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ABSTRACT

Variable speed AC drives have become the new standard for high

performance drive systems. Very high power traction drives present a

particular challenge for AC drive technology because of the simultaneous

~eed for high-torque vibration-free operation at standstill. traction

limited dynamic braking. and high speed operation.

In this work. two independently controlled cycloconverters are

used with a wound rotor machine to provide a double fed drive system

that overcomes the frequency limitations of the cycloconverters and

provides a stable high power drive. with potential for rapid torque

response and power factor control.

A new 'Jitter' control method is derived for the firing angle

control of the cycloconverter. This method effectively spreads the

cycloconverter output harmonics over a broader spectrum and thus

minimizes the filtering requirements.

The double fed motor (DFH) equations are applied to the DFM

circle diagram and a simulation program has been written to plot the

circle diagram and give a geometric interpretation of the developed

torque. A new algorithm is proposed using 6v • the pseudo torque angle.

to give direct control of the torque using only position feed-back. A

novel frequency hopping algorithm is also derived that allows the cyclo-
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converters to be operated at high frequencies without generating

harmonic torques.

A dual cycloconverter drive was built to verify the stability

and torque-speed performance of such a system. Reliable operation was

achieved by using bank switching sensors based on detecting the reverse

bias across a series connected diod~, and by short circuit detection

circuits with automatic reset facilities. The control software displays

system status information on the screen, with on-line parameter

modification, and provides a complete range of manual and automatic

modes of operation to facilitate system development and testi~g.
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CHAPTER 1

INTRODUCfION

Solid state variable speed AC motor drives are used in an

increasingly wide range of applications that were previously the domain

of DC drive systems. The rugged squirrel cage induction motor is less

expensive to build and maintain than its DC counterpart, and is more

compact, making it very attractive as a prime mover. The drawback,

however, is to be able to provide a similarly rugged and economical

static power supply which can supply AC power over the required range of

frequency and voltage so that the AC drive system can perform as well or

better than a DC system.

Traction drives present a particularly challenging set of

performance criteria for AC drive technology. They require a relatively

long period of start-up, during which time they must produce a smooth

vibration-free torque. Start-up and low speed operation is also usually

under full load, with a reduced tractive effort required at higher than

base speed [1). In addition, with increased vehicle speeds, or high

acceleration and deceleration requirements, it is desirable to'have

dynamic braking that is only limited by track adhesion, and not by the

motor drive system [2). A torque-speed curve for a typical traction

drive is shown in Figure 1.1.
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Figure 1.1 - TORQUE SPEED CURVE FOR TRACTION APPLICATIONS
Smooth. traction-limited torque is required at
standstill. with a reduced tractive effort
required above the base speed.














































































































































































































































































































































































































