (in seconds) |
n |p| a || LRA(A) [LRA(B) [ARL{A) | ARL(B)
30] 7102 39 %7 1954 1616
30704 11 18 1384 909
307106 16 26 772 1042
3017108 15 26 1087 809

Table C.60: Processing Times: Test Problem No. 10 (n=30)

C.2.3 Test Problems with 40 Demand Points

Average CPU (in seconds)
n | p| a [LRA(A) [LRA(B) | ARL{A) [ARL(B)
401502 23 33 1347 1042
40 |5 04 18 29 755 515
40 [5| 0.6 18 27 424 380
405108 18 25 355 289

Table C.61: Processing Times: Test Problem No. 1 (n=40)

Average CPU (in seconds)
n |p| a | LRA(A) TLRA(B) [ARL(A) | ARL(B)
40 15[02 26 35 679 883
4015]04 26 30 584 545
40| 5] 0.6 28 39 593 522
40 | 5[0.8 27 45 651 469

Table C.62: Processing Times: Test Problem No. 2 (n=40)

COMPARISONS: HEURISTIC VS HEURISTIC 205

Average CPU (in seconds)

n | p| a | LRA(A) TLRA(B) [ARL(A) | ARL(B)
401502 22 35 1662 986
40 1] 5104 25 34 1760 686
401506 10 25 1885 1007
401508 14 22 1270 863

Table C.63: Processing Times: Test Problem No. 3 (n=40)

Average CPU (in seconds)
n |p| o | LRA(A) [LRA(B) [ARL(A) | ARL(B)
4015102 29 41 1279 815
40504 29 37 1152 693
40151 0.6 21 35 1315 639
405108 23 37 586 678

Table C.64: Processing Times: Test Problem No. 4 (n=40)

Average CPU (in seconds)
n | p| a | LRA(A) [LRA(B) [ARL(A) [ARL(B)
10]5]02 32 37 639 725
0504 21 25 890 375
4015706 13 23 464 413
4015108 12 24 506 322

Table C.65: Processing Times: Test Problem No. 5 (n=40)

Average CPU (in seconds)
n | p| a | LRA{A) [LRA(B) | ARL(A) [ARL(B)
4015102 26 48 896 780
401504 27 45 1213 643
405106 23 39 1314 470
401 510.8 24 50 651 381

Table C.66: Processing Times: Test Problem No. 6 (n=40)

COMPARISONS: HEURISTIC VS HEURISTIC

Average CPU (in seconds)
n | p| a [LRA(A) TLRA(B) [ARL{A) | ARL(B)
40 1 5] 0.2 26 41 604 689
40 | 5 | 0.4 28 37 489 512
40 ({5} 0.6 22 37 825 398
40 1 5108 29 56 251 311

Table C.67: Processing Times: Test Problem No. 7 (n=40)

Average CPU (in seconds)
n |p| a | LRA(A) [LRA(B) | ARL(A) | ARL(B)
4015102 27 38 1795 621
405104 25 25 962 422
401 5] 0.6 21 25 864 581
4051038 20 23 1642 757

Table C.68: Processing Times: Test Problem No. 8 (n=40)

Average CPU (in seconds)
n | p| a [LRA(A) [LRA(B) | ARL(A) [ARL(B)
401(15]02 30 39 623 709
4015 [04 21 33 584 454
401506 14 33 1155 467
40}15]08 13 32 811 420

Table C.69: Processing Times: Test Problem No. 9 (n=40)

Average CPU (in seconds
n |p| a | LRA(A) TLRA(B) | ARL(A) | ARL(B
40 (5] 0.2 26 36 772 936
40| 5]04 18 23 694 566
401 5] 0.6 23 28 1499 503
40| 5] 0.8 17 22 1113 539

Table C.70: Processing Times: Test Problem No. 10 (n=40)

COMPARISONS: HEURISTIC VS HEURISTIC

C.2.4 Test Problems with 50 Demand Points

Average CPU (in seconds)
n |pj a || LRA(A) | LRA(B) | ARL(A) | ARL(B)
50 5] 0.2 12 24 3373 1530
50| 5|04 43 31 1737 944
50| 5106 36 19 488 761
505038 45 16 2201 1337

Table C.71: Processing Times: Test Problem No. 1 (n=50)

Average CPU (in seconds)
nip| a || LRA(A) | LRA(B) | ARL(A) | ARL(B)
50| 51]02 62 24 445 2383
301504 60 17 3096 1047
501506 47 16 1839 1065
50{5|08 40 17 2240 1247

Table C.72: Processing Times: Test Problem No. 2 (n=50)

Average CPU (in seconds)
n | p| o [[LRA{A) [LRA(B) | ARL{A) | ARL(B)
50 5] 0.2 52 31 2797 1634
50504 63 23 1128 768
5051 0.6 50 24 2388 1006
50 5108 19 24 1284 741

Table C.73: Processing Times: Test Problem No. 3 (n=>50)

Average CPU (in seconds)
n | p| o [LRATA) JLRA(B) [ARL(A) | ARL(B) ||
50 5] 0.2 39 32 415 1992
505 |04 16 28 3277 1443
50| 5] 0.6 40 23 2167 979 |
50 | 5| 0.8 11 17 2566 1176 ||

Table C.74: Processing Times: Test Problem No. 4 (n=>50)

COMPARISONS: HEURISTIC VS HEURISTIC

Average CPU (in seconds)
n |p| a [ERA(A) TLRA(B) | ARL{A) [ARL({S) |
30502 58 24 3202 1862
501504 58 21 4046 1649
50} 5 0.6 53 23 821 950
505 0.8 28 16 1162 875

Table C.75: Processing Times: Test Problem No. 5 (n=50)

Average CPU (in seconds)
n|p| a || LRA(A) [LRA(B) [ARL(A) [ARL(B)
50 | 5| 0.2 62 30 2043 2031
50 | 5] 0.4 53 22 35 2775
30| 506 36 24 3590 1554
50| 5]0.8 28 24 3890 1313

Table C.76: Processing Times: Test Problem No. 6 (n=50)

Average CPU (in seconds)
n|p| a || LRA(A) | LRA(B) | ARL(A) | ARL(B)
5015102 42 21 1817 1109
3015]04 43 24 1594 962
5015106 29 24 2698 1093
530|508 25 29 1489 933

Table C.77: Processing Times: Test Problem No. 7 (n=50)

Average CPU (in seconds)
n | p| o [LRATA) [LRA(B) [ARL{A) | ARL(B)
501502 34 24 3315 2139
50504 14 24 1463 1792
50506 35 2% 963 878
50 | 5| 0.8 33 27 2928 683

Table C.78: Processing Times: Test Problem No. 8 (n=50)

COMPARISONS: HEURISTIC VS HEURISTIC

Average CPU (in seconds)

n | p| o« | LRA(A) [LRA(B) | ARL(A) | ARL(B)
[30]57]0.2 49 27 3032 1498
5015104 45 25 3422 1397

30 | 5106 45 21 3586 1280

505108 43 16 1078 1108

Table C.79: Processing Times: Test Problem No. 9 (n=50)

Average CPU (in seconds)
n | p| o [LRA(A) [LRA(B) [ARL(A) [ARL(B) |
3015102 43 25 3981 2838
5015104 40 17 2572 1512
50| 510.6 27 16 3071 1188
50 15 :0.8 28 16 2102 1104

Table C.80: Processing Times: Test Problem No. 10 (n=50)

Appendix D

Comparisons for Each Test
Problem: LRA(A) vs LRA(B)

In this appendix. we compare the two LRA type heuristics for even larger problem
instances. For smaller instances, in the previous appendices. LRA(A) seemed to find
better results than LRA(B) more often. However, the results in this appendix show
that LRA(B) performs better when the problem size increases. Especially when the

value of p increases with respect to n. LRA(B) begins to perform more favorably.

