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LAY ABSTRACT

This thesis explores the role of genetic mutations (found in less than 1% of the population)
in vascular dementia (\VaD) and 49 other traits using data from over 167,000 individuals in
the UK. Two tools, RARity and RARity-p, were developed to measure how much the
mutations cause traits, like height, circulating blood proteins, and diseases to vary among

individuals.

Review of existing research on VaD emphasizes the complexity of the disease, and
highlights the need for large-scale, collaborative research efforts. RARity and RARIty-f
showed that mutations have significant influence on measurable traits and diseases, with
height being the most affected. These tools enabled discovery of genes linked to traits and

assessment of current predictive tools to decide which mutations are detrimental to health.

Overall, the findings suggest that rare genetic mutations play a crucial role in human health

and emphasizes the need for better predictive tools to identify detrimental mutations.
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ABSTRACT

Most human genetic variants are rare (minor allele frequency, MAF <1%). This thesis
investigates the significance of rare coding variants (RV), first with a literature review of
vascular dementia (VaD), and subsequently in 31 continuous and 18 binary traits, utilizing
whole exome sequence from the UK Biobank (N=167,348 and N=173,688, respectively).
This was enabled with the development of the rare variant heritability (RARity) estimator
and RARity-p.

Genetic determinants of VaD are explored through genome-wide association studies,
polygenic risk scores, heritability estimates, and family studies. Complexity and
heterogeneity of the disease are highlighted, emphasizing the need for large-scale

collaborations and integromics approaches to enhance discoveries.

RARIty estimates RV heritability (4%rv) without assuming a specific genetic architecture.
It revealed a significant loss of heritability (79%) due to gene-level RV aggregation. For
27 traits, h%rv exceeded 5%, with height showing the highest at 21.9%. VaD risk factors
such as ApoA-I, BMI, blood pressure, LDL-cholesterol, and triglycerides had /%ry of 4.6%
to 9.9%. RARity showed RVs as the source of “missing heritability”, identified 11 new
gene-phenotype associations using gene-level heritability estimates, and showed that
current pathogenicity predictors do not adequately enrich for RVs contributing to trait

variance, indicating a need for better predictive algorithms.

RARIity-B estimates overall (h%rviian) and gene-level heritability of binary traits on a
liability scale. Significant /A%v.ian  was found for hypothyroidism, asthma,
hypercholesterolemia, and essential hypertension, identifying 77 genes with significant
contributions to 4%rv-liab, including 70 new gene-trait relationships. The PEPB1 gene's role
in atrial fibrillation and the TSHR gene's link to hypothyroidism and sciatica are discussed.
Results suggest that genes contributing significantly to A%rv-iap have functional
consequences. Overall, this thesis provides novel methodologies and insights into the
understanding of complex traits and diseases.
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CHAPTER 1:
INTRODUCTION
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CHAPTER 1: INTRODUCTION

This chapter sets the stage for the analytical methodologies discussed in subsequent
chapters. It introduces the fundamental principles of quantitative genetics, genotyping
methodologies, association study frameworks, estimations of trait heritability, development
of genetic risk scores, techniques for causal inference, and network and pathway analyses.
By the end of this chapter, readers will have a solid foundation in these essential concepts,

facilitating a deeper understanding of the material presented in the later chapters.

1.1 COMPLEX TRAITS GENETICS

Diseases caused by single genes, referred to as monogenic traits, such as cystic fibrosis,
sickle-cell disease, and Huntington's disease, adhere to Mendelian mode of inheritance,
constituting a relatively simple genetic etiology. This category of human traits often serves
as the primary focus for genetic testing and therapeutic interventions as they are easier to
detect and more conventionally understood. In contrast, most human traits are complex in
nature, being multifactorial and influenced by a myriad of genetic variants, and
environmental factors. Such genetic variants are dispersed throughout the genome, across
hundreds of genes and intergenic regions®. Examples of complex traits include height,
circulating blood biomarker levels, BMI, diabetes, and cardiovascular diseases. A
comprehensive understanding of the factors influencing these traits are crucial for the
development of effective prevention strategies, diagnostic tools, and targeted treatments
tailored to individual genetic profiles, ultimately advancing personalized medicine, and

improving healthcare outcomes.
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1.2 COMMON AND RARE VARIANTS IN POPULATION GENETICS

Over the past decade, technological advances with microarray technology, next generation
sequencing, and large-scale biomarker measurements have enabled the establishment of
large biobanks, such as Trans-Omics for Precision Medicine (TOPMed), UK Biobank,
FinGenn, and All of US, with a range of genotype and phenotype data at the population
level. This in turn has enabled advancements in state-of-the art genetic methodologies and
novel discoveries. Traditionally, the genetic variations have been categorized broadly into
two classes: common variants (CVs) and rare variants (RVs). In this thesis, variants with
minor allele frequency (MAF) <1% are defined as RVs, and MAF>=1% as CVs. In the
biological context, variations in a trait within a population may be a product of both
common and rare variants, as well as the environmental factors and interactions between
environmental factors and genetic variants®. There is increasing evidence that pathogenicity
may be caused by either a single rare variant with large, monogenic effect, multiple rare
variants with modest, oligogenic effects or accumulation of very low effect common
variants*®. The contributions from each of these factors to trait variation may vary widely,

which necessitates application of appropriate and robust methodology for their study.

1.3 HIGH-THROUGHPUT GENOMIC TECHNOLOGIES

Microarray and next generation sequencing (NGS) are two main categories of genomic
profiling technologies used in large population studies. Microarrays utilize a grid of fixed
DNA probes to hybridize with target DNA, enabling high-throughput analysis of thousands
of genes simultaneously’. This technique is relatively fast and cost-effective for large-scale
studies but is limited to known sequences, with lower sensitivity and specificity compared
to NGS. In contrast, NGS involves massively parallel sequencing, providing detailed
nucleotide sequences of DNA. This technology boasts high sensitivity and specificity,
capable of detecting rare, low-abundance sequences and discovering novel variants®.

Although NGS requires more extensive data analysis, higher costs, and significant
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computational resources, it offers comprehensive genomic insights. Therefore, NGS is
generally the preferred method for thorough and accurate RV detection in scientific and

clinical settings, especially for high-throughput sequencing needs.

1.4 STATISTICAL GENETICS

Statistical genetics is a field of study aimed at the development and application of analytical
methods to derive inferences from genetic data. It involves the use of statistical models and
algorithms to explain the genetic basis of phenotypic variations and thus identify the genetic
architecture of a trait. The genetic architecture of a trait can be described in terms of genetic
features, such as the magnitude and the effect of the genetic variations, minor allele
frequencies, linkage disequilibrium, and evolutionary constraints on the variations in a trait
within a population®. The genetic architecture of a trait not only informs on the sources of
variation between individuals but has broader impacts on diagnosis through molecular and
genetic testing, development of personalized treatments, and disease predictions. As such,
statistical genetics forms the backbone of modern population genetic research. The
following sections provide brief summaries of common statistical approaches that are
amenable to quantifying the risk and statistical significance of putatively disease-causing
variants. Applications of these methods are also described in chapter 3 in the context of
understanding the genetics of vascular dementia, a highly complex and heterogeneous

disease.

1.5 BRIEF OVERVIEW OF CURRENT GENETIC METHODS APPLIED TO
COMMON VARIANTS

The microarray technology required to detect CVs was developed first and was more
widely used as compared to the next generation sequencers (NGS). Consequently, the
advancements in genetic methodologies are far more progressive for common variants
compared to rare variants. Some of the widely used methods for studying the complex

relationship between common variants and phenotypes are Genome wide association

4
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studies (GWAS), SNP-heritability, polygenic scores (PGS), and Mendelian randomization

(MR), each of which are described below.

1.5.1 GENOME-WIDE ASSOCIATION STUDY (GWAS)

GWAS are conducted by leveraging the abundance of high-density genetic markers
throughout the genome and the principle of linkage disequilibrium (LD). The genetic
markers are typically single nucleotide polymorphic (SNPs) variants, representing genetic
loci that are in LD, either in the exonic or intronic regions of the genome!®. Linkage
disequilibrium occurs due to recombination between homologous chromosomes over many
generations, such that the SNPs are highly correlated and inherited together as a unit.
GWAS results in identification of genomic risk loci with statistical tests between the
genetic markers and phenotypes, reporting blocks of correlated SNPs that all show a
statistically significant association with the trait of interest. Ultimately, the genetic markers
are prioritized based on association testing with a phenotype of interest. Since the test
incorporates all SNPs in the genome, vs pre-specified candidate variants/ genes, it is
characterized as the first hypothesis-free method of genetic studies.

The statistical methods for GWAS have evolved over time. The first generation GWAS
relied on linear or logistic regression models using PLINK and SNPTEST; the second
generation models such as GCTA-MLMA, GEMMA, EMMAX were dependent on mixed
models to improve power, and account for population structure and relatedness; while the
third generation was necessitated with large-scale biobanks (N>25,000) and includes linear
mixed models using BOLT-LMM and Fast-GWA-LMM, as well as REGENIE, SAIGE
and POLMM which utilize linear/logistic mixed models allowing for correction of case-
control imbalance!*. GWAS typically analyze each SNP-phenotype pair, typically
corrected for covariates such as age, sex, population structure, and for multiple-testing
using Bonferroni corrected p-value to avoid false positive results, i.e. for testing 1 million

common variants in the human genome, significant SNPs have p-value < 5x10.

5
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Since 2005, when the first GWAS identified a common risk allele in the CFH gene with
large effect size for age-related macular degeneration*2, many additional genomic risk loci
have been associated with diseases and traits. Some examples include the identification of
the 9p21 loci associated with myocardial infarction, CAD, carotid atherosclerosis, stroke,
aneurysms, congestive heart failure and CV mortality'®*%, FTO for obesity and PTPN22
for autoimmune diseases'®. As of May 2024, the GWAS catalog reports 10378 entries on
the SNPs associated with cardiovascular disease (CVD) and 5498 entries on the SNPs
associated with type-2 diabetes (T2D) mellitus, even after applying a stringent Bonferroni

correction?®.

Despite the identification of numerous risk alleles, there are several limitations to GWAS.
First, the coverage of variants in a GWAS is limited by the number of predefined sites on
the microarray. It has been shown that most traits are affected by thousands of SNPs, each
individually conferring low risk and often demonstrating pleiotropic effect on multiple
traits'’. Additionally, these risk loci are not necessarily located in the coding region and a
strongly associated variant may not necessarily be causal; instead it may be in LD with a
functionally relevant allele that is located in close proximity at this locus®®. Together, these

factors make it difficult to derive unambiguous biological meaning of the results.

In the post-GWAS era, several methods have been developed to apply, interpret, and
identify the impact of the hundreds or thousands of SNPs associated with each trait by
GWAS. These methods include SNP based heritability, polygenic risk scores (PRS),
Mendelian randomization (MR) studies, and complex network and pathway analyses, each

of these methods are described below 1°,
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1.5.2 HERITABILITY

The common proverb that human traits are the result of nature and nurture can be restated
using statistical genetic terms: phenotypes are the result of genetic and environmental
factors. The total phenotypic variance (Vp) in given population can be expressed as the

sum of the variance due to genetic variance Vg and the environmental variance Ve:

Vp=Vg+Ve

The genotypic variance Vg, can be further explained as being the sum of the additive (a),
dominant (d), and epistatic (i) variance components:

Vg=Va+Vd+Vi
However, research has shown that the effects of non-additive genetic effects (Vd + Vi) are

minute, and thus broad sense heritability (H?) quantifies the proportion of phenotypic

variance explained by both genetic and environmental variance in a population®.

Conversely, narrow-sense heritability (h?) can be defined as estimating only the effect of
additive genetic variation on the phenotypic variations in a population. In the simplest form

h? is defined as:

hZ

Il
SSSIINS

Heritability ranges from 0, where genetic variation does not explain any of the phenotypic

variations, to 1, meaning that genetics explains all the variations in the phenotype. In other
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words, it informs how well a trait could be predicted from the genetics in a population. It
is important to note that heritability is a characteristic of a population and not individuals,
and the measurements are not constant over time. Different populations are likely to have
different heritability estimates for the same trait due to differences in their genetics and
environmental exposures, although some traits may present a stable heritability across
species and populations. Homogenous populations are more likely to display larger

heritability effect sizes as the phenotypic variation (Vp) is more precise.

Traditionally, heritability was measured in related individuals using family and twin
studies, whereby researchers examine the resemblance between relatives (e.g., siblings,
parents, offspring) with varying degrees of genetic relatedness. In this model, heritability
was estimated by comparing the phenotypic similarity among relatives, such as the
correlation of offspring and parental phenotypes, the correlation of full or half siblings, and
the difference in the correlation of monozygotic (MZ) and dizygotic (DZ) twin pairs. For
instance, if a trait shows greater similarity between biological relatives than unrelated

individuals, or between MZ than DZ, it suggests a genetic component influencing that trait
20

Genome-wide significant heritability emerged with the need to assess the total
contributions of the SNPs identified in GWAS and led to the development of Genome-wide
significant heritability (/#%cws) 2. With this method, it was observed that the estimated
variance explained by genome-wide significant (GWS) SNPs discovered in GWAS was
only a fraction of the estimated heritability from family or twin studies??, an issue known
as the problem of “missing heritability”. For example, the #%cws of human height was
around 15%, compared to the /42 of 80% from family or twin studies?®>*®; similarly by 20186,
over 700 variants identified for cardiovascular disease accounted for no more than 10% of
the heritable risk*®. This sparked concerns about the usefulness and cost-effectiveness of
GWAS. Potential causes of missing heritability include exclusion of SNPs with small

effects that do not meet the Bonferroni threshold, rare variants that are not captured by
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GWAS, gene-by-gene interactions, gene-by-environment interactions, epigenetics, and
perhaps, family studies with very few sample sizes had overestimated the heritability of

these complex phenotypes.

Consequently, with the hypothesis that even the non-significant SNPs may contribute to
the overall trait heritability, SNP-heritability (/%sne) was developed. SNP-heritability is the
estimation of the variance explained by all SNPs used in a genome-wide association study
(GWAS) in unrelated individuals, using either individual or summary level GWAS data.
This has allowed estimation of the overall contributions of common variants to trait
heritability, provided that all SNPs are represented on the genomic array. Through this
effort, it was discovered that the SNP heritability is significantly larger than GWS
heritability, such as in height where the estimates are 10-20% and 40-50%, respectively?.
It was concluded that for complex traits there is a large number of common variants with
effect sizes that are too small to pass the strict Bonferroni threshold, consistent with a model
of polygenic inheritance. A conclusion that prompted establishment of large biobanks to
capture variants of smaller effect sizes, and the development of PRS models.

Over the years, heritability for common variants have gone through several iterations in
methodology, each with their own strengths and weaknesses, some of which are discussed
in chapter 3.

1.5.3 POLYGENIC SCORE

GWAS and A%snp offer compelling evidence supporting the polygenic architecture of
complex traits, giving hope to precision medicine in the form of establishing Genetic risk
scores (GRS), PRS for diseases, or PGS for other traits. The objective of these risk scores
IS to enable prediction of traits based on a person’s genetic makeup and is the only approach
that provides an estimate of genetic liability to a trait at the individual level. GRS is the

cumulative risk estimates derived from the aggregation of risk contributions of GWS SNPs
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towards a trait, thus, it is statistically defined as the sum of alleles weighted by their

estimated effect sizes from GWAS summary statistics?®. This is statistically represented as:

Kk
= Z Bixij
=1

Where ri represents the risk; i, represents the individual number; j is the SNP number
ranging from 1 to k; ; is the weight for each SNP derived from the associated GWAS, and
Xij corresponds to the allele number for the j SNP of the i individual. GRS can be
extended to PRS / PGS when non-GWS SNPs are included to reflect the polygenic nature

of traits?’.

PRS may be particularly useful for complex diseases such as coronary artery disease, atrial
fibrillation, type 2 diabetes, inflammatory bowel disease, and breast cancer, as they are
shown to have risk factors similar to monogenic disorders?®. Individuals with higher PRS
was shown to increase the risk of early onset coronary artery disease by two-fold in 23%
of the participants (N=7 of 30)?°. In another study, patients with higher PRS for

schizophrenia tended to have less improvement with antipsychotic drug treatment®°.

Over the years PRS have gone through many iterations in methodology to achieve the
optimal level of predictability. This has involved varying the selection criteria for SNPs,
weighting scheme, LD parameter selection, validation algorithms, and more. A comparison
of these models, applied to psychiatric disorders is summarized by Ni, et al. (2021)3".
Currently PRSs require further validation for clinical use, but are widely utilized in
biomedical research, to examine shared etiology of phenotypes, assess clinical utility, and

to compare experimental outcomes?®.
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1.5.4 MENDELIAN RANDOMIZATION

Associations, or correlations between two variables, does not axiomatically denote
causality. This is because associations are susceptible to unknown confounding factors
influencing the exposure or outcome as well as reverse causality. To identify causality
between the exposure, biomarkers and disease, the MR strategic framework may be
employed. MR relies on genetic instruments exhibiting robust association with an exposure
such that these instruments can act as proxies for the exposure. This approach is enabled
by the fundamental principle that genotypes are not generally susceptible to reverse
causation and confounding, due to their fixed nature and Mendel’s First and Second Laws
of Inheritance. In essence, the random assortment of alleles from parents to offspring
effectively segregates participants into groups based on the presence or absence of specific
genetic variants®>. This process mirrors the randomization principle employed in

randomized controlled trials (RCTS).

In order for a genetic variant to qualify as a valid instrument for causal inference in MR
study, it must satisfy three core assumptions: 1) the genetic variant must be robustly
associated with the exposure, as ensured by using genome-wide significance threshold for
association in an independent sample (P < 5 x 10®), 2) the genetic variant should not be
associated with confounders of exposure-outcome relationships, and 3) the genetic-
instrument should be associated with the outcome only through the exposure, i.e. no
pleiotropic effects. However, even when these assumptions are fulfilled, limitations in MR
include low power of studies, biases due to population stratifications, and weak
instrumental biases. There are various tools to assess these assumptions and address the
limitations®2. The most basic MR method uses a single SNP instrument and is based on the

following statistical model, implementing ratio coefficient method or Wald’s ratio:

By|z

Ratio estimate of causal ef fect = —

ZIX
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Where Bm and szr are the slope estimates from the regressions of the outcome and

exposure, respectively, on the SNP instrument, each of which can be obtained from GWAS
summary data. Note that other methods are required for more complex issues, such when

using multiple SNP instruments34%,

When appropriately implemented, MR is a powerful strategy to find causal inferences, and
has been successfully utilized to validate drug targets. For example, MR has suggested
causal association between LDL-C and the risk of CHD, mediated by SNPs in the NPC1L1,
HMGCR, and PCSK9 genes®®*". Furthermore, NPC1L1, HMGCR, and PCSK9 proteins are
targets of the drugs ezetimibe, statins, and PCSK9-inhibitors, respectively, to reduce LDL-
C levels, as confirmed with RCTs. Consequently, MR studies, especially when using
previously published summary-level genetic association data, provide a rapid and
affordable approach to evaluating causal questions, especially when RCTs cannot be

implemented due to logistical or ethical reasons®.

1.5.5 NETWORK AND PATHWAY ANALYSES

Network and pathway analyses help in understanding the biological implications of the
observations in ‘omics data and their interdependencies. Biological pathways are
interactions among molecules in a cell that leads to a certain product or a change in a cell.
Some curated databases of pathways include (Kyoto Encyclopedia of Genes and Genomes
(KEGG), Reactome, WikiPathways, gene ontology (GO), transcription factor database
(TRANSFAC) and miRTarBase®. Results from GWAS and other multi-omics data, such
as exome-wide associations, mMRNA/mMiRNA expression, protein expression, and DNA
methylation. typically lead to a list of genes, which are sometimes prioritized according to
a ranking system. The enrichment of these genes in the various pathways using tools such
as g:profiler, GSEA, Enrichr and MAGMA provide mechanistic insights into the biological
relevance of these genes®®*°, When a gene or its’ products are involved in multiple

pathways in a context-specific manner, the result is a network. Networks are particularly
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powerful as they allow visual mappings of many interactions across different data-types.
The intuitive display for biological data in networks is established with the biological
elements represented in nodes, which are linked to each other by directional or non-
directional edges. This system allows automation of analyses, enables ease of
interpretation, identification of hidden patterns and creation of emergent models to explain
experimental observations. Currently, application programs are built to demonstrate
networks from single-data types, such as GeneMania for gene-gene interactions and
STRING for protein-protein interactions®. Additionally, platforms like Cytoscape have
been built that integrate multiple application programs to visualize complex networks and

integrate these with any type of attribute data targeting any specific case use*.

1.6 STRATEGIES TO DETECT RARE VARIANTS

Compared to common variants, rare variant studies are a relatively new field. For a given
effect size, as the allele frequency decreases the power to detect genes or variants of interest
also decreases. Several platforms and methods have been used in the rare-variant
associations with biomarkers and diseases, this includes extreme-phenotype sampling,
family-based studies, GWAS chip and imputation, targeted region sequence, whole exome

sequencing, and whole genome sequencing.

The extreme-phenotype sampling method is done by selecting participants with extreme
traits, defined by a specific threshold. Extreme-phenotype sampling potentially enriches
the samples with the presence of causal rare variants and thus requires a smaller sample
size, for example, the ABCAL, APOAL, and LCAT genes have been related to low HDL-C,
found by studying families with extreme high-density lipoprotein (HDL) phenotypes*.
However, with this method, the outcome may not be generalized in the underlying
population, it is sensitive to the outliers, it introduces a sampling bias, assumptions are
made about the normal phenotypic characteristics of the specific condition under study, and

also there is a reduced power to detect loci with smaller effects*3#4,
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Family-based studies in which several family members share the same phenotype may
provide more statistical power than regular population-based case-controls studies**®. This
type of study has been very successful in identifying large effect, highly penetrant, and
monogenic Mendelian disorders*’. In addition, a major benefit of family-based studies is
the common genetic background of the studied subjects, which means that there are no
issues related to population stratification. This was the method used to detect the role of
PCSK9 mutation on autosomal dominant hypercholesterolemia®® and most other mutations
reported in  Online Mendelian Inheritance in Man database (OMIM,

https://www.omim.org/). There are several challenges and limitations to family based

studies, including establishing and analyzing the complex and incomplete pedigree
sequence, low sample size, a challenge of replication in large cohorts, inadequate capture
the full spectrum of RVs present in the population, and considering the late-onset nature of
many diseases it is also difficult to obtain genetic information from parents*. Put together,
this makes it difficult to study complex traits with family-based studies. Nonetheless, as of
May 2024, the OMIM reports over 7,528 of Mendelian diseases linked to rare variants,
though their validity in the context of population genetics and replicability has been
questioned. Consequently, efforts to examine these gene-disease associations in large
biobanks and to curate them via efforts like the ClinGen Gene-Disease Clinical Validity

Curation processes are underway®°.

Currently, exome-wide genotyping arrays are available that test thousands of exonic
variants at a modest cost. Exome chips have been successful in identifying rare coding
variants associated with numerous diseases, including insulin traits, liver disease and lipid
levels*’. GWAS based RV associations have also proved to be successful when followed
by targeted region sequencing. Some examples include novel associations between rare
variants in APP and Alzheimer's disease and between rare variants in PDX1 and T2D5%52,
Some of the most exciting discoveries arising from rare variant association with biomarkers
in diseases were made from targeted gene sequencing experiments which identified rare

coding variants with strong effects on phenotypic variation. These included genetic
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variation in ABCA1 and PCSK9 associated with HDL and LDL-C levels, respectively*?>3,
The biggest drawback of using targeted region based platforms is that they are not as
exhaustive as whole exome sequencing and will miss a large amount of very rare genetic

variation®’.

Regardless of the platform used to study rare variants, the overarching challenge has been

to move beyond handfuls of candidate gene studies to unbiased gene discovery.

1.7 OVERCOMING THE CURRENT LIMITATIONS OF RVS WITH WHOLE
EXOME SEQUENCING

NGS has been used to mitigate the limitations of the above-mentioned methods in a large
number of unrelated populations. NGS, with the ability to read every sequence with whole
genome sequencing (WGS) or whole exome sequencing (WES) provides a much better
opportunity to detect rare variant association®. Recently, sequencing studies have
identified hundreds of genes containing rare coding variants, and these variants can have
much larger effect sizes than CVs*>®8, The exomes constitute 1%- 2% of the genome and
house a majority of the rare protein-altering mutations, which are responsible for disrupting
the function of the coded proteins and are therefore thought to be responsible for the
majority of the deleterious phenotypes. This makes WES more cost-effective than WGS
and better at studying rare variants. WES in human medicine also benefits from the
availability of many large databases of single-nucleotide-variants (SNVs), known
pathogenic variants, and control genomes®. These databases provide a wealth of
information such as genotype quality, allele frequency, putative variant consequences, and

pre-calculated algorithms to estimate likely pathogenicity of each genetic variant.
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1.8 CHALLENGES SPECIFIC TO RVS

Studying RVs requires specialized statistical methods that can effectively handle the
challenges posed by low variant frequencies, including low statistical power, biases due to
uncorrected population stratification, cryptic relatedness, and the computational burden of
testing a large number of variants simultaneously. Conventional methods designed for
common variants may lack power or result in bias when applied to RVs. Despite these
challenges, large-scale biobanks provide extensive genetic and phenotypic data, enabling
researchers to conduct sophisticated statistical methods to identify and characterize RVs

associated with complex traits.

1.9 METHODS TO STUDY RVS

1.9.1 VARIANT PRIORITIZATION

In the human genome, the number of rare variants is far greater than common variants,
most of which are likely non-functional. Effective quality control steps reduce the number
of variants, for example, by removing intronic, singletons, and common variants. This
reduces the burden of multiple testing and single-to-noise ratio, thereby reducing false
positive results or type-1 error. Prioritization of variants may also increase biological
interpretability of variants. Annotation tools such as ANNOVAR®, Variant Effect
Predictor (VEP), and (Database for Nonsynonymous SNPs' Functional Predictions
(dbNSFP)®, utilize a wide array of publicly available databases to enable prioritization of
variants. A fair number of pathogenicity scores has also been developed to prioritize
variants, based on evolutionary constraints, predicted protein alterations, disease severity,
experimentally measured regulatory effects and complex trait associations, or a
combination of various factors. These methods usually leverage supervised or unsupervised
machine learning techniques to enable assessment and prioritize variants. A few examples
of pathogenicity scores include Combined Annotation Dependent Depletion (CADD)®,
Mendelian Clinically Applicable Pathogenicity (M-CAP) score®”, Rare Exome Variant
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Ensemble Learner (REVEL)®, Sorting Intolerant From Tolerant (SIFT)®, Polymorphism
Phenotyping (PolyPhen)®, and Variant Annotation, Analysis & Search Tool (VAAST)®®.

Once RVs are selected, statistical methods are applied to identify variant-trait relationships.
Commonly used statistical methods for studying RVs are centered around association
testing. The most widely used methods are gene-burden tests and variations of SKAT, as

described below.

1.9.2 GENE BURDEN

This is one of the earliest and simplest methods used in RV association testing. Under the
autosomal dominant additive model, each variant per individual is scored as 0 for exhibiting
two copies of the reference allele, 1 for heterozygous status with one reference and 1
alternative allele, and 2 for homozygous with both alternative alleles. The gene burden
score is simply the sum of scores for all qualifying RVs within the gene and serves as the
unit of association with a phenotype of interest. This effectively aggregates the variants to
a single gene-score, thus reducing the burden of multiple testing and potentially increasing
the power of association using a regression model. Most burden tests assume that the
variants are either deleterious or protective and act in one direction. The weighted burden
test is a variation of the gene-burden tests, where variants are weighted based on rarity and

pathogenicity under additional assumptions about effect sizes®’.

1.9.3 SEQUENCE KERNEL ASSOCIATION TEST (SKAT) AND ITS
VARIATIONS

SKAT aggregates information across multiple variants using a kernel matrix, allowing for
more powerful detection of associations, especially when variants may have differing
directions and magnitudes of effects. However, SKAT might be less powerful than burden

tests in scenarios where most variants are causal and have effects in the same direction.
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SKAT-O combines burden and SKAT methodologies to address SKATSs limitations but
might be slightly less powerful than burden or variance-component tests if their underlying
assumptions are held. While SKAT and SKAT-O focus on association testing, gene-burden
testing variant aggregation are broadly applicable in any situation that necessitates treating

a gene as a unified entity®%,

1.9.4 OTHER STATISTICAL METHODS

Other statistical methods such as heritability, PRS and MR for rare variants are not as
advanced as they are for CVs. In fact, currently there are no known published PRS of MR
methods for RVs, and RV heritability has only recently been investigated in a few

publications which will be explained in detail in relevant chapters 4 and 5.

1.10 HUMAN VARIABLES

1.10.1 TYPES OF VARIABLES

Identification and description of human variables used in a study is a necessary component
in genetic research. Statistical analyses rely on the type of variables that are involved in the
study. These variables can be categorized as either quantitative or qualitative.

Quantitative variables, which can be measured numerically, are further divided into
continuous variables or discrete variables. Continuous variables can take any value within
a range, such as anthropomorphic traits and blood biomarker measurements. Discrete
variables represent specific values (e.g., number of hospital visits, cigarettes smoked per
day, etc.). Qualitative variables, on the other hand, are non-numerical. These include
nominal variables, which do not have a natural order (e.g., blood group, sex and disease
status), and ordinal variables, which have an inherent order but undefined intervals between

categories (e.g., disease severity stages, severity of pain and risk levels). Numerical values
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assigned to different qualitative variables are useful solely for identification purposes, such
as 1 for male and 2 for female. When a qualitative variable has only two categories, such
as alive or dead, male or female, diabetic or non-diabetic, it is called a binary or
dichotomous variable.

The nature of variables—whether categorical, continuous, or a mix—guides the selection
of appropriate statistical tests and models. For example, categorical variables are often
analyzed using frequency tables, chi-square tests, or logistic regression, while continuous
variables can be analyzed with techniques like t-tests, ANOVA, correlation or linear

regression.

1.10.2 BIOMARKERS, ANTHROPOMORPHIC TRAITS AND, DISEASES

Although understanding the genetic basis of disease status is important for direct diagnosis
and prognosis of diseases, combining human genetics with biomarkers could help bridge
the gap between the human genome and diseases®®, accelerate pre-clinical diagnosis,
prognosis, improve disease subclass, identify and validate therapeutic targets’®", help
predict long-term consequences of pharmacological intervention’?, enhance patient
stratification’®, and enable repurposing of existing drugs’®. Anthropomorphic traits (such
BMI, waist-to-hip-ratio and blood pressure), blood proteins, lipids, glucose and hormones
are some of the most important biomarkers of the state of human health, as they dictate the
onset, severity and progression of diseases. A prime example of the benefits of gene-
biomarker studies is the discovery of the relationship between proprotein convertase
subtilisin/ kexin type-9 (PCSK9) gene and low-density lipoprotein cholesterol (LDL-C) *°.
LDL-C is a well-established biomarker for cardiovascular health, where higher levels of
LDL are associated with an increased risk of coronary heart disease (CHD)®. A gain-of-
function missense variant of PCSK9 was associated with an autosomal dominant
hypercholesterolemia®. Conversely, a loss-of-function variant in the PCSK9 gene present
in 2-4% of some ethnic populations, was shown to result in significantly lower levels of

LDL cholesterol, and thus reduced the risk of CHD"8, these relationships were later
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proven through functional studies’®®. This discovery of PCSK9's role in cholesterol
metabolism led to the development of PCSK9 inhibitors, a new class of cholesterol-
lowering drugs to effectively reduce LDL cholesterol levels sustainably over the long term
and have shown promise in reducing the risk of CHD and incidence of heart attacks and
other cardiovascular events®':82, Furthermore, genetic screening for PCSK9 mutations can
help stratify patients who would benefit most from PCSK9 inhibitors versus other lipid-

lowering therapies®.

