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Lay Abstract

Early identification of patients at the highest risk of Alzheimer’s disease (AD) is cru-

cial for possible pharmaceutical intervention. Existing prediction models have limi-

tations, including inaccessible data and lack of interpretability. This research used

a machine learning approach to identify patients at the highest risk of Alzheimer’s

disease and found that certain clinical features, such as specific executive function-

related cognitive testing (i.e., task switching), combined with genetic predisposition,

brain imaging, and demographics, were important contributors to AD risk. The mod-

els were able to reliably predict patient diagnosis and prognosis and were designed to

be low-cost, non-invasive, clinically operable and easily accessible. The interpretable

models provided an intuitive explanation of the decision process, making it a valuable

tool for healthcare decision-making and planning.
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Abstract

Alzheimer’s disease (AD) is among the top 10 causes of global mortality, and de-

mentia imposes a yearly $1 trillion USD economic burden. Of particular importance,

women and minoritized groups are disproportionately affected by AD, with females

having higher risk of developing AD compared to male cohorts. Differentiating mild

cognitive impairment (MCIstable) from early stage Alzheimer’s disease (MCIAD) is

vital worldwide. Despite genetic markers, such as apo-lipoprotein-E (APOE), iden-

tification of patients before they develop early stages of MCIAD, a critical period for

possible pharmaceutical intervention, is not yet possible. Based on review of the lit-

erature three key limitations in existing AD-specific prediction models are apparent:

1) models developed by traditional statistics which overlook nonlinear relationships

and complex interactions between features, 2) machine learning models are based

on difficult to acquire, occasionally invasive, manually selected, and costly data, and

3) machine learning models often lack interpretability. Rapid, accurate, low-cost,

easily accessible, non-invasive, interpretable and early clinical evaluation of AD is

critical if an intervention is to have any hope at success. To support healthcare

decision-making and planning, and potentially reduce the burden of AD, this re-

search leverages the Alzheimer’s Disease Neuroimaging Initiative (ADNI1/GO/2/3)
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database and a mathematical modelling approach based on supervised machine learn-

ing to identify 1) predictive markers of AD, and 2) patients at the highest risk of AD.

Specifically, we implemented a supervised XGBoost classifier with diagnostic (Exp

1) and prognostic (Exp 2) objectives. In experiment 1 (n=441) classification of AD

(n=72) was performed in comparison to healthy controls (n= 369), while experiment

2 (n=738) involved classification of MCIstable (n = 444) compared to MCIAD(n =

294). In Experiment 1, machine learning tools identified three features (i.e., Every-

day Cognition Questionnaire (Study partner) - Total, Alzheimers Disease Assessment

Scale (13 items) and Delayed Total Recall) with ROC AUC scores consistently above

97%. Low performance on delayed recall alone appears to distinguish most AD pa-

tients. This finding is consistent with the pathophysiology of AD with individuals

having problems storing new information into long-term memory. In experiment 2,

the algorithm identified the major indicators of MCI-to-AD progression by integrat-

ing genetic, cognitive assessment, demographic and brain imaging to achieve ROC

AUC scores consistently above 87%. This speaks to the multi-faceted nature of MCI

progression and the utility of of comprehensive feature selection. These features are

important because they are non-invasive and easily collected. As an important focus

of this research, the interpretability of the ML models and their predictions were

investigated. The interpretable model for both experiments maintained performance

with their complex counterparts while improving their interpretability. The inter-

pretable model provides an intuitive explanation of the decision process which are

vital steps towards the clinical adoption of machine learning tools for AD evaluation.

The models can reliably predict patient diagnosis (Exp 1) and prognosis (Exp 2). In
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summary, our work extends beyond the identification of high-risk factors for devel-

oping AD. We identified accessible clinical features, together with clinically operable

decision routes, to reliably and rapidly predict patients at the highest risk of develop-

ing Alzheimer’s disease. We addressed the aforementioned limitations by providing

an intuitive explanation of the decision process among the high-risk noninvasive and

accessible clinical features that lead to the patient’s risk.
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Chapter 1

Introduction

Alzheimer’s disease (AD) is among the top 10 causes of global mortality, and dementia

imposes a yearly $1 trillion USD economic burden [1]. Nearly 80% of dementia cases

include adults living with AD [2]. Cognitive impairment manifests heterogeneously

across patients with AD [3], and the differences at the individual level are a product of

the various disease risk factors and progressive nature of the disease that consequently

compromises brain integrity and function [4]. Improving our understanding of risk

profiles and having the ability to predict patients at the highest risk of AD would

have significant impacts on relieving global disease burden [1]. Well-establisehd early

markers of AD exist, including genetic markers like apolipoprotein E (APOE) [5];

however, even with these early markers, we have yet to identify patients at the high-

est risk of developing AD [6]. Limitations in the capacity to conduct accurate risk

prediction are highlighted by three main aspects of existing risk prediction models:

1) models developed by traditional statistics which overlook nonlinear relationships

and complex interactions between features, 2) machine learning models are based on

difficult to acquire, occasionally invasive, manually selected, and costly data, and 3)
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machine learning models often lack interpretability. Taken together, we are lacking

accurate, feasible, understandable, and economical risk prediction models. The re-

search herein leverages the Alzheimer’s Disease Neuroimaging Initiative database and

a mathematical modelling approach based on supervised machine learning to identify

1) predictive markers of AD, and 2) patients at the highest risk of AD. Furthermore,

the thesis focuses on the interpretability of the machine learning models and their

predictions to improve the clinical uptake of AD-specific machine learning models.