D.1 Test Problems with 30 Demand Points

Best Sol. : % Difference

CPU (in seconds)

n|ip|a Found [LRA(A) [LRA(B) [LRA(A) [LRA(B)
30]10]02 12587 .4 0.00 0.00 160 102
30| 10|04 17620.8 4.16 0.00 16 69
3010 | 0.6 21757.8 0.19 0.00 59 74 |
3010 | 0.8 24979.0 0.75 0.00 45 63

Table D.1: Test Problem No. 1 (n=30)

210

COMPARISONS: LRA(A) VS LRA(B)

Best Sol. % Difference CPU (in seconds)
n{p| e Found | LRA(A) | LRA(B) || LRA(A) [LRA(B
30110102 8765.8 1.26 0.00 115 75
30 |10 [04 12612.2 1.66 0.00 55 73 ||
30 | 10 [0.6 15181.6 0.92 0.00 45 67 |
301 10 0.8 17189.0 0.00 0.00 88 97

Table D.2: Test Problem No. 2 (n=30)

Best Sol. || % Difference CPU (in seconds)
n|/p| a Found || LRA(A) TLRA(B) | LRA(A) [LRA(B)
30 10 0.2 10879.8 0.27 0.00 98 81
30 10|04 14971.4 0.32 0.00 53 69
30|10} 0.6 17948.4 0.00 0.00 42 62
30110038 20384.2 0.00 0.00 42 62

Table D.3: Test Problem No. 3 (n=30)

Best Sol. | % Difference CPU (in seconds)
a|ple Found [TRA(A) | LRA(B) || LRA(A) | LRA(B)
30| 10 0.2 8529.8 0.00 0.00 217 104
30| 10| 0.4 12345.6 0.00 0.00 136 94
301 10| 0.6 15800.0 0.00 0.00 52 64
30|10 0.8 18349.2 0.02 0.00 48 63

Table D.4: Test Problem No. 4 (n=30)

Best Sol. % Difference CPU (in seconds)
n|p| a Found || LRA(A) LRA(B) || LRA(A) | LRA(B)
30710]0.2 12502.2 0.00 1.57 121 79 |
30110 04 17010.8 1.24 0.00 47 69
30{10] 0.6 19920.6 0.29 0.00 64 63
30{10)08 22453.4 0.00 0.00 60 64

Table D.5: Test Problem No. 5 (n=30)

COMPARISONS: LRA(A) VS LRA(B)

n
w

Best Scl. | % Difference CPU (in seconds)
n|ip,|a Found || LRA(A) TLRA(B) || LRA(A) | LRA(B)
30 |10 0.2 13965.6 0.05 0.00 150 87
30| 10| 0.4 20216.6 0.00 0.58 87 71
3010} 0.6 26751.4 0.11 0.00 53 72
30101 0.8 31215.6 0.00 0.00 39 63

Table D.6: Test Problem No. 6 (n=30)

Best Sol. || % Difference CPU (in seconds)
n|lpi| a Found || LRA(A) | LRA(B) || LRA(A) | LRA(B)
3011002 9785.8 0.00 0.00 57 72
301004 12528.4 1.22 0.00 51 82
30101 0.6 15071.4 0.00 0.00 51 76
30110 0.8 16765.2 0.22 0.00 55 79

Table D.T: Test Problem No. 7 (n=30)

Best Sol. | % Difference CPU (in seconds)
n{pl a Found || LRA(A) | LRA(B) || LRA(A) | LRA(B)
301101 0.2 9711.2 0.00 2.05 122 83
301004 13677.0 0.07 0.00 86 75
3010 Q.6 16868.8 0.00 0.00 118 82
30101 0.8 19422.6 0.00 0.00 42 62

Table D.8: Test Problem No. 8 (n=30)

Best Sol. || » Difference CPU (in seconds)
nfp|a Found [TRA(A) | LRA(B) | LRA(A) | LRA(B)
3011002 10665.6 0.00 0.00 |1 163 82 |
3011004 14022.0 0.00 0.00 93 74
30|10| 0.6 16100.0 0.00 0.00 83 96
301101 0.8 18061.0 0.00 0.00 78 83

Table D.9: Test Problem No. 9 (n=30)

COMPARISONS: LRA(A) VS LRA(B)

D.2

Best Sol. o Difference CPU (in seconds)
n|pl a Found || LRA(A) | LRA(B) || LRA(A) | LRA(B)
30 | 10 | 0.2 13602.4 0.14 0.00 96 71 |
30 | 10 | 0.4 17111.2 0.00 0.00 37 63
30/1010.6 19369.6 0.00 0.00 39 90
30{10] 0.8 21543.0 0.00 0.00 44 89

Table D.10: Test Problem No. 10 (n=30)

Test Problems with 40 Demand Points

Best Sol. % Difference CPU (in seconds)
n|pl a Found || LRA(A) | LRA(B) || LRA(A) [LRA(B)
40 7 102 9853.8 0.00 0.1 80 132
401 7 {104 13572.0 0.00 0.14 95 143
401 7 | 0.6 16658.0 0.00 0.00 45 78
40 7 10.8 19046.6 0.64 0.00 45 78
40) 10| 0.2 9482.6 0.68 0.00 314 443
4011004 13520.4 0.00 0.01 317 349
40110 | 0.6 16658 0.00 0.00 94 289
40 | 10 | 0.8 19046.6 0.64 0.00 110 313
40 1271 0.2 9482.6 1.76 0.00 504 840
4012 0.4 13520.4 0.00 0.00 495 942
40121 0.6 16648.0 0.06 0.00 201 652
40121 0.8 19046.6 0.64 0.00 206 611

Table D.11: Test Problem No. 1 (n=40)

COMPARISONS: LRA(A) VS LRA(B)

Best Sol. % Difference CPU (in seconds)
n|pla Found |[TRA(A) | LRA(B) | LRA(A) | LRA(B)
401 7] 0.2 14422.2 0.65 0.00 126 128
40 | 7] 04 18661.6 0.00 0.00 103 99
401 7 | 0.6 21524.0 0.00 0.00 69 39
401] 7 108 23834.6 0.00 0.00 71 81
40 | 10 | 0.2 13755.8 1.57 0.00 488 483
40110104 18654.4 0.00 0.00 317 390
40 | 10 ; 0.6 21524.0 0.00 0.00 202 460
40110 | 0.8 23834.6 0.00 0.00 177 397
40 | 121 0.2 13606.6 0.37 0.00 658 733
40 1 12 1 0.4 18654.4 0.00 0.00 488 720
4012] 0.6 21524.0 0.00 0.00 304 718
40 (12] 0.8 23834.6 0.00 0.00 296 577

Table D.12: Test Problem No. 2 (n=40)

Best Sol. | % Difference CPU (in seconds)
nlpla Found |[TRA({A) | LRA(B) | LRA(A) | LRA(B)
10| 7 {02 12715.0 1.14 0.00 84 118
40] 7 104 16179.8 0.00 0.00 80 93
40| 7 [0.6 18564.6 0.00 0.00 32 77
40 7 1038 i 20532.2 0.00 0.00 35 7?_
01002 124530 3.67 0.00 200 317 |
401 10| 04 16145.0 0.13 0.00 233 315
40110106 18564.6 0.00 0.05 86 283
40 10| 0.8 20532.2 0.00 0.00 85 280
40| 12 1 0.2 12453.0 2.82 0.00 286 569
40| 12104 16136.8 0.18 0.00 345 609
4012106 18564.6 0.00 0.00 157 544
40| 12 0.8 20532.2 0.00 0.00 135 546