In this thesis, | studied the contributions of genetic variants on dichotomous traits in the
form of disease status (Chapters 3 and 5), as well as continuous variables, including

anthropomorphic traits and blood biomarkers (Chapter 4).
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CHAPTER 2: HYPOTHESIS, OBJECTIVE, RATIONALE, & APPROACH

2.1 GENERAL HYPOTHESIS

| hypothesize that rare coding variants contribute significantly to complex trait heritability

and can provide a hypothesis-free method to identifying gene-trait relationships.

2.2 GENERAL OBJECTIVE

The overall objective of this PhD thesis is to estimate the collective contributions of genetic
rare variants to trait heritability and to prioritize genes based on gene-level rare variant

heritability estimates.

2.3 RATIONALE AND APPROACH

Complex traits range from quantitative measurements of biomarkers to heterogeneous
diseases that are challenging to diagnose. While clinical measurements of biomarkers
provide a practical framework for diagnosis and treatment, genetics and biology reveal that
diseases are often interconnected at a molecular level, challenging the rigid boundaries of
clinical classifications. Furthermore, genetic studies that offer insights into biological
mechanisms can potentially lead to the discovery of new diagnostic biomarkers that are

more accessible and therapeutic targets that are more personalized.

In Chapter 3, using vascular dementia (VaD) as an example of a highly complex trait,
genetic advancements in understanding the disease are discussed. The study aims to bridge
the gap between genetic research and clinical practice by providing a comprehensive
overview of the current knowledge on genetic markers, risk factors, and molecular
pathways involved in VaD. This includes the genetics of cerebrovascular risk factors and
associated diseases such as stroke, small vessel disease (SVD), and cerebral amyloid
angiopathy (CAA). Consequently, this chapter offers a thorough examination of

contemporary genetic methodologies employed in deciphering disease mechanisms and
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diagnosis. Additionally, the review identifies challenges, opportunities, and future
directions for research aimed at earlier diagnosis, targeted interventions, and therapeutic

advancements in VVaD.

Like nearly all complex traits, the most compelling evidence for genetic determinants of
VaD comes from studies on common variants or rare variants with monogenic effects, often
discovered through family studies. Limited data are available from twin and other
epidemiological studies to estimate the heritability of VVaD directly. Heritability results
from contributions of common variants identified through GWAS indicate significant
heritability of the pathological processes and risk factors underlying VaD'2. However, the
contributions of rare variants to the heritability estimates of VaD, its subtypes or risk
factors, remain largely unknown, this is because of a lack in methodological

advancements.

The vast majority of variants identified are rare, and yet their functional consequences are
not known. For example, observations of the UKB WGS (N=150,119) reveal that out of
the 710,913,648 variants, only 4.4% are common variants. In contrast, 43.9% are singletons
(carried by a single sequenced individual) and 51.7% are rare variants (non-singleton,
MAF<0.1%)3. Similar conclusion was also made by Taliun, et al. 2021 using the WGS
from TopMed program *.

Most known pathogenic variants are rare, and generally have large magnitudes of effects
on traits. For example, RVsin RB1, BRCA1/BRCA2, LMNA and NOTCH3 are well known
predictors of retinoblastoma®, breast and ovarian cancer®, familial lipodystrophy’8, and
Cerebral Autosomal Dominant Arteriopathies with  Subcortical Infarcts and

Leukoencephalopathy (CADASIL)?®, respectively.

Several algorithms have been developed to predict the pathogenicity of rare variants. While

many of these algorithms perform well for Mendelian traits, as they were primarily built
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and/or benchmarked using these traits, their effectiveness in the context of complex traits,

which may be oligogenic in nature, still needs to be assessed.

Furthermore, pharmacogenomics has shown several common variants playing a vital role
in drug efficacy and safety, some examples include CYP2C9 involved in warfarin
metabolism, SLCO1B1 impacting statin uptake, and DPYD influencing the metabolism of
fluoropyrimidine drugs, used in cancer treatment. There are a large number of putatively
pathogenic RVs within these pharmacogenes, likely accounting for a substantial part of the
unexplained inter-individual differences in drug metabolism phenotypes, however, the

consequences on diseases and biomarkers remain largely unexplored™®.

As previously discussed, common variants do not account for all the heritability observed
in family-based studies. This “missing heritability” may be explained by RVs!!, leading to
the common-disease/rare-variant (CD-RV) hypothesis’2. As per CD-RV hypothesis,
common diseases may result from many RVs on multiple genes, independent of the
CVs. This has been a motivation to examine the contributions of rare variants to common
complex traits. Two recent methods to estimate rare variants are genomic residual
maximum likelihood analysis (GREML) and burden heritability regression (BHR). RVs
are shown to account for unexplained heritability in height and BMI*® using the GREML
method, however the estimates are based on both coding and non-coding variants using
WGS, restricts to RVs with 0.01%< MAF, and also makes assumptions about MAF
distributions of causal variants, which can result in biased estimates if the assumptions are
violated!*. BHR is based on aggregated allele scores, with estimates much smaller than the
GREML method. A method to estimate the contributions of truly RVs in a fast and accurate
manner, without prior assumptions, has been lacking, and this has been the primary focus

of chapters 4 and 5.

Chapter 4 describes the development of the rare variant heritability estimator (RARIty), a

novel statistical approach to enable fast and accurate estimation of the contributions of rare
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coding variants to complex, continuous trait heritability. Here we examine the effect of
aggregation of variants into gene-burden on estimated trait heritability. RARity was
established as an unbiased estimation of heritability for 31 complex traits, including 26
blood biomarkers and 5 anthropomorphic traits using WES from British and non-British
Caucasian population in the UKB (n=167,348). Additionally, gene-level heritability
estimates are explored to discover gene-trait relationships and investigate the efficiency of
pathogenicity algorithms. Finally, I investigated how WES data can help address the
missing heritability question.

In chapter 5, RARIty-B, an adaptation of RARity for binary trait heritability, is utilized to
examine the contributions of RVs on disease status on a liability scale. With this I identified
many canonical genes associated with diseases and delved into the common genetic

pathways to identify secondary causes of diseases via genetics.

In summary, this thesis investigates the potential benefits of using rare variant heritability

in human genetics.
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ABSTRACT

Vascular dementia (VaD) is a prevalent form of cognitive impairment
with underlying vascular etiology. In this review, we examine recent
genetic advancements in our understanding of VaD, encompassing a
range of methodologies including genome-wide association studies,
polygenic risk scores, heritability estimates, and family studies for
monogenic disorders revealing the complex and heterogeneous nature
of the disease. We report well known genetic associations and high-
light potential pathways and mechanisms implicated in VaD and its
pathological risk factors, including stroke, cerebral small vessel dis-
ease, and cerebral amyloid angiopathy. Moreover, we discuss impor-
tant modifiable risk factors such as hypertension, diabetes, and
dyslipidemia, emphasizing the importance of a multifactorial approach
in prevention, treatment, and understanding the genetic basis of VaD.
Last, we outline several areas of scientific advancements to improve
clinical care, highlighting that large-scale collaborative efforts, together
with an integromics approach can enhance the robustness of genetic
discoveries. Indeed, understanding the genetics of VaD and its path-
ophysiological risk factors hold the potential to redefine VaD on the
basis of molecular mechanisms and to generate novel diagnostic,
prognostic, and therapeutic tools.
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RESUME

La démence vasculaire (DVa) est une forme prévalente de déficience
coghnitive avec une étiologie vasculaire sous-jacente. Dans cette revue
de littérature, nous examinons les avancées génétiques récentes dans
notre compréhension de la Dva, englobant une gamme de
méthodologies comprenant des études d’association pangénomiques,
des scores de risque polygénique, des estimations de I'héritabilité et
des études familiales pour les troubles monogéniques, révélant la
nature complexe et hétérogéne de la maladie. Nous rapportons des
associations génétiques bien connues et mettons en évidence des
voies et mécanismes potentiels impliqués dans la DVa et ses facteurs
de risque pathologiques, notamment I'accident vasculaire cérébral, la
maladie des petits vaisseaux cérébraux et I'angiopathie amyloide
cérébrale. En outre, nous discutons d’'importants facteurs de risque
modifiables tels que I'’hypertension, le diabéte et la dyslipidémie, en
soulignant l'importance d'une approche multifactorielle dans la
prévention, le traitement et la compréhension de la base génétique de
la DVa. Enfin, nous décrivons plusieurs domaines d’avancées scienti-
fiques pour améliorer les soins cliniques, en soulignant que des efforts
de collaboration a grande échelle, associés a une approche
intégromique, peuvent améliorer la robustesse des découvertes
génétiques. En effet, la compréhension de la génétique de la DVa et de
ses facteurs de risque physiopathologiques pourrait permettre de
redéfinir la DVa sur la base de mécanismes moléculaires et de créer
de nouveaux outils diagnostiques, pronostiques et thérapeutiques.

Vascular dementia (VaD) is a severe form of vascular cognitive
impairment (VCI), defined as having clinically significant
deficits in at least 1 cognitive domain, along with pronounced
disruption in activities of daily living."” After Alzheimer dis-
ease (AD), VaD is the second most common major neuro-
cognitive disorder. In North America and Europe, VaD
accounts for approximately 15%-20% of all clinically diag-
nosed neurocognitive diseases, and the incidence might be
higher in Asia and developing countries.”*

There are 4 main subtypes of VaD: (1) poststroke de-

mentia, in which irreversible cognitive decline occurs within 6
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months of a stroke; (2) subcortical ischemic VaD driven by
stenosis and occlusion of small vessels; (3) multi-infarct
(cortical) dementia characterized by multiple “silent” strokes
and white marter hyperintensities (WMH); and (4) mixed
dementia, representing a combination of vascular and
neurodegeneratwe disease.”” Magnetic resonance imaging
(MRI) is a “gold-standard” requirement for a definitive clinical
diagnosis of VaD. However, a diagnosis of “probable” or
“possible” VaD is assigned in the presence or absence of
computed tomography evidence, respectively.z"

In statistical genetics, heritability refers to the proportion of
phenotypic variation in a trait that can be attributed to genetic
factors within a population. Limited data are available from
twin and other epidemiological studies to directly estimate the
heritability of VaD. Nevertheless, a compelling line of evi-
dence from epidemiological and genetic studies indicate a
significant heritability of the pathological processes and risk
factors underlying VaD. Genome-wide association studies
(GWAS) suggest heritability estimates range from 11.9% for
cerebral amyloid angiopathy (CAA) to 40% for stroke,”’
whereas twin and family studies propose heritability esti-
mates for WMH lesion volume between 50% and 80%.%”
However, the pathological processes and risk factors related
to VaD are highly heterogeneous, and pose significant chal-
lenges in diagnosis and management.

As clinicians encounter an increasing prevalence of VaD,
because of an aging population, a nuanced understanding of
the genetic underpinnings of this disorder become essential in
more effective and personalized patient care. In this review, we
aim to bridge the gap between genetic research and clinical
practice, by providing a comprehensive overview of the cur-
rent state of knowledge regarding the genetic markers, risk
factors, and molecular pathways that contribute to its onset
and pathogenesis. This review incorporates the genetics of the
cerebrovascular risk factors and diseases associated with VaD,
including stroke, small vessel disease (SVD), and CAA®
(Fig. 1). This inclusive approach aims to establish an up-to-
date overview of the genetic determinants of VaD, ensuring
the inclusion of well known genes associated with VaD. In
addition, we identify the challenges, opportunities, and future
directions for research endeavours toward earlier diagnosis,
targeted interventions, and therapeutic advancements.

Heritable Risk Factors for VaD

The high degree of heterogeneity in the clinical presenta-
tion can be attributed, in part, to individual baseline cognitive
capacities and their lifetime exposure to known vascular risk
factors. Major vascular risk factors linked to VaD include:
blood pressure, glucose levels, lipid profiles, atrial fibrillation
status, diet, body mass index, physical activity levels, and
smokmg status.”” All of these risk factors have varying levels
of genetic heritability, whereby variation in the risk factors are
influenced by variations in population genetics. These risk
factors range from moderate (5%) to highly (66%) herita-
ble."”'" Blood pressure, type 2 diabetes, low-density lipo-
protein (LDL) cholesterol, triglycerides, atrial fibrillation, diet,
body mass index, exercise, and smoking are epidemiologically
associated with greater VaD risk and have significant esti-
mated heritabilites at 15%, 66%, 8.3%, 21.8%, 14.4%,
4.8%, 24.9%, 7%, and 15.1%, respectively.m 1
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The search for common variants underlying these strong
heritability signals has been facilitated by GWAS. Powered
by microarray technology, GWAS systematically and
agnostically investigate millions of polymorphisms for asso-
ciation with disease. A recent study conducted the largest
known GWAS to date on VaD, which meta-analyzed
293,544 individuals from 12 diverse cohorts (with 2935
cases of VaD) and discovered 5 novel loci, in addition to the
Apolipoprotein E (APOE) locus. One locus (ASTN2) was
previously associated with hippocampal volume, verbal
memory, and cerebrospinal fluid amyloid levels; the other
nearby genes were associated with hypertension, diabetes,
and dyshpldemlas °

The unique combination of disease-associated variants
from GWAS enables a quantitative measurement of an in-
dividual’s genetic predisposition to diseases, in the form of
polygenic risk scores (PRS). In a study involving 198,965
initially dementia-free participants aged 60 years or older,
genetically determined hypertension was associated with a
19% increased risk of dementia over a 15-year follow-up
period (hazard ratio [HR], 1.18; 95% confidence interval
[CI], 1.11-1.27). Individuals with higher PRS for all-cause
dementia risk exhibited greater risk difference in dernentla
incidence in hypertensive vs normotensive individuals."’
Furthermore, PRS of type 2 diabetes, fasting glucose, fasting
insulin, and hemoglobin Alc are linked to a higher risk of all-
cause dementia, particularly in individuals with VaD, sug-
gesting that a subset of individuals with type 2 diabetes,
because of their genetic makeup, are more susceptible to
developing diabetes-associated dementia.'* Another study
leveraging PRS and social risk factors showed that each
additional social risk score is associated with a 24% increased
risk of VaD, with lower incidence rates observed among
participants with high genetic risk and low social risk
compared to those with high social risk."” To date, emerging
PRS are continually improving the risk predlctlon perfor-
mance for all-cause dementia and their subtypes, in addition
to the risk conferred by APOE genotypes alone.'

Another valuable genetic epidemiological method to assess
causal relationships of risk factors and disease is Mendelian
randomization (MR). MR uses genetic variants as instru-
mental variables to infer causation, by taking advantage of the
random distribution of exposure-influencing alleles. An MR
study conducted from the US Veterans Affairs Million Vet
eran program (N = 334,672) showed evidence of causality of
diabetes with VaD in non- Hispanic white (odds ratio [OR],
1.11; 95% CI, 1.07-1.15) and in non- Hlspamc black par-
t1c1pams (OR, 1.11; 95% CI, 1.04-1.19)."” This same causal
association for type 2 diabetes and VaD was also found in
213,370 Danish individuals with MR (OR, 1.53; 95% CI,
1.48-1.59)."® For dyslipidemias, some MR evidence shows
that lowering LDL-cholesterol levels by statin use might be
effective at reducing VaD risk."” Continual improvements in
polygenic quantification of VaD risk will further our diag-
nostic yield and interventional capacities in this form of de-
mentia. Although the genetics of heritable vascular risk factors
contribute to VaD, a deeper understanding of the genetic
determinants of pathological risk factors, namely, stroke,
SVD, and CAA, is crucial for comprehensively assessing VaD
pathogenesis.
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Figure 1. Etiological factors and key genetic markers associated with vascular dementia. Only genes that are most frequently implicated in the
diseases are shown. MRI, magnetic resonance imaging. Created with BioRender.com.

Stroke and VaD

Stroke, an acute neurological deficit lasting more than 24
hours, caused by an ischemic blockage or hemorrhagic
rupture, often precipitates VaD. Poststroke dementia, defined
as a diagnosis of dementia within 6 months of stroke, is one of
the main subtypes of VaD.' Even beyond this 6-month
window, ischemic stroke (IS) dramatically increases the risk
of being diagnosed with dementia. Indeed, after a stroke,
cognition only partially recovers in the short-term because
there is an unfortunate “turning point” at approximately 12
months when global cognition and many of its constituents
(attention and processing speed, memory, language, Percep—
tual motor function) begin a course of steady decline.”’ In the
Atherosclerosis Risk in Communities study (N = 15,792),
dementia incidence was > 4 times higher in stroke patients,
with dementia diagnoses occurring an average of 7 years after
the initial stroke event.”’ Furthermore, a dose-response rela-
tionship of stroke severity (as well as stroke recurrence) with
subsequent risk of dementia was observed. Even after
adjustment for vascular risk factors, HRs for incident de-
mentia in individuals with 1 minor to mild stroke, 1 moderate
to severe stroke, 2 or more minor to mild strokes, and 2 or
more moderate to severe strokes were 1.76, 3.47, 3.48, and
6.68, respectively.”' Ultimately, stroke is a major cause and
risk factor for VaD, and therefore, understanding the genetic
determinants of stroke is inextricable to understanding the
genetic etiology of VaD.

36

Rare monogenic causes of VaD—not so rare anymore?

The genetic basis for VaD is evident from early family
studies focused on rare hereditary forms of early-onset stroke.
The most extensively studied monogenic stroke disorder,
initiallgr termed, “chronic familial vascular encephalopathy” in
1977,” is now recognized as cerebral autosomal dominant
arteriopathies with subcortical infarcts and leukoencephalop-
athy (CADASIL). CADASIL is characterized by recurrent
strokes (ischemic and hemorrhagic), migraine with aura,
mood disorders, depression, epilepsy, and dementia. CADA-
SIL patients exhibit SVD markers on MRI scans including
lacunar infarcts, cerebral microbleeds (CMBs), and WMH,
typically affecting the external capsule and anterior temporal
lobe. The condition results from cysteine-altering mutations
in the NOTCH3 gene. These mutations disrupt normal for-
mation of disulfide bridges in the notch3 protein, destabilizing
the protein, and leading to the accumulation of protein ag-
gregates in cerebral vessel walls. This accumulation damages
smooth muscle cells, pericytes, and endothelial cells,
compromising vascular integrity and causing progressive
thickening of cerebral vessel walls, ultimately leading to ce-
rebrovascular insufficiency. CADASIL is among one of several
monogenic conditions resulting in increased risk of stroke and
VaD (Table 1).

Although monogenic causes of stroke were discovered by
studying rare families with a preponderance of stroke, large-
scale sequencing initiatives have revealed a higher prevalence
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Table 1. Monogenic causes of stroke and vascular dementia>*26:33:112
Pathogenic mutation Stroke Dementia
Gene Disease Inheritance carrier prevalence” risk (OR) risk (OR)
NOTCH3 CADASIL AD 0.09%-1.2% 2.65 (IS) 2.26 (All-cause)
2.42 (ICH) 5.42 (Vascular)
HTRAI CARASIL AR N/A N/A N/A
CADASIL2 AD 0.03%-0.08% 2.01 (IS) 2.17 (All-cause)
2.49 (Vascular)
COL4A1, COL4A2, Collagen IV-related brain small vessel disease AD 0.07%-0.26% 3.56 (ICH) N/A
COLGALTI AD < 0.01% N/A N/A
AR < 0.01% N/A N/A
CTSA CARASAL AD < 0.01% N/A N/A
TREX1 Retinal vasculopathy with cerebral leukodystrophy AD < 0.01% N/A N/A
GLA Fabry disease X-linked 0-0.02% N/A N/A
CECRI ADA?2 deficiency AR 0.05%-0.18% N/A N/A
ABCC6 Pseudoxanthoma elasticum AR 0.25%-0.76% 4.9 (1S) N/A
COL3A1 Vascular Ehlers-Danlos syndrome (type IV) AD 0-0.02% N/A N/A
KRIT1 Familial cerebral cavernous malformations AD 0-0.03% N/A N/A
RNF213 Moyamoya syndrome AD 0-0.78% 3.58 (LAA) N/A
1.91 (IS)

AD, autosomal dominant; AR, autosomal recessive; CADASIL, cerebral autosomal dominant arteriopathies with subcortical infarcts and leukoencephalopathy;
CARASAL, cathepsin A-related arteriopathy with strokes and leukoencephalopathy; CARASIL, cerebral autosomal recessive arteriopathies with subcortical infarcts
and leukoencephalopathy; ICH, intracerebral hemorrhage; IS, ischemic stroke; LAA, large artery atherosclerosis; N/A, not applicable; OR, odds ratio.

* Prevalence range in the Genome Aggregation Database superpopulations (non-Finnish European, Latin American, East Asian, South Asian, or African).

of pathogenic mutations in the general population than
traditionally diagnosed. For instance, although clinically
diagnosed CADASIL is extremely rare (2 cases per 100,000
individuals), NOTCH3 pathogenic mutation carriers are >
100 times more prevalent in the general population, ranging
from approximately 2 carriers per 1000 individuals of Euro-
pean descent to as high as approximately 10 carriers per 1000
individuals of East Asian or South Asian descent.”*”’ Despite
increased mutation prevalence, carriers are still at substantial
risk of stroke (OR, approximately 2-4) and VaD (OR,
approximately 5).”

Similarly, more prominent roles for other Mendelian stroke
genes in_ vsﬁporadic stroke  susceptibility have recently
emerged.z/" Classically, biallelic loss of function mutations
in HTRAI cause a severe recessive form of SVD called “severe
recessive form of small vessel disease,” with heterozygote car-
riers initially considered asymptomatic.”* However, it is now
known that heterozyséotg carriers experience a milder, later-
onset form of SVD,®" expanding the proportion of in-
dividuals with symptomatic SVD attributable to HTRAI
mutations. Indeed, HTRAI carriers are relatively common (1
carrier per 1000) and have a twofold increased risk of stroke
and VaD.”® Another example is the RNF213 p.R4810K
mutation causing Moyamoya syndrome. Even in the absence
of Moyamoya vasculopathy, this variant still confers substan-
tial risk for large artery atherosclerosis (OR, 3.58), strokes of
undetermined etiology, and strokes of other determined eti-
ology.”’“’ Remarkably, this mutation is found in 20%-30%
of Japanese patients with intracranial artery stenosis/occlusion
and approximately 2% of all East Asian individuals.””

The observation of a higher-than-expected mutation fre-
quency prompted us to systematically reassess the genetic
prevalence of rare pathogenic mutations across all known
Mendelian stroke genes.”* In a public sequencing repository
of 101,635 ethnically diverse individuals, we estimated the
total carrier prevalence of Mendelian stroke mutations to be
approximately 1%-3% depending on genetic ancestry.”* This
challenges the perception of monogenic causes of stroke as

extremely rare disorders, highlighting a prevalent subgroup at
extreme risk for VaD. The disparity between genetic and
clinical prevalence suggests reason for optimism, because
carrying a “pathogenic” mutation, rather than deterministic, is
a strong risk factor for SVD and dementia. Contemporary
research focuses on identifying disease modifiers including
genetic and nongenetic factors. For example, approximately
5% of the variance in WMH severity among CADASIL pa-
tients could be explained by an independent common genetic
predisposition for WMH.”" Finally, conventional risk factors,
such as hypertension and smoking, remain vital, exacerbating
disease risk and progression among NOTCH3 and HTRAI
carriers, reinforcing the importance of aggressive management
and treatment of vascular risk factors for pathogenic mutation
carriers.”

Common genetic variants associated with stroke
culminate in novel genomic risk predictors

In contrast to monogenic disorders, the polygenic model of
disease inheritance stipulates that many common genetic
variants (on the order of hundreds of thousands) with indi-
vidually weak effects (OR, < 1.20) combine to explain the
most of the genetic predisposition to complex diseases. For
stroke, studies estimate that the totality of common poly-
morphisms, with common being defined as having a minor
allele frequency > 1%, explain 16%-44% of the overall
variance in stroke liability (ie, heritability), depending on the
subtype. Specifically, heritability for intracerebral hemorrhage
(ICH), large artery atherosclerosis, cardioembolic stroke,
cryptogenic stroke, and small vessel stroke has been estimated
at 44%, 40%, 33%, 24%, and 16%, respectively.”” "' Alto-
gether, this indicates that a substantial proportion of stroke
risk is explained by common genetic risk factors.

GWAS with large sample sizes are necessary to uncover the
specific susceptibility loci mediating these strong heritability
signals, demanding a coordinated effort of researchers world-
wide via the International Stroke Genetics Consortium. The
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first collaborative International Stroke Genetics Consortium
GWAS published in 2012 included 3548 stroke cases and
5972 controls of European ancestry.”> This seminal study
identified 4 susceptibility loci for large artery atherosclerosis
(HDAC9, CDKN2A/B) and cardioembolic stroke (PI7X2,
ZFHX3), all of which have since been replicated.

Fast forward a decade, and recent stroke GWAS are several
orders of magnitude larger and more ethnically diverse.
Among the largest, the GIGASTROKE initiative conducted a
cross-ancestry GWAS meta-analysis of 110,182 stroke cases
and > 1.5 million control participants.*’ Cases included in-
dividuals of European (66.7%), East Asian (24.8%), African
American (3.7%), South Asian (3.3%), and Hispanic (1.4%)
ancestry. GIGASTROKE identified 89 stroke susceptibility
loci, which were enriched for genes highly expressed in brain
vascular endothelial cells and astrocytes, as well as those
involved in the formation of blood clots and new blood ves-
sels. Of the 89 loci, 69 were associated with all stroke, 45 with
IS, 15 with large artery stroke, 13 with cardioembolic stroke,
and 10 with small vessel stroke. Small vessel stroke loci
included variants within or nearby genes associated with: (1)
monogenic causes of stroke and VaD (COL4A2, HTRAI,
FOXF2); (2) MRI markers of SVD (NBEALI, PMFI,
PTCHI, SH3PXD2A, ZCCHI4); and (3) blood pressure-
related traits (COL4A2, NBEALI, PMFI, PRDMIG,
SH3PXD24)."*

Numerous studies have shown the potential utility of PRS
for stroke risk stratification with a few common themes
emerging. First, PRS are strongly predictive of IS incidence
(HR, approximately 1.30 per standard deviation increase),
with effects comparable with established clinical risk factors,
such as hypertension and smoking./‘j’“"/‘? Second, risk
captured by PRS is complementary to that of clinical factors,
and incorporating PRS with them jointly in a statistical model
maximizes predictiveness. Third, PRS performance varies
substantially according to ethnicity, with PRS in understudied
populations performing worse (HR for African descent, 1.11
per 1 standard deviation increase) than in better represented
groups (HR fo/r European descent, 1.26; HR for East Asian
descent, 1.33).*” Fourth, PRS identifies a significant propor-
tion of the population at extreme risk of stroke, equivalent to
that of carrying rare pathogenic mutations. The most recent
GIGASTROKE PRS identified 2.5% of European, 2% of
East Asian, and 0.1% of African individuals to have double
the risk of stroke compared with those with an average PRS in
the middle decile.”” PRS might also help to fulfil one of the
promises of precision medicine, specifically, to predict
medication-associated ~ adverse  effects. For  example,
Mayerhofer et al. reported that a PRS predicted ICH risk
within anticoagulant users (HR, 1.24)."* Also, this PRS
improved risk stratification when used in addition to a clinical
risk score for bleeding (HR, 1.33). Similarly, lower LDL-
cholesterol has been epidemiologically and genetically associ-
ated with greater risk of ICH, and a PRS predicting LDL
response during statin treatment was associated with higher
ICH risk (HR, 1.16) even after adjusting for statin dose.”
Ultimately, as stroke GWAS continue to grow in sample
size and ethnic diversity, PRS will become increasingly pre-
dictive and robust, perhaps warranting more routine consid-
eration alongside other clinical risk assessments.

Canadian Journal of Cardiology
Volume 40 2024

Covert stroke

Approximately 10%-30% of elderly individuals aged older
than 40 years experience covert (or silent) brain infarcts
(CBIs).”" CBIs are defined as cerebral ischemic events
measuring > 3 mm in diameter on MRI scans and lack
clinical symptoms associated with overt stroke.”””" Notably,
CBIs occur 5 times more frequently than symptomatic
strokes, and have an estimated heritability of 29%.°""* Their
pathophysiology varies, with atherosclerosis, atrial fibrillation,
and cerebral SVD (CSVD) being prominent causes, often
leading to embolic or thrombotic arterial occlusion.”® CBI is a
risk factor for cognitive decline, dementia, and stroke; those
with CBIs have an estimated fivefold risk of incident dementia
and fourfold risk of incident stroke compared with those
without.”°

Genetic research on covert stroke is still in its early
stages,”‘w with the largest transcthnic meta-analysis
including 20,949 individuals from 18 population-based co-
horts.”> Of the MRI-detected brain infarcts analyzed,
approximately 90% of them were covert, and hence will be
referred to as CBI herein. Analysis yielded 2 genome-wide
significant (GWYS) loci, with signals near the FBN2 and
LINC00539/ZDHHC20 gene regions. Although validation
efforts in a smaller sample (N = 6862) failed to replicate these
findings, these gene regions remain biologically plausible.’”
The single nucleotide polymorphism (SNP) rs39938 (C >
T) in the FBN2 gene, has been associated with an elevated risk
of CBI (OR, 1.21; 95% CI, 1.13-1.30).”” Intriguingly, in-
dependent SNPs in FBNZ2 have also been reported to be
associated with systolic bloodﬂpressure (rs6595838) and
overall stroke risk (rs55670004).”” FBN2 encodes for fibrillin
2, a glycoprotein essential in microfibril formation and the
maintenance of vascular integrity within the extracellular
matrix.”® Rare mutations in FBN2 represent a monogenic
cause of a connective tissue disorder, congenital contractural
arachnodactyly, and age-related macular degeneration, a
condition characterized by damage to small blood vessels that
supply the macula.””®” The second CBI locus (rs12583648;
G > G; OR, 1.21; 95% CI, 1.13-1.29) was an intergenic
SNP located downstream of LINC00539 and ZDHHC20.”*
A modestly correlated SNP (** = 0.10) within the same re-
gion has also been associated with WMH at suggestive sig-
nificance (rs155076).°" Notably, in GWAS of the adverse
metabolic effects of the antihypertensive medication, hydro-
chlorothiazide, LINC00539/ZDHHC20 further emerged as a
suggestive locus regulating plasma triglyceride levels.”” One
notable SNP with biological plausibility emerged at suggestive
significance: rs9371194 (G > T) in PLEKHGI (OR, 1.19;
95% CI, 1.11-1.28).”” A moderately correlated SNP ? =
0.44) within the same region, 5275350 (G > C), has been
associated with WMH,” suggesting this as an important
susceptibility locus for CSVD. The PLEKHGI gene encodes
for a rho guanine nucleotide exchange factor, a protein
instrumental in the cell reorientation within the vascular
endothelium.®® Studies have shown strong epidemiological
associations of various vascular risk factors with the occurrence
of CBI, especially hypertension (OR, 1.62; 95% CI, 1.48-
1.78).” Indeed, PRS for systolic blood pressure is positively
associated with risk of CBI (OR, 1.03 per mm Hg increase).”

