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Lay Abstract

Large language models often excel at general text but struggle with specialized sci-

entific language. This thesis addresses this challenge with three main contributions.

First, it introduces ChemTEB and MedTEB: two benchmark collections of 35 chem-

istry and 51 medical tasks, respectively, covering a range of text-analysis challenges.

Second, it presents MedTE, a new 768-dimensional embedding model trained to better

understand biomedical language, which achieves leading results on MedTEB. Third,

it describes GraphRAG, an automated system that builds chemical knowledge graphs

from research preprints and generates complex, multi-step questions to test reason-

ing. Our experiments reveal significant gaps in current models’ grasp of scientific text,

with accuracy falling below 50% on multi-step chemistry questions. All benchmarks,

code, and models are publicly released to advance research in specialized NLP.
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Abstract

Large language models (LLMs) and embedding techniques have transformed general-

purpose NLP, but their performance degrades on specialized scientific texts. In this

thesis, we make three contributions to bridge this gap. First, we introduce two large-

scale benchmark suites: ChemTEB, comprising 35 tasks on chemical corpora drawn

from PubChem, CoconutDB, Safety Data Sheets, and Wikipedia; and MedTEB, com-

prising 51 medical tasks spanning EHR notes, PubMed abstracts, and clinical ques-

tion–answer sets. Both cover classification, clustering, pair classification, retrieval,

and bitext mining. Second, we propose MedTE, a 768-dimensional embedding model

fine-tuned via self-supervised contrastive learning on an extensive biomedical cor-

pus, which achieves state-of-the-art performance on MedTEB. Third, we develop

GraphRAG, an automated pipeline that constructs chemical knowledge graphs from

ChemRxiv preprints and generates multi-hop questions to assess compositional rea-

soning. Through rigorous evaluation, we show that ChemTEB reveals critical weak-

nesses in current chemical embeddings and that even with perfect context, LLMs

achieve under 50% accuracy on multi-hop chemistry question answering. We release

all benchmarks, code, and models to foster further research in domain adaptation and

compositional reasoning for specialized NLP applications.
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Chapter 1

Introduction

1.1 Motivation

Natural language processing advanced rapidly with contextual embeddings and trans-

fer learning (e.g., ELMo [138], ULMFiT [62]) and then scaled dramatically via the

Transformer architecture [182]. Pre-training became a dominant paradigm with mod-

els like GPT [142] and BERT [45], which were subsequently refined (e.g., RoBERTa

[103], XLNet [209]) and complemented by empirical scaling laws that showed pre-

dictable gains from larger models and data [77]. This foundation-model approach,

exemplified by unified frameworks such as T5 [146], enabled broad adaptability to

downstream tasks with minimal task-specific tuning [20]. Few-shot and zero-shot ca-

pabilities emerged with large models: GPT-2 demonstrated fluent closed- and open-

domain generation [144], GPT-3 revealed surprising generalization from prompt con-

ditioning alone [26], and later work both scaled (PaLM [36]) and democratized (OPT

[212], BLOOM [90], LLaMA [178]) the paradigm. Multimodal reasoning appeared

with GPT-4 [128], and conversational fine-tuning produced ChatGPT, whose rapid

1
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adoption underscored real-world impact [129].

Despite these powerful general-language capabilities, large language models (LLMs)

struggle when deployed on specialized domains. Most are trained on broad, publicly

available corpora, web scrapes, Wikipedia, and public-domain books, which cover

everyday expressions and common sense but diverge significantly from texts in fields

such as biomedicine, law, and finance. These domains contain unique terminology, for-

mal structures, and dense factual content, creating a distribution shift that degrades

accuracy and consistency when generic models are applied without adaptation.

Empirically, this gap is evident and addressable. Vanilla BERT underperforms on

biomedical text mining because its pre-training data mismatch the vocabulary and

style of biomedical literature; continuing its pre-training on PubMed abstracts and

PMC full texts yields BioBERT, which substantially improves named-entity recogni-

tion and domain question answering [91]. Similarly, FinBERT, BERT further pre-

trained on financial documents, better captures sentiment nuances in earnings re-

ports than general models [7], and SciBERT, trained on scholarly publications with

a domain-derived vocabulary, outperforms vanilla BERT on scientific NLP tasks by

modeling domain syntax and terminology more faithfully [15]. ClinicalBERT, adapted

to hospital notes and electronic health records, improves clinical entity extraction and

relation classification over generic counterparts [6]. Gururangan et al. [53] systemat-

ically confirm that a second pre-training phase on in-domain text consistently boosts

downstream performance across varied fields, showing that wide-coverage pre-training

alone cannot substitute for domain focus.

Deeper challenges exacerbate this mismatch:

1. Vocabulary and tokenization fragmentation. Fixed subword tokenizers

2
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can break rare or technical terms into incoherent pieces, erasing their semantic

integrity (e.g., “cyclooxygenase” being split into meaningless fragments under

standard BPE). Domain-specific vocabularies, as in SciBERT’s SciVocab, pre-

serve such terminology and yield more coherent embeddings [15, 23].

2. Hallucination and factual unreliability. LLMs optimize next-token like-

lihood, which can produce plausible but incorrect content, harmless in open

domains but dangerous in high-stakes settings like medicine or law. Models

with limited exposure to rare disease literature, for instance, may invent clinical

details that sound credible but lack validity. Survey work identifies hallucina-

tion as a core barrier to real-world adoption of foundation models [156], and

even domain-tuned systems remain imperfect: Med-PaLM, despite surpassing

medical exam thresholds, still makes clinically unacceptable reasoning errors

[107], and GPT-4, without explicit medical fine-tuning, can generate overcon-

fident falsehoods. These phenomena show that high benchmark scores do not

guarantee dependable understanding [124].

3. Brittle multi-step reasoning. Because LLMs are trained for next-token

prediction rather than deductive correctness, they can assemble superficially

coherent reasoning chains that rely on shortcuts, skip essential inferences, or

misapply operations. Their logical quality degrades under minor input pertur-

bations, masking fragility behind fluency [192, 41]. This undermines trust in

applications requiring rigorous inference.

To mitigate these limitations, a layered solution emerges. First, domain-adaptive

3
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pre-training sharpens internal representations by exposing models to in-domain cor-

pora, aligning them closer to downstream tasks. Second, retrieval-augmented gen-

eration (RAG) grounds model outputs in explicit source texts, reducing hallucina-

tion by conditioning generation on retrieved evidence; grounding has been shown

to substantially lower factual error rates compared to closed-book generation [95,

202, 217, 4]. Third, high-quality embedding models are central to any retrieval

pipeline: they map queries and documents into a shared semantic space. Exam-

ples include Sentence-BERT [149], large-scale contrastive embeddings like E5 [188],

instruction-tuned multi-vector retrievers such as M3Embed [32], and domain-specific

variants (e.g., BioSentVec, FinSent, Mol2Vec). Benchmarks such as MTEB empiri-

cally demonstrate that tailored embeddings drive state-of-the-art retrieval and down-

stream performance across diverse tasks [116].

Together, these components form a coherent workflow: (1) adapt the model’s in-

ternal representations via domain-adaptive pre-training; (2) ground generation in re-

trieved, in-domain evidence through RAG; and (3) enhance retrieval and downstream

tasks with specialized embeddings. This multilayered pipeline offers a path toward

dependable, accurate LLM performance in high-stakes scientific domains, although

significant research and engineering challenges remain.

In summary, LLMs in specialized settings expose four critical limitations:

1. Training–target mismatch without domain adaptation.

2. Vocabulary/tokenization issues that fragment rare or technical concepts.

3. Hallucination and factual unreliability in expert domains.

4. Brittle multi-step reasoning that can obscure superficial fluency.

4
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Addressing these gaps requires systems that are not merely large, but domain-aware,

grounded, and logically robust.

We advance domain-aware NLP through three core contributions:

• MedTE Medical Embedding Model: A self-supervised, contrastively trained

embedding model for medical text, enhanced with hard negative sampling and

trained on diverse biomedical sources (e.g., PubMed abstracts, PMC full texts,

clinical notes), which surpasses existing general and medical embeddings on the

MedTEB suite, primarily targeting limitations (1) and (2).

• ChemTEB and MedTEB Benchmark Suites: Two standardized evalua-

tion suites in chemistry and medicine covering over eighty tasks (classification,

clustering, retrieval, pair classification, bitext mining), with fixed splits, met-

rics, and baselines that enable reliable comparison and diagnosis of embedding

performance, supporting analysis of (1), (2), and (4).

• GraphQA Multi-Hop Reasoning Pipeline: An end-to-end system that

constructs knowledge graphs from scientific text, synthesizes grounded multi-

hop question sets, and evaluates LLM reasoning with and without retrieval

augmentation, directly addressing limitations (3) and (4).

1.1.1 Scope and Domains

This work addresses NLP in two specialized scientific domains: chemistry and medicine.

Chemical literature abounds with complex nomenclature, reaction descriptions, and

structural formulas rendered as plain text, while medical sources range from clinician

notes to research papers and patient-generated narratives, each with domain-specific

5
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terminology and abbreviations. We limit our study to text-based English data, omit-

ting multimodal materials (e.g., chemical diagrams, radiology scans) and other fields

such as legal or financial texts.

Our investigation comprises four projects: (1) creating a specialized medical em-

bedding model, (2) designing a medical text embedding benchmark, (3) building a

chemical text embedding benchmark, and (4) evaluating LLMs on multi-hop question

answering over knowledge graphs. Rather than training new general-purpose archi-

tectures from scratch, we focus on adapting, assessing, and extending pre-trained

models to satisfy chemistry- and medicine-specific requirements.

1.1.2 Problem Statement and Research Questions

Although LLMs perform strongly on broad-coverage benchmarks, they frequently fal-

ter on specialized corpora due to vocabulary mismatch, domain drift, and the hallu-

cination of unsupported information. This thesis addresses the overarching question:

How can we systematically adapt and evaluate pre-trained language models

to deliver reliable embeddings and reasoning mechanisms in chemical and

medical contexts?

We pursue four research questions:

1. Domain-Adaptive Training: In what ways can additional pre-training or

precise fine-tuning boost embedding performance on medical text while pre-

serving general-language capabilities?

2. Benchmarking: Which embedding models excel or fall short on targeted chem-

ical and medical text tasks, and which evaluation framework best highlights

6
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these differences?

3. Reasoning Evaluation: How do different LLMs perform in multi-hop question

answering over chemical knowledge graphs?

1.1.3 Contributions

This thesis makes three primary contributions to domain-aware NLP:

• MedTE Medical Embedding Model: We develop MedTE, a contrastively

trained, self-supervised embedding model built on diverse biomedical corpora,

which surpasses existing alternatives on the MedTEB suite.

• ChemTEB and MedTEB Benchmark Suites: We introduce two embed-

ding benchmarks, ChemTEB (chemistry) and MedTEB (medicine), that to-

gether cover over eighty tasks in classification, clustering, retrieval, pair classi-

fication, and bitext mining.

• GraphQA Multi-Hop Reasoning Pipeline: We present GraphQA: an end-to-end

system that constructs domain knowledge graphs from scientific text, generates

multi-hop questions, and benchmarks LLM reasoning with and without retrieval

augmentation.

1.1.4 Thesis Organization

The thesis proceeds as follows:

• Chapter 1: Introduction Outlines motivations, scope, and the four projects

spanning chemistry and medicine.
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• Chapter 2: Literature Review Surveys text embedding techniques, domain-specialized

LLMs (e.g., BioBERT, SciBERT), and knowledge-graph QA methods.

• Chapter 3: MedTE Model Describes the design, training procedure, and

empirical evaluation of our medical embedding model.

• Chapter 4: MedTEB Benchmark Suite Details datasets, tasks, and eval-

uation results for the medical embedding benchmark.

• Chapter 5: ChemTEB Benchmark Suite Presents the chemical embedding

benchmark’s datasets, tasks, and performance metrics.

• Chapter 6: GraphQA Pipeline Explains knowledge-graph construction,

question set generation, and multi-hop QA experiments for LLM assessment.

• Chapter 7: Conclusion Synthesizes findings, discusses limitations, and out-

lines future research directions in domain-aware NLP.
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Chapter 2

Literature Review

2.1 Embedding Techniques

2.1.1 Static Embeddings

Word embeddings map discrete word types to fixed vectors in a continuous space,

capturing semantic and syntactic regularities such that analogous word pairs (e.g.,

king–queen) exhibit linear relationships [179, 112]. Grounded in the distributional hy-

pothesis, “you shall know a word by the company it keeps” [46], early approaches like

Latent Semantic Analysis (LSA) apply singular value decomposition to word–document

co-occurrence matrices to produce dense vectors [42].

Neural predictive models then transformed the field. Word2Vec introduced two

architectures: Continuous Bag-of-Words (CBOW) and Skip-Gram, that learn em-

beddings by predicting a target word from its context or vice versa, using negative

sampling for efficiency [113, 112]. These embeddings encode both semantic similarity

and analogical structure (e.g., v(king)− v(man) + v(woman) ≈ v(queen)) [111].

10
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Count-based global methods like GloVe factorize a corpus-wide co-occurrence ma-

trix, optimizing so that the dot product of two word vectors approximates the log-

arithm of their co-occurrence count [134]. Empirical comparisons find that, when

carefully tuned, predictive (Word2Vec) and count-based (GloVe) embeddings achieve

similar quality by capturing comparable distributional information [13, 93].

A key limitation of basic static embeddings is handling out-of-vocabulary words

and morphological variants. FastText addresses this by representing each word as

a bag of character n-grams, summing subword vectors to form a word embedding,

thereby generating representations for rare or unseen words [19].

Another drawback is polysemy: a single vector must aggregate all senses of a

word. Multi-sense static embeddings attempt to learn multiple prototype vectors

per word by clustering contexts [67] or via non-parametric extensions of Skip-Gram

that allocate a variable number of sense-specific embeddings per word [123]. While

improving the representation of homonymous words, these approaches still assign a

fixed set of vectors per word type, without adapting to sentence-level context.

Static embeddings thus offer simplicity, low computational cost (just a lookup

table), and ease of training on modest corpora. However, their context-independence

limits them when confronting polysemy and nuanced language phenomena, paving

the way for contextual techniques.

2.1.2 Contextual Embeddings

Contextual embeddings compute a word’s vector dynamically from its sentence or doc-

ument context, enabling disambiguation of polysemous words and capturing fine-grained

usage nuances [137].
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2.1 RNN-based

ELMo (Embeddings from Language Models) derives token representations from in-

ternal states of a deep bidirectional LSTM trained with a language modeling objec-

tive (predicting both next and previous words) [137]. Each word instance receives a

context-sensitive embedding by combining the representations from multiple LSTM

layers, yielding substantial gains on tasks like question answering, coreference resolu-

tion, and sentiment analysis when integrated into downstream models [137]. On top

of that, ULMFiT showed that fine-tuning a pre-trained LSTM language model can

yield strong task performance [61];

2.2 Transformer-based

The transformer architecture’s self-attention mechanism [181] heralded a new era

of contextual embedding. GPT (Generative Pre-Training) employs a unidirectional

transformer trained to predict the next token, producing rich left-to-right contextual

representations [141]. GPT-2 scaled this approach, demonstrating that larger models

trained on more data yield increasingly powerful embeddings and language generation

capabilities [143].

BERT (Bidirectional Encoder Representations from Transformers) uses a masked

language modeling objective and next-sentence prediction to learn deep bidirectional

context representations [44]. By integrating information from both left and right

contexts simultaneously, BERT produced token embeddings that, when fine-tuned,

achieved state-of-the-art results across benchmarks like GLUE and SQuAD [186, 44].

Subsequent models expanded this paradigm: XLNet introduced a permutation-based

autoregressive objective to capture bidirectional context without masking [208]; Flair
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combined character-level language models for sequence tagging tasks [2]; and GPT-3,

with 175 billion parameters, demonstrated zero- and few-shot learning abilities from

its contextual embeddings [27]. By 2020, these transformer-based contextual em-

beddings underpinned the “foundation models” paradigm, pre-training on massive

corpora then fine-tuning for specific tasks [21].

2.3 Specialized Variants

To further tailor contextual embeddings, researchers have developed variants opti-

mized for contrastive objectives, domain specificity, and specialized applications:

• Contrastive-focused pretraining General Text Embedding (GTE) combines

unsupervised contrastive pretraining on large unlabeled corpora with supervised fine-tuning

on labeled pairs (e.g., NLI, QA) to produce universally transferable embeddings [98].

Nomic-Embed blends masked language modeling and contrastive learning over very

long contexts (up to 8,192 tokens) using efficient architectures (FlashAttention, Deep-

Speed), matching or exceeding larger models on semantic and retrieval benchmarks

despite a modest 137M parameter count [125].

• General-domain variants SciBERT is a BERT variant pretrained on a corpus

of scientific publications (biology, chemistry), capturing domain-specific vocabulary

and style to outperform BERT on scholarly tasks [15]. Sentence-BERT (SBERT)

fine-tunes siamese/triplet BERT networks on NLI and semantic similarity data to pro-

duce sentence embeddings directly comparable via cosine similarity, improving clus-

tering and STS performance [149]. E5 models employ large-scale weakly supervised

contrastive learning on billions of paired texts (e.g., page titles and contents) to learn
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robust universal embeddings for retrieval and classification [188]. Instruction-tuned

and multilingual embeddings like M3Embed extend embedding length (up to 8192

tokens) and unify dense, sparse, and multi-vector retrieval in one model by incorpo-

rating task instructions during pretraining [32].

• Clinical/Biomedical variants Med-BERT introduces cross-visit pretraining on

structured EHR sequences, learning from longitudinal patient records to improve

clinical outcome prediction [148]. ClinicalBERT continues BERT pretraining on

MIMIC-III clinical notes to capture medical jargon and narrative style for tasks such

as entity recognition [69]. BioBERT trains on PubMed abstracts and PMC full texts,

boosting performance on biomedical text-mining benchmarks [91]. ExBERT inte-

grates an out-of-vocabulary module for domain-specific terms [172], while GatorTron,

an 8.9B-parameter transformer trained on 90B de-identified clinical notes and liter-

ature, sets new standards on clinical NLI, STS, and QA tasks at the cost of heavy

computation [205].

• Clinical/Biomedical And Contrastive-focused Further biomedical refine-

ments apply contrastive and self-supervised tuning: BioSimCSE adapts SimCSE

to biomedical sentences for robust sentence embeddings [76]; Abro et al. perform

self-supervised contrastive tuning on ClinicalBioBERT to refine clinical segment rep-

resentations [1]; Min et al. use ChatGPT to generate paraphrase pairs for contrastive

learning [114]; NoteContrast aligns clinical notes with ICD-10 codes in a contrastive

framework [75]; MICOL leverages metadata for hierarchical contrastive learning to

improve zero-shot multi-label classification [216]; MedEmbed employs triplet-based
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contrastive pretraining on PubMed with hard negatives for fine-grained discrimina-

tion [11]; and BioLORD-2023 combines UMLS knowledge-graph augmentation, con-

trastive learning, and self-distillation to advance clinical semantic similarity and re-

trieval benchmarks [150].

