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LAY ABSTRACT 

This thesis explores the role of genetic mutations (found in less than 1% of the population) 

in vascular dementia (VaD) and 49 other traits using data from over 167,000 individuals in 

the UK. Two tools, RARity and RARity-β, were developed to measure how much the 

mutations cause traits, like height, circulating blood proteins, and diseases to vary among 

individuals. 

Review of existing research on VaD emphasizes the complexity of the disease, and 

highlights the need for large-scale, collaborative research efforts. RARity and RARity-β 

showed that mutations have significant influence on measurable traits and diseases, with 

height being the most affected. These tools enabled discovery of genes linked to traits and 

assessment of current predictive tools to decide which mutations are detrimental to health. 

Overall, the findings suggest that rare genetic mutations play a crucial role in human health 

and emphasizes the need for better predictive tools to identify detrimental mutations. 
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ABSTRACT 

Most human genetic variants are rare (minor allele frequency, MAF <1%). This thesis 

investigates the significance of rare coding variants (RV), first with a literature review of 

vascular dementia (VaD), and subsequently in 31 continuous and 18 binary traits, utilizing 

whole exome sequence from the UK Biobank (N=167,348 and N=173,688, respectively). 

This was enabled with the development of the rare variant heritability (RARity) estimator 

and RARity-β. 

Genetic determinants of VaD are explored through genome-wide association studies, 

polygenic risk scores, heritability estimates, and family studies. Complexity and 

heterogeneity of the disease are highlighted, emphasizing the need for large-scale 

collaborations and integromics approaches to enhance discoveries.  

RARity estimates RV heritability (ĥ2
RV) without assuming a specific genetic architecture. 

It revealed a significant loss of heritability (79%) due to gene-level RV aggregation. For 

27 traits, ĥ2
RV exceeded 5%, with height showing the highest at 21.9%. VaD risk factors 

such as ApoA-I, BMI, blood pressure, LDL-cholesterol, and triglycerides had ĥ2
RV of 4.6% 

to 9.9%. RARity showed RVs as the source of “missing heritability”, identified 11 new 

gene-phenotype associations using gene-level heritability estimates, and showed that 

current pathogenicity predictors do not adequately enrich for RVs contributing to trait 

variance, indicating a need for better predictive algorithms. 

RARity-β estimates overall (ĥ2
RV-liab) and gene-level heritability of binary traits on a 

liability scale. Significant ĥ2
RV-liab was found for hypothyroidism, asthma, 

hypercholesterolemia, and essential hypertension, identifying 77 genes with significant 

contributions to ĥ2
RV-liab, including 70 new gene-trait relationships. The PEPB1 gene's role 

in atrial fibrillation and the TSHR gene's link to hypothyroidism and sciatica are discussed. 

Results suggest that genes contributing significantly to ĥ2
RV-liab have functional 

consequences. Overall, this thesis provides novel methodologies and insights into the 

understanding of complex traits and diseases. 
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INTRODUCTION 
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CHAPTER 1: INTRODUCTION 

This chapter sets the stage for the analytical methodologies discussed in subsequent 

chapters. It introduces the fundamental principles of quantitative genetics, genotyping 

methodologies, association study frameworks, estimations of trait heritability, development 

of genetic risk scores, techniques for causal inference, and network and pathway analyses. 

By the end of this chapter, readers will have a solid foundation in these essential concepts, 

facilitating a deeper understanding of the material presented in the later chapters. 

 

1.1 COMPLEX TRAITS GENETICS 

Diseases caused by single genes, referred to as monogenic traits, such as cystic fibrosis, 

sickle-cell disease, and Huntington's disease, adhere to Mendelian mode of inheritance, 

constituting a relatively simple genetic etiology1. This category of human traits often serves 

as the primary focus for genetic testing and therapeutic interventions as they are easier to 

detect and more conventionally understood.  In contrast, most human traits are complex in 

nature, being multifactorial and influenced by a myriad of genetic variants, and 

environmental factors. Such genetic variants are dispersed throughout the genome, across 

hundreds of genes and intergenic regions2. Examples of complex traits include height, 

circulating blood biomarker levels, BMI, diabetes, and cardiovascular diseases. A 

comprehensive understanding of the factors influencing these traits are crucial for the 

development of effective prevention strategies, diagnostic tools, and targeted treatments 

tailored to individual genetic profiles, ultimately advancing personalized medicine, and 

improving healthcare outcomes. 
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1.2 COMMON AND RARE VARIANTS IN POPULATION GENETICS 

Over the past decade, technological advances with microarray technology, next generation 

sequencing, and large-scale biomarker measurements have enabled the establishment of 

large biobanks, such as Trans-Omics for Precision Medicine (TOPMed), UK Biobank, 

FinGenn, and All of US, with a range of genotype and phenotype data at the population 

level. This in turn has enabled advancements in state-of-the art genetic methodologies and 

novel discoveries. Traditionally, the genetic variations have been categorized broadly into 

two classes: common variants (CVs) and rare variants (RVs). In this thesis, variants with 

minor allele frequency (MAF) <1% are defined as RVs, and MAF>=1% as CVs. In the 

biological context, variations in a trait within a population may be a product of both 

common and rare variants, as well as the environmental factors and interactions between 

environmental factors and genetic variants3. There is increasing evidence that pathogenicity 

may be caused by either a single rare variant with large, monogenic effect, multiple rare 

variants with modest, oligogenic effects or accumulation of very low effect common 

variants4-6. The contributions from each of these factors to trait variation may vary widely, 

which necessitates application of appropriate and robust methodology for their study. 

  

1.3 HIGH-THROUGHPUT GENOMIC TECHNOLOGIES 

Microarray and next generation sequencing (NGS) are two main categories of genomic 

profiling technologies used in large population studies. Microarrays utilize a grid of fixed 

DNA probes to hybridize with target DNA, enabling high-throughput analysis of thousands 

of genes simultaneously7. This technique is relatively fast and cost-effective for large-scale 

studies but is limited to known sequences, with lower sensitivity and specificity compared 

to NGS. In contrast, NGS involves massively parallel sequencing, providing detailed 

nucleotide sequences of DNA. This technology boasts high sensitivity and specificity, 

capable of detecting rare, low-abundance sequences and discovering novel variants8. 

Although NGS requires more extensive data analysis, higher costs, and significant 
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computational resources, it offers comprehensive genomic insights. Therefore, NGS is 

generally the preferred method for thorough and accurate RV detection in scientific and 

clinical settings, especially for high-throughput sequencing needs. 

1.4 STATISTICAL GENETICS 

Statistical genetics is a field of study aimed at the development and application of analytical 

methods to derive inferences from genetic data. It involves the use of statistical models and 

algorithms to explain the genetic basis of phenotypic variations and thus identify the genetic 

architecture of a trait. The genetic architecture of a trait can be described in terms of genetic 

features, such as the magnitude and the effect of the genetic variations, minor allele 

frequencies, linkage disequilibrium, and evolutionary constraints on the variations in a trait 

within a population9. The genetic architecture of a trait not only informs on the sources of 

variation between individuals but has broader impacts on diagnosis through molecular and 

genetic testing, development of personalized treatments, and disease predictions. As such, 

statistical genetics forms the backbone of modern population genetic research. The 

following sections provide brief summaries of common statistical approaches that are 

amenable to quantifying the risk and statistical significance of putatively disease-causing 

variants. Applications of these methods are also described in chapter 3 in the context of 

understanding the genetics of vascular dementia, a highly complex and heterogeneous 

disease. 

  

1.5 BRIEF OVERVIEW OF CURRENT GENETIC METHODS APPLIED TO 

COMMON VARIANTS 

The microarray technology required to detect CVs was developed first and was more 

widely used as compared to the next generation sequencers (NGS). Consequently, the 

advancements in genetic methodologies are far more progressive for common variants 

compared to rare variants. Some of the widely used methods for studying the complex 

relationship between common variants and phenotypes are Genome wide association 
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studies (GWAS), SNP-heritability, polygenic scores (PGS), and Mendelian randomization 

(MR), each of which are described below. 

  

1.5.1 GENOME-WIDE ASSOCIATION STUDY (GWAS) 

GWAS are conducted by leveraging the abundance of high-density genetic markers 

throughout the genome and the principle of linkage disequilibrium (LD). The genetic 

markers are typically single nucleotide polymorphic (SNPs) variants, representing genetic 

loci that are in LD, either in the exonic or intronic regions of the genome10. Linkage 

disequilibrium occurs due to recombination between homologous chromosomes over many 

generations, such that the SNPs are highly correlated and inherited together as a unit. 

GWAS results in identification of genomic risk loci with statistical tests between the 

genetic markers and phenotypes, reporting blocks of correlated SNPs that all show a 

statistically significant association with the trait of interest. Ultimately, the genetic markers 

are prioritized based on association testing with a phenotype of interest. Since the test 

incorporates all SNPs in the genome, vs pre-specified candidate variants/ genes, it is 

characterized as the first hypothesis-free method of genetic studies. 

 

The statistical methods for GWAS have evolved over time. The first generation GWAS 

relied on  linear or logistic regression models using PLINK and SNPTEST; the second 

generation models such as GCTA-MLMA, GEMMA, EMMAX were dependent on mixed 

models to improve power, and account for population structure and relatedness; while the 

third generation was necessitated with large-scale biobanks (N>25,000) and includes linear 

mixed models using BOLT-LMM and Fast-GWA-LMM, as well as REGENIE, SAIGE 

and POLMM which utilize linear/logistic mixed models allowing for correction of case-

control imbalance11. GWAS typically analyze each SNP-phenotype pair, typically 

corrected for covariates such as age, sex, population structure, and for multiple-testing 

using Bonferroni corrected p-value to avoid false positive results, i.e. for testing 1 million 

common variants in the human genome, significant SNPs have p-value < 510-8. 
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Since 2005, when the first GWAS identified a common risk allele in the CFH gene with 

large effect size for age-related macular degeneration12, many additional genomic risk loci 

have been associated with diseases and traits. Some examples include the identification of 

the 9p21 loci associated with myocardial infarction, CAD, carotid atherosclerosis, stroke, 

aneurysms, congestive heart failure and CV mortality13-15, FTO for obesity and PTPN22 

for autoimmune diseases10. As of May 2024, the GWAS catalog reports 10378 entries on 

the SNPs associated with cardiovascular disease (CVD) and 5498 entries on the SNPs 

associated with type-2 diabetes (T2D) mellitus, even after applying a stringent Bonferroni 

correction16. 

  

Despite the identification of numerous risk alleles, there are several limitations to GWAS. 

First, the coverage of variants in a GWAS is limited by the number of predefined sites on 

the microarray. It has been shown that most traits are affected by thousands of SNPs, each 

individually conferring low risk and often demonstrating pleiotropic effect on multiple 

traits17. Additionally, these risk loci are not necessarily located in the coding region and a 

strongly associated variant may not necessarily be causal; instead it may be in LD with a 

functionally relevant allele that is located in close proximity at this locus18. Together, these 

factors make it difficult to derive unambiguous biological meaning of the results. 

  

In the post-GWAS era, several methods have been developed to apply, interpret, and 

identify the impact of the hundreds or thousands of SNPs associated with each trait by 

GWAS. These methods include SNP based heritability, polygenic risk scores (PRS), 

Mendelian randomization (MR) studies, and complex network and pathway analyses, each 

of these methods are described below 19. 
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1.5.2 HERITABILITY 

The common proverb that human traits are the result of nature and nurture can be restated 

using statistical genetic terms: phenotypes are the result of genetic and environmental 

factors. The total phenotypic variance (Vp) in given population can be expressed as the 

sum of the variance due to genetic variance 𝑉g and the environmental variance 𝑉e: 

𝑉p = 𝑉g + 𝑉e 

  

The genotypic variance Vg, can be further explained as being the sum of the additive (a), 

dominant (d), and epistatic (i) variance components: 

 

𝑉g = 𝑉a + 𝑉d + 𝑉i 

 

However, research has shown that the effects of non-additive genetic effects (𝑉d + 𝑉i )  are 

minute, and thus broad sense heritability (H2) quantifies the proportion of phenotypic 

variance explained by both genetic and environmental variance in a population3.  

𝐻2 =
𝑉𝑔

𝑉𝑝
 

Conversely, narrow-sense heritability (h2) can be defined as estimating only the effect of 

additive genetic variation on the phenotypic variations in a population. In the simplest form 

h2 is defined as: 

 

 

ℎ2 =
𝑉𝑎

𝑉𝑝
 

 

 

Heritability ranges from 0, where genetic variation does not explain any of the phenotypic 

variations, to 1, meaning that genetics explains all the variations in the phenotype. In other 
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words, it informs how well a trait could be predicted from the genetics in a population. It 

is important to note that heritability is a characteristic of a population and not individuals, 

and the measurements are not constant over time. Different populations are likely to have 

different heritability estimates for the same trait due to differences in their genetics and 

environmental exposures, although some traits may present a stable heritability across 

species and populations. Homogenous populations are more likely to display larger 

heritability effect sizes as the phenotypic variation (Vp) is more precise. 

  

Traditionally, heritability was measured in related individuals using family and twin 

studies, whereby researchers examine the resemblance between relatives (e.g., siblings, 

parents, offspring) with varying degrees of genetic relatedness. In this model, heritability 

was estimated by comparing the phenotypic similarity among relatives, such as the 

correlation of offspring and parental phenotypes, the correlation of full or half siblings, and 

the difference in the correlation of monozygotic (MZ) and dizygotic (DZ) twin pairs. For 

instance, if a trait shows greater similarity between biological relatives than unrelated 

individuals, or between MZ than DZ, it suggests a genetic component influencing that trait 

20.  

  

Genome-wide significant heritability emerged with the need to assess the total 

contributions of the SNPs identified in GWAS and led to the development of Genome-wide 

significant heritability (ĥ2
GWS) 21. With this method, it was observed that the estimated 

variance explained by genome-wide significant (GWS) SNPs discovered in GWAS was 

only a fraction of the estimated heritability from family or twin studies22, an issue known 

as the problem of “missing heritability”. For example, the ĥ2
GWS of human height was 

around 15%, compared to the ĥ2 of 80% from family or twin studies23-25; similarly by 2016, 

over 700 variants identified for cardiovascular disease accounted for no more than 10% of 

the heritable risk18. This sparked concerns about the usefulness and cost-effectiveness of 

GWAS. Potential causes of missing heritability include exclusion of SNPs with small 

effects that do not meet the Bonferroni threshold, rare variants that are not captured by 
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GWAS, gene-by-gene interactions, gene-by-environment interactions, epigenetics, and 

perhaps, family studies with very few sample sizes had overestimated the heritability of 

these complex phenotypes. 

  

Consequently, with the hypothesis that even the non-significant SNPs may contribute to 

the overall trait heritability, SNP-heritability (ĥ2
SNP) was developed. SNP-heritability is the 

estimation of the variance explained by all SNPs used in a genome-wide association study 

(GWAS) in unrelated individuals, using either individual or summary level GWAS data. 

This has allowed estimation of the overall contributions of common variants to trait 

heritability, provided that all SNPs are represented on the genomic array. Through this 

effort, it was discovered that the SNP heritability is significantly larger than GWS 

heritability, such as in height where the estimates are 10-20% and 40-50%, respectively25. 

It was concluded that for complex traits there is a large number of common variants with 

effect sizes that are too small to pass the strict Bonferroni threshold, consistent with a model 

of polygenic inheritance. A conclusion that prompted establishment of large biobanks to 

capture variants of smaller effect sizes, and the development of PRS models.   

 

Over the years, heritability for common variants have gone through several iterations in 

methodology, each with their own strengths and weaknesses, some of which are discussed 

in chapter 3. 