38



Ph.D. Thesis — Nazia Pathan, McMaster University — Medical Sciences

Pathan et al.
Genes and Vascular Dementia

CAA

CAA is a progressive, age-related condition, affecting the
blood vessels in the brain. It is characterized by the accumu-
lation of abnormal amyloid proteins, leading to the formation
of amyloid plaques on the walls of the small and medium
blood vessels in cerebral cortex and leptomeninges.”* The
most common clinical presentations include spontaneous
lobar ICH, transient focal neurological episodes, convexity
subarachnoid hemorrhage, CMBs, cognitive impairment/de-
mentia, neurological symptoms (including headaches, confu-
sion, and difficulty with speech or language), and seizures.*
The current standardized assessment and reporting of CAA is
outlined in the Boston criteria (version 2.0).°* In this method,
definitive diagnosis is CAA is only possible with histopatho-
logical analysis from a brain autopsy, whereas the second tier
identifies probable CAA with supporting pathology from
evacuated hematoma or biopsy samples. The third tier and
fourth tiers identify probable and possible CAA, respectively,
using noninvasive MRI markers in patients (age 50 years or
older).*

CAA mostly occurs in sporadic form, in mid to later life,
resulting from a culmination of risk factors, instead of a single
causal contributor. Two distinct types of sporadic CAA have
been identified. CAA-type 1 is characterized by the presence
of amyloid deposits in a wide range of blood vessels within the
brain, including cortical capillaries, leptomeningeal and
cortical arteries, arterioles, veins, and venules. Conversely,
CAA-type 2 is primarily associated with amyloid deposits in
leptomeningeal and cortical vessels, sparing cortical capil-
laries. Early-onset CAA, however, might affect patients
younger than the age of 50 years,”” typically caused by rare
monogenic mutations, with severe clinical manifestations.’®
Although the prevalence of carly-onset CAA is difficult to
estimate, the overall prevalence of CAA increases with age,
affecting 2.3% for patients between the ages of 65 and 74
years, 8.0% for those age 75-84 years, and 12.1% in patients
older than the age of 85 years.”” CAA is highly prevalent in
individuals with AD, with postmortem examinations of sub-
jects (iffeqcted by AD showing signs of CAA in 90% of
cases.” "

As of 2022, 45 human proteins have been reported to
form amyloid fibrils, however only 6 have been described to
affect the central nervous systemm; of these, amyloid beta
(AB) protein plays a major role in the etiology of CAA, but a
few non-AP CAA also exist. The amyloid precursor protein
(APP) is a transmembrane glycoprotein, housing the AP
peptide. Under normal circumstances, APP assists with
synaptic formation and repair. AR peptide is cleaved in
several ways by proteolytic processes via .-, -, or Y-secre-
tase. The enzyme O-secretase cleaves APP within the AP
domain, generating a soluble extracellular domain and an
intercellular domain that is further cleaved by y-secretase to
release a nontoxic p3-peptide.”’ Alternatively, cleavage by B-
or Y-secretase produces intact A4 and A4, peptides,
respectively, which are subsequently transported across the
blood brain barrier, facilitated by /lrp-1, rage, berp, and p-gp
proteins, and degraded by enzymes, such as matrix metal-
loproteins and APOE.”* The precise mechanisms by which
alleles influence the development and progression of CAA are
still under investigation. It is postulated that the causal alleles
result in increased production, impaired transport, and
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degradation of amyloid peptides, causing the accumulation
of amyloid fibrils on the small- and medium-calibre lep-
tomeningeal and cortical artery walls.”” The amyloid fibrils
form plaques, which weaken the cerebral blood vessels and
disrupt normal blood flow.

The APOE ¢4 allele is the only genetic risk factor robustly
associated with sporadic CAA. A comprehensive meta-analysis
of 24 studies (N = 3520) of APOE genotypes and patho-
logically diagnosed sporadic CAA, showed a significant asso-
ciation of APOE €4 with CAA. Generally, the APOE &4 allele
is strongly associated with CAA type 1 (where AP deposition
is found in cortical capillaries), cognitive phenotypes, and AD
pathology,(" /3 however, irrespective of the dementia status,
the strength of the association of CAA and APOEF €4 increases
in a dose-dependent manner, as the OR of heterozygous
carriers increases from 2.09 (95% CI, 1.69-2.58) to 6.6 (95%
ClI, 4.47-9.75) for homozygous individuals.”” Interestingly,
an intronic variant of LINC-PINT plays a protective role
against CAA in the absence of APOE €4 allele.”* The rela-
tionship between APOE €2 and CAA is less convincing. A few
studies have identified APOE €2 as a risk factor of ICH in
CAA patients,”®”” and is observed to affect bleeding-prone
leptomeningeal vessels,*”? conversely, on the basis of the
meta-analysis of 11 studies (N = 1640), the overall association
of CAA with APOE €2 is nonsignificant and with effect in the
opposite direction (OR, 0.73; 95% CI, 0.53-1.00).”°

There are several subtypes of hereditary, monogenic CAA,
named after the regions where they were first diagnosed. The
most common form of monogenic CAA is caused by the
mutation in the gene encoding the APP,”®”” which is linked
to the Dutch, Italian, Piedmont, Iowa, Flemish, and Arctic
familial CAA, with the Dutch type being the most prevalent
hereditary and well studied cause of CAA.®” Mutations of
APP that primarily cause AD can also show significant path-
ological evidence of CAA, including the London, Indiana, and
the Swedish mutations.”” Other monogenic CAA genes like
CST3 and ITM2B, are inherited in an autosomal dominant
manner, and induce amyloidosis via non-Ap pathways; CS73
causes Icelandic CAA, and /7M2B mutations result in the
British and Danish types.”” Rarer forms of monogenic CAA
are linked to TGF-1, TOMM40 and CRI, PSENI, and
PSEN2 genes. A number of genes with limited evidence for
association with CAA include LRPI, ACT, ACE, BCHE,
DXS1047 locus, APOE promoter, A2M, PONI, NEP, OLRI,
LRP, CYP46, CH25H*1, VEGF, interleukin genes (/L-14,
IL-1B, IL-33), GSTOI-1, CTSD, ABPP, ABPp promoter,
ABCA7, CLU, and CRIL.°""

Although there are currenty no effective therapeutics
available to cure or halt the progression of CAA, early prob-
able diagnosis empowers the implementation of management
strategies. These strategies aim to mitigate the risk of first-time
or recurrent lobar ICH, which, in turn involves managing
hypertension, comorbidities including cardiovascular risk
factors, and advocating the avoidance of lifelong systemic
anticoagulant use.”® Ongoing research focused on therapeutic
approaches are aimed at the reduction or clearance of amyloid
deposition, with antiamyloid antibodies, P-secretase in-
hibitors, and y-secretase.®” In recent years, the phase I1I trials
of lecanemab and donanemab resulted in promising prospects
for AD and might be studied further in the context of
CAA.N'S()
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Covert Cerebral SVD—Silent But Deadly
Cerebral SVD (CSVD) is a highly prevalent and chronic
vascular condition that affects small brain vessels, such as the
arterioles, capillaries, and venules.”®! Causes of CSVD are
heterogeneous and include arteriosclerosis, CAA, venous col-
lagenosis, genetic small- vessel anglopathy, and inflammation
and immune-mediated SVD."”" CSVD causes 25% of strokes,
while contrlbutmg up to 40%-45% of all dementia cases,
makmg it 1mperat1ve to identify markers of CSVD.* CSVD
is classified into overt or covert subtypes. Although overt
CSVD requires a presence of clinical symptoms such as stroke
and dementia for diagnosis, covert CSVD is detected with
MRI in the absence of observable neurological symptoms;
MRI-detected markers, such as WMH, CMBs, and peri-
vascular spaces (PVS) are hallmarks for CSVD. These markers
exhibit a high degree of heritability, with the hlghest bein;
WMH heritability reported at 71% in a male twin study,”™
and a more recent heritability estimate at 55%."" Dilated
PVS burden has an estimated heritability of 59%.% Overall,
research indicates a high degree of genetic overlap in the
different manifestations of CSVD, with 34% of the GW'S loci
being associated with at least 2 CSVD phenotypes.”
Furthermore, covert CSVD is a risk factor for future
ischemic and hemorrhagic stroke, VCI, and dementia.

WMH

WMH are regions in the brain that appear particularly
bright on fluid-attenuated inversion recovery T2-weighted
sequence MRI scans, and are an indication of pathological
changes in the white matter resulting from demyelination and
axonal loss of nerve fibres.*>®” Past studies have identified
hypertension, aging, and smoking status as risk factors for
WMH development.®"*>*” In addition, MR analyses reveal
that genetically determined WMH burden is putanvely
causally associated with stroke, AD, and hypertension.*”
WMH are associated with a twofold increased risk of de-
mentia and threefold increased risk of stroke,®” and conse-
quently, are major contributors of VaD. Family- and
population-based studies show that WMH volume is associ-
ated with AD non-AD related dementias, and mild cognitive
impairment.” Also, an increased burden of WMH is a hall-
mark of monogenic forms of VaD including the severe
recessive form of small vessel disease and CADASIL.”

GWAS on WMH have revealed numerous loci with shared
pathways involving the vascular, glial, and other neuronal
cells, several of which are also linked to cell structural com-
ponents and cell apoptosis.””**”*”" Some examples of GWS
loci for WMH include genes that encode for matrisome
proteins, such as COL4A2, EFEMPI, NID2, and VCAN
implicated in the largest multiancestry GWAS meta-analysis
of WMH (N = 50,970).*” Among these loci, EFEMPI
supports tumour cell motility and invasion, and was upregu-
lated in malignant gliomas; COL4A2/I mutations affect
basement membrane collagen, and are a known cause of
monogenic SVD; VCAN assists with cell adhesion, oligo—
dendrocyte maturation, and remyelination; PLEKHGI is
associated with WMH and 1S°>”%; and the chr1q22 region
(contammg PMFI-BGLAP) is also a susceptibility locus for
ICH.®
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More recently, Persyn et al. identified 19 independent loci
related to WMH (N = 42 310) accountmg for 1.79% vari-
ance in the UK Biobank.”' SNPs in proximity to APOE,
COL4A2, TRIM47, SH3PXD2A, EFEMPI, and NBEALI
were associated with WMH recapitulating evidence from
previous GWAS.®"%?"> NBEALT and COL4A2 are note-
worthy, because they are associated with WMH in stroke and
stroke-free populations, and linked to cholesterol metabolism
and increased coronary artery disease risk, highlighting com-
mon genetic susceptibility.”” A transcrlptome—mde association
study performed to identify tissue-specific gene expression
associations with traits, revealed that genetically elevated
arterial expression levels of ADAMTSL4 and SLC25A44 were
associated with greater WMH burden, whereas decreased
arterial expression of CALCRL was associated with increased
WMH burden.”" Interestingly, CALCRL is involved in a
vasodilation pathway relating to the calcitonin gene related
peptide and adrenomedullin receptors, with ameliorating ef-
fects on cardiovascular diseases, and a potential therapeutic
target for cerebral ischemia.”’

CMBs

CMBs are chronic hemorrhages that occur in the small
vessels of the brain, typically measuring a few millimeters to
centimeters in diameter. These microbleeds cause accumula-
tion of a paramagnetic material called hemosiderin, a
byproduct of blood degradation located within macrophages.
Hemosiderin, and thus CMBS, are detected with T2*-gradient
recalled echo imaging.”* The prevalence of CMBs is positively
correlated with age, affectmg 6.5% of patients aged 35 40
years, and 35.7% of patients aged 80 years and older.”
Furthermore, individuals w1th CMBs have a twofold greater
risk of developing dementia.”® Occurrence of multiple CMBs
increase the odds of VaD (OR, 3.10; 95% CI, 1.11-8.62),
showmg a profile of VCI by decreasing executive function and
processing speeds.””

CMBs can be subcategorized by their location, as strictly
lobar, deep, or a mixture of both. Lobar CMBs are distinct to
cortical-subcortical areas in the brain lobes and cerebellum
and are generally thought to be a result of CAA.”* CMBs in
deep white matter regions of the basal ganglia (BG), thalami,
brainstem, or cerebellum are a characteristic result of hyper-
tensive angiopathy. Patients with mixed CMBs and deep
white matter CMBs have a threefold greater risk of developing
dementia, compared with those with lobar CMBs, who have
an approximately twofold increased risk of dementia.”

GWAS have facilitated identification of common genetic
variants associated with CMBs, providing insight on the ge-
netic basis of CMBs, which have received less attention
compared with other markers of CSVD, like WMH. Knol
et al. conducted a GWAS meta-analysis involving 11
population-based cohorts and 3 stroke cohorts (N =
25,862).”” They identified multiple loci associated with
CMBs, with 1 locus reaching genome-wide significance:
APOE (rs769449). Additionally other loci previously associ-
ated with WMH, deep ICH, and lacunar stroke were sug-
gestively associated with CMBs.

Although the investigation of genetic mechanisms un-
derlying CMBs remains crucial, equally imperative is the
exploration of risk factors for CMBs, because of their
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significant contribution to the overall risk of dementia. Liu
et al. reported that genetically determined risks of IS (OR,
1.47; 95% CI, 1.04-2.07) and small-vessel occlusion stroke
(OR, 1.62; 95% CI, 1.07-2.47) were associated with greater
risk of CMBs.'** With 25%-30% of stroke patients going on
to develop VCI or VaD, thus, it is essential to further un-
derstand the independent and conse%uential contribution of
CMBs to VCI and VaD outcomes. !

Perivascular space burden

PVS are normal cerebrospinal fluid-filled spaces around
the blood vessels as they penetrate the brain’s paren-
chyma.®>'%” The perivascular space burden refers to the
extent of pathological changes observed in these spaces,
detected using MRI. PVS play a prominent role in the brain
drainage system, waste clearance, blood flow regulation,
and interstitial fluid exchange.®>'"> White matter PVS
(WM-PVS) burden, hippocampus (HIP) PVS (HIP-PVS)
burden, and BG PVS (BG-PVS) burden have an estimated
heritability of 11%, 8%, and 5%, r«:spectively.”'4 Large
PVS (diameter > 3 mm) have been associated with a greater
risk of CMBs (adjusted risk ratio, 1.43; 95% CI, 1.18-
1.72), subcortical infarcts (adjusted risk ratio, 2.54; 95%
CI, 1.76-3.68), a larger WMH 5-year progression, and
quadrupling the risk of VaD in at a 5-year follow-up.'”’
PVS burden was reported to increase with age (OR, 1.29;
95% ClI, 1.28-1.30) in a neuroimaging study of approxi-
mately 40,000 individuals.'”® Compared with WMH and
CMBs, PVS detection is more sensitive in early stages of
CSVD.'? Several studies have examined the relationship of
PVS burden with cardiovascular risk factors. Hypertension,
particularly diastolic blood pressure, was associated with
more PVS in all regions (OR, 1.04-1.05).""” Lacunae and
WMH volume were associated with PVS in different areas
(ORs, 1.13 and 1.10, respectively), particularly in the BG.

The largest GWAS meta-analysis of PVS burden in 18
European cohort studies (N = 40,095)"** identified 22 GWS
variants associated with PVS burden, and 2 risk loci for WM-
PVS. BG-PVS and HIP-PVS had a moderate genetic corre-
lation (genetic correlation [r,], 0.63; standard error [SE],
0.14]), and WM-PVS had a correlation with BG-PVS (r,,
0.24; SE, 0.12) and HIP-PVS (r,, 0.27; SE, 0.09). Of the 24
PVS burden loci, 5 were associated with WMH, and another
5 were associated with blood pressure factors. Individuals with
higher PRS for systolic and diastolic blood pressures showed a
greater burden of PVS, specifically in the BG and HIP re-
gions. Other markers of CSVD also exhibited moderate to
high correlation with BG- and HIP-PVS. The study high-
lighted GWS PVS loci including FOXF2, LPARI, EFEMP]I,
KCNK2, and NBEALI1-ICAIL as risk factors for WMH and
small vessel stroke, honing in on possible biological pathways
implicated with PVS burden. Additionally, the SLCI3A3 gene
was identified as GWS for WM-PVS. SLC13A43 encodes for a
Na*/dicarboxylate cotransporter that is expressed in the kid-
neys, astrocytes, and chord plexus. The study identified that
solute carriers might contribute to interstitial fluid accumu-
lation near PVS. In addition, WM-PVS were associated with
lower lysophosphatidic acid receptor 1 (an important regulator
of glial function) expression in vascular tissue.
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Current Challenges, Opportunities, and Future
Directions

Despite being the second most prevalent cause of de-
mentia, research on the genetics of VaD is limited, because of
the syndromic nature of VaD and the heterogeneity in disease
pathology. The relationship of clinical subtypes with genetic
or biological factors in VaD highlights the complexity of
categorizing diseases solely on the basis of clinical manifesta-
tions. Although clinical subtypes provide a practical frame-
work for diagnosis and treatment, genetics and biology show
that diseases are often interconnected at a molecular level,
challenging the rigid boundaries of clinical classifications. A
case in point, the association of APOE &4 with AD and CAA,
as well as the association of NBEALI with AD and WMH.
Although there are many genes linked to cerebrovascular
diseases associated with VaD, the distinction between those
that progress to dementia and those that do not, combined
with the utility of multiomics data identifying specific path-
ways, might hold the key to addressing the heterogeneity and
provide a more precise diagnosis.

Existing global consortia related to VaD are few and lack a
genetic focus.'”® Furthermore, many of the reported genetic
associations for VaD diagnoses rely on small- to midsized
single studies without rigourous replication initiatives. Large
biobanks (eg, UK Biobank and All of Us) provide a unique
opportunity to understand the genetic determinants of many
health outcomes; however, the low prevalence of VaD, and
further lower representation of multiethnic groups in these
consortia, represents a major obstacle. The largest GWAS
meta-analysis including 9000 cases only identified the already-
known APOE locus in GWAS.'”” This is in stark contrast to
75 loci identified for AD.''’ One way to overcome the
challenges posed by the reduced power is not only to initiate
accessible, focused consortia, with health records and
biomarker readings, but also to use statistical tools to integrate
the various consortia, multiethnic studies, and genetically
related traits.

As more VaD-related genes are identified, it is vital to
acknowledge that the evidence spans decades, marked by
various technological advancements and study designs. These
factors raise concerns about gene validity for clinical diagnosis,
however, using a standardized framework like those created by
the National Human Genome Research Institute (ClinGen)
to ascertain gene-disease validity can aid gene prioritization in
clinical contexts, improving genetic data usability and
dissemination.'"!

Studying the full spectrum of genetic contributions to
VaD, including common and rare variants, alongside epi-
genomics, transcriptomics, and proteomics, holds promise in
revolutionizing our understanding of VaD. Identifying spe-
cific genetic factors associated with an increased risk provides
an opportunity for early risk assessment. The current gold
standard for diagnosing VaD, involving MRI-based identifi-
cation of cerebrovascular pathology, faces pragmatic chal-
lenges in settings that lack adequate facilities, expertise, or
resources. Genetic studies that provide insight into the bio-
logical mechanisms, through applications of integromics, can
potentially lead to the discovery of diagnostic biomarkers that
are more accessible and therapeutic targets that are more
personalized.
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% Check for updates It has been postulated that rare coding variants (RVs; MAF < 0.01) contribute

to the “missing” heritability of complex traits. We developed a framework, the
Rare variant heritability (RARity) estimator, to assess RV heritability (h%ry)
without assuming a particular genetic architecture. We applied RARity to 31
complex traits in the UK Biobank (n =167,348) and showed that gene-level RV
aggregation suffers from 79% (95% Cl: 68-93%) loss of h’gy. Using unag-
gregated variants, 27 traits had h’zy > 5%, with height having the highest A%y at
21.9% (95% CI: 19.0-24.8%). The total heritability, including common and rare
variants, recovered pedigree-based estimates for 11 traits. RARity can estimate
gene-level h%y, enabling the assessment of gene-level characteristics and
revealing 11, previously unreported, gene-phenotype relationships. Finally, we
demonstrated that in silico pathogenicity prediction (variant-level) and gene-
level annotations do not generally enrich for RVs that over-contribute to
complex trait variance, and thus, innovative methods are needed to predict RV
functionality.

Rare protein coding variants, herein defined as those having minor
allele frequency (MAF)<1% and referred to as RVs, represent an
important and understudied component of non-Mendelian complex
trait genetics'. Despite efforts to functionally characterize RVs, the
biological impact of roughly 400 rare, putatively disruptive mutations
carried by each individual remains largely unknown?. Classification of
RVs is challenging, and current algorithms do not always correctly
predict their pathogenic characteristics®’. Indeed, existing tools to
classify RVs have typically been trained on conditions of Mendelian
inheritance’”, while most human phenotypes are complex and non-
Mendelian in nature. This gives rise to an unmet need to assess existing
classifications in the context of complex traits.

Genome-wide association studies (GWAS) have been fruitful for
characterizing common variants with regards to complex traits; how-
ever, a similar approach lacks the statistical power to study rare var-
iants, unless sample sizes or effect sizes are very large’. Consequently,
to improve statistical power, RV association testing often relies on
gene-level variant aggregation methods to perform gene-burden tests,
or variance component tests such as Sequence Kernel Association Test
(SKAT)® and its variations (e.g., SKAT-O or “Optimal SKAT”). A limita-
tion of gene-burden tests is the assumption that all RVs influencing a
trait are homogeneous in terms of direction and magnitude of effects’.
SKAT, on the other hand, aggregates the associations between variants
and the phenotype through a kernel matrix®, is a powerful tool for
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association testing in the presence of variants acting in opposing
directions, but can be less powerful than burden tests when most
variants are causal, and effects are in the same direction. SKAT-O
combines both burden and SKAT to overcome the limitations of SKAT
but can be slightly less powerful than burden or variance-component
tests if their assumptions are held. While SKAT and SKAT-O are solely
designed for association testing, variant aggregation in gene-burden
testing may be used in any scenario requiring a gene to be treated as a
single unit. However, the impact of RV aggregation on phenotypic
variance explained has never been empirically evaluated.

RVs are postulated to contribute significantly to the “missing
heritability” of complex traits, i.e. rare coding variants, when combined
with common variants (CVs) may help recover the difference between
current SNP-based heritability and heritability estimates from the tra-
ditional pedigree-based studies™', yet this hypothesis has only been
assessed for a handful of traits" . The RV contribution to narrow-
sense heritability, #%gy, defined as the proportion of phenotypic var-
iance attributable to their additive genetic effects, has been estimated
in several recent studies” . However, these studies are limited by
either the use of genotyping array data, small sample size, or models
that make specific assumptions about the underlying genetic archi-
tecture. RV heritability estimates utilizing genotype data'"™"° are
limited by the selection of rare genetic variation captured on the array,
and algorithms to impute missing variants resulted in low accuracy for
truly rare alleles'®**. As next-generation sequencing, particularly, whole
exome sequencing (WES), are becoming a common place to accurately
detect RVs"'*", methods to evaluate RV heritability that do not rely on
assumptions about the genomic architecture are needed.

We propose an approach to estimate RV narrow-sense heritability
(h’gy), the Rare-variant heritability (RARity) estimator. A common
strategy to estimate heritability is by assuming a random genetic effect
model, whereby each (unknown) causal variant contributes to the total
phenotypic variance according to a statistical distribution that might
depend on its MAF, linkage disequilibrium (LD) with nearby variants,
and functional properties, among others. These models aim to evalu-
ate the overall contribution from a large number of variants, without
identifying variant-specific effects'. RARity, in contrast, is based on
multiple linear regression to estimate heritability, where the genetic
effects are estimated conditional on the observed genotypes, and thus
does not make any assumptions about the distribution of individual
genetic effects nor the joint distribution of genotypes. The RARity
framework simultaneously evaluates a large number of smaller regions
of the chromosomes, referred to as blocks. This step is necessary to
avoid estimation of high-dimensional linear models as the large num-
ber of rare variants would otherwise make matrix calculations
intractable even with modern computational capabilities. An impor-
tant and critical feature of RARity is the pruning of variants to minimize
inflation in heritability due to LD spillage between blocks (see
Methods).

The availability of large WES data from the UK Biobank (UKB)
provides a unique opportunity to study the overall and gene-level
contribution of RVs to complex trait heritability. We hypothesize that
the study of exome-wide and gene-level RV heritability will provide
insights into the functional characteristics of RVs. Specifically, by
estimating the contribution of rare coding variants to narrow-sense
heritability in unrelated individuals, our objectives were to (1) char-
acterize the variant-level characteristics (allele frequency, disruptive-
ness according to a variety of algorithms, and clinical pathogenicity)
that best predict phenotypic variations, (2) characterize the gene-level
properties (membership to gene sets and biological pathways, evolu-
tionary constraint, gene length) that best predict biological effects
and, (3) identify genes associated with the traits.

Using WES data from UK Biobank (n = 167,348), we report h%y for
31 complex continuous traits, including 26 biomarkers and 5 anthro-
pometric traits, and we demonstrate the utility of RARity estimator to

understand whether existing in silico pathogenicity prediction (var-
iant-level) and gene-level annotations could be enriched for RVs that
disproportionately contribute to the complex trait. This study has
major implications for our understanding of the genetic architecture
of complex traits in the context of RV functions, which we expect
would ultimately facilitate the discovery of new disease pathogenesis.

Results

Overview and testing of the RARity method

The RARity method entails parallel computing of the adjusted R* based
on an ordinary least square (OLS) multiple linear regression as an
unbiased estimator of block-wise heritability for each consecutive
genetic block. Adjusted R? estimates are then summed over all blocks
as the overall heritability estimate. Overview of RARity is shown in Fig. 1
and technical details provided in Methods and Supplementary Fig. 1.
The current sample size provided at least 80% power to detect 4% h’gy,
at an empirical type-l error rate of 0.05 (Supplementary Fig. 2).
Extensive simulations were performed using real genotype data to
identify an approach for estimating heritability that is robust under
realistic scenarios. Through this endeavour, we discovered that A%y
could be affected by the presence of long-range LD (LRLD), occurring
at a much greater distance than what is observed for CVs* (Supple-
mentary Fig. 3). LRLD complications were controlled by using a strin-
gent LD threshold over a large, empirically derived window size
(>0.1, window size =50 Mb, step size =500 bases). This stringent
pruning method was enforced in all subsequent analyses involving RVs
to ensure a well-calibrated estimate of h%zy. The simulation studies on
the effects of varying MAFs, heritability, proportion of causal genes or
variants indicated that RARity is largely unbiased but tends to under-
estimate when the number of causal variants or genes is low (<1%;
Supplementary Fig. 3).

Comparison of gene-burden, gene-wise, and exome-wide
heritability

To estimate the amount of information lost when aggregating rare
variants within each gene, we compared h%y estimates using the
gene-burden approach to exome-wide estimations for 31 complex
traits using RARity. We created blocks of genotype data in the fol-
lowing manners: (1) gene-burden blocks, derived by summing the
number of rare alleles within each gene for an individual, which
produced a single block containing all gene-burden scores as pre-
dictors; (2) gene-wise blocks, consisted of un-aggregated RVs parti-
tioned by gene, such that each block contained all the variants within
a single gene; (3) exome-wide blocks were created by partitioning
RVs in each chromosome into blocks of -5000 adjacent RVs. RV
heritability estimates were then derived from each type of block
construct using RARity. Design and applications of RARity, using
these constructs is provided in Fig. 1, and a detailed computational
pipeline is illustrated in Supplementary Fig. 1.

Our results show that the overall estimated RV heritability from
gene-burden blocks (M*rvburden) iS ON average 79.3% (95% CI:
76.5%-82.0%) less than heritability based on either gene-wise
(R’Rv-gene-tod), OF exome-wide blocks (A’gy; Fig. 2, Supplementary
Table 3). Because gene-level estimates (A’gy.gene) are useful for sec-
ondary analyses, we further tested whether h’ry.gene-tor could in fact
substitute for h%zy from exome-wide blocks. A potential caveat of using
gene-wise heritability to determine total heritability is the possibility of
LD between variants in two or more genes inflating the total herit-
ability, as would be the case when genes overlap. We observed con-
sistent results between A’rv.geneor and A’y (Fig. 2b and
Supplementary Table 3), with A’gy.genewor being 1.5% (95% CI:
0.0%-4.0%) higher than h%*;, on average, indicating only a slight
inflation that could be due to chance. However, the advantage of gene-
level blocks is the smaller number of variants per block, which makes it
computationally less intensive and 3x faster to compute than Agy.
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Fig. 1| A schematic diagram illustrating the design and applications of Rare
variant heritability (RARity) estimator. Following the initial quality control steps
(Methods), the protein-altering and LoF RVs in each chromosome were LD pruned
and partitioned into consecutive regions, referred to as genotype blocks.

a Diagrammatic representation of the three genotype block constructs implemented
by RARity. Applications of RARity included: b Comparison of the block constructs to
empirically test the loss of information when aggregating rare variants. ¢ Rare variant

heritability estimates of complex traits using exome-wide blocks. d Gene-based RV
heritability to discover gene-phenotype associations. e Network and pathway ana-
lyses of the genes with significant RV heritability to provide insights into their bio-
logical relevance. f Enrichment of RV heritability by pathogenicity scores. Three
pathogenicity scores, CADD, M-CAP and REVEL were applied to retain progressively
more deleterious variants and tested on all 31 traits for enrichment in RV heritability.
This figure was generated using GraphPad Prism version 6.04 for Windows*’.

RV contribution to heritability estimates for 31 complex traits
Here we utilized two genetic datasets from the UK Biobank: RVs were
derived from the WES data (UKB data field: 23155) and CVs were
extracted from the imputed genotype data (data field: 22418; v3
release). The quality control steps for each dataset are provided in
Methods. Applying RARity using the exome-blocks (MAF < 0.01), we
estimated RV heritability for 31 complex traits, with 29 traits showing
meaningful contribution at a nominal significant threshold of 0.05, 27
traits showing h’gy > 5% and height having the highest A%y at 21.9%
(95% CI:19.0%-24.8%) (Table 1; Fig. 3, and Supplementary Table 3). The
lower overall heritability estimate for glucose, 1.8% (95% CI:
-1.0%-4.7%), observed in our study was most likely due to sample
collection in non-fasting states, as opposed to the fasting glucose level
used for heritability estimates in the pedigree studies”. Sex stratifica-
tion, performed on all 31 traits, showed some heterogeneity in A%y
between the sexes (Supplementary Fig. 4), but the apparent differ-
ences were statistically nonsignificant (p-value > 0.05).

Since RARity poses no upper restriction on the MAFs, we addi-
tionally assessed the contribution CV (h%-y) and the combined CV and
RV (K, to these 31 traits by concatenating common and rare variants
(Methods). We observed that h’cy estimated using RARity was

consistent with BOLT?, but higher than LDSC* (Supplementary Fig. 5).
Although common variants contributed more to overall heritability, as
compared to RVs (Table 1), estimated A%y generally increased pro-
portionally to hcy (Supplementary Fig. 6), except for height, alkaline
phosphatase and Lp(a). Lp(a) particularly stands out with a much
higher h%cy in relation to h%zy. The low concordance between CV and
RV heritability in Lp(a) may be due to the unique genetic architecture
of this trait, with most genetic variance attributed to the LPA locus
itself and the highly polymorphic kringle IV type 2 copy number var-
iation having an outsized impact on concentration™.