The follow sections introduce the pathophysiology of AD, thesis-specific machine

learning overview and fundamentals of model development, interpretability, and lim-

itations.

1.1 Pathophysiology of Alzheimer’s disease

Half a million Canadians live with dementia and this number is expected to triple by

the year 2050 [7]. Alzheimer’s disease (AD) is the most prevalent type of dementia and

some individuals with mild cognitive impairment eventually progress to AD. Age is

the predominant risk factor for AD, and specifically adults over the age of 65 years are

at heightened risk of AD onset. Several adaptations accompany aging and include

(but are not limited to) changes in brain structure (i.e., build-up of beta amyloid

plaques, and cortical thinning) [8], inflammatory profile (i.e., “inflammaging”) [9],

epigenetic dysregulation [10] and vascular dysfunction [11, 12]. Neuropsychiatric

disorders like AD are complex, however, and several studies emphasize the importance

of epigenetics in understanding AD etiology [13–15]. Epigenetic modifications (e.g.,

DNA methylation) occur with normal aging and disease, and specific AD epigenetic

signatures [16] can impact memory and learning and ultimately affect cognition in

2
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AD [17].

Despite AD presenting as overt changes in cognitive abilities, AD risk is multi-

factorial in nature, and risk factors include demographics, lifestyle and environmental

factors, and genetic predisposition. Understanding risk factors in AD help with tar-

geted interventions and also provide insight in identifying biomarkers that relate to

risk of AD onset. One of the most widely established early biomarkers of AD is sign

of neurodegeneration [18–20], or loss of brain cortical tissue (measured in volume or

thickness) [21]. While normal aging presents with brain atrophy, AD presents with

abnormal level of and differential regional brain atrophy [22, 23], with atrophy in the

medial perirhinal cortex and entorhinal cortex seen in very early AD [24]. A recent

study assessing progression of brain structural changes with AD over decades and

how the trajectories differ from normal brain aging, found that the amygdala and

hippocampus were the most severely impacted areas in AD [25]. Prior to conducting

brain imaging tests, neuropsychological assessments of cognitive impairment (e.g.,

mini mental state examination (MMSE) [26] and the Montreal Cognitive Assessment

(MoCA) [27]) may help identify cognitive impairment in AD, but it remains unknown

whether changes in these cognitive scores and other biomarkers can be used as early

detection of AD.

Although age is a prevailing risk factor for AD, the host of AD risk factors should

be contextualized within ethnicity/race, level of education, and socioeconomic status.

“Premature aging” can occur in individuals from low socioeconomic classes, and ulti-

mately influencing higher risk of age-associated diseases[28] in these individuals. The

notion of “brain resilience” [29] was higher in adults with higher brain intracranial

volume, even if they had lower education levels [30]. Additionally, the way in which

3
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questions are asked in neuropsychological tests may influence AD assessment in indi-

viduals across different cultures [31]. Future work focusing on AD risk factors across

members from low socio-economic status, racialized and other minorities groups, will

help provide necessary insight on heterogeneity in disease risk profiles and potential

targeted therapeutics in an aging population that is becoming more diverse [32].

1.2 Overview of Supervised machine learning

Supervised machine learning models are empirically derived mathematical equations

f(X), relating outcome Y and input X, that provide accurate individualized predic-

tions yi. Finding the optimal f(X) goes beyond error minimization and requires the

understanding of fundamental concepts such as the bias-variance trade off, general-

izability, interpretability, feature selection, collinearity, and appropriate optimization

and evaluation, which are further discussed in the literature review. Machine learning-

based approaches can explore complex and nonlinear interactions among clinical fea-

tures and find predictive biomarkers unknown to domain experts. We briefly formalize

the supervised machine learning setup below.

Training data to the learner, denoted D, are provided as pairs of inputs (x1, y1) up

to (xn,yn), where x is the input, or feature vector (e.g., considering clinical data, x1i

can refer to patient i’s age in years, or blood biomarkers in pg/ml), and is a member

of d-dimensional feature space Rd, y its label, and B the label space (e.g., 0,1 for a

binary classification task detecting Normal [0] or disease [1]).

D = (x1, y1), . . . , (xn, yn) ⊆ Rd × B, i.i.d (1.2.1)

4
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The objective of supervised machine learning is to find a predicting function or

hypothesis h

h : Rd → B, s.t. h(xi ) ≈ yi ∀(xi, yi ) ∈ Dtrain;h(xi ) ≈ yi ∀(xi, yi ) /∈ Dtest (1.2.2)

To quantify a consistent model, we introduce a loss function, with the assumptions

that h is determined with respect to an unknown data generating distribution Z, and

true labelling function f.

LZ,f (h) = Px∼Z [h (x) 6= f(x)] (1.2.3)

Given that the DD and f are unknown, we strategically pick (x,y) from our em-

pirical distribution.