Table D.13: Test Problem No. 3 (n=40)

COMPARISONS: LRA(A) VS LRA(B)

Best Sol. | % Difference CPU (in seconds)
n|p| a Found | LRA(A) | LRA(B) || LRA(A) | LRA(B)
401 7 1 0.2 13491.2 0.00 0.00 109 129
401 7 | 0.4 17963.6 0.00 0.46 123 117
401 7 | 06 21153.2 0.00 0.00 51 81
40 7 0.8 23889.4 0.00 0.00 95 76

Il 401 10[0.2 13271.6 0.00 0.00 307 336

401 1017 0.4 17954.0 0.05 0.00 210 306
40| 10| 0.6 21153.2 0.00 0.00 136 333
40} 10| 0.8 23889.4 0.00 0.00 138 285
40712702 13271.6 0.00 0.00 513 673 |
401204 17954.0 0.05 0.00 292 556
401 12] 0.6 21153.2 0.00 0.00 226 555
40112 | 0.8 23889.4 0.00 0.00 258 555

Table D.14: Test Problem No. 4 (n=40)

Best Sol. | % Difference CPU (in seconds)
nl|p| a Found || LRA(A) | LRA(B) || LRA(A) | LRA(B)
40 7 102 14661.2 0.62 0.00 98 155
40| 7 104 21052.4 0.00 0.00 101 133
40] 7 106 26102.8 0.00 0.00 36 103
401 7 |08 30611.4 0.00 0.00 30 77
40 | 10} 0.2 14366.8 0.00 0.22 441 321
40 | 10| 04 20957.4 0.00 0.00 214 444
40| 10] 0.6 26102.8 0.00 0.00 100 381
40] 10| 0.8 30611.4 0.00 0.00 88 | 299
40112] 0.2 14350.6 0.00 0.00 725 763
4012104 20957.4 0.00 0.00 41 885
40112] 0.6 26102.8 0.00 0.00 158 684
40121 0.8 30611.4 0.00 0.00 157 545

Table D.15: Test Problem No. 5 (n=40)

COMPARISONS: LRA(A) VS LRA(B)

Best Sol. || % Difference CPU (in seconds)
n|p|a Found [[TRA(A) | LRA(B) | LRA(A) | LRA(B)
0] 7]02 12608.2 0.00 0.00 109 142
401 7 [04 16032.6 0.00 0.02 71 118
401 7 106 18791.4 0.00 0.00 61 117
401 7 108 21537.0 0.00 0.00 60 112
40]10]02 12271.8 0.00 0.00 111 729
401101 04 16032.6 0.00 0.00 189 394
40110106 18791 .4 0.00 0.00 143 419
401 10| 0.8 21537.0 0.00 0.00 163 428
40112} 0.2 12271.8 0.00 0.00 591 1069
40 [12| 04 15916.2 0.73 0.00 290 698
40} 12| 0.6 18791.4 0.00 0.00 243 781
40 | 12| 0.8 21498.2 0.18 0.00 248 807

Table D.16: Test Problem No. 6 (n=40)

Best Sol. || % Difference CPU (in seconds)
n|p|a Found [TRA(A) [LRA(B) || LRA(A) | LRA(B)
401 7102 15835.8 0.00 0.87 120 146
10 7 |04 22775.0 0.00 0.08 100 135
401 7 1 0.6 28840.6 0.71 0.00 76 151
4011 7 | 0.8 ﬂ 34709.4 0.00 0.00 109 141
40 [10 0.2 15329.8 0.00 0.00 459 428
40110104 22770.4 0.1 0.00 253 409
40 {10 | 0.6 28977.0 0.24 0.00 199 524
401101] 0.8 34670.2 0.00 0.00 369 686__
4011271 0.2 15271.4 0.38 0.00 703 597 |
4012104 22770.4 0.1 0.00 400 819
40 | 12} 0.6 28840.6 0.00 0.57 270 835
40 {12] 0.8 34670.2 0.00 0.00 588 1426

Table D.17: Test Problem No. 7 (n=40)

COMPARISONS: LRA(A) VS LRA(B)

Best Sol. || % Difference CPU (in seconds)
nip| «a Found [TRA(A) | LRA(B) | LRA(A) | LRA(B)
40 7] 0.2 13099.0 0.00 0.23 113 142
0] 7|04 16177.0 1.34 0.00 53 93
40 7 |06 18425.0 0.00 0.00 16 81
40 7 |08 20276.0 0.00 0.00 47 80
4011002 12521.6 0.00 0.07 579 159
101 10104 16177.0 1.34 0.00 159 597
10| 10 | 0.6 18425.0 0.00 0.00 132 381
101003 20276.0 0.00 0.00 139 281
011202 12411.2 0.00 0.00 793 676
101204 16394.2 0.00 0.00 257 606
101206 18425.0 0.00 0.00 212 611
1012038 20276.0 0.00 0.00 776 552

Table D.18: Test Problem No. 8 (n=40)

Best Sol. 2 Difference CPU (in seconds)
n|ipj|a Found | LRA(A) | LRA(B) || LRA(A) | LRA(B)
40] 7 102 11390.8 0.00 1.35 131 138
30 7 |04 15652.4 0.00 0.11 72 107 |
0] 7 |06 18470.4 0.00 0.00 34 114
10| 7 |08 20515.0 0.00 0.00 34 118
40]10]02 11005.2 247 0.00 309 466
40110 | 04 15607.0 0.29 0.00 169 315
30| 10 | 0.6 18466.8 0.02 0.00 90 376
30| 10 | 0.8 20515.0 0.00 0.00 96 367
101202 11005.2 5.56 0.00 512 082
10| 12|04 15607.0 0.29 0.00 306 787
10 | 12| 0.6 18466.8 0.02 0.00 140 725
30 | 12| 0.8 20515.0 0.00 0.00 160 784

Table D.19: Test Problem No. 9 (n=40)

COMPARISONS: LRA(A) VS LRA(B)

D.3

Best Sol. | % Difference CPU (in seconds)
nipi|a Found || LRA(A) | LRA(B) || LRA(A) | LRA(B)
40| 7] 0.2 11339.4 0.00 0.00 99 154
407 7 104 15317.6 4.13 0.00 62 82
40| 7 1 0.6 18833.4 0.00 0.00 57 79
401 7 |1 0.8 22102.2 0.00 0.00 52 93
401101 0.2 10765.2 3.21 0.00 588 416
40110 | 04 15307.4 4.2 0.00 168 289
40 [10 | 0.6 18833.4 0.00 0.00 141 288
401101 0.8 22102.2 0.00 0.00 146 315
40 (121 0.2 11106.8 0.00 0.00 1110 797
40 12|04 15307 .4 4.2 0.00 282 537
40121 0.6 18833.4 0.00 0.00 227 667

|40 {12 1 0.8 22102.2 0.00 0.00 208 609

Table D.20: Test Problem No. 10 (n=40)