  

1.5.3 POLYGENIC SCORE 

GWAS and ĥ2
SNP offer compelling evidence supporting the polygenic architecture of 

complex traits, giving hope to precision medicine in the form of establishing Genetic risk 

scores (GRS), PRS for diseases, or PGS for other traits. The objective of these risk scores 

is to enable prediction of traits based on a person’s genetic makeup and is the only approach 

that provides an estimate of genetic liability to a trait at the individual level. GRS is the 

cumulative risk estimates derived from the aggregation of risk contributions of GWS SNPs 
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towards a trait, thus, it is statistically defined as the sum of alleles weighted by their 

estimated effect sizes from GWAS summary statistics26. This is statistically represented as: 

 

 

𝑟𝑖 = ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=1

 

 

Where ri represents the risk; i, represents the individual number; j is the SNP number 

ranging from 1 to k; 𝛽𝑗 is the weight for each SNP derived from the associated GWAS, and 

xij corresponds to the allele number for the jth SNP of the ith individual. GRS can be 

extended to PRS / PGS when non-GWS SNPs are included to reflect the polygenic nature 

of traits27.  

 

PRS may be particularly useful for complex diseases such as coronary artery disease, atrial 

fibrillation, type 2 diabetes, inflammatory bowel disease, and breast cancer, as they are 

shown to have risk factors similar to monogenic disorders28. Individuals with higher PRS 

was shown to increase the risk of early onset coronary artery disease by two-fold in 23% 

of the participants (N=7 of 30)29. In another study, patients with higher PRS for 

schizophrenia tended to have less improvement with antipsychotic drug treatment30. 

 

Over the years PRS have gone through many iterations in methodology to achieve the 

optimal level of predictability. This has involved varying the selection criteria for SNPs, 

weighting scheme, LD parameter selection, validation algorithms, and more. A comparison 

of these models, applied to psychiatric disorders is summarized by Ni, et al. (2021)31. 

Currently PRSs require further validation for clinical use, but are widely utilized in 

biomedical research, to examine shared etiology of phenotypes, assess clinical utility, and 

to compare experimental outcomes26.  
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1.5.4 MENDELIAN RANDOMIZATION 

Associations, or correlations between two variables, does not axiomatically denote 

causality. This is because associations are susceptible to unknown confounding factors 

influencing the exposure or outcome as well as reverse causality. To identify causality 

between the exposure, biomarkers and disease, the MR strategic framework may be 

employed. MR relies on genetic instruments exhibiting robust association with an exposure 

such that these instruments can act as proxies for the exposure. This approach is enabled 

by the fundamental principle that genotypes are not generally susceptible to reverse 

causation and confounding, due to their fixed nature and Mendel’s First and Second Laws 

of Inheritance. In essence, the random assortment of alleles from parents to offspring 

effectively segregates participants into groups based on the presence or absence of specific 

genetic variants32.  This process mirrors the randomization principle employed in 

randomized controlled trials (RCTs). 

 

In order for a genetic variant to qualify as a valid instrument for causal inference in MR 

study, it must satisfy three core assumptions: 1) the genetic variant must be robustly 

associated with the exposure, as ensured by using genome-wide significance threshold for 

association in an independent sample (P < 5 × 10-8), 2) the genetic variant should not be 

associated with confounders of exposure-outcome relationships, and 3) the genetic-

instrument should be associated with the outcome only through the exposure, i.e. no 

pleiotropic effects. However, even when these assumptions are fulfilled, limitations in MR 

include low power of studies, biases due to population stratifications, and weak 

instrumental biases. There are various tools to assess these assumptions and address the 

limitations32. The most basic MR method uses a single SNP instrument and is based on the 

following statistical model, implementing ratio coefficient method or Wald’s ratio33: 

𝑅𝑎𝑡𝑖𝑜 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑐𝑎𝑢𝑠𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡 =
𝛽̂𝑌|𝑍

𝛽̂𝑍|𝑋
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Where 𝛽̂𝑌|𝑍 and 𝛽̂𝑍|𝑋 are the slope estimates from the regressions of the outcome and 

exposure, respectively, on the SNP instrument, each of which can be obtained from GWAS 

summary data. Note that other methods are required for more complex issues, such when 

using multiple SNP instruments34,35.  

 

When appropriately implemented, MR is a powerful strategy to find causal inferences, and 

has been successfully utilized to validate drug targets. For example, MR has suggested 

causal association between LDL-C and the risk of CHD, mediated by SNPs in the NPC1L1, 

HMGCR, and PCSK9 genes36,37. Furthermore, NPC1L1, HMGCR, and PCSK9 proteins are 

targets of the drugs ezetimibe, statins, and PCSK9-inhibitors, respectively, to reduce LDL-

C levels, as confirmed with RCTs. Consequently, MR studies, especially when using 

previously published summary-level genetic association data, provide a rapid and 

affordable approach to evaluating causal questions, especially when RCTs cannot be 

implemented due to logistical or ethical reasons38. 

 

1.5.5 NETWORK AND PATHWAY ANALYSES 

Network and pathway analyses help in understanding the biological implications of the 

observations in ‘omics data and their interdependencies. Biological pathways are 

interactions among molecules in a cell that leads to a certain product or a change in a cell. 

Some curated databases of pathways include (Kyoto Encyclopedia of Genes and Genomes 

(KEGG), Reactome, WikiPathways, gene ontology (GO), transcription factor database 

(TRANSFAC) and miRTarBase39. Results from GWAS and other multi-omics data, such 

as exome-wide associations, mRNA/miRNA expression, protein expression, and DNA 

methylation. typically lead to a list of genes, which are sometimes prioritized according to 

a ranking system. The enrichment of these genes in the various pathways using tools such 

as g:profiler, GSEA, Enrichr and MAGMA provide mechanistic insights into the biological 

relevance of these genes39,40. When a gene or its’ products are involved in multiple 

pathways in a context-specific manner, the result is a network. Networks are particularly 
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powerful as they allow visual mappings of many interactions across different data-types. 

The intuitive display for biological data in networks is established with the biological 

elements represented in nodes, which are linked to each other by directional or non-

directional edges. This system allows automation of analyses, enables ease of 

interpretation, identification of hidden patterns and creation of emergent models to explain 

experimental observations. Currently, application programs are built to demonstrate 

networks from single-data types, such as GeneMania for gene-gene interactions and 

STRING for protein-protein interactions39. Additionally, platforms like Cytoscape have 

been built that integrate multiple application programs to visualize complex networks and 

integrate these with any type of attribute data targeting any specific case use41. 

 

1.6 STRATEGIES TO DETECT RARE VARIANTS  

Compared to common variants, rare variant studies are a relatively new field. For a given 

effect size, as the allele frequency decreases the power to detect genes or variants of interest 

also decreases. Several platforms and methods have been used in the rare-variant 

associations with biomarkers and diseases, this includes extreme-phenotype sampling, 

family-based studies, GWAS chip and imputation, targeted region sequence, whole exome 

sequencing, and whole genome sequencing. 

 

The extreme-phenotype sampling method is done by selecting participants with extreme 

traits, defined by a specific threshold. Extreme-phenotype sampling potentially enriches 

the samples with the presence of causal rare variants and thus requires a smaller sample 

size, for example, the ABCA1, APOA1, and LCAT genes have been related to low HDL-C, 

found by studying families with extreme high-density lipoprotein (HDL) phenotypes42. 

However, with this method, the outcome may not be generalized in the underlying 

population, it is sensitive to the outliers, it introduces a sampling bias, assumptions are 

made about the normal phenotypic characteristics of the specific condition under study, and 

also there is a reduced power to detect loci with smaller effects43,44. 
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Family-based studies in which several family members share the same phenotype may 

provide more statistical power than regular population-based case-controls studies45,46. This 

type of study has been very successful in identifying large effect, highly penetrant, and 

monogenic Mendelian disorders47. In addition, a major benefit of family-based studies is 

the common genetic background of the studied subjects, which means that there are no 

issues related to population stratification. This was the method used to detect the role of 

PCSK9 mutation on autosomal dominant hypercholesterolemia48 and most other mutations 

reported in Online Mendelian Inheritance in Man database (OMIM, 

https://www.omim.org/). There are several challenges and limitations to family based 

studies, including establishing and analyzing the complex and incomplete pedigree 

sequence, low sample size, a challenge of replication in large cohorts, inadequate capture 

the full spectrum of RVs present in the population, and considering the late-onset nature of 

many diseases it is also difficult to obtain genetic information from parents49. Put together, 

this makes it difficult to study complex traits with family-based studies. Nonetheless, as of 

May 2024, the OMIM reports over 7,528 of Mendelian diseases linked to rare variants, 

though their validity in the context of population genetics and replicability has been 

questioned. Consequently, efforts to examine these gene-disease associations in large 

biobanks and to curate them via efforts like the ClinGen Gene-Disease Clinical Validity 

Curation processes are underway50. 

 

Currently, exome-wide genotyping arrays are available that test thousands of exonic 

variants at a modest cost. Exome chips have been successful in identifying rare coding 

variants associated with numerous diseases, including insulin traits, liver disease and lipid 

levels47. GWAS based RV associations have also proved to be successful when followed 

by targeted region sequencing. Some examples include novel associations between rare 

variants in APP and Alzheimer's disease and between rare variants in PDX1 and T2D51,52. 

Some of the most exciting discoveries arising from rare variant association with biomarkers 

in diseases were made from targeted gene sequencing experiments which identified rare 

coding variants with strong effects on phenotypic variation. These included genetic 

https://www.omim.org/
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variation in ABCA1 and PCSK9 associated with HDL and LDL-C levels, respectively42,53. 

The biggest drawback of using targeted region based platforms is that they are not as 

exhaustive as whole exome sequencing and will miss a large amount of very rare genetic 

variation47. 

 

Regardless of the platform used to study rare variants, the overarching challenge has been 

to move beyond handfuls of candidate gene studies to unbiased gene discovery. 

  

1.7 OVERCOMING THE CURRENT LIMITATIONS OF RVS WITH WHOLE 

EXOME SEQUENCING 

NGS has been used to mitigate the limitations of the above-mentioned methods in a large 

number of unrelated populations. NGS, with the ability to read every sequence with whole 

genome sequencing (WGS) or whole exome sequencing (WES) provides a much better 

opportunity to detect rare variant association54. Recently, sequencing studies have 

identified hundreds of genes containing rare coding variants, and these variants can have 

much larger effect sizes than CVs55-58. The exomes constitute 1%- 2% of the genome and 

house a majority of the rare protein-altering mutations, which are responsible for disrupting 

the function of the coded proteins and are therefore thought to be responsible for the 

majority of the deleterious phenotypes. This makes WES more cost-effective than WGS 

and better at studying rare variants. WES in human medicine also benefits from the 

availability of many large databases of single-nucleotide-variants (SNVs), known 

pathogenic variants, and control genomes54. These databases provide a wealth of 

information such as genotype quality, allele frequency, putative variant consequences, and 

pre-calculated algorithms to estimate likely pathogenicity of each genetic variant. 
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1.8 CHALLENGES SPECIFIC TO RVS 

Studying RVs requires specialized statistical methods that can effectively handle the 

challenges posed by low variant frequencies, including low statistical power, biases due to 

uncorrected population stratification, cryptic relatedness, and the computational burden of 

testing a large number of variants simultaneously. Conventional methods designed for 

common variants may lack power or result in bias when applied to RVs. Despite these 

challenges, large-scale biobanks provide extensive genetic and phenotypic data, enabling 

researchers to conduct sophisticated statistical methods to identify and characterize RVs 

associated with complex traits. 

 

1.9 METHODS TO STUDY RVS 

1.9.1 VARIANT PRIORITIZATION 

In the human genome, the number of rare variants is far greater than common variants, 

most of which are likely non-functional. Effective quality control steps reduce the number 

of variants, for example, by removing intronic, singletons, and common variants. This 

reduces the burden of multiple testing and single-to-noise ratio, thereby reducing false 

positive results or type-1 error. Prioritization of variants may also increase biological 

interpretability of variants. Annotation tools such as ANNOVAR59, Variant Effect 

Predictor (VEP),  and (Database for Nonsynonymous SNPs' Functional Predictions 

(dbNSFP)60, utilize a wide array of publicly available databases to enable prioritization of 

variants. A fair number of pathogenicity scores has also been developed to prioritize 

variants, based on evolutionary constraints, predicted protein alterations, disease severity, 

experimentally measured regulatory effects and complex trait associations, or a 

combination of various factors. These methods usually leverage supervised or unsupervised 

machine learning techniques to enable assessment and prioritize variants. A few examples 

of pathogenicity scores include Combined Annotation Dependent Depletion (CADD)61, 

Mendelian Clinically Applicable Pathogenicity (M-CAP) score62, Rare Exome Variant 
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Ensemble Learner (REVEL)63, Sorting Intolerant From Tolerant (SIFT)64, Polymorphism 

Phenotyping (PolyPhen)65, and Variant Annotation, Analysis & Search Tool (VAAST)66.  

  

Once RVs are selected, statistical methods are applied to identify variant-trait relationships. 

Commonly used statistical methods for studying RVs are centered around association 

testing. The most widely used methods are gene-burden tests and variations of SKAT, as 

described below. 

  

1.9.2 GENE BURDEN 

This is one of the earliest and simplest methods used in RV association testing. Under the 

autosomal dominant additive model, each variant per individual is scored as 0 for exhibiting 

two copies of the reference allele, 1 for heterozygous status with one reference and 1 

alternative allele, and 2 for homozygous with both alternative alleles. The gene burden 

score is simply the sum of scores for all qualifying RVs within the gene and serves as the 

unit of association with a phenotype of interest. This effectively aggregates the variants to 

a single gene-score, thus reducing the burden of multiple testing and potentially increasing 

the power of association using a regression model. Most burden tests assume that the 

variants are either deleterious or protective and act in one direction. The weighted burden 

test is a variation of the gene-burden tests, where variants are weighted based on rarity and 

pathogenicity under additional assumptions about effect sizes67. 

  

1.9.3 SEQUENCE KERNEL ASSOCIATION TEST (SKAT) AND ITS 

VARIATIONS 

SKAT aggregates information across multiple variants using a kernel matrix, allowing for 

more powerful detection of associations, especially when variants may have differing 

directions and magnitudes of effects. However, SKAT might be less powerful than burden 

tests in scenarios where most variants are causal and have effects in the same direction. 
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SKAT-O combines burden and SKAT methodologies to address SKATs limitations but 

might be slightly less powerful than burden or variance-component tests if their underlying 

assumptions are held. While SKAT and SKAT-O focus on association testing, gene-burden 

testing variant aggregation are broadly applicable in any situation that necessitates treating 

a gene as a unified entity67,68. 

  

1.9.4 OTHER STATISTICAL METHODS 

Other statistical methods such as heritability, PRS and MR for rare variants are not as 

advanced as they are for CVs. In fact, currently there are no known published PRS of MR 

methods for RVs, and RV heritability has only recently been investigated in a few 

publications which will be explained in detail in relevant chapters 4 and 5. 

 

1.10 HUMAN VARIABLES 

1.10.1 TYPES OF VARIABLES 

Identification and description of human variables used in a study is a necessary component 

in genetic research. Statistical analyses rely on the type of variables that are involved in the 

study. These variables can be categorized as either quantitative or qualitative.  

 

Quantitative variables, which can be measured numerically, are further divided into 

continuous variables or discrete variables. Continuous variables can take any value within 

a range, such as anthropomorphic traits and blood biomarker measurements. Discrete 

variables represent specific values (e.g., number of hospital visits, cigarettes smoked per 

day, etc.).  Qualitative variables, on the other hand, are non-numerical. These include 

nominal variables, which do not have a natural order (e.g., blood group, sex and disease 

status), and ordinal variables, which have an inherent order but undefined intervals between 

categories (e.g., disease severity stages, severity of pain and risk levels). Numerical values 
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assigned to different qualitative variables are useful solely for identification purposes, such 

as 1 for male and 2 for female. When a qualitative variable has only two categories, such 

as alive or dead, male or female, diabetic or non-diabetic, it is called a binary or 

dichotomous variable. 

 

The nature of variables—whether categorical, continuous, or a mix—guides the selection 

of appropriate statistical tests and models. For example, categorical variables are often 

analyzed using frequency tables, chi-square tests, or logistic regression, while continuous 

variables can be analyzed with techniques like t-tests, ANOVA, correlation or linear 

regression.  