2.1.3 Static vs Contextual

Static embeddings provide lightweight, efficient word representations learned from

relatively small corpora, but each word type has a single vector that conflates all

senses and ignores sentence-level context. Contextual embeddings dynamically tailor

representations to each occurrence, disambiguating polysemy and encoding rich syn-

tactic and semantic information, which yields superior performance on most language

understanding tasks [137, 44].

Nonetheless, contextual models demand substantially more data, parameters, and

computing resources. They often require GPU-accelerated inference and pretrain-

ing on billions of tokens [21]. Static embeddings remain appealing in low-resource

or real-time settings due to their simplicity, interpretability (via linear algebra anal-

yses), and modest computational footprint. Hybrid approaches that extract static

vectors from contextual models (e.g., by averaging contextualized representations) or

initialize contextual models with static embeddings reflect the continuum between

these paradigms [50].

Ultimately, the choice hinges on task requirements and resource constraints: for

lightweight, downstream tasks or scarce-data domains, static (or small contextual)

embeddings may suffice; for advanced language understanding, contextual embed-

dings, especially specialized variants, offer clear advantages in accuracy, flexibility,
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and domain adaptation.

2.2 Large-Scale Embedding Benchmarks

Large-scale benchmarks are widely used to evaluate text embedding models across

diverse tasks and domains. For example, SentEval provides a toolkit for assessing sen-

tence representations on classification, entailment, and similarity tasks [38]. GLUE

(and SuperGLUE) aggregate tasks like natural language inference, sentiment anal-

ysis, and question answering to test general-purpose model performance [186, 185].

Indeed, GLUE’s nine tasks include sentiment (SST-2), paraphrase detection (MRPC,

QQP), NLI (MNLI, RTE), and QA (QNLI), among others [186]. SuperGLUE was in-

troduced when top systems surpassed human performance on GLUE [185]. The STS

Benchmark (STS-B) provides an explicit evaluation of semantic textual similarity

[28], complementing classification benchmarks. For retrieval evaluation, BEIR com-

prises 18 retrieval datasets from varied domains (e.g. scientific, news, forums) to test

zero-shot generalization [175]. For example, BEIR includes tasks such as COVID-19

question answering, debate forum retrieval (ArguAna), and scientific fact verifica-

tion (SciFact) [175]. The long-running TREC conferences have produced many IR

and QA collections for evaluating embedding-based search. The Massive Text Em-

bedding Benchmark (MTEB) spans eight tasks over 58 datasets in 112 languages,

representing the most comprehensive evaluation of text embeddings to date [118].

Through MTEB, models are tested on tasks from semantic search to clustering and

classification, ensuring wide coverage of embedding applications.

Multilingual benchmarks extend these ideas across languages. XTREME evalu-

ates multilingual encoders on 40 languages and nine tasks, highlighting cross-lingual
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transfer challenges [65]. XGLUE offers 11 cross-lingual tasks covering both under-

standing and generation, enabling pretraining on large multilingual corpora [99]. For

example, XGLUE includes tasks such as cross-lingual sentiment analysis and ques-

tion answering, as well as machine translation. CLUE provides the first large-scale

Chinese NLU benchmark, with nine tasks (e.g. classification, reading comprehen-

sion) on Chinese text [203]. These multilingual suites often adapt GLUE-like tasks

to various languages or use parallel-data tasks, testing whether embeddings capture

language-agnostic semantics.

Another important dimension is inference and paraphrase. Large NLI corpora

like MultiNLI (433k pairs across diverse genres) gauge models’ ability to generalize

inference beyond narrow domains [197]. MultiNLI’s size notably exceeds earlier NLI

datasets, providing a more challenging benchmark. PAWS provides 108k paraphrase

vs. non-paraphrase pairs with high lexical overlap [215], explicitly testing models’ sen-

sitivity to word order and context. For example, “flights from New York to Florida”

vs. “flights from Florida to New York” share all words but reverse meaning; PAWS

includes such examples to expose weaknesses of bag-of-words models [215]. These

datasets show that embeddings must capture subtle semantic cues rather than simple

word overlap.

Domain-specific embedding benchmarks have also emerged. In healthcare, Clinia’s

heMTEB extends the MTEB framework to biomedical data, adding tasks like the

CURE dataset of clinical passage retrieval across ten specialties (in English, French,

Spanish) [37]. (Soffer et al. also proposed a scalable clinical embedding evaluation

framework, highlighting the need for specialized benchmarks.) These efforts focus on

medical terminology, multi-disciplinary records, and cross-domain evaluation, since
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embeddings trained on general text often underperform in this domain.

Within biomedical NLP, specialized semantic similarity and inference datasets are

used. BIOSSES provides 100 biomedical sentence pairs manually annotated for sim-

ilarity [168]. MedSTS contains 1,068 clinical sentence pairs annotated on a 0–5 simi-

larity scale [191]. MedNLI contains nearly 15k premise–hypothesis pairs from clinical

notes, annotated by doctors for entailment/neutral/contradiction [153]. These re-

sources complement general benchmarks by focusing on medical concept similarity

and reasoning. For example, evaluation on MTEB shows that no single embedding

model dominates across all tasks [118], indicating that different benchmarks can favor

different embedding methods. In practice, researchers often report combined scores

(e.g. average accuracy on GLUE or MTEB) to summarize overall performance, while

also examining individual task results to understand model tradeoffs. For instance,

models specialized for sentence similarity may excel on STS but not on retrieval,

whereas dense retrievers might lag on classification tasks. BEIR results even high-

light that traditional sparse methods like BM25 remain strong baselines in zero-shot

retrieval [175], underscoring the diversity of evaluation needs.

In summary, embedding evaluation now spans general NLU suites (GLUE, Su-

perGLUE, SentEval), semantic similarity benchmarks (STS-B, BIOSSES, MedSTS),

retrieval collections (BEIR, TREC), multilingual benchmarks (XTREME, XGLUE,

CLUE), and domain-specific datasets (heMTEB/CURE, MedNLI). Each benchmark

contributes to understanding model performance in its context, and together they

guide researchers toward more robust and versatile embedding models.
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2.3 Sequence Generation and Seq2Seq Models

2.3.1 RNN-Based Generative Models

Recurrent neural networks (RNNs) have long been a foundational model for sequence

modeling in natural language processing. Classic RNNs maintain a hidden state

that is recurrently updated, allowing information to persist across sequence posi-

tions. Early RNNs suffered from vanishing and exploding gradients, making long-

range dependencies difficult to learn in practice [17]. Gated variants addressed this

limitation: Long Short-Term Memory (LSTM) networks introduced input, output,

and forget gates plus an explicit memory cell to overcome vanishing gradients [59],

while Gated Recurrent Units (GRUs) simplified the gating mechanism with compa-

rable performance [34].

In the sequence-to-sequence setting, Sutskever et al. mapped an input sequence to

a fixed-length vector with an LSTM encoder and then generated an output sequence

with an LSTM decoder, demonstrating strong machine translation performance [171].

Bahdanau et al. improved this by introducing a soft-attention mechanism that lets

the decoder attend dynamically to encoder hidden states, alleviating the fixed-vector

bottleneck for long or complex inputs [9].

Chemical Sequence Generation Chemical structures can be represented as SMILES

strings, making them amenable to RNN-based generation. LSTM models trained on

large SMILES corpora learn chemical syntax and can generate novel compounds with

desired properties [161, 126]. These generative SMILES models facilitate de novo

drug design by proposing plausible bioactive molecules. RNNs have also been used for

molecular property prediction (QSAR) by treating SMILES as character sequences
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and learning continuous embeddings for toxicity, solubility, or activity forecasting;

combined with graph neural networks, they achieve competitive results on bench-

mark datasets [204].

Clinical Sequence Modeling In healthcare, RNNs encode time-series data (e.g.

lab measurements, vital signs) and unstructured clinical notes for tasks such as risk

prediction and outcome forecasting. The RETAIN model, an attention-augmented

LSTM, predicts heart failure risk by attending to critical visits and features in EHR

sequences [35]. More broadly, surveys report that LSTMs and GRUs excel at modeling

longitudinal patient data for early detection of deterioration and disease progression

[164]. RNNs are also applied to clinical text analysis, using bi-directional LSTMs to

label sequences of words in doctor’s notes for diagnosis coding or concept extraction.

2.3.2 Transformer-Based Seq2Seq Models

The Transformer architecture replaces recurrence with multi-head self-attention, en-

abling parallel sequence modeling and robust long-range dependency capture [181].

In its encoder–decoder form, the Transformer uses self-attention in both encoder and

decoder, plus cross-attention in the decoder to attend to encoder outputs, achieving

state-of-the-art translation performance.

GPT-style decoder-only Transformers are pretrained autoregressively and excel

at generative tasks with few-shot prompting. GPT-3, with 175 billion parameters,

demonstrates strong performance across translation, question answering, and sum-

marization without task-specific fine-tuning [27]. Encoder–decoder models like T5

cast all tasks as text-to-text generation and fine-tune on labeled data, achieving top

results on summarization and QA benchmarks [145].
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Chemical Reaction Prediction & Molecule Generation Transformer-based

seq2seq models frame reaction prediction as SMILES-to-SMILES translation. The

Molecular Transformer predicts reaction products and yields directly from reactant

SMILES, achieving over 90% top-1 accuracy without hand-crafted rules [159]. Pre-

trained variants such as Chemformer (BART-based) further improve performance

on retrosynthesis and optimization tasks [71]. Autoregressive molecular generators

like MolGPT produce valid novel SMILES and can be conditioned on scaffolds or

properties [8].

Clinical Report Summarization & Note Generation Encoder–decoder Trans-

formers (e.g. BART, T5) fine-tuned on clinical corpora summarize radiology re-

ports, discharge notes, and physician–patient dialogues with human-level quality

[180]. Domain-specific LLMs such as BioGPT (pretrained on PubMed abstracts)

excel at biomedical QA and relation extraction [106], while Med-PaLM 2 (PaLM 2

fine-tuned on medical data) achieves over 85% accuracy on USMLE-style questions

[166]. These models also aid in drafting clinical notes from patient data with enhanced

factuality and coherence [97].

2.4 RAG Frameworks (e.g. REALM, RAG)

Retrieval-augmented generation (RAG) frameworks extend large language models by

incorporating an explicit retrieval component. For example, Guu et al. [55] intro-

duce REALM, which learns to retrieve relevant text (e.g. Wikipedia passages) during
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masked language model pre-training. REALM’s model attends to these retrieved doc-

uments via backpropagation through the retrieval step, integrating external knowl-

edge into its representations. Similarly, Lewis et al. [95] propose RAG, a fine-tuned

seq2seq generator coupled with a neural retriever. At inference, RAG fetches the

top-k documents from a large corpus (often indexed with FAISS) and conditions the

generator on the retrieved passages to answer a query. These systems typically use

dense embedding retrieval (e.g. DPR) or traditional sparse search (BM25) to find

relevant context. By grounding generation in retrieved evidence, RAG models inject

up-to-date information without full retraining and mitigate hallucinations, since the

output is constrained by explicit sources [202]. Indeed, Lewis et al. [95] report that

RAG achieved state-of-the-art accuracy on multiple open-domain QA benchmarks,

far outperforming closed-book LMs.

2.4.1 Chemistry: retrieving reaction protocols or spectral

data

In chemistry, RAG can exploit specialized knowledge sources (reaction databases,

literature, spectral libraries) to improve predictions and textual output. Zhong et

al. [217] introduce ChemRAG-Bench, a benchmark integrating heterogeneous chem-

ical knowledge (scientific articles, PubChem entries, PubMed abstracts, textbooks,

Wikipedia, etc.) for RAG evaluation. They find that augmenting LLMs with re-

trieval yields large gains (17% average improvement over direct inference) on diverse

chemistry tasks. For example, one study retrieves similar molecules (using chemical

fingerprints) and their reference mass spectra to guide prediction: the MARASON
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model uses retrieved structures and spectra to simulate spectra, boosting top-1 ac-

curacy from 19% to 28% [189]. In practice, chemical RAG could query resources like

the Open Reaction Database or patent literature to retrieve detailed experimental

protocols, or match unknown spectral data against libraries (e.g. NIST) to produce

informed analyses.

2.4.2 Medicine: retrieving PubMed abstracts, EHR-grounded

RAG

In medicine, RAG systems ground generation in authoritative biomedical text. Xiong

et al. [202] introduce the MIRAGE benchmark and MedRAG toolkit, evaluating medi-

cal QA systems that retrieve from corpora like PubMed abstracts, clinical guidelines,

and textbooks. They observe that RAG provides large gains: on biomedical QA

datasets (e.g. PubMedQA, MMLU-Med), adding retrieval from PubMed yields 1–18%

absolute improvement over closed-book models. Notably, they find PubMed retrieval

boosts performance across all tasks, given its broad coverage. Domain-specific retriev-

ers (e.g. MedCPT) or multi-retriever ensembles can further improve accuracy. RAG

also aids clinical information tasks: Alkhalaf et al. [4] demonstrate that augmenting

an LLM with retrieval of related clinical notes raises EHR summarization accuracy

from 93% to 99%. By retrieving relevant abstracts or patient-specific documents

at inference, medical RAG models can incorporate up-to-date evidence and reduce

hallucination in clinical QA and information extraction.
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2.5 Knowledge Graphs and Graph-Based Reason-

ing

Knowledge graphs (KGs) encode structured knowledge as triples (h, r, t), where each

head h and tail t is an entity and r is a relation, all defined under an explicit ontology.

By representing knowledge in this way, KGs enable semantic integration of heteroge-

neous data sources and support principled graph-based reasoning over the encoded

domain. Ontologies (e.g., OWL) provide the schema, classes, and relations, while

the KG itself instantiates that schema with real-world data. Graph-based reasoning

then consists of inferring new facts or answering queries by traversing and applying

algorithms (symbolic or learned) over this graph structure.

2.5.1 KG Construction & Embeddings (TransE, GAT)

Construction of KGs can be manual (curation from databases) or automatic via infor-

mation extraction. Recent work leverages large language models (LLMs) to extract

entities and relations from scientific text. For example, Langer et al. automatically

construct a chemical entity-role KG by fine-tuning transformer-based NER models

(e.g., BERT) to recognize chemical entities and then using a second LLM (LLaMA-2)

to verify relation assertions, mapping extracted triples to ChEBI identifiers and out-

putting RDF-formatted KG data [88]. Such pipelines dramatically accelerate graph

population compared to manual curation.

Once constructed, KGs are often embedded into vector spaces to support tasks like

link prediction. TransE [22] represents entities and relations as vectors h, r, t ∈ Rd

and enforces h + r ≈ t for true triples. This simple translation property effectively
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models many relation types and remains a standard baseline. Graph neural networks

(GNNs) further generalize embeddings by learning over multi-relational graphs. In

particular, Graph Attention Networks (GATs) [183] apply self-attention over node

neighborhoods, enabling nodes to weigh the importance of each neighbor when up-

dating their representation. In KG contexts, relational GNN variants (e.g., R-GCN)

and attention-based GATs provide powerful end-to-end learning frameworks for link

prediction and node classification.

2.5.2 General Multi-Hop QA over KGs (HotpotQA, QAnga-

roo)

Multi-hop question answering (QA) tests a model’s ability to combine multiple facts

to answer queries. HotpotQA [206] is a large-scale dataset of over 110,000 Wikipedia

questions that explicitly require multi-document reasoning: each question is anno-

tated with two supporting paragraphs that must be combined. HotpotQA also in-

cludes explainable supporting facts to encourage models to justify each inference

step. Similarly, the QAngaroo benchmark [193] comprises WikiHop (open-domain

Wikipedia QA) and MedHop (PubMed QA) subsets. WikiHop requires retrieving

evidence chains across Wikipedia articles to answer a query, while MedHop focuses

on drug–protein interactions across scientific abstracts. Although these datasets are

text-based, their multi-hop structure mirrors path-finding in a KG, identifying a chain

of connected facts that lead to the answer. KG-aware QA systems typically retrieve

candidate passages, construct a subgraph of entities and relations, and perform ei-

ther symbolic graph traversal or neural graph reasoning (e.g., attention over the subg

raph) to infer answers.
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2.5.3 Chemistry: ChEBI, PubChem Graphs & Reaction Net-

works

In chemistry, KGs draw upon established ontologies and massive compound databases.

The Chemical Entities of Biological Interest (ChEBI) ontology provides a curated hi-

erarchy of ∼ 2 × 105 biologically relevant molecules [47]. PubChem, by contrast, is

not an ontology but a vast repository of over 100 million chemical substance records,

available in RDF for KG integration. Reaction ontologies (e.g., RXNO) and spe-

cialized frameworks like OntoRXN formalize chemical reaction networks as graphs of

species and transformation steps [47]. OntoRXN treats each reaction mechanism as

a graph of molecular species connected by reaction-step nodes, enabling integration

with computational chemistry data (e.g., energy profiles).

Chemical KGs often integrate multiple sources: ontologies (ChEBI, RXNO), sub-

stance databases (PubChem), and literature. The FORUM KG links chemicals to

diseases and genes by combining ChEBI, ChemOnt, and PubChem data with co-

occurrence and ontological inference [88]. More recently, LLM-driven pipelines ex-

tract chemical entities and roles directly from papers, automatically mapping them

to ChEBI IDs and constructing large-scale chemical KGs [88]. These AI-assisted

methods promise to extend KG coverage far beyond manual curation.
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2.5.4 Medicine: UMLS, SNOMED CT, and Clinical KGs

Medical KGs are rooted in standardized terminologies. SNOMED CT [40] is the

largest clinical ontology, containing hundreds of thousands of medical concepts (dis-

eases, procedures, findings) organized in a polyhierarchy. The Unified Medical Lan-

guage System (UMLS) [101] integrates over 200 biomedical vocabularies into a meta-

thesaurus, linking millions of concepts with semantic relations. These terminologies

themselves form KGs of concepts and relations. Chang et al. demonstrate that

embedding the SNOMED-CT subgraph using relational graph models outperforms

text-only embeddings for biomedical similarity tasks [30].

Beyond terminologies, application-specific clinical KGs integrate patient data,

molecular interactions, and disease ontologies. The SPOKE network [115], for in-

stance, links genes, drugs, and diseases to support translational research. PrimeKG

[29] aggregates dozens of biomedical databases into a unified graph connecting phe-

notypes, pathways, drugs, and genes. Clinical NLP systems leverage UMLS entity

linking to anchor unstructured text in a KG context, enabling downstream tasks such

as cohort discovery and decision support.

2.5.5 LLM-Assisted KG Extraction and Reasoning

Recent advances apply LLMs both to KG construction and to graph-based reasoning.

LLMs facilitate entity and relation extraction from unstructured text at scale, map-

ping to ontology IDs and populating KGs automatically [88]. On the reasoning side,

experiments show that LLMs can be utilized to form multi-hop questions chained in

order and to decompose complex queries into sequential retrieval and inference steps,

thereby enhancing their accuracy on domain-specific RAG benchmarks [195].
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Overall, the synergy of curated ontologies (ChEBI, UMLS), large-scale graph

databases (PubChem), and LLM-driven extraction is rapidly advancing domain-

specific KG generation. Embedding methods (TransE, GAT) and KG-aware QA

benchmarks (HotpotQA, QAngaroo) underpin the graph-based reasoning architec-

tures that bridge symbolic knowledge and neural language models, offering a path

toward robust, explainable LLM applications in chemistry and medicine.