Test Problems with 50 Demand Points

Best Sol. || % Difference CPU (in seconds)
n|p|a Found [TRA({A) | LRA(B) | LRA(A) | LRA(B)
30 | 7 102 16451.0 0.00 0.00 136 103
50| 7 | 04 21408.6 0.00 0.00 190 107 |
301 7106 25086.2 0.00 0.00 129 61
30| 7 10.8 27768.6 0.00 0.00 107 55
50 10§ 0.2 15861.2 0.00 0.52 990 425
501101} 0.4 21275.8 0.39 0.00 504 263
50 | 10| 0.6 25086.2 0.00 0.00 301 263
50 10| 0.8 27768.6 il 0.00 0.00 290 211
501121 0.2 15839.8 T 0.00 0.05 1680 581
30 | 121 0.4 21313.8 0.00 0.21 827 518
50112 | 0.6 25086.2 0.00 0.31 478 433
50 |12] 0.8 27768.6 0.00 0.00 Il 455 429
50 | 15 0.2 15618.0 1.42 0.00 [3065 1451
50 { 15| 0.4 21323.0 0.17 0.00 1423 1250
50| 15| 0.6 25086.2 0.00 0.31 823 1016
50 |15]0.8 27768.6 0.00 0.00 866 921

Table D.21: Test Problem No. 1 (n=50)

COMPARISONS: LRA(A) VS LRA(B)

Best Sol. || % Difference CPU (in seconds)
ni{ip| a Found || LRA(A) | LRA(B) || LRA(A) | LRA(B)
50 7]02 17757.2 0.00 0.59 248 97
50 7 | 04 22045.4 0.00 0.13 203 115
50| 7 |06 25636.6 0.00 0.00 124 56
50 7 |08 28553.2 0.00 0.00 102 56
50 10] 02 17491.4 0.00 1.05 847 307
5010 | 0.4 31986.8 0.00 0.00 579 309
501006 35436.0 0.00 0.83 354 297 |
750110103 58553.2 0.00 0.00 37 214
5012102 17491.4 0.00 0.00 1185 498
50 12|04 21986.8 0.00 0.00 880 571
50 | 12 | 0.6 25426.0 0.83 0.00 478 433
50 | 12 | 0.8 38553.2 0.00 0.00 450 313
50]15]0.2 17366.6 0.00 1.69 2164 989
50 | 15 | 0.4 21902.2 0.39 0.00 1704 1171
50 | 15| 0.6 25426.0 0.00 0.00 1031 1073
50| 15 | 0.8 28553.2 0.00 0.00 798 928

Table D.22: Test Problem No. 2 (n=>50)

Best Sol. % Difference CPU (in seconds)
n|ipl| a Found || LRA(A) | LRA(B) || LRA(A) | LRA(B)
50 7] 0.2 11928.6 0.00 0.00 262 ~ 97
50 7 |04 15716.0 0.00 0.00 250 81
50 7 106 18463.6 0.00 0.00 133 78 |
50 7 | 08 20554.0 0.00 0.00 134 56
50110] 0.2 11617.4 0.78 0.00 946 330
50 | 10 | 0.4 15580.8 1.05 0.00 611 213
50 | 10 | 0.6 18463.6 0.00 0.00 396 263
50] 10 | 0.8 20554.0 0.00 0.00 335 212
50 [121 0.2 11708.4 0.00 0.00 1281 552
50 | 12 | 0.4 15580.8 0.00 1.05 1132 421
50| 12 | 0.6 18463.6 0.00 0.00 653 555
5012 | 0.8 20554.0 0.00 0.00 620 414
50] 15 | 0.2 11701.0 0.06 0.00 2261 1167
50 | 15] 0.4 15580.8 0.00 0.45 1818 1076
50 | 15 | 0.6 18463.6 0.00 0.00 1199 1254
50 | 15 | 0.8 20554.0 0.00 0.00 1028 936

Table D.23: Test Problem No. 3 (n=50)

219

COMPARISONS: LRA(A) VS LRA(B)

Best Sol. s Difference CPU (in seconds)
n{ip!| a Found || LRA(A) | LRA(B) || LRA(A) | LRA(B)
50] 7]0.2 20436.8 0.00 0.49 200 91
50| 7 | 04 95548.0 0.00 0.06 145 75
50| 7 | 0.6 29252.0 0.00 0.02 152 81
50| 7 | 0.8 32794.6 0.26 0.00 123 76
50 | 10 | 0.2 19680.4 0.00 0.34 804 339
50 | 10 | 0.4 35470.4 0.3 0.00 405 253
50 | 10 | 0.6 29252.0 0.00 0.74 410 249
M50 710 | 0.8 357920 0.00 0.00 350 16
50] 12102 19680.4 0.00 1.29 1336 623
50] 12 | 0.4 25470.4 0.3 0.00 693 513
50 | 12 | 0.6 29252.0 0.00 0.00 601 429
50 | 12 | 0.8 32792.0 0.00 0.00 616 407
50 15] 0.2 19526.8 0.79 0.00 2008 1315
50 | 15 | 0.4 25470.4 0.3 0.00 1301 1352
50 | 15 | 0.6 29252.0 0.00 0.00 1203 1061
50| 15 | 0.8 32792.0 0.00 0.00 1080 962

Table D.24: Test Problem No. 4 (n=50)

Best Sol. % Difference CPU (in seconds)
n|pl a Found LLRA(A) [LRATB) | LRA(A) | LRA(B)
50] 7 102 13216.4 || 1.28 0.00 223 109
50| 7 |04 16668.0 0.00 0.00 192 91
501 7 | 0.6 19549.6 0.33 0.00 145 56
50| 7 | 0.8 21930.4 0.00 0.00 75 56
50] 10 | 0.2 12921.2 1.08 0.00 733 371
50| 10 | 0.4 16628.4 0.47 0.00 439 268
50 | 10 | 0.6 19530.4 0.1 0.00 367 222
50 | 10 | 0.8 21858.6 | 0.00 0.00 220 207 |
50] 12 | 0.2 12810.8 1.01 0.00 1225 588
50 | 12 | 0.4 16628.4 0.00 0.00 842 475 |
50 | 12 | 0.6 19530.4 0.00 0.00 619 452
50 12| 0.8 21826.6 0.15 0.00 122 412
50] 15 | 0.2 129124 1.1l 0.00 2004 1121
50 | 15 | 0.4 16587.0 0.72 0.00 1503 1163
50 | 15 | 0.6 19469.2 0.41 0.00 1078 981
50 | 15 | 0.8 21826.6 0.15 0.00 841 930

Table D.25: Test Problem No. 5 (rn=50)

COMPARISONS: LRA(A) VS LRA(B)

Best Sol. % Difference CPU (in seconds)
n|pl| a Found || LRA(A) TLRA(B) || LRA(A) | LRA(B)
50] 7 |02 17148.4 0.00 0.31 268 91
50 7 |04 23403.8 0.00 0.00 197 73
50| 7 0.6 28432.4 0.00 0.18 131 72
50| 7 |08 31712.6 0.00 0.00 79 55
50 [10 | 0.2 16833.2 1.25 0.00 676 263
50 | 10 | 0.4 23306.0 0.00 0.00 581 237
50 | 10 [0.6 28407.2 0.00 0.09 42 304

150110108 317126 0.00 0.00 209 209
50 [12] 0.2 16833.2 1.25 0.00 1090 520
50 12|04 23306.0 0.00 0.00 953 500
50] 12 [0.6 28407.2 0.00 0.09 705 600
50 | 121 0.8 31712.6 0.00 0.00 342 412
50 [15] 0.2 16833.2 1.25 0.00 1795 987
50 | 15 | 0.4 23306.0 0.00 0.00 1915 1078
50 | 15 | 0.6 28407.2 0.00 0.09 1210 1114
50 | 15 | 0.8 31712.6 0.00 0.00 663 924

Table D.26: Test Problem No. 6 (n=50)