LS(h) = P(x,y)∼D[h (x) 6= y] (1.2.4)

Given a training sample, the classifier evaluates the error of each h ∈ H, where

H is our hypothesis space (set of all possible classifiers), and outputs a member of H

that minimizes the loss, with the hope that h minimizes the empirical training loss

with respect to our sample and the true data probability distribution as well, based

on the weak law of large numbers.

h = argminh∈H
1

|Dtrain|
∑

(x,y)∈Dtrain

`(x, y|h) (1.2.5)

5
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εtest =
1

|Dtest|
∑

(x,y)∈Dtest

`(x, y|h). (1.2.6)

Dtest → +∞ (1.2.7)

εtest → ε (1.2.8)

1.2.1 Traditional Statistics vs Machine Learning

The relative efficacy of various machine learning and statistical approaches for disease

diagnosis/prognosis remains an important discourse. A comparison of traditional sta-

tistical vs machine learning is provided, including model and algorithmic approaches,

feature selection, performance metrics, interpretability, limitations and data require-

ments (Table 1.1). To summarize, traditional statistics focus on inference, fitting

data-specific probability models through analytical solutions (e.g., linear regression),

rely solely on domain expertise for selection of salient features, with metrics focused

on accuracy; yet findings from traditional statistics approaches are easily interpreted,

and perform well with smaller sample sizes under verified test assumptions. Tradi-

tional statistics also provide options to quantify the effect of interest and confidence

in that effect, independent of noise or chance. Traditional statistics developed to

capture linear relationships, can be adapted to handle nonlinear relationships but are

limited in their capacity to handle complex non-linear relationships between features,

especially many features and high dimensional data. The inter-predictor nonlinear

relationships and complex interactions are consistent factors to consider with high

6
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dimensional data and traditional statistics approaches do not have capacity to ade-

quately account for these factors.

In contrast, machine learning focuses on prediction, uses a general learning proce-

dure that relies on the empirical capacity of the model and optimization techniques to

improve an objective function, utilizes features extraction/selection tools to acquire

relevant features, independent of domain expertise, is more difficult to interpret, and

relies on larger data for algorithm development and optimization. Moreover, machine

learning algorithms are specifically designed to handle non-linear relationships among

many features and capture complex interactions in high-dimensional data even when

traditional statistics models fail. While methods at times fall into a machine learn-

ing or statistical domain, more often they overlap (e.g., bootstrapping). The table

below provides a comparison between traditional statistics and machine learning ap-

proaches, with the recognition that there is a significant overlap between the two

fields.
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Table 1.1: Traditional statistics vs Machine learning

Approach Traditional statistics Machine learning

Focus Inference Prediction

Models Data-specific Empirical capacity

Algorithms Analytical solutions Numerical optimization

Relevant Features Domain expertise Feature selection

Metrics Accuracy Varied

Interpretation Easy Difficult

Data Smaller Larger

Non-linear relationships Limited Yes

High dimensional data Limited Yes

Complex interactions Limited Yes

While modifying risk factors may lower dementia risk or delay onset [33], many

AD-specific prediction models are based on more traditional statistical approaches [34–

36] which have presented with limitations when interpreting patient specific risk fac-

tors as they can overlook complex interactions and nonlinear relationships among

clinical features [37] [38–40, 33]. Advances in the performance of computational di-

agnostic models have been explored via the use of increasingly advanced machine

learning methods. Machine learning tools can efficiently combine multiple sources of

data, explore nonlinear relationships and complex interactions between features, and

surpass traditional statistical approaches for diagnostic and prognostic prediction.
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1.2.2 Features and their usage

Machine learning demands many observations, but not features (i.e., independent

variables, covariates, predictors). Traditional statistics relies heavily on domain ex-

perts to select relevant features, machine learning does not. Feature selection reduces

dimensionality by selecting relevant and removing irrelevant features, noise, redun-

dancy, and collinearity. There are a plethora of feature selection techniques. Herein,

we utilize the average feature importance according to our model, based on each fea-

ture’s split-induced gain. The gain score estimates the contribution of each feature to

the model’s performance. The higher the gain score, the more important the feature

is in predicting the target variable. Compared to other feature selection methods,

the gain score considers both the presence of the feature in the model and its split

quality. This makes it a more robust measure of feature importance than other met-

rics that just evaluate model feature frequency. However, most AD-specific machine

learning models are based on manually selected, difficult to acquire, costly [41–44],,

and invasive measures (e.g., cerebrospinal fluid analysis of β-amyloid (Aβ42) [34], Aβ-

positron emission tomography [35, 36] which limits the availability of these biomarkers

and their usage.

1.2.3 Interpretable machine learning

Despite the promise for machine learning to aide in expediting disease prognosis/diagnosis,

clinical and translational benefits of machine learning are currently restricted by com-

plex models that involve high processing costs, data/population heterogeneity, and

generally lack interpretability which limits their clinical adoption. The complexity of

9

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/msbe


M.A.Sc. Thesis – M. Kadem; McMaster University – Biomedical Engineering

high performing machine learning algorithm hinders the formation of clinically intu-

itive explanations of the decision process, thus impeding clinical adoption. Although

explainability and interpretability are used interchangeably with machine learning

research domain, herein, we differentiate the two terms. Specifically, in this thesis,

explainability will refer to providing accessible explanations to end-users for complex

models, whereas interpretable models will be used to indicate models that are under-

standable by design (e.g., how model processes information; decision trees, ML-based

linear models). Together, these terms serve as crucial criteria for clinical adoption

and are fundamental to data security and fairness in machine learning.

The motivation for interpretable machine learning can be illustrated with the fol-

lowing example: A patient may be diagnosed with cognitive impairment. The memory

clinic may have a prognostic machine learning algorithm that helps identify patients

at the highest risk for developing Alzhemier’s disease dementia, based on the patient’s

clinical state (e.g., cognitive testing, genetics, imaging, demographics). The patient

may then inquire about why and how the algorithm made such a prediction. When

using interpretable machine learning, a prediction is generated, but an understanding

of the machine learning and decision process also accompanies the prediction.