1.10.2 BIOMARKERS, ANTHROPOMORPHIC TRAITS AND, DISEASES 

Although understanding the genetic basis of disease status is important for direct diagnosis 

and prognosis of diseases, combining human genetics with biomarkers could help bridge 

the gap between the human genome and diseases69, accelerate pre-clinical diagnosis, 

prognosis, improve disease subclass, identify and validate therapeutic targets70,71,  help 

predict long-term consequences of pharmacological intervention72, enhance patient 

stratification73, and enable repurposing of existing drugs74. Anthropomorphic traits (such 

BMI, waist-to-hip-ratio and blood pressure), blood proteins, lipids, glucose and hormones 

are some of the most important biomarkers of the state of human health, as they dictate the 

onset, severity and progression of diseases. A prime example of the benefits of gene-

biomarker studies is the discovery of the relationship between proprotein convertase 

subtilisin/ kexin type-9 (PCSK9) gene and low-density lipoprotein cholesterol (LDL-C) 75. 

LDL-C is a well-established biomarker for cardiovascular health, where higher levels of 

LDL are associated with an increased risk of coronary heart disease (CHD)76. A gain-of-

function missense variant of PCSK9 was associated with an autosomal dominant 

hypercholesterolemia48. Conversely, a loss-of-function variant in the PCSK9 gene present 

in 2-4% of some ethnic populations, was shown to result in significantly lower levels of 

LDL cholesterol, and thus reduced the risk of CHD77,78, these relationships were later 
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proven through functional studies79,80. This discovery of PCSK9's role in cholesterol 

metabolism led to the development of PCSK9 inhibitors, a new class of cholesterol-

lowering drugs to effectively reduce LDL cholesterol levels sustainably over the long term 

and have shown promise in reducing the risk of CHD and incidence of heart attacks and 

other cardiovascular events81,82. Furthermore, genetic screening for PCSK9 mutations can 

help stratify patients who would benefit most from PCSK9 inhibitors versus other lipid-

lowering therapies83. 

In this thesis, I studied the contributions of genetic variants on dichotomous traits in the 

form of disease status (Chapters 3 and 5), as well as continuous variables, including 

anthropomorphic traits and blood biomarkers (Chapter 4).  
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CHAPTER 2: HYPOTHESIS, OBJECTIVE, RATIONALE, & APPROACH 

 

2.1 GENERAL HYPOTHESIS 

I hypothesize that rare coding variants contribute significantly to complex trait heritability 

and can provide a hypothesis-free method to identifying gene-trait relationships. 

2.2 GENERAL OBJECTIVE 

The overall objective of this PhD thesis is to estimate the collective contributions of genetic 

rare variants to trait heritability and to prioritize genes based on gene-level rare variant 

heritability estimates. 

2.3 RATIONALE AND APPROACH 

Complex traits range from quantitative measurements of biomarkers to heterogeneous 

diseases that are challenging to diagnose. While clinical measurements of biomarkers 

provide a practical framework for diagnosis and treatment, genetics and biology reveal that 

diseases are often interconnected at a molecular level, challenging the rigid boundaries of 

clinical classifications. Furthermore, genetic studies that offer insights into biological 

mechanisms can potentially lead to the discovery of new diagnostic biomarkers that are 

more accessible and therapeutic targets that are more personalized. 

 

In Chapter 3, using vascular dementia (VaD) as an example of a highly complex trait, 

genetic advancements in understanding the disease are discussed. The study aims to bridge 

the gap between genetic research and clinical practice by providing a comprehensive 

overview of the current knowledge on genetic markers, risk factors, and molecular 

pathways involved in VaD. This includes the genetics of cerebrovascular risk factors and 

associated diseases such as stroke, small vessel disease (SVD), and cerebral amyloid 

angiopathy (CAA). Consequently, this chapter offers a thorough examination of 

contemporary genetic methodologies employed in deciphering disease mechanisms and 
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diagnosis. Additionally, the review identifies challenges, opportunities, and future 

directions for research aimed at earlier diagnosis, targeted interventions, and therapeutic 

advancements in VaD. 

  

Like nearly all complex traits, the most compelling evidence for genetic determinants of 

VaD comes from studies on common variants or rare variants with monogenic effects, often 

discovered through family studies. Limited data are available from twin and other 

epidemiological studies to estimate the heritability of VaD directly. Heritability results 

from contributions of common variants identified through GWAS indicate significant 

heritability of the pathological processes and risk factors underlying VaD1,2. However, the 

contributions of rare variants to the heritability estimates of VaD, its subtypes or risk 

factors, remain largely unknown, this is because of a lack in methodological 

advancements.  

 

The vast majority of variants identified are rare, and yet their functional consequences are 

not known. For example, observations of the UKB WGS (N=150,119) reveal that out of 

the 710,913,648 variants, only 4.4% are common variants. In contrast, 43.9% are singletons 

(carried by a single sequenced individual) and 51.7% are rare variants (non-singleton, 

MAF<0.1%)3. Similar conclusion was also made by Taliun, et al. 2021 using the WGS 

from TopMed program 4. 

  

Most known pathogenic variants are rare, and generally have large magnitudes of effects 

on traits. For example, RVs in  RB1, BRCA1/BRCA2, LMNA and NOTCH3 are well known 

predictors of retinoblastoma5, breast and ovarian cancer6, familial lipodystrophy7,8, and 

Cerebral Autosomal Dominant Arteriopathies with Subcortical Infarcts and 

Leukoencephalopathy (CADASIL)9, respectively.   

 

Several algorithms have been developed to predict the pathogenicity of rare variants. While 

many of these algorithms perform well for Mendelian traits, as they were primarily built 
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and/or benchmarked using these traits, their effectiveness in the context of complex traits, 

which may be oligogenic in nature, still needs to be assessed.  

 

Furthermore, pharmacogenomics has shown several common variants playing a vital role 

in drug efficacy and safety, some examples include CYP2C9 involved in warfarin 

metabolism, SLCO1B1 impacting statin uptake, and DPYD influencing the metabolism of 

fluoropyrimidine drugs, used in cancer treatment. There are a large number of putatively 

pathogenic RVs within these pharmacogenes, likely accounting for a substantial part of the 

unexplained inter-individual differences in drug metabolism phenotypes, however, the 

consequences on diseases and biomarkers remain largely unexplored10.  

 

As previously discussed, common variants do not account for all the heritability observed 

in family-based studies. This “missing heritability” may be explained by RVs11, leading to 

the common-disease/rare-variant (CD-RV) hypothesis12. As per CD-RV hypothesis, 

common diseases may result from many RVs on multiple genes, independent of the 

CVs.  This has been a motivation to examine the contributions of rare variants to common 

complex traits. Two recent methods to estimate rare variants are genomic residual 

maximum likelihood analysis (GREML) and burden heritability regression (BHR).  RVs 

are shown to account for unexplained heritability in height and BMI13 using the GREML 

method, however the estimates are based on both coding and non-coding variants using 

WGS, restricts to RVs with 0.01%< MAF, and also makes assumptions about MAF 

distributions of causal variants, which can result in biased estimates if the assumptions are 

violated14. BHR is based on aggregated allele scores, with estimates much smaller than the 

GREML method. A method to estimate the contributions of truly RVs in a fast and accurate 

manner, without prior assumptions, has been lacking, and this has been the primary focus 

of chapters 4 and 5. 

  

Chapter 4 describes the development of the rare variant heritability estimator (RARity), a 

novel statistical approach to enable fast and accurate estimation of the contributions of rare 
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coding variants to complex, continuous trait heritability. Here we examine the effect of 

aggregation of variants into gene-burden on estimated trait heritability. RARity was 

established as an unbiased estimation of heritability for 31 complex traits, including 26 

blood biomarkers and 5 anthropomorphic traits using WES from British and non-British 

Caucasian population in the UKB (n = 167,348). Additionally, gene-level heritability 

estimates are explored to discover gene-trait relationships and investigate the efficiency of 

pathogenicity algorithms.  Finally, I investigated how WES data can help address the 

missing heritability question. 

  

In chapter 5, RARity-β, an adaptation of RARity for binary trait heritability, is utilized to 

examine the contributions of RVs on disease status on a liability scale. With this I identified 

many canonical genes associated with diseases and delved into the common genetic 

pathways to identify secondary causes of diseases via genetics.  

 

In summary, this thesis investigates the potential benefits of using rare variant heritability 

in human genetics. 
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CHAPTER 4:  

A METHOD TO ESTIMATE THE CONTRIBUTION OF RARE CODING 

VARIANTS TO COMPLEX TRAIT HERITABILITY. 
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CHAPTER 5:  

RARE VARIANT HERITABILITY ESTIMATOR TO IDENTIFY GENES 

IMPLICATED IN DISEASE STATUS IN THE UK BIOBANK 
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ABSTRACT  

 

The heritability of disease status due to rare coding variants (RVs, MAF<1%) remains 

unclear due to limited power. We introduce the rare variant heritability estimator-β 

(RARity-β), an adaptation of RARity for continuous traits, to estimate the overall (ĥ2
RV-liab) 

and gene-level heritability (ĥ2
RV-liab-gene) of binary traits on a liability scale. RARity-β was 

applied to 18 binary traits (cases >10,000) and RVs across 18,217 genes from whole exome 

sequence data, in the UK Biobank Caucasian participants (N=173,688). Significant 
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heritability was observed in hypothyroidism, asthma, hypercholesterolemia, and essential 

hypertension, with respective ĥ2
RV-liab of 12.5% (95% CI: 1.7-23.4%), 12.5% (95% CI: 4.0-

20.9%), 7.9% (95% CI: 1.1-14.7%), and 6.4% (95% CI: 1.4-11.3%). Gene-level analysis 

identified 77 genes with significant ĥ2
RV-liab-gene for one or more traits, with 70 previously 

unidentified gene-trait relationships, including the contributions of an autophagy gene, 

PEPB1, to atrial fibrillation and the TSHR gene’s contribution to hypothyroidism and 

sciatica. The TSHR gene and several mutations in this gene increases levels of thyroid-

stimulating hormone-beta (TSHB), even in the absence of clinically diagnosed thyroid 

disorder. Our findings confirm the functional role of the TSHR gene in regulating TSHB 

and suggest that hypothyroidism is an under-recognized cause of sciatica.  

 

INTRODUCTION 

 

The emergence of large biobanks, such as the UK Biobank (UKB) and AllofUS have 

dramatically increased the number of rare variant (minor allele frequency, MAF<1%) 

associations that have been detected, especially at the gene-level, illustrating significant 

contributions of the rare variants to complex traits. Numerous methods of gene-phenotype 

associations, such as Collapsing Analysis, SKAT, Burden test, BOLT-LMM, SAIGE-

GENE+, SKAT-O, STAAR-SKAT, aSPU and ACAT-V have helped in the identification 

of significant RV-phenotype associations, especially at the gene-level1, many of these 

results are now readily available through catalogs such as RAVAR1, Genebass2 and 

AstraZeneca PheWAS portal3. The significance of rare variant (RV) associations is 

underscored by the statistical observation that genes harboring RVs are linked to an average 
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of 3.75 distinct traits. Concurrently, most traits demonstrate interactions with numerous 

genes, with a median of seven associated genes per trait1. Historically, the RV contributions 

to diseases have been linked to Mendelian forms of diseases, however most diseases are 

complex in nature. Even though RVs play an important role in human diseases and are 

postulated to explain missing heritability in many complex traits4, rare variant contributions 

to the heritability estimates of disease status remain unknown, largely because of the lack 

of power with fewer prevalent cases. Current methods to estimate RV heritability for binary 

traits use gene-burden heritability regression5,6 or relies on prior assumptions related to 

distribution of MAF or effect sizes7, however, aggregating rare variants can 

cause  substantial loss of variance8, while assessing heritability based on assumptions such 

as beta and distribution of MAF, may lead to biases when the assumptions are 

violated.  Thus, there is a need to develop a robust method to assess the overall and gene-

level contributions of RVs to complex diseases.  

  

In our previous study, we developed a Rare variant heritability estimator(RARity) which 

has proven to be successful in delineating the extent of heritability attributable to rare 

coding variants, and unraveling the genetic contributions to diverse continuous traits, 

including the discovery of several susceptibility genes related to lipids and 

anthropomorphic straits8.  Here we extend the method to estimate the narrow sense, liability 

scale heritability (LHS) of binary traits. For case-control phenotypes, the heritability 

estimates on the observed binary scale are dependent on the case prevalence, hence it is 

preferred to transform the observed scale heritability into liability scale heritability (LSH). 

https://paperpile.com/c/qFImOA/KyoZC
https://paperpile.com/c/qFImOA/rW2Y6
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LSH standardizes the genetic contribution across different diseases and traits, allowing for 

better comparability; providing a biologically interpretable measure of genetic risk, and 

mitigates ascertainment bias9,10. In this study, we developed RARity-β, an adaptation of 

RARity to estimate overall and gene-level heritability of binary traits. We hypothesize that 

gene-level heritability estimation of binary traits will enable prioritization of genes 

underlying disease mechanisms. With this objective, we applied RARity-β to estimate 

liability scaled heritability in 18 binary traits in the UKB, each with more than 10,000 cases. 

  

METHODS 

 

Statistical model to estimate RV heritability using RARity-β 

Like the original RARity, RARity-β computes heritability estimates based on aggregating 

linear regression models over large genetic regions, including thousands of variants, using 

an ordinary least square (OLS) for each of the non-overlapping genetic blocks (1,...,k,...,K) 

in parallel under the condition that n is much larger than the number of genetic variants (pk) 

in the kth block, while ensuring the between block correlation, due to linkage disequilibrium 

(LD) spillage between blocks, is minimized. Here, we use each gene as a block to estimate 

RV heritability, and apply an empirically derived, LD pruning threshold size (r2 > 0.1, 

window size = 50Mb, step size= 500 bases) to ensure robust results. The statistical details 

for computing the RV heritability (ĥ2=adjusted R2) of the trait and the 95% confidence 

interval (CI) for RV heritability are explained in detail in Pathan, et. al, 20248. For 

quantitative traits the scale of measurement is the same as the scale on which heritability is 

expressed. In the context of binary traits, such as disease status, the phenotypes (case-
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control status) are measured on the 0–1 scale, but heritability is most interpretable on a 

scale of liability5. LSH ensures that the estimates are not affected by ascertainment biases 

or disease prevalence. RARity-β primarily differs from RARity in application of a liability 

scale to the observed heritability and confidence limits, as described by Lee, et. al and 

Ojavee, et.al5,10 and shown in equations 1 and 2, respectively. 

ℎ̂𝑙𝑖𝑎𝑏
2  = ℎ̂2  

𝐾(1−𝐾)

𝑧2

𝐾(1−𝐾)

𝑃(1−𝑃)
    (1) 

 95% 𝐶𝐿𝑙𝑖𝑎𝑏  =  𝐶𝐿
𝐾(1−𝐾)

𝑧2

𝐾(1−𝐾)

𝑃(1−𝑃)
    (2) 

Generally, P is the prevalence of cases in sample population and K is prevalence of cases 

in full population, and z2 is is the squared probability density function of the standard 

normal distribution evaluated at the Kth quantile of the inverse cumulative density function 

of the standard normal distribution, i.e.: 

𝑧2 = 𝜑(𝜙−1(𝐾))2                        (3) 

 With a large sample size, as we use here, we assume that P=K. 

  

Identification of significant genes 

 For each trait, we assessed 18,217 genes for their contribution to the total heritability 

(ĥ2
RV-liab) and prioritized those gene-heritability (ĥ2

RV-liab-gene) with significant contribution 

for functional enrichment. A statistically significant contribution was determined by an F-

test for regression models, against the null hypothesis that the gene-level heritability was 

zero, at a suggestive exome-wide significance threshold of α = 0.05/18,217 genes 

https://paperpile.com/c/qFImOA/nvlZT
https://paperpile.com/c/qFImOA/nvlZT+XhkYW
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= 2.74×10−6, and a strict Bonferroni corrected exome-wide significance threshold of 

α = 0.05/(18,217 genes×18 traits) = 1.52×10−7 . Known disease associations of the 

significant genes were investigated with the DisGenet database. 