Best Sol. | % Difference CPU (in seconds)
n|p|a Found [TRA(A) | LRA(B) | LRA(A) | LRA(B)
50] 7]0.2 11041.8 0.00 0.00 223 96
50| 7 | 0.4 14232.6 0.00 0.35 140 111
50 7 | 0.6 17006.0 1 0.00 81 94
50| 7 | 0.8 19604.6 0.00 0.05 69 72
50 [10 [0.2 10794.2 0.5 0.00 679 305
501 10 [0.4 14092.8 0.61 0.00 485 201
50 [10 | 0.6 17026.4 0.00 0.01 202 249
501 10 | 0.8 19598.2 0.00 0.00 196 364
5012702 10772.4 0.71 0.00 1206 579 |
50| 12|04 14084.0 0.67 0.00 681 677 ||
50 12106 17028.4 0.86 0.00 319 470
50112 0.8 19598.2 0.2 0.00 310 614
50 [15] 0.2 10722.2 1.38 0.00 2122 1214
501 15[0.4 14084.0 0.67 0.00 1127 1586
50 15 0.6 17026.4 0.00 0.01 803 972
501 151 0.8 19598.2 0.00 0.00 642 1118

Table D.27: Test Problem No. 7 (n=50)

COMPARISONS: LRA(A) VS LRA(B)

Best Sol. | 70 Difference CPU (in seconds)
nlp|a Found || LRA(A) | LRA(B) | LRA(A) | LRA(B)
301 7 (0.2 15892.0 0.00 0.29 184 92
50| 7 | 04 20100.2 0.00 0.29 151 104
50| 7 |06 23409.0 0.04 0.00 146 125
50 7 1108 26111.8 0.00 0.00 134 125
50 {101} 0.2 15426.0 0.48 0.00 684 275
501004 19956.2 0.12 0.00 336 304
530 | 10§ 0.6 23330.2 0.00 0.00 480 426

501008 26103.4 0.00 0.00 377 396
301 12]02] 152876 0.01 0.00 1067 a1l
50| 12|04 19956.2 0.12 0.00 672 835
50112 0.6 23330.2 0.00 0.00 860 728
301208 26103.4 0.00 0.00 624 725
501502 15287.6 0.91 0.00 2065 932
501504 19956.2 0.12 0.00 1541 1494
501151 0.6 23330.2 0.00 0.00 1469 1825
501 15| 0.8 26103.4 0.00 0.00 1158 1592

Table D.28: Test Problem No. 8 (n=50)

Best Sol. || % Difference CPU (in seconds)
alp|a Found |[TRA(A) | LRA(B) | LRA(A) | LRA(B)
501 7102 15802.0 0.00 0.18 236 92
501 7 |04 20865.2 0.28 0.00 154 83
50 7 | 0.6 25068.6 0.00 0.00 109 65
50| 7108 28816.2 0.00 0.00 101 61
50 | 10| 0.2 15423.6 1.45 0.00 572 316
50110 0.4 20820.8 0.49 0.00 377 310
50 { 10 | 0.6 25068.6 0.00 0.00 326 252
50 | 10 | 0.8 28816.2 0.00 0.00 259 213
5012102 15275.8 2.43 0.00 860 642
50 12|04 20891.6 0.00 0.15 599 544
50 {12 0.6 25068.6 0.00 0.00 487 455
50|12 0.8 28816.2 0.00 0.00 446 414
50 | 15} 0.2 15287.6 0.89 0.00 1440 1264
50| 15 | 0.4 20820.8 0.34 0.00 1042 1172
50 | 15 | 0.6 25068.6 0.00 0.00 891 979
501151 0.8 28816.2 0.00 0.00 871 934

Table D.29: Test Problem No. 9 (n=>50)

o
V]

COMPARISONS: LRA(A) VS LRA(B)

Best Sol. % Difference CPU (in seconds)
n|p| a Found || LRA(A) | LRA(B) [| LRA{A) [LRA(B)
30| 7 }0.2 16754.6 0.00 0.00 193 79
50| 7 |1 04 22870.4 0.44 0.00 88 65
501 7 06 27861.0 0.00 0.17 63 55
50| 7 (0.8 32234.8 0.00 0.00 61 54
5010} 0.2 16376.2 0.84 0.00 697 265
50| 10| 04 22870.4 0.00 0.00 263 221
50101 0.6 27846.0 0.22 0.00 182 209
50110 0.8 32234.8 0.00 0.00 178 212
50 12 02| 16376.2 0.84 0.00 987 161
50 | 12 | 04 22870.4 0.00 0.00 463 437 |
50 | 121 0.6 27908.4 0.00 0.00 324 411
50 | 121 0.8 32234.8 || 0.00 0.00 313 411 |
50 | 15| 0.2 16376.2 2.11 0.00 1643 1077 |
50 [15] 04 22870.4 0.00 0.00 922 932
50 [15} 0.6 27846.0 0.00 0.00 654 922
50 | 15 | 0.8 32234.8 0.00 0.00 579 929

Table D.30: Test Problem No. 10 (n=50)

Bibliography

Aarst, E. H. L. and J. Korst (1989a). Simulated Annealing and Boltzman Machines:
A Stochastic Approach to Combinatorial Optimization and Neural Computing.

Chichester: John Wiley & Sons.

Aarst. E. H. L. and J. Korst (1989b). Boltzman machines for traveling salesman

problems. Furopean Journal of Operational Research 39, 79-95.

Afrati. F.. S. Cosmadakis, C. Papadimitriou, G. Papageorgiou, and
N. Papakonstantinou (1986). The complexity of the traveling repairman

problem. Informatique Th'eorique et Applications 20, 79-87.

Arthur. J. L. and J. O. Frendeway (1985). A computational study of tour

construction procedures for the traveling salesman problem. Research Report,

Oregon State University, Corvallis.

Balas. E. and M. W. Padberg (1976). Set partitioning: A survey. SIAM Review 18,
710-760.

Balas, E. and P. Toth (1985). Branch and bound methods. In E. L. Lawler, J. K.
Lenstra, A. H. G. R. Kan, and D. B. Shmoys (Eds.), The Traveling Salesman
Problem, pp. 361-401. Chichester: John Wiley & Sons.

Balinski, M. L. (1965). Integer programming: Methods, uses, computation.

224

BIBLIOGRAPHY

Management Science 12, 253-313.

Balinski. M. L. and P. Wolfe (1963). On benders decomposition and a plant
location problem. Technical report, Working Paper ARO-27. Mathematica

Inc..Princeton.

Bellmore. M. and J. C. Malone (1971). Pathology of traveling salesman subtour-

elimination algorithms. Operations Research 19, 278-307.

Bentley, J. L. (1992). Fast algorithms for geometric traveling salesman problems.

ORSA Journal on Computing 4, 387-411.

Bianco. L.. A. Mingozzi. and S. Ricciardelli (1993). The traveling salesman problem

with cumulative costs. Networks 11, 145-164.

Biggs. N. L., E. K. Lioyd. and R. J. Wilson (1976). Graph Theory. Oxford:

Clarendon Press.

Bilde. O. and J. Krarup (1977). Sharp lower bounds and efficient algorithms for

the simple plant location problem. Annals of Discrete Mathematics 1, 79-97.

Blum, A., C. Chalasani. D. Coppersmith, W. Pulleyblank, P. Raghavan. and
M. Sudan (1994). The minimum latency problem. In Proc. 26th ACM
Symposium on the Theory of Computing, pp. 163-171.

Boyd, S. C. and W. H. Cunningham (1991). Small traveling salesman polytopes.
Mathematics of Operations Research 16, 259-271.

Boyd, S. C. and W. R. Pulleyblank (1990). Optimizing over the subtour polytope

of the traveling salesman problem. Mathematical Programming 49, 163-188.