2.6 Agentic QA & Multi-Hop Reasoning Agents

2.6.1 Tool-Using LLM Agents (ReAct, Toolformer)

Agentic language model agents can interleave reasoning steps with explicit tool calls

to external APIs or databases. In the ReAct framework proposed by Yao et al. [210],

an LLM is prompted to produce alternating Thought (reasoning) and Action (tool

use) steps. This interleaving enables multi-step reasoning that remains grounded

in verifiable intermediate observations. On interactive decision-making benchmarks

(e.g. ALFWorld, WebShop), ReAct-style prompting substantially outperformed imi-

tation and reinforcement learning baselines by allowing the model to reason and act

in tandem [210]. Similarly, Toolformer (Schick et al.) fine-tunes an LLM with self-

supervised signals to invoke external tools when needed [158]. Toolformer’s training

process automatically labels places in the model’s own outputs where calling a tool

(such as a calculator, search engine, or knowledge-base API) would be beneficial, and

trains the model to incorporate those tool calls into its generation [158]. By learning

when and how to delegate sub-tasks to specialized tools, Toolformer achieves sig-

nificantly better zero-shot performance on arithmetic, factual lookup, and reasoning
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tasks without degrading the base model’s core language generation abilities [? ].

2.6.2 GraphQA: Chaining Retrieval and Reasoning

Graph-based QA agents extend retrieval-augmented generation by structuring the

retrieved evidence as an explicit graph and then chaining the reasoning over this

graph. For example, HopRAG (Liu et al.) constructs a graph of passages during

retrieval, where edges represent semantic relatedness, and uses an LLM to iteratively

propose sub-queries and traverse the graph in multiple hops [102]. At each hop, top-k

new passages are retrieved and added to the graph, and the LLM’s reasoning helps

identify which node to explore next. This retrieve-reason cycle continues until the

query is answered, enabling a form of logical multi-hop exploration beyond flat list

retrieval [102]. GraphRAG (Han et al.) takes a related approach by integrating a

dense retriever with a graph-based reranker that uses self-attention over the retrieved

subgraph to select the most coherent chain of evidence [56]. The agent builds a graph

of candidate passages and employs a graph neural network or attention mechanism

to find an optimal multi-hop path that connects the question to the answer [56].

LLMs can also translate natural language questions into structured graph queries ,

for instance, GMeLLo (Chen et al.) maps questions into sets of RDF triples and then

executes multi-hop SPARQL queries on a knowledge graph to retrieve the answer [33].

By leveraging the precision of graph-structured data, GMeLLo handles sequential

logic and evolving knowledge bases in multi-hop QA settings [33]. These GraphQA

methods demonstrate that explicitly modeling a graph of retrieved knowledge and

reasoning step-by-step over that graph yields more accurate and interpretable multi-

hop answers than flat retrieval alone. This was foreshadowed by Lewis et al. [95], who
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showed that even in early RAG systems, chaining retrieval with reasoning reduces

hallucinations and leads to better answer correctness [95].

2.6.3 Domain-Specific QA Agents in Chemistry and Medicine

In specialized domains like chemistry and medicine, agentic QA systems combine

LLMs with domain-specific toolkits to achieve expert-level performance. ChemCrow

(Bran et al.) is an LLM-based chemistry agent that integrates GPT-4 with 18 expert

chemistry tools (for tasks such as molecule search, reaction prediction, spectrome-

try, safety checking, etc.) [24]. The ChemCrow agent is prompted to plan complex

workflows by sequentially calling the appropriate tools for each sub-problem in tasks

spanning organic synthesis, drug discovery, and materials design [24] . This approach

allowed ChemCrow to autonomously plan and execute the synthesis of various com-

pounds (e.g. an insect repellent and organocatalysts) by combining GPT-4’s reason-

ing with the precise outputs of chemistry software tools [24]. Building on this idea,

ChemAgent (Wu et al.) scales up to an arsenal of 137 chemistry APIs and employs a

Hierarchical Evolutionary Monte Carlo Tree Search (HE-MCTS) to plan multi-step

tool-using strategies [198]. In ChemAgent, the LLM chooses which tool to use at

each step (e.g. a reaction predictor vs. a docking simulator) and in what sequence,

with the MCTS algorithm exploring different tool sequences to maximize the ex-

pected success of the overall plan [198]. Through reinforcement learning fine-tuning,

ChemAgent learned to navigate this large tool set efficiently, yielding state-of-the-

art results on benchmarks for reaction prediction and molecular design by virtue

of combining LLM reasoning with rigorous domain-specific computations [198]. In

the medical domain, LLM agents are augmented with clinical knowledge bases and
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specialized reasoning strategies to tackle complex clinical questions. Med-PaLM 2

(Singhal et al.) is an example of a medical QA agent built on Google’s PaLM-2 LLM

and fine-tuned for healthcare applications [167]. Med-PaLM 2 incorporates a “chain-

of-retrieval” prompting strategy [167]: it iteratively retrieves relevant information

from medical databases like PubMed and clinical guidelines at each step of reasoning,

feeding those facts back into the model before it generates the next part of the answer.

This retrieval-augmented approach dramatically improved Med-PaLM’s performance

on U.S. Medical Licensing Exam (USMLE)-style questions , Med-PaLM 2 scored

about 19% higher than a comparable closed-book model on MedQA, approaching

or exceeding state-of-the-art accuracy on multiple-choice clinical benchmarks [167].

Likewise, multi-agent frameworks have been explored to reflect the collaborative na-

ture of clinical reasoning. The MedAgentsBench suite (X. Tang et al.) was introduced

as a benchmark to evaluate multi-step medical reasoning with multiple agents [173].

Experiments on MedAgentsBench found that combining an LLM with specialized

medical tools and reasoning agents (for example, separate “specialist” agents for di-

agnosis, treatment planning, etc.) can outperform a single large model prompting

approach by up to 25% on complex diagnostic and planning problems [173]. These

domain-specific QA agents underscore the importance of deeply integrating LLMs

with curated toolsets and structured knowledge bases: by leveraging external domain

expertise (through tools or retrieval) and guiding the model’s reasoning process, they

achieve far more reliable and expert-level performance in high-stakes fields like chem-

istry and medicine than would be possible with an LLM alone.
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2.7 Domain Adaptation & Specialization

2.7.1 Domain-Adaptive Pretraining (DAPT).

Continuing the pretraining phase on unlabeled domain-specific corpora is a proven

way to specialize a large language model to a target domain. This domain-adaptive

pretraining (DAPT) technique, first highlighted by Gururangan et al. (2020) [52],

involves taking a general English model and further training it (masked-language or

autoregressive) on domain text (e.g. biomedical papers or chemical patents) so that

the model “sees” more in-domain vocabulary and patterns. Many studies have found

that DAPT yields significant in-domain performance gains. For example, Alhmoudi

et al. (2025) observed that continuing to pretrain a chemical language model on

a specialized molecules corpus led to better performance, especially when the target

domain differs greatly from generic web text [3]. Similarly, in materials science, Huang

and Cole (2025) demonstrated a cost-efficient DAPT on optoelectronics literature that

cut pretraining compute by over 80% while still matching or exceeding the baseline

model’s accuracy [66]. However, DAPT is not a free lunch: Huang and Cole also point

out that many scientific fields lack the massive text corpora that are typically used to

train a transformer from scratch, making extensive in-domain pretraining impractical

[66]. In summary, DAPT can inject crucial domain knowledge (as exemplified by

models like SciBERT or BioBERT) and often improves downstream accuracy, but its

success hinges on having sufficient domain-specific data and compute resources [52]

[3] [66].
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2.7.2 Vocabulary & Tokenization Adaptations.

A key challenge in specialist domains is handling terms not seen in generic corpora.

Standard subword tokenizers (WordPiece/BPE) often over-segment technical terms.

For example, Balde et al. (2025) report that open-domain LLM tokenizers fragment

many medical terms into multiple pieces, yielding high out-of-vocabulary (OOV) rates

on biomedical text [12]. One strategy to mitigate this is expanding or rebuilding the

model’s vocabulary using domain data. In biomedicine, for instance, PubMedBERT

was pretrained with a fresh WordPiece vocabulary derived from PubMed abstracts, in

contrast to BioBERT which reused BERT’s original lexicon. Domain-specific tokeniz-

ers can better reflect the morphology of technical terms, although models can some-

times be surprisingly robust to imperfect segmentation [54]. In chemistry, researchers

have even introduced alternative token representations: for example, SELFIES is a

chemically-aware string encoding that guarantees valid molecules [84], but adopting

it requires building a new tokenizer and pretraining on a large SELFIES corpus [3].

In practice, even modest vocabulary augmentation can help. Balde et al. showed

that adding common medical jargon to an LLM’s vocabulary improved clinical text

summarization quality on inputs with many OOV terms [12]. Likewise, expanding the

vocabulary of BERT/RoBERTa with domain-specific terms has yielded gains on var-

ious classification and generation tasks [54, 12]. Overall, tailoring tokenization, either

by adding key domain tokens or retraining the subword segmenter on domain text ,

tends to reduce OOV fragmentation and better preserve important terms in medicine

and chemistry, albeit at the cost of retraining embeddings for the new tokens.
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2.7.3 Fine-Tuning Strategies: LoRA/PEFT in Chem/Med.

Once a base model (possibly after DAPT) is obtained, it often needs task-specific fine-

tuning on limited labeled data. Training all billions of parameters is expensive, so

parameter-efficient fine-tuning (PEFT) methods are popular. Approaches like LoRA

(Low-Rank Adaptation) and related PEFT schemes freeze the original weights and

insert a small number of trainable adapter parameters. For example, Balde et al.

note that fine-tuning large LLMs via quantized LoRA (QLoRA) has become common

practice, since full end-to-end updates of huge models are infeasible in many cases

[12]. In the medical domain, Sukeda et al. (2024) demonstrate that LoRA-based

instruction tuning , i.e. fine-tuning a model on medical Q&A examples using a frozen

backbone plus low-rank adapters , can indeed inject domain-specific knowledge into

an LLM, with larger base models seeing the biggest gains [170]. Similarly, He et

al. (2025) propose a “parameter-sensitive” LoRA fine-tuning method that efficiently

adapts an LLM to specialized Q&A tasks with limited expert data, showing substan-

tial accuracy improvements on both medical and legal question-answering benchmarks

[58]. In practice, lightweight adapters and QLoRA have been used in both chemistry

and biomedicine to conserve resources. For instance, chemical LLM systems like

ChemCrow use small domain-specific adapter modules when tuning models for tasks

like synthesis planning. Instruction tuning (providing domain-relevant exemplars or

prompts) is another complementary strategy , often combined with LoRA-based fine-

tuning , to align models with expert tasks [170]. In summary, PEFT methods such as

LoRA and QLoRA enable affordable specialization: they focus the training on learn-

ing domain-critical patterns from scarce labeled data while leaving the vast majority

of model weights untouched [170] [58].
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2.7.4 Challenges: OOVs, Hallucinations, Data Scarcity.

Despite these adaptation efforts, domain-specific LMs still face persistent issues. OOV

terms remain problematic: even cutting-edge LLMs will split uncommon chemical or

medical names into many subword pieces, which can distort meaning. Balde et al.

(2025) confirm this, reporting that various model tokenizers all produce much higher

fragmentation for medical text than for general-domain news text [12]. Hallucina-

tion is another serious risk: models may confidently generate incorrect or physically

impossible outputs. In chemistry, this issue surfaces as “molecular hallucinations” –

proposing invalid or implausible molecules – which researchers have attempted to curb

via reinforcement learning or by applying rank-based losses that penalize chemically

invalid generations [57]. In medicine, hallucinated content can lead to dangerously

false diagnoses or treatments, so strategies like retrieval augmentation and human

feedback (e.g. reinforcement learning from human feedback, RLHF) are employed

to improve factuality [130] [57]. Finally, data scarcity is a fundamental challenge in

both the chemistry and medical domains. Specialized scientific corpora are typically

much smaller (and have far fewer labeled examples) than the web-scale text used to

train general-purpose LLMs. Huang and Cole note that their materials science text

collection was orders of magnitude smaller than what’s used for full-scale pretrain-

ing, necessitating the kind of “cost-efficient” DAPT approach they employed [66].

Similarly, Han et al. (2024) emphasize that the limited availability of high-quality

chemistry data – and the fact that chemical knowledge is spread across multiple

modalities – creates distinct hurdles for LLM development [57]. With few expert-

annotated examples, even fine-tuning runs the risk of overfitting. These constraints
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mean that domain-specialized LMs often must rely on techniques like data augmen-

tation, retrieval of external knowledge, or cross-domain transfer learning to achieve

reasonable performance.

2.8 Evaluation Metrics & Benchmarks

8.1 General Metrics. For supervised classification tasks, accuracy (the fraction

of correct predictions) is the simplest evaluation metric. However, when classes are

imbalanced, metrics such as precision, recall, and the harmonic mean (F1 score) are

preferred [132, 140]. In unsupervised clustering, the V-measure, the harmonic mean

of homogeneity and completeness, quantifies cluster quality via conditional entropy

[154]. Alternatively, purity measures the extent to which each cluster contains items

from a single class [108].

In text generation tasks such as machine translation and summarization, auto-

matic metrics compare generated text to references. BLEU computes n-gram pre-

cision with a brevity penalty [132], while ROUGE emphasizes n-gram recall and

longest common subsequence overlap [100]. METEOR aligns words using synonyms

and stems, combining precision and recall with a fragmentation penalty [89]. Recent

metrics like BERTScore use contextual embeddings to semantically match tokens,

often correlating better with human judgments [213]. Typical evaluations report

classification metrics (accuracy, F1), clustering metrics (V-measure, purity), and gen-

eration metrics (BLEU, ROUGE, METEOR, BERTScore) as appropriate.

8.2 Domain-Specific Metrics: chemical similarity, clinical accuracy. In

chemistry, evaluating generated molecules or reaction predictions requires specialized

measures. Tanimoto similarity (binary Jaccard index on molecular fingerprints) is
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standard for assessing compound similarity [10]. Reaction prediction models are

assessed via top-k accuracy (correct products among top-k predictions) and round-

trip accuracy, which verifies that predicted reactants yield the target product through

a forward reaction model [160]. Additional metrics include coverage (fraction of

successful predictions) and diversity (number of unique valid outputs) [160].

In clinical NLP, evaluation often combines standard metrics with domain-specific

checks. Factual consistency can be measured via entailment models trained on

MedNLI, ensuring that generated summaries do not contradict reference sentences

[152]. Clinical entity coverage evaluates whether key UMLS concepts from references

appear in outputs [18]. For QA, accuracy on datasets like PubMedQA and MedQA

is reported [73, 167]. These metrics ensure not only fluency but also correctness and

completeness of critical domain knowledge.

8.3 Benchmark Suites. Benchmark suites provide standardized evaluation

across multiple tasks. In general NLP, GLUE [184] and SuperGLUE [187] aggre-

gate classification, inference, and reasoning tasks. The BEIR benchmark spans 18

zero-shot information retrieval datasets [176]. The Massive Text Embedding Bench-

mark (MTEB) evaluates embeddings on 58 datasets across classification, clustering,

retrieval, and generation in 112 languages [117].

In chemistry, MoleculeNet offers property prediction tasks on molecular datasets

[200]. Generative benchmarks include MOSES for SMILES-based molecule genera-

tion [139] and GuacaMol for de novo design tasks [25]. Community challenges such as

ChemBench provide leaderboards for reaction prediction and molecular optimization.

In medicine, BioASQ provides biomedical QA and summarization with expert-curated
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answers [85]. MedNLI tests clinical inference [152]. QA benchmarks include Pub-

MedQA [73] and MedQA [167]. Clinical summarization and entity recognition (e.g.,

i2b2 challenges) often use ROUGE or F1 scores alongside domain-specific checklist-based

assessments [165]. Together, these benchmarks enable comprehensive evaluation of

models across general NLP, chemical informatics, and clinical NLP applications.

2.9 Open Challenges Trends

9.1 Hallucination Mitigation. Large language models frequently generate plausible-

sounding but incorrect information, a phenomenon known as “hallucination” [177].

In scientific and clinical domains, such errors can fabricate non-existent drug trials or

medical claims, posing serious risks to patient safety [14]. Retrieval-Augmented Gen-

eration (RAG) grounds model outputs in external knowledge bases (e.g. PubMed,

ChEBI) by concatenating retrieved passages to the input, which dramatically im-

proves factual accuracy in medical question answering from roughly 40% to over 99%

[48, 94]. Tool-augmented agents like ReAct interleave reasoning steps with API calls

for verification (e.g. chemical validity checks), further reducing hallucinations [210].

Additional strategies include consistency checks, querying the model multiple times

and filtering inconsistent responses, and constrained decoding to enforce domain rules

such as valid chemical syntax or clinical guideline compliance [177].

9.2 Explainability in Domain Context. Transparent decision-making is vital in

chemistry and medicine, where practitioners must understand the rationale behind

AI suggestions [68]. Attention visualization techniques display which input tokens

or structural elements the model focuses on [68], while feature-importance methods
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like LIME [151] and SHAP [105] estimate each input’s contribution to the predic-

tion. Probing classifiers, trained on hidden representations, can reveal whether LLMs

capture domain-specific concepts (e.g. drug–target interactions) [68]. In clinical sum-

marization, SHAP has been used to highlight critical symptoms and lab values that

drive a diagnosis [151], and attention heatmaps guide radiologists through automated

report generation [68]. In chemistry, explainable embeddings can pinpoint molecular

substructures responsible for predicted properties, aiding medicinal chemists in lead

optimization [68].

9.3 Efficient Adaptation (compute/data constraints). Fine-tuning large LLMs

for specialized tasks can be prohibitively expensive. Parameter-efficient transfer learn-

ing methods, such as adapter layers [60] and Low-Rank Adaptation (LoRA) [63], up-

date only a small fraction of model weights, reducing trainable parameters by orders

of magnitude and cutting GPU memory requirements by up to 3×. Data scarcity in

medical and chemical domains further complicates adaptation. Domain-aware aug-

mentation, synonym replacement using medical ontologies [31] or SMILES string enu-

meration for molecules [199], effectively multiplies training examples while preserving

domain validity. Combining PEFT with such augmentation has enabled practical

fine-tuning of LLMs for tasks ranging from clinical QA to reaction prediction, even

on limited hardware [63, 199].

9.4 Future Directions: Multimodal Integration and Causal Reasoning. Fu-

ture LLMs will increasingly integrate multimodal data. In chemistry, models like

ChemVLM combine textual descriptions with molecular graphs or images of chemi-

cal diagrams, enabling tasks such as image-to-structure translation and cross-modal

molecule design [96]. In healthcare, multimodal models that fuse clinical text with
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imaging (X-rays, histopathology) and time-series signals (ECGs) promise richer pa-

tient representations [5]. Causal reasoning capabilities are also emerging as criti-

cal for robust AI. Causal representation learning aims to embed known cause–effect

relations within models, enabling counterfactual queries and confounder handling

[81]. Trustworthy AI guidelines such as FUTURE-AI outline principles including fair-

ness, robustness, explainability, and auditability, requirements that next-generation

domain-specific LLMs must meet for safe deployment in high-risk environments [92].