The estimated h%,, for 11 of the 31 traits were consistent with
previously reported heritability from pedigree or twin-based studies
(Supplementary Data 1). The difference between h%y and h%zyv-
adjusted-for-h*cy were heterogenous (Table 1), indicating that the
degree of tagging or LD between the rare and common variants can
vary by trait. For example, %, (from CV and RV) was 87.8% (95% CI:
84.5-91.1%) for height and 22.5 (95% Cl:19.3-25.7%) for albumin, with
height showing a greater degree of LD between RVs and CVs, as
compared to albumin, determined by a 5.3% reduction in A%y for
height, but only 0.6% reduction in h%y for albumin following
adjustment for h%cy (Table 1).
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Fig. 2| Effect of aggregating variants on RV heritability estimates. a Comparison
of RV heritability estimates derived from aggregation of variants in gene-burden
blocks, exome-wide blocks (blocks of 5000 unaggregated variants) and gene-wise
blocks with un-aggregated variants. The y-axis corresponds to the rare coding

Exome-wide RV heritability estimates (%)

variant contribution to percentage of heritability estimates for each trait.
b Correlation between heritability estimates from gene-wise blocks represented on
the y-axis versus exome-wide blocks, represented on the x-axis.

RV heritability to characterize pathogenicity scores
Various in silico tools have been developed to predict the effects of rare
coding variants on risk of Mendelian disorders. Whether such patho-
genicity tools are useful for prioritizing variants contributing to com-
plex trait variance in the general population remains uncertain. As such,
we tested the association between commonly used pathogenicity
scores, namely Combined Annotation-Dependent Depletion (CADD),
Mendelian Clinically Applicable Pathogenicity (MCAP), and Rare Exome
Variant Ensemble Learner (REVEL), and the fraction of trait RV herit-
ability explained, hypothesizing that variants predicted to be more
deleterious account for more trait variance explained and vice versa.
For most traits, the fraction of heritability explained by an
increasing proportion of RVs (added from the highest to the lowest
level of predicted pathogenicity), was largely uniform and indepen-
dent of pathogenicity score (sub-plot Fig. 4, and Supplementary Fig. 7),
indicating little enrichment of trait-associated RVs by pathogenicity
score. Across traits (Supplementary Fig. 7), the average RV heritability
explained by the top 25% most deleterious variants was slightly higher
than expected at 36% (CADD 34%; MCAP 36.7%; REVEL 37.2%). How-
ever, the top 50% of most deleterious variants accounted for 42.9% of
heritability explained, which is lower than the fraction of heritability
explained by the bottom 50% set of variants (54%). The magnitude of
enrichment by pathogenicity score also varied by trait, for example,
the top 25% most deleterious variants by M-CAP score explained as
little as 32.3% RV heritability for height but as much as 48.4% RV her-
itability for ApoA-1. Further, the allele frequency of variants seemed to
have very little impact on the magnitude of enrichment, as we
observed similar results across the three MAF categories (<0.001,
<0.005, <0.01; Fig. 4, Supplementary Fig. 7). The specified MAF cut-
offs were used instead of MAF-bins as the h’ry.gene-tor in these bins

(0.01>MAF > 0.005, 0.005>MAF >0.001, and 0.01>MAF > 0.001)
were <5% (Supplementary Table 4) and consequently would have
produced unreliable results when further stratified by pathogenicity
scores.

Characterizing genes based on heritability estimates
To investigate gene-level characteristics of RVs, we used RARity to
determine A%y.gene for all genes with qualifying variants and derived
corresponding p-values for each gene using an F-test. After Bonfer-
roni correction (p-value <2.75 x 10°), 152 of the 18,214 genes had
significant thV_gene for one or more traits (herein referred to as sig-
nificant A%ry.gene), representing 218 distinct gene-biomarker rela-
tionships. A list of these genes with the corresponding hZR\,.ge,.e and
p-values are presented in Supplementary Data 2. We identified many
genes that recapitulated previously reported associations and dis-
covered 11 previously unidentified gene-traits relationships. Some
examples of well-established relationships with significant hZR\,_gene
include PCSK9, which is known to regulate Apolipoprotein B (ApoB)
and Low density cholesterol (LDL); MC4R gene affecting body mass
index (BMI), and the association of LPL with Apolipoprotein A-I
(ApoA-l) levels. Some of the previously unidentified relationships
include PPARA with ApoB, TFAM with alkaline phosphatase, TMEM43
with hemoglobin Alc (HbAlc), and NRI/2 with total bilirubin. A list of
the significant heritability genes, highlighting the gene-biomarker
relationships is provided in Table 2. In addition, Manhattan plots
(Fig. 5) are included for 6 randomly selected traits: Alkaline phos-
phatase, HbAlc, Low density lipoprotein direct (LDL), Insulin like
growth-factor 1 (IGF-1), and ApoA-I.

We further investigated the role of the 152 genes contributing
significantly to trait heritability (p-value <2.75 x107™) in diseases and
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Table 1| Heritability estimates derived from rare coding and common variants

Traits h’ry (%) (95% CI)  h’cy (%) (95% CI)  h%.: (%) (95% CI)  h?ky adjusted for h’cy (%) Difference between h’yy and h%yy adjus-
(95% CI) ted for h’cy (%)
Albumin 5.4 (2.6,8.3) 17.7 (15.5,20.0) 22.5(19.3,25.7) 4.8 (1.7,7.8) 0.6
Alkaline phosphatase 13.8 (11.0,16.7) 36.1(33.9,38.4) 46.8 (43.6,50.1)  10.7 (7.6,13.8) 3.1
Alanine aminotransferase 7.8 (4.9,10.6) 17.1 (14.8,19.3) 23.0(19.7,26.2) 5.9 (2.8,9.0) 1.9
Apolipoprotein A 4.6 (1.7,7.4) 27.1(24.8,29.4) 29.9 (26.6,33.1) 2.8(-0.3,5.8) 1.8
Apolipoprotein B 9.6 (6.7,12.5) 38.9 (36.6,41.2) 44.0 (40.8,47.3) 5.1(2.08.2) 4.5
Aspartate aminotransferase 5.9 (3.0,8.7) 19.9 (17.6,22.1) 24.0(20.8,27.3) 4.2(11,7.2) 17
Body mass index 9.9 (7.0,12.8) 31.8 (29.6,34.1) 39.5(36.3,42.8) 7.7(4.6,10.7) 22
Calcium 5.1(2.2,7.9) 16.1(13.9,18.4) 20.7 (17.5,24.0) 4.6 (1.6,7.7) 0.4
Cholesterol 7.6 (4.7,10.4) 28.9(26.6,31.2)  32.2(29.0,35.4) 3.3(0.2,6.3) 4.3
Creatinine 5.9 (3.1,8.8) 28.6(26.3,30.9) 32.6(29.3,35.8) 3.9 (0.9,7.0) 2.0
C-reactive protein 6.6 (3.8,9.5) 27.3 (25.0,29.6) 33.7(30.5,37.0) 6.4(3.4,9.5) 0.2
Cystatin C 7.8 (4.9,10.7) 33.5(31.3,35.8) 38.9 (35.7,42.2) 5.4 (2.3,8.5) 24
Diastolic Blood Pressure 8.6 (5.7,11.4) 26.1(23.9,28.4) 34.6 (31.4,37.8) 8.5 (5.4,11.5) 0.1
Direct bilirubin 8.5(5.6,11.4) 35.0 (32.7,37.3) 39.4 (36.1,42.6) 4.4(1.3,7.4) 41
Gamma glutamyl transferase 7.0 (4.1,9.8) 29.4 (27.1,31.7) 35.0(31.7,38.2) 5.6 (2.5,8.6) 1.4
Glucose 1.8 (-1.0,4.7) 9.8 (7.6,12.1) 12.5 (9.3,15.7) 2.7(-0.45.7) -0.8
Height 21.9 (19.0,24.8) 71.3 (69.0,73.6) 87.8 (84.5,91.1) 16.5 (13.5,19.6) 5.4
Hemoglobin Alc 9.5 (6.7,12.4) 31.4 (29.1,33.6) 38.3 (35.1,41.6) 7.0 (3.9,10.0) 26
HDL cholesterol 6.6 (3.7,9.4) 31.5 (29.2,33.7) 36.2(32.9,39.4) 4.7(1.6,7.8) 19
IGF-1 7.9 (5.1,10.8) 28.1(25.9,30.4) 33.8(30.5,37.0) 5.6(2.6,8.7) 23
LDL direct 8.7 (5.9,11.6) 32.4(30.2,34.7) 36.7(33.5,39.9) 4.2(1.2,7.3) 4.5
Lipoprotein (a) 41(12,6.9) 61.1(58.9,63.4)  61.6(58.4,64.8) 0.5 (-2.6,3.5) 3.6
Phosphate 7.3 (4.5,10.2) 17.1 (14.8,19.4) 23.3(20.1,26.6) 6.2 (3.2,9.3) 11
Systolic Blood Pressure 6.8 (3.9,9.6) 25.4 (23.1,27.7) 33.4(30.2,36.7)  8.0(5.0,11.1) -1.3
Total bilirubin 7.7 (4.8,10.6) 40.3(38.0,42.6) 44.3 (41.1,47.6) 41(1.0,7.1) 3.6
Total protein 6.9 (4.0,9.7) 23.0 (20.7,25.2) 29.4 (26.1,32.6) 6.4 (3.3,9.5) 0.4
Triglycerides 8.6 (5.8,11.5) 26.3 (24.0,28.5) 31.9 (28.6,35.1) 5.6 (2.5,8.7) 3.0
Urea 3.2(0.4,6.1) 17.1(14.8,19.4) 20.0 (16.8,23.2) 2.9 (-0.2,6.0) 0.3
Urate 6.0(3.1,8.8) 28.0(25.7,30.3) 32.5(29.3,35.8) 45 (15,7.6) 14
Vitamin D 2.0 (-0.9,4.8) 13.3 (11.0,15.5) 15.0 (11.7,18.2) 1.7 (-1.4,4.7) 0.3
Waist to hip ratio 7.4(4.5,10.2) 21.0 (18.7,23.2) 28.2(25.0,31.5) 7.2 (4.2,10.3) 0.1

Cl confidence interval, hcy heritability estimates due to common variants, h%y, heritability estimates due to rare coding variants, h%; heritability estimates due to combined rare coding and common

variants.

biological pathways. DisGenet” revealed 115 of the target genes
influencing 2137 disease pathways (Supplementary Data 3). A heat-
map of the diseases associated with the significant genes for ApoB is
presented in Fig. 6a. Interestingly, searching through the Drug Gene
Interaction database (DGIdb)*® revealed that 93 of the 152 of the
target genes (i.e., 61%) belong in the “druggable genome” category,
16 of which are “clinically actionable”, including APOB, FGFR3 and
LDLR (Supplementary Data 4). The target genes also appear to be
significantly overrepresented in many biologically relevant pathways
(multiple-testing correction via the g:Profiler g:SCS algorithm,
adjusted p-value <0.05). For example, the genes contributing sig-
nificantly towards A%y of ApoB results in enrichment of 156 path-
ways, all of which are highly interconnected in an elaborate network
and includes well-known pathways such as the LDL receptor binding
pathways and pathways related to atherosclerosis (Fig. 6b, Supple-
mentary Data 5).

We explored whether A%gy.gene is associated with gene-length and
evolutionary constraint, where gene length was derived from the
RefSeq transcripts with the greatest length and gene-level evolutionary
constraint was determined using gnomAD pLoF Metrics®. For most
traits, neither gene-length (Supplementary Fig. 8, Supplementary
Table 5) nor evolutionary constraint (Supplementary Fig. 9, Supple-
mentary Table 6) was significantly associated with A%gy.gene. Height was

the only trait where A%ry.gene Was significantly associated with gene-
length (0.24% variance explained, p-value=3.3 x 10™) and evolu-
tionary constraint (0.27% variance explained, p-value=15 x 10™).
Evolutionary constraint was suggestively associated with the h’gy.gene
of BMI (p-value = 3.7 x 10*) and waist-to-hip ratio (p-value =9.4 x1073),
but no other significant association was observed. The highly con-
served gene cluster regions, with short repeats, such as the hox, his-
tone, protocadherin and hemoglobin gene clusters did not contribute
significantly to A%y (Supplementary Table 7). The overall heritability
estimates, /’ry.gene-torr WETE cONSsistent between genes that are tran-
scribed from either the positive or the negative strand (Supplementary
Fig.10), which is not surprising, considering that there are nearly equal
number of genes on either strand.

Discussion

We established a method, the RARity estimator, to accurately estimate
the contribution of RVs to the heritability of complex quantitative
traits, and to characterize the gene-level and variant level character-
istics of RVs, as demonstrated with results from 31 continuous traits
form the UK Biobank. RARity is a versatile method, as it does not make
any prior assumptions about the genetic architecture of the selected
variants, making it applicable to both common and rare variants.
Calibration of RV contributions was empirically confirmed using
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Fig. 3 | Estimated phenotypic variance explained by RVs across 31 complex
traits. Bar chart illustrating the exome-wide RV heritability estimates (h%zy) +/- 95%
confidence interval. Contribution of rare coding variants on 31 complex traits were
based on n=167,348 Caucasian individuals from the UK Biobank, as estimated

using RARity via the exome-wide block construction. Traits were standardized for
age, sex, and the first 20 genetic principal components. 95% confidence interval of
trait %y is denoted with red, vertical error bars.

extensive simulation studies and proved to produce robust estimates
across a wide range of analytical scenarios.

The performance of RARity for CV contributions was comparable
with BOLT. The estimated h*cy by LDSC on the other hand was lower
than RARity for each trait. While LDSC is a powerful tool that allows
estimation h%cy from GWAS summary-statistics, with adequate control
for population stratification, it is prone to underestimation as dis-
cussed in several studies®'. Comparison of the h%cy for height and
BMI, with other SNP-heritability methods in the literature, such as
LDSC*, LDAK*?, GCTA*, GRE” and SumHer**, shows that our estimates
are on the higher end (but not the highest) of what has been histori-
cally reported in comparison studies'”*. The apparent higher h%.y for
height and BMI using RARity may be a characteristic of the subset of
the population selected in this study. All current methods make
assumptions about the genetic architecture, such as the effect size,
variance, LD/MAF ratios, etc., since the true genetic architecture is
unknown, it remains unclear which estimates in the literature are
reliable. More importantly, none of these methods are suitable for
estimation of rare variant heritability.

It was observed that for most traits, RVs account for a noticeable
proportion of trait heritability independent of CV contribution. One of
the technical challenges in combining CV and RV contribution is the
presence of LD and its interplay with allele frequencies. The results
suggested that the amount of LD between CVs and RVs is hetero-
geneous, and consequently, their independent contribution to herit-
ability is trait dependent. Indeed, the “missing heritability” can be
almost perfectly recapitulated by incorporating RVs for 11 of the 31
traits, including height and BMI (Supplementary Data 1), reaffirming
the conclusion from a recent study that used whole genome sequen-
cing (WGS) data'. Meanwhile, the apparent lack of recovery of the
pedigree-based heritability for other traits may be due to the inherent
characteristics of the pedigree-based studies. Generally, pedigree-
based studies report higher heritability as compared to SNP-based
heritability from population studies®. This gap is most likely due to
limited sample size in the early genome-wide association studies,
variability in sample collection, population characteristics, the exclu-
sion of sex chromosomes®, rare intronic, structural and non-coding
regulatory variants, in addition to the non-additive effects which are
captured by pedigree-based analysis but not necessarily captured by
RARity, nor by the most commonly used CV heritability models.

Several methods have been used to increase the power of
detecting gene-trait associations, the most popular methods being
gene burden testing and Sequence Kernel Association Test (SKAT)®.
Since SKAT aggregates the associations between variants and the
phenotype through a kernel matrix® it is solely designed to test the
strength of association via p-values without providing an effect size,
and thus rendering it incomparable to RARity. The variant aggregation
method used in gene-burden testing do not have such a limitation, and
consequently, we were able to examine the effect of aggregating RVs
on trait variance, which on average resulted in a 79.3% loss on the
estimated h’gy. These results suggest that burden tests may have
limited ability to predict traits. On the other hand, the use of unag-
gregated variants in RARity, not only captures more genetic variance,
but also offers the practical advantage of characterizing genes based
on h’gy.gene. Furthermore, with fewer variants per block, h’gy.gene can
be computed more efficiently to obtain the total heritability and still
produce consistent results with those derived using larger blocks of
exome data (Fig. 2b).

Next, we leveraged heritability estimates to assess the perfor-
mance of RV pathogenicity algorithms in the context of complex traits.
We see very modest, if any, enrichment of h’zy when variants are fil-
tered according to pathogenicity scores. This is likely because the
pathogenicity scores for RVs currently used (MCAP, CADD, REVEL,
etc.) are largely based on Mendelian diseases, have a modest impact on
complex trait A%y, and are limited in distinguishing the variants with
any biological effects from those that do not. This affirms our con-
clusion that there is a need for alternative methods to study the
functional consequences of RVs.

One of the useful features of RARity is that it can be tailored to
identify genes significantly enriched for heritability and help with gene
discovery and characterization. We show this by identifying 152 genes
significantly enriched for heritability. To the best of our knowledge, 11
of these associations have not been previously described through
exome wide association studies or GWAS (Table 2, Supplementary
Data 2). We further demonstrate that the 152 genes with significant
hZR\,.ge,,E across 31 traits are enriched in various biological and disease
pathways. For example, 11 significant genes contributing to heritability
of ApoB are involved in pathways ranging from abnormal arterial ste-
nosis to chylomicron, LDL and lipoprotein clearance, as well as
hyperlipidemia and coronary artery diseases (Fig. 6, Supplementary

Nature Communications | (2024)15:1245

52



Ph.D. Thesis — Nazia Pathan, McMaster University — Medical Sciences

Article

https://doi.org/10.1038/s41467-024-45407-8

1.0

0.8
0.6
0.4 4
0.2 zZ A ! z

d1v

1.0

0.8 1
0.6
0.4 1
0.2 1 Z - ! )
0.0

=

LVOdVY

1.0

0.8 !
0.6
0.4 4 !
0.2 4 = !

\

OlvaH

0.0 1

1.0
0.8 1
0.6
0.4 1
0.2 1
0.0

x

\

\
1HOIFH

Proportion of RV heritabiltiy estimates

1.0

0.8
0.6
0.4
0.2
0.0 1

1491

1.0

0.8 !
0.6
0.4
0.2

1at

A\
\
\
v

0.0 T T T T T T

Proportion of RVs

Pathogenicity Score: -:- CADD

Fig. 4 | Impact of pathogenicity scores on variance explained by RVs for 6
representative traits. Plots illustrating the proportion of RV heritability explained
(y-axis) as a function of incorporating increasingly “deleterious” genetic variants (x-
axis). Proportion of heritability estimates is the fraction of estimates in relation to
all protein altering and LoF variants within the MAF categories. The vertical, dashed
lines represent the binary thresholds recommended to define pathogenicity for

MCAP REVEL

CADD (blue), M-CAP (green) and REVEL (magenta). The black diamond marks the
point of last inclusion of LoF variants, which were prioritized before missense
mutations. The diagonal dashed red lines represent the scenario wherein RVs
uniformly contribute to A%y, irrespective of pathogenicity score. ALP alkaline
phosphatase, HBA1C hemoglobin Alc, LDL low density lipoprotein direct, IGF1
insulin line growth-factor 1, APOAL apolipoprotein A-l.

Data 4 and 5). Interestingly, previous association studies did not
identify the PPARA gene as genome-wide significant, even though
PPARA significantly contributes to the A%y of ApoB and that both
PPARA and APOB are involved in several lipid-related pathways (Sup-
plementary Data 5), fatty liver disease, and dyslipidemias (Fig. 6), and
identified as “druggable genome” in the DGIdb database (Supple-
mentary Data 3). Notably, PPARA is also the target of the lipid-lowering
drug class known as fibrates®®, making it a strong candidate for further
pharmacogenomic studies. Indeed, most of the significant genes play
important roles in disease etiology, as observed through DisGenet
analyses. Further examples include the contribution of TFAM on
alkaline phosphatase heritability and its role in hepatocerebral mito-
chondrial DNA depletion syndrome, and the contribution of TMEM43
on HbAlc heritability and macular degeneration. These results imply
that genes involved in diseases are also likely to contribute sig-
nificantly to biomarker heritability. However, whether these associa-
tions can be used as markers of pathogenic mutations or represent

causal mediations through biomarker concentrations will require fur-
ther investigations.

As an application of the gene-wise blocks, we observed that for
most traits, longer genes do not explain higher trait variance, this is
likely because the relative paucity of larger genes obscuring any
underlying relationship'. Our observations also show a modest
increase in A’gy.gene With higher RV evolutionary constraint (indicated
by lower LOEUF scores”) for only a few traits, and from this, we can
conclude that RVs contributing to the variance in complex traits are
likely well-tolerated and are not selected against in general population.

This study has several limitations. First, exclusion of non-coding,
singleton, and doubleton variants, as well as LD pruning of potentially
functional variants, may lead to an underestimate of the hy.
Although, numerous studies have shown that rare coding variants have
major functional impacts in direct way”, it is quite possible that some
of the observed h%zy is due to the coding RVs being in LD with the non-
coding variants that are not represented in WES. On the other hand,
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Table 2 | Genes with significant heritability estimates for each trait

Trait Genes with significant RV heritability estimates Not reported in exome-wide Not reported in GWAS
associations in UKB** Catalogue

Albumin ALB; FCGRT; TBC1D2B

Alkaline phosphatase ALDH5AT; ALPL; ASGR1; GBGT1; GPLD1; HSPG2; NBPF3; TDP2; TFAM; TFAM TFAM
ZNF800

Alanine aminotransferase GPT; MFSD3 MFSD3

Apolipoprotein A-| ABCA1; ADH1B; ANGPTL3; APOAT; APOC3; CETP; LCAT; LIPC; LIPG; LPL; CETP
PLA2G12A; SCARB1

Apolipoprotein B APOB; APOE; BCAM; CEACAM20; CLASRP; LDLR; NECTIN2; NKPD1; PPARA PPARA
PCSK9; PPARA; ZNF229

Aspartate aminotransferase  ANO5; GOT1

BMI MC4R

Calcium ALB; CASR; FCGRT

Cholesterol ABCA1; ABCG5; ANGPTL3; APOB; FGB; JAK2; KHDRBS2; LDLR; LIPG; KHDRBS2; ZNF229 KHDRBS2
NECTIN2; NKPD1; PCSK9; ZNF229

Creatinine LRP2; SLC22A2; SLC22A7

C-reactive protein ABCAT; APCS; CRP; JAK1; TMED8 TMED8 TMED8

Cystatin C

CGNL1; CST3; SH2B3

Direct bilirubin

ATG16L1; DGKD; DNAJB3; HJURP; MROH2A; NR1I2; SAG; SLCO1BT;
SLCO1B3; SLCO1B3-SLCO1B7; TRPMS8; UGTIAT; UGTIA10; UGTIAS;
UGT1A4; UGTIA5; UGT1A6; UGTIA7; UGTI1AS8; UGTIA9; USP40

NR112; SLCO1B3-SLCO1B7

Gamma glutamyl
transferase

AICF; GGT1; LRRC75B; RORC; SYNJ2

Glucose

G6PC2; GCK

Hemoglobin Alc

ADGRES; APEH; CTU2; G6PC2; GCK; JAK2; PFKL; PFKM; PIEZOT; RHAG;
SPTB; TMC8; TMEM43

ADGRES5; TMEM43

ADGRES; APEH;
JAK2; TMEM43

HDL cholesterol

ABCA1; APOAT; APOAS5; APOC3; CETP; LCAT; LIPC; LIPG; LPL; NRTH3;
PLA2G12A; SCARBT

Height CRISPLD2; DDR2; FGF2; FGFR3; GH1; GHRH; GRAMD2A; HAPLN3; IHH; ~ GH1; GHRH
NPR2; NPR3; SCMH1; STC2; ZFAT
IGF-1 GH1; IGFALS; IGFBP3; PARPBP; ZNF12

Low-density lipoprotein

ABCG5; ANGPTL3; APOB; APOE; LDLR; NECTIN2; NKPD1; PCSK9;
ZNF229

Lipoprotein(a)

ACAT2; AGPAT4; ARID1B; EZR; FNDCT; IGF2R; LPA; MAP3K4; MAST;
MRPL18; PLG; PNLDCT; SLC22A1; SLC22A2; SLC22A3; SOD2; SYNJ2;
SYTL3; TMEM181; TULP4; WTAP

ACAT2; ARID1B;EZR;
SYNJ2; TULP4

EZR; TMEM181

Phosphate

ALPL; CDR2; ENPPT; HLA-DPAT; TTK

CDR2; HLA-DPAT; TTK

CDR2; HLA-DPAT; TTK

Total bilirubin

ATGI16L1; DGKD; DNAJB3; HIURP; MROH2A; NR1I2; SAG; SLCOI1BI;
SLCO1B3; SLCO1B3-SLCO1B7; TRPMS8; UGTIAT; UGTIA10; UGTIAS;
UGTI1A4; UGTI1A5; UGTIA6; UGTIA7; UGTIAS; UGTIA9; USP40

NR1I2; SLCO1B3-SLCO1B7

NR1I12

Total protein

FCGR2B; FCGRT; SNX8; TNFRSF13B

Triglycerides ANGPTL3; APOAS5; APOB; APOCS3; LPL; PLA2G12A; SIK3; ZPR1
Urate LGALS13; PDZK1; SLC22A11; SLC22A12; SLC2A9; WDR1

Urea RBM47; CYP2R1; HAL; PDE3B

Vitamin D CYP2R1; HAL; PDE3B

Systolic blood pressure, diastolic blood pressure and waist-to-hip ratio did not have significant h’y.gene. Bolded font indicates gene-trait relationships unidentified in previous studies. ** Wang, Q. et

al.* and Backman, J.D. et al. *°.

very little is known about the rare non-coding regions, which are dif-
ficult to define and even more difficult to assess functionality®, con-
sequently there is no direct comparison of the contribution of rare-
coding vs. non-coding variants in the literature. This is indeed a
question of high importance and may be answered with WGS. We
anticipate that RARity can be applied to WGS with further calibrations,
to study effects of other variants not discussed here. One of the
challenges of WGS data analysis is that there is no natural biological
unit available in the intergenic regions. With RARity, there is no need
for defining the biological units, as the estimates can be based on
blocks that are agnostic of genetic borders.

Currently, the RARity model is fitted for to continuous traits. For
dichotomous trait heritability, the model will require slight adjust-
ments to transform the observed heritability to a liability scale

heritability to account for the case-control imbalance in population
study’’. We did not find any significant difference in the RV heritability
between males and females across the 31 quantitative traits studied
(Supplementary Fig. 4). In contrast, SNP-based studies showed slight
differences in heritability of selected traits between the sexes*’™*%
Since the analysis using RVs was limited by the reduced power, further
research of larger sample sizes is required to better understand the sex
effect on RV heritability. We have only explored a fraction of the
pathogenicity scores and further research will benefit from using
RARity as a tool to evaluate the algorithms to distinguish functional vs.
non-functional variants. In addition, heritability describes the pheno-
typic variance at the population level, and thus cannot be generalized
to a different population, and nor does it inform the prediction of
phenotypic variations of an individual. Therefore, methods to estimate
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Fig. 5 | Manhattan plot illustrating genes with significant heritability for
selected traits. RARity was used to determine #’gy.gene for all genes with qualifying
RVs. Each dot represents a single gene, with genes ordered on the x-axis according
to their genomic position. The y-axis represents the significance of A’gy.gene

measured as -log;o transformed p-values, where the p-values were derived using F-
test. Red, horizontal dashed lines mark the Bonferroni’s p-value significance
threshold corrected for 18,214 genes (p-value <2.75 x 107°). Genes with significant
R’Ry.gene are labelled.

RV heritability, such as RARity, are not intended to replace RV asso-
ciation methods, but rather to complement.

Together, these results confirmed that (1) RVs can account for
a significant portion of the complex trait heritability, (2) gene-level
RV aggregation (gene burden) leads to a substantial loss of infor-
mation, (3) identification of genes significantly enriched for h%y.
gene €an help with gene discovery, and (4) innovative methods are
needed to predict variant-level functionality. In conclusion, the
high trait variance explained by RVs makes it imperative to con-
tinue to invest in the study of RVs and understand their impact on
health and diseases. As such, future studies extending the meth-
odology to analysis of dichotomous traits, particularly disease
status, are in a pressing need.

Methods

Study population

The UK Biobank (UKB) study is a prospective cohort comprising of
approximately 500,000 participants (ages 40-69 years) with exten-
sive genotypic and phenotypic data from consenting individuals*. All
UKB data included in our analyses were accessed as part of our
approved application #15255. Here we utilized two main genetic
datasets from the UK Biobank. First, our primary source of RVs was the
WES data with 17,975,236 variants on 200,643 participants (UKB data
field: 23155). Second, CVs were extracted from imputed genotype data
on 488,264 individuals (data field: 22418; v3 release). The acquisition
and primary quality control (QC) of both genetic data are described
elsewhere*’. Briefly, out of the 200,643 samples with WES data,
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individuals were excluded based on: consent withdrawal (n=11), call
rates less than 99% (n=2), discordance between genetic and repor-
ted sex (n=18), a departure from putative ancestorial clusters based
on the first two genetic principal components (n = 3), assigned clus-
ter membership to a continental population with less than
5000 samples (n=12,765, of which, South Asian=3395; African=
3168; Other=6202), and 3rd degree or closer relatedness
(n=14,156). In the remaining 173,688 individuals, an additional 6340
were removed following QC of biomarker data (as described below).
We focused on the 167,348 unrelated Caucasian participants to
estimate narrow-sense heritability contributed by CVs, RVs, or the
combined CV and RVs.

Biomarker and anthropometric data

The blood biomarkers in UKB represent clinical diagnostic measures
and established risk factors for diseases. For example, HbAlc is used in
the diagnosis of diabetes and lipids are needed for risk stratification of
cardiovascular diseases. Besides the standard QC steps implemented
by the UKB study team™, we applied additional steps to curate the final
list of 26 biomarkers and 5 anthropometric traits (height, body mass
index [BMI], waist-to-hip ratio, and systolic and diastolic blood pres-
sure measured automatically) (Supplementary Table 1, Supplementary
Fig. 1). Briefly, sex-specific biomarkers, such as sex hormone binding
globulin (SHBG) and testosterone, as well as those biomarkers with
>80% missingness (e.g. oestradiol and rheumatoid factors) were
excluded from the analyses. Next, we winsorized values that were
either above or below the detectable range, using the reportability
fields for each biomarker. Out of the 173,688 participants with WES
data, we removed 598 individuals with missing values for all 26 bio-
markers. Since many of the examined biomarkers can be altered by
specific medications including blood glucose, HbAlc, lipids, and blood
pressure, we applied corrections for medication status (Supplemen-
tary Table 2). As a result, 5,742 individuals on glucose-lowering drugs
were removed, meanwhile, individuals on statins had their baseline
low-density lipoprotein cholesterol (LDL-C) and ApoB values adjusted
by dividing by 0.7, their total cholesterol adjusted by dividing by 0.8,
and their ApoA-l1 and high-density lipoprotein (HDL) cholesterol
adjusted by dividing by 1.06 and 1.05, respectively*®*. Blood pressure-
lowering medications were adjusted by adding 10 mmHg and
15 mmHg to their diastolic blood pressure (DBP) and systolic blood
pressure (SBP), respectively’®”. Further, missing biomarker or trait
values were imputed by their mean values. All traits were then quantile
transformed to resemble a standard normal distribution and further
adjusted for age, sex, and the first 20 genetic principal components
(PCs) to account for any effects of sub-population structure within
UKB*, and finally standardized to have mean O and variance 1. Bio-
marker treatment for sex-stratified analysis was performed in an
identical manner.