BIBLIOGRAPHY 226

Brandeau, M. S. and S. S. Chiu (1989). Overview of representative problems in

location research. Management Science 35, 645-674.

Carpaneto, G. and P. Toth (1980). Some new branching and bounding criteria for

the asymmetric travelling salesman problem. Management Science 26, 736-743.

Cerny. V. (1985). A thermodynamical approach to the traveling salesman
problem: An efficient simulation algorithm. Journal of Optimization Theory

and Applications 45. 233-254.

Chhajed. D.. R. Francis. and T. Lowe (1993). Contributions of operations research

to location science. Location Science 1. 263—287.

Christof, T., M. Jinger, and G. Reinelt (1991). A complete description of the
traveling salesman polytope on 8 nodes. Operations Research Letters 10, 497~

500.

Christofides. N. (1970). The shortest Hamiltonian chain of a graph. SIAM Journal
on Applied Mathematics 19, 689-696.

Christofides. N. (1976). Worst case analysis of a new heuristic for the traveling

salesman problem. Research Report, Carnegie Mellon University, Pittsburgh.

Christofides, N., A. Mingozzi, and P. Toth (1981). State-space relaxation

procedures for the computation of bounds to routing problems. Networks 11,

145-164.

Church, R. L, J. R. Current, and H. A. Eiselt (1993). Editorial Location Science 1,
1-3.

Clarke, G. and J. W. Wright (1964). Scheduling of vehicles from a central depot to

BIBLIOGRAPHY 227

a number of delivery points. Operations Research 12, 568-581.

Collins, N. E., R. W. Eglese, and B. L. Golden (1988). Simulated annealing:

An annotated bibliography. American Journal of Math. and Management
Science 8, 205-307.

Cornuejols, G., M. L. Fisher, and G. L. Nemhauser (1977). Location of bank

accounts to optimize float: An analytic study of exact and approximate

algorithms. Management Science 28, 789-810.

Cornuéjols, G. and G. L. Nemhauser (1978). Tight bounds for Christofides’

traveling salesman heuristic. Mathematical Programming 14. 116-121.

Cornuejols, G.. G. L. Nemhauser, and L. A. Wolsey (1990). The uncapacitated
facility location problem. In P. B. Mirchandani and R. L. Francis (Eds.).
Discrete Location Theory, pp. 119-171. New York: Wiley Interscience.

Cornuejols, G. and J. M. Thizy (1982). A primal approach to the simple plant
location problem. SIAM Journal on Algebraic and Discrete Methods 3, 504~
510.

Croes, G. A. (1958). A method for solving traveling salesman problems. Operations

Research 6. 791-812.

Crowder. H. and M. W. Padberg (1980). Solving large-scale symmetric traveling

salesman problems to optimality. Management Science 26, 495-509.

Damberg, O. and A. Migdalas (1994). Simulated annealing, local search and
Lagrangean heuristics for concentrator location in centralized communication

networks: a comparative study. Technical report, LiTH-MAT-R-1994-21.

BIBLIOGRAPHY

[
[\
oo

Linképings Universitet, Linkoping, Sweden.

Dantzig, G. B., D. R. Fulkerson, and S. M. Johnson (1954). Solution of a large
scale traveling-salesman problem. Operations Research 2, 393—410.

Daskin, M. (1995). Network and Discrete Location: Models, Algorithms and

Applications. Wiley-Interscience, New York.

Dearing, P. M., R. L. Francis, and T. J. Lowe (1976). Convex location problems

on tree networks. Operations Research 24, 628-641.

Domschke. W. and A. Drex! (1985). Location and Layout Planning Sipringer-

Verlag, Berlin.

Drezner, Z. (Ed.) (1995). Facility Location: A Survey of Applications and Methods.

Springer-Verlag.
Durbin. R. and D. Willshaw (1987). An analogue approach to the traveling

salesman problem using an elastic net method. Nature 326, 683—-691.

Efroymson. M. A. and T. L. Ray (1966). A branch and bound algorithm for plant
location. Operations Research 14, 361-368.

Erlenkotter, D. (1978). A dual based procedure for uncapacitated facility location.
Operations Research 26, 992-1009.

Euler. L. (1759). Solution d’une question curieuse qui ne paroit soumise a aucune

analyse. Mem. Acad. Sci. Berlin 15, 310-337.

Fischetti, M., G. Laporte, and S. Martello (1993). The delivery man problem and
cumulative matroids. Operations Research 41, 1055-1076.

BIBLIOGRAPHY 229

Fischetti, M. and P. Toth (1993). An efficient algorithm for the min-
sum arborescence problem on complete directed graphs. Mathematical
Programming 33, 173-197.

Flood, M. M. (1956). The traveling-salesman problem. Operations Research 4. 61—
75.

Fox. K. R.. B. Gavish, and S. C. Graves (1980). An n-constraint formulation of the

(time-dependent) traveling salesman problem. Operations Research 28, 1018-

1021.

Francis. R. L. and J. M. Goldstein (1974). Location theory: A selective

bibliography. Operations Research 22, 400-410.

Francis. R. L.. J. L. F. McGinnis. and J. A. White (1992). Facility Layout and

Location: An Analytical Approach. Prentice-Hall. Englewood Cliffs. New Jersey.

Frieze. A. M. (1979). Worst-case analysis of algorithms for traveling salesman

problems. OR Verfahren 32, 93-112.

Fritzke. B. and P. Wilke (1991). FLEXMAP - a neural network for the traveling
salesman problem with linear time and space complexity. In Proc. International

Joint Conference on Neural Networks, Singapore, pp. 929-934.

Galvao, R. D. (1980). A dual-bounded algorithm for the p-median problem.
Operations Research 28, 1112-1121.

Garey, M. R. and D. S. Johnson (1979). Computers and Intractibility: A Guide to

the Theory of N P-Completeness. San Francisco, California: Freeman.

Garfinkel, R. S. (1985). Motivation and modeling. In E. L. Lawler, J. K. Lenstra,

BIBLIOGRAPHY 230

A. H. G. R. Kan, and D. B. Shmoys (Eds.), The Traveling Salesman Problem.
Chichester: John Wiley & Sons.

Garfinkel, R. S., A. W. Neebe, and M. R. Rao (1974). An algorithm for the m-

median plant location problem. Transportation Science 8, 217-236.

Gavish. B. and K. Srikanth (1986). An optimal method for large-scale muitiple

traveling salesman problem. Operations Research 34, 698-717.

Geoffrion, A. M. (1974). Lagrangean relaxation for integer programming.

Mathematical Programming Study 2, 82-114.
Glover. F. (1989). Tabu search. ORSA Journal on Computing 2, 4-32 (Part II).

Goemans, M. and J. Kleinberg (1996). An improved approximation ratio for the

minimum latency problem. In Proc. 7th Annual ACM-SIAM Symp. on Disc.
Algorithms, pp. 152-158.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley.

Golden, B. L., L. D. Bodin, T. Doyle, and W. Stewart, Jr. (1980). Approximate
traveling salesman algorithms. Operations Research 28, 694-T11.

Golden. B. L. and W. R. Stewart (1985). Emprical analysis of heuristics. In E. L.
Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys (Eds.), The Traveling
Salesman Problem. Chichester: John Wiley & Sons.

Goldman, A. J. (1971). Optimal center location in simple networks. Transportation
Science 5, 212-221.

BIBLIOGRAPHY 231

Gouveia, L. and S. Vo (1995). A classification of formulations for the (time-

dependent) traveling salesman problem. European Journal of Operational

Research 83. 69-82.

Grotschel. M. (1980). On the symmetric traveling salesman problem: solution of a

120-city problem. Mathematical Programming Studies 12, 61-77.