Combining multimodal grounding with causal frameworks, under rigorous validation,

will chart the path toward reliable, explainable, and effective AI in chemistry and

medicine.
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Chapter 3

MedTE

3.1 MedTE: A Contrastively Trained Medical Text

Embedding Model

Effective medical text embeddings must capture complex clinical terminology, long-

tail disease names, and contextual nuances present in electronic health records and

biomedical literature. To this end, we build MedTE by fine-tuning a General Text

Embedding (GTE) backbone with self-supervised contrastive learning on a richly

curated medical corpus. The GTE base model, originally pretrained on broad web

and scientific text, provides robust contextual representations [98].

Our contrastive objective draws positive and negative sentence pairs from diverse

sources: PubMed abstracts [120], full-text articles from PubMed Central [122], clini-

cal notes in MIMIC-IV [74], trial protocols in ClinicalTrials.gov [121], and preprints

from bioRxiv and medRxiv [162, 109]. We leverage in-batch negatives mining to

sharpen MedTE’s capacity for fine-grained semantic discrimination across medical
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subdomains.

By aligning semantically related clinical sentences and separating unrelated ones,

MedTE produces dense representations that excel in downstream tasks such as ICD-

10 code classification, clinical note retrieval, semantic similarity, and medical ques-

tion answering. As we demonstrate in Chapter 4, MedTE consistently outperforms

both general-purpose and prior medical-domain embeddings on comprehensive bench-

marks, underscoring the power of self-supervised contrastive learning for domain-

specialized NLP.

3.2 Model Training

Data Preprocessing. For each data source, we construct semantically aligned posi-

tive pairs, two text fragments conveying the same meaning, according to the rules

in Table 3.1. All text is lower-cased and tokenized using the GTE tokenizer (a

bert-base-uncased variant [43]) to ensure a consistent subword vocabulary.

Training Objective & Architecture. We employ a single-stage, fully unsupervised

contrastive learning objective on the GTE-Base transformer. Given a mini-batch B =

{(xi, x+
i )}Ni=1 of N positive pairs, we compute embeddings zi = MeanPool(GTE(xi))

and similarly z+
i for the positives. We then minimize the InfoNCE loss [127]:

LInfoNCE = − 1

N

N∑
i=1

log
exp

(
sim(zi, z

+
i )/τ

)∑N
j=1 exp

(
sim(zi, z

+
j )/τ

) ,
where sim(·, ·) is cosine similarity and τ is a learned temperature. Implicit negatives

are provided by all non-matching examples in the batch, eliminating the need for

manual negative sampling. To prevent domain shift between sources, each batch is
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drawn entirely from a single corpus.

We retain GTE’s default mean-pooling over the final hidden states; experiments

with CLS-token or max-pooling yielded no performance gains. As the original GTE

did not include any MLM phase, and our own trials confirmed that adding masked-

language pretraining added cost without benefit, we omit MLM entirely and train

end-to-end on the contrastive objective.

Training Setup. We train on the full set of 2,033,800 positive pairs (Table 3.1),

sampling each batch of size 1,024 proportionally across sources. Training runs for

8,500 steps, which we found sufficient for convergence. Optimization uses AdamW

[104] with weight decay 0.01, a linear warmup over the first 1,000 steps to peak

learning rate 2 × 10−5, followed by cosine decay. Mixed-precision (bfloat16) and

gradient checkpointing maximize batch size under our GPU memory constraints, and

DeepSpeed [147] accelerates large-batch training. At inference, we L2-normalize the

embeddings so that inner-product search is equivalent to cosine similarity.

Data Source Sentence Pair Definition Number of samples

PubMed Article title ↔ abstract sentence #1 572 300
bioRxiv / medRxiv Pre-print title ↔ abstract sentence #1 231 400
MIMIC-IV History of Present Illness ↔ Chief Complaint 311 400
ClinicalTrials.gov Study title ↔ detailed description 378 800
MedMCQA Exam question ↔ answer explanation 151 000
MedQA Exam question ↔ answer explanation 5 300
MedQuAD User question ↔ authoritative answer passage 8 500
TREC-COVID Search query ↔ relevant passage 129 200
NF-corpus Information-need query ↔ relevant document snippet 3 600
CURE-V1 Clinical query ↔ supporting evidence sentence 242 300

Total 2 033 800

Table 3.1: Positive-pair construction for self-supervised contrastive learning
(rounded).
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3.3 Analysis

As a complement to the present work, we developed the MedTEB benchmark to pro-

vide a comprehensive and systematic evaluation of embedding models on a variety of

medical-domain tasks, including classification, Clustering, Retrieval, and Pair Clas-

sification over clinical and biomedical text. In Chapter 4, we show that our proposed

model achieves state-of-the-art performance, significantly outperforming all existing

baselines across the benchmark. These gains are consistent across different task fam-

ilies and data splits, and persist under rigorous evaluation (e.g., via bootstrapped

confidence intervals and statistical significance testing). The training dynamics are

further examined in the Appendix, where we present the loss curves for both training

and validation.

3.4 Conclusion

MedTE advances medical text embeddings by integrating a GTE backbone [98] with

self-supervised contrastive learning to capture the subtle semantics of clinical lan-

guage. Its 768-dimensional representations, trained on PubMed, PMC, MIMIC-IV,

ClinicalTrials.gov, bioRxiv, and medRxiv, achieve state-of-the-art performance in

classification, clustering, similarity, and retrieval tasks (Chapter MedTEB). The com-

bination of normalized temperature-scaled contrastive loss [127], in-batch hard nega-

tive mining, and parameter-efficient tuning via LoRA [64] ensures both fine-grained

discrimination of medical entities and rapid adaptation to new subdomains.

Limitations The current version of MedTE was trained using an unsupervised con-

trastive learning objective on approximately 2 million samples. While this approach
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enabled broad coverage without task-specific labels, the relatively limited dataset

size may restrict the model’s ability to capture the full diversity of medical language,

particularly for rare conditions or specialized subdomains. In addition, the absence

of supervised fine-tuning on targeted downstream tasks may limit performance in

applications that require precise task-specific optimization.

Future Work Future improvements to MedTE could involve expanding the train-

ing corpus to include a substantially larger and more diverse set of medical texts,

thereby improving coverage and generalization. Incorporating supervised fine-tuning

on curated, task-specific datasets could further enhance performance for applications

such as clinical information retrieval, diagnosis support, and question answering.

Combining these enhancements with frameworks like Retrieval-Augmented Gener-

ation (RAG) and neural rerankers may lead to more accurate and context-aware

medical NLP systems capable of integrating the latest literature during inference.

3.5 Attribution

Citation M. Khodadad, A. Shiraee Kasmaee, M. Astaraki, and H. Mahyar, “To-

wards Domain Specification of Embedding Models in Medicine,” *arXiv*, Jul. 2025,

arXiv:2507.19407. [Online]. Available: https://arxiv.org/abs/2507.19407 [80]

Contributions This work was developed through collaborative efforts. Mohammad

Khodadad contributed to the ideation, preparation of the benchmark, preparation of

the models, and writing. Ali Shiraee assisted with ideation and provided consultation.

Mahdi Astaraki provided consultation and contributed to writing. Dr. Hamidreza

45

http://www.mcmaster.ca/
https://cse.mcmaster.ca//
https://cse.mcmaster.ca//


M.A.Sc. Thesis – Mohammad Khodadad; McMaster University – School of

Computational Science and Engineering

Mahyar supervised the project and provided guidance throughout.

Resources All training jobs were run on Compute Canada infrastructure, using an

A100 Large node with 64 CPU cores and 100 GB RAM. The software stack included

Python, git, openai, PyTorch, and DeepSpeed, with package management handled

via pip. Code is available at https://zenodo.org/records/16882530 and https:

//github.com/MohammadKhodadad/MedTE-dev. Furthermore, the trained MedTE

model (CL15, step 8000) is hosted on Hugging Face and can be accessed at https:

//huggingface.co/MohammadKhodadad/MedTE-cl15-step-8000.
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Chapter 4

MedTEB

Medical text embeddings underpin a wide spectrum of healthcare NLP applications,

from clinical decision support and biomedical literature retrieval to patient-centric

question answering, by transforming unstructured text into dense vector representa-

tions. Despite impressive gains in general-domain embedding research, models like

BERT [43] struggle to capture the specialized vocabulary, abbreviations, and complex

semantics present in medical narratives. Domain-tuned variants such as BioBERT

[91], ClinicalBERT [69], and Med-BERT [148] have been proposed to mitigate this,

yet their evaluation remains fragmented: many are tested on only a handful of narrow

tasks, and often fail to outperform recent general-purpose embedding models like E5

[188] or Sentence-BERT (SBERT) [149] on comparable benchmarks.

Furthermore, existing evaluation suites, whether small-scale clinical similarity sets

or broader frameworks like the Massive Text Embedding Benchmark (MTEB) [116],

offer limited medical coverage, leaving critical tasks such as diagnosis coding, clinical

note retrieval, and patient-centric clustering under-assessed. As a result, it is dif-

ficult to determine which embedding approaches truly generalize across the diverse
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terminologies and inference patterns encountered in practice.

To address these gaps, we introduce MedTEB, a large-scale benchmark of 51

medical text embedding tasks spanning classification, clustering, pair classification,

and retrieval (PubMedQA, clinical note search). We then evaluate a set of medical

and non-medical popular embedding models, and analyze their performance. We also

evaluate our model, MedTE, which is explained in Chapter 5, and compare it with

existing models.

This chapter details the design, data curation, and evaluation protocols of MedTEB,

and presents a comprehensive comparison of MedTE and leading baselines. Our find-

ings reveal that MedTE consistently outperforms both prior medical embeddings

and general-purpose models across every task, underscoring the necessity of domain-

adaptive pretraining and unified benchmarking for robust medical NLP.

4.1 Methodology

4.1.1 Sources

Our corpus combines multiple complementary sources of biomedical knowledge, in-

cluding peer-reviewed literature, preprint archives, real-world clinical narratives, struc-

tured registries, curated encyclopedic content, standardized question–answer datasets,

and specialized training corpora. We start with PubMed [120], a comprehensive

database of biomedical abstracts, and its full-text counterpart, PubMed Central

(PMC) [122], which ground our collection in rigorously reviewed scientific discourse.

To capture authentic clinical language, we use MIMIC-IV [74], a de-identified EHR
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dataset containing clinical notes, discharge summaries, and structured patient infor-

mation representative of bedside documentation. Structured trial metadata, objec-

tives, interventions, and eligibility criteria from ClinicalTrials.gov [121] extend our

coverage to ongoing and completed research across therapeutic areas. For timely ac-

cess to emerging findings, we include life-science preprints from bioRxiv [162] and

clinically focused preprints from medRxiv [109], both offering rich metadata for fine-

grained filtering and trend analysis.

We also incorporate human-curated medical articles from Wikipedia, which pro-

vide systematically structured descriptions of diseases, diagnostics, and treatments,

linking professional terminology with lay explanations [196]. To assess reasoning and

factual recall, we use multiple-choice question datasets: MedMCQA, based on Indian

medical entrance exams [131], and MedQA, aligned with US medical licensing assess-

ments [72]. Additionally, the MedQuAD corpus contributes 47,457 question–answer

pairs sourced from authoritative providers such as the National Cancer Institute,

enhancing coverage of diverse consumer-health inquiries [16].

Collectively, these materials create a comprehensive and well-balanced dataset

that merges structured databases, peer-reviewed literature, clinical text, and edu-

cational sources. This combination offers a strong basis for developing and testing

medical language models in tasks involving retrieval, understanding, and reasoning.

4.1.2 Benchmark Development

In our benchmark, we assembled 51 datasets across four categories, Classification,

Clustering, Pair Classification, and Retrieval, to comprehensively evaluate embedding

models.
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Classification. Given a labeled dataset D = (xi, yi)i = 1N , we fine-tune the embed-

ding model onDtrain, train a logistic regression classifier on the resulting embeddings,

and report macro-averaged F1 on Dtest.

Clustering. For each input xi, we compute embedding zi ∈ Rd and apply Mini-Batch

k-means (batch size 32) to obtain cluster labels ĉi. Clustering quality is measured by

V-measure against true labels ci.

Pair Classification. Each dataset contains pairs (x
(1)
i , x

(2)
i , yi) with binary label

yi. We compute four similarity metrics (cosine, Euclidean, Manhattan, dot product),

select threshold τ on training data to maximize F1, and report the best F1 on test

data.

Retrieval. Queries Q and documents D are embedded into vectors zqj and zdk ; we

rank documents by cosine similarity cos(zqj , zdk) and report nDCG@10 averaged over

queries.

Table 4.1 summarizes the presence of data sources across these tasks.

Table 4.1: Presence of Data Sources in MedTEB

Task MIMIC-IV PMC PubMed Wikipedia MedQA MedMCQA MedQUAD medRxiv bioRxiv Total

Classification 3 3 3 3 7 7 7 7 7 15
Clustering 3 3 7 3 7 7 7 7 7 12
Pair Classification 3 7 7 7 3 3 7 3 7 12
Retrieval 3 7 3 3 3 3 3 3 3 12

These protocols enable a holistic evaluation of embedding quality in both super-

vised and unsupervised scenarios, capturing semantic grouping, pairwise discrimina-

tion, and practical retrieval capabilities across diverse medical text tasks.
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4.2 Results

Our evaluation covered a wide range of embedding models, categorized along two

main axes: domain focus (general-purpose vs. medical) and training approach (con-

trastive learning vs. conventional pretraining). Table 4.2 outlines details such as

model scale, number of parameters, context length, embedding size, and whether

contrastive methods were applied. The non-medical baselines feature transformer ar-

chitectures like BERT [43], SciBERT [15], and E5 [188], together with lighter-weight

Sentence-Transformer versions [149]. The medical group includes ClinicalBERT [69],

BioSimCSE [76], MedEmbed [11], as well as our newly introduced MedTE.

Model Name Size (MB) Params (M) Context Emb. Dim Cons. Lear.

Non-medical models

BAAI BGE Base En V1.5 418 109.48 512 768 Yes
AllenAI SciBERT Scivocab Uncased 422 109.92 512 768 No
Google BERT Base Uncased 420 109.48 512 768 No
Intfloat E5 Base 418 109.48 512 768 Yes
Nomic AI Nomic Embed Text V1 522 136.73 819 768 Yes
Nomic AI Nomic Embed Text V1 Unsupervised 522 136.73 512 768 Yes
Sentence-Tfrs All-MiniLM-L6-v2 87 22.71 512 384 Yes
Sentence-Tfrs All-MPNet-Base-v2 418 109.49 512 768 Yes
Thenlper GTE Base 209 109.48 512 768 Yes

Medical models

BioNLP BlueBERT PubMed MIMIC Uncased L-12 H-768 A-12 420 109.48 512 768 No
Abhinand MedEmbed Base 420 109.48 512 768 Yes
Emily Alsentzer Bio-ClinicalBERT 416 108.31 512 768 No
Kamalkraj BioSimCSE BioLinkBERT Base 413 108.23 512 768 Yes
Malteos SciNCL 419 109.92 512 768 Yes
MedicalAI ClinicalBERT 517 134.73 512 768 No
Microsoft BiomedBERT Base Uncased Abs+Fulltext 420 109.48 512 768 No

MedTE Cl15 Step 8000 438 109.48 512 768 Yes

Table 4.2: Model Specifications for Evaluated Embedding Models, with Domain and
Contrastive-Learning Indicators

Table 4.3 presents performance on classification (macro F1), clustering (V-measure),

pair classification (F1), and retrieval (nDCG@10). Our model, MedTE, achieves the

highest scores across all four task families, with an overall average of 0.578, surpassing

the next best general model (GTE Base V2) at 0.529 and the top clinical baseline
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(MedEmbed) at 0.539.

Model Classification Clustering Pair Cls. Retrieval AvgType AvgAll EvalTime

Non-medical models

BAAI Bge Base En V1.5 0.69 ± 0.22 0.28 ± 0.28 0.67 ± 0.15 0.38 ± 0.36 0.505 0.516 102.78
AllenAI Scibert Scivocab Uncased 0.60 ± 0.20 0.06 ± 0.05 0.64 ± 0.12 0.06 ± 0.07 0.341 0.356 99.26
Google BERT Base Uncased 0.58 ± 0.20 0.10 ± 0.11 0.63 ± 0.11 0.08 ± 0.10 0.348 0.362 102.08
Intfloat E5 Base 0.68 ± 0.22 0.24 ± 0.25 0.67 ± 0.15 0.33 ± 0.33 0.479 0.490 102.51
Nomic AI Nomic Embed Text V1 0.69 ± 0.22 0.28 ± 0.28 0.67 ± 0.15 0.38 ± 0.36 0.503 0.511 112.79
Nomic AI Nomic Embed Text V1 Unsupervised 0.69 ± 0.22 0.29 ± 0.21 0.68 ± 0.16 0.40 ± 0.35 0.515 0.525 90.15
Sentence-Transformers All MiniLM L6 V2 0.68 ± 0.21 0.28 ± 0.17 0.66 ± 0.14 0.34 ± 0.33 0.489 0.501 20.87
Sentence-Transformers All MPNet Base V2 0.70 ± 0.22 0.30 ± 0.21 0.67 ± 0.15 0.35 ± 0.34 0.502 0.514 54.98
Thenlper GTE Base 0.70 ± 0.22 0.28 ± 0.24 0.69 ± 0.16 0.41 ± 0.35 0.518 0.529 94.98

Medical models

Abhinand MedEmbed Base 0.69 ± 0.22 0.36 ± 0.28 0.68 ± 0.16 0.39 ± 0.35 0.529 0.539 53.60
BioNLP Bluebert PubMed Mimic Uncased L-12 H-768 A-12 0.62 ± 0.21 0.09 ± 0.11 0.63 ± 0.11 0.07 ± 0.07 0.351 0.367 52.23
EmilyAlsentzer Bio ClinicalBERT 0.59 ± 0.21 0.06 ± 0.06 0.63 ± 0.11 0.05 ± 0.05 0.334 0.349 104.01
Kamalkraj BioSimCSE BioLinkBERT Base 0.64 ± 0.22 0.23 ± 0.24 0.66 ± 0.14 0.27 ± 0.31 0.449 0.460 53.83
Malteos SciNCL 0.69 ± 0.22 0.34 ± 0.26 0.66 ± 0.14 0.30 ± 0.30 0.498 0.509 98.57
MedicalAI ClinicalBERT 0.60 ± 0.21 0.10 ± 0.10 0.63 ± 0.11 0.06 ± 0.06 0.346 0.366 43.07
Microsoft BiomedNLP BiomedBERT Base Uncased Abstract Fulltext 0.61 ± 0.20 0.12 ± 0.17 0.64 ± 0.12 0.13 ± 0.17 0.374 0.388 49.34

MedTE Cl15 Step 8000 0.72 ± 0.23 0.38 ± 0.24 0.74 ± 0.17 0.45 ± 0.32 0.569 0.578 54.63

Table 4.3: Performance of embedding models on various tasks. All values represent
the average metric per task.