  

Statistical power 

Statistical power of ĥ2
RV-liab was estimated empirically from the variance of 10,000 

simulated ĥ2
RV-liab, under 272 conditions of number of cases and true set ĥ2

RV-liab, keeping a 

constant sample size of 173,651 participants. Since each gene has a varying number of 

variants, power calculation was simplified with the assumption of having 317 blocks with 

5,000 variants per-block. Non-central F-distributions were used to simulate the observed 

genetic effects at each genotype block, where the non-central parameter was calculated as 

the product of the number of blocks and sample size. Total ĥ2
RV-liab was derived as described 

above. The true set ĥ2
RV-liab ranged from 2 to 10%, with increments of 1%. Number of cases 

varied from 2,000 to 10,000 individuals by increments of 500. For each condition, the 

statistical power was calculated as the proportion of observed p-values less than 0.05 out 

of the 10,000 simulations. 

 

Testing for bias  

Permutation tests were done to assess Type I errors by randomly generating null 

distributions of traits, under the assumption that significant ĥ2
RV-liab will be observed if the 

null hypothesis is true. We generated 20 phenotypes (Ysim) via random permutation of 

cases, under 4 scenarios of varying number of cases to assess the overall impact of type 1 
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error on ĥ2
RV-liab. The number of cases varied from 5,000 to 20,000 individuals by 

increments of 5000, thus leading to 80 simulations.  By comparing the observed ĥ2
RV-liab 

with the mean ĥ2
RV-liab for each scenario, it was determined whether the observed ĥ2

RV-liab 

are statistically significant or if they could have occurred by chance. P-value for the 

permutation tests for each scenario was calculated as the proportion of test-statistics >=5%. 

All statistical analyses were performed using the statistical programming language R 

(version 3.6.0)11. 

 

Application in the UK Biobank Data 

UKB Sample 

The UK Biobank (UKB) is a prospective population-based cohort encompassing 

approximately 500,000 individuals aged 40–69 years, serves as a rich source of genotypic 

and phenotypic data, all collected with participant consent under our approved application 

#15255. Leveraging Whole Exome Sequencing (WES) data from 200,643 participants, 

containing 17,975,236 variants (as annotated in the UKB data field: 23155), we focused 

our investigation on rare variants. Quality control procedures, described extensively 

elsewhere, were applied to ensure data integrity8. Among the samples with WES data, 

exclusions were made based on withdrawal of consent (n = 11), call rates below 99% 

(n = 2), discordance in reported sex (n = 18), deviation from ancestral clusters (n = 3), 

assignment to continental populations with fewer than 5000 samples (n = 12,765, 

subdivided as follows: South Asian = 3395; African = 3168; Other = 6202), and relatedness 

up to the 3rd degree (n = 14,156). Our analysis then focused on 173,688 unrelated British 

https://paperpile.com/c/qFImOA/rW2Y6
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and non-British Caucasian participants to estimate the narrow-sense liability scaled 

heritability (ĥ2
RV-liab) contributed by rare variants within the UK Biobank cohort. 

Genetic Data 

Genetic variants were called from WES data following the Functional Equivalent pipeline12 

and treated identically as described previously, with the exception of adjustment for 

medications. MAC filter was applied once more to retain RVs with MAC > 2, leading to a 

final analytical dataset including 173,688 participants and variants with MAF < 1% in 

18,217 genes. Individual level genotypes were extracted with PLINK1.9, assuming an 

additive model for all variants, and thus allotting a score of 2 for rare allele homozygous 

variants, 1 for heterozygous variants, and 0 otherwise. Finally, genotypes were standardized 

to have mean 0 and variance 1. 

 

Phenotype Data 

Disease outcomes 

Health data was gathered from self-reported medical histories and physical assessments 

upon enrollment, with ongoing updates obtained through connected electronic health 

records. Disease entities were defined by the PheWAS Codes (PheCode) derived from the 

occurrence of related International Classification of Disease (10th Revision) and Related 

Health Problem codes, in electronic health records from hospital inpatient admissions (field 

identifier 41270), cancer registry (field identifier 40006), underlying cause of death registry 

(field identifier 40001), and contributory cause of death registry (field identifier 40002). 

Sex-specific outcomes and outcomes with fewer than 10,000 cases were excluded because 
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of the lack of statistical power. Also, given the inherent redundancy between PheCodes, we 

selected either the child PheCodes for specific diagnosis or the parent PheCodes, whereby 

the child PheCodes were collapsed to parent PheCodes, forming the representative trait, 

while maximizing the sample size12,13. This left us with 18 PheCodes for analyses with 

sufficiently powered prevalent cases, where cases were coded as “1” and the controls as 

“0”. Each disease outcome was residualized with age, sex, 20PCs and then standardized to 

a mean zero and standard deviation 1. 

 

Putative role of the TSHR gene 

TSHR was one of the lead genes, contributing significantly towards ĥ2
RV-liab of 

hypothyroidism. We investigated the putative role of the TSHR gene in individuals without 

any form of thyroid disorders with a linear regression between the Thyrotropin subunit beta 

(TSHB) plasma protein as the outcome variable and both TSHR gene-burden, and 

individual TSHR variants, as explanatory variables, while correcting for age, sex and 

20PCs. TSHB, which is the beta subunit of the TSH diagnostic biomarker for thyroid 

disfunction, was obtained from the UKB plasma proteomic profiles of 54,219 UK Biobank 

participants. TSHB was measured with Olink proteomics assay, of which 18,714 also had 

WES data to allow this analysis. A phenome-wide study on the heritability contributions 

of the TSHR was carried out, exploring 360 different phenotypes, each comprising over 

2000 cases from the UK Biobank. 
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RESULTS 

We previously developed the RARity model to estimate the heritability of complex 

continuous traits explained by protein coding rare variants in a WES of unrelated 

individuals8.  To quantify the heritability of complex binary traits that can be explained 

RVs with RARity-β, we first needed to select traits with sufficient power and investigate 

whether this approach can provide an unbiased estimate of ĥ2
RV-liab using WES data. With 

access to limited traits with sufficient cases, we contended to using diagnoses of 18 

common diseases, each with at least 10,000 cases, which ensures 50-80% power to observe 

10% to 14% ĥ2
RV-liab, respectively (Figure1). The baseline characteristics of the disease 

outcomes selected for this study are presented in Table1. 

 

Simulations were performed based on a WES data set, comprising 173,651 unrelated 

British and non-British Caucasian participants after QC (Methods). The simulation results 

showed that when the traits were permuted randomly, estimate of ĥ2
RV-liab using real 

genotype data was unbiased (Figure 2). By unbiased we mean that the mean estimate of 

ĥ2
RV-liab from 20 permutations for each case size was always zero in the absence of 

meaningful phenotypes, however, fewer cases (<10,000) showed a high degree of error, 

and this confirms our choice of disease outcomes with at least 10,000 cases. 
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Heritability of 18 common diseases 

 

We analyzed UK Biobank exome sequences in up to 173,651 British and non-British 

Caucasian for 18 common diseases and. Four of these traits had significant RV 

contributions to ĥ2
RV-liab, include hypothyroidism, asthma, hypercholesterolemia, and 

essential hypertension, with respective ĥ2
RV-liab of 12.5% (95% CI: 1.7-23.4%), 12.5% (95% 

CI: 4.0-20.9%), 7.9% (95% CI: 1.1-14.7%), 6.4%(95%CI: 1.4-11.3%) (Figure 3, Table 2). 

 

To investigate gene-level contributions of RVs, we used RARity-β to determine ĥ2
RV-liab-

gene for all genes with qualifying variants and derived corresponding p-values for each gene. 

242 of the 18,217 genes had significant ĥ2
RV-liab-gene (p-value < 2.75 × 10−6), for one or more 

traits (herein referred to as significant ĥ2
RV-liab-gene), representing 244 distinct gene-disease 

relationships. 77 significant genes remained after applying a more stringent Bonferroni 

correction (p-value < (0.05/ (18217genes x 18 traits) = 1.52 × 10-7). A list of these 77 genes 

with the corresponding ĥ2
RV-liab-gene and p-values are presented in Appendix-B, 

Supplementary Table 1, as well as in Manhattan plots (Figure 4). We identified several 

genes that replicated previously reported associations while 70 gene-traits relationships are 

previously unidentified (Table 3). Some examples of well-established gene-disease 

relationships captured by significant ĥ2
RV-liab-gene include association between GCK 

(glucokinase) and Type-2-diabetes, TSHR (thyroid-stimulating hormone receptor) and 

hypothyroidism, and LDLR (low-density lipoprotein receptor) and hypercholesterolemia. 

Previously unidentified gene-trait relationships include PEBP1 (phosphatidylethanolamine 
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binding protein 1) with atrial fibrillation and flutter, and IDH2 (Isocitrate Dehydrogenase 

(NADP (+)) 2) with renal failure as well as pneumonia. 

 

Putative role of TSHR in hypothyroidism 

To illustrate the importance of RV heritability in disease etiology, we investigated the 

potential involvement of the TSHR gene in hypothyroidism, given its significant 

contribution to the ĥ2
RV-liab-gene of this condition. Consistent with previous findings, the 

TSHR gene is notably associated with multiple thyroid-related diseases (Figure 5). Linear 

regression of 219 RVs in the TSHR gene with hypothyroidism revealed that 4 variants are 

significantly associated with hypothyroidism (Table 4). However, when investigating 

which variants contribute to the overall ĥ2
RV-liab estimates of hypothyroidism, we found that 

at least 17 variants contribute to the exome-wide heritability estimates (Figure 6). We 

further leveraged the UK Biobank proteomics datasets to explore the influence of the TSHR 

gene on TSHB levels in individuals with and without any form of thyroid disorder. The 

results show strong, positive association between the TSHR gene burden and TSHB, and 

between 11 individual variants within the gene and TSHB, despite the absence of thyroid 

disorder (Table 5). Conversely, 4 variants and the TSHR gene burden were associated with 

TSHB when individuals with thyroid disorders were not excluded (Appendix-B, 

Supplementary Table 2). We also found a strong association between sciatica and 

hypothyroidism (p-value = 1.11x 10-15). Hypothyroidism is diagnosed in 270 of the 2309 

participants with sciatica, prompting further investigation into the contributions of the 

TSHR gene to the heritability of various phenotypes, particularly those with more than 2000 
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cases. Our results revealed that the TSHR gene positively contributes to sciatica and limb 

pain, among other traits (Table 6). The putative functional and epidemiological 

consequences of the TSHR mutations are summarized in Appendix-B, Supplementary 

figure 1.   

 

DISCUSSION 

 

In this study, we aimed to estimate the heritability of complex binary traits explained by 

RVs using WES data. Building upon our previous work where the RARity model was 

developed to estimate the heritability of continuous traits, we sought to assess its utility in 

quantifying the heritability of binary traits in unrelated individuals. The robustness of the 

method was evaluated through simulations. We observed genome-wide significant 

estimates for 4 traits and gene-level estimates revealed important gene-disease associations 

for 244 genes. 

  

The significance of our approach is underscored by its ability to capture significant overall 

heritability estimates for 4 traits, as well as well-established gene-disease relationships, as 

evidenced by significant ĥ2
RV-liab-gene estimates. Notably, our analysis identified several 

compelling examples of such associations. One prominent example is the association 

between GCK and Type 2 diabetes. GCK plays a crucial role in glucose metabolism, and 

variants in this gene have been consistently implicated in the pathogenesis of Type 2 

diabetes14,15. Similarly, LDLR contributes significantly to hypercholesterolemia, and this is 
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a well-established gene-disease relationship with profound implications for cardiovascular 

health. Variants in LDLR disrupt lipid metabolism, leading to elevated levels of LDL 

cholesterol and increased cardiovascular risk16.  

The PEBP1 gene contributes significantly towards atrial fibrillation and flutter, but has not 

been previously reported, however, there is some evidence of its role in cardiac 

hypertrophy17. Furthermore, the PEBP1 is expressed at medium levels in heart muscles18, 

supporting its relevance to cardiac function and diseases. Under normal circumstance, the 

PEBP1 protein interacts with phosphatidylethanolamine in cellular membranes and 

regulates the initiation of autophagy through interactions with several other autophagy 

related proteins19. Autophagy, a vital cellular process that degrades unfolded and misfolded 

proteins, plays a protective role in cardiomyocytes against AF. This process is highly 

conserved across evolution and is considered a potential therapeutic target and biomarker 

for various cardiovascular diseases, including AF. Recent studies suggest that regulating 

autophagy could help reduce the incidence of AF20-22. Together, the results implicate the 

PEBP1 gene as a potential therapeutic target for AF, and merit further studies. 

 

The highly significant association between TSHR and hypothyroidism was particularly 

noteworthy, prompting a focused examination of the relationship between TSHR variants 

and the manifestation of hypothyroidism. TSHR has been implicated in several Mendelian 

forms of thyroid dysfunction. We identified 4 nonsynonymous variants in the TSHR gene 

that are significantly associated hypothyroidism (Table 4), of which, the variants 

TSHR:NM_000369:exon10:c.G1637A:p.W546X  and 
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TSHR:NM_000369:exon1:c.G122C:p.C41S have been previously implicated in Mendelian 

forms of congenital hypothyroidism23-25. In our study, we provide further evidence 

reaffirming the association between these variants and hypothyroidism at the population 

level.  However, it is important to recognize that the overall heritability estimate of this 

gene is not explained entirely by only the significant variants. In fact, we show at least 17 

variants within this gene that contribute to the overall heritability estimates (Figure 6), 

underscoring the polyallelic nature of the rare variants.  

 

Under normal circumstances, the TSH produced by the pituitary gland binds to the TSHR 

in the thyroid gland, releasing the T4 and T3 hormones. Once sufficient levels of the thyroid 

hormones are released, further production of TSH by the pituitary gland is prevented with 

a negative feedback loop. Mutations in the TSHR gene impair the receptor functionality, 

resulting in overproduction of TSH. Detection of a strong, positive association between the 

11 TSHR variants, as well as the TSHB gene burden and the TSHB levels in a subset of the 

population without any form of thyroid disorder, confirms decrease in function of the TSH 

receptor, in the absence of diagnosed thyroid conditions. Interestingly, we also found strong 

association between sciatica and hypothyroidism, this warranted investigation of the 

contributions of the TSHR gene on the heritability of other phenotypes, including all 

available phenotypes with more than 2000 cases. We found significant contributions of the 

TSHR gene in several other traits, including sciatica and limb pain. The observed 

interrelationship between the TSHR gene, sciatica and hypothyroidism presents a possible 
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clinical implication for individuals afflicted with sciatica. Our findings suggest that 

hypothyroidism is putatively an under-recognized cause of sciatica. 

Important limitations need to be acknowledged. Specifically, the power calculations 

revealed that the sample size posed a constraint, thereby limiting our ability to detect 

heritability estimates below 14%, when traits have a minimum of 10,000 cases. This 

limitation emphasizes the need for caution when interpreting results, particularly in 

scenarios where the true heritability falls below this threshold, and the observed heritability 

on liability scales are negative. While negative heritability has been observed and dismissed 

as statistical artifacts in other studies26, here, the estimates deviate significantly and justify 

further investigations into the extraneous factors driving this anomaly. Some of the factors 

driving negative heritability include over-adjustment for LD, underpowered analysis due 

to low allele count, population structure, and case-control imbalance associated with large 

data banks on generally healthy population, etc. Efforts to address these constraints, such 

as increasing sample sizes to ~1 million WES by pooling several large biobanks, or refining 

analytical strategies, may enhance the sensitivity of our method to detect lower levels of 

heritability and further strengthen its utility in genetic studies of complex traits. 

Overall, our findings support the feasibility and validity of using the RARity-β model in 

conjunction with WES data to estimate the heritability of complex binary traits explained 

by RVs. By leveraging large-scale genotype data and carefully selecting traits with 

sufficient statistical power, we have demonstrated the utility of our approach in advancing 

our understanding of the genetic architecture of common diseases. Future research can 
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build upon these findings by applying similar methods to additional trait categories and 

expanding the scope of analysis to diverse populations. 
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FIGURES AND TABLES 

 

Table1: Baseline characteristics of Disease outcomes in the UK Biobank WES cohort of 

173651 participants. 