Genotype data quality control

Rare coding variants. Genetic variants were called from WES data
following the Functional Equivalent pipeline®’. All monomorphic var-
iants (m =83,700), variants with missing genotypes in more than 10%
samples (m=369,215), and those deviating significantly from Hardy-
Weinberg Equilibrium (p-value <5 x 10°%; m=35,317) were removed.
Remaining variants were annotated with predicted pathogenicity
scores, and amino-acid changes using ANNOVAR geneanno pipeline
with the refGene database™. Variants were annotated with MAF based
on the UKB samples, as well as the five major ancestries identified in
the Genome aggregation database (gnomAD 2.11): Latino, non-Finnish
European, African/African American, East Asian, South Asian?. Quali-
fying RVs were defined as variants that were nonsynonymous single
nucleotide variants, frameshift deletions or insertions, in-frame dele-
tions or insertions, stop-gain, stop-loss and start-loss variants, with a
minor allele count (MAC, the number of minor alleles at each locus in

the population being studied) >2 and MAF below the cut-off (<1%,
<0.5% or <0.1%) in all gnomAD subpopulations, and locally in the UKB
samples. Within these variants, the stop gain/loss variants and frame-
shift variants were defined as the LoF variants, and the rest are referred
to as protein-altering variants. RVs were also subset into MAF bins
(MAF = 0.01-0.005, 0.005-0.001 or 0.01-0.001) to examine the con-
tribution of different MAF categories to hgy.

To reduce the influence of long-range LD between variants that
would otherwise inflate the overall heritability estimate, as we show in
subsequent simulations (“Calibrating RARity”), highly correlated RVs
were removed using PLINKL.9*, by LD pruning with a Pearson’s
threshold > 0.1 within a window of 50 Mb that was shifted by 500 bases
at the end of each step. Next, individuals on glucose-lowering medi-
cations were removed and a MAC filter was applied once more to retain
RVs with MAC > 2, leading to a final analytical dataset including 167,348
individuals and 1,592,257 variants with MAF <1% in 18,213 genes. All
other analyses were based on this analytical dataset. Individual level
genotypes were extracted with PLINK1.9, assuming an additive model
for all variants, and thus allotting a score of 2 for rare allele homo-
zygous variants, 1 for heterozygous variants, and O otherwise. Multi-
allelic variants were treated as bi-allelic by considering the presence or
absence of (any) rare variant. While RVs with missing genotype in >10%
samples were removed during the early QC steps, mean imputation
was employed to fill in the missing genotypes in the remaining sam-
ples. Finally, genotypes were standardized to have mean O and var-
iance 1. The genotype and phenotype data processing steps are
illustrated schematically in Supplementary Fig. 1.

Common variants. CVs originated from the third release of the UK
Biobank genotype data in 2017. The imputed genotypes are based on
the Genome Reference Consortium Human Build 37 (GRCH37), and
further filtered to retain CVs with imputation quality score greater than
0.7, those with no significant deviation from Hardy-Weinberg equili-
brium (p-value >1 x 107'°). We further filtered genotype data by LD
pruning with 2> 0.9 and a rolling window of 1 Mb, that were shifted in
steps of 500 bases, leaving 1,030,594 CVs in 159,058 participants, for
whom we also had WES data. These pruning parameters were selected
based on simulations using a very similar approach, using 325,989
participants in the UKB by Di Scipio and Khan et al.”". For compatibility
with RVs, the CVs were lifted to the GRCH38 assembly using UCSC
LiftOver*®. Similar to RVs, individual level genotypes were extracted
with PLINKI1.9, assuming an additive model, mean imputation was also
employed to fill in the missing genotypes (in <10% samples), followed
by standardized to have mean 0 and variance 1.

Combined common and rare coding variants. We concatenated the
derived RVs and CVs, and then LD pruned once again with the same
parameters as CVs (2> 0.9, window size =1 Mb, step size = 500 bases).
We already implemented a more stringent LD pruning schema for RVs
(P> 0.1, window size =50 Mb, step size =500 bases), conversely, an
overly stringent LD pruning schema applied to CVs would remove
most of the variants, and thus, for the combined CV +RV we imple-
mented the more relaxed LD pruning similar to that for CV (r*>0.9,
window size =1Mb, step size =500 bases) and blocks of 20,000 var-
iants were constructed to enable distribution of both CVs and RVs
within each block.

Statistical model to estimate RV heritability using RARity

We developed a method, RARity, to compute heritability estimates
based on aggregating linear regression models over large genetic
regions including up to thousands of variants. The method is based on
a multivariate linear regression model:

Y=GBg+e, @
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The RARity method entails computing the multiple linear regression
solutions using an ordinary least square (OLS) for each of the non-
overlapping genetic blocks (1,...,k,...,K) in parallel under the
condition that n is much larger than the number of genetic variants
(py) in the k th block, while ensuring the between block correlation,
due to linkage disequilibrium (LD) spillage between blocks, is
minimized. In other words, RARity approximates the linear solution
to B¢ by setting the observed (G'G) e R™*™ to a block diagonal matrix,
where m= 3" p, » n. Given the observed quantitative trait y, the OLS
estimate of the genetic effects vector for the k th block G, is:

Bs, = (GiG) Gy, @

and the fitted value, denoted by y, can be computed as:

9=Gibe,. 3)

The estimated heritability associated with the G matrix is simply the
amount of variance explained by the fitted value:

R, =YY/yY. ©)

Since ch mcreases as the number of predictors increase, the adjusted
R?, denoted by R is used as our estimate for the proportion of var-
iance explamed Total RV heritability of the trait is estimated by the
sum of Rk over all K blocks:

K K
Z R, =Z{1— (1-Rg)n-1/(n-p-1)].  ©
-1
The 95% confidence interval (CI) ofRZGk can be approximated for each
block using the asymptotic properties described by Algina®” using the
Wald’s method, where the variance of chk is given by:

- 4R (1- R, 2(n—k—l)2
Var(chk) = ¢ ((nz 7(;)211 +3) ©

The 95% CI for the adjusted R? of a single block can then be derived

accordingly:
Rg +196,|Var(R'g,), @)
where

= (=2 _ n-1 2__ 2
Var(R Gk) = (m) Var(Rg,). (8)

To estimate the 95% CI for h we approximated the asymptotxc var-
iance by the sum of the individual sampling variance, Var(R c,) for
each block, assuming each block is roughly uncorrelated of others
after controlling for LD spillage:

— (-2 K n-1 2___
)= (=2 2.,
l/ar( ) Z;(nfpkfl) Var(R G,) ©)

which then translates to a Wald’s 95% Cl for the hzz

i +1.96 [Var (h2> .

Since the model is conditional on the observed genotype matrix,
RARity requires no parametrization nor assumptions regarding the
genetic architecture of traits analyzed (such as polygenicity of effects
or relationships between MAF/LD and effect size). The only

10)

assumption of block-wise independence was addressed by a stringent
LD pruning to avoid long-range LD. The main computational burden
for biobank scale datasets is the inversion of the G’'G matrix, which is of
size m x m, but the matrix calculation becomes quite manageable for
blocks of G, where each block contains p, = 5000-10,000 variants and
n~-200,000 in a standard high-performance computing environment.
For example, for a typical analysis of 5000 RVs and 167,348 samples,
the heritability estimation took approximately 7 minutes for all 31
traits, running on a single core and 7.3Gb memory. All statistical
analyses were performed using the statistical programming language R
(version 3.6.0)".

Statistical power

Statistical power of hZRV was eitlmated empirically from the variance of
10,000 simulated h%zy (Var(h )), under 230 conditions of sample sizes
and true set h%y. Non-central F-distributions were used to simulate the
observed genetic effects at each genotype block, and exome-wide h?%gy
was derived as described above. The true set h%zy ranged from 2 to 25%,
with increments of 5%. Sample size was varied from 25,000 to 250,000
individuals by increments of 10,000. For each condition, the statistical
power was calculated as the proportion of observed p-values less than
0.05 out of the 10,000 simulations.

Calibrating RARity

Rarity can be used with both common and rare variants. The effect of
LD on over-estimation of heritability is well-known for common
variants®® and can be minimized by choosing a suitable set of pruning
parameters. In our preliminary analyses, we also observed over-
estimation of A%y, which occurs when rare variants in different blocks
are in LD, thus, it was necessary to perform pruning and calibrate the
pruning parameters to empirically minimize bias.

Here we conducted simulation studies using observed geno-
types to identify the most suitable LD pruning parameters, including
the Pearson’s r* coefficient threshold, the window size, and the step
size, to reduce bias in estimating heritability. To this end, RVs on
each chromosome, with MAF <0.01, were LD pruned under 7 dif-
ferent scenarios that varied in window sizes (ws) and LD 7 threshold
in the following combinations (ws=1Mb with #>0.9, 0.5 or 0.1;
ws =20 Mb with #>0.1; ws=50 with > 0.9, 0.5 or 0.1), with a fixed
step size of 500 bases. Pruned variants in each scenario were then
partitioned into exome-wide blocks, with 5000 variants per block.
We assumed that a random subset of 20% of the RVs in each block
had an independent effect associated with the simulated trait of
interest and their contribution to true set h’%zy was 0.05 for the
whole exome. The unobserved genetic effects were simulated
from a standard normal distribution while the errors were sampled
independently from a normal distribution with mean O and
variance 0.95.

The simulated phenotype (Ysim) Was then computed as:

Yim=GBs+e€ (4))

We generated 20 phenotypes (Ysm) under each of the 7 scenar-
ios to assess the overall impact of LD pruning parameters on RARity
estimates and proceeded to estimating exome-wide h%y as descri-
bed in the section “Statistical model to estimate RV heritability
using RARity”. In addition, the calibration was repeated with the
assumption that the true h%y originated from 10% of RVs within 5% of
the genes, instead of homogeneous distribution of A%y across all
blocks.

To test whether the more relaxed LD pruning for CVs (*>0.9,
ws =1Mb, step size = 500 bases) would impact the estimation of A%y,
we benchmarked RARity against alternative methods designed for
CVs, namely BOLT? and LDSC?.
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Testing the effects of genetic architecture

To assess whether RAR:ity is sensitive to MAF thresholds, values of
true h%y, or varying fractions of causal variants or genes, we further
tested RARity with simulations utilizing real genotype data, pruned
with the default LD pruning threshold (/> 0.1 within a window size of
50 Mb). For each simulation, exome-wide h%zy was estimated for Ygjm.
A total of 20 simulations were carried out for each scenario as fol-
lows. The effect of varying MAF was tested by assuming that 10% of
variants within 5% of genes are causal in each of the MAF categories
(MAF <0.001, <0.005 and <0.01). The effect of varying h%;y was
tested for MAF < 0.01 with the true h%y set to either 2, 5, 10, 20 or
25%. Next, keeping a consistent MAF < 0.01 and true A%y at 10%, the
effect of varying fractions of causal genes (0.01, 0.05, 0.1 and 0.2)
was tested with 10% of RVs with true effects. Finally, keeping a con-
sistent MAF < 0.01, and true set A%y at 10%, we tested the effect of
varying fractions of causal variants (0.001, 0.05, 0.1 and 0.2) in 5% of
randomly selected genes.

Application to UKB data

We estimated RV, CV (h*cy) and combined CV and RV heritability (h.,)
of 31 complex traits, including 26 biomarkers and 5 anthropometric
traits in 167,348 UKB samples. For RV heritability, we additionally
examined the influence of block construction on the final heritability
estimate. The qualifying RVs were arranged in three different ways to
create blocks of genotype data that were used to estimate heritability:
(1) gene-burden blocks were derived by summing the number of rare
alleles within each gene for an individual, which produced a single
block containing all gene-burden scores as predictors. Heritability
estimates from this type of block is denoted with h%ry.purden; (2) gene-
wise blocks, consisted of un-aggregated RVs partitioned by gene, such
that each block contained all the variants within a single gene. In other
words, there were as many blocks as the number of genes. Gene her-
itability from this type of block is referred to as A’gy.gene, and the total
trait heritability based on all genes is denoted as h’rv.gene-tot
(3) exome-wide blocks, were created by partitioning RVs in each
chromosome into blocks of ~5000 adjacent RVs. This type of construct
results in blocks that are gene-agnostic, i.e., independent of gene
borders with varying number of genes per block, for example, the
number of genes ranged from 17-170 per exome-wide block when
protein altering and LoF variants (<0.01 MAF) were selected. The total
heritability estimates from exome-wide blocks are denoted with Agy.
In each case, LD spillage was minimized through pruning prior to
creating the blocks (as described above, in the “Genotype data quality
control” section).

The impact of block size on h%y was tested using the first 4 blocks
of ~5000 protein altering and LoF RVs (MAF < 0.01) from chromosome
22, where 2 consecutive blocks were combined to create blocks of
~10,000 RVs and all four blocks were combined to form a single block of
~20,000 RVs. Since the size of blocks did not impact the accuracy of A%y
(Supplementary Fig. 11), the choice of 5000 RVs per block in an exome-
wide block construct was motivated by computational efficiency.

Enrichment analysis (pathogenicity and gene set)

Identification of significant genes. For each trait, we assessed 18,214
genes for their contribution to the total heritability and prioritized
those with significant contribution for functional enrichment. A sta-
tistically significant contribution was determined by an F-test for
regression models, against the null hypothesis that the gene-level
heritability was zero, at a Bonferroni corrected gene-wide significance
threshold of a=0.05/18,214 =2.75 x 10°°.

Pathogenicity scores. We evaluated three well-known pathogenicity
scores to classify deleterious RVs*, namely, Combined Annotation
Dependent Depletion (CADD) scores (v.1.6)°, Mendelian Clinically
Applicable Pathogenicity (M-CAP 1.3) scores®®, and rare exome

variant ensemble learner (REVEL)’. We created subsets of RVs based
on the default thresholds indicative of deleteriousness (CADD > 20,
M-CAP >0.025, and REVEL > 0.5>°"), as well as decreasing propor-
tion of variants, by increasing the pathogenicity scores every 5%
percentile. This was repeated for all three MAF cut-offs (<1%, <0.5% or
<0.1%), and thus creating 63 subsets of RVs (21 pathogenicity cut-offs
x 3 MAF thresholds) for each class of pathogenicity score. To derive
an independent set of deleterious variants, we applied LD-clumping
(Pearson’s r*>0.1, window size=50Mb) within each subset and
retained the more pathogenic, independent variants with the highest
score. We then constructed gene-wise blocks and derived A%y.gene-
ot to efficiently estimate the total heritability for each subset of RVs.
The proportion of h’gy.gene-tor Was measured in relation to all protein
altering and LoF variants within each MAF categories. The proportion
of A’Ry-gene-tor €Xplained as a function of incorporating increasingly
“deleterious” genetic variants was used to measure the performance
of pathogenicity scores to identify sets of functional RVs.

Network and pathway analyses. The g:ProfileR®" web tool for func-
tional profiling, g:GOST, was used to test the enrichment of the genes
with significant heritability (A’ry-gene p-value<2.75x107), against
gene-sets in common databases. The significant heritability genes for
each trait were treated as separate gene lists for independent query,
and statistical tests were conducted within a domain scope of only
annotated genes, considering the GO biological process, GO molecular
function, GO cellular component, KEGG, Reactome, TRANSFAC,
miRNA, CORUM, HP, HPA, and WikiPathways data sources, and
removing electronic GO annotations. This analysis resulted in a list of
statistically significant enriched terms for each gene list, adjusted for
multiple testing using g:SCS (set counts and sizes) p-value <0.05,
integral to the g:Profiler server. An Enrichment Map was then created
with the results from g:Profiler, using Cytoscape version 3.10.1°%, with
an FDR g-value cut-off value set to 0.001, and medium connectivity,
producing networks where the nodes represent enriched pathways,
and the edges represent all pairwise connections. These threshold
values were chosen to ensure that we captured highly enriched path-
ways while being able to observe structure in the network. Next, we
clustered the nodes to distinguish the major theme in the enriched
pathways for each trait. DisGeNET* was used to retrieve and explore
the gene-disease associations for the significant list of genes, resulting
in a disease-heat-map for each trait. In addition, we ran a query of the
target genes in the Drug-Gene Interaction database (DGIdb)** to
identify potentially druggable and clinically actionable genes.

Heritability estimates in relation to sex and gene-level
annotations
Sex-stratified analyses were performed using gene-wise blocks
including RVs with MAF < 0.01, including 92,963 females and 74,385
males. Differences in the heritability estimates between the genetic
sexes was determined with ¢-test. In order to investigate the influence
of gene length and evolutionary constraint on RV heritability, we
tested the association between these independent predictors and
heritability contribution from each gene towards RV trait h? (h’gy.
gene)- The predictors included (1) gene-level evolutionary constraint,
which was determined using gnomAD pLoF Metrics (v2.1.1)”’; and (2)
gene length, which was based on the curated RefSeq transcripts
obtained via the UCSC genome browser. For each gene, the tran-
script with the longest transcript length was selected to represent the
length of the gene. Since the distribution of the gene lengths are
skewed, with some genes being much longer than others, the lengths
of all genes were log transformed. Heritability estimates for both
analyses were calculated using the same set of 1,592,257 RVs
with MAF <1%.

To examine the enrichment of A%y in highly conserved regions,
we estimated the h’ry.gene-tor Of height originating from the conserved
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gene clusters, such as the hox, histone, protocadherin, and the
hemoglobin gene clusters. The list of genes in these clusters was
obtained from the HUGO Gene Nomenclature Committee (HGCN)
database (www.genenames.org) and cross-listed with the genes car-
rying RVs in the UKB. The impact of gene orientation on h%y was
examined by comparing the A’ry.gene-tor CONtribution of the genes
transcribed from the positive vs. negative strand, where the strand of
each gene was annotated using the RefGene database in the UCSC
genome browser*®, with roughly equal number of genes present on
either strand.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Individual genetic and phenotypic data were obtained from the UK
Biobank (http://www.ukbiobank.ac.uk/), under application #15255. The
UK Biobank study received approval from the National Health Service
National Research Ethics Service North West. Access to the UK Biobank
individual-level data is not publicly available and must be obtained via
an application (https://www.ukbiobank.ac.uk/register-apply/). UCSC
genome browser (https://genome.ucsc.edu/) was utilized to access
LiftOver for the conversion of Genome Reference Consortium Human
Build 37 (GRCH37) to Genome Reference Consortium Human Build 38
built, and to obtain additional gene-level annotations such as gene-
length, strand orientation and the gnomAD pLoF Metrics. Databases
for gene-disease associations (DisGeNet, https://www.disgenet.org/),
Drug Gene Interaction database (DGIdb, version 4.2.0, https://www.
dgidb.org/) and HUGO Gene Nomenclature Committee (HGCN,
https://www.genenames.org/) were utilized to inform on the impor-
tance of the target genes. Variant level annotations and pathogenicity
scores, such as Mendelian Clinically Applicable Pathogenicity (M-CAP)
Score, and Rare exome variant ensemble learner (REVEL) were
obtained using ANNOVAR or downloaded directly from the web-based
platform, such as the Combined Annotation Dependent Depletion
(CADD) scores. Source data for all main and supplemental figures are
provided with this paper.

Code availability

All custom code and relevant documentation to run RARity is available
in a public GitHub repository (https://zenodo.org/records/
10426710)%.
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ABSTRACT

The heritability of disease status due to rare coding variants (RVs, MAF<1%) remains
unclear due to limited power. We introduce the rare variant heritability estimator-
(RARIty-p), an adaptation of RARity for continuous traits, to estimate the overall (A?rv-liab)
and gene-level heritability (/%rv-liab-gene) OF binary traits on a liability scale. RARity-B was
applied to 18 binary traits (cases >10,000) and RVs across 18,217 genes from whole exome

sequence data, in the UK Biobank Caucasian participants (N=173,688). Significant
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heritability was observed in hypothyroidism, asthma, hypercholesterolemia, and essential
hypertension, with respective 4%gy-iiab 0f 12.5% (95% Cl: 1.7-23.4%), 12.5% (95% ClI: 4.0-
20.9%), 7.9% (95% CI: 1.1-14.7%), and 6.4% (95% CI: 1.4-11.3%). Gene-level analysis
identified 77 genes with significant 4%v-liab-gene fOr 0ne or more traits, with 70 previously
unidentified gene-trait relationships, including the contributions of an autophagy gene,
PEPBI, to atrial fibrillation and the TSHR gene’s contribution to hypothyroidism and
sciatica. The TSHR gene and several mutations in this gene increases levels of thyroid-
stimulating hormone-beta (TSHB), even in the absence of clinically diagnosed thyroid
disorder. Our findings confirm the functional role of the TSHR gene in regulating TSHB

and suggest that hypothyroidism is an under-recognized cause of sciatica.

INTRODUCTION

The emergence of large biobanks, such as the UK Biobank (UKB) and AllofUS have
dramatically increased the number of rare variant (minor allele frequency, MAF<1%)
associations that have been detected, especially at the gene-level, illustrating significant
contributions of the rare variants to complex traits. Numerous methods of gene-phenotype
associations, such as Collapsing Analysis, SKAT, Burden test, BOLT-LMM, SAIGE-
GENE+, SKAT-O, STAAR-SKAT, aSPU and ACAT-V have helped in the identification
of significant RV-phenotype associations, especially at the gene-level’, many of these
results are now readily available through catalogs such as RAVAR?, Genebass? and
AstraZeneca PheWAS portal®. The significance of rare variant (RV) associations is

underscored by the statistical observation that genes harboring RVs are linked to an average
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of 3.75 distinct traits. Concurrently, most traits demonstrate interactions with numerous
genes, with a median of seven associated genes per trait’. Historically, the RV contributions
to diseases have been linked to Mendelian forms of diseases, however most diseases are
complex in nature. Even though RVs play an important role in human diseases and are
postulated to explain missing heritability in many complex traits*, rare variant contributions
to the heritability estimates of disease status remain unknown, largely because of the lack
of power with fewer prevalent cases. Current methods to estimate RV heritability for binary
traits use gene-burden heritability regression®® or relies on prior assumptions related to
distribution of MAF or effect sizes’, however, aggregating rare variants can
cause substantial loss of variance®, while assessing heritability based on assumptions such
as beta and distribution of MAF, may lead to biases when the assumptions are
violated. Thus, there is a need to develop a robust method to assess the overall and gene-

level contributions of RVs to complex diseases.

In our previous study, we developed a Rare variant heritability estimator(RARity) which
has proven to be successful in delineating the extent of heritability attributable to rare
coding variants, and unraveling the genetic contributions to diverse continuous traits,
including the discovery of several susceptibility genes related to lipids and
anthropomorphic straits®. Here we extend the method to estimate the narrow sense, liability
scale heritability (LHS) of binary traits. For case-control phenotypes, the heritability
estimates on the observed binary scale are dependent on the case prevalence, hence it is
preferred to transform the observed scale heritability into liability scale heritability (LSH).
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LSH standardizes the genetic contribution across different diseases and traits, allowing for
better comparability; providing a biologically interpretable measure of genetic risk, and
mitigates ascertainment bias®. In this study, we developed RARity-B, an adaptation of
RARIty to estimate overall and gene-level heritability of binary traits. We hypothesize that
gene-level heritability estimation of binary traits will enable prioritization of genes
underlying disease mechanisms. With this objective, we applied RARIty-p to estimate

liability scaled heritability in 18 binary traits in the UKB, each with more than 10,000 cases.

METHODS

Statistical model to estimate RV heritability using RARity-p

Like the original RARIty, RARIty-f3 computes heritability estimates based on aggregating
linear regression models over large genetic regions, including thousands of variants, using
an ordinary least square (OLS) for each of the non-overlapping genetic blocks (1,...,k,...,K)
in parallel under the condition that n is much larger than the number of genetic variants (px)
in the k™ block, while ensuring the between block correlation, due to linkage disequilibrium
(LD) spillage between blocks, is minimized. Here, we use each gene as a block to estimate
RV heritability, and apply an empirically derived, LD pruning threshold size (r?> > 0.1,
window size = 50Mb, step size= 500 bases) to ensure robust results. The statistical details
for computing the RV heritability (h?=adjusted R?) of the trait and the 95% confidence
interval (CI) for RV heritability are explained in detail in Pathan, et. al, 20248, For
quantitative traits the scale of measurement is the same as the scale on which heritability is
expressed. In the context of binary traits, such as disease status, the phenotypes (case-
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control status) are measured on the 0-1 scale, but heritability is most interpretable on a
scale of liability®. LSH ensures that the estimates are not affected by ascertainment biases
or disease prevalence. RARIty-p primarily differs from RARity in application of a liability
scale to the observed heritability and confidence limits, as described by Lee, et. al and

Ojavee, et.al>* and shown in equations 1 and 2, respectively.

~ ~> K(1-K) K(1-K)
iy =h* =20 O

K(1-K) K(1-K
95% Cluay = CLES20—0 ()

Generally, P is the prevalence of cases in sample population and K is prevalence of cases
in full population, and 72 is is the squared probability density function of the standard
normal distribution evaluated at the K" quantile of the inverse cumulative density function
of the standard normal distribution, i.e.:

z* = (¢~ (K))? (©)

With a large sample size, as we use here, we assume that P=K.

Identification of significant genes

For each trait, we assessed 18,217 genes for their contribution to the total heritability
(h?rv-iiab) and prioritized those gene-heritability (/%rv-liab-gene) With significant contribution
for functional enrichment. A statistically significant contribution was determined by an F-
test for regression models, against the null hypothesis that the gene-level heritability was
zero, at a suggestive exome-wide significance threshold of o =0.05/18,217 genes
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=2.74x107%, and a strict Bonferroni corrected exome-wide significance threshold of
a=0.05/(18,217 genesx18 traits) = 1.52x1077 . Known disease associations of the

significant genes were investigated with the DisGenet database.

Statistical power

Statistical power of A%rv-ian Was estimated empirically from the variance of 10,000
simulated /2rv-iiab, under 272 conditions of number of cases and true set /%rv-lian, keeping a
constant sample size of 173,651 participants. Since each gene has a varying number of
variants, power calculation was simplified with the assumption of having 317 blocks with
5,000 variants per-block. Non-central F-distributions were used to simulate the observed
genetic effects at each genotype block, where the non-central parameter was calculated as
the product of the number of blocks and sample size. Total /%rv-iias Was derived as described
above. The true set A2rv-iiab ranged from 2 to 10%, with increments of 1%. Number of cases
varied from 2,000 to 10,000 individuals by increments of 500. For each condition, the
statistical power was calculated as the proportion of observed p-values less than 0.05 out

of the 10,000 simulations.

Testing for bias

Permutation tests were done to assess Type | errors by randomly generating null
distributions of traits, under the assumption that significant 42rv-iiab Will be observed if the
null hypothesis is true. We generated 20 phenotypes (Ysim) via random permutation of

cases, under 4 scenarios of varying number of cases to assess the overall impact of type 1
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error on A%rv-iab. The number of cases varied from 5,000 to 20,000 individuals by
increments of 5000, thus leading to 80 simulations. By comparing the observed A%rv-iia
with the mean /2rviian for each scenario, it was determined whether the observed A%gv-liab
are statistically significant or if they could have occurred by chance. P-value for the
permutation tests for each scenario was calculated as the proportion of test-statistics >=5%.
All statistical analyses were performed using the statistical programming language R

(version 3.6.0)*.

Application in the UK Biobank Data

UKB Sample
The UK Biobank (UKB) is a prospective population-based cohort encompassing

approximately 500,000 individuals aged 40-69 years, serves as a rich source of genotypic
and phenotypic data, all collected with participant consent under our approved application
#15255. Leveraging Whole Exome Sequencing (WES) data from 200,643 participants,
containing 17,975,236 variants (as annotated in the UKB data field: 23155), we focused
our investigation on rare variants. Quality control procedures, described extensively
elsewhere, were applied to ensure data integrity®. Among the samples with WES data,
exclusions were made based on withdrawal of consent (n=11), call rates below 99%
(n=2), discordance in reported sex (n=18), deviation from ancestral clusters (n=3),
assignment to continental populations with fewer than 5000 samples (n=12,765,
subdivided as follows: South Asian =3395; African = 3168; Other = 6202), and relatedness

up to the 3rd degree (n=14,156). Our analysis then focused on 173,688 unrelated British
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and non-British Caucasian participants to estimate the narrow-sense liability scaled

heritability (4%rv-iab) contributed by rare variants within the UK Biobank cohort.

Genetic Data

Genetic variants were called from WES data following the Functional Equivalent pipeline'?

and treated identically as described previously, with the exception of adjustment for
medications. MAC filter was applied once more to retain RVs with MAC > 2, leading to a
final analytical dataset including 173,688 participants and variants with MAF <1% in
18,217 genes. Individual level genotypes were extracted with PLINK1.9, assuming an
additive model for all variants, and thus allotting a score of 2 for rare allele homozygous
variants, 1 for heterozygous variants, and 0 otherwise. Finally, genotypes were standardized

to have mean 0 and variance 1.

Phenotype Data

Disease outcomes
Health data was gathered from self-reported medical histories and physical assessments

upon enrollment, with ongoing updates obtained through connected electronic health
records. Disease entities were defined by the PheWAS Codes (PheCode) derived from the
occurrence of related International Classification of Disease (10th Revision) and Related
Health Problem codes, in electronic health records from hospital inpatient admissions (field
identifier 41270), cancer registry (field identifier 40006), underlying cause of death registry
(field identifier 40001), and contributory cause of death registry (field identifier 40002).

Sex-specific outcomes and outcomes with fewer than 10,000 cases were excluded because

71



Ph.D. Thesis — Nazia Pathan, McMaster University — Medical Sciences

of the lack of statistical power. Also, given the inherent redundancy between PheCodes, we
selected either the child PheCodes for specific diagnosis or the parent PheCodes, whereby
the child PheCodes were collapsed to parent PheCodes, forming the representative trait,
while maximizing the sample size'®>®. This left us with 18 PheCodes for analyses with
sufficiently powered prevalent cases, where cases were coded as “1” and the controls as
“0”. Each disease outcome was residualized with age, sex, 20PCs and then standardized to

a mean zero and standard deviation 1.