Classification. MedTE attains an F1 score of 0.72, outperforming GTE Base

(0.70) and MedEmbed (0.69). This translates to significantly fewer misclassifications

in downstream clinical decision support tasks.

Clustering. With a V-measure of 0.38, MedTE exceeds MPNet Base V2 (0.30)

and MedEmbed (0.36) , demonstrating superior capability in patient subgroup dis-

covery.

Pair Classification. MedTE achieves F1=0.74 on Pair Classification, improving

over GTE Base (0.69) and MedEmbed (0.68).

Retrieval. MedTE achieves nDCG@10=0.45 on retrieval, improving over GTE

Base by (0.41) and MedEmbed (0.39). These gains reflect a more semantically coher-

ent embedding space.

Impact of Contrastive Learning. Models without contrastive fine-tuning

(BERT, SciBERT, ClinicalBERT) lag significantly across tasks, underscoring that
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domain-adaptive contrastive objectives are crucial for capturing nuanced medical se-

mantics .

Overall, MedTEB establishes a new state-of-the-art for medical text embeddings

Benchmark, demonstrating the importance of contrastive pretraining, and a compar-

ison of medical and non-medical models.

4.2.1 Per Source Performance

As outlined in the data sources section, MedTEB assesses embeddings across diverse

medical text sources. Table 4.4 shows each model’s average performance by source.

Both Abhinand MedEmbed Base and BAAI Bge Base En V1.5 achieve top scores

on PubMed and bioRxiv (0.89–0.90), clearly outperforming SciBERT [15] (PubMed

0.50; bioRxiv 0.18) and BioClinicalBERT [69] (PubMed 0.47; bioRxiv 0.10). MedTE

continues this trend, delivering the highest MIMIC-IV score (0.61) and strong results

for ClinicalTrials.gov (0.81) and medRxiv (0.74). In contrast, general-purpose embed-

dings like All-MiniLM L6 v2 and MPNet Base V2 score only 0.51–0.55 on PubMed

and 0.64–0.67 on bioRxiv, emphasizing the advantage of domain-specific pretraining.

For the MedMCQA and MedQA tasks, both multi-choice medical question an-

swering, results show a consistent challenge: most models average 0.39, reflecting the

inherent difficulty of these benchmarks. Even so, MedTE leads on MedMCQA, likely

due to its broad and diverse medical pretraining. On the general-domain Wikipedia

task, domain-adapted models show only a slight drop in performance, with MedTE

at 0.45 and Thenlper GTE Base at 0.43, outperforming general embeddings such as

All-MiniLM L6 v2 (0.41) and BERT Base (0.26). Overall, the per-source breakdown

confirms that MedTE outperforms other embeddings on specialized biomedical text
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while maintaining competitive results on broader sources.

Figure 4.1 compares model results between MIMIC-IV and Wikipedia tasks, show-

ing that technical clinical notes (MIMIC-IV) are more challenging than encyclopedic

text. Nomic Embed Text V1, a general-domain, contrastively trained model, out-

performs many dedicated clinical embeddings, although MedTE remains the top per-

former. The models naturally group into two categories based on whether they were

trained with contrastive learning, underscoring its role in capturing domain-specific

nuances.

Model BioRxiv Clinical Trials MIMIC-IV MedMCQA MedQA MedQuAD MedRxiv PMC PubMed Wikipedia

Non-medical models

BAAI Bge Base En V1.5 0.89 0.68 0.53 0.39 0.39 0.40 0.78 0.28 0.88 0.40
AllenAI Scibert Scivocab Uncased 0.18 0.37 0.42 0.39 0.39 0.05 0.06 0.27 0.50 0.25
Google BERT Base Uncased 0.27 0.37 0.42 0.39 0.39 0.06 0.13 0.26 0.51 0.26
Intfloat E5 Base 0.85 0.65 0.51 0.39 0.39 0.38 0.66 0.27 0.79 0.37
Nomic AI Nomic Embed Text V1 0.90 0.67 0.57 0.39 0.39 0.37 0.82 0.28 0.88 0.39
Nomic AI Nomic Embed Text V1 Unsupervised 0.90 0.71 0.54 0.39 0.39 0.37 0.82 0.27 0.88 0.42
Sentence-Transformers All MiniLM L6 V2 0.85 0.64 0.55 0.39 0.39 0.35 0.68 0.28 0.82 0.41
Sentence-Transformers All MPNet Base V2 0.85 0.67 0.51 0.39 0.39 0.39 0.69 0.28 0.86 0.45
Thenlper GTE Base 0.89 0.72 0.53 0.39 0.39 0.42 0.78 0.28 0.90 0.43

Medical models

Abhinand MedEmbed Base 0.89 0.69 0.55 0.39 0.39 0.42 0.77 0.28 0.89 0.44
BioNLP BlueBERT PubMed MIMIC Uncased L-12 768 12 0.09 0.39 0.45 0.39 0.39 0.10 0.05 0.26 0.48 0.25
EmilyAlsentzer Bio ClinicalBERT 0.10 0.37 0.43 0.39 0.39 0.06 0.06 0.26 0.47 0.23
Kamalkraj BioSimCSE BioLinkBERT Base 0.77 0.56 0.51 0.39 0.39 0.20 0.60 0.26 0.82 0.30
Malteos SciNCL 0.78 0.63 0.53 0.39 0.39 0.25 0.55 0.27 0.77 0.44
MedicalAI ClinicalBERT 0.13 0.38 0.48 0.39 0.39 0.07 0.07 0.26 0.45 0.21
Microsoft BiomedBERT (abstract+full-text) 0.48 0.40 0.45 0.39 0.39 0.07 0.24 0.27 0.61 0.27

MedTE Cl15 Step 8000 0.86 0.81 0.61 0.39 0.45 0.42 0.74 0.27 0.87 0.45

Table 4.4: Performance of Embedding Models on Various Sources. All values
represent the average metric per task.

Visit the Appendix for further evaluations.
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Figure 4.1: Wikipedia vs MIMIC-IV

4.3 Conclusion

In this chapter, we introduced MedTEB, the first large-scale, multi-task benchmark

dedicated to medical text embeddings, Across 51 tasks spanning classification, clus-

tering, pair classification, and retrieval, MedTE achieved top-rank performance (0.72

F1, 0.38 V-measure, 0.74 F1, 0.45 nDCG@10; overall 0.578), outpacing both general-

purpose and existing medical embeddings. Our per-source analysis further demon-

strated MedTE’s robustness on medical data, while maintaining strong results on

general-domain text (Wikipedia). These findings underscore two key takeaways: (1)
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domain-adaptive contrastive learning is essential for capturing the fine-grained seman-

tics of medical language, and (2) a unified, comprehensive benchmark like MedTEB

is critical for reliably evaluating embedding quality across real-world healthcare ap-

plications. By open-sourcing MedTEB, we lay a foundation for future medical NLP

research.

Limitations While MedTEB demonstrates strong performance across various chem-

ical text embedding tasks, several limitations remain. First, the benchmark does not

currently incorporate varying levels of task difficulty, which constrains its ability to

evaluate model robustness under progressively challenging scenarios. Second, the

dataset’s size and domain diversity are limited, potentially restricting its representa-

tiveness of the full spectrum of real-world chemical text. Additionally, in LLM-based

tasks, particularly pair classification, the employed prompting strategy may inad-

vertently influence the writing style of generated text, introducing potential biases

in evaluation outcomes, and the quality of the generated questions was not system-

atically verified. Moreover, no ablation study was conducted to systematically an-

alyze how individual factors, such as prompt design, dataset choices, or evaluation

setup, contributed to the overall results, and the evaluation relied solely on GPT-4o,

without examining how other models or alternative approaches to substituting LLMs

might impact the findings. Finally, systematic comparisons with classical pair-finding

methods have not yet been conducted, leaving a gap in establishing comprehensive

performance baselines.

Future Work Future work could involve expanding the dataset by incorporating

more data from diverse and complementary sources, enabling the creation of more
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complex tasks and a wider range of difficulty levels for a deeper assessment of model

capabilities. The benchmark could also explore more fine-grained difficulty cate-

gorization to better understand performance across task complexity gradients. In

addition, improvements to LLM prompting strategies could be made in the task gen-

eration process to reduce stylistic biases and improve consistency. Finally, Ablation

studies on different components of the task generation pipeline, especially the parts

that involve LLMs, could further clarify the impact of specific design choices.

4.4 Attribution

Citation M. Khodadad, A. Shiraee Kasmaee, M. Astaraki, and H. Mahyar, “To-

wards Domain Specification of Embedding Models in Medicine,” *arXiv*, Jul. 2025,

arXiv:2507.19407. [Online]. Available: https://arxiv.org/abs/2507.19407 [80]

Contributions This project was the result of collaborative work. Mohammad Kho-

dadad led the ideation, benchmark preparation, and writing. Ali Shiraee contributed

to the ideation and provided consultation throughout the project, while Mahdi As-

taraki assisted with prompt tuning, benchmarking, and writing. Dr. Hamidreza

Mahyar supervised the project and provided overall guidance.

Resources All experiments were conducted on Compute Canada infrastructure,

utilizing 64 CPU cores and 150 GB RAM. The software environment included Python,

git, openai, MTEB, and Sentence-Transformers for optimized evaluation, with

package management handled via pip. Code is available at https://zenodo.org/

records/16882534 and https://github.com/MohammadKhodadad/MedTEB-dev
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Chapter 5

ChemTEB

5.1 Introduction

The application of deep learning and transformer-based architectures has led to sub-

stantial advances in natural language understanding, yet the unique linguistic and se-

mantic challenges of chemical literature remain under-addressed. Early text represen-

tation methods such as Word2Vec [110] and GloVe [135] capture word co-occurrence

statistics, but they lack the contextual sensitivity required for domain-specific ter-

minology. The advent of self-attention in Transformers [182] and models like BERT

[43] and RoBERTa [103] improved contextual embeddings, while domain-tuned vari-

ants such as SciBERT [15] began to close the gap for scientific text. However, even

recent contrastive-learning approaches (e.g. E5 [188], Nomic Embed [125]) and multi-

granular models (M³-Embed [119]) are primarily evaluated on general or broad-science

benchmarks like MTEB [116].

Chemical NLP poses distinct challenges: SMILES and IUPAC strings follow rigid

syntactic rules, while textual descriptions in patents, literature, and safety data sheets
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exhibit dense domain-specific jargon and abbreviations. Embeddings must therefore

capture both structural nuances of chemical identifiers and the semantic context of

narrative descriptions. Moreover, applications such as reaction prediction, patent

retrieval, and cheminformatics-driven literature mining demand high precision and

recall of chemically meaningful concepts.

To address these needs, we introduce the Chemical Text Embedding Benchmark

(ChemTEB), a comprehensive evaluation suite designed explicitly for the chemical

sciences. ChemTEB comprises tasks spanning chemical text classification, similarity

assessments between natural language and SMILES pairs, clustering of reaction de-

scriptions, and retrieval of protocol or spectral data. By evaluating 34 open-source

and proprietary models, including both generic and chemistry-tuned embeddings,

ChemTEB reveals the strengths and limitations of current methodologies in process-

ing chemical information. Our benchmark, accompanied by open-source code and

data, provides a standardized, domain-specific framework to guide the development

of more accurate, efficient NLP models for chemistry applications.

5.2 ChemTEB

The Chemical Text Embedding Benchmark (ChemTEB) evaluates embedding models

on a suite of chemistry-focused tasks, leveraging heterogeneous datasets that capture

both structured and unstructured chemical knowledge. We draw from five primary

sources: the PubChem compound database for molecular property and similarity

tasks [83], English Wikipedia for standardized chemical concept descriptions, the

BEIR retrieval benchmark for text-based search evaluations [175], CoconutDB for

year-extracted reaction and synthesis data [169], and industry Safety Data Sheets
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(SDS) for domain-specific terminology and hazard classification [136]. Each task and

its associated dataset has been curated or validated in collaboration with profes-

sional chemists to ensure that ChemTEB reflects real-world requirements in chemical

information retrieval, classification, and similarity assessment.

5.2.1 Tasks

ChemTEB comprises five task categories, each designed to probe distinct aspects of

chemical text understanding:

• Classification: Assigning documents (e.g. SDS entries or Wikipedia abstracts)

to predefined chemical categories such as hazard classes or compound families.

• Pair Classification: Determining semantic equivalence between natural-language

descriptions and SMILES representations, or between reaction step descriptions.

• Clustering: Grouping related chemical documents or compound descriptions

into coherent clusters, evaluated using metrics like V-measure.

• Retrieval: Ranking relevant chemical literature or protocol documents given

a query (e.g. retrieving synthesis procedures from CoconutDB or PubChem

entries based on text queries).

• Bitext Mining: Aligning parallel corpora of SMILES strings and their corre-

sponding textual descriptions to measure alignment quality.

For each benchmark, we describe the source dataset, preprocessing steps, in-

put–output format, and evaluation metric. Table 5.1 summarizes the dataset sizes,
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label schemas, and key statistics for all tasks in ChemTEB, providing a concise ref-

erence for model comparison and further extension.

Table 5.1: Datasets summary. This table provides an overview of the datasets used
across different tasks, including the dataset names from Hugging Face, the original
data sources, and the distribution of sample sizes. The distribution is represented

through key statistical measures: 5th percentile, median, and 95th percentile of the
number of tokens

Sequence Lengths (tokens 1)
Task HuggingFace Name Data Source #Samples

5th Percentile Median 95th Percentile

1 WikipediaEasy10Classification Wikipedia 2105 42 178 612.4
2 WikipediaEasy5Classification Wikipedia 1164 43 171.5 547.85
3 WikipediaMedium5Classification Wikipedia 617 39 137 563.6
4 WikipediaMedium2CrystallographyVsChromatographyTitrationpHClassification Wikipedia 1451 41.5 175 658.5
5 WikipediaMedium2BioluminescenceVsNeurochemistryClassification Wikipedia 486 42 158 574.25
6 WikipediaEZ2Classification Wikipedia 58921 41 164 590
7 WikipediaHard2BioluminescenceVsLuminescenceClassification Wikipedia 410 41 148.5 579.3
8 WikipediaEasy2GeneExpressionVsMetallurgyClassification Wikipedia 5741 42 175 630
9 WikipediaEasy2GreenhouseVsEnantiopureClassification Wikipedia 1136 34 139.5 513
10 WikipediaEZ10Classification Wikipedia 43146 41 165 582
11 WikipediaHard2SaltsVsSemiconductorMaterialsClassification Wikipedia 491 38.5 141 447.5
12 WikipediaEasy2SolidStateVsColloidalClassification Wikipedia 2216 42 151 532
13 WikipediaMedium2ComputationalVsSpectroscopistsClassification Wikipedia 1101 38 155 639
14 WikipediaHard2IsotopesVsFissionProductsNuclearFissionClassification Wikipedia 417 43.8 209 706.4

Classification

15 WikipediaEasy2SpecialClassification Wikipedia 1312 35.55 133 465
16 SDSGlovesClassification Safety Data Sheets 8000 498 1071 1871
17 SDSEyeProtectionClassification Safety Data Sheets 8000 492 1060 1876

18 CoconutSMILES2FormulaBM CoconutDB 8000 6 11 150
19 PubChemSMILESISoTitleBM PubChem 14140 4 22 93
20 PubChemSMILESISoDescBM PubChem 14140 12 45 134
21 PubChemSMILESCanonTitleBM PubChem 30914 3 12 43

BitextMining

22 PubChemSMILESCanonDescBM PubChem 30914 8 24 109

23 ChemHotpotQARetrieval HotpotQA 10275 19 71 183
Retrieval

24 ChemNQRetrieval Natural Questions 22960 13 81 231

25 WikipediaMedium5Clustering Wikipedia 617 39 137 563.6
Clustering

26 WikipediaEasy10Clustering Wikipedia 2105 42 178 612.4

27 WikipediaAIParagraphsParaphrasePC Wikipedia 5408 28 104 354
28 CoconutSMILES2FormulaPC CoconutDB 8000 6 11 108
29 PubChemAISentenceParaphrasePC PubChem 4096 9 20 59
30 PubChemSMILESCanonTitlePC PubChem 4096 4 16 30
31 PubChemSynonymPC PubChem 4096 3 8 38
32 PubChemSMILESCanonDescPC PubChem 4096 12 23 105
33 PubChemSMILESIsoDescPC PubChem 4096 12 48 125
34 PubChemSMILESIsoTitlePC PubChem 4096 4 35 70

PairClassification

35 PubChemWikiParagraphsPC PubChem 4096 8 66 235

Classification. Each dataset comprises a text field and corresponding labels. We

fine-tune each embedding model on the training split and train a logistic regression

classifier on the resulting embeddings. Performance is evaluated on the test split

using macro-averaged F1 [108]. Classification datasets are drawn from: (i) chemistry-

related English Wikipedia articles categorized into subfields, and (ii) Safety Data

Sheets (SDS) providing detailed chemical hazard and property information [136].

Clustering. We group related text segments into coherent clusters using Mini-Batch
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k-means (batch size 32) on sentence embeddings. Clustering data are constructed

from Wikipedia article sections, with cluster quality measured by V-measure [154].

Pair Classification. This binary task determines if two texts refer to the same

chemical entity or match compound descriptions to their SMILES representations. We

embed each pair, compute four similarity metrics (cosine, Euclidean, Manhattan, dot

product), select the optimal threshold on the training set, and report the maximum

F1 across metrics. Datasets originate from PubChem [83] and COCONUT [169].

Bitext Mining. We align pairs of semantically equivalent texts, SMILES strings and

their natural-language descriptions, by ranking corpus embeddings against query em-

beddings using cosine similarity. Data sources include PubChem [83] and COCONUT

[169]. Performance is measured by F1 over correctly retrieved pairs.

Retrieval. Each retrieval dataset consists of queries and a document corpus with

relevance labels. We embed all texts and rank documents by cosine similarity. A

chemistry-focused subset of Natural Questions [86] and HotpotQA [207] is used, with

nDCG@10 as the primary metric.

5.2.2 Embedding Models

We evaluate 34 embedding models (27 open-source, 7 proprietary) spanning general

and chemistry-specific architectures. Refer to the appendix for the summarization of

model sizes, training objectives, and domain specializations. (Detailed specifications

are shown in the Appendix.)
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5.2.3 Ranking Process for Model Performance

Models are ranked within each task category by computing the arithmetic mean of

performance metrics across all datasets. To aggregate across categories, we apply

Reciprocal Rank Fusion (RRF) [39]:

RRF score(m) =
∑

d∈Datasets

1

k + rd(m)
,

where rd(m) is the rank of model m on dataset d, and k = 10 is a constant dampening

factor. The final RRF score reflects a model’s overall ranking across all ChemTEB

tasks, with higher scores indicating more consistent high performance.