While it’s difficult to understand the inner mechanics of complex machine learning

models, there is a need to discover relationships between input and output data; how-

ever, complex machine learning applications to clinical problems remain challenging

due to their lack of interpretability. There exists room for improvement in explaining

the decision process in machine learning algorithms while maintaining performance

of complex models. For example, the use of simpler models with fewer features can

provide better interpretability (e.g., regularization, simple architectures). As alluded
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to above, feature importance can help understand the important features the model

is using to make predictions. Some algorithms like decision trees are easily visualized,

and decision trees can help identify important features but also their absolute thresh-

olds and decision path that led to the final prediction. Further, gradient boosted

algorithms use recursive decision trees, and offer great interpretability relative to

black box approaches (e.g., neural networks). Using simulated data, Lundberg et al.,

(2020) varied the nonlinearity the data, and showed that an increase in nonlinearity

is associated with a decrease in the accuracy and interpretability of machine learning

based logistic regression models due to a mismatch between the model and data, re-

sulting in an increase in % of weight attributed to irrelevant features, thus reducing

interpretability overall [45]. To this end, non-linear models like the extreme gradient

boosted ensembles can perform better while also remaining interpretable compared

to machine learning models based on logistic regression, as the former places more

emphasis on the input features and is perhaps a better representation of the data-

generation process.

Finally, the clinical adoption and end-user trust of machine learning models re-

quires intuitive explanation of the decision processes [46]; yet, complex models are

abundant and interpretable risk prediction models for disease diagnosis and progno-

sis are limited [37, 47, 42, 48, 45], with a dire need for interpretable risk prediction

machine learning models in AD [37, 47, 42]. Thus, rapid, accurate, low-cost, easily

accessible, non-invasive, interpretable and early clinical evaluation of AD is critical

at this time.
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1.3 Gap Analysis Summary

Based on our search strategy (Fig. 2.1), we found three main gaps in current AD-

specific risk prediction models: 1) models are based on traditional statistics model

that miss nonlinear relationships and complex interactions between features, 2) while

machine learning has been used to predict patients who may develop AD, the ma-

chine learning-based predictive models have included costly, manually selected, and

invasive measures (e.g., cerebrospinal fluid analysis of β-amyloid (Aβ42) [34], Aβ-

positron emission tomography [35, 36] 3)identifying high-risk indicators is useful for

risk assessment, but determining threshold cut-off values for these factors are cur-

rently unknown which would offer clinical utility by defining informed decision routes

(i.e., threshold values to distinguish high-risk from low-risk people), and would further

aid in interpretability with understandable decision process and model architecture.

Further, high-performing machine learning algorithms are complicated, making clin-

ical adoption difficult. Improving machine learning interpretability while maintain-

ing performance of complex models is challenging. Clinical adoption and end-user

trust of machine learning models demand understandable explanation of decision

processes [46]. Interpretable risk prediction models for AD diagnosis must therefore

balance performance and interpretability. Taken together, we are lacking accurate,

feasible, understandable, and economical risk prediction models that rely on easily

accessible, non-invasive, and low-cost features.
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1.4 Objectives and Thesis Question

To support healthcare decision-making and planning, answer the question: “Who is

at the highest risk of Alzeheimer’s Disease Dementia?” and potentially reduce the

burden of AD, this thesis leverages the Alzheimer’s Disease Neuroimaging Initia-

tive database and a mathematical modelling approach based on supervised machine

learning to go beyond identifying 1) high risk factors of AD and 2) patients at the

highest risk of AD. The approaches herein provide an intuitive explanation of the key

non-invasive features and decision processes which are vital steps towards the clinical

adoption of machine learning tools for AD evaluation.

1.5 Evaluation overview

Data for model development included non-invasive biomarkers, imaging, genetic, cog-

nitive testing, lifestyle and health history tabular data . Experiment 1 (n=441)

classified controls (n= 369) vs AD (n = 72), while Experiment 2 (n=66) classified

MCI stable (n = 41) vs MCI AD (n = 25) using an ADitional independent test set

(n=43) with MCI stable (n = 26) vs MCI AD (n = 17). Each experiment had two

models (complex and interpretable). For both experiments, we ranked the top 10 fea-

tures according to their average feature importance accumulated from the XGBoost

model, using random splits in a ratio of 7:3, over 100 repetitions with varied number

seeds (0-99). The complex model performances, for both experiments, were evaluated

with fivefold stratified cross-validation for 100 iterations. The interpretable models

were created using a single 7:3 split and evaluated on the validation set (Exp 1; ADNI
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3) and an independent test set (Exp 2; ADNI 2).

1.6 Thesis organization

The thesis herein is organized as follows:

Chapter 2 presents the pathophysiology of AD, followed by an overview of su-

pervised machine learning, with a focus on methods used in the thesis. Finally, we

highlight the fundamentals for model development, interpretability and current limi-

tations in machine learning specific to the thesis.

Chapter 3 describe the data sources.

Chapter 4 presents the methodology for the machine learning process, application,

and evaluation.

Chapter 5 is the results section.

Chapter 6 discusses and interprets the results.

Chapter 7 concludes the thesis and suggests next steps.
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Chapter 2

Literature Review

The literature review will provide a brief overview of machine learning concepts fol-

lowed by an overview of Alzheimer’s disease dementia and its pathophysiology. Ma-

chine learning concepts are discussed that readers need to be familiar with to under-

stand and appreciate the machine learning tools within the thesis. Particularly fo-

cused on machine learning in risk prediction, methods to mitigate overfitting, pitfalls,

interpretability, generalizability and recommendations for data acquisition methods

that improve model efficacy and reliability. The first three main parts of the litera-

ture review focus on 1) familiarizing the reader with key concepts in machine learning

approaches, 2) highlighting common pitfalls and potential solutions when developing

or evaluating these models, and 3) arguing for the need to develop more interpretable

models.
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2.1 Search strategy and data extraction

To assess the landscape of existing AD prediction models, we searched PubMed for

”(Alzheimer’s Disease Dementia) AND (prediction OR predict) AND (artificial intel-

ligence OR machine learning) published between Jan. 1, 2012 and Nov.1, 2022. We

evaluated only peer-reviewed English papers.