Putative role of the TSHR gene

TSHR was one of the lead genes, contributing significantly towards A%rv-ian Of
hypothyroidism. We investigated the putative role of the TSHR gene in individuals without
any form of thyroid disorders with a linear regression between the Thyrotropin subunit beta
(TSHB) plasma protein as the outcome variable and both TSHR gene-burden, and
individual TSHR variants, as explanatory variables, while correcting for age, sex and
20PCs. TSHB, which is the beta subunit of the TSH diagnostic biomarker for thyroid
disfunction, was obtained from the UKB plasma proteomic profiles of 54,219 UK Biobank
participants. TSHB was measured with Olink proteomics assay, of which 18,714 also had
WES data to allow this analysis. A phenome-wide study on the heritability contributions
of the TSHR was carried out, exploring 360 different phenotypes, each comprising over

2000 cases from the UK Biobank.
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RESULTS

We previously developed the RARity model to estimate the heritability of complex
continuous traits explained by protein coding rare variants in a WES of unrelated
individuals®. To quantify the heritability of complex binary traits that can be explained
RVs with RARIty-p, we first needed to select traits with sufficient power and investigate
whether this approach can provide an unbiased estimate of #%rv-iiab Using WES data. With
access to limited traits with sufficient cases, we contended to using diagnoses of 18
common diseases, each with at least 10,000 cases, which ensures 50-80% power to observe
10% to 14% h?rv-ian, respectively (Figurel). The baseline characteristics of the disease

outcomes selected for this study are presented in Tablel.

Simulations were performed based on a WES data set, comprising 173,651 unrelated
British and non-British Caucasian participants after QC (Methods). The simulation results
showed that when the traits were permuted randomly, estimate of 42rv-iiab Using real
genotype data was unbiased (Figure 2). By unbiased we mean that the mean estimate of
h2rv-iiab from 20 permutations for each case size was always zero in the absence of
meaningful phenotypes, however, fewer cases (<10,000) showed a high degree of error,

and this confirms our choice of disease outcomes with at least 10,000 cases.
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Heritability of 18 common diseases

We analyzed UK Biobank exome sequences in up to 173,651 British and non-British
Caucasian for 18 common diseases and. Four of these traits had significant RV
contributions to /A%v-iiab, include hypothyroidism, asthma, hypercholesterolemia, and
essential hypertension, with respective A2ry-iiab Of 12.5% (95% CI: 1.7-23.4%), 12.5% (95%

Cl: 4.0-20.9%), 7.9% (95% CI: 1.1-14.7%), 6.4%(95%Cl: 1.4-11.3%) (Figure 3, Table 2).

To investigate gene-level contributions of RVs, we used RARity-B to determine A%Rv-liab-
gene for all genes with qualifying variants and derived corresponding p-values for each gene.
242 of the 18,217 genes had significant /?rv-liab-gene (P-value <2.75 x 107%), for one or more
traits (herein referred to as significant A2rv-iiab-gene), representing 244 distinct gene-disease
relationships. 77 significant genes remained after applying a more stringent Bonferroni
correction (p-value < (0.05/ (18217genes x 18 traits) = 1.52 x 107). A list of these 77 genes
with the corresponding A%rv-iab-gene and p-values are presented in Appendix-B,
Supplementary Table 1, as well as in Manhattan plots (Figure 4). We identified several
genes that replicated previously reported associations while 70 gene-traits relationships are
previously unidentified (Table 3). Some examples of well-established gene-disease
relationships captured by significant A%v.ia-gene include association between GCK
(glucokinase) and Type-2-diabetes, TSHR (thyroid-stimulating hormone receptor) and
hypothyroidism, and LDLR (low-density lipoprotein receptor) and hypercholesterolemia.

Previously unidentified gene-trait relationships include PEBP1 (phosphatidylethanolamine
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binding protein 1) with atrial fibrillation and flutter, and IDH2 (Isocitrate Dehydrogenase

(NADP (+)) 2) with renal failure as well as pneumonia.

Putative role of TSHR in hypothyroidism

To illustrate the importance of RV heritability in disease etiology, we investigated the
potential involvement of the TSHR gene in hypothyroidism, given its significant
contribution to the 4?rv-iiab-gene OF this condition. Consistent with previous findings, the
TSHR gene is notably associated with multiple thyroid-related diseases (Figure 5). Linear
regression of 219 RVs in the TSHR gene with hypothyroidism revealed that 4 variants are
significantly associated with hypothyroidism (Table 4). However, when investigating
which variants contribute to the overall /%rv-iiab €stimates of hypothyroidism, we found that
at least 17 variants contribute to the exome-wide heritability estimates (Figure 6). We
further leveraged the UK Biobank proteomics datasets to explore the influence of the TSHR
gene on TSHB levels in individuals with and without any form of thyroid disorder. The
results show strong, positive association between the TSHR gene burden and TSHB, and
between 11 individual variants within the gene and TSHB, despite the absence of thyroid
disorder (Table 5). Conversely, 4 variants and the TSHR gene burden were associated with
TSHB when individuals with thyroid disorders were not excluded (Appendix-B,
Supplementary Table 2). We also found a strong association between sciatica and
hypothyroidism (p-value = 1.11x 10%). Hypothyroidism is diagnosed in 270 of the 2309
participants with sciatica, prompting further investigation into the contributions of the

TSHR gene to the heritability of various phenotypes, particularly those with more than 2000
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cases. Our results revealed that the TSHR gene positively contributes to sciatica and limb
pain, among other traits (Table 6). The putative functional and epidemiological
consequences of the TSHR mutations are summarized in Appendix-B, Supplementary

figure 1.

DISCUSSION

In this study, we aimed to estimate the heritability of complex binary traits explained by
RVs using WES data. Building upon our previous work where the RARity model was
developed to estimate the heritability of continuous traits, we sought to assess its utility in
quantifying the heritability of binary traits in unrelated individuals. The robustness of the
method was evaluated through simulations. We observed genome-wide significant
estimates for 4 traits and gene-level estimates revealed important gene-disease associations

for 244 genes.

The significance of our approach is underscored by its ability to capture significant overall
heritability estimates for 4 traits, as well as well-established gene-disease relationships, as
evidenced by significant A%rv-iiab-gene €Stimates. Notably, our analysis identified several
compelling examples of such associations. One prominent example is the association
between GCK and Type 2 diabetes. GCK plays a crucial role in glucose metabolism, and
variants in this gene have been consistently implicated in the pathogenesis of Type 2

diabetes'#*°. Similarly, LDLR contributes significantly to hypercholesterolemia, and this is
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a well-established gene-disease relationship with profound implications for cardiovascular
health. Variants in LDLR disrupt lipid metabolism, leading to elevated levels of LDL

cholesterol and increased cardiovascular risk®.

The PEBP1 gene contributes significantly towards atrial fibrillation and flutter, but has not
been previously reported, however, there is some evidence of its role in cardiac
hypertrophy'’. Furthermore, the PEBP1 is expressed at medium levels in heart muscles®®,
supporting its relevance to cardiac function and diseases. Under normal circumstance, the
PEBP1 protein interacts with phosphatidylethanolamine in cellular membranes and
regulates the initiation of autophagy through interactions with several other autophagy
related proteins®®. Autophagy, a vital cellular process that degrades unfolded and misfolded
proteins, plays a protective role in cardiomyocytes against AF. This process is highly
conserved across evolution and is considered a potential therapeutic target and biomarker
for various cardiovascular diseases, including AF. Recent studies suggest that regulating
autophagy could help reduce the incidence of AF?°-?2, Together, the results implicate the

PEBP1 gene as a potential therapeutic target for AF, and merit further studies.

The highly significant association between TSHR and hypothyroidism was particularly
noteworthy, prompting a focused examination of the relationship between TSHR variants
and the manifestation of hypothyroidism. TSHR has been implicated in several Mendelian
forms of thyroid dysfunction. We identified 4 nonsynonymous variants in the TSHR gene
that are significantly associated hypothyroidism (Table 4), of which, the variants
TSHR:NM_000369:exon10:¢.G1637A:p.W546X and
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TSHR:NM_000369:exonl:¢c.G122C:p.C41S have been previously implicated in Mendelian
forms of congenital hypothyroidism?>2?°. In our study, we provide further evidence
reaffirming the association between these variants and hypothyroidism at the population
level. However, it is important to recognize that the overall heritability estimate of this
gene is not explained entirely by only the significant variants. In fact, we show at least 17
variants within this gene that contribute to the overall heritability estimates (Figure 6),

underscoring the polyallelic nature of the rare variants.

Under normal circumstances, the TSH produced by the pituitary gland binds to the TSHR
in the thyroid gland, releasing the T4 and T3 hormones. Once sufficient levels of the thyroid
hormones are released, further production of TSH by the pituitary gland is prevented with
a negative feedback loop. Mutations in the TSHR gene impair the receptor functionality,
resulting in overproduction of TSH. Detection of a strong, positive association between the
11 TSHR variants, as well as the TSHB gene burden and the TSHB levels in a subset of the
population without any form of thyroid disorder, confirms decrease in function of the TSH
receptor, in the absence of diagnosed thyroid conditions. Interestingly, we also found strong
association between sciatica and hypothyroidism, this warranted investigation of the
contributions of the TSHR gene on the heritability of other phenotypes, including all
available phenotypes with more than 2000 cases. We found significant contributions of the
TSHR gene in several other traits, including sciatica and limb pain. The observed

interrelationship between the TSHR gene, sciatica and hypothyroidism presents a possible
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clinical implication for individuals afflicted with sciatica. Our findings suggest that

hypothyroidism is putatively an under-recognized cause of sciatica.

Important limitations need to be acknowledged. Specifically, the power calculations
revealed that the sample size posed a constraint, thereby limiting our ability to detect
heritability estimates below 14%, when traits have a minimum of 10,000 cases. This
limitation emphasizes the need for caution when interpreting results, particularly in
scenarios where the true heritability falls below this threshold, and the observed heritability
on liability scales are negative. While negative heritability has been observed and dismissed
as statistical artifacts in other studies?®, here, the estimates deviate significantly and justify
further investigations into the extraneous factors driving this anomaly. Some of the factors
driving negative heritability include over-adjustment for LD, underpowered analysis due
to low allele count, population structure, and case-control imbalance associated with large
data banks on generally healthy population, etc. Efforts to address these constraints, such
as increasing sample sizes to ~1 million WES by pooling several large biobanks, or refining
analytical strategies, may enhance the sensitivity of our method to detect lower levels of

heritability and further strengthen its utility in genetic studies of complex traits.

Overall, our findings support the feasibility and validity of using the RARity-f model in
conjunction with WES data to estimate the heritability of complex binary traits explained
by RVs. By leveraging large-scale genotype data and carefully selecting traits with
sufficient statistical power, we have demonstrated the utility of our approach in advancing

our understanding of the genetic architecture of common diseases. Future research can
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build upon these findings by applying similar methods to additional trait categories and

expanding the scope of analysis to diverse populations.
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FIGURES AND TABLES

Tablel: Baseline characteristics of Disease outcomes in the UK Biobank WES cohort of

173651 participants.

Females Males Overall

(N=95412) (N=78239) (N=173651)
AGE
Mean (SD) 56.5 (7.96) 56.9 (8.11) 56.7 (8.03)
Median [Min, Max] 58.0 [40.0, 70.0] 58.0[38.0, 72.0] 58.0[38.0, 72.0]
Asthma 10373 (10.9%) 6744 (8.6%) 17117 (9.9%)
Atrial fibrillation and flutter 5227 (5.5%) 8805 (11.3%) 14032 (8.1%)
Cataract 14057 (14.7%) 9646 (12.3%) 23703 (13.6%)
Cholelithiasis and cholecystitis 7101 (7.4%) 3596 (4.6%) 10697 (6.2%)
Coronary atherosclerosis 3922 (4.1%) 9868 (12.6%) 13790 (7.9%)
Diabetes mellitus 6454 (6.8%) 8949 (11.4%) 15403 (8.9%)
Essential hypertension 25912 (27.2%) 28453 (36.4%) 54365 (31.3%)
Gastrointestinal hemorrhage 7316 (7.7%) 6731 (8.6%) 14047 (8.1%)
GERD 11905 (12.5%) 9205 (11.8%) 21110 (12.2%)
Hemorrhoids 5548 (5.8%) 5172 (6.6%) 10720 (6.2%)
Hypercholesterolemia 10970 (11.5%) 14574 (18.6%) 25544 (14.7%)
Hypothyroidism 8939 (9.4%) 2307 (2.9%) 11246 (6.5%)
Obesity 7288 (7.6%) 6210 (7.9%) 13498 (7.8%)
Osteoarthrosis 13670 (14.3%) 8739 (11.2%) 22409 (12.9%)
Pneumonia 5158 (5.4%) 6820 (8.7%) 11978 (6.9%)
Renal failure 6327 (6.6%) 7668 (9.8%) 13995 (8.1%)
Skin cancer 8874 (9.3%) 9021 (11.5%) 17895 (10.3%)
Urinary tract infection 5769 (6.0%) 4741 (6.1%) 10510 (6.1%)
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Table 2: Scaled RV heritability estimates of disease status

Trait Scaled heritability estimates (%) | 95% LCL | 95% UCL
Hypothyroidism 12.50 1.66 23.35
Asthma 12.46 4.03 20.90
Obesity 9.21 -0.49 18.91
Type 2 diabetes 8.33 -1.12 17.79
Hypercholesterolemia 7.94 1.15 14.72
Hemorrhoids 7.50 -3.67 18.67
Essential hypertension 6.37 1.46 11.28
Gastrointestinal hemorrhage 2.82 -6.64 12.28
Cholelithiasis and cholecystitis | 2.48 -8.70 13.65
Coronary atherosclerosis -0.15 -9.71 9.41
Cataract -5.86 -12.89 1.17
GERD -6.40 -13.88 1.08
Renal failure -9.06 -18.52 0.40
Pneumonia -11.29 -21.69 -0.89
Urinary tract infection -17.50 -28.77 -6.23
Atrial fibrillation and flutter -17.70 -27.13 -8.26
Osteoarthrosis -20.93 -31.31 -10.54
Skin cancer -21.14 -29.32 -12.96

82




Ph.D. Thesis — Nazia Pathan, McMaster University — Medical Sciences

Table 3: Genes with significant heritability for each trait

ZC3H18, CDCA42,
TVP23C-CDRT4,
ZNF292

Trait Genes with Non-significant in Non-significant in
significant RV exome-wide GWAS Catalogue
heritability estimates | associations in UKB**

Asthma EIF4Al EIF4A1 EIF4A1

Atrial Fibrillation and | MAD2L1, PEBP1, MAD2L1, PEBP1, MAD2L1, PEBP1,

Flutter YPEL2 YPEL2 YPEL2

Cataract SAMDS5 SAMD5 SAMD5

Cholelithiasis and FRS2, XCL2, NA NA

cholecystitis INPP5K, SLC38A3,

LETM1, EDCS,
KTN1, JAKS,
UGT1A5, NVL,
C1QB

Coronary LOC101927572, LOC101927572, LOC101927572,

atherosclerosis NKX3-1 NKX3-1 NKX3-1

Gastrointestinal NAIFNA7, NAIFNA7, NAIFNA7,

Hemorrhage TMEM151B TMEM151B TMEM151B

Hemorrhoids MEL, ZNF619, NA MEL, ZNF619,
RUNDC3B, RUNDC3B,
MB21D2, MB21D2,
TP53TG3D, KCNV1, TP53TG3D,
KIF5C, PALDL, KCNV1, KIF5C,
TTL, DHX16, PALD1, TTL,

DHX16, ZC3H18,
CDC42, TVP23C-
CDRT4, ZNF292

Hypercholesterolemia

LDLR

LIX1L, ABCC9,
IDH2

IDH2

Hypothyroidism TSHR, COL5A2, COLS5A2, ZNF583, COLS5A2, ZNF583,
ZNF583, ZNF490, ZNF490, TATDNL1, ZNF490, TATDNL1,
TATDNLI, TMEM256-PLSCR3, TMEM256-
TMEMZ256-PLSCR3, | REEPS PLSCR3, REEP5
REEPS

Obesity PPP1R21, SKA1, PPP1R21, SKAL, PPP1R21, SKAL,
SCARB1 SCARB1 SCARB1

Pneumonia SRSF2, OR10A7, SRSF2, OR10A7, CPB2, | SRSF2, OR10A7,
CPB2, PANKS, PANKS3, BST1, RBAK- CPB2, PANKS,
BST1, RBAK- RBAKDN, ERLIN2, BST1, RBAK-
RBAKDN, ERLIN2, | IDH2 RBAKDN, ERLINZ2,
IDH2 IDH2

Renal Failure SRSF5, SRSF2, SRSF5, LIX1L, ABCC9, | SRSF5, SRSF2,

LIX1L, ABCC9,
IDH2
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Type 2 Diabetes GCK, AGXT2, AGXT2, HRH1, AGXT2, HRH1,
HRH1, FOLH1B, FOLH1B, SCO1, MYRF, | FOLH1B, SCO1,
SCO1, MYRF, PDK1, | PDK1, DNMT3A PDK1, MYRF
DNMT3A

Urinary tract CD38, PDCL, CD38, PDCL, VPS41, CD38, PDCL,

infection

VPS41, STMN2,
STXBP3, ZNF587B,
C120rf43, CBX6,
ANOS8, AADACLA4,
TEX22

STMNZ2, STXBP3,
ZNF587B, C120rf43,
CBX6, ANOS,
AADACL4, TEX22

VPS41, STMN2,
STXBP3, ZNF587B,
C120rf43, ANOS,
AADACL4, TEX22

NA=trait not listed. Bold font represents genes that are not identified in either GWAS or EXWAS

as per **z **z,
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Table 4: Variant level association (linear regression). Four TSHR variants are
significantly associated with hypothyroidism in this study population.

Standard Mutation Known Disease

HGVS annotation Estimate Error [P-value type associations
Hyperthyroidism
nonautoimmune/congen
ital/ nongoitrous
ClinVar-Conflicting
with 5 submitter

TSHR:NM_000369:exonl showing pathogenic and

0:c.G1637A:p.W546X 0.0145 0.0024  |1.37E-09 stopgain 1 benign

TSHR:NM_000369:exonl nonsynonymo

0:¢.C1532T:p.T511M 0.0102 0.002398 |2.05E-05 us SNV Not applicable

TSHR:NM_000369:exonl nonsynonymo

0:¢.C1600T:p.R534C 0.00947 0.002398 |7.81E-05 us SNV Not applicable
Epilepsy,
Developmental delay,
autistic features,
Hypothyroidism

TSHR:NM_000369:exonl: nonsynonymao|congenital/nongoitrous

c.G122C:p.C41S 0.00941 0.002406 |9.25E-05 us SNV - Pathogenic in ClinVar
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Table 5: Association between the blood plasma biomarker TSHB and TSHR in thyroid

disease-free population (N=17,107)

GENE / variant ID CMAC CMAF Estimate | Standard error | P-value
TSHR gene burden 450 0.013153 | 0.113829 | 0.018124 3.45E-10
14:81143695:G:A_A | 14 0.000409 | 0.875351 | 0.203134 1.65E-05
14:80955786:G:C_C | 292 0.008535 | 0.168581 | 0.044804 1.69E-04
14:81143715:G:A A | 4 0.000117 | 1.358058 | 0.379324 3.44E-04
14:81143227:G:T. T | 2 5.85E-05 | 1.390554 | 0.536496 9.55E-03
14:81143283:G:T T | 1 2.92E-05 | 1.878784 | 0.759074 1.33E-02
14:81143460:C:T T | 1 2.92E-05 | 1.809892 | 0.758792 1.71E-02
14:81143250:T:A A | 1 2.92E-05 | 1.795922 | 0.758673 1.79E-02
14:80955841.C:T T | 3 8.77E-05 | 1.026459 | 0.43816 1.92E-02
14:81092547:.C:G G | 10 0.000292 | 0.551467 | 0.239981 2.16E-02
14:81144036:A:G_ G | 2 5.85E-05 | -1.21162 | 0.536594 2.40E-02

CMAC= cumulative minor allele count, CMAF= cumulative allele frequency, based on CMAC.
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Table 6: TSHR contributes significantly to other phenotypes.

Traits Scaled Heritability|P-value

Hypothyroidism NOS 0.0042 3.74E-18
Hypothyroidism 0.0039 2.35E-17
Sciatica 0.0077 7.27E-10
Right bundle branch block|0.008 1.09E-09
Bronchiectasis 0.0073 3.83E-09
Umbilical hernia 0.0065 5.99E-09
Duodenal ulcer 0.0078 7.60E-09
Pain in limb 0.004 3.08E-08
Acute renal failure 0.0024 3.58E-07
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Figure 1: Power of Rare variant heritability estimates on a liability scale.

Based on 173,651British and non-British participants, with the true set 4ry-iiab ranged from 2 to
10%, with increments of 1%. Number of cases varied from 2,000 to 10,000 individuals by
increments of 500. The red-dashed horizontal line marks 80% power, while the red-dashed
vertical line marks 10,000 cases, as the threshold for traits selection in this study.
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Figure 2: Simulation with permutation.

Here we simulated phenotypes using permutations using various numbers of cases, and always
observed /2rv-iiab Of mean zero, in the absence of meaningful phenotypes. The central red dot
represents the mean /%rv-liab Of 20 simulations via phenotype permutations with the specified
number of cases. The red vertical lines represent the standard deviation of the estimates.

89



Ph.D. Thesis — Nazia Pathan, McMaster University — Medical Sciences

20 T
y N}
. = N
e (—‘; ~ [=]
I = n = B
()}
o o bl (=] O
~ 1071 - & =l g 9 2
= N
(] o o
2 g £
g @ = ~ =5
9
B |Www w3 WA !
2 o — NS
> N &
= = =
= N = S
E T | § = -
= =
o B n — (3] -
T 0. s ||S €L
- - o
o2
3 IRERIE -
» s ||&
= 3 =
~
% i
-20 @
304
T T T T T T T T T T T T T T T T T
A X e - o o el & R ] .
& & & PR F P F S P S P
&S 19 Q Q N & > © &) & & o & @ & SRS
F B @ & P S - N & & & F P ¥ &
& N § @ @ o \@ & &
S 63 X O N QO o §) & o 9 X
aF & o g ] @ e & <@ R e NI @
S &P & & S PN X & Q\\\Q
{&'b Q)C\ & ,30 ;\\Q (\\\\’b @.\0 A
& && P R
PR S & & ¢ &
& FsE ©
R O & B
N
&
Trait

Figure3: Bar chart illustrating the exome-wide RV heritability estimates (A%rv-iian)
+/— 95% confidence interval.

Contribution of 1,606,565 qualifying rare coding variants on 31 complex traits were based on
n=173,651 Caucasian individuals from the UK Biobank, as estimated using RARity-p. Traits
were standardized for age, sex, and the first 20 genetic principal components. 95% confidence
interval of trait /%rv-iiab is denoted with red, vertical error bars. The number of cases for each trait
is indicated next to the error bar.
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Figure 4: RARIty-B to determine /2rv-iiab-gene fOr all genes with qualifying RVs.
Each dot represents a single gene, with genes ordered on the x-axis according to their genomic
position. The y-axis represents the significance of /42rv-liab-gene Measured as -log. transformed p-
values, where the p-values were derived using F-test. Red, horizontal dashed lines mark the
Bonferroni’s p-value significance threshold corrected for 18,169 genes (p-value <2.75 x 10+).

Genes with significant /%rv-liab-gene are labeled.
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Figure 5: Gene-disease heatmap, for the genes contributing significantly to the RV
heritability of hypothyroidism. The intensity of color is proportional to the strength of
evidence for gene-disease-association, with darker color representing a greater level of evidence.
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Figure 6: Rare variants in the TSHR gene contributing to the entire heritability
estimate conferred by the gene on hypothyroidism. Effect of increasing the number of
variants in order of most to least significant heritability contributions on total heritability.
At least 17 variants contribute to the overall RV heritability inferred by the TSHR gene.
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CHAPTER 6: DISCUSSION

6.1 GENERAL OVERVIEW

This thesis focuses on the contributions of rare genetic variants to complex traits and
diseases. The syndromic nature of diseases, diverse pathology, polygenicity and the lack of
appropriate genetic tools to study complex traits complicate genetic research. In study 1
(chapter 3), the genetic determinants of vascular dementia were examined, allowing a
comprehensive understanding of how genetic methodologies are currently applied to
complex traits. Study 2 (Chapter 4) describes the developed of a rare variants heritability
estimator (RARIty) to examine the contributions of rare variants to complex continuous
traits, including 5 anthropomorphic and 26 blood biomarkers in the UKB. In study 3
(Chapter 5) RARIity method was extended to develop RARity-B, to study binary trait
heritability on a liability scale and its implications in 18 diseases in the UKB. In the
subsequent sections, | will i) summarize the main findings from each chapter, ii) outline

the significance, and iii) describe the limitations, and future areas of investigation.

6.2 STUDY 1 (CHAPTER 3)

6.2.1 SUMMARY

Study 1, “Genetic determinants of vascular dementia”, is a review article exploring recent
genetic research on VaD, utilizing methods such as genome-wide association studies
(GWAS), polygenic risk scores (PRS), heritability estimates, and family studies for
Mendelian forms of the disease. It highlights key genetic associations and potential
pathways involved in VVaD, focusing on pathological risk factors like stroke, cerebral small
vessel diseases, and cerebral amyloid angiopathy. The review also emphasizes significant
modifiable risk factors, such as hypertension, diabetes, and dyslipidemia, advocating for a
multifactorial approach in VVaD prevention and treatment. Furthermore, it identifies areas
for scientific advancement to enhance clinical care, suggesting that large-scale
collaborations and an integromics approach can strengthen genetic discoveries.
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Understanding the genetics of VVaD and its risk factors could revolutionize its definition
based on molecular mechanisms, leading to new diagnostic, prognostic, and therapeutic

tools.

6.2.2 SIGNIFICANCE

While clinical manifestations provide a practical framework for diagnosis of a highly
heterogeneous complex diseases such as VaD, genetics offer insights into the molecular
mechanisms and shows that diseases are often interconnected at a molecular level,
challenging the rigid boundaries of clinical classifications. For example, the APOE &4
common variant is implicated in CAA, and AD; and the NBEALL1 is associated with stroke,
WMH, and AD!. Furthermore, the current gold standard for diagnosing VaD, which
involves MRI-based identification of cerebrovascular pathology, faces practical challenges
in settings lacking adequate facilities, expertise, or resources. Genetic studies that provide
insights into the biological mechanisms, through understanding both common and rare
variant contributions, as well as other omics, can enable earlier predictions and potentially
lead to the discovery of diagnostic biomarkers that are more accessible and therapeutic
targets that are more personalized.

It has been shown that CV contributions to pathological risk factors of VaD ranges from
11.9% to 40% for CAA and stroke, respectively while twin and family studies propose
heritability estimates for WMH lesion volume between 50% and 80%22. Blood pressure,
type 2 diabetes, LDL-cholesterol, triglycerides, atrial fibrillation, diet, BMI, exercise, and
smoking are epidemiologically associated with greater VaD risk and have significant
estimated CV heritabilities at 15%, 66%, 8.3%, 21.8%, 14.4%, 4.8%, 24.9%, 7%, and
15.1%, respectively*®.From this, it is apparent that a comprehensive understanding of the
genetic determinants requires examining the genetic factors affecting the disease directly,
as well as the pathological and modifiable risk factors. Advancements in genomic

methodologies related to common variants, has been a great starting point for understanding
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the genetic determinants of VaD, consequently, numerous genetic associations and

pathways have been implicated in VVaD and its risk factor.

6.2.3 LIMITATIONS AND FUTURE OPPORTUNITIES

Despite being the second most common cause of dementia, research on the genetics of
vascular dementia (VaD) is limited. Major challenges to studying and implementing the
genetics of VVaD include a lack of large-scale, multi-ethnic consortia that examines both
genetic and non-genetic aspects of VaD. Many genetic associations for VaD come from
small studies with limited replication. The lower prevalence of VaD and
underrepresentation of multi-ethnic groups in research further complicate efforts.
Additionally, the studies on the genetics of VaD spans decades, marked by various
technological advancements and study designs, raising concerns about gene validity.
Importantly, beyond pedigree and association studies, not much is known about the

oligogenic or polygenic contributions of rare variants to the risk factors of VaD.

With technological advances, it is now possible to navigate the above-mentioned
challenges. Accessible, focused consortia that integrate health records and biomarker data,
and utilize advanced statistical tools to combine data from various sources and multi-ethnic
studies, will overcome the limitation of sample size and accelerate research in this area.
Furthermore, studies spanning decades of evidence need to be evaluated with a
standardized framework, such as those created by the Clinical Genome Resource
(ClinGen), to ascertain gene-disease validity and aid gene prioritization in clinical contexts,
improving genetic data usability and dissemination. Finally, there is a need to develop and
implement appropriate methods to study rare variant contributions, such as heritability,
MR, and PRS. This has been one of the motivating factors for study 2 and 3 in this thesis,
which describes the developments and application of methods to estimate rare variant
contributions to complex traits. Integration of genetics with other multi-omics data would

provide a holistic approach to truly understanding VaD.
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6.3 STUDY 2 (CHAPTER 4)

6.3.1 SUMMARY

Study 2 (chapter 4) describes a novel method to estimate rare variant heritability from
whole exome sequence data, “RARity”, and its application to the UK Biobank Caucasian
population. This method is versatile and does not require prior assumptions about the
genetic architecture of selected variants, and thus has been applied to both common and

rare variants.

Several discoveries were made with RARity for continuous traits, enhancing our
understanding of the genetic architecture of RVs, identifying traits with significant RV
contributions, prioritizing genes based on RV heritability and also assess the capacity of
current methods to capture trait variance, such as gene-burden testing and pathogenicity
scores. When applied to 31 complex, continuous traits in the UKB, | discovered that RVs
act in long range LD, at a much greater distance compared to common variants, and thus a
stringent LD pruning was required to avoid overestimation of hz.. Secondly, | discovered
that gene burden testing, which aggregates RVs, leads to a substantial loss of information
compared to the use of unaggregated variants in RARIty. Furthermore, RARIty offers
practical advantages in characterizing genes based on RV heritability. For most traits RV
account for a significant portion of heritability (>5% in 27 of the 31 traits), so much so that,
incorporation of RVs almost perfectly recapitulated the "missing heritability™ for 11 traits,
reaffirming conclusions from recent studies using whole genome sequencing (WGS) data.
With RARity we were able to assess and identify the limited ability of pathogenicity scores
to distinguish variants with biological effects from those without. This emphasizes the need

for alternative methods to study RV functional consequences.
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6.3.2 SIGNIFICANCE

RARIty proved to be a fast, robust and versatile tool for rare variant studies. It allows
estimation of RV heritability at the genome-wide level, and gene level. Thus, it was
demonstrated that a substantial contribution of RVs to trait heritability, while enabling
assessment of variant level and gene-level characteristics of RVs. More importantly, the
identification of genes significantly enriched for heritability offered a hypothesis free
method of gene discovery. Finally, utility of RARIity was demonstrated with evaluation of
pathogenicity scores, discussing a key flaw in current algorithms to distinguish truly
pathogenic variants from those without any consequences. Ultimately, the study

emphasizes the need to incorporate RV analysis into genetic studies of complex traits.

6.3.3 LIMITATIONS AND FUTURE OPPORTUNITIES

This study has several limitations. The exclusion of non-coding, singleton, and doubleton
variants, along with LD pruning of potentially functional variants, may lead to an
underestimation of 4%rv. The contribution of rare non-coding versus coding variants is not
well understood and is challenging to assess, but calibrating RARity for WGS is a future
opportunity to provide insights. It’s also important to recognize that heritability describes
phenotypic variance at the population level and cannot predict individual variations.

Therefore, RARIty is intended to complement, rather than replace, RV association methods.