5.3 Results

5.3.1 Model Performance

Table 5.3.1 presents each model’s average score per task category and its overall

ranking (RRFscore). From a model perspective, no single architecture dominates

every task; however, proprietary embeddings generally outperform open-source coun-

terparts. Notably, OpenAI-Text Embedding 3-Large ranks first in three of five task

categories [26], while among open-source solutions, Nomic Embed Text V1.5 achieves

the best overall RRFscore [125].
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Classification Bitext Mining Retrieval Clustering Pair Classification Final Score

(Macro F1) (F1) (nDCG@10) (V-measure) (Max F1) (RRF)

BERT 0.72±0.04 0.0±0.0 0.28±0.02 0.2±0.03 0.41±0.05 0.122

SciBERT 0.71±0.04 0.0002±0.0 0.2±0.03 0.18±0.02 0.43±0.05 0.122

MatSciBERT 0.7±0.04 0.0003±0.0001 0.11±0.02 0.21±0.03 0.41±0.05 0.122

Chemical BERT 0.68±0.04 0.0003±0.0 0.17±0.01 0.13±0.02 0.42±0.05 0.120

Nomic BERT 0.67±0.04 0.0001±0.0 0.05±0.0 0.22±0.03 0.38±0.04 0.118

Nomic Embedding v1 0.77±0.04 0.0023±0.0002 0.72±0.02 0.46±0.03 0.55±0.06 0.285

Nomic Embedding v1.5 0.78±0.04 0.0026±0.0002 0.75±0.02 0.5±0.04 0.55±0.06 0.339

SBERT - all Mini LM L6.v2 0.78±0.03 0.0015±0.0002 0.61±0.01 0.36±0.02 0.54±0.06 0.232

SBERT - all Mini LM L12.v2 0.77±0.04 0.0013±0.0001 0.58±0.0 0.34±0.01 0.54±0.06 0.201

SBERT - all MPNET-base.v2 0.78±0.04 0.001±0.0001 0.56±0.0 0.5±0.03 0.54±0.06 0.239

SBERT - multi-qa-mpnet-base.v1 0.74±0.04 0.0009±0.0001 0.56±0.01 0.42±0.04 0.54±0.06 0.185

E5 - small 0.75±0.03 0.0015±0.0001 0.69±0.02 0.12±0.02 0.48±0.05 0.166

E5 - base 0.76±0.04 0.0019±0.0001 0.68±0.01 0.34±0.05 0.49±0.05 0.192

E5 - large 0.77±0.04 0.0029±0.0002 0.7±0.01 0.51±0.04 0.5±0.05 0.290

E5 - small v2 0.76±0.03 0.0012±0.0001 0.69±0.01 0.19±0.03 0.46±0.05 0.165

E5 - base v2 0.76±0.04 0.0016±0.0001 0.68±0.01 0.38±0.05 0.47±0.05 0.178

E5 - large v2 0.76±0.04 0.0022±0.0002 0.73±0.01 0.33±0.05 0.48±0.05 0.214

E5 - Multilingual small 0.74±0.04 0.0018±0.0001 0.76±0.01 0.17±0.01 0.47±0.05 0.207

E5 - Multilingual base 0.75±0.04 0.0022±0.0001 0.68±0.0 0.48±0.03 0.47±0.05 0.196

E5 - Multilingual large 0.74±0.04 0.0026±0.0002 0.67±0.0 0.3±0.05 0.48±0.05 0.187

BGE - small en 0.78±0.04 0.0012±0.0001 0.52±0.04 0.27±0.03 0.48±0.05 0.160

BGE - base en 0.77±0.04 0.0019±0.0001 0.59±0.03 0.44±0.05 0.48±0.05 0.186

BGE - large en 0.78±0.04 0.0016±0.0001 0.44±0.06 0.45±0.05 0.49±0.05 0.191

BGE - small en v1.5 0.78±0.03 0.0013±0.0001 0.63±0.03 0.25±0.04 0.48±0.05 0.180

BGE - base en v1.5 0.77±0.04 0.0018±0.0001 0.69±0.02 0.47±0.05 0.49±0.05 0.219

BGE - large en v1.5 0.78±0.04 0.0019±0.0001 0.67±0.02 0.39±0.06 0.5±0.05 0.224

BGE - Multilingual - M3 0.76±0.03 0.0012±0.0002 0.68±0.02 0.45±0.05 0.47±0.06 0.176

OpenAI - Text embedding 3 - small 0.78±0.04 0.0027±0.0003 0.65±0.01 0.49±0.05 0.5±0.05 0.273

OpenAI - Text embedding 3 - large 0.8±0.04 0.0062±0.0006 0.71±0.01 0.6±0.03 0.53±0.05 0.384

OpenAI - Text embedding - Ada - 02 0.78±0.04 0.0035±0.0002 0.66±0.02 0.52±0.04 0.49±0.05 0.279

Amazon - Titan Text Embedding v2 0.77±0.03 0.0024±0.0002 0.62±0.0 0.49±0.04 0.49±0.05 0.224

Amazon - Titan Embedding G1 Text 0.81±0.03 0.0032±0.0003 0.6±0.02 0.45±0.06 0.49±0.05 0.285

Cohere - Embed English V3 0.81±0.03 0.0012±0.0 0.49±0.04 0.55±0.02 0.53±0.06 0.278

Cohere - Embed Multilingual V3 0.8±0.03 0.0024±0.0001 0.49±0.04 0.53±0.03 0.53±0.06 0.281

Considering task difficulty, classification exhibits the highest scores, reflecting the
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Model Family

A) Classification B) Bitext Mining

D) Clustering E) Pair Classification

C) Retrieval

Figure 5.1: Distribution plots for five categories of tasks. The KDE plots show the
probability density functions, where the x-axis represents the range of predicted
values (performance distribution over tasks of each category and models of each

family) and the y-axis represents the estimated density. Each colored line
corresponds to a unique model family, enabling a clear visual comparison of their

value distributions.

relative simplicity of assigning discrete labels [108]. In contrast, bitext mining, align-

ing SMILES strings with their textual descriptions, yields the lowest performance,

as general-purpose models lack training on chemical notation such as SMILES. Re-

trieval, clustering, and pair classification occupy intermediate positions in descending

order of difficulty and average model performance.

To analyze the influence of architectural family on performance, we group models

into eight clusters: BERT-family [43], Nomic-family [125], SBERT-family [149], E5-

family [188], BGE-family [201], OpenAI-family [26], Amazon-family, and Cohere-

family. Figure 5.1 visualizes each family’s score distribution across tasks using kernel

density estimation [133], highlighting how contrastively trained groups (e.g. Nomic,

E5) often outperform purely MLM-pretrained families.
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5.3.2 Model Efficiency

Embedding models vary widely in parameter count, embedding dimension, and infer-

ence speed. Figure 5.2 plots each model’s pair-classification throughput (queries/sec),

model size (MB), embedding dimension, and overall RRFscore. A clear trend emerges:

larger models tend to be slower but achieve higher RRFscore. For instance, OpenAI-

Text Embedding 3-Large secures the top RRFscore yet exhibits the lowest throughput.

Conversely, SBERT-All-MiniLM-L6-v2 combines minimal model size and embedding

dimension with the highest speed, albeit at reduced performance [149]. Nomic Embed

Text V1.5 strikes a favorable balance between speed and accuracy, making it a strong

open-source candidate for time-sensitive chemical NLP tasks [125].

These efficiency results offer practitioners a pragmatic guide: choose larger, con-

trastively trained models when peak accuracy is required, but prefer compact models

for real-time or resource-constrained chemical information processing.

5.3.3 Domain Adaptation

To date, only a few embedding models have been explicitly adapted to chemistry.

MatSciBERT [51] and ChemicalBERT2 extend the BERT architecture with domain-

specific pretraining on chemical corpora, while SciBERT [15], though trained on broad

scientific text, also shows some chemical capacity. In our bitext mining task, which

requires partial SMILES understanding, these BERT-family adaptations outperform

vanilla BERT-Base. However, their gains do not generalize: outside bitext mining,

they fail to deliver consistent improvements, and collectively they occupy the lowest

2https://huggingface.co/recobo/chemical-bert-uncased
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Figure 5.2: Summary of evaluated models in terms of efficiency. All evaluated
models are depicted in the form of (i) circles (with circle size being proportional to

the number of parameters) for open-source models, and (ii) stars for proprietary
models. The color of the depicted models reflects their embedding dimension. The

x-axis denotes the averaged inference speed (embedded samples/sec) calculated over
seven pair classification tasks (tasks 29 - 35 in table 5.1) conducted on a V100 GPU

machine.

RRFscore positions (see Supplementary). This suggests that simple domain adapta-

tion of an MLM-only architecture is insufficient for the varied demands of ChemTEB.

Instead, our results imply that contrastive objectives and architectural enhancements

developed after BERT, seen in newer families like E5, BGE, and Nomic, drive greater

semantic discrimination in chemistry. We therefore encourage future work to priori-

tize modern, contrastively trained designs when specializing embeddings for chemical

applications.
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Figure 5.3: Performance comparison between ChemTEB and MTEB benchmarks
across task categories. Each point corresponds to a model evaluated on both suites,

highlighting domain-specific difficulty and the impact of specialized pretraining.

5.4 Conclusion

In this chapter, we presented ChemTEB, the first open-source benchmark tailored to

chemical text embeddings, and analyzed 34 embedding models across classification,

pair classification, clustering, retrieval, and bitext mining. Our extensive evalua-

tions reveal that proprietary, contrastively trained models generally outperform open-

source alternatives, and that simple MLM-based domain adaptation (e.g. MatSciB-

ERT, ChemicalBERT) yields only limited gains. By providing a standardized suite of

36 datasets validated by chemists, ChemTEB enables rigorous comparison and drives

the development of more precise, efficient NLP tools for chemistry. We make all code

and data publicly available, and we hope ChemTEB will serve as a foundation for

future work in chemical NLP, including multimodal integration, causal reasoning, and

retrieval-grounded generation in chemical discovery.
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Limitations While ChemTEB covers a wide range of evaluation tasks, the current

benchmark is skewed toward classification-oriented datasets, with relatively fewer re-

sources dedicated to retrieval. Additionally, a substantial portion of the benchmark’s

text data is sourced from Wikipedia, which, while well-structured, may not fully re-

flect the complexity, diversity, and style of real-world chemical literature, patents,

or experimental records. This concentration in both task type and data source may

limit the generalizability of performance rankings, particularly for models intended

for retrieval-based or generative chemical NLP applications.

Future Work Future iterations of ChemTEB could expand coverage by incorporat-

ing datasets from diverse, domain-rich sources such as scientific journals, patents, lab-

oratory protocols, and chemical safety reports. Increasing the proportion of retrieval

and synthesis-related tasks would enable a more balanced assessment of embedding

models across real-world chemical workflows. In parallel, developing a chemistry-

specialized embedding model trained via contrastive learning on large, heterogeneous

chemical corpora, with chemically informed tokenization, could narrow the perfor-

mance gap with proprietary systems. Further gains may come from integrating these

embeddings into multimodal pipelines that combine text with molecular graphs, re-

action schemes, or spectroscopic data, supporting advanced tasks in discovery and

analysis.
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Chapter 6

Evaluating Multi-Hop Reasoning

in Large Language Models: A

Chemistry-Centric Case Study

6.1 Introduction

Large language models (LLMs) excel at many language tasks but continue to strug-

gle with compositional, multi-step reasoning, particularly in specialized domains like

chemistry where inference must traverse complex relational chains. Chain-of-thought

prompting and structural enhancements (e.g. CoT [192, 190, 211], RAG [95], neuro-

symbolic methods [157]) have improved reasoning in general domains, yet chemical

reasoning benchmarks remain scarce and limited in scope [194, 70].

To fill this gap, we introduce GraphRAG, an automated pipeline that constructs

domain-specific knowledge graphs from recent chemical literature and assesses LLM

performance on challenging multi-hop question-answering. We first apply named
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entity recognition (NER) and LLM-based Extraction to extract chemical entities

and their relations from unstructured text [87]. These entities are linked to exter-

nal resources (e.g. PubChem, ChEBI) to form a richly connected knowledge graph.

Next, GraphRAG generates multi-hop questions by sampling paths of varying lengths

through the graph, ensuring each query requires compositional inference across mul-

tiple edges.

We evaluate both context-augmented (with retrieved graph facts) and non-augmented

settings, measuring accuracy and reasoning fidelity. Our experiments demonstrate

that even perfect retrieval of relevant facts does not guarantee correct multi-step

reasoning, highlighting intrinsic limitations of current LLM architectures in domain-

specific compositional tasks. By providing a fully automated, expert-validated bench-

mark and data generation pipeline, GraphRAG offers a scalable framework for probing

and advancing chemical reasoning capabilities in state-of-the-art language models.

6.2 Methodology

Our approach to evaluating compositional reasoning in chemistry comprises three key

stages: (i) constructing a domain-specific knowledge graph, (ii) generating multi-hop

question–answer pairs from that graph, and (iii) assessing state-of-the-art LLMs on

the resulting QA tasks. The first two components are detailed below; the third is

presented in Experiments. Visit the Appendix for a detailed explanation of these

steps, including the used LLM prompts.
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Figure 6.1: An Overview of the knowledge graph generation pipeline.

6.2.1 Knowledge Graph Generation

As shown in figure 6.1, we automatically build a chemical knowledge graph from

recent ChemRxiv preprints. Using the ChemRxiv API, we retrieve all articles with

redistribution-compatible licenses, then extract each article’s introduction (up to 500

words) via regex-based cleaning. Introductions are split into contiguous chunks of up

to 128 words, ensuring paragraph integrity.

Each text chunk is processed with a PubMedBERT-based NER model [155, 49]

fine-tuned on chemical entity recognition to identify mentions of reagents, products,

catalysts, and other domain entities. Extracted entities are then reviewed and refined

by OpenAI’s gpt-4o to ensure chemical validity and specificity. Relations between

entities (e.g. “catalyzes”, “reacts with”) are likewise extracted using gpt-4o, yielding

subject–predicate–object triplets. To enrich each node, we augment with metadata

and descriptive annotations sourced from Wikipedia and PubChem [82]. The final

graph comprises nodes representing chemically verified entities (with attached de-

scriptions and identifiers) and edges encoding the extracted relations. Figure 6.1

illustrates the pipeline for graph construction.
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6.2.2 Multi-hop Question-Answer Generation

As shown in figure 6.2, To probe compositional reasoning, we sample multi-edge paths

via a randomized breadth-first search over the knowledge graph that enforces distinct

source documents per edge. A path of length K thus spans K+1 entities drawn from

K unique ChemRxiv chunks.

For each edge (ei, ri, ei+1), we first generate a one-hop question: “What entity

ei satisfies the relation ri with ei+1?” When necessary, o3-mini enriches questions

with contextual metadata to ensure unambiguous prompts. We then chain these sub-

questions into a single multi-hop query by reversing the hop order: starting from the

final relation and appending each previous step, guaranteeing that the ultimate an-

swer corresponds to e1. o3-mini also validates the logical coherence of the assembled

question and refines phrasing for clarity.

To prevent spurious or unsolvable items, any question that all target models fail

to answer correctly is discarded. The resulting dataset thus consists of rigorously val-

idated, context-rich multi-hop questions that require stepwise integration of disjoint

graph facts. Figure 6.2 depicts the end-to-end QA generation workflow.

Figure 6.2: Overview of the QA generation Pipeline.
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Model Context Correctness Rate (%) Avg Duration (s) Avg Input Tokens Avg Output Tokens Total Input Tokens (K) Total Output Tokens (K)

Anthropic Claude Sonnet 3.5 V2 7 40.06 1.54 567 29 550.93 28.69
Anthropic Claude Sonnet 3.5 V2 3 72.50 1.68 2210 30 2146.11 29.18
Anthropic Claude Sonnet 3.7 7 44.80 1.61 567 30 550.93 29.35
Anthropic Claude Sonnet 3.7 3 80.02 1.84 2210 30 2146.11 29.49
Anthropic Claude Sonnet 3.7 (Thinking) 7 45.73 39.01 583 1777 566.09 1725.79
Anthropic Claude Sonnet 3.7 (Thinking) 3 84.35 15.35 2228 715 2163.59 694.78
OpenAI GPT-4o-mini 7 32.34 0.63 204 9 198.60 9.63
OpenAI GPT-4o-mini 3 62.82 0.71 1628 10 1581.57 10.01
OpenAI GPT-4o 7 40.27 0.63 204 9 198.60 9.53
OpenAI GPT-4o 3 68.80 0.71 1628 10 1581.57 9.95
OpenAI o1-mini 7 41.09 7.78 160 1047 155.88 1017.55
OpenAI o1-mini 3 71.99 5.68 1609 718 1562.70 697.41
OpenAI o3-mini 7 47.58 10.84 210 1187 204.43 1153.12
OpenAI o3-mini 3 80.33 6.12 1634 558 1587.40 542.46
Mistral Large 7 35.53 0.41 177 13 172.45 13.40
Mistral Large 3 73.94 0.57 1913 14 1857.70 14.22
Llama 3.3 70B Instruct 7 32.13 0.33 330 10 320.47 10.56
Llama 3.3 70B Instruct 3 65.19 0.40 1781 11 1729.91 10.75
Google Gemma 3 27B 7 32.03 0.89 163 12 158.95 11.94
Google Gemma 3 27B 3 69.72 1.00 1587 12 1541.55 12.57
DeepSeek R1 7 44.39 21.06 159 1466 154.40 1423.73
DeepSeek R1 3 81.98 8.61 1551 573 1506.14 556.55
Qwen QwQ 32B 7 35.74 68.29 168 2167 163.51 2104.86
Qwen QwQ 32B 3 79.81 25.18 1665 757 1617.45 735.86
DeepSeek R1 Distill Qwen 32B 7 34.19 32.04 159 1074 154.70 1043.56
DeepSeek R1 Distill Qwen 32B 3 79.09 12.11 1633 400 1586.25 389.31

Table 6.1: Summary of tested models’ performance in terms of several evaluation
metrics for both Contextual and Non-Contextual Setups

6.3 Experiments and Results

6.3.1 Models Performance

In our experiments, we assessed the domain-specific multi-hop question-answering

performance of 13 state-of-the-art large language models, encompassing both reasoning-

oriented and general-purpose variants. Models optimized for test-time compute are la-

beled reasoning models. We tested each model with and without retrieval-provided

context to simulate ideal RAG and closed-book settings. All OpenAI models (gpt-4o,

gpt-4o-mini, o1-mini, o3-mini) were accessed via the OpenAI API; Anthropic and

Mistral family models via Amazon Bedrock; and Google Gemma, Qwen QwQ, and

distilled DeepSeek via OpenRouter. Each model was prompted for JSON output to

enable automatic correctness checking. We measured the Correctness Rate (%) over

971 questions spanning 1–4 hops (avg. 245 per hop). Table 6.1 summarizes overall

performance.