  Females Males Overall 

  (N=95412) (N=78239) (N=173651) 

AGE       

Mean (SD) 56.5 (7.96) 56.9 (8.11) 56.7 (8.03) 

Median [Min, Max] 58.0 [40.0, 70.0] 58.0 [38.0, 72.0] 58.0 [38.0, 72.0] 

Asthma 10373 (10.9%) 6744 (8.6%) 17117 (9.9%) 

Atrial fibrillation and flutter 5227 (5.5%) 8805 (11.3%) 14032 (8.1%) 

Cataract 14057 (14.7%) 9646 (12.3%) 23703 (13.6%) 

Cholelithiasis and cholecystitis 7101 (7.4%) 3596 (4.6%) 10697 (6.2%) 

Coronary atherosclerosis 3922 (4.1%) 9868 (12.6%) 13790 (7.9%) 

Diabetes mellitus 6454 (6.8%) 8949 (11.4%) 15403 (8.9%) 

Essential hypertension 25912 (27.2%) 28453 (36.4%) 54365 (31.3%) 

Gastrointestinal hemorrhage 7316 (7.7%) 6731 (8.6%) 14047 (8.1%) 

GERD 11905 (12.5%) 9205 (11.8%) 21110 (12.2%) 

Hemorrhoids 5548 (5.8%) 5172 (6.6%) 10720 (6.2%) 

Hypercholesterolemia 10970 (11.5%) 14574 (18.6%) 25544 (14.7%) 

Hypothyroidism 8939 (9.4%) 2307 (2.9%) 11246 (6.5%) 

Obesity 7288 (7.6%) 6210 (7.9%) 13498 (7.8%) 

Osteoarthrosis 13670 (14.3%) 8739 (11.2%) 22409 (12.9%) 

Pneumonia 5158 (5.4%) 6820 (8.7%) 11978 (6.9%) 

Renal failure 6327 (6.6%) 7668 (9.8%) 13995 (8.1%) 

Skin cancer 8874 (9.3%) 9021 (11.5%) 17895 (10.3%) 

Urinary tract infection 5769 (6.0%) 4741 (6.1%) 10510 (6.1%) 
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Table 2: Scaled RV heritability estimates of disease status 

 
Trait Scaled heritability estimates (%) 95% LCL 95% UCL 

Hypothyroidism 12.50 1.66 23.35 

Asthma 12.46 4.03 20.90 

Obesity 9.21 -0.49 18.91 

Type 2 diabetes 8.33 -1.12 17.79 

Hypercholesterolemia 7.94 1.15 14.72 

Hemorrhoids 7.50 -3.67 18.67 

Essential hypertension 6.37 1.46 11.28 

Gastrointestinal hemorrhage 2.82 -6.64 12.28 

Cholelithiasis and cholecystitis 2.48 -8.70 13.65 

Coronary atherosclerosis -0.15 -9.71 9.41 

Cataract -5.86 -12.89 1.17 

GERD -6.40 -13.88 1.08 

Renal failure -9.06 -18.52 0.40 

Pneumonia -11.29 -21.69 -0.89 

Urinary tract infection -17.50 -28.77 -6.23 

Atrial fibrillation and flutter -17.70 -27.13 -8.26 

Osteoarthrosis -20.93 -31.31 -10.54 

Skin cancer -21.14 -29.32 -12.96 
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Table 3: Genes with significant heritability for each trait 
Trait  Genes with 

significant RV 

heritability estimates 

Non-significant in 

exome-wide 

associations in UKB** 

Non-significant in 

GWAS Catalogue 

Asthma  EIF4A1 EIF4A1 EIF4A1 

Atrial Fibrillation and 

Flutter  

MAD2L1, PEBP1, 

YPEL2  

MAD2L1, PEBP1, 

YPEL2  

MAD2L1, PEBP1, 

YPEL2  

Cataract  SAMD5 SAMD5 SAMD5 

Cholelithiasis and 

cholecystitis 

FRS2, XCL2, 

INPP5K, SLC38A3, 

LETM1, EDC3, 

KTN1, JAK3, 

UGT1A5, NVL, 

C1QB  

NA NA 

Coronary 

atherosclerosis 

LOC101927572,  

NKX3-1 

LOC101927572,  

NKX3-1 

LOC101927572,  

NKX3-1 

Gastrointestinal 

Hemorrhage 

NAIFNA7,  

TMEM151B 

NAIFNA7,  

TMEM151B 

NAIFNA7,  

TMEM151B 

Hemorrhoids ME1, ZNF619, 

RUNDC3B, 

MB21D2, 

TP53TG3D, KCNV1, 

KIF5C, PALD1, 

TTL, DHX16, 

ZC3H18, CDC42, 

TVP23C-CDRT4, 

ZNF292 

NA ME1, ZNF619, 

RUNDC3B, 

MB21D2, 

TP53TG3D, 

KCNV1, KIF5C, 

PALD1, TTL, 

DHX16, ZC3H18, 

CDC42, TVP23C-

CDRT4, ZNF292 

Hypercholesterolemia  LDLR     

Hypothyroidism TSHR, COL5A2, 

ZNF583, ZNF490, 

TATDN1, 

TMEM256-PLSCR3, 

REEP5 

COL5A2, ZNF583, 

ZNF490, TATDN1, 

TMEM256-PLSCR3, 

REEP5 

COL5A2, ZNF583, 

ZNF490, TATDN1, 

TMEM256-

PLSCR3, REEP5 

Obesity  PPP1R21, SKA1, 

SCARB1 

PPP1R21, SKA1, 

SCARB1 

PPP1R21, SKA1, 

SCARB1 

Pneumonia  SRSF2, OR10A7, 

CPB2, PANK3, 

BST1, RBAK-

RBAKDN, ERLIN2, 

IDH2  

SRSF2, OR10A7, CPB2, 

PANK3, BST1, RBAK-

RBAKDN, ERLIN2, 

IDH2  

SRSF2, OR10A7, 

CPB2, PANK3, 

BST1, RBAK-

RBAKDN, ERLIN2, 

IDH2  

Renal Failure  SRSF5, SRSF2, 

LIX1L, ABCC9, 

IDH2 

SRSF5, LIX1L, ABCC9, 

IDH2 

SRSF5, SRSF2, 

LIX1L, ABCC9, 

IDH2 
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Type 2 Diabetes GCK, AGXT2, 

HRH1, FOLH1B, 

SCO1, MYRF, PDK1, 

DNMT3A 

AGXT2, HRH1, 

FOLH1B, SCO1, MYRF, 

PDK1, DNMT3A 

AGXT2, HRH1, 

FOLH1B, SCO1, 

PDK1, MYRF 

Urinary tract 

infection  

CD38, PDCL, 

VPS41, STMN2, 

STXBP3, ZNF587B, 

C12orf43, CBX6, 

ANO8, AADACL4, 

TEX22 

CD38, PDCL, VPS41, 

STMN2, STXBP3, 

ZNF587B, C12orf43, 

CBX6, ANO8, 

AADACL4, TEX22 

CD38, PDCL, 

VPS41, STMN2, 

STXBP3, ZNF587B, 

C12orf43, ANO8, 

AADACL4, TEX22 

 
NA=trait not listed. Bold font represents genes that are not identified in either GWAS or ExWAS 

as per **2,3 **26. 

  

https://paperpile.com/c/qFImOA/Zaze9+pu7oZ
https://paperpile.com/c/qFImOA/2CXHx
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Table 4: Variant level association (linear regression). Four TSHR variants are 

significantly associated with hypothyroidism in this study population. 
  

HGVS annotation Estimate 
Standard 

Error P-value 
Mutation 

type 
Known Disease 

associations 

TSHR:NM_000369:exon1

0:c.G1637A:p.W546X 0.0145 0.0024 1.37E-09 stopgain 

Hyperthyroidism 

nonautoimmune/congen

ital/ nongoitrous 
ClinVar-Conflicting 

with 5 submitter 

showing pathogenic and 

1 benign 

 

TSHR:NM_000369:exon1

0:c.C1532T:p.T511M 0.0102 0.002398 2.05E-05 
nonsynonymo

us SNV Not applicable 

TSHR:NM_000369:exon1

0:c.C1600T:p.R534C 0.00947 0.002398 7.81E-05 
nonsynonymo

us SNV Not applicable 

 

TSHR:NM_000369:exon1:

c.G122C:p.C41S 0.00941 0.002406 9.25E-05 
nonsynonymo

us SNV 

Epilepsy, 

Developmental delay, 

autistic features, 

Hypothyroidism 

congenital/nongoitrous 
- Pathogenic in ClinVar 
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Table 5: Association between the blood plasma biomarker TSHB and TSHR in thyroid 

disease-free population (N=17,107) 

 

GENE / variant ID CMAC CMAF Estimate Standard error P-value 

TSHR gene burden 450 0.013153 0.113829 0.018124 3.45E-10 

14:81143695:G:A_A 14 0.000409 0.875351 0.203134 1.65E-05 

14:80955786:G:C_C 292 0.008535 0.168581 0.044804 1.69E-04 

14:81143715:G:A_A 4 0.000117 1.358058 0.379324 3.44E-04 

14:81143227:G:T_T 2 5.85E-05 1.390554 0.536496 9.55E-03 

14:81143283:G:T_T 1 2.92E-05 1.878784 0.759074 1.33E-02 

14:81143460:C:T_T 1 2.92E-05 1.809892 0.758792 1.71E-02 

14:81143250:T:A_A 1 2.92E-05 1.795922 0.758673 1.79E-02 

14:80955841:C:T_T 3 8.77E-05 1.026459 0.43816 1.92E-02 

14:81092547:C:G_G 10 0.000292 0.551467 0.239981 2.16E-02 

14:81144036:A:G_G 2 5.85E-05 -1.21162 0.536594 2.40E-02 
  
 CMAC= cumulative minor allele count, CMAF= cumulative allele frequency, based on CMAC. 
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Table 6: TSHR contributes significantly to other phenotypes. 

 

Traits Scaled Heritability P-value 

Hypothyroidism NOS 0.0042 3.74E-18 

Hypothyroidism 0.0039 2.35E-17 

Sciatica 0.0077 7.27E-10 

Right bundle branch block 0.008 1.09E-09 

Bronchiectasis 0.0073 3.83E-09 

Umbilical hernia 0.0065 5.99E-09 

Duodenal ulcer 0.0078 7.60E-09 

Pain in limb 0.004 3.08E-08 

Acute renal failure 0.0024 3.58E-07 
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Figure 1: Power of Rare variant heritability estimates on a liability scale.  

Based on 173,651British and non-British participants, with the true set ĥ2
RV-liab ranged from 2 to 

10%, with increments of 1%. Number of cases varied from 2,000 to 10,000 individuals by 

increments of 500. The red-dashed horizontal line marks 80% power, while the red-dashed 

vertical line marks 10,000 cases, as the threshold for traits selection in this study. 

  



Ph.D. Thesis – Nazia Pathan, McMaster University – Medical Sciences 

 

 

 
89 

 

 

Figure 2: Simulation with permutation.  
Here we simulated phenotypes using permutations using various numbers of cases, and always 

observed ĥ2
RV-liab of mean zero, in the absence of meaningful phenotypes. The central red dot 

represents the mean ĥ2
RV-liab of 20 simulations via phenotype permutations with the specified 

number of cases. The red vertical lines represent the standard deviation of the estimates. 
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Figure3: Bar chart illustrating the exome-wide RV heritability estimates (ĥ2
RV-liab) 

+/− 95% confidence interval.  
Contribution of 1,606,565 qualifying rare coding variants on 31 complex traits were based on 

n = 173,651 Caucasian individuals from the UK Biobank, as estimated using RARity-β. Traits 

were standardized for age, sex, and the first 20 genetic principal components. 95% confidence 

interval of trait ĥ2
RV-liab is denoted with red, vertical error bars. The number of cases for each trait 

is indicated next to the error bar. 
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Figure 4: RARity-β to determine ĥ2
RV-liab-gene for all genes with qualifying RVs.  

Each dot represents a single gene, with genes ordered on the x-axis according to their genomic 

position. The y-axis represents the significance of ĥ2
RV-liab-gene measured as -log10 transformed p-

values, where the p-values were derived using F-test. Red, horizontal dashed lines mark the 

Bonferroni’s p-value significance threshold corrected for 18,169 genes (p-value < 2.75 × 10-6). 

Genes with significant ĥ2
RV-liab-gene are labeled. 
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Figure 5:  Gene-disease heatmap, for the genes contributing significantly to the RV 

heritability of hypothyroidism. The intensity of color is proportional to the strength of 

evidence for gene-disease-association, with darker color representing a greater level of evidence.  
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Figure 6: Rare variants in the TSHR gene contributing to the entire heritability 

estimate conferred by the gene on hypothyroidism. Effect of increasing the number of 

variants in order of most to least significant heritability contributions on total heritability. 

At least 17 variants contribute to the overall RV heritability inferred by the TSHR gene. 
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CHAPTER 6: DISCUSSION 

 

6.1 GENERAL OVERVIEW 

This thesis focuses on the contributions of rare genetic variants to complex traits and 

diseases. The syndromic nature of diseases, diverse pathology, polygenicity and the lack of 

appropriate genetic tools to study complex traits complicate genetic research.  In study 1 

(chapter 3), the genetic determinants of vascular dementia were examined, allowing a 

comprehensive understanding of how genetic methodologies are currently applied to 

complex traits. Study 2 (Chapter 4) describes the developed of a rare variants heritability 

estimator (RARity) to examine the contributions of rare variants to complex continuous 

traits, including 5 anthropomorphic and 26 blood biomarkers in the UKB. In study 3 

(Chapter 5) RARity method was extended to develop RARity-β, to study binary trait 

heritability on a liability scale and its implications in 18 diseases in the UKB. In the 

subsequent sections, I will i) summarize the main findings from each chapter, ii) outline 

the significance, and iii) describe the limitations, and future areas of investigation. 

6.2 STUDY 1 (CHAPTER 3)  

6.2.1 SUMMARY 

Study 1, “Genetic determinants of vascular dementia”, is a review article exploring recent 

genetic research on VaD, utilizing methods such as genome-wide association studies 

(GWAS), polygenic risk scores (PRS), heritability estimates, and family studies for 

Mendelian forms of the disease. It highlights key genetic associations and potential 

pathways involved in VaD, focusing on pathological risk factors like stroke, cerebral small 

vessel diseases, and cerebral amyloid angiopathy. The review also emphasizes significant 

modifiable risk factors, such as hypertension, diabetes, and dyslipidemia, advocating for a 

multifactorial approach in VaD prevention and treatment. Furthermore, it identifies areas 

for scientific advancement to enhance clinical care, suggesting that large-scale 

collaborations and an integromics approach can strengthen genetic discoveries. 
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Understanding the genetics of VaD and its risk factors could revolutionize its definition 

based on molecular mechanisms, leading to new diagnostic, prognostic, and therapeutic 

tools. 

6.2.2 SIGNIFICANCE 

While clinical manifestations provide a practical framework for diagnosis of a highly 

heterogeneous complex diseases such as VaD, genetics offer insights into the molecular 

mechanisms and shows that diseases are often interconnected at a molecular level, 

challenging the rigid boundaries of clinical classifications. For example, the APOE ε4 

common variant is implicated in CAA, and AD; and the NBEAL1 is associated with stroke, 

WMH, and AD1. Furthermore, the current gold standard for diagnosing VaD, which 

involves MRI-based identification of cerebrovascular pathology, faces practical challenges 

in settings lacking adequate facilities, expertise, or resources. Genetic studies that provide 

insights into the biological mechanisms, through understanding both common and rare 

variant contributions, as well as other omics, can enable earlier predictions and potentially 

lead to the discovery of diagnostic biomarkers that are more accessible and therapeutic 

targets that are more personalized.  

 

It has been shown that CV contributions to pathological risk factors of VaD ranges from 

11.9% to 40% for CAA and stroke, respectively  while twin and family studies propose 

heritability estimates for WMH lesion volume between 50% and 80%2,3. Blood pressure, 

type 2 diabetes, LDL-cholesterol, triglycerides, atrial fibrillation, diet, BMI, exercise, and 

smoking are epidemiologically associated with greater VaD risk and have significant 

estimated CV heritabilities at 15%, 66%, 8.3%, 21.8%, 14.4%, 4.8%, 24.9%, 7%, and 

15.1%, respectively4,5.From this, it is apparent that a comprehensive understanding of the 

genetic determinants requires examining the genetic factors affecting the disease directly, 

as well as the pathological and modifiable risk factors. Advancements in genomic 

methodologies related to common variants, has been a great starting point for understanding 
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the genetic determinants of VaD, consequently, numerous genetic associations and 

pathways have been implicated in VaD and its risk factor. 