While no significant differences in RV heritability were found between males and females,
larger sample sizes are needed for more accurate analysis. This study only explored some
pathogenicity scores, indicating that further research using RARity could help evaluate
functional versus non-functional variants. Additionally, the RARity model in this study
suited for continuous traits, would need adjustments for dichotomous traits, which is the
focus of study 3 (Chapter 5).
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6.4 STUDY 3 (CHAPTER 5)

6.4.1 SUMMARY

Rare variant heritability estimator-§ (RARity-f), an adaptation of RARity for continuous
traits, was developed to estimate estimates the overall (/%rv-liab) and gene-level heritability
(A?Rv-iiab-gene) OF binary traits on a liability scale. This method was applied to 18 binary traits
using WES data from 173,688 Caucasian participants in the UK Biobank. Significant
heritability was found for hypothyroidism, asthma, hypercholesterolemia, and essential
hypertension, with respective A%rviian Of 12.5%, 12.5%, 7.9%, and 6.4%. Gene-level
analysis revealed 77 genes with significant 42rv-iiab-gene fOr one or more traits, identifying
70 new gene-trait relationships. The TSHR gene, notably contributing to hypothyroidism
heritability, was linked to increased thyroid-stimulating hormone levels and associated with

sciatica, suggesting hypothyroidism as an under-recognized cause of sciatica.

6.4.2 SIGNIFICANCE

The significance of RARIty-B is highlighted by its ability to capture significant overall
heritability estimates for four of the 18 diseases, along with well-established gene-disease
relationships. Notably, the analyses identified several compelling examples of such
associations. For instance, the gene GCK is significantly associated with Type 2 diabetes,
a finding consistent with its known role in glucose metabolism. Similarly, the LDLR gene
is linked to hypercholesterolemia, disrupting lipid metabolism and increasing
cardiovascular risk. The autophagy related PEBP1 gene shows a significant association
with atrial fibrillation and flutter, and could be a potential therapeutic target, pending

further investigation.

A particularly noteworthy finding is the highly significant association between TSHR and
hypothyroidism. Hypothyroidism, a prevalent endocrine disorder characterized by
insufficient thyroid hormone production, has diverse clinical manifestations. Four

nonsynonymous Vvariants in the TSHR gene were significantly associated with
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hypothyroidism. Among these, variants previously implicated in congenital
hypothyroidism were reaffirmed at the population level. This study shows the polyallelic
nature of rare variants, revealing that multiple variants within the TSHR gene contribute to
overall heritability estimates. A number of variants and the TSHR gene-burden are
positively associated with the TSHB levels in a population devoid of hypothyroidism,
confirming the functional consequence of the RVs in TSHR. Furthermore, the TSHR gene
is also found to contribute significantly towards sciatica, indicative of hypothyroidism

being an unrecognized cause of sciatica.

6.4.3 LIMITATIONS AND FUTURE OPPORTUNITIES

This study has several limitations in addition to those described in Study 2. The sample size
posed a constraint, limiting our ability to detect heritability estimates below 14% for traits
with a minimum of 10,000 cases. This emphasizes the need for caution when interpreting
results, especially when the true heritability is below this threshold and observed
heritability on liability scales is negative. Increasing sample sizes to approximately 1
million WES by pooling data from several large biobanks or refining analytical strategies
may enhance the sensitivity of our method to detect lower levels of heritability. Expanding
the scope of analysis to diverse populations and additional trait categories will further

advance our understanding of the genetic architecture of common diseases.

Overall, our findings support the feasibility and validity of using the RARity-p model with
WES data to estimate the heritability of complex binary traits explained by RVs. By
leveraging large-scale genotype data and carefully selecting traits with sufficient statistical
power, we have demonstrated the utility of our approach in advancing our understanding

of the genetic architecture of common diseases.

6.5 FINAL REFLECTIONS AND CONCLUSION

This thesis began by examining statistical genetic methods to study complex traits. Overall,

through three studies, significant advancements have been made in understanding the
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genetic contributions to complex diseases, by developing novel methodologies for
estimating heritability from rare variants and applying these methods to both continuous

and binary traits.

The first study reviewed the genetic determinants of vascular dementia, providing insights
into genetic associations, genetic risk scores, causality through Mendelian randomization,
pathways, and the impact of modifiable risk factors. This study underscores the potential
of genetics to redefine VVaD based on molecular mechanisms, leading to improved
diagnostic, prognostic, and therapeutic strategies. The second study introduced the RARity
method, a novel tool for estimating rare variant heritability from whole exome sequence
data. Applied to continuous traits in the UK Biobank, RARity demonstrated significant
contributions of rare variants to heritability, offering a hypothesis-free approach for gene
discovery and highlighting the limitations of current pathogenicity scores. By the end of
this study, | as able to measure the contributions of rare coding variants to several risk
factors of VaD, including ApoA-lI, BMI, diastolic/systolic blood pressure, LDL-
cholesterol, and triglycerides, with estimated rare variant heritability at 4.6%, 9.9%, 8.6-
6.8%, 8.7%, and 8.6%, respectively. The third study extended the RARity method to binary
traits through the development of RARIty-B. This adaptation enabled the estimation of
heritability on a liability scale for 18 diseases and identifying numerous gene-trait
associations, including new gene discoveries for common diseases like hypothyroidism and
atrial fibrillation. Identification of significant gene-trait associations, such as the role of
TSHR in hypothyroidism and sciatica, and PEBP1 in atrial fibrillation, underscores the

potential for these genetic insights to inform clinical practice and therapeutic development.

The collective findings from these studies emphasize the important role of rare variants in
the genetic architecture of complex traits and diseases. They also highlight the necessity of
integrating rare variant analysis into genetic research, leveraging large-scale biobank data,
and applying advanced statistical tools to enhance our understanding of complex traits. The

development of RARIity and RARIty-p provides robust tools for rare variant analysis,
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facilitating gene discovery and enhancing the understanding of genetic contributions to

both continuous and binary traits.

Despite these advances, the studies face several limitations. The limited sample size and
underrepresentation of multi-ethnic groups in some analyses highlight the need for larger,
more diverse cohorts to improve the robustness and generalizability of findings. Singletons
and doubletons were excluded in the studies because they are difficult to analyze with
confidence due to their low frequency, leading to high variability and noise in the results,
as they often exhibit considerable heterogeneity in their effects. The exclusion of sex-
chromosomes, non-coding, singleton, and doubleton variants in some analyses may
underestimate heritability, necessitating future research to incorporate these variants and

explore their functional consequences.

Singletons and doubletons are typically excluded from genetic studies due to their low
frequency and the challenges they present in analysis. These variants offer limited statistical
power and are prone to high variability in results, leading to significant uncertainty in their
association with traits or diseases. This rarity may increase the risk of false positive results.
Although aggregation of singletons has been associated with several phenotypes®’, it is
difficult to distinguish the truly functional singleton variants from the non-functional ones,
especially in the absence of replication in independent cohorts and functional validation
such as experimentation with cell or animal models. As a result, any heritability model that
includes these types of variants will require special considerations and additional
simulations to create realistic scenarios and avoid biases. The availability of larger, more
diverse multi-omics databases, combined with advancements in methods for high-
throughput functional assessments of mutations—such as massively parallel Perturb-seq
for functional assessment of large numbers of mutations simultaneously®°—may improve

our understanding of singletons in the future.
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Impact of genetic sex on heritability estimates, based on Study 2, were inconclusive due to
the lack of power to observe any significant difference, this once more emphasizes the need
to reassess the question of genetic sex on RV contributions to heritability with higher
sample size. Furthermore, the sex chromosomes excluded from this study, may also
contribute observed phenotypic variations between males and females. Unlike autosomes,
the difference in dosage of X and Y chromosomes in males vs females can complicate the
initial QC steps that evaluate HWE, as well as the statistical analysis, making it difficult to
interpret genetic associations consistently across sexes®. Furthermore, the X-inactivation
in females, and smaller Y chromosomes, additional population stratification issues due to
differences in allele frequencies between males and females adds layers of complexities.
For these reasons, genetic studies focus primarily on autosomes, where the inheritance
patterns are simpler and more consistent across the population. However, to observe the
sex-differences in heritability estimates, there is a need RARIty, to include sex
chromosomes in genetic analyses. This may be achieved via sex-stratified analyses,

exclusion of HWE for sex chromosomes and further simulations.

Nonetheless, versatility of the method means that RARity can be adapted for common
variants, as shown in study 2, and may be extended to CNVs and WGS, so long as the
assumptions of the OLS are not violated, and appropriate calibrations are performed.
However, it is important to note that, since most of the missing heritability estimates are
captured by the rare variants included in this study, we anticipate a low contribution, if any,
due to the excluded variants. Consequently, studying the contributions of the excluded
variants to trait heritability will likely require a much larger sample size, and computational

resources.

An important goal should be to produce a maximally enriched heritability, such that the top
ranked genes for each trait explains most of the heritability. Future research should also
aim to integrate genetics with other omics data to provide a comprehensive understanding

of disease mechanisms and extend the study to a diverse population. Further investigations
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are necessary to better understand the underlying biological mechanisms of the target genes
identified with of RARity and RARIty-f to further interrogate their validity as potential
diagnostic or therapeutic targets. | also established that there is a need for a pathogenicity
score that enrich for functional rare variants in complex traits. This may be achieved by a
combination of variant-level and gene-level annotations, where the variant selection criteria
are determined by a machine learning algorithm optimized for rare variant heritability, and
thus identifying RVs that are functionally important to a given trait, ultimately improving
our understanding of genetic predisposition to complex trait susceptibility.

To conclude, in this study, I have shown that RV heritability estimates with RARity and
RARIty-B provide valuable insights into the genetic basis of complex traits and diseases,
offering several important advantages in genetic research. By focusing on genes that
contribute substantially to heritability, researchers can streamline their efforts toward those
genes most likely to play a critical role in the trait or disease of interest, making research
more efficient. Additionally, incorporating high-priority genes into predictive models
based on their heritability contributions can improve the accuracy of genetic risk
predictions and variant-level pathogenicity scores, which are crucial for personalized
medicine. This approach also optimizes resource use, directing experimental and
computational efforts towards the most promising candidates, thereby facilitating more
efficient functional studies that could lead to new therapeutic targets. Ultimately, gene
prioritization based on RV heritability estimates will significantly enhance the efficiency,
accuracy, and impact of genetic research. Overall, this thesis contributes significantly to
the field of genetic research, offering novel methodologies, and insights that pave the way

for future discoveries and applications in understanding complex traits and diseases.
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Supplementary Fig.1: Summary of the Rare variant heritability (RARity) estimator
pipeline. The RARity pipeline constitutes pre-treatment of the genotype and the phenotype
data, followed by application of the statistical model to each block, and finally estimation of
the total heritability from all blocks. *The model may be modified to prioritize variants by
implementing LD clumping instead of pruning. In addition, the pruning parameters are
dependent on the selection of common vs rare variants for the analysis. **Adjustment of
medications may involve implementing correction factors or removal of individuals using the
medications. MAF = minor allele frequency, MAC = minor allele count, LD = linkage
disequilibrium, SD = standard deviation, PCs = principal components.
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Supplementary Fig.2: Statistical power of RARity. The statistical power of rare coding
variant heritability with RARity is displayed as a function of sample size for different levels
of RV heritability estimates. Statistical power was estimated empirically from the variance
of 10,000 simulated A%y, under 230 conditions of sample sizes and true set A%y, with cach
condition being represented by a dot. The red, horizontal dashed line corresponds to an
empirical 80% power with alpha-level of 0.05. The red, vertical dashed line marks the
sample size used in the current study.
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Supplementary Fig.3: Simulation of rare variant heritability estimates under varying LD
pruning, fraction of causal genes and variants, and MAF conditions. Calibration of RARity for
linkage disequilibrium, where 7°= “coefficient of correlation’ and w = ‘window size’ thresholds used
for LD pruning, (a) assuming homogenous distribution of heritability across all exome-wide blocks,
and (b) assuming 10% of causal variants in 5% genes. In both cases, unbiased estimation of gy was
observed when RVs were pruned with 2> 0.1 within a window size of 50Mb (blue arrows) and is the
default LD pruning threshold used for all analyses. Figures (c-f) examined the sensitivity of RARity
to varying (c) true h’yy values; (d) fraction of causal genes with 10% RVs with effects; (e) fraction of
causal RVs in 5% of the genes and (f) MAF thresholds assuming 10% causal RVs within 5% of genes
has an effect. Each dot in the figure represents a single simulation, with 20 exome-wide simulations
performed for each scenario. The red vertical lines represent the 95% CIs, and the blue dashed,
horizontal lines represent the true A%gy. Except for (f), RVs with MAF < 0.01 were sclected for all
analyses.
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Supplementary Fig.4: Comparison of RV exome-wide heritability estimates between the sexes
for 31 continuous traits. Estimation of heritability based on RVs with MAF <0.01 in 92,963
females (light red) and 74,385 males (blue). Red error bar represents 95% confidence intervals of
the estimated heritability. Differences in heritability estimates between the sexes appear
heterogenous but remains statistically non-significant (p-value > 0.05).
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Supplementary Fig.5: Comparison of methods to estimate common variant (MAF>0.01)
heritability estimates. The methods under comparison are RARity (light red), BOLT (green), and
LDSC (blue) in 31 complex traits, that were adjusted for age, sex and the first 20 PCs. See online
Methods for a description of each method. The red error bar represents 95% confidence intervals of

the heritability estimates.
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Supplementary Fig.6: Correlation between the contribution of RV and CV to complex traits
heritability. Both CV and RV contributions to heritability was estimated with RARity, however the
LD pruning threshold was varied (Methods) depending on the variant type. Exome-wide blocks with
5,000 RVs/ block were used to estimate 4%y, while genome-wide blocks with 20,000 CVs/block were
used to estimate h’qy. Uncertainty in the relationship is expressed as 95% CI, denoted with the grey,

shaded arca.
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Supplementary Fig.7: Impact of pathogenicity scores on variance explained by RVs for 31 complex
traits. Illustration of the proportion of RV heritability explained (v axis) as a function of incorporating
increasingly “deleterious” genetic variants (x axis). Proportion of heritability estimates is the fraction of
estimates in relation to all protein altering and LoF variants within the MAF categories. The vertical,
dashed lines represent the binary thresholds recommended to define pathogenicity for CADD (dark blue),
M-CAP (green) and REVEL (magenta). The black diamond marks the point of last inclusion of LoF
variants, which were prioritized before missense mutations. The diagonal dashed red lines represent the
scenario wherein RVs uniformly contribute to /gy, irrespective of pathogenicity score. Description of the
abbreviated traits are available in Supplementary Table 1.
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Supplementary Fig.8: Spline plots for the associations of log;, (Gene length (bp)) with
h*gene-ryv. Transcripts with the largest length were used as a measure of gene-length. A base
spline graph with three degrees of freedom has been used to show the relationship between gene
length and 7?2yerv- Red-dotted lines represent the expected /72yepery = 0, under the null-
hypothesis. Uncertainty in the relationship is expressed by a 95% CI (grey band).
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Supplementary Fig.9: Spline plots for the associations of evolutionary constraint (LOEUF)
with hzgene_kv. Relationship between the gene evolutionary constraints and hzgm_,w is illustrated
using a base spline with three degrees of freedom. Low LOEUF scores indicate strong selection
against predicted loss-of-function (pLoF) variation in a given gene, while high LOEUF scores
suggest a relatively higher tolerance to inactivation. Red-dotted lines represent the expected
h-’genc_kv = 0, under the null-hypothesis. Uncertainty in the relationship is expressed by a 95% CI
(grey band).
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Supplementary Fig.10: Comparison of RV heritability estimates between the genes encoded in
the positive vs negative strands. Estimation of trait heritability (hZRV-gcne-tot) +/- 95% CI, was based
on RVs with MAF < 0.01, belonging to genes on either the positive strand (blue) or the negative
strands (light red). Gene-wise block construct was utilized for the estimation of each thV-gene’
followed by the estimation of the thV—gane-tot as described in methods. Bright-red error bars denote
95% CI of the h%ry.gene-tot-
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Supplementary Fig.11: Impact of block size on RV heritability estimates. Estimation of
heritability (h%gy) +/- 95% CI, based on protein altering and LoF RVs with MAF < 0.01, using 20,000
variants from chromosome 22, partitioned into blocks of either 5,000 (light red), 10,000 (green) or
20,000 (blue) consecutive RVs. Bright-red error bars denote 95% confidence intervals of the h%gy.
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Supplementary Table 1: Abbreviations used to describe the phenotypes.
The list of phenotypes in this study includes 26 biomarkers and 5
anthropomorphic traits in 167,348 unrelated Caucasian participants from the

UKB.
Index TRAITS ABBREVIATIONS
1 Albumin ALB
2 Alkaline phosphatase ALP
3 Alanine aminotransferase ALT
4 Apolipoprotein A APOA1
5 Apolipoprotein B APOB
6 Aspartate aminotransferase AST
7 Calcium CALC
8 Cholesterol CHOL
9 Creatinine CREA
10 C-reactive protein CRP
11 Cystatin C CYSC
12 Direct bilirubin DBIL
13 Gamma glutamyl transferase GGT
14 Glucose GLU
15 Hemoglobin Alc HBAI1C
16 HDL cholesterol HDL
17 Insulin-like growth factor 1 IGF1
18 Low-density lipoproteins - direct LDL
19 Lipoprotein (a) LPa
20 Phosphate PHOS
21 Total bilirubin TBIL
22 Total protein TP
23 Triglycerides TRIG
24 Urea UREA
25 Urate UA
26 Vitamin D VITD
27 Height HIGHT
28 Waist to hip ratio WTH
29 Systolic Blood Pressure SBP
30 Diastolic Blood Pressure DBP
31 Body mass index BMI
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Supplementa

ry Table 2:

Medications used for adjusting biomarkers values. Field ids and the

medication code used for glucose lowering, cholesterol lowering and hypertension medications.
Adjustment for these medications is further described in methods.

Glucose lowering medication ICholesterol lowering medications [Hypertension medications
Field 20003 [Field 20003 [Field 6177
code Description code IDescription code IDescription
1140868902 |acarbose 1141146234 jatorvastatin 2 Blood pressure medication
1140857584 |acetohexamide 1141192414 [crestor 10mg tablet
[Field 6153
1141171652 |actos 15mg tablet 1141192736 |ezetimibe code Description
1140868866 |bromocriptine 1140888594 [fluvastatin 2 Blood pressure medication
1140874706 |chlorpropamide 1141146138 |lipitor 10mg tablet

diamicron 80mg

1140874746 [tablet 1140888648 pravastatin
1140866568 |disopyramide 1141192410 rosuvastatin
1141157186 |disopyramide product|1140861958 simvastatin

1140857518

eudemine 50mg tablet]

1140881748

zocor 10mg tablet

zocor heart-pro 10mg

1140874718 |glibenclamide 1141200040 ftablet
1140857494 |glibornuride 1140864592 |lescol 20mg capsule
1140874744 |gliclazide
Field 6177
1141152590 |glimepiride code IDescription
Cholesterol lowering
1140874646 |glipizide 1 medications
Field 6153
1141157284 |glipizide product code Description
Cholesterol lowering
1140874658 |gliguidone 1 medications

1140874686

glucophage 500mg
tablet

1140857500

glymidine

1140874754

guar gum

1140884600

metformin

1140869112

mifepristone

1141157302

mifepristone product

1140874652

minodiab 2.5mg
tablet=glipizide

1141173882

nateglinide

1140884338

pentamidine

1141171646

pioglitazone

1140874420

quinine

1141168660

repaglinide

1141177600

rosiglitazone

1141189090

rosiglitazone 1mg /
metformin 500mg
tablet

1141173786

starlix 60mg
tablet=nateglinide

1141182110

sulfadiazine

1140874664

tolazamide

1140874674

tolbutamide

1141153254

troglitazone

Field 6177
code

Description

3

Insulin

Field 6153
code

Description

3

Insulin
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Supplementary Table 3: Comparison of RV heritability estimates derived using gene-burden,
gene-wise and exome-wide blocks. /47zy.;,,4., = RV heritability estimates derived using gene-burden
block construct, /7gy.gene: = RV heritability estimates derived using gene block construct, A%,
= RV heritability estimates derived using exome-wide block construct with ~5000 consecutive
variants in each block. LCL= lower confidence level, UCL=upper confidence level. Comparison
shows percentage difference in trait heritability between the methods.

Comparison of RV
Gene Burden Gene-wise Exome-wide heritability
[Exome- |Gene- Gene-
wise vs  |wise vs |wise vs
iy 2Ry gene- Gene Gene Exome-

Trait urden LCL UCL ot LCL UCL 1Ry LCL UCL burden |burden |wise

IALB 0.0099 0.0070] 0.0128] 0.0554| 0.0258 0.0849] 0.0543 0.0257| 0.0829 82% 82% 2%)
JALP 0.0438 0.0406/ 0.0469 0.1426/ 0.1129 0.1723( 0.1384] 0.1097 0.1671 68% 69% 3%
IALT 0.0161] 0.0132] 0.0191f 0.0795 0.0499 0.1091 0.0778 0.0492 0.1064 79% 80% 2%)
JAPOA1 | 0.0129] 0.0100] 0.0158[ 0.0473 0.0177] 0.0768f 0.0456] 0.0170] 0.0742 2% 73% 4%)
IAPOB 0.0151] 0.0122] 0.0180[ 0.0970] 0.0674] 0.1266] 0.0958 0.0672] 0.1245 84% 84% 1%
AST 0.0101] 0.0072] 0.0130] 0.0557| 0.0261] 0.0853] 0.0586/ 0.0301] 0.0872 83% 82% -5%
CALC 0.0065] 0.0036/ 0.0093[ 0.0485 0.0189 0.0781f 0.0506] 0.0221] 0.0792 87% 87% -4%)
CHOL 0.0137] 0.0108 0.0166( 0.0740] 0.0444] 0.1036] 0.0756] 0.0470] 0.1042 82% 81% -2%)
CREA 0.0130] 0.0101] 0.0159 0.0612] 0.0317] 0.0908f 0.0593 0.0308 0.0879 78% 79%) 3%
CRP 0.0142| 0.0113 0.0171f 0.0714] 0.0418 0.1009] 0.0662] 0.0376] 0.0948 79% 80% 7%
CYSC 0.0144| 0.0115 0.0173[ 0.0778 0.0482 0.1074] 0.0779 0.0493 0.1065 81% 81% 0%
DBIL 0.0100, 0.0071] 0.0129] 0.0992 0.0695 0.1288 0.0849 0.0563] 0.1135 88% 90% 14%j
GGT 0.0100] 0.0071] 0.0129 0.0751] 0.0455 0.1047] 0.0695 0.0409 0.0981 86% 87% 7%
GLU 0.0056/ 0.0027| 0.0084] 0.0192] -0.0103] 0.0487| 0.0182 -0.0103| 0.0467 69% 71% 5%j
HBA1C | 0.0104] 0.0075 0.0133] 0.0960, 0.0663 0.1256] 0.0954| 0.0667| 0.1240 89% 89% 1%
HDL 0.0140] 0.0111] 0.0169 0.0675 0.0379 0.0971 0.0656] 0.0370] 0.0942 79% 79%) 3%
IGF1 0.0116] 0.0087, 0.0145( 0.0802 0.0506] 0.1098 0.0794| 0.0508 0.1081 85% 86% 1%
LDL 0.0138 0.0109 0.0167[ 0.0865 0.0569 0.1161f 0.0874] 0.0588 0.1160 84% 84%) -1%)
LPa 0.0128 0.0099 0.0157] 0.0427| 0.0132] 0.0723( 0.0408 0.0123 0.0694 69% 70% 4%
PHOS 0.0107| 0.0078 0.0136[ 0.0762] 0.0466/ 0.1058 0.0733] 0.0446] 0.1019 85% 86% 4%)
TBIL 0.0103] 0.0074| 0.0131f 0.0930] 0.0633 0.1226] 0.0770] 0.0484| 0.1056 87% 89% 17%)
TP 0.0093 0.0064| 0.0122[ 0.0690 0.0394] 0.0986] 0.0685 0.0399 0.0971 86% 86% 1%
TRIG 0.0108 0.0079] 0.0137] 0.0839 0.0543 0.1135 0.0863] 0.0577| 0.1149 88% 87% -3%)
UREA 0.0044| 0.0015 0.0072] 0.0343 0.0048 0.0639] 0.0322 0.0037| 0.0608 87% 87% 6%
UA 0.0191] 0.0162] 0.0221] 0.0634| 0.0338 0.0930[ 0.0595 0.0309 0.0881 68% 70% 6%
VITD 0.0044| 0.0016] 0.0073[ 0.0198 -0.0097| 0.0493 0.0197| -0.0088 0.0482 7% 78% 0%
SBP 0.0060] 0.0031] 0.0089 0.0662 0.0366] 0.0958 0.0678 0.0392] 0.0964 91% 91% -2%)
DBP 0.0073] 0.0044| 0.0101f 0.0872 0.0576] 0.1168 0.0858 0.0572] 0.1144 92% 92% 2%)
BMI 0.0076/ 0.0047, 0.0104{ 0.0990] 0.0693 0.1286] 0.0988 0.0702] 0.1275 92% 92% 0%
WTH 0.0050] 0.0022 0.0079[ 0.0736/ 0.0440] 0.1032 0.0737] 0.0451] 0.1023 93% 93% 0%
HEIGHT | 0.0248 0.0218 0.0278] 0.2231] 0.1932] 0.2529] 0.2190 0.1902 0.2478| 89% 89% 2%)
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Supplementary Table 4: RV heritability by MAF bins calculated using gene-wise blocks. N
variants= number of variants present in each MAF bin. LCL= lower confidence level, UCL=upper
confidence level.

MAF 0.01 to 0.005 0.005 to 0.001 0.01 to 0.001 <0.001
N hry-gene N hZgy. N |h%rv.gene- N h2gy.

Trait variants| LCL | UCL | variants | genetor | LCL | UCL |variants LCL | UCL | variants | ceneror | LCL | UCL
IALB 6509 0.0063| 0.0043 0.0084] 23714 0.0093 0.0056| 0.0131) 29552] 0.0146] 0.0104) 0.0188| 1514538 0.0355| 0.0066| 0.0643
JALP 6509 0.0096| 0.0075 0.0117]  23714| 0.0247| 0.0208| 0.0286] 29552 0.0332 0.0288| 0.0376| 1514538 0.1110| 0.0820| 0.1400
JALT 6509 0.0040| 0.0021) 0.0060] 23714 0.0136] 0.0099 0.0174) 29552 0.0177| 0.0135| 0.0220| 1514538 0.0539 0.0250| 0.0827
JAPOAL 6509 0.0049| 0.0029 0.0069] 23714 0.0143 0.0105 0.0181) 29552 0.0181] 0.0138| 0.0223| 1514538 0.0327| 0.0038| 0.0615
IAPOB 6509 0.0139| 0.0117| 0.0161] 23714 0.0180| 0.0142| 0.0218] 29552] 0.0299 0.0256| 0.0343| 1514538 0.0710| 0.0421] 0.0999
IAST 6509 0.0060| 0.0040 0.0080] 23714 0.0093| 0.0055| 0.0130) 29552] 0.0146| 0.0104) 0.0188| 1514538 0.0398 0.0109 0.0686
CALC 6509 0.0040| 0.0020 0.0060] 23714 0.0077| 0.0040| 0.0114) 29552 0.0120| 0.0079) 0.0162| 1514538 0.0367| 0.0079 0.0656
CHOL 6509 0.0101] 0.0080 0.0122]  23714| 0.0146| 0.0108 0.0184] 29552 0.0232 0.0189) 0.0275| 1514538 0.0541| 0.0253 0.0830
CREA 6509 0.0067| 0.0047 0.0088] 23714 0.0136] 0.0098 0.0173) 29552 0.0195) 0.0152) 0.0237| 1514538 0.0450| 0.0162 0.0739
CRP 6509 0.0062| 0.0041) 0.0082] 23714 0.0134| 0.0096| 0.0171) 29552] 0.0188 0.0145| 0.0230| 1514538 0.0542| 0.0253 0.0831
CYSC 6509 0.0064| 0.0043 0.0084] 23714 0.0128 0.0091| 0.0166] 29552 0.0177| 0.0135| 0.0219| 1514538 0.0620| 0.0331] 0.0909
DBIL 6509 0.0084| 0.0063 0.0105| 23714 0.0094| 0.0056| 0.0131) 29552 0.0171] 0.0129) 0.0213| 1514538 0.0766| 0.0476| 0.1055
GGT 6509 0.0093| 0.0072 0.0114] 23714 0.0124| 0.0086| 0.0161) 29552 0.0207| 0.0165| 0.0250| 1514538 0.0491 0.0203 0.0780
GLU 6509 0.0032| 0.0013 0.0052] 23714 0.0046| 0.0010| 0.0083)] 29552 0.0079 0.0038| 0.0120| 1514538 0.0138-0.0151] 0.0426
HBA1C 6509 0.0099| 0.0078 0.0121]  23714| 0.0164| 0.0126| 0.0202) 29552] 0.0258 0.0215| 0.0301| 1514538 0.0772| 0.0483 0.1061
HDL 6509 0.0048 0.0028 0.0068] 23714 0.0146| 0.0108| 0.0184f 29552 0.0185| 0.0143| 0.0227] 1514538 0.0515| 0.0226| 0.0804]
IGF1 6509 0.0071] 0.0050 0.0091]  23714| 0.0161] 0.0123 0.0199) 29552 0.0222| 0.0179) 0.0264] 1514538 0.0542| 0.0253 0.0831
LDL 6509 0.0113| 0.0091) 0.0134] 23714 0.0151] 0.0113 0.0189) 29552 0.0245 0.0202| 0.0288| 1514538 0.0644| 0.0355| 0.0933
LPa 6509 0.0066| 0.0045 0.0086] 23714 0.0177 0.0138 0.0215] 29552 0.0230| 0.0187) 0.0272| 1514538 0.0235|-0.0053 0.0524]
PHOS 6509 0.0078| 0.0057 0.0099] 23714| 0.0113 0.0076| 0.0151) 29552 0.0180| 0.0138| 0.0223| 1514538 0.0618 0.0329 0.0907
TBIL 6509 0.0095/ 0.0074) 0.0116] 23714 0.0112 0.0074| 0.0149) 29552] 0.0202 0.0159) 0.0244] 1514538 0.0686| 0.0397| 0.0975
TP 6509 0.0091| 0.0070 0.0112] 23714 0.0099 0.0061| 0.0136] 29552 0.0179 0.0137) 0.0221| 1514538 0.0503 0.0214| 0.0791
TRIG 6509 0.0073| 0.0052 0.0094]  23714| 0.0116| 0.0078 0.0153) 29552] 0.0182 0.0140) 0.0224] 1514538 0.0629 0.0340| 0.0918
UREA 6509 0.0045/ 0.0025 0.0065] 23714 0.0042| 0.0005| 0.0078] 29552 0.0086| 0.0045| 0.0128| 1514538 0.0197|-0.0091| 0.0486
UA 6509 0.0059| 0.0039 0.0079] 23714 0.0099 0.0061| 0.0136] 29552 0.0151] 0.0110] 0.0193| 1514538 0.0490| 0.0202| 0.0779

ITD 6509 0.0018| -0.0002) 0.0037]  23714| 0.0066| 0.0029 0.0103) 29552 0.0083 0.0042) 0.0125| 1514538 0.0120|-0.0168 0.0409
SBP 6509 0.0053| 0.0033 0.0073] 23714 0.0089 0.0052| 0.0126] 29552 0.0135) 0.0093| 0.0177| 1514538 0.0549 0.0260| 0.0838
DBP 6509 0.0060| 0.0040 0.0080] 23714 0.0082 0.0045| 0.0119) 29552] 0.0136| 0.0094) 0.0178| 1514538 0.0783 0.0494| 0.1072
BMI 6509 0.0054| 0.0034) 0.0074] 23714 0.0089 0.0052 0.0127] 29552 0.0141] 0.0099 0.0183| 1514538 0.0869 0.0580| 0.1158

TH 6509 0.0051] 0.0030 0.0071] 23714 0.0073 0.0036| 0.0110] 29552 0.0120| 0.0079) 0.0162| 1514538 0.0647| 0.0358 0.0936
HEIGHT 6509 0.0171] 0.0148 0.0193] 23714 0.0301] 0.0262 0.0341) 29552 0.0460 0.0415 0.0506| 1514538 0.1726| 0.1435] 0.2016
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Supplementary Table 5: Rare coding variant heritability as a function of log;((Gene-
length). P-values were calculated using a multivariable linear regression model, with log,,
(gene-length) as the independent predictor and RV gene-heritability estimates as the outcome
variable, adjusted for sex and the first 20 principal components of ancestry.