Figure 6.3 plots correctness rate, cost, and latency under both context-provided
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and context-not-provided conditions. In the RAG setting, Llama 3.3 70B Instruct

and GPT-4o achieve minimal cost and latency but the lowest accuracy, offering a

cost-efficient yet less reliable option. Conversely, Claude Sonnet 3.7 (extended)

attains the highest correctness at significantly greater cost and latency. Qwen QWQ

32B and DeepSeek R1 Distill QWQ 32B strike favorable cost-accuracy trade-offs in

the RAG setup, though with above-average latency. In the closed-book setting, open-

source reasoning models (R1 Distill Qwen, QWQ-32B, R1) underperform relative to

closed-source variants, suggesting broader pre-training benefits. Extended thinking

for Claude 3.7 offers no advantage without context, instead increasing token usage

and cost. Detailed metrics appear in Table 6.1.

6.3.2 Comparison with HotpotQA and ChemlitQA

To contextualize our results, we extracted a chemistry-specific subset of HotpotQA

[207] by filtering questions whose Wikipedia titles fall under the Chemistry cate-

gory and its subcategories. We evaluated models on this subset using only sup-

porting documents as context. Figure 6.4 compares average correctness rates with

and without context. With context, model performance is similar across benchmarks,

though our ChemRxiv-derived dataset yields slightly lower averages and reduced vari-

ance. Without context, models struggle more on our ChemMultiHop dataset than

on HotpotQA, likely because HotpotQA’s Wikipedia source overlaps with model pre-

training, whereas our dataset draws from recent ChemRxiv papers augmented with

PubChem and Wikipedia metadata.
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'
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Figure 6.3: Performance of selected models is shown in terms of correctness rate,
cost, and latency. The cost axis uses a logarithmic scale to highlight differences.

The y-axis indicates the percentage of questions each model answers correctly, and
the size of each dot reflects the model’s average latency when responding. The top

panel shows results for setups where context is provided, and the bottom panel
shows results for setups without context. The horizontal axis range is the same in

both panels, but the vertical axis ranges differ.
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Figure 6.4: Comparison of LLM performance on the chemical subset of HotPotQA
versus the curated QA dataset from this study. Error bars indicate the standard

error of the mean (S.E.M) across the evaluated models.

6.4 Analysis and Ablation

This section provides detailed ablation studies and benchmark analyses. We begin

by investigating how context availability and test-time reasoning influence model

performance and efficiency. We then analyze how the number of reasoning hops,

serving as a measure of question difficulty, affects both model accuracy and the token

count required to produce an answer.

6.4.1 Dataset- and Graph-level Statistics

Table 6.2 provides a concise overview of both our dataset-level and graph-level statis-

tics. In Table 6.2a, we summarize key properties of the 971 multi-hop questions,

including average question and answer lengths (in characters and tokens), the mean

number of hops per question, total and pooled context lengths, and the proportion

of questions containing at least one shortcut edge. Table 6.2b then reports the main

network characteristics of the underlying knowledge graph: its size (nodes and edges),
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QA Metric Mean Std. Dev.

Question length (chars) 319.42 129.17
Question length (tokens) 45.49 18.64
Answer length (chars) 16.66 9.69
Answer length (tokens) 1.76 0.96
Mean # hops per question 2.45 1.12
Total context length (chars) 5993.10 5009.69
Total context length (tokens) 848.55 725.78
Hop length (chars, pooled) 2447.14 2222.35
Hop length (tokens, pooled) 346.49 324.56
Shortcut count per question 0.12 0.38

Hop-count Distribution (of 971 questions)
1 hop 258 26.6%
2 hops 245 25.2%
3 hops 242 24.9%
4 hops 226 23.3%
5 hops 0 0%

Questions w/ 1 shortcut 96 (of 971)

(a) Dataset-level statistics for multi-hop
questions

Graph Metric Value

Number of nodes 14 523
Number of edges 13 419
Density 0.000127
Degree (min / max / avg) 0 / 257 / 1.85
Connected components 4 684
Largest component size 7 318
Avg. clustering coefficient 0.0298
Degree assortativity coefficient –0.0265

Top 5 nodes by degree
hydrogen (257), carbon (250), oxygen
(232), CO2 (220), lithium (155)

(b) Key network-level properties of the
loaded knowledge graph

Table 6.2: Overview of both dataset-level and graph-level statistics. Left: dataset
stats for 971 questions; Right: key graph properties.

sparsity (density), degree distribution (min, max, and average), number of connected

components and the size of the largest component, as well as clustering and assorta-

tivity coefficients. Finally, the five highest-degree nodes, hydrogen, carbon, oxygen,

CO2, and lithium, are listed to highlight the most central concepts in the graph.

Table 6.3 compares our dataset (ChemKGMultiHopQA) with HotpotQA-Chemistry

and ChemLitQA-multi across question count, bridged entities, entity types, answer

formats, domain, and source.

Dataset # Qs # bridged entities # entity types Answer type Domain Source

HotpotQA-Chemistry 980 0–4 General Short Wikipedia Crowd (Wiki)
ChemLitQA-multi 742 1 Chemistry Long & Short ChemRxiv LLM + expert verified
ChemKGMultiHopQA 971 0–3 Chemistry Short ChemRxiv + PubChem & Wikipedia LLM + NER + KG (auto) + expert subset

Table 6.3: Comparison of HotpotQA, ChemLitQA-multi, and
ChemKGMultiHopQA datasets.
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6.4.2 Expert Feedback

We began with 52 multi-hop questions, each paired with a fully worked, hop-by-hop

answer, and asked a panel of domain experts to rate answer quality. Twelve questions

(23%) were dropped due to low evaluator confidence, leaving 40 high-confidence items.

Table 6.4 categorizes these into Good (26, 65%), Ok (9, 22.5%), and Poor (5, 12.5%)

based on expert ratings. For each category, we report the average number of models

that correctly answered with full context versus none, along with the mean number

of hops required.

Category Num. Qs Avg. Correct (+ctx) Avg. Correct (–ctx) Avg. Hops

Good 26 (65%) 7.5 4.2 2.46
Ok 9 (22.5%) 7.55 3.44 2.55
Poor 5 (12.5%) 7.8 4.6 2.60

Table 6.4: Expert-rated quality of 40 high-confidence questions. Num. Qs gives
count and percentage; Avg. Correct (+ctx)/(–ctx) shows mean number of models
answering correctly with and without context; Avg. Hops is the average reasoning

hops.

6.4.3 Context and Reasoning

This analysis contrasts the performance of two model categories: reasoning models,

which incorporate test-time reasoning, and non-reasoning models, which do not, un-

der two conditions, one with contextual information and one without. As illustrated

in Figure 6.5-A, the inclusion of context leads to a significant improvement in accu-

racy, nearly doubling the scores for both categories. Furthermore, reasoning models

consistently outperform non-reasoning counterparts, gaining additional advantages

from their reasoning abilities when context is available.
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Consistent with expectations (Figure 6.5-B), non-reasoning models exhibit lower

response times than reasoning models. For the latter, access to context decreases both

latency and the number of output tokens, likely because the provided information

reduces the need to construct complete reasoning chains from the ground up. Further

details can be found in the Appendix.

A B

Figure 6.5: Impact of reasoning and context on model correctness rate (left) and
latency (right). Error bars show the standard error of the mean across models

within each category.

6.4.4 Impact of the Number of Hops

We next investigate how the number of reasoning hops affects correctness rate and

output token count in the context-provided setup. Figure 6.6-A shows that as hop

count increases, the number of tokens generated (i.e., reasoning steps) also rises, while

the correctness rate for multi-hop questions remains relatively stable yet slightly lower

than for single-hop tasks. For single-hop questions, higher token counts correlate with

a small decrease in accuracy, suggesting that excessive reasoning may introduce noise
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for simpler queries. These patterns vanish in the no-context setting (see Supplemen-

tary).

A) B) 

Figure 6.6: Analysis of hop count impact in the context-provided setup. A: Output
token usage vs. correctness rate for reasoning models, colored by hop count. B:

Correctness rate distributions for non-reasoning models across different hop counts
(dots indicate medians).

6.5 Conclusion

In this study, we designed a domain-specific multi-hop question answering system and

evaluated state of the art large language models in the chemistry domain. Our results

show that these models have difficulty with in domain multi-hop scientific questions,

answering fewer than half of the queries correctly when no context is provided. While

models fine-tuned for reasoning demonstrate slightly better performance, they still en-

counter substantial challenges. Providing context leads to significant improvements,

nearly doubling the performance of both reasoning and non-reasoning models. How-

ever, even with context, none of the models, including those fine-tuned for reasoning,

achieved a perfect score.
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We also introduce an automated pipeline that combines advanced named entity

recognition with knowledge graph construction to produce complex multi-hop reason-

ing tasks for benchmarking. This framework, which is potentially domain agnostic,

can be adapted to other fields by replacing the chemistry-specific named entity recog-

nition with appropriate alternatives. It offers a strong foundation for future research

aimed at enhancing reasoning abilities in specialized domains.

Limitations Our benchmark was evaluated in two setups: closed-book (no context)

and open-book (full context). In real-world applications, context is typically retrieved

incrementally during reasoning, suggesting a partial-context scenario that we did not

explore. Non-reasoning models, in particular, might benefit from multi-step retrieval

strategies rather than a single retrieval pass. Recent work on multi-hop RAG pipelines

demonstrates promising approaches for iterative retrieval and answer refinement [174,

163, 214, 102]. Furthermore, chemically, evaluating a greater number of questions

might be beneficial in checking the quality of work. Currently, only 40 questions were

sampled and evaluated, which constitute about 4% of the generated questions.

Future Work Building on these findings, future work could investigate partial-

context and incremental retrieval settings that more closely mimic real-world infor-

mation access. Developing multi-hop RAG pipelines tailored to chemical texts, with

iterative retrieval and reasoning cycles, may help bridge the performance gap ob-

served in closed-book setups. Expanding the benchmark to include a larger and more

diverse set of multi-hop questions, sourced from patents, research articles, and exper-

imental reports, would improve its coverage and robustness. Additionally, exploring

advanced prompting techniques and LLM chaining workflows, such as decomposing
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complex queries into sub-questions and integrating intermediate reasoning steps, may

further enhance large language models’ ability to handle complex, in-domain multi-

hop queries without requiring additional model training.

6.6 Attribution

Citation M. Khodadad, A. Shiraee Kasmaee, M. Astaraki, N. Sherck, H. Mahyar,

and S. Samiee, “Evaluating Multi-Hop Reasoning in Large Language Models: A

Chemistry-Centric Case Study,” arXiv preprint arXiv:2504.16414, 2025. [Online].

Available: https://arxiv.org/abs/2504.16414 [79]

Contributions This work was developed through collaborative efforts. Mohammad

Khodadad contributed to the ideation, preparation of the benchmark, preparation of

the models, and writing. Ali Shiraee assisted with ideation and provided consul-

tation. Mahdi Astaraki provided consultation and contributed to writing. Nicholas

Sherck handled the chemical side of the work. Hamidreza Mahyar and Soheila Samiee

supervised the project and provided guidance throughout.

Resources All preparations and experiments were conducted on internal BASF

servers, utilizing 32 CPU cores and 64 GB RAM. The software environment included

Python, PyTorch, openai, aws, and git, with package management handled via pip.

Code is available at https://zenodo.org/records/16882520 and https://github.

com/MohammadKhodadad/ChemKGMultiHopQA

84

http://www.mcmaster.ca/
https://cse.mcmaster.ca//
https://cse.mcmaster.ca//
https://zenodo.org/records/16882520
https://github.com/MohammadKhodadad/ChemKGMultiHopQA
https://github.com/MohammadKhodadad/ChemKGMultiHopQA


Chapter 7

Conclusion and Future Work

The rapid evolution of large language models (LLMs) and embedding techniques has

revolutionized natural language processing, yet specialized domains such as chemistry

and medicine present unique challenges that generic benchmarks and models often

fail to address. This thesis tackled these challenges through three interrelated contri-

butions: the development of domain-specific benchmarks (MedTEB and ChemTEB),

the creation of a contrastively trained medical embedding model (MedTE), and the

introduction of GraphRAG, an automated pipeline for multi-hop reasoning in chem-

istry. By systematically evaluating state-of-the-art models across these frameworks,

we have advanced our understanding of domain adaptation, compositional reasoning,

and evaluation methodologies in specialized NLP.

In Chapter 3, we introduced MedTE, a General Text Embedding (GTE) model

fine-tuned via self-supervised contrastive learning on a richly curated corpus of PubMed

abstracts, MIMIC-IV clinical notes, and other sources. Empirical results showed that

MedTE consistently outperforms both general-purpose embeddings and prior medi-

cal models, demonstrating the decisive impact of contrastive objectives and diverse
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domain data on embedding quality.

To fill the medical evaluation gap, Chapter 4 presented MedTEB, a benchmark

suite of 51 tasks spanning classification, clustering, pair classification, and retrieval,

tailored to the complexities of clinical and biomedical narratives. Complementing

MedTEB,

In Chapter 5, we delivered ChemTEB, a novel benchmark for the chemical sci-

ences that encompasses classification, bitext mining, clustering, retrieval, and molec-

ular similarity tasks. ChemTEB’s datasets, derived from PubChem, CoconutDB,

Safety Data Sheets, and Wikipedia, were validated by chemists to ensure real-world

relevance.

Building on these foundations, Chapter 6 introduced GraphRAG, an automated

pipeline that constructs chemical knowledge graphs via NER and LLM-based relation

extraction, then generates and validates multi-hop question–answer pairs. GraphRAG’s

evaluation of LLMs with and without RAG demonstrated that even perfect retrieval

cannot fully mitigate reasoning errors in compositional tasks, highlighting fundamen-

tal limitations in current model architectures [192].

Looking ahead, several promising directions emerge:

• Improving MedTE by incorporating harder negatives (e.g., online and ontology-

informed mining), expanding and continuously refreshing the training corpus

with more real medical data (full-text clinical narratives, longitudinal records,

multilingual sources), and applying lightweight domain-adaptive tuning to stay

aligned with evolving terminology and low-resource subdomains.

• Extending MedTEB by adding bitext mining and reranking tasks, increasing

coverage of real clinical data, introducing graded difficulty and structured/temporal
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reasoning challenges, and injecting robustness evaluations (distribution shift,

adversarial perturbations) alongside more realistic decision-support scenarios.

• Improving ChemTEB and developing a dedicated chemical embedding model

by bolstering benchmark tasks, especially retrieval using domain-aware dense or

hybrid methods, expanding task diversity to reflect modern chemist workflows,

training a chemistry text model, and evaluating on ChemTEB.

• Refining GraphRAG by integrating retrieval into end-to-end evaluation instead

of relying on golden context, enabling iterative multi-hop query reformulation,

adding confidence and error detection mechanisms, dynamically updating and

relevance-pruning the underlying knowledge graph, and incorporating expert-

in-the-loop feedback.

In sum, this thesis demonstrates that domain-specialized benchmarks, contrastive

pretraining, and automated reasoning pipelines are critical pillars for advancing NLP

in chemistry and medicine. By open-sourcing our benchmarks, models, and pipelines,

we aim to catalyze future research and drive the development of reliable, high-impact

language technologies tailored to specialized scientific domains.
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Appendix

A.1 MedTE

A.1.1 Loss

Figure A.1 presents the training and validation loss across the full pre-training sched-

ule. While both curves show a steady decline, the average MedTEB score reaches

its highest point around step 6000 before dropping by step 8000. This difference

occurs because decreases in contrastive loss do not necessarily correspond to better

downstream performance, particularly when benchmark data is excluded from both

training and validation sets. In other words, even if contrastive loss improves, down-

stream evaluation is still crucial to confirm actual performance gains.
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Figure A.1: Training and validation loss curves for MedTE.

A.2 MedTEB

A.2.1 wiki-pubmed and pubmed-mimic-IV

In Figure 4.1, the results illustrate how the assessed models perform on MIMIC-IV

compared with Wikipedia, revealing a pronounced disparity between clinical language

and general-domain content. Figures A.2a and A.2b extend this analysis by incor-

porating PubMed, a large, peer-reviewed biomedical literature repository, into the

evaluation, enabling direct comparison across MIMIC-IV, Wikipedia, and PubMed.

By adding this third corpus, we can more clearly investigate the impact of expo-

sure to formal biomedical writing on cross-domain generalization. Models that un-

dergo domain-specific pretraining on PubMed tend to narrow the gap in MIMIC-IV

performance while retaining strong results on Wikipedia, demonstrating both the
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strengths and the inherent trade-offs of leveraging specialized corpora for tasks span-

ning biomedical and general language contexts.
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Figure A.2: Comparison of document styles across datasets.

A.2.2 Runtime–effectiveness overview

Figure A.3a compares evaluation time (in seconds) with task specific effectiveness

across the four benchmark families: classification, clustering, pair classification, and

retrieval. In each scatter plot, our model appears in the upper left region, indicating

both high accuracy and low latency. Pearson correlation values range from r = −0.32

for retrieval to r = −0.07 for clustering, suggesting only a weak and sometimes

negative relationship between longer evaluation times and higher scores. Figure A.3b

presents the same data averaged per model, showing a similarly small overall trend

(r = −0.12) and reinforcing that efficient contrastive training can deliver state of the

art performance without increasing inference cost.
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Figure A.3: (a) Evaluation time vs. effectiveness across all task categories; (b)
Per-model average performance vs. evaluation time; (c) Legend for the four model

groups.
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A.3 Chemteb

A.3.1 Models Spec

Model Name HuggingFace Model / Model ID (Proprietary) Model Size # Parameters Context length Embedding size

Open-Source Models

1 BERT google-bert/bert-base-uncased 440 MB 109.4 M 512 768

2 SciBERT allenai/scibert scivocab uncased 442 MB 109.9 M 512 768

3 MatSciBERT m3rg-iitd/matscibert 440 MB 109.9 M 512 768

4 Chemical BERT recobo/chemical-bert-uncased 440 MB 109.9 M 512 768

5 Nomic BERT nomic-ai/nomic-bert-2048 549 MB 136.7 M 2048 768

6 Nomic Embedding v1 nomic-ai/nomic-embed-text-v1 547 MB 136.7 M 8192 768

7 Nomic Embedding v1.5 nomic-ai/nomic-embed-text-v1.5 547 MB 136.7 M 8192 768

8 SBERT - all Mini LM L6.v2 sentence-transformers/all-MiniLM-L6-v2 90.9 MB 22.7 M 512 384

9 SBERT - all Mini LM L12.v2 sentence-transformers/all-MiniLM-L12-v2 133 MB 33.3 M 512 384

10 SBERT - all MPNET-base.v2 sentence-transformers/all-mpnet-base-v2 438 MB 109.4 M 514 768

11 SBERT - multi-qa-mpnet-base.v1 sentence-transformers/multi-qa-mpnet-base-dot-v1 438 MB 109.4 M 512 768

12 E5 - small intfloat/e5-small 133 MB 33.3 M 512 384

13 E5 - base intfloat/e5-base 438 MB 109.4 M 512 768

14 E5 - large intfloat/e5-large 1.34 GB 335.1 M 512 1024

15 E5 - small v2 intfloat/e5-small-v2 133 MB 33.6 M 512 384

16 E5 - base v2 intfloat/e5-base-v2 438 MB 109.4 M 512 768

17 E5 - large v2 intfloat/e5-large-v2 1.34 GB 335.1 M 512 1024

18 E5 - Multilingual small intfloat/multilingual-e5-small 471 MB 117.6 M 512 384

19 E5 - Multilingual base intfloat/multilingual-e5-base 1.11 GB 278 M 514 768

20 E5 - Multilingual large intfloat/multilingual-e5-large 2.24 GB 559.8 M 514 1024

21 BGE - small en BAAI/bge-small-en 133 MB 33.3 M 512 384

22 BGE - base en BAAI/bge-base-en 438 MB 109.4 M 512 768

23 BGE - large en BAAI/bge-large-en 1.34 GB 335.1 M 512 1024

24 BGE - small en v1.5 BAAI/bge-small-en-v1.5 133 MB 33.3 M 512 384

25 BGE - base en v1.5 BAAI/bge-base-en-v1.5 438 MB 109.4 M 512 768

26 BGE - large en v1.5 BAAI/bge-large-en-v1.5 1.34 GB 335.1 M 512 1024

27 BGE - Multilingual - M3 BAAI/bge-m3 2.27 GB 576.7 M 8192 1024

Proprietary Models

28 OpenAI - Text embedding 3 - small text-embedding-3-small N/A N/A 8191 1536

29 OpenAI - Text embedding 3 - large text-embedding-3-large N/A N/A 8191 3072

30 OpenAI - Text embedding - Ada - 02 text-embedding-ada-002 N/A N/A 8191 1536

31 Amazon - Titan Text Embedding v2 amazon.titan-embed-text-v2:0 N/A N/A 8191 1536

32 Amazon - Titan Embedding G1 Text amazon.titan-embed-text-v1 N/A N/A 8191 1536

33 Cohere - Embed English V3 cohere.embed-english-v3 N/A N/A 512 1024

34 Cohere - Embed Multilingual V3 cohere.embed-multilingual-v3 N/A N/A 512 1024

Table A.1: This table summarizes the embedding models, highlighting each model’s
name, HuggingFace model or proprietary ID, model size on disk, number of

parameters, the maximum context length, and the default embedding dimension.
Models are categorized into open-source and proprietary sections for easier

distinction.
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A.3.2 Ranking of models

Detailed ranking of models on each category of tasks is provided in Table A.2. The

ranking is calculated based on average performance over all tasks in each category

defined on them.