The considered papers were evaluated by the types of clinical features that were

used, the approach (i.e., traditional statistics, ML, DL), and whether the models were

interpretable. AI-assisted pipelines find relevant and filter irrelevant literature, by

actively learning from the reviewers’ judgements and reordering papers intelligently

[49]. This approach cuts review time by 95% (Fig. 2.2). The machine learning model

for active learning utilized Term Frequency-Inverse Document Frequency (TF-IDF)

for feature extraction (i.e., determines word relevance based on word frequency) and

a random forest classifier.

2.2 Pathophysiology of Alzheimer’s Disease

Alzheimer’s disease (AD) is the most prevalent type of dementia, with nearly half a

million Canadians living with AD and this number is expected to nearly triple by the

year 2050 [7]. Some individuals with mild cognitive impairment will progress to AD,

and neuropsychological assessments of cognitive impairment, such as the mini mental

state examination (MMSE) [26] and the Montreal Cognitive Assessment (MoCA) [27],

have been proposed as a means to provide cut-off thresholds for identifying who is

at risk of developing AD in adults with baseline mild cognitive impairment. From

a clinical standpoint, use of MMSE on its own may be insensitive and insufficient
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Figure 2.1: PRISMA

Figure 2.2: ASReview recall progress
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at detecting subtle cognitive changes in the adults with mild cognitive impairment;

however, it may be an informative means to track cognitive changes over time when

combining MMSE results with other comprehensive cognitive assessments [50]. What

remains unknown is whether changes in MMSE scores over time (rather than iso-

lated baseline MMSE scores) can be combined with other cognitive metrics and/or

biomarkers to improve early detection of AD.

Despite AD presenting as overt changes in cognitive abilities, it is important to

recognize that AD risk is multi-factorial in nature, spanning different domains pri-

marily including demographics, lifestyle and environmental factors, and genetic pre-

disposition. More typical features of AD include cognitive impairment and changes

in brain structure and function. AD presents in older age and specifically over the

age of 65, with age being the most important risk factor for AD onset. Anatomical

hallmarks of AD include β -amyloid plaques and tau protein aggregates, which accu-

mulate with age [8]. Other major age-associated processes that are implicated in AD

include inflammation, and epigenetic dysregulation [10]. Vascular dysfunction plays

a significant role in AD progression, and extensive narratives on the importance of

putative roles played by the vascular system in AD pathology are found in excellent

reviews [11, 12].

Inflammation alongside aging has been coined as “inflammaging” and refers to low-

grade systemic inflammation (without overt infection) [9], and associated with cortical

thinning [51]. A recent analysis conducted on Swedish BioFINDER (Biomarkers

For Identifying Neurodegenerative Disorders Early and Reliably) study showed that

inflammatory profile changes in the cerebrospinal fluid correlate with amyloid and tau

proteins, neurodegeneration and cognition in adults with AD [52]. A growing research
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area is use of anti-inflammatory interventions to target inflammatory biomarkers in

efforts to mitigate negative impacts of heightened inflammation and the inflammatory

profile within AD [10].

Two main variants of AD exist, which include a familial (i.e., genetic) early onset

phenotype which include mutations in the amyloid precursor protein production.

The second phenotype is the most common form of AD which is a sporadic late-

onset variant (explaining over 95% of AD cases) where the apolipoprotein epsilon

4 gene (APOE4) gene seems to be the present as the most established genetic risk

factor [53]. Recent genome-wide association studies (GWAS) have shown over 20

non-APOE-related loci with significant association in risk of AD onset [54, 55], which

have been involved in the metabolic pathways (e.g., cholesterol and amyloid precursor

protein), tau protein dysfunction, and protein trafficking. However, neuropsychiatric

disorders like AD are complex, and several studies have implicated the importance

of epigenetics in understanding AD etiology [13–15]. Epigenetic modifications occur

with normal aging as well as in disease conditions and include histone and DNA

modification (i.e., methylation). Epigenome-wide analysis studies have shown that

AD has specific epigenetic signatures [16], which impact memory consolidation and

learning processes and can lead to cognitive decline and AD [17]. Development of

epigenetic drugs for AD prevention is an important advancement as these drugs could

simultaneously regulate expression of several genes responsible for neuronal integrity;

however further research is required to ensure gene expression does not lead to other

harmful effects [10].