Trait Estimate Standard error__R? P-value

HEIGHT 7.68 x 102 1.16 x 1072 2.41 x 107 3.34 x 101
BMI 5.40 x 102 1.16 x 1072 1.19 x 108 3.17 x 10®
DBIL 4.72 x 102 1.16 x 1072 9.11 x 104 4.62 x 105
\WTH 4.55 x 102 1.16 x 1072 8.47 x 10 8.58 x 10°°
DBP 4.20 x 102 1.16 x 102 7.21 x 104 2.91 x 10+
TBIL 3.65 x 102 1.16 x 1072 5.45 x 10 1.63 x 108
HBAI1C 3.58 x 102 1.16 x 1072 5.24 x 104 2.00 x 108
GGT 3.19 x 102 1.16 x 1072 4.17 x 104 5.87 x 103
TRIG 3.10 x 1072 1.16 x 102 3.92 x 10 7.54 x 1073
PHOS 3.09 x 102 1.16 x 102 3.92 x 10 7.56 x 103
AST 2.97 x 102 1.16 x 1072 3.61 x 10 1.04 x 10?2
SBP 2.65 x 102 1.16 x 1072 2.87 x 10* 2.23 x 102
Lpa 2.38 x 102 1.16 x 1072 2.31 x 10 4.01 x 102
ALP 2.14 x 102 1.16 x 102 1.88 x 10 6.46 x 102
CHOL 1.82 x 102 1.16 x 1072 1.36 x 10 1.16 x 101
LDL 1.68 x 1072 1.16 x 102 1.15 x 10* 1.48 x 101
GLU 1.45 x 102 1.16 x 1072 8.65 x 10°° 2.10 x 101
TP 1.44 x 102 1.16 x 102 8.44 x 105 2.15 x 101
IAPOB 1.42 x 1072 1.16 x 1072 8.29 x 10°® 2.19x 101
CYSC 1.33 x 102 1.16 x 102 7.24 x 105 2.51 x 101
IGF1 1.19 x 1072 1.16 x 102 5.84 x 105 3.03x10?
CRP 1.08 x 102 1.16 x 1072 4.75 x 10 3.52 x 101
HDL 9.66 x 103 1.16 x 102 3.82 x 10° 4.04 x 101
CALC 8.28 x 103 1.16 x 1072 2.80 x 10°® 4.75 x 101
ALB 7.65 x 103 1.16 x 102 2.39 x 10°° 5.09 x 101
VITD 6.48 x 10 1.16 x 102 1.72 x 105 5.76 x 101
TEST -6.41 x 103 1.16 x 1072 1.68 x 10 5.80 x 101
ALT -4.93 x 103 1.16 x 1072 9.94 x 106 6.70 x 101
UA -1.55 x 10 1.16 x 1072 9.86 x 107 8.93 x 10!
CREA 154 x 108 1.16 x 102 9.73 x 107 8.94 x 101
APOAL 9.02 x 10* 1.16 x 102 3.33 x 107 9.38 x 10!
UREA -3.36 x 10* 1.16 x 102 4.62 x 108 9.77 x 10t

Supplementary Information | A Method to Estimate the Contribution of Rare Coding Variants to Complex Trait Heritability | Nazia Pathan et al. 19

134



Ph.D. Thesis — Nazia Pathan, McMaster University — Medical Sciences

Supplementary Table 6: Rare coding variant heritability as a function of
evolutionary constraint. P-values were calculated using a multivariable linear regression
model, with gene evolutionary constraint (LOEUF score) as the independent predictor
and RV gene-heritability estimates as the outcome variable, adjusted for sex and the first

20 principal components of ancestry.

Trait Estimate Standard error  |R? P-value

HEIGHT -8.77 x 106 1.30 x 106 2.68 x 103 1.71 x 1011
BMI -4.29 x 10 1.20 x 106 7.52 x 104 3.66 x 10+
\WTH -3.24 x 10 1.25 x 106 4.00 x 10+ 9.37 x 103
IGF1 -2.71 x 106 1.30 x 106 2.56 x 10 3.77 x 102
AST -3.48 x 106 1.73 x 106 2.40 x 10 4.40 x 102
TRIG -2.46 x 10° 1.28 x 106 2.20 x 10 5.41 x 102
SBP -2.29 x 106 1.22 x 106 2.10 x 104 5.96 x 102
HBALC -2.83 x 106 1.59 x 106 1.86 x 104 7.60 x 1072
DBP -2.01 x 106 1.21 x 106 1.64 x 104 9.60 x 102
PHOS -1.98 x 106 1.26 x 106 1.46 x 104 1.16 x 101
CREA -1.61 x 10® 1.26 x 106 9.75 x 10 2.00 x 101
HDL -1.78 x 10 1.40 x 106 9.54 x 10 2.04 x 101
GGT -1.92 x 106 1.52 x 106 9.47 x 105 2.06 x 101
ALP -4.53 x 10 3.80 x 106 8.42 x 105 2.33 x 101
IAPOB -1.87 x 106 1.99 x 106 5.28 x 10 3.45 x 101
CALC -9.30 x 107 1.23 x 106 3.39 x 10 4.49 x 101
DBIL -1.13 x 106 1.54 x 106 3.17 x 10 4.64 x 101
ALB -9.06 x 107 1.25 x 106 3.10 x 10 4.69 x 101
LDL -1.09 x 106 1.82 x 106 2.11 x 10 5.51 x 101
ALT 1.67 x 106 2.83 x 106 2.05 x 10 5.56 x 101
UA -1.10 x 106 1.95 x 106 1.88 x 10 5.73 x 101
GLU 5.13 x 10”7 1.22 x 106 1.05 x 10 6.74 x 101
TP -5.10 x 107 1.23 x 106 1.01 x 10 6.79 x 101
IAPOA1L -5.57 x 107 1.44 x 106 8.88 x 106 6.99 x 101
CYSC -5.08 x 107 1.41 x 106 7.66 x 106 7.19 x 101
CHOL -5.09 x 107 1.61 x 106 5.94 x 106 7.51 x 101
VITD -1.81 x 107 1.18 x 106 1.39 x 106 8.78 x 101
LPa -3.53 x 107 2.39 x 106 1.30 x 106 8.82 x 101
TBIL -1.60 x 107 1.70 x 106 5.24 x 107 9.25 x 101
UREA 1.07 x 107 1.22 x 106 4.58 x 107 9.30 x 101
CRP -2.04 x 108 1.29 x 106 1.49 x 108 9.87 x 101

Supplementary Table 7: Heritability of height originating from RVs in selected gene

clusters. LCL= lower confidence level, UCL=upper confidence level.

Number of |Number of
Cluster genes variants RV heritability |LCL UCL
Hemoglobin 10 159 0.000160 -0.000159 0.000479
Histone 77 2099 0.000415 -0.000675 0.00150,
HOX 226 14735 0.00118 -0.001679 0.00404
Olfactory 366 18366 0.00315,  -0.0000697 0.00637|
Protocadherin 59 7034 -0.00124 -0.00317 0.000690

LCL= lower confidence limit, UCL=upper confidence limit
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SupplementaryData 1: Heritabilityestimates fromtwinand pedigree studies

In this table, selected reports of pedigree/twin-based trait heritability are presented for comparison with RARity based heritability estimates from combined rare and common variants (h°,,). Rows highlighted in

green indicate the recovery of pedigree/twin-based heritability estimates through RARity, as these estimates lie within the range historically reported in the referenced literature.

Trait Reference [Cohort Sample size Heritability (%) RARity h%, (%) 95% CI)
van Beek, I.H. ef al. The
genetic architecture of liver
enzyme levels: GGT, ALT and Twins, their siblings, parents
AST. Behav Genet 43,329-39 and spouses (N = 8,371; age
Alanine aminoiransferase NTR biobankstudy range 18-90). 22 (Females) - 40 (Males 23.0 (19.7.26.2)
my
ic i
Steatosis Based on a
Prospective Twin Study.
Gastroenterology 149, 1784-
Albumin 93 (2015). Southemn Califomnia 60 pairs of twins 45
The Australian NH & MRC
Whitfield, J.B. & Martin, N.G. |Twin Registry fora study of
The effects of inheritance on alcohol metabolism
constituents of plasma: a twin  [Twin Registry for a study of
study on some biochemical alcohol metabolism
variables. Ann Clin Biochem  |and susceptibility to
Albumin 21 (Pt3), 176-83 (1984). intoxication 206 pairs of twins 73 22.5 (19.3,25.7)
Whitfield, J.B. & Martin, N.G.
Determinants of variation in
plasma alkaline phosphatase
i twin study. Am J Australian NH&MRC Twin
ef 35 978-86 (1983). |Registry 204 pairs of twins 71-90
of Hepatic Fibrosis and
Steatosis Based on a
Prospective Twin Study.
Gastroenterology 149, 1784-
Alkaline phosphatase 93 (2015). Southem Califomnia 60 pairs of twins 50 46.8 (43.6.50.1)

Full table available at https://doi.org/10.1038/s41467-024-45407-8

Supplementary Data 2: Genes contributing significantly to the rare coding variant
heritability estimates of complex traits.

RARIty was used to determine the heritability estimates for all genes with qualifying RVs
<MAF 0.01. This table shows the significant genes passing the Bonferroni’s p-value
significance threshold corrected for 18,214 genes (h?rv-gene p-value < 2.75 x10°5), where
the h2rv-gene p-values were derived using F-test. 152 genes had significant h?gy-gene for one
or more traits, representing 218 distinct gene-biomarker relationships.
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Phenotype Gene h ? RV-gene P-value

ALB ALB 1.96E-03 7.94E-47
ALB FCGRT 2.60E-03 7.68E-75
ALB TBC1D2B 6.20E-04 2.05E-07
ALP ALDH5A1 5.65E-04 7.94E-09
ALP ALPL 2.83E-02 0
ALP ASGR1 2.95E-03 3.44E-82
ALP GBGT1 7.41E-04 1.97E-12
ALP GPLD1 1.23E-02 0
ALP HSPG2 3.94E-03 1.26E-39
ALP NBPF3 5.57E-04 1.12E-07
ALP TDP2 4.71E-04 9.73E-09
ALP TFAM 3.17E-04 1.86E-06
ALP ZNF800 4.34E-04 1.88E-07
ALT GPT 2.22E-02 0
ALT MFSD3 4.12E-04 2.43E-06
APOA1 ABCA1 5.72E-03 2.19E-124
APOA1 ADH1B 4.68E-04 1.65E-07
APOA1 ANGPTL3 9.01E-04 1.96E-17
APOA1 APOA1 1.69E-03 4.06E-46
APOA1 APOC3 4. 15E-04 1.98E-10
APOA1 CETP 8.91E-04 1.03E-15
APOA1 LCAT 1.21E-03 5.51E-26
APOA1 LIPC 1.81E-03 6.06E-35
APOA1 LIPG 1.76E-03 1.47E-39
APOA1 LPL 8.04E-04 6.18E-15
APOA1 PLA2G12A 7.46E-04 5.81E-17
APOA1 SCARB1 6.86E-04 3.52E-10
APOB APOB 1.22E-02 3.70E-250
APOB APOE 6.34E-04 1.22E-11
APOB BCAM 7.75E-04 2.21E-10
APOB CEACAMZ20 4. 99E-04 4.41E-08
APOB CLASRP 6.63E-04 1.19E-08
APOB LDLR 3.75E-03 1.03E-88
APOB NECTINZ2 1.48E-03 1.15E-28

Full table available at https://doi.org/10.1038/s41467-024-45407-8
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Supplementary Data 3: Association between the genes contributing significantly to
RV heritability and diseases based on DisGeNET platform.

The genes with significant contributions to trait heritability, as identified through RARity,
were examined for disease associations using the disgenet2r package from the DisGeNET
platform. Among the 152 genes with significant h?ry-gene, 115 genes are linked to multiple
diseases, as presented in this table. The data is specifically filtered to include only
literature-supported connections (GDA Score >=0.3).

disease_type  gene_pli el disease_class_name e € gene_symbol source  geneid  protein class  year_final gene_dpi diseaseid uniprotid disease_semantic_type  disease_name  disease_class score  yearinitial  gene_dsi
disease 145613 Congenital, Hereditary, and | 0.981 Transporter ABCAT CURATED 19 DTC_05007405 2018 DB46 C0039297 085477 DiseaseorSyndrome  Tangier Disease CL6;C18,C10 1 1989 0.467
disease 145613 limited  Congenital, Hereditary, and 0.972 Transporter ABCAT CURATED 19 DT0_05007405 2017 DB46 1702429 035477 DiscaseorSyndrome  Hyposlphalipopi C16:C18 08 1993 0467
disease 145643 limited  Nutritional and Metabelic D 1 Transporter ABCAT CURATED 19 DTC_05007405 2017 DB46 CO020443 085477 DiseaseorSyndrome  Hypercholestero C18 055 2002 0467
disease 145613 Digestive System Diseases; | 1 Transporter ABCAT CURATED 19 DT0_05007405 2018 D8B4G 0003402 095477  Neoplastic Process Colorectal Careir CO6:C04 052 2012 0467
disease 145643 limited  Congenital, Hereditary, and 1 Transporter ABCAT CURATED 19 DTC_05007405 2018 D.B46 CO745103 085477 DissaseorSyndrome  Hyperlipoproteis C16;C18 052 2005 0.467
phenotype 145613 Congenital, Hereditary, and 1 Transporter ABCAT CURATED 19 DT0_05007405 2012 0.B46 0342898 095477 PathologicFunction  Apolipoprotein 4 C16;C18 03 2004 0467
phenotype 145613 Cardiovascular Diseases 1 Transporter ABcAT CURATED 19 DTC_05007405 2011 DB46 C1563837 085477  PathologicFunction  Atherogenesis €4 03 2011 0467
disease 145613 Cardiovascular Diseases 0.992 Transporter ABCAT CURATED 19 DT0_05007405 2020 0.846 0004153 095477 DiseaseorSyndrome  Atherosclerosis Cl4 04 2000 0467
Broup 145613 Digestive Systom Diseases; | 1 Transporter ABCAL CURATED 19 DT0_05007405 2012 0.846 CO009404 095477  Meoplastic Process Colorectal Neopl C6:C04 03 2012 0467
disease 145613 Congenital, Hereditary, and 1 Transporter ABCAT CURATED 19 DTO_05007405 2017 0846 C2931833 095477 Disaaseor Syndrome  Familial HDL defi CL6CLE as 1989 0.467
disease 145613 Congenital, Hereditary, and 1 Transporter ABCAL CURATED 19 DT0_05007405 2001 0.846 (3711531 095477  DiseaseorSyndrome  Hdl Deficiency, T C16:C18 03 1993 0.467
disease 145613 Congenital, Hereditary, and 1 Transporter ABCAT CURATED 19 DTO_05007405 2013 0.846 C0020445 085477 DissaseorSyndrome  Hypercholestero C16;C18 033 2003 0467
disase 145613 Congenital, Hereditary, and 1 Transporter ABCAL CURATED 19 DT0_05007405 2005 0.846 (1704417 095477  DiseaseorSyndrome  Hyperlipoproteit C16:C18 03 2005 0467
disease 145€13 Congenital, Hereditary, and 1 Transporter ABEAT CURATED 19 DTO_05007405 2020 0.846 CO473527 095477 Dissaseor Syndrome  Hypoalphalipapi CL6;CLE [ 2002 0467
disease 145613 Female Urogenital Diseasesa 1 Transporter ABCAL CURATED 19 DT0_05007405 2010 0.846 CO022661 095477  DisesseorSyndrome  Kidney Failure, € C13,C12 03 2010 0467
Broup 145613 Nervous System Diseases 1 Transporter ABCAT CURATED 19 DT0_05007405 2011 0.846 C4721453 095477  DisesssorSyndrome  Peripheral Nerva C10 03 2011 0467

Full table available at https://doi.org/10.1038/s41467-024-45407-8
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Supplementary Data 4: List of druggable and clinically actionable genes retrieved
from Drug gene interaction database (DGIdb)

RARIty was utilized to identify the genes contributing significantly towards trait
heritability, and subsequently the DGIdb (v4.2.0) database was employed to categorize
the genes as “clinically actionable” or part of the “druggable genome.” The table presents
the genes that fall into either the clinically actionable or druggable categories.

search_term [match_term |match_type |category source d

APOB APOB Definite CLINICALLY ACTIONABLE Tempus

ARID1B ARID1B Definite CLINICALLY ACTIONABLE Mskimpact|Tempus

CASR CASR Definite CLINICALLY ACTIONABLE Tempus

DDR2 DDR2 Definite CLINICALLY ACTIONABLE Mskimpact | FoundationOneGenes| CarisMolecularintelligence| Oncomine| Tempus
EZR EZR Definite CLINICALLY ACTIONABLE FoundationOneGenes| CarisMolecularintelligence

FCGR2B FCGR2B Definite CLINICALLY ACTIONABLE FoundationOneGenes

FGF2 FGF2 Definite CLINICALLY ACTIONABLE Tempus

FGFR3 FGFR3 Definite CLINICALLY ACTIONABLE Mskimpact | FoundationOneGenes| CarisMolecularintelligence| Oncomine| Tempus|CIViC
HLA-DPA1 HLA-DPA1 Definite CLINICALLY ACTIONABLE Tempus

JAK1 JAK1 Definite CLINICALLY ACTIONABLE Mskimpact | FoundationOneGenes| CarisMolecularintelligence| Oncomine| Tempus
JAK2 JAK2 Definite CLINICALLY ACTIONABLE Mskimpact | FoundationOneGenes| CarisMolecularintelligence| Oncomine| Tempus
LDLR LDLR Definite CLINICALLY ACTIONABLE Tempus

SH2B3 SH2B3 Definite CLINICALLY ACTIONABLE CarisMolecularintelligence| Tempus

SoD2 SOD2 Definite CLINICALLY ACTIONABLE Tempus

UGT1Al UGT1A1 Definite CLINICALLY ACTIONABLE Tempus|CIViC

UGT1A9 UGT1A9 Definite CLINICALLY ACTIONABLE Tempus

ABCA1 ABCA1 Definite DRUGGABLE GENOME RussLampel | HingoraniCasas

ABCG5 ABCG5 Definite DRUGGABLE GENOME RussLampel

ADGRES ADGRES Definite DRUGGABLE GENOME HopkinsGroom |RussLampel | HingoraniCasas

ADH1B ADH1B Definite DRUGGABLE GENOME RussLampel | HingoraniCasas| HopkinsGroom

ALB ALB Definite DRUGGABLE GENOME HingoraniCasas

ALDH5A1 ALDH5A1 Definite DRUGGABLE GENOME HopkinsGroom |HingoraniCasas|RussLampel

ALPL ALPL Definite DRUGGABLE GENOME HingoraniCasas

ANGPTL3 ANGPTL3 Definite DRUGGABLE GENOME RussLampel | HingoraniCasas|HopkinsGroom

Full table available at https://doi.org/10.1038/s41467-024-45407-8
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Supplementary Data 5: Functional annotation of the genes contributing significantly
to trait heritability, performed using g:Profiler.
The g:ProfileR web tool for functional profiling, g:GOST, was used to test the enrichment
of the genes with significant heritability (h?rv-gene p-value < 2.75 x107), against gene-sets
in common databases. The significant heritability genes for each phenotype were treated
as separate gene lists for independent query, and statistical tests were conducted within a
domain scope of only annotated genes (Methods). This table shows a list of statistically
significant enriched terms for each gene list, corresponding to the phenotypes, adjusted
for multiple testing using g:SCS (set counts and sizes) p-value < 0.05.

Phenotype Term ID Term name |Adjusted P-value |FDR |Intersection genes

Alanine aminotransferase 1210 2-Oxocarboxylic acid metabolism 0.036491318| 0.0364913|GPT

Alanine aminotransferase 220 Arginine biosynthesis 0.042253105| 0.0422531|GPT

Alanine aminotransferase REAC:R-HSA-8964540 Alanine metabolism 0.012490351| 0.0124904|GPT

Alkaline phosphatase G0:0042578 phosphoric ester hydrolase activity 0.033053819| 0.03: LD1,ALPL,TDP2

Alkaline phosphatase G0:0004621 @chosylphospha:idv\inasim\ phospholipase D activity 0.049921872| 0.0499219|GPLD1

Alkaline phosphatase G0:0004777 succinate-semialdehyde dehydrogenase (NAD+) activity 0.049921872| 0.0499219|ALDH5A1

Alkaline phosphatase G0:0009013 succinate-semialdehyde dehydrogenase [NAD(P}+] activity 0.049921872| 0.0499219|ALDH5A1

Alkaline phosphatase G0:0036317 tyrosyl-RNA phosphodiesterase activity 0.049921872| 0.0499219(TDP2

Alkaline phosphatase G0:0050187 phosphoamidase activity 0.049921872| 0.0499219|ALPL

Alkaline phosphatase G0:0070260 5'-tyrosyl-DNA phosphodi activity 0.049921872| 0.0499219|TDP2

Apolipoprotein A-l G0:0034185 apolipoprotein binding 3.96E-11| 3.96E-11|ABCALLIPCLCAT,LPL,SCARB1
Apolipoprotein A-l G0:0034186 apolipoprotein A-l binding 5.50E-07| 5.50E-07|ABCA1,LCAT,SCARB1
Apolipoprotein A-l G0:0052689 carboxylic ester hydrolase activity 2.32683E-06| 2.327E-06|LIPG,LIPCLCAT,PLA2G12A,LPL
Apolipoprotein A-l G0:0016298 lipase activity 2.63821E-06| 2.638E-06|LIPG,LIPCLCAT,PLA2G12A,LPL
Apolipopratein A-l G0:0015485 cholesterol binding 7.61813E-06| 7.618E-06|ABCALAPOALCETPAPOC3
Apolipoprotein A-l G0:0004465 lipoprotein lipase activity 9.06086E-06| 9.061E-06|LIPG,LIPCLPL

Apolipoprotein A-l G0:0032934 sterol binding 1.56396E-05| 1.564E-05|ABCA1,APOALCETP,APOC3
Apolipopratein A-l G0:0008970 phaspholipase A1 activity 3.06921E-05| 3.069E-05|LIPG,LIPCLPL

Apolipoprotein A-l G0:0043178 alcohol binding 3.57829€-05| 3.578E-05|ABCA1,APOALCETP,APOC3
Apolipoprotein A-| GO0:0005496 steroid binding 5.62843E-05| 5.628E-05|ABCA1,APOALCETP,APOC3

Full table available at https://doi.org/10.1038/s41467-024-45407-8
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APPENDIX B:
SUPPLEMENTARY INFORMATION FOR STUDY 3 (CHAPTER 5)
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Supplementary Table 1: Significant genes contributing to trait heritability

A~

Trait Chr | Gene h%rv.iab-gene | P-value
Asthma 17 EIF4A1 8.750E-04 7.361E-08
Atrial fibrillationand | 4 MAD2L1 1.283E-03 6.316E-09
flutter

Atrial fibrillation and | 12 PEBP1 1.197E-03 2.442E-08
flutter

Atrial fibrillationand | 17 YPEL2 6.060E-04 1.356E-07
flutter

Cataract 6 SAMDS5 7.920E-04 2.689E-08
Cholelithiasis and 1 XCL2 1.450E-03 1.403E-10
cholecystitis

Cholelithiasis and 12 FRS2 2.108E-03 5.223E-10
cholecystitis

Cholelithiasis and 17 INPP5K 2.492E-03 6.139E-10
cholecystitis

Cholelithiasis and 3 SLC38A3 1.645E-03 4.403E-09
cholecystitis

Cholelithiasis and 4 LETM1 2.403E-03 1.409E-08
cholecystitis

Cholelithiasis and 14 KTN1 2.730E-03 6.006E-08
cholecystitis

Cholelithiasis and 15 EDC3 1.553E-03 7.797E-08
cholecystitis

Cholelithiasis and 19 JAK3 2.245E-03 8.899E-08
cholecystitis

Cholelithiasis and 2 UGT1A5 2.141E-03 1.016E-07
cholecystitis

Cholelithiasis and 1 ClQB 1.440E-03 1.123E-07
cholecystitis

Cholelithiasis and 1 NVL 2.070E-03 1.316E-07
cholecystitis

Coronary 19 LOC101927572 | 9.190E-04 3.949E-08
atherosclerosis

Coronary 8 NKX3-1 1.280E-03 1.470E-07
atherosclerosis

Gastrointestinal 9 IFNA7 1.331E-03 5.032E-08
hemorrhage

Gastrointestinal 6 TMEM151B 1.550E-03 1.266E-07
hemorrhage

Hemorrhoids 6 ME1 3.799E-03 2.288E-18
Hemorrhoids 3 ZNF619 2.376E-03 2.911E-10
Hemorrhoids 7 RUNDC3B 1.886E-03 3.360E-09
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Hemorrhoids 3 MB21D2 1.933E-03 5.469E-09
Hemorrhoids 16 TP53TG3D 1.226E-03 8.067E-09
Hemorrhoids 2 KIF5C 2.057E-03 8.719E-09
Hemorrhoids 8 KCNV1 1.330E-03 1.047E-08
Hemorrhoids 10 PALD1 2.688E-03 1.083E-08
Hemorrhoids 2 TTL 1.427E-03 1.163E-08
Hemorrhoids 6 DHX16 2.353E-03 1.970E-08
Hemorrhoids 16 ZC3H18 2.811E-03 3.103E-08
Hemorrhoids 1 CDC42 9.330E-04 5.106E-08
Hemorrhoids 17 TVP23C- 1.320E-03 8.116E-08
CDRT4
Hemorrhoids 6 ZNF292 3.322E-03 1.138E-07
Hypercholesterolemia | 19 LDLR 2.058E-03 7.270E-13
Hypothyroidism 14 TSHR 3.906E-03 2.355E-17
Hypothyroidism 2 COL5A2 3.311E-03 8.581E-11
Hypothyroidism 19 ZNF583 1.809E-03 2.706E-09
Hypothyroidism 19 ZNF490 1.784E-03 9.011E-09
Hypothyroidism 8 TATDN1 1.887E-03 9.790E-09
Hypothyroidism 17 TMEM256- 6.810E-04 1.387E-08
PLSCR3
Hypothyroidism 5 REEP5 1.249E-03 1.355E-07
Obesity 2 PPP1R21 2.213E-03 1.578E-08
Obesity 18 SKA1 1.257E-03 2.817E-08
Obesity 12 SCARB1 1.822E-03 1.096E-07
Pneumonia 17 SRSF2 1.969E-03 4.769E-16
Pneumonia 12 OR10A7 1.839E-03 9.027E-11
Pneumonia 13 CPB2 1.786E-03 1.350E-09
Pneumonia 5 PANK3 1.462E-03 1.590E-09
Pneumonia 4 BST1 1.658E-03 3.781E-08
Pneumonia 7 RBAK- 1.055E-03 8.854E-08
RBAKDN
Pneumonia 8 ERLIN2 1.094E-03 1.085E-07
Pneumonia 15 IDH2 1.637E-03 1.104E-07
Renal failure 15 IDH2 1.848E-03 4.490E-10
Renal failure 14 SRSF5 1.319E-03 8.760E-09
Renal failure 17 SRSF2 1.011E-03 1.533E-08
Renal failure 1 LIX1L 1.192E-03 4.428E-08
Renal failure 12 ABCC9 1.912E-03 4.594E-08
Type 2 diabetes 7 GCK 2.641E-03 5.676E-20
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Type 2 diabetes 5 AGXT2 2.107E-03 1.008E-10
Type 2 diabetes 3 HRH1 1.803E-03 7.054E-10
Type 2 diabetes 11 FOLH1B 1.662E-03 3.107E-09
Type 2 diabetes 17 SCO1 1.559E-03 9.983E-09
Type 2 diabetes 2 PDK1 1.724E-03 1.119E-08
Type 2 diabetes 11 MYRF 2.050E-03 1.318E-08
Type 2 diabetes 2 DNMT3A 1.885E-03 8.198E-08
Urinary tract 4 CD38 2.173E-03 1.452E-10
infection
Urinary tract 9 PDCL 1.567E-03 1.227E-09
infection
Urinary tract 7 VPS41 2.462E-03 1.699E-09
infection
Urinary tract 8 STMN2 1.195E-03 3.381E-09
infection
Urinary tract 1 STXBP3 1.913E-03 9.840E-09
infection
Urinary tract 19 ZNF587B 1.953E-03 1.574E-08
infection
Urinary tract 12 C120rf43 1.701E-03 2.990E-08
infection
Urinary tract 22 CBX6 1.624E-03 5.274E-08
infection
Urinary tract 19 ANOS8 2.663E-03 1.028E-07
infection
Urinary tract 1 AADACL4 1.951E-03 1.167E-07
infection
Urinary tract 14 TEX22 1.302E-03 1.380E-07
infection
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Supplementary Table 2- Association between TSHR and TSHB

Biomarker |Variant/ Gene CMAC CMAF Estimate Standard error |P-Value
TSHB 14:80955786:G:C_C 319| 0.008474 0.187 0.049| 1.58E-04
TSHB 14:81139699:T:A_A 1| 0.000027 -3.353 0.860| 9.70E-05
TSHB 14:81143695:G:A_A 15| 0.000398 0.873 0.230f 1.5E-04
TSHB TSHR gene burden 496 0.013176 0.246 0.039| 4.63E-10
N=18822
N=173,651
Heritability
p-value =2.35x 10
Havgeneias = 0.0039
> Hypothyroidism ——
N=17,107
psockton i ersszz
thyroid disfunction ssociation _ ioﬁ:f:zlon ) )
([ mswp e Tewe el TSR
B=0.11 B=0.246

N=173,651
Heritability
p-value= 7.27 x 101°
Frvgeneiian = 0.0077

Supplementary Figure 1: Putative Functional and epidemiological consequences of TSHR
mutation. The results are obtained with a linear regression model, correcting for age, sex
and 20 PCs. N Sciatica cases=2,309. N hypothyroidism cases=11,246.
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