Table A.2: Summary of models rank

Classification Bitext Mining Retrieval Clustering Pair Classification RRF Score(k=10)

Nomic BERT 34 33 34 27 34 0.118
Chemical BERT 33 30 32 33 31 0.120
MatSciBERT 32 31 33 28 32 0.122
BERT 30 34 30 29 33 0.122
SciBERT 31 32 31 31 30 0.122
BGE - small en 12 27 26 25 22 0.160
E5 - small v2 23 25 8 30 29 0.165
E5 - small 25 21 9 34 24 0.166
BGE - Multilingual - M3 21 26 10 15 28 0.176
E5 - base v2 22 18 11 19 25 0.178
BGE - small en v1.5 9 23 18 26 20 0.180
SBERT - multi-qa-mpnet-base.v1 28 29 24 17 5 0.185
BGE - base en 16 13 22 16 19 0.186
E5 - Multilingual large 27 7 14 24 23 0.187
BGE - large en 10 19 29 13 17 0.191
E5 - base 20 14 12 22 15 0.192
E5 - Multilingual base 26 11 13 10 27 0.196
SBERT - all Mini LM L12.v2 18 22 23 21 4 0.201
E5 - Multilingual small 29 16 1 32 26 0.207
E5 - large v2 24 12 3 23 21 0.214
BGE - base en v1.5 15 17 7 11 18 0.219
BGE - large en v1.5 6 15 15 18 12 0.224
Amazon - Titan Text Embedding v2 17 8 19 8 14 0.224
SBERT - all Mini LM L6.v2 8 20 20 20 3 0.232
SBERT - all MPNET-base.v2 7 28 25 6 6 0.239
OpenAI - Text embedding 3 - small 5 5 17 9 10 0.273
Cohere - Embed English V3 2 24 28 2 8 0.278
OpenAI - Text embedding - Ada - 02 11 2 16 4 16 0.279
Cohere - Embed Multilingual V3 4 9 27 3 9 0.281
Nomic Embedding v1 19 10 4 12 2 0.285
Amazon - Titan Embedding G1 Text 1 3 21 14 13 0.285
E5 - large 14 4 6 5 11 0.290
Nomic Embedding v1.5 13 6 2 7 1 0.339
OpenAI - Text embedding 3 - large 3 1 5 1 7 0.384
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A.3.3 Comparison of MTEB and ChemTEB

Figure A.4 reflects the performance of each model in each category of tasks on both

benchmarks. In three out of four categories of tasks, the BERT model provided the

weakest performance in both benchmarks.
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Figure A.4: Comparison of models’ performance on ChemTEB and MTEB
benchmarks across different tasks. Each point represents a model from the

intersection of those tested and those on the MTEB leaderboard as of the date. The
figure highlights variations in task difficulty and domain specificity.
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A.3.4 Correlation between models performances and tasks

Figures A.5 and A.6 illustrate the correlation matrix for the datasets and models,

respectively, with colors representing the strength of the correlations. In figure A.5,

We can observe that in tasks such as classification, bitext mining, and retrieval, the

datasets in a task are correlated except for the SDS datasets in the classification.

In the clustering, and pair classification task, however, this trend is not very obvi-

ous. Especially, in the pair classification task, some of the datasets have negative

correlation.
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Figure A.5: Correlation Matrix across datasets. Each row and column represents a
separate dataset tested in the ChemTEB benchmark. The values and associated
color reflect the correlation between the performance of different models on each

pair of these datasets.
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Figure A.6: Correlation Matrix over Models. Each row and column represents a
separate Model tested in the ChemTEB benchmark. The values and associated

color reflect the correlation between the performance of each pair of models over all
tested datasets.
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A.4 Multi-hop QA over Graph

A.4.1 Detailed Knowledge Graph Generation

In this section, we explain each step in our graph generation process, illustrating how

unstructured chemical text is transformed into a structured representation suitable

for downstream tasks.

Text Preprocessing

We begin by fetching all ChemRxiv articles licensed for redistribution and extracting

each introduction via regex. From each introduction, we take the first 500 words,

enough to capture key background while avoiding noise, making sure not to split

paragraphs. We then split each 500-word excerpt into contiguous, sentence-bounded

chunks of up to 128 words, keeping each piece below our downstream models’ token

limits.

Node Extraction

For each 128-word chunk, we run a PubMedBERT-based NER model (fine-tuned

on chemical corpora) to propose entity spans. We then prompt GPT-4o with a

few-shot task to validate each span as a true chemical entity and normalize labels

(e.g., “MeOH” → “methanol”).

You are a chemistry expert specializing in entity recognition. Your task is to

validate and filter the extracted entities, ensuring they are chemically mean-

ingful based on the provided text. Remove any irrelevant terms, including general
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descriptors, numerical values, reaction conditions, and vague terms.

Entities Extracted by NER:

{entities}

Text for Context:

{text}

Criteria for Valid Entities:

X Chemical compounds (e.g., “HCl”, “Sodium hydroxide”, “Ethanol”, “Ben-

zene”)

X Chemical elements (e.g., “Carbon”, “Oxygen”, “Cesium”)

X Specific catalysts, solvents, reagents (e.g., “Cs2CO3”, “Toluene”, “Palladium”)

Remove the Following Types of Entities:

× Generic terms (e.g., “Reaction”, “Solvent”, “Acid”, “Base”, “Solution”)

× Experimental conditions (e.g., “pH”, “Temperature”, “2 M”, “Strong acid”)

× Measurement terms (e.g., “X-ray diffraction”, “NMR”)

× General descriptors (e.g., “High concentration”, “Low efficiency”)

Output Format:

Return only a Python list of valid chemical entities, with no explanations, mark-

down, or extra formatting.
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Edge Extraction

Using the vetted entities, we prompt the same gpt-4o model on each co-occurring

pair to classify or generate their relationship, yielding triplets (entity A, relation,

entity B). This produces a graph of chemical nodes and directed edges that capture

functional associations from the text. Below is the edge-extraction prompt.

You are an expert in chemical text analysis. Your task is to extract only

chemically meaningful relationships between a given set of entities from the

provided text.

Guidelines for Relation Extraction:

1. Entity Matching: Consider only the entities provided in the given set. If an

entity appears in the text but has no meaningful chemical relationship with

another entity in the set, ignore it.

2. Chemically Significant Relations Only: Extract relations that describe

actual chemical interactions, transformations, or properties (e.g., “re-

acts with,” “catalyzes,” “dissolves in,” “produces”).

3. Factual Relations: Only extract factual relations. Avoid observations, opin-

ions, and findings.

4. Tuple Format: Output extracted facts in the form of (entity1, relation,

entity2).

5. Avoid Generic Relations: Exclude weak relations like “is,” “are,” “exists,”

“relates to.” Focus on specific interactions.
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Valid Relation Types (Examples):

X “reacts with”

X “catalyzes”

X “binds to”

X “dissolves in”

X “oxidizes”

X “inhibits”

X “precipitates with”

X “acts as a solvent for”

X “is synthesized from”

Avoid These Weak Relations: Exclude relations such as “is,” “are,” “has,”

“exists.”

Entities Provided:

{entities}

Text:

{text}

Extract at most {max facts} factual statements.
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Output Format:

Provide the output as a Python list of tuples, containing only the extracted

relationships without any code formatting, backticks, or markdown.

Example Output:

– [ (“HCl”, “dissolves in”, “Water”), (“HCl”, “reacts with”, “Sodium hydrox-

ide”) ]

Knowledge Enrichment

We enhance each node by fetching its Wikipedia summary and PubChem data, official

name, alternate identifiers, record description, safety annotations, canonical SMILES,

molecular formula, and key physicochemical properties (e.g., molecular weight, TPSA,

logP), and store these as external metadata.

Graph Generation

We build the knowledge graph as triplets (node, edge, node), linking each element to

its source text and any retrieved metadata to maintain full traceability.

A.4.2 Detailed Question Generation

Path Sampling from the Knowledge Graph

Using randomized BFS, we sample paths of length K (with K + 1 entities and K

edges), enforcing that each edge comes from a distinct source document to require

multi-document reasoning.
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One-Hop Question Formulation

For each triplet (e1, r, e2), we generate a question, “Which entity has the r relation

to e2?”, and, if necessary, enrich the prompt with contextual metadata via an LLM

to ensure clarity and answerability from the original text.

You are given a text along with an entity and its relation to another entity.

Entity 1: {entity1}

Relation: {relation}

Entity 2: {entity2}

Text: {text}

Information about Entity1: {entity1 meta if entity1 meta else None}

Your task is to generate a factual question whose answer is Entity1.

The question should ask for the entity that has the specified relation to Entity2.

Do not mention the answer (which is Entity1) in the question.

Ensure that the question is factual and can be answered solely based on the given

text and the information about Entity1.

Do not refer to sections such as “Abstract,” “Table 1,” “in the text,” or “in the

article.”

If Entity1 and relation are not specific enough (i.e., multiple answers are

possible), add descriptions from the text or from the information about Entity1
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to make it specific so that Entity1 is the only answer.

Return a dictionary without any code formatting, backticks, or markdown,

with keys \q" and \a".

Multi-Hop Question Aggregation

We merge vetted one-hop prompts into a single multi-hop question via few-shot

prompting on o3-mini. Beginning with the sub-question for entityK+1, we chain

backward through each relation to entity1. This reverse-chaining guarantees logical

flow and targets entity1 as the final answer. Below is the multi-hop question prompt.

You are given multiple factual questions and their answers that are logically

connected.

Your task is to chain them into a single, coherent multi-hop question that requires

multiple reasoning steps.

Ensure that the (only) answer is the answer to the first question, and the question

naturally follows from the facts given.

You have to start from the last generated question and build up a single multi-hop

question so it aggregates them all and the answer is the answer to the first

question.

None of the answers to any of the questions should be in the generated question.

Here is an example:
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Example:

Q1: What is oxidized to form Carbon Dioxide?

A1: Methane

Q2: What is used in Photosynthesis?

A2: Carbon Dioxide

Q3: What produces Oxygen?

A3: Photosynthesis

Multi-hop question:

Q: What is oxidized to produce a substance that is used in a process that results

in Oxygen?

A: Methane

Here are the generated questions and answers:

{formatted qas}

Return a python dictionary without any code formatting, backticks, or mark-

down, with keys "q" (multi-hop question) and "a" (final answer).

Verification and Filtering

We validate each one-hop question with a few-shot chemistry-expert prompt, ensuring

it is factual, unambiguous, and directly answerable from its context. Below is the

evaluation prompt:
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You are a chemistry expert. Your task is to determine if the given question is

a factual chemistry question, unambiguous (has only one answer), and answerable

based on the provided context. A factual question must be based on actual

chemical properties, reactions, or experimentally verified principles and must be

strictly related to chemistry. An answerable question should be solvable based on

the given context and must not be open-ended or have multiple correct answers.

MAKE SURE THE QUESTION HAS ONLY ONE CORRECT ANSWER.

There shouldn’t be any other entity except for the given answer that could be

another answer.

Question:

{question}

Answer:

{answer}

Context:

{context}

Please analyze the context and verify if the question is factual, unambiguous,

and answerable. If the question is factual, has only one correct answer, is strictly

related to chemistry, and can be answered based on the context, return “yes.”

Otherwise, return “no.”
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Examples of Factual Chemistry Questions:

“What dissolves in water and evaporates at 0 °C?”

“What catalyst is used in the reaction between A and B?”

Examples of Non-Factual or Ambiguous Chemistry Questions:

“What is the song of Nirvana that is a chemical entity?”

“What chemical entity and structural unit form the layered hydroxide struc-

tures with intercalated water ions used in battery materials and OER catalysis?”

(M(OH)6 and -Ni(OH)2 are valid answers)

Questions that have multiple possible correct answers or are not strictly related

to chemistry.

We also validate the entire multi-hop chain with an LLM-based prompt and expert

feedback, ensuring each sub-question leads coherently and factually to entity1 using

available context and metadata. Prompts are refined iteratively, and any question

misanswered by all models is discarded. Below is the path-evaluation prompt.

You are a chemistry expert. Your task is to determine if the given question is

a factual chemistry question and answerable based on the provided path.

Path Information:

{path text}

Question:
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{question}

Answer:

{answer}

Please analyze the path and verify if the question is a factual chemistry

question and can be answered based on the given path. A factual question must

be based on actual chemical properties, reactions, or experimentally verified

principles. An answerable question should be solvable based on the given path.

If the question is factual and answerable, return “yes”. If it contains speculation,

opinions, or lacks verifiable chemical grounding, or it is not solvable, return “no”.

Examples of Factual Chemistry Questions:

“What dissolves in water?”

“What catalyst is used in the reaction between A and B?”

“Which compound undergoes oxidation in this reaction?”

“What product is formed when sodium reacts with chlorine?”

Examples of Non-Factual Chemistry Questions:

“Why do some scientists think this reaction is inefficient?”

“What is the best solvent for this reaction?”

“Is this reaction useful in industry?”

“Do you think this compound is a good catalyst?”
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Provide only “yes” or “no” as your response.

A.4.3 Rejected Questions

We excluded questions that (1) admit multiple valid answers or (2) include the answer

verbatim in the question. Examples are shown below.

Q1:

Context:

Researchers have developed an anode material based on NiCorGO

(Nickel–Cobalt–reduced Graphene Oxide). In some variants, the NiCorGO

is further decorated with palladium (Pd) nanoparticles to enhance catalytic

performance.

Question:

Which component in the electrode structure functions as a catalyst at the anode

when incorporating decorated NiCorGO?

Issue:

The question is declined due to ambiguity , two distinct answers are technically

correct based on the variant of the material:

• If the material is NiCorGO without Pd, the catalyst is Nickel (Ni).

• If the material is Pd-decorated NiCorGO, the catalyst is Palladium

(Pd).
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Since the phrasing of the question does not clearly disambiguate which material

variant is being used, it leads to multiple valid interpretations. Therefore, it

cannot be accepted as a single-answer question.

Q2:

Context:

Hypervalent iodine compounds such as diaryliodonium salts are widely used as

electrophilic arylation reagents. According to the source text, these salts are

employed in both transition metal-catalyzed and metal-free arylation reac-

tions. These reactions can be used to functionalize aromatic compounds, including

halogen-substituted analogues like CIMPPC, by replacing hydrogen atoms.

Question:

Which type of arylation reaction that employs electrophilic arylation reagents

utilizes diaryliodonium salts in hypervalent iodine chemistry?

Expected Answer:

Transition metal-catalyzed arylations

Reason for Rejection:

The question is declined due to the presence of multiple valid answers. The

source explicitly states that diaryliodonium salts are used in:

• Transition metal-catalyzed arylations, and

• Metal-free arylations.

Both are equally valid interpretations of the question. Without further constraints

or clarification, the question has more than one correct answer and does not meet
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the single-answer requirement.

We removed any questions misanswered by all models or flagged by the overall

LLM verifier (Section 6.2.2); manual review showed most discarded items had multiple

valid answers.

A.4.4 A Multi-Hop QA Generation Example

Figure A.7 presents a multi-hop QA example: carbon dioxide is converted to formic

acid, which then acts as a CO surrogate in carbonylation. Chaining these steps

produces a question that integrates multiple facts. This showcases how entity relations

and metadata enable complex QA generation and LLM evaluation. Figure 6.2 outlines

the full graph-to-question pipeline.
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Context:

[Source 1*]: Carbonylation reactions constitute a potent tool to manufac-
ture carboxylic acids and their derivatives both in industry and academic
organic synthesis. In general, carbonylation requires the use of toxic car-
bon monoxide, which thus usually demands certified high-pressure reaction
vessels. Therefore, developing non-gaseous CO surrogate for conducting safe
and facile-operation carbonylation is an important and ongoing research topic.
Among these established CO surrogates, formic acid is one kind of versatile atom.

[Source 2*]: The utilization of carbon dioxide as a C1 feedstock for the generation
of industrially relevant chemicals is also an interesting approach. CO2 is an
attractive renewable C1 source, which can lead to formic acid. Those approaches
would not only reduce carbon dioxide emissions through carbon capture but also
compensate sequestration costs by producing chemicals in global demand.

Question:
What is the process that uses a substance, produced from carbon dioxide
and known as the simplest carboxylic acid with antibacterial and preservative
properties, as a non-gaseous surrogate to safely form carboxylic acids and their
derivatives under mild conditions?

Answer: carbonylation reactions

Sentence-level supporting facts:
1) formic acid can be produced from carbon dioxide.
2) formic acid is the simplest carboxylic acid with antibacterial and preservative
properties.
3) formic acid can act as a non-gaseous CO surrogate.
4) carbonylation reactions safely produce carboxylic acids under mild conditions
using formic acid as a CO surrogate.

Path (multi-hop chain of reasoning):
carbon dioxide → formic acid → carbonylation reactions

* Source 1 and source 2 are coming from different documents.

Figure A.7: An example of a multi-hop question-answer. [79]
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