Grotschel. M. and O. Holland (1991). Solution of large-scale symmetric traveling

salesman problems. Mathematical Programming 51, 141-202.

Grotschel, M.. L. Lovédsz, and A. Schrijver (1988). Geometric Algorithms and

Combinatorial Optimization. Heidelberg: Springer.

Grotschel, M. and M. W. Padberg (1985). Polyhedral theory. In E. L. Lawler. J. K.
Lenstra, A. H. G. R. Kan, and D. B. Shmoys (Eds.), The Traveling Salesman
Problem. pp. 361-401. Chichester: John Wiley & Sons.

Guignard. M. and K. Spielberg (1977). Algorithms for exploiting the structure of

the simple plant location problem. Annals of Discrete Mathematics 1, 247-271.

Hadley. G. (1964). Nonlinear and Dynamic Programming. Reading, MA: Addison-

Wesley.

Hakimi. S. L. (1965). Optimum distribution of switching centers in a

communication network and some related graph theoretic problems. Operations

Research 18, 462-475.

Handler, G. Y. and P. B. Mirchandani (1979). Location in Networks: Theory and
Algorithms. Cambridge, Massachusetts: M.L.T. Press.

Hansen, P., E. L. Pedrosa Filho, and C. C. Ribeiro (1992). Location and sizing

BIBLIOGRAPHY

[\
w
()

of offshore platforms for oil exploration. European Journal of Operational
Research 38, 202-214.
Helbig-Hansen, K. H. and J. Krarup (1974). Improvements of the held-

karp algorithm for the symmetric traveling salesman problem. Mathematical

Programming 7, 87-96.

Held. M. and R. M. Karp (1970). The traveling salesman problem and minimum

spanning trees. Operations Research 18, 1138-1162.

Held. M. and R. M. Karp (1971). The traveling salesman problem and minimum

spanning trees: Part II. Mathematical Programming 1, 6-25.

Hoffman, A. J. and P. Wolfe (1985). History. In E. L. Lawler, J. K. Lenstra,
A. H. G. R. Kan. and D. B. Shmoys (Eds.). The Traveling Salesman Problem.
Chichester: John Wiley & Sons.

Houck. D. J., J. C. Picard. M. Queyranne, and R. R. Vemuganti (1980). The
traveling salesman problem as a constrained shortest path problem: Theory

and computational experience. OPSEARCH 17, 94-109.

Hurter, A. P. J. and J. S. Martinich (1989). Facility Location and Theory of

Production. Boston, Dordrect, London: Kluwer Academic Publishers.

Johnson, D. S. (1990). Local optimization and the traveling salesman problem. In
G. Goos and J. Hartmanis (Eds.), Automnata, Languages and Programming, pp.

446-461. Heidelberg: Lecture Notes in Computer Science 442, Springer.

Johnson. D. S., C. R. Aragon, L. A. Mcgeoch, and C. Schevon (1991). Optimization

by simulated annealing: An experimental evaluation. Operations Research 37,

BIBLIOGRAPHY

865-892 (Part I). Operations Research, 39:378—-406 (Part II).

Johnson, D. S. and C. H. Papadimitriou (1985). Computational complexity. In
E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys (Eds.), The
Traveling Salesman Problem. Chichester: John Wiley & Sons.

Jinger, M., G. Reinelt, and G. Rinaldi (1994). The traveling salesman problem. In
M. Ball. T. Magnanti, C. L. Monma, and G. Nemhauser (Eds.). Handbook on

Operations Research and Management Sciences: Networks, pp. 446-461. North
Holland.

Kariv. O. and S. L. Hakimi (1979). An algorithmic approach to network location

problems, part II: the p-medians. STAM Journal of Applied Mathematics 37.
539-560.

Khumawala. B. M. (1972). An efficient branch and bound algorithm for the

warehouse location problem. Management Science 18, B718-B731.

Kirkman, T. P. (1856). On the representation of polyhedra. Philos. Trans. Roy.
Soc. London Ser. A 146, 413-418.

Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies.
Journal of Statistical Physics 34, 975-986.

Knox. J. and F. Glover (1989). Comparative testing of traveling salesman heuristics

derived from tabu search, genetic algorithms and simulated annealing. Technical

report, University of Colorado.

Kolen, A. (1983). Solving covering problems and the uncapacitated plant location

problem on trees. European Journal of Operational Research 12, 266~278.

BIBLIOGRAPHY 234

Krarup, J. and O. Bilde (1977). Plant location, set covering and economic lot
sizing: An O(nm) algorithm for structured problems. In L. Collatz et al. (Ed.),

Optimierung bei graphentheoretishen und ganzzahligen Probleme, pp. 155-180.

Basel, Switzerland: Birkhauser.

Krarup. J. and P. M. Pruzan (1983). The simple plant location problem: Survey

and synthesis. European Journal of Operational Research 12. 36-81.

Krarup. K. and P. M. Pruzan (1990). Ingredients of locational analysis. In Discrete

Location Theory. New York: Wiley Intersicience.

Kuehn. A. A. and M. J. Hamburger (1963). A heuristic program for locating

warehouses. Management Science 9. 643-666.

Laporte, G. (1988). Location-routing problems. In B. L. Golden and A. A. Assad

(Eds.). Vehicle Routing: Methods and Studies. pp. 163-198. Amsterdam: North
Holland.

Lawler. E. L.. J. K. Lenstra. A. H. G. R. Kan, and D. B. Shymoys (Eds.) (1985).
The Traveling Salesman Problem. Chichestor: Wiley Interscience.

Lin. S. (1965). Computer solutions of the traveling salesman problem. Bell System

Tech. J. 44, 2245-2269.

Lin. S. and B. W. Kernighan (1973). An effective heuristic algorithm for the
traveling-salesman problem. Operations Research 21, 498-516.

Little. J. D. C., K. G. Murty, D. W. Sweeney, and C. Karel (1963). An algorithm

for the traveling salesman problem. Operations Research 11, 972-989.

Love, R. F. (1976). One dimensional facility location-allocation using dynamic

BIBLIOGRAPHY

programming. Management Science 22, 614-617.

Love. R. F.. J. G. Morris, and G. O. Wesolowsky (1988). Facilities Location: Models
and Methods. North Holland, New York.

Lucena. A. (1990). The time-dependent tarveling salesman problem - the

deliveryman case. Networks 20, 753-763.

Magnanti. T. L. and R. T. Wong (1981). Accelerated benders decomposition:

Algorithmic enhancement and model selection criteria. Operations Research 29,

164-484.

Malek. K., M. Guruswamy, H. Owens, and M. Pandya (1989). Serial and parallel

search techniques for the traveling salesman problem. Annals of OR: Linkages
with Artificial Intelligence.

Maranzana, F. E. (1964). On the location of supply points to minimize

transportation costs. Operational Research Quarterly 15, 261-270.

Menger. K. (1930). Das Botenproblem. In K. Menger (Ed.). (1932) Ergebnisse eines

Mathematischen Kolloguiums 2, Volume 9. Kolloquium (5.11.1930), 12. Leipzig:

Teubner.

Miller. C. E., A. W. Tucker, and R. A. Zemlin (1960). Integer programming

formulations and traveling salesman problems. J. Assoc. Comput. Mach. 7. 326—
329.

Miller, D. L. and J. F. Pekny (1991). Exact solution of large asymmetric traveling
salesman problems. Science 251, 754-761.

Miller, D. L., J. F. Pekny, and G. L. Thompson (1991). An exact two-matching

BIBLIOGRAPHY 236

based branch and bound algorithm for the symmetric traveling salesman

problem. Technical report, Carnegie Mellon University, Pittsburgh.