Although age imparts significant impact on AD development, it is imperative to
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contextualize the umbrella of AD risk factors within ethnicity/race, level of educa-

tion, and socioeconomic status. Health disparities across minoritized and individuals

from low socioeconomic classes, intersections between biological, socioeconomic and

environmental factors present as “premature aging” and ultimately higher risk of

age-associated diseases[28]. Analysis on the C-path online data repository deter-

mined that ethnicity may differentially affect how and when AD manifests across

ethnicities, including how cognition changes with time, existence of co-morbidities,

APOE4 gene status, and when AD presents itself over one’s life course. Early onset

AD is more common in individuals from African American, Alaskan, and Hawaiian

ethnicities compared to Whites [56], and African American’s have higher prevalence of

APOE4 allele than other ethnicities [57]. Moreover, ethnoracial factors are important

to consider in the context of biological factors. For example, a smaller change in cere-

brospinal fluid tau protein markers and similar changes in white matter hyperintensi-

ties are associated with greater cognitive changes in African Americans (compared to

Whites), which suggest that threshold cutoffs for these established biomarkers could

lead to underdiagnosis of AD in African Americans [58]. Neuropsychological tests

used to characterize cognitive function in AD and other dementia may be influenced

by culture, including how questions are asked and in what language, and familiar-

ity with test content [31]. The idea that higher education contributes to “cognitive

reserve” is a working explanation for why higher education relates to delayed AD

onset [59]. Higher education has been operationalized as “years of education”, which

is associated with lower AD diagnosis as shown by a Mendelian randomization study

highlighting that genetic predisposition towards pursuing more years of education is
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associated with lower odds of AD [60]. However, educational attainment (as mea-

sured by years of education) was not associated with higher memory performance in

Black patients with AD, but it did relate to improved memory performance in White

patients with AD[61]. Taken together, the roles played by these factors in influencing

AD outcome are important to understand against the backdrop of race and ethnic-

ity; unfortunately, minoritized groups remain under-represented in research studies.

Future work focusing on intersections between AD risk factors, and how they present

in minoritized groups and members of low socioeconomic classes, will inform how

we consider heterogenous risk profiles [32], and particularly as our aging population

becomes more ethnically diverse.

Disease-modifying therapies are emerging as well as identifying biomarkers that

can identify early signs of AD. Neurodegeneration is defined as the loss of brain corti-

cal tissue (measured in volume or thickness), and is one of the early biomarkers used

to identify early AD [21]. Normal aging is associated with brain atrophy; however,

regional cortical atrophy appears to manifest differently between individuals with and

without AD [22, 23]. With AD, there appears to be greater ventricular enlargement,

sulcal widening, cortical thinning and hippocampal widening [62]. While hippocampal

atrophy has been established as a hallmark of AD-related neurodegeneration [18–20],

early stages of AD are associated with parahippocampal gyrus atrophy [63]. The

parahippocampal gyrus is made up of the entorhinal cortex, perirhinal cortex and

parahippocampal cortex in the medial temporal lobe. While the parahippocampal

gyrus volume was not shown to be different between normal controls and adults with

early AD, the medial perirhinal cortex and entorhinal cortex are atrophied in very

early AD [24]. Negash et al. highlighted that intracranial volume and education
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were associated with “brain resilience” [30], described as the ability to withstand

pathological changes to the brain without exhibiting overt clinical signs of the dis-

ease [29]. Moreover, even the adults with low education exhibited high resilience

if they also had higher intracranial volume, indicating that intracranial volume is

associated with brain resilience even with lower education [30]. A recent study by

Planche et al. incorporated multiple large-scale MRI databases and whole-brain seg-

mentation using deep neural networks to describe the first chronological progression

of brain structural changes with AD over decades and how the trajectories differ from

normal brain aging [25]. In the study by Planche et al., brain structural changes

developed in hippocampus and amygdala, medial temporal gyrus, entorhinal cortex

and parahippocampal cortex (as well as other temporal regions), with the amygdala

and hippocampus (followed by entorhinal and parahippocampal cortices) as the most

severely impacted areas in AD [25].

2.3 Overview of Supervised Machine Learning

Application of machine learning to the biomedical field involves more than just error

minimization but requires understanding of key concepts from collinearity to appro-

priate evaluation. Herein, we introduce essential principles in machine learning to

those interested in tackling research challenges in the biomedical domain. We partic-

ularly focus on key concepts and pitfalls that are important to consider when devel-

oping models that have practical implications, with an emphasis on clinical outcomes.

For readers interested in the statistical framework underlying these approaches, we

give a brief overview of the mathematical concepts related to methods to prevent over-

fitting. We discuss approaches to smaller datasets, and the movement from classical
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statistics to interpretable machine learning, and ways to reduce bias from inherent

heterogeneity originating from patients and data acquisition methods. We recommend

pre-processing and evaluation pipelines including open-source software and tools to

expedite and simplify adoption of machine learning. Broad integration of machine

learning in biomedical engineering will allow for faster modelling and improved ex-

perimental and simulated data quality and accuracy in research challenges related to

the biomedical field.

Until recently, predictive capabilities were limited by the operator, as the pro-

grammer would have to input data and then design a rule-based program in order

to produce a useful output. This rule-based program simulates human intellect in

the same way a human domain expert might approach a task or detect patterns in

their data (e.g., an electrocardiogram signal, ECG). Instead of being explicitly pro-

grammed, machine learning discovers patterns from data and solves challenges that

are often beyond human abilities. Machine learning outputs a program that can

replace the traditional programmer and generalize to new data.

Machine learning will continue to expedite research initiatives as computing power

and digital data continue to grow. Traditional statistical approaches may be insuf-

ficient when applied to large and high dimensional data of [64, 65, 33]. By nature,

humans have biases with regards to visualizing or understanding data, and this may

lead to imposing or missing patterns in data [66]. In contrast, machine learning has

less inherent operator bias and has the capacity to identify complex and nonlinear

interactions between dependent and independent variables [65]. These approaches

can generate new ways to characterize disease states and improve prognostication.