 

6.2.3 LIMITATIONS AND FUTURE OPPORTUNITIES  

Despite being the second most common cause of dementia, research on the genetics of 

vascular dementia (VaD) is limited. Major challenges to studying and implementing the 

genetics of VaD include a lack of large-scale, multi-ethnic consortia that examines both 

genetic and non-genetic aspects of VaD. Many genetic associations for VaD come from 

small studies with limited replication. The lower prevalence of VaD and 

underrepresentation of multi-ethnic groups in research further complicate efforts. 

Additionally, the studies on the genetics of VaD spans decades, marked by various 

technological advancements and study designs, raising concerns about gene validity. 

Importantly, beyond pedigree and association studies, not much is known about the 

oligogenic or polygenic contributions of rare variants to the risk factors of VaD. 

 

With technological advances, it is now possible to navigate the above-mentioned 

challenges. Accessible, focused consortia that integrate health records and biomarker data, 

and utilize advanced statistical tools to combine data from various sources and multi-ethnic 

studies, will overcome the limitation of sample size and accelerate research in this area. 

Furthermore, studies spanning decades of evidence need to be evaluated with a 

standardized framework, such as those created by the Clinical Genome Resource 

(ClinGen), to ascertain gene-disease validity and aid gene prioritization in clinical contexts, 

improving genetic data usability and dissemination. Finally, there is a need to develop and 

implement appropriate methods to study rare variant contributions, such as heritability, 

MR, and PRS. This has been one of the motivating factors for study 2 and 3 in this thesis, 

which describes the developments and application of methods to estimate rare variant 

contributions to complex traits. Integration of genetics with other multi-omics data would 

provide a holistic approach to truly understanding VaD.  
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6.3 STUDY 2 (CHAPTER 4)  

6.3.1 SUMMARY 

Study 2 (chapter 4) describes a novel method to estimate rare variant heritability from 

whole exome sequence data, “RARity”, and its application to the UK Biobank Caucasian 

population.  This method is versatile and does not require prior assumptions about the 

genetic architecture of selected variants, and thus has been applied to both common and 

rare variants.  

 

Several discoveries were made with RARity for continuous traits, enhancing our 

understanding of the genetic architecture of RVs, identifying traits with significant RV 

contributions, prioritizing genes based on RV heritability and also assess the capacity of 

current methods to capture trait variance, such as gene-burden testing and pathogenicity 

scores. When applied to 31 complex, continuous traits in the UKB, I discovered that RVs 

act in long range LD, at a much greater distance compared to common variants, and thus a 

stringent LD pruning was required to avoid overestimation of h2
RV. Secondly, I discovered 

that gene burden testing, which aggregates RVs, leads to a substantial loss of information 

compared to the use of unaggregated variants in RARity. Furthermore, RARity offers 

practical advantages in characterizing genes based on RV heritability. For most traits RV 

account for a significant portion of heritability (>5% in 27 of the 31 traits), so much so that, 

incorporation of RVs almost perfectly recapitulated the "missing heritability" for 11 traits, 

reaffirming conclusions from recent studies using whole genome sequencing (WGS) data.  

With RARity we were able to assess and identify the limited ability of pathogenicity scores 

to distinguish variants with biological effects from those without. This emphasizes the need 

for alternative methods to study RV functional consequences.  
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6.3.2 SIGNIFICANCE 

RARity proved to be a fast, robust and versatile tool for rare variant studies. It allows 

estimation of RV heritability at the genome-wide level, and gene level. Thus, it was 

demonstrated that a substantial contribution of RVs to trait heritability, while enabling 

assessment of variant level and gene-level characteristics of RVs. More importantly, the 

identification of genes significantly enriched for heritability offered a hypothesis free 

method of gene discovery. Finally, utility of RARity was demonstrated with evaluation of 

pathogenicity scores, discussing a key flaw in current algorithms to distinguish truly 

pathogenic variants from those without any consequences. Ultimately, the study 

emphasizes the need to incorporate RV analysis into genetic studies of complex traits.  

6.3.3 LIMITATIONS AND FUTURE OPPORTUNITIES  

This study has several limitations. The exclusion of non-coding, singleton, and doubleton 

variants, along with LD pruning of potentially functional variants, may lead to an 

underestimation of ĥ2
RV. The contribution of rare non-coding versus coding variants is not 

well understood and is challenging to assess, but calibrating RARity for WGS is a future 

opportunity to provide insights. It’s also important to recognize that heritability describes 

phenotypic variance at the population level and cannot predict individual variations. 

Therefore, RARity is intended to complement, rather than replace, RV association methods. 

While no significant differences in RV heritability were found between males and females, 

larger sample sizes are needed for more accurate analysis. This study only explored some 

pathogenicity scores, indicating that further research using RARity could help evaluate 

functional versus non-functional variants. Additionally, the RARity model in this study 

suited for continuous traits, would need adjustments for dichotomous traits, which is the 

focus of study 3 (Chapter 5). 
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6.4 STUDY 3 (CHAPTER 5)  

6.4.1 SUMMARY 

Rare variant heritability estimator-β (RARity-β), an adaptation of RARity for continuous 

traits, was developed to estimate estimates the overall (ĥ2
RV-liab) and gene-level heritability 

(ĥ2
RV-liab-gene) of binary traits on a liability scale. This method was applied to 18 binary traits 

using WES data from 173,688 Caucasian participants in the UK Biobank. Significant 

heritability was found for hypothyroidism, asthma, hypercholesterolemia, and essential 

hypertension, with respective ĥ2
RV-liab of 12.5%, 12.5%, 7.9%, and 6.4%. Gene-level 

analysis revealed 77 genes with significant ĥ2
RV-liab-gene for one or more traits, identifying 

70 new gene-trait relationships. The TSHR gene, notably contributing to hypothyroidism 

heritability, was linked to increased thyroid-stimulating hormone levels and associated with 

sciatica, suggesting hypothyroidism as an under-recognized cause of sciatica. 

6.4.2 SIGNIFICANCE  

The significance of RARity-β is highlighted by its ability to capture significant overall 

heritability estimates for four of the 18 diseases, along with well-established gene-disease 

relationships. Notably, the analyses identified several compelling examples of such 

associations. For instance, the gene GCK is significantly associated with Type 2 diabetes, 

a finding consistent with its known role in glucose metabolism. Similarly, the LDLR gene 

is linked to hypercholesterolemia, disrupting lipid metabolism and increasing 

cardiovascular risk. The autophagy related PEBP1 gene shows a significant association 

with atrial fibrillation and flutter, and could be a potential therapeutic target, pending 

further investigation. 

A particularly noteworthy finding is the highly significant association between TSHR and 

hypothyroidism. Hypothyroidism, a prevalent endocrine disorder characterized by 

insufficient thyroid hormone production, has diverse clinical manifestations. Four 

nonsynonymous variants in the TSHR gene were significantly associated with 
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hypothyroidism. Among these, variants previously implicated in congenital 

hypothyroidism were reaffirmed at the population level. This study shows the polyallelic 

nature of rare variants, revealing that multiple variants within the TSHR gene contribute to 

overall heritability estimates. A number of variants and the TSHR gene-burden are 

positively associated with the TSHB levels in a population devoid of hypothyroidism, 

confirming the functional consequence of the RVs in TSHR. Furthermore, the TSHR gene 

is also found to contribute significantly towards sciatica, indicative of hypothyroidism 

being an unrecognized cause of sciatica.  

6.4.3 LIMITATIONS AND FUTURE OPPORTUNITIES  

This study has several limitations in addition to those described in Study 2. The sample size 

posed a constraint, limiting our ability to detect heritability estimates below 14% for traits 

with a minimum of 10,000 cases. This emphasizes the need for caution when interpreting 

results, especially when the true heritability is below this threshold and observed 

heritability on liability scales is negative. Increasing sample sizes to approximately 1 

million WES by pooling data from several large biobanks or refining analytical strategies 

may enhance the sensitivity of our method to detect lower levels of heritability.  Expanding 

the scope of analysis to diverse populations and additional trait categories will further 

advance our understanding of the genetic architecture of common diseases. 

Overall, our findings support the feasibility and validity of using the RARity-β model with 

WES data to estimate the heritability of complex binary traits explained by RVs. By 

leveraging large-scale genotype data and carefully selecting traits with sufficient statistical 

power, we have demonstrated the utility of our approach in advancing our understanding 

of the genetic architecture of common diseases. 

6.5 FINAL REFLECTIONS AND CONCLUSION 

This thesis began by examining statistical genetic methods to study complex traits. Overall, 

through three studies, significant advancements have been made in understanding the 
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genetic contributions to complex diseases, by developing novel methodologies for 

estimating heritability from rare variants and applying these methods to both continuous 

and binary traits. 

The first study reviewed the genetic determinants of vascular dementia, providing insights 

into genetic associations, genetic risk scores, causality through Mendelian randomization, 

pathways, and the impact of modifiable risk factors. This study underscores the potential 

of genetics to redefine VaD based on molecular mechanisms, leading to improved 

diagnostic, prognostic, and therapeutic strategies. The second study introduced the RARity 

method, a novel tool for estimating rare variant heritability from whole exome sequence 

data. Applied to continuous traits in the UK Biobank, RARity demonstrated significant 

contributions of rare variants to heritability, offering a hypothesis-free approach for gene 

discovery and highlighting the limitations of current pathogenicity scores. By the end of 

this study, I as able to measure the contributions of rare coding variants to several risk 

factors of VaD, including ApoA-I, BMI, diastolic/systolic blood pressure, LDL-

cholesterol, and triglycerides, with estimated rare variant heritability at 4.6%, 9.9%, 8.6-

6.8%, 8.7%, and 8.6%, respectively. The third study extended the RARity method to binary 

traits through the development of RARity-β. This adaptation enabled the estimation of 

heritability on a liability scale for 18 diseases and identifying numerous gene-trait 

associations, including new gene discoveries for common diseases like hypothyroidism and 

atrial fibrillation. Identification of significant gene-trait associations, such as the role of 

TSHR in hypothyroidism and sciatica, and PEBP1 in atrial fibrillation, underscores the 

potential for these genetic insights to inform clinical practice and therapeutic development. 

The collective findings from these studies emphasize the important role of rare variants in 

the genetic architecture of complex traits and diseases. They also highlight the necessity of 

integrating rare variant analysis into genetic research, leveraging large-scale biobank data, 

and applying advanced statistical tools to enhance our understanding of complex traits. The 

development of RARity and RARity-β provides robust tools for rare variant analysis, 
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facilitating gene discovery and enhancing the understanding of genetic contributions to 

both continuous and binary traits.  

Despite these advances, the studies face several limitations. The limited sample size and 

underrepresentation of multi-ethnic groups in some analyses highlight the need for larger, 

more diverse cohorts to improve the robustness and generalizability of findings. Singletons 

and doubletons were excluded in the studies because they are difficult to analyze with 

confidence due to their low frequency, leading to high variability and noise in the results, 

as they often exhibit considerable heterogeneity in their effects. The exclusion of sex-

chromosomes, non-coding, singleton, and doubleton variants in some analyses may 

underestimate heritability, necessitating future research to incorporate these variants and 

explore their functional consequences.  

Singletons and doubletons are typically excluded from genetic studies due to their low 

frequency and the challenges they present in analysis. These variants offer limited statistical 

power and are prone to high variability in results, leading to significant uncertainty in their 

association with traits or diseases. This rarity may increase the risk of false positive results. 

Although aggregation of singletons has been associated with several phenotypes6,7, it is 

difficult to distinguish the truly functional singleton variants from the non-functional ones, 

especially in the absence of replication in independent cohorts and functional validation 

such as experimentation with cell or animal models. As a result, any heritability model that 

includes these types of variants will require special considerations and additional 

simulations to create realistic scenarios and avoid biases. The availability of larger, more 

diverse multi-omics databases, combined with advancements in methods for high-

throughput functional assessments of mutations—such as massively parallel Perturb-seq 

for functional assessment of large numbers of mutations simultaneously8,9—may improve 

our understanding of singletons in the future. 
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Impact of genetic sex on heritability estimates, based on Study 2, were inconclusive due to 

the lack of power to observe any significant difference, this once more emphasizes the need 

to reassess the question of genetic sex on RV contributions to heritability with higher 

sample size. Furthermore, the sex chromosomes excluded from this study, may also 

contribute observed phenotypic variations between males and females. Unlike autosomes, 

the difference in dosage of X and Y chromosomes in males vs females can complicate the 

initial QC steps that evaluate HWE, as well as the statistical analysis, making it difficult to 

interpret genetic associations consistently across sexes10. Furthermore, the X-inactivation 

in females, and smaller Y chromosomes, additional population stratification issues due to 

differences in allele frequencies between males and females adds layers of complexities. 

For these reasons, genetic studies focus primarily on autosomes, where the inheritance 

patterns are simpler and more consistent across the population. However, to observe the 

sex-differences in heritability estimates, there is a need RARity, to include sex 

chromosomes in genetic analyses. This may be achieved via sex-stratified analyses, 

exclusion of HWE for sex chromosomes and further simulations. 

Nonetheless, versatility of the method means that RARity can be adapted for common 

variants, as shown in study 2, and may be extended to CNVs and WGS, so long as the 

assumptions of the OLS are not violated, and appropriate calibrations are performed. 

However, it is important to note that, since most of the missing heritability estimates are 

captured by the rare variants included in this study, we anticipate a low contribution, if any, 

due to the excluded variants. Consequently, studying the contributions of the excluded 

variants to trait heritability will likely require a much larger sample size, and computational 

resources.  

 

An important goal should be to produce a maximally enriched heritability, such that the top 

ranked genes for each trait explains most of the heritability. Future research should also 

aim to integrate genetics with other omics data to provide a comprehensive understanding 

of disease mechanisms and extend the study to a diverse population. Further investigations 
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are necessary to better understand the underlying biological mechanisms of the target genes 

identified with of RARity and RARity-β to further interrogate their validity as potential 

diagnostic or therapeutic targets. I also established that there is a need for a pathogenicity 

score that enrich for functional rare variants in complex traits. This may be achieved by a 

combination of variant-level and gene-level annotations, where the variant selection criteria 

are determined by a machine learning algorithm optimized for rare variant heritability, and 

thus identifying RVs that are functionally important to a given trait, ultimately improving 

our understanding of genetic predisposition to complex trait susceptibility. 

To conclude, in this study, I have shown that RV heritability estimates with RARity and 

RARity-β provide valuable insights into the genetic basis of complex traits and diseases, 

offering several important advantages in genetic research. By focusing on genes that 

contribute substantially to heritability, researchers can streamline their efforts toward those 

genes most likely to play a critical role in the trait or disease of interest, making research 

more efficient. Additionally, incorporating high-priority genes into predictive models 

based on their heritability contributions can improve the accuracy of genetic risk 

predictions and variant-level pathogenicity scores, which are crucial for personalized 

medicine. This approach also optimizes resource use, directing experimental and 

computational efforts towards the most promising candidates, thereby facilitating more 

efficient functional studies that could lead to new therapeutic targets. Ultimately, gene 

prioritization based on RV heritability estimates will significantly enhance the efficiency, 

accuracy, and impact of genetic research. Overall, this thesis contributes significantly to 

the field of genetic research, offering novel methodologies, and insights that pave the way 

for future discoveries and applications in understanding complex traits and diseases. 
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Index TRAITS ABBREVIATIONS

1 Albumin ALB

2 Alkaline phosphatase ALP

3 Alanine aminotransferase ALT

4 Apolipoprotein A APOA1

5 Apolipoprotein B APOB

6 Aspartate aminotransferase AST

7 Calcium CALC

8 Cholesterol CHOL

9 Creatinine CREA

10 C-reactive protein CRP

11 Cystatin C CYSC

12 Direct bilirubin DBIL

13 Gamma glutamyl transferase GGT

14 Glucose GLU

15 Hemoglobin A1c HBA1C

16 HDL cholesterol HDL

17 Insulin-like growth factor 1 IGF1

18 Low-density lipoproteins - direct LDL

19 Lipoprotein (a) LPa

20 Phosphate PHOS

21 Total bilirubin TBIL

22 Total protein TP

23 Triglycerides TRIG

24 Urea UREA

25 Urate UA

26 Vitamin D VITD

27 Height HIGHT

28 Waist to hip ratio WTH

29 Systolic Blood Pressure SBP

30 Diastolic Blood Pressure DBP

31 Body mass index BMI

Supplementary Table 1: Abbreviations used to describe the phenotypes.