Minieka, E. (1989). The delivery man problem on a tree network. Annals of
Operations Research 18, 261-266.

Mirchandani, P. B. (1990). The p-median problem and generalizations. In P. B.

Mirchandani and R. L. Francis (Eds.), Discrete Location Theory. New York:

Wiley Interscience.

Mirchandani. P. B. and R. L. Francis (Eds.) (1990). Discrete Location Theory. New

York: Wilev Interscience.

Mirchandani, P. B. and A. R. Odoni (1979). Location of medians on stochastic

networks. Transportation Science 13, 85-97.

Mirchandani, P. B. and A. Oudjit (1980). Localizing 2-medians on probabilistic

and deterministic tree networks. Networks 10(329-350).

Miihlenbein, H.. M. Gorges-Schleuter, and O. Kriamer (1988). Evolution algorithms

in combinatorial optimization. Parallel Computing 7, 65-85.

Miiller-Merbach, H. (1983). Zweimal travelling salesman. DGOR-Bulletin 25, 12—
13.

Murty, K. G. (1968). An algorithm for ranking all the assignments in order of

increasing cost. Operations Research 16, 682-687.

Naddef, D. and G. Rinaldi (1991). The symmetric traveling salesman polytope
and its graphical relaxation: Composition of valid inequalities. Mathematical

Programming 51, 359-400.

BIBLIOGRAPHY

N
w
-~J

Naddef, D. and G. Rinaldi (1993). The graphical relaxation: A new framework
for the symmetric traveling salesman polytope. Mathematical Programming 38.

33-88.

Narula, S. C.. U. I. Ogbu, and H. M. Samuelson (1977). An algorithm for the
p-median problem. Operations Research 25, 709-712.

Nemhauser. G. L. and L. A. Wolsey (1988). Integer and Combinatorial
Optimization. New York: Wiley.

Norback. J. P. and R. F. Love (1977). Geometric approaches to solving the traveling

salesman problem. Management Science 23. 1208-1223.

Norback. J. P. and R. F. Love (1979). Heuristic for the Hamiltonian path problem

in Euclidian two space. Journal of Operational Research Society 30, 363-368.

Padberg, M. W. and M. Grétschel (1985). Polyvhedral computations. In E. L.
Lawler. J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys (Eds.), The Traveling
Salesman Problem, pp. 361-401. Chichester: John Wiley & Sons.

Padberg, M. W. and G. Rinaldi (1987). Optimization of a 532 city symmetric
traveling salesman problem by branch and cut. Operations Research Letters 6,
1-7.

Padberg, M. W. and G. Rinaldi (1991). A branch-and-cut algorithm for
the resolution of large-scale symmetric traveling salesman problems. SIAM

Review 33, 60-100.

Picard, J. C. and M. Queyranne (1978). The time-dependent traveling salesman

problem and its application to the tardiness problem in one machine scheduling.

BIBLIOGRAPHY 238

Operations Research 26, 86-110.

Potvin. J. Y. (1993). The traveling salesman problem: A neural network
perspective. ORSA Journal on Computing 5, 328—-348.

Potvin, J. Y. and J. M. Rousseau (1990). Enhancements to the Clarke and Wright

algorithm for the traveling salesman problem. Research Report. University of

Montreal.

Reinelt, G. (1994). The Traveling Salesman: Computational Solutions for TSP
Applications. Volume 840 of Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer-Verlag.

ReVelle, C. and R. W. Swain (1970). Central facilities location. Geographical
Analysis 2, 30—42.

ReVelle, C. S. (1993). Facility siting and integer friendly programming. Furopean

Journal of Operational Research 65, 147-158.

ReVelle, C. S. and G. Laporte (1996). The plant location problem - New models
and research prospects. Operations Research {4, 864-874.

Rosenkrantz. D. J., R. E. Stearns, and P. M. Lewis (1977). An analysis of several
heuristics for the traveling salesman problem. STAM Journal on Computing 6,
563-381.

Rosing, K. E. and P. R. Odell (1978). An application of integer programming

to economic studies to offshore oil development. Recherches Economigques de

Louvain 44. 53-69.

Rudin W. (1976). Principles of Mathematical Analysis. 3rd Ed. McGraw-Hill.

BIBLIOGRAPHY 239

Sahni, S. and T. Gonzalez (1976). P-complete approximation problems. Journal of
the ACM 28, 555-565.

Schrage. L. (1975). Implicit representation of variable upper bounds in linear

programming. Mathematical Programming Study 4, 118-132.

Simchi-Levi, D. and O. Berman (1991). Minimizing the total flow time of n jobs

on a network. [IE Transactions 23, 236-244.

Smith, T. H. C., V. Srinivasan, and G. L. Thompson (1977). Computational
performance of three subtour elimination algorithms for solving asymmetric

traveling salesman problems. Annals of Discrete Mathematics 1. 495-506.

Smith, T. H. C. and G. L. Thompson (1977). A lifo implicit enumeration search
algorithm for the symmetric traveling salesman problem using held and karp’s

1-tree relaxation. Annals of Discrete Mathematics 1. 479-493.

Spielberg, K. (1969). Plant location with generalized search origin. Management

Science 16, 165-178.

Stewart. W. R. J. (1977). A computationally efficient heuristic for the traveling

salesman problem. In Proc. 13th Annual Meeting of S. E. TIMS, pp. 75-85.

Stollsteimer, J. F. (1963). A working model for plant numbers and locations.

Journal of Farm Economics 43, 631-645.

Tansel. B. C., R. L. Francis, and T. J. Lowe (1983). Location on networks: A

survey. Management Science 29, 482-511.

Teitz, M. B. and P. Bart (1968). Heuristic methods for estimating the generalized

vertex median of a weighted graph. Operations Research 16, 955-961.

BIBLIOGRAPHY 240

Thisse, J. F. and H. G. Zoller (Eds.) (1983). Locational Analysis of Public Facilities.

North Holland, Amsterdam.

Tsitsiklis. J. (1992). Special cases of the traveling salesman and repairman problems

with time windows. Networks 22, 263-282.

Ulder. N. L. J.. E. Pesch, P. J. M. van Laarhoven. H. J. Bandelt, and E. H. L. Aarts
(1990). Improving TSP exchange heuristics by population genetics. Technical

report. Erasmus Universiteit, Rotterdam.

Vander Wiel. R. J. and N. V. Sahinidis (1996). An exact solution approach for

the time-dependent traveling-salesman problem. Naval Research Logistics 43.

797-820.

Vandermonde. A. T. (1771). Remarques sur les probléemes de situation. Histoire de

l’Académie des Sciences(Paris), 566-574.
Voigt. B. F. (1831). Der Handlungreisende. wie er sein soll und was er zu thun hat,

um Auftrdge zu erhalten und eines glicklichen in seinen Geschdften gewiss zu

sein. [lmenau: Von einem alten Commis-Voyageur. (Republished (1981) Verlag
Bernd Schramm, Kiel.

Volgenant, T. and R. Jonker (1982). A branch and bound algorithm for the
symmetric traveling salesman problem based on the 1-tree relaxation. European

Journal of Operational Research 9, 83-89.

Weber, A. (1909). Uber den Standort der Industrien: Erster Teil, Rein Theorie des
Standorts, J. C. B. Mohr.

Wesolowsky, G. O. (1993). The Weber problem: History and perspectives. Location

BIBLIOGRAPHY 241

Science 1, 5-23.

Wiorkowski, J. J. and K. McElvain (1975). A rapid heuristic algorithm for
the approximate solution of the traveling salesman problem. Transportation

Research 9, 181-185.