Further, machine learning algorithms can be deconstructed into representation,
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optimization and evaluation components. Representation can be numerical (e.g., sup-

port vector machines, neural networks), symbolic (e.g., decision trees), instance-based

(e.g., Nearest-neighbor), or probabilistic (e.g., Näıve Bayes). There also different opti-

mization algorithms with stochastic gradient descent and gradient boosting as a com-

mon examples. There are multiple ways to assess or evaluate machine learning models

depending on whether the output variable is continuous (e.g., mean squared error) or

discrete (e.g., log loss, see performance metrics section below for more details). We

briefly introduce thesis-specific machine learning concepts including decision trees,

boosting, gradient boosting, and ensembles.

2.3.1 Decision trees

Decision trees are hierarchically organized non-parametric binary algorithms that do

not make any assumptions about the underlying distribution of the data. The deci-

sion tree model infers the class labels from the examples using a series of questions.

Algorithmically, it selects the best feature based on impurity based-mathematical

principles that define a good split (e.g., Gini impurity, information gain, entropy).

Thereafter, the data are split based on the best features value, and the algorithm

recursively constructs subtrees for each branch using the remaining features. Infor-

mation gain is the ‘informativeness’ of a split, more informative splits come first, and

is inversely related to entropy. Gini impurity is a criterion to minimize the probability

of misclassification, which means that the node will be more homogeneous.

Bias and variance are critical factors to consider when evaluating decision tree per-

formance. High bias in decision trees can lead to oversimplification and underfitting,

often caused by a shallow tree depth. On the other hand, high variance can result
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in overfitting, which may occur when the tree is too deep and captures noise in the

data. Balancing the trade-off between these factors, such as adjusting the depth of

the tree, is essential for interpretability and improved generalization on unseen data.

We can adjust hyperparameters that control the complexity and growth of the tree

building process. We can avoid over fitting by reducing depth, not splitting using

a feature if impurity does not decrease or only split based on a threshold (e.g., the

minimum number of samples in a leaf node). In the subsequent sections, we will

introduce the concepts of boosting and gradient boosting, culminating with a discus-

sion of XGBoost. These techniques aim to maintain the relatively low bias associated

with shallow decision trees while reducing variance, ultimately resulting in a more

robust and accurate model.
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Input: Data D, set of features F

Output: Decision tree T

Function DecisionTree(D, F )

if all instances in D belong to the same class c then

return a leaf node with class c;

if F is empty then

return a leaf node with the majority class in D;

Choose the best feature f to split the data D;

Create a decision node for feature f ;

Partition the data D into subsets D0 and D1 based on the values of f ;

Tleft = DecisionTree(D0, F − {f});

Tright = DecisionTree(D1, F − {f});

Add Tleft and Tright as left and right children of the decision node;

return decision tree T ;

Algorithm 1: Decision Tree Algorithm

2.3.2 Bootstrap

Bootstrapping is random sampling with replacement used in ensemble learning. The

approach is used to estimate population parameters using a small sample size by

averaging over mean and variance of many random sampled datasets.
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Input: Data D, number of bootstrap samples B

Output: Set of B bootstrap samples D∗

Function Bootstrap(D, B)

for i = 1 to B do

D∗i ← a random sample of size n with replacement from D;

return set of B bootstrap samples D∗ = {D∗1, D∗2, . . . , D∗B};
Algorithm 2: Bootstrapping Algorithm

2.3.3 Boosting

Boosting improves weak learners, often decision trees, by combining their outputs to

create a more robust model. Each weak learner (i.e., decision stump) corrects the

mistakes of the preceding one in the boosting process.

Input: Data D, set of weak learners H, number of iterations T

Output: Strong learner F

Function Boosting(D, H, T )

Initialize weights wi = 1/n for i = 1, 2, . . . , n;

for t = 1 to T do

Fit weak learner ht ∈ H to data D using weights w;

Compute error εt =
∑n

i=1wiI(yi 6= ht(xi));

Compute αt = 1
2

ln(1−εt
εt

);

Update weights wi ← wi exp(−αtyiht(xi)) for i = 1, 2, . . . , n;

Normalize weights wi ← wi/
∑n

i=1wi for i = 1, 2, . . . , n;

Define strong learner F (x) = sign(
∑T

t=1 αtht(x));

return strong learner F ;

Algorithm 3: Boosting Algorithm
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Input: Data matrix X, output vector y, number of bootstrap samples B

for b← 1 to B do

sample indices ← randomly sample n rows with replacement from X

Xb ← X[sample indices]

yb ← y[sample indices]

fit model fb(Xb, yb)

favg ← 1
B

∑B
b=1 fb
Algorithm 4: Bootstrapping using matrix algebra

2.3.4 Gradient Boosting

Gradient boosting is a boosting algorithm that minimizes a loss function, and main-

tains low bias and reduces variance by adding weak learners sequentially, often de-

cision stumps, to the existing strong model by optimizing the pseudo-residuals (i.e.,

negative gradients). A common loss function for classification tasks is the logistic

loss. Gradient boosting is a generalization of gradient descent, adapted for functional

space, whereas standard gradient descent operates in parameter space. While both

gradient boosting and gradient descent minimize a loss function, in contrast with

gradient descent which is used for optimizing parameters for a single model with

gradients computed with respect to the model’s paramters, gradient boosting is an

ensemble method where the gradients are computed with respect to the predictions

made by the model.
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Input: Data D, loss function L, set of base models M , number of iterations

T

Output: Boosted model F

Function GradientBoosting(D, L, M , T )

Initialize predictions f0(x) = 0 for all x ∈ D;

for t = 1 to T do

Compute the negative gradient δt(xi) = −∂L(yi,ft−1(xi))
∂ft−1(xi)

for all

i = 1, 2, . . . , n;

Fit base model mt ∈M to the data (xi, δt(xi)) for i = 1, 2, . . . , n;