The list of phenotypes in this study includes 26 biomarkers and 5

anthropomorphic traits in 167,348 unrelated Caucasian participants from the

UKB.
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Glucose lowering medication Cholesterol lowering medications Hypertension medications

Field 20003 

code Description

Field 20003 

code Description

Field 6177 

code Description

1140868902 acarbose 1141146234 atorvastatin 2 Blood pressure medication

1140857584 acetohexamide 1141192414 crestor 10mg tablet

1141171652 actos 15mg tablet 1141192736 ezetimibe

Field 6153 

code Description

1140868866 bromocriptine 1140888594 fluvastatin 2 Blood pressure medication

1140874706 chlorpropamide 1141146138 lipitor 10mg tablet

1140874746

diamicron 80mg 

tablet 1140888648 pravastatin

1140866568 disopyramide 1141192410 rosuvastatin

1141157186 disopyramide product 1140861958 simvastatin

1140857518 eudemine 50mg tablet1140881748 zocor 10mg tablet

1140874718 glibenclamide 1141200040

zocor heart-pro 10mg 

tablet

1140857494 glibornuride 1140864592 lescol 20mg capsule

1140874744 gliclazide

1141152590 glimepiride

Field 6177 

code Description

1140874646 glipizide 1

Cholesterol lowering 

medications

1141157284 glipizide product

Field 6153 

code Description

1140874658 gliquidone 1

Cholesterol lowering 

medications

1140874686

glucophage 500mg 

tablet

1140857500 glymidine

1140874754 guar gum

1140884600 metformin

1140869112 mifepristone

1141157302 mifepristone product

1140874652

minodiab 2.5mg 

tablet=glipizide

1141173882 nateglinide

1140884338 pentamidine

1141171646 pioglitazone

1140874420 quinine

1141168660 repaglinide

1141177600 rosiglitazone

1141189090

rosiglitazone 1mg / 

metformin 500mg 

tablet

1141173786

starlix 60mg 

tablet=nateglinide

1141182110 sulfadiazine

1140874664 tolazamide

1140874674 tolbutamide

1141153254 troglitazone

Field 6177 

code Description

3 Insulin

Field 6153 

code Description

3 Insulin

Supplementary Table 2: Medications used for adjusting biomarkers values. Field ids and the

medication code used for glucose lowering, cholesterol lowering and hypertension medications.

Adjustment for these medications is further described in methods.
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Gene Burden Gene-wise Exome-wide

Comparison of RV 

heritability

Trait

h2RV-

burden LCL UCL

h2RV-gene-

tot LCL UCL h2RV LCL UCL

Exome-

wise vs  
Gene 

burden

Gene-

wise  vs  
Gene 

burden

Gene-

wise vs 
Exome-

wise

ALB 0.0099 0.0070 0.0128 0.0554 0.0258 0.0849 0.0543 0.0257 0.0829 82% 82% 2%

ALP 0.0438 0.0406 0.0469 0.1426 0.1129 0.1723 0.1384 0.1097 0.1671 68% 69% 3%

ALT 0.0161 0.0132 0.0191 0.0795 0.0499 0.1091 0.0778 0.0492 0.1064 79% 80% 2%

APOA1 0.0129 0.0100 0.0158 0.0473 0.0177 0.0768 0.0456 0.0170 0.0742 72% 73% 4%

APOB 0.0151 0.0122 0.0180 0.0970 0.0674 0.1266 0.0958 0.0672 0.1245 84% 84% 1%

AST 0.0101 0.0072 0.0130 0.0557 0.0261 0.0853 0.0586 0.0301 0.0872 83% 82% -5%

CALC 0.0065 0.0036 0.0093 0.0485 0.0189 0.0781 0.0506 0.0221 0.0792 87% 87% -4%

CHOL 0.0137 0.0108 0.0166 0.0740 0.0444 0.1036 0.0756 0.0470 0.1042 82% 81% -2%

CREA 0.0130 0.0101 0.0159 0.0612 0.0317 0.0908 0.0593 0.0308 0.0879 78% 79% 3%

CRP 0.0142 0.0113 0.0171 0.0714 0.0418 0.1009 0.0662 0.0376 0.0948 79% 80% 7%

CYSC 0.0144 0.0115 0.0173 0.0778 0.0482 0.1074 0.0779 0.0493 0.1065 81% 81% 0%

DBIL 0.0100 0.0071 0.0129 0.0992 0.0695 0.1288 0.0849 0.0563 0.1135 88% 90% 14%

GGT 0.0100 0.0071 0.0129 0.0751 0.0455 0.1047 0.0695 0.0409 0.0981 86% 87% 7%

GLU 0.0056 0.0027 0.0084 0.0192 -0.0103 0.0487 0.0182 -0.0103 0.0467 69% 71% 5%

HBA1C 0.0104 0.0075 0.0133 0.0960 0.0663 0.1256 0.0954 0.0667 0.1240 89% 89% 1%

HDL 0.0140 0.0111 0.0169 0.0675 0.0379 0.0971 0.0656 0.0370 0.0942 79% 79% 3%

IGF1 0.0116 0.0087 0.0145 0.0802 0.0506 0.1098 0.0794 0.0508 0.1081 85% 86% 1%

LDL 0.0138 0.0109 0.0167 0.0865 0.0569 0.1161 0.0874 0.0588 0.1160 84% 84% -1%

LPa 0.0128 0.0099 0.0157 0.0427 0.0132 0.0723 0.0408 0.0123 0.0694 69% 70% 4%

PHOS 0.0107 0.0078 0.0136 0.0762 0.0466 0.1058 0.0733 0.0446 0.1019 85% 86% 4%

TBIL 0.0103 0.0074 0.0131 0.0930 0.0633 0.1226 0.0770 0.0484 0.1056 87% 89% 17%

TP 0.0093 0.0064 0.0122 0.0690 0.0394 0.0986 0.0685 0.0399 0.0971 86% 86% 1%

TRIG 0.0108 0.0079 0.0137 0.0839 0.0543 0.1135 0.0863 0.0577 0.1149 88% 87% -3%

UREA 0.0044 0.0015 0.0072 0.0343 0.0048 0.0639 0.0322 0.0037 0.0608 87% 87% 6%

UA 0.0191 0.0162 0.0221 0.0634 0.0338 0.0930 0.0595 0.0309 0.0881 68% 70% 6%

VITD 0.0044 0.0016 0.0073 0.0198 -0.0097 0.0493 0.0197 -0.0088 0.0482 77% 78% 0%

SBP 0.0060 0.0031 0.0089 0.0662 0.0366 0.0958 0.0678 0.0392 0.0964 91% 91% -2%

DBP 0.0073 0.0044 0.0101 0.0872 0.0576 0.1168 0.0858 0.0572 0.1144 92% 92% 2%

BMI 0.0076 0.0047 0.0104 0.0990 0.0693 0.1286 0.0988 0.0702 0.1275 92% 92% 0%

WTH 0.0050 0.0022 0.0079 0.0736 0.0440 0.1032 0.0737 0.0451 0.1023 93% 93% 0%

HEIGHT 0.0248 0.0218 0.0278 0.2231 0.1932 0.2529 0.2190 0.1902 0.2478 89% 89% 2%

17

Supplementary Table 3: Comparison of RV heritability estimates derived using gene-burden,

gene-wise and exome-wide blocks. h2RV-burden = RV heritability estimates derived using gene-burden

block construct, h2RV-gene-tot = RV heritability estimates derived using gene block construct, h2RV
= RV heritability estimates derived using exome-wide block construct with ~5000 consecutive

variants in each block. LCL= lower confidence level, UCL=upper confidence level. Comparison

shows percentage difference in trait heritability between the methods.
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MAF 0.01 to 0.005 0.005 to 0.001 0.01 to 0.001 < 0.001

Trait

N 

variants

h2RV-gene-
tot LCL UCL

N 

variants

h2
RV-

gene-tot LCL UCL

N 

variants

h2RV-gene-
tot LCL UCL

N 

variants

h2RV-
gene-tot LCL UCL

ALB 6509 0.0063 0.0043 0.0084 23714 0.0093 0.0056 0.0131 29552 0.0146 0.0104 0.0188 1514538 0.0355 0.0066 0.0643

ALP 6509 0.0096 0.0075 0.0117 23714 0.0247 0.0208 0.0286 29552 0.0332 0.0288 0.0376 1514538 0.1110 0.0820 0.1400

ALT 6509 0.0040 0.0021 0.0060 23714 0.0136 0.0099 0.0174 29552 0.0177 0.0135 0.0220 1514538 0.0539 0.0250 0.0827

APOA1 6509 0.0049 0.0029 0.0069 23714 0.0143 0.0105 0.0181 29552 0.0181 0.0138 0.0223 1514538 0.0327 0.0038 0.0615

APOB 6509 0.0139 0.0117 0.0161 23714 0.0180 0.0142 0.0218 29552 0.0299 0.0256 0.0343 1514538 0.0710 0.0421 0.0999

AST 6509 0.0060 0.0040 0.0080 23714 0.0093 0.0055 0.0130 29552 0.0146 0.0104 0.0188 1514538 0.0398 0.0109 0.0686

CALC 6509 0.0040 0.0020 0.0060 23714 0.0077 0.0040 0.0114 29552 0.0120 0.0079 0.0162 1514538 0.0367 0.0079 0.0656

CHOL 6509 0.0101 0.0080 0.0122 23714 0.0146 0.0108 0.0184 29552 0.0232 0.0189 0.0275 1514538 0.0541 0.0253 0.0830

CREA 6509 0.0067 0.0047 0.0088 23714 0.0136 0.0098 0.0173 29552 0.0195 0.0152 0.0237 1514538 0.0450 0.0162 0.0739

CRP 6509 0.0062 0.0041 0.0082 23714 0.0134 0.0096 0.0171 29552 0.0188 0.0145 0.0230 1514538 0.0542 0.0253 0.0831

CYSC 6509 0.0064 0.0043 0.0084 23714 0.0128 0.0091 0.0166 29552 0.0177 0.0135 0.0219 1514538 0.0620 0.0331 0.0909

DBIL 6509 0.0084 0.0063 0.0105 23714 0.0094 0.0056 0.0131 29552 0.0171 0.0129 0.0213 1514538 0.0766 0.0476 0.1055

GGT 6509 0.0093 0.0072 0.0114 23714 0.0124 0.0086 0.0161 29552 0.0207 0.0165 0.0250 1514538 0.0491 0.0203 0.0780

GLU 6509 0.0032 0.0013 0.0052 23714 0.0046 0.0010 0.0083 29552 0.0079 0.0038 0.0120 1514538 0.0138 -0.0151 0.0426

HBA1C 6509 0.0099 0.0078 0.0121 23714 0.0164 0.0126 0.0202 29552 0.0258 0.0215 0.0301 1514538 0.0772 0.0483 0.1061

HDL 6509 0.0048 0.0028 0.0068 23714 0.0146 0.0108 0.0184 29552 0.0185 0.0143 0.0227 1514538 0.0515 0.0226 0.0804

IGF1 6509 0.0071 0.0050 0.0091 23714 0.0161 0.0123 0.0199 29552 0.0222 0.0179 0.0264 1514538 0.0542 0.0253 0.0831

LDL 6509 0.0113 0.0091 0.0134 23714 0.0151 0.0113 0.0189 29552 0.0245 0.0202 0.0288 1514538 0.0644 0.0355 0.0933

LPa 6509 0.0066 0.0045 0.0086 23714 0.0177 0.0138 0.0215 29552 0.0230 0.0187 0.0272 1514538 0.0235 -0.0053 0.0524

PHOS 6509 0.0078 0.0057 0.0099 23714 0.0113 0.0076 0.0151 29552 0.0180 0.0138 0.0223 1514538 0.0618 0.0329 0.0907

TBIL 6509 0.0095 0.0074 0.0116 23714 0.0112 0.0074 0.0149 29552 0.0202 0.0159 0.0244 1514538 0.0686 0.0397 0.0975

TP 6509 0.0091 0.0070 0.0112 23714 0.0099 0.0061 0.0136 29552 0.0179 0.0137 0.0221 1514538 0.0503 0.0214 0.0791

TRIG 6509 0.0073 0.0052 0.0094 23714 0.0116 0.0078 0.0153 29552 0.0182 0.0140 0.0224 1514538 0.0629 0.0340 0.0918

UREA 6509 0.0045 0.0025 0.0065 23714 0.0042 0.0005 0.0078 29552 0.0086 0.0045 0.0128 1514538 0.0197 -0.0091 0.0486

UA 6509 0.0059 0.0039 0.0079 23714 0.0099 0.0061 0.0136 29552 0.0151 0.0110 0.0193 1514538 0.0490 0.0202 0.0779

VITD 6509 0.0018 -0.0002 0.0037 23714 0.0066 0.0029 0.0103 29552 0.0083 0.0042 0.0125 1514538 0.0120 -0.0168 0.0409

SBP 6509 0.0053 0.0033 0.0073 23714 0.0089 0.0052 0.0126 29552 0.0135 0.0093 0.0177 1514538 0.0549 0.0260 0.0838

DBP 6509 0.0060 0.0040 0.0080 23714 0.0082 0.0045 0.0119 29552 0.0136 0.0094 0.0178 1514538 0.0783 0.0494 0.1072

BMI 6509 0.0054 0.0034 0.0074 23714 0.0089 0.0052 0.0127 29552 0.0141 0.0099 0.0183 1514538 0.0869 0.0580 0.1158

WTH 6509 0.0051 0.0030 0.0071 23714 0.0073 0.0036 0.0110 29552 0.0120 0.0079 0.0162 1514538 0.0647 0.0358 0.0936

HEIGHT 6509 0.0171 0.0148 0.0193 23714 0.0301 0.0262 0.0341 29552 0.0460 0.0415 0.0506 1514538 0.1726 0.1435 0.2016

18

Supplementary Table 4: RV heritability by MAF bins calculated using gene-wise blocks. N

variants= number of variants present in each MAF bin. LCL= lower confidence level, UCL=upper

confidence level.
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Supplementary Table 5: Rare coding variant heritability as a function of log10(Gene-

length). P-values were calculated using a multivariable linear regression model, with log10

(gene-length) as the independent predictor and RV gene-heritability estimates as the outcome

variable, adjusted for sex and the first 20 principal components of ancestry.
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Trait Estimate Standard error R2 P-value

HEIGHT 7.68 × 10-2 1.16 × 10-2 2.41 × 10-3 3.34 × 10-11

BMI 5.40 × 10-2 1.16 × 10-2 1.19 × 10-3 3.17 × 10-6

DBIL 4.72 × 10-2 1.16 × 10-2 9.11 × 10-4 4.62 × 10-5

WTH 4.55 × 10-2 1.16 × 10-2 8.47 × 10-4 8.58 × 10-5

DBP 4.20 × 10-2 1.16 × 10-2 7.21 × 10-4 2.91 × 10-4

TBIL 3.65 × 10-2 1.16 × 10-2 5.45 × 10-4 1.63 × 10-3

HBA1C 3.58 × 10-2 1.16 × 10-2 5.24 × 10-4 2.00 × 10-3

GGT 3.19 × 10-2 1.16 × 10-2 4.17 × 10-4 5.87 × 10-3

TRIG 3.10 × 10-2 1.16 × 10-2 3.92 × 10-4 7.54 × 10-3

PHOS 3.09 × 10-2 1.16 × 10-2 3.92 × 10-4 7.56 × 10-3

AST 2.97 × 10-2 1.16 × 10-2 3.61 × 10-4 1.04 × 10-2

SBP 2.65 × 10-2 1.16 × 10-2 2.87 × 10-4 2.23 × 10-2

Lpa 2.38 × 10-2 1.16 × 10-2 2.31 × 10-4 4.01 × 10-2

ALP 2.14 × 10-2 1.16 × 10-2 1.88 × 10-4 6.46 × 10-2

CHOL 1.82 × 10-2 1.16 × 10-2 1.36 × 10-4 1.16 × 10-1

LDL 1.68 × 10-2 1.16 × 10-2 1.15 × 10-4 1.48 × 10-1

GLU 1.45 × 10-2 1.16 × 10-2 8.65 × 10-5 2.10 × 10-1

TP 1.44 × 10-2 1.16 × 10-2 8.44 × 10-5 2.15 × 10-1

APOB 1.42 × 10-2 1.16 × 10-2 8.29 × 10-5 2.19 × 10-1

CYSC 1.33 × 10-2 1.16 × 10-2 7.24 × 10-5 2.51 × 10-1

IGF1 1.19 × 10-2 1.16 × 10-2 5.84 × 10-5 3.03 × 10-1

CRP 1.08 × 10-2 1.16 × 10-2 4.75 × 10-5 3.52 × 10-1

HDL 9.66 × 10-3 1.16 × 10-2 3.82 × 10-5 4.04 × 10-1

CALC 8.28 × 10-3 1.16 × 10-2 2.80 × 10-5 4.75 × 10-1

ALB 7.65 × 10-3 1.16 × 10-2 2.39 × 10-5 5.09 × 10-1

VITD 6.48 × 10-3 1.16 × 10-2 1.72 × 10-5 5.76 × 10-1

TEST -6.41 × 10-3 1.16 × 10-2 1.68 × 10-5 5.80 × 10-1

ALT -4.93 × 10-3 1.16 × 10-2 9.94 × 10-6 6.70 × 10-1

UA -1.55 × 10-3 1.16 × 10-2 9.86 × 10-7 8.93 × 10-1

CREA 1.54 × 10-3 1.16 × 10-2 9.73 × 10-7 8.94 × 10-1

APOA1 9.02 × 10-4 1.16 × 10-2 3.33 × 10-7 9.38 × 10-1

UREA -3.36 × 10-4 1.16 × 10-2 4.62 × 10-8 9.77 × 10-1
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Supplementary Table 6: Rare coding variant heritability as a function of

evolutionary constraint. P-values were calculated using a multivariable linear regression

model, with gene evolutionary constraint (LOEUF score) as the independent predictor

and RV gene-heritability estimates as the outcome variable, adjusted for sex and the first

20 principal components of ancestry.

Supplementary Table 7: Heritability of height originating from RVs in selected gene 

clusters. LCL= lower confidence level, UCL=upper confidence level. 

Cluster

Number of 

genes

Number of 

variants RV heritability LCL UCL

Hemoglobin 10 159 0.000160 -0.000159 0.000479

Histone 77 2099 0.000415 -0.000675 0.00150

HOX 226 14735 0.00118 -0.001679 0.00404

Olfactory 366 18366 0.00315 -0.0000697 0.00637

Protocadherin 59 7034 -0.00124 -0.00317 0.000690
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LCL= lower confidence limit, UCL=upper confidence limit

Trait Estimate Standard error R2 P-value

HEIGHT -8.77 × 10-6 1.30 × 10-6 2.68 × 10-3 1.71 × 10-11

BMI -4.29 × 10-6 1.20 × 10-6 7.52 × 10-4 3.66 × 10-4

WTH -3.24 × 10-6 1.25 × 10-6 4.00 × 10-4 9.37 × 10-3

IGF1 -2.71 × 10-6 1.30 × 10-6 2.56 × 10-4 3.77 × 10-2

AST -3.48 × 10-6 1.73 × 10-6 2.40 × 10-4 4.40 × 10-2

TRIG -2.46 × 10-6 1.28 × 10-6 2.20 × 10-4 5.41 × 10-2

SBP -2.29 × 10-6 1.22 × 10-6 2.10 × 10-4 5.96 × 10-2

HBA1C -2.83 × 10-6 1.59 × 10-6 1.86 × 10-4 7.60 × 10-2

DBP -2.01 × 10-6 1.21 × 10-6 1.64 × 10-4 9.60 × 10-2

PHOS -1.98 × 10-6 1.26 × 10-6 1.46 × 10-4 1.16 × 10-1

CREA -1.61 × 10-6 1.26 × 10-6 9.75 × 10-5 2.00 × 10-1

HDL -1.78 × 10-6 1.40 × 10-6 9.54 × 10-5 2.04 × 10-1

GGT -1.92 × 10-6 1.52 × 10-6 9.47 × 10-5 2.06 × 10-1

ALP -4.53 × 10-6 3.80 × 10-6 8.42 × 10-5 2.33 × 10-1

APOB -1.87 × 10-6 1.99 × 10-6 5.28 × 10-5 3.45 × 10-1

CALC -9.30 × 10-7 1.23 × 10-6 3.39 × 10-5 4.49 × 10-1

DBIL -1.13 × 10-6 1.54 × 10-6 3.17 × 10-5 4.64 × 10-1

ALB -9.06 × 10-7 1.25 × 10-6 3.10 × 10-5 4.69 × 10-1

LDL -1.09 × 10-6 1.82 × 10-6 2.11 × 10-5 5.51 × 10-1

ALT 1.67 × 10-6 2.83 × 10-6 2.05 × 10-5 5.56 × 10-1

UA -1.10 × 10-6 1.95 × 10-6 1.88 × 10-5 5.73 × 10-1

GLU 5.13 × 10-7 1.22 × 10-6 1.05 × 10-5 6.74 × 10-1

TP -5.10 × 10-7 1.23 × 10-6 1.01 × 10-5 6.79 × 10-1

APOA1 -5.57 × 10-7 1.44 × 10-6 8.88 × 10-6 6.99 × 10-1

CYSC -5.08 × 10-7 1.41 × 10-6 7.66 × 10-6 7.19 × 10-1

CHOL -5.09 × 10-7 1.61 × 10-6 5.94 × 10-6 7.51 × 10-1

VITD -1.81 × 10-7 1.18 × 10-6 1.39 × 10-6 8.78 × 10-1

LPa -3.53 × 10-7 2.39 × 10-6 1.30 × 10-6 8.82 × 10-1

TBIL -1.60 × 10-7 1.70 × 10-6 5.24 × 10-7 9.25 × 10-1

UREA 1.07 × 10-7 1.22 × 10-6 4.58 × 10-7 9.30 × 10-1

CRP -2.04 × 10-8 1.29 × 10-6 1.49 × 10-8 9.87 × 10-1
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Full table available at https://doi.org/10.1038/s41467-024-45407-8 

 

Supplementary Data 2: Genes contributing significantly to the rare coding variant 

heritability estimates of complex traits.  

RARity was used to determine the heritability estimates for all genes with qualifying RVs 

<MAF 0.01. This table shows the significant genes passing the Bonferroni’s p-value 

significance threshold corrected for 18,214 genes (h2
RV-gene p-value < 2.75 ×10-6), where 

the h2
RV-gene p-values were derived using F-test. 152 genes had significant h2

RV-gene for one 

or more traits, representing 218 distinct gene-biomarker relationships. 
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Supplementary Data 3: Association between the genes contributing significantly to 

RV heritability and diseases based on DisGeNET platform.  

 

The genes with significant contributions to trait heritability, as identified through RARity, 

were examined for disease associations using the disgenet2r package from the DisGeNET 

platform. Among the 152 genes with significant h2
RV-gene, 115 genes are linked to multiple 

diseases, as presented in this table. The data is specifically filtered to include only 

literature-supported connections (GDA Score > = 0.3). 
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Supplementary Data 4: List of druggable and clinically actionable genes retrieved 

from Drug gene interaction database (DGIdb) 

 

RARIty was utilized to identify the genes contributing significantly towards trait 

heritability, and subsequently the DGIdb (v4.2.0) database was employed to categorize 

the genes as “clinically actionable” or part of the “druggable genome.” The table presents 

the genes that fall into either the clinically actionable or druggable categories. 
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Supplementary Data 5: Functional annotation of the genes contributing significantly 

to trait heritability, performed using g:Profiler.  

The g:ProfileR web tool for functional profiling, g:GOST, was used to test the enrichment 

of the genes with significant heritability (h2
RV-gene p-value < 2.75 ×10-6), against gene-sets 

in common databases. The significant heritability genes for each phenotype were treated 

as separate gene lists for independent query, and statistical tests were conducted within a 

domain scope of only annotated genes (Methods). This table shows a list of statistically 

significant enriched terms for each gene list, corresponding to the phenotypes, adjusted 

for multiple testing using g:SCS (set counts and sizes) p-value < 0.05. 
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APPENDIX B:  

SUPPLEMENTARY INFORMATION FOR STUDY 3 (CHAPTER 5) 
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Supplementary Table 1: Significant genes contributing to trait heritability 

  

Trait Chr Gene ĥ2
RV-liab-gene P-value 

Asthma 17 EIF4A1 8.750E-04 7.361E-08 

Atrial fibrillation and 

flutter 

4 MAD2L1 1.283E-03 6.316E-09 

Atrial fibrillation and 

flutter 

12 PEBP1 1.197E-03 2.442E-08 

Atrial fibrillation and 

flutter 

17 YPEL2 6.060E-04 1.356E-07 

Cataract 6 SAMD5 7.920E-04 2.689E-08 

Cholelithiasis and 

cholecystitis 

1 XCL2 1.450E-03 1.403E-10 

Cholelithiasis and 

cholecystitis 

12 FRS2 2.108E-03 5.223E-10 

Cholelithiasis and 

cholecystitis 

17 INPP5K 2.492E-03 6.139E-10 

Cholelithiasis and 

cholecystitis 

3 SLC38A3 1.645E-03 4.403E-09 

Cholelithiasis and 

cholecystitis 

4 LETM1 2.403E-03 1.409E-08 

Cholelithiasis and 

cholecystitis 

14 KTN1 2.730E-03 6.006E-08 

Cholelithiasis and 

cholecystitis 

15 EDC3 1.553E-03 7.797E-08 

Cholelithiasis and 

cholecystitis 

19 JAK3 2.245E-03 8.899E-08 

Cholelithiasis and 

cholecystitis 

2 UGT1A5 2.141E-03 1.016E-07 

Cholelithiasis and 

cholecystitis 

1 C1QB 1.440E-03 1.123E-07 

Cholelithiasis and 

cholecystitis 

1 NVL 2.070E-03 1.316E-07 

Coronary 

atherosclerosis 

19 LOC101927572 9.190E-04 3.949E-08 

Coronary 

atherosclerosis 

8 NKX3-1 1.280E-03 1.470E-07 

Gastrointestinal 

hemorrhage 

9 IFNA7 1.331E-03 5.032E-08 

Gastrointestinal 

hemorrhage 

6 TMEM151B 1.550E-03 1.266E-07 

Hemorrhoids 6 ME1 3.799E-03 2.288E-18 

Hemorrhoids 3 ZNF619 2.376E-03 2.911E-10 

Hemorrhoids 7 RUNDC3B 1.886E-03 3.360E-09 
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Hemorrhoids 3 MB21D2 1.933E-03 5.469E-09 

Hemorrhoids 16 TP53TG3D 1.226E-03 8.067E-09 

Hemorrhoids 2 KIF5C 2.057E-03 8.719E-09 

Hemorrhoids 8 KCNV1 1.330E-03 1.047E-08 

Hemorrhoids 10 PALD1 2.688E-03 1.083E-08 

Hemorrhoids 2 TTL 1.427E-03 1.163E-08 

Hemorrhoids 6 DHX16 2.353E-03 1.970E-08 

Hemorrhoids 16 ZC3H18 2.811E-03 3.103E-08 

Hemorrhoids 1 CDC42 9.330E-04 5.106E-08 

Hemorrhoids 17 TVP23C-

CDRT4 

1.320E-03 8.116E-08 

Hemorrhoids 6 ZNF292 3.322E-03 1.138E-07 

Hypercholesterolemia 19 LDLR 2.058E-03 7.270E-13 

Hypothyroidism 14 TSHR 3.906E-03 2.355E-17 

Hypothyroidism 2 COL5A2 3.311E-03 8.581E-11 

Hypothyroidism 19 ZNF583 1.809E-03 2.706E-09 

Hypothyroidism 19 ZNF490 1.784E-03 9.011E-09 

Hypothyroidism 8 TATDN1 1.887E-03 9.790E-09 

Hypothyroidism 17 TMEM256-

PLSCR3 

6.810E-04 1.387E-08 

Hypothyroidism 5 REEP5 1.249E-03 1.355E-07 

Obesity 2 PPP1R21 2.213E-03 1.578E-08 

Obesity 18 SKA1 1.257E-03 2.817E-08 

Obesity 12 SCARB1 1.822E-03 1.096E-07 

Pneumonia 17 SRSF2 1.969E-03 4.769E-16 

Pneumonia 12 OR10A7 1.839E-03 9.027E-11 

Pneumonia 13 CPB2 1.786E-03 1.350E-09 

Pneumonia 5 PANK3 1.462E-03 1.590E-09 

Pneumonia 4 BST1 1.658E-03 3.781E-08 

Pneumonia 7 RBAK-

RBAKDN 

1.055E-03 8.854E-08 

Pneumonia 8 ERLIN2 1.094E-03 1.085E-07 

Pneumonia 15 IDH2 1.637E-03 1.104E-07 

Renal failure 15 IDH2 1.848E-03 4.490E-10 

Renal failure 14 SRSF5 1.319E-03 8.760E-09 

Renal failure 17 SRSF2 1.011E-03 1.533E-08 

Renal failure 1 LIX1L 1.192E-03 4.428E-08 

Renal failure 12 ABCC9 1.912E-03 4.594E-08 

Type 2 diabetes 7 GCK 2.641E-03 5.676E-20 
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Type 2 diabetes 5 AGXT2 2.107E-03 1.008E-10 

Type 2 diabetes 3 HRH1 1.803E-03 7.054E-10 

Type 2 diabetes 11 FOLH1B 1.662E-03 3.107E-09 

Type 2 diabetes 17 SCO1 1.559E-03 9.983E-09 

Type 2 diabetes 2 PDK1 1.724E-03 1.119E-08 

Type 2 diabetes 11 MYRF 2.050E-03 1.318E-08 

Type 2 diabetes 2 DNMT3A 1.885E-03 8.198E-08 

Urinary tract 

infection 

4 CD38 2.173E-03 1.452E-10 

Urinary tract 

infection 

9 PDCL 1.567E-03 1.227E-09 

Urinary tract 

infection 

7 VPS41 2.462E-03 1.699E-09 

Urinary tract 

infection 

8 STMN2 1.195E-03 3.381E-09 

Urinary tract 

infection 

1 STXBP3 1.913E-03 9.840E-09 

Urinary tract 

infection 

19 ZNF587B 1.953E-03 1.574E-08 

Urinary tract 

infection 

12 C12orf43 1.701E-03 2.990E-08 

Urinary tract 

infection 

22 CBX6 1.624E-03 5.274E-08 

Urinary tract 

infection 

19 ANO8 2.663E-03 1.028E-07 

Urinary tract 

infection 

1 AADACL4 1.951E-03 1.167E-07 

Urinary tract 

infection 

14 TEX22 1.302E-03 1.380E-07 
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Supplementary Table 2- Association between TSHR and TSHB 

 

Biomarker Variant/ Gene CMAC CMAF Estimate Standard error P-Value 
TSHB 14:80955786:G:C_C 319 0.008474 0.187 0.049 1.58 E-04 
TSHB 14:81139699:T:A_A 1 0.000027 -3.353 0.860 9.70E-05 
TSHB 14:81143695:G:A_A 15 0.000398 0.873 0.230 1.5 E-04 
TSHB TSHR gene burden 496 0.013176 0.246 0.039 4.63E-10 
N=18822 

 
 
 
 
 
 
 

 
Supplementary Figure 1: Putative Functional and epidemiological consequences of TSHR 

mutation. The results are obtained with a linear regression model, correcting for age, sex 

and 20 PCs. N Sciatica cases=2,309. N hypothyroidism cases=11,246. 