Choose step size γt via line search or fixed value;

Update predictions ft(x)← ft−1(x) + γtmt(x) for all x ∈ D;

Define boosted model F (x) = fT (x);

return boosted model F ;

Algorithm 5: Gradient Boosting Algorithm
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Input: Data matrix X, output vector y, loss function L, set of base models

M , number of iterations T

Output: Boosted model F

Function GradientBoosting(D, L, M , T )

Initialize predictions f0(x) = 0 for all x in X

for t← 1 to T do

Compute negative gradient δt = −∂L(y,ft(X))
∂ft(X)

Fit base model mt to (X, δt)

Choose step size γt

Update predictions ft+1(x) = ft(x) + γt ∗mt(X) ;

Define boosted model F (X) = fT (X)

return boosted model F ;

Algorithm 6: Gradient boosting using matrix algebra

2.3.5 Ensemble learning

To reduce overfitting and improve model generalization, different machine learning

models can be amalgamated. This can be done by adding models sequentially (i.e.,

boosting, e.g., XGBoost) or by bagging. Bagging involves training models in paral-

lel on randomly selected subsets of the training data (bootstrapping; e.g., Random

Forest).

2.3.6 Role of machine learning in medicine

Machine learning models can aide in decision making, monitoring patients, risk miti-

gation strategies, understanding the underlying mechanisms behind disease, hypoth-

esis testing, participant recruitment and retention, patient monitoring, large data,
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translation to the clinic, and improving diagnostic and prognostic tools, which are

all important in medicine [67, 68]. As an example, risk prediction can play an im-

portant role in predicting patients at the highest risk of developing a disease or a

fatal outcome from a disease, which enables early intervention. Current risk scor-

ing systems are biased [69–71] and based on more traditional statistical approaches,

thereby limitating their utility and validity when used for interpreting patient specific

risk factors as they can overlook complex interaction among features and non-linear

relationships [64, 65, 33]. As an example, use of logistic regression for certain tasks

can lead to poor external validation for high-risk subgroups and overestimate risk,

which impairs the decision making processes. Machine learning on the other hand can

discover operator-independent complex interactions among features unbeknownst to

domain experts.

For patient-specific predictive tools, model assessment relies on both the discrim-

ination ability (e.g., accuracy) and the individual risk predictions (i.e., calibration)

[72]. Discrimination ability describes the ability for the algorithm to separate classes

(e.g., groups), while calibration is the assessment of probabilities based on the actual

risk in the population, or the correctness of predicted class probabilities. Machine

learning models are calibrated when the probability estimate of a data point belong-

ing to a class is very important (e.g., in medical risk) and the distribution of the

predicted probability is matched to the expected distribution of probabilities for each

class.

Further a model might perform well in discriminating patient risk status but have

high miscalibration or poor capacity to estimate individual risk scores, which is re-

quired for developing patient-specific predictive tools. There is some evidence that
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more complex machine learning models may not surpass linear models such as logistic

regression in prediction. Anita et al. showed preference for Logistic regression over

optimized machine learning algorithms for prognostic and diagnostic prediction mod-

els [73], while others have showed use case preferences for logistic regression over more

complex machine learning algorithms [74]. However, these studies may be limited in

data. With enough data,paticularly nonlinear data, logistic regression cannot com-

pete with extreme gradient boosting (XGBoost[39]), which is an implementation of

the stochastic gradient boosting ensemble algorithm. We draw comparisons between

machine learning algorithms and traditional statistical approaches in sections below.

2.3.7 Traditional statistics vs machine learning

The relative efficiency, or predictive accuracy, of various machine and statistical meth-

ods of learning for the prediction of patient outcomes is becoming increasingly im-

portant. Classical statistical methods focus on inference from fitting dataset specific

probability models and relies heavily on the user’s domain expertise. These models

can verify assumptions and quantify the confidence of an effect, independent of noise

or chance. Classical statistical methods can also measure the linear relationships be-

tween individual predictors, but they assume predictor independence and fail to take

into consideration the inter-predictor nonlinear/complex interactions and systemic

aspects. In contrast, machine learning uses a general learning procedure discussed

above and is more useful in P>n datasets, where the number of participants, n, is

less than the number of variables, P. Consequently, machine learning involves relying

on the capacity of the model to learn from the observable data and generalize to new

data. While methods generally, fall into one domain or the other, they can sometimes
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involve both machine learning and statistical methods (e.g., bootstrapping [75]).

Austin et al. (2021) used simulations from various data generating processes in-

formed from empirical datasets, to deduce that unpenalized logistic regression (with

no shrinkage, or feature selection) produces good performance, and, at times, is su-

perior to more complex machine learning methods [76]. Given similar performance to

more complex machine learning models, logistic regression approaches may be pre-

ferred as they have an interpretive advantage, including providing odds ratios that al-

low for the quantification of relative covariate contribution to the outcome. Lundberg

et al., (2020) varied the nonlinearity in simulated data, and showed that an increase

in nonlinearity is associated with a decrease in the accuracy and interpretability of

machine learning based logistic regression models due to a mismatch between the

model and data, resulting in an increase in % of weight attributed to irrelevant fea-

tures, thus less interpretability [45]. To this end, low-bias non-linear models like the

extreme gradient boosted ensembles can be better performing and more interpretable

than high-bias models like logistic regression, as the former places more emphasis

on the input features and is perhaps a better representation of the data-generation

process. Further, this study highlights superior performance in boosted approaches.

Boosting is an approach that combines weak learners (decision stumps) sequentially,

so that each new tree corrects the errors of the previous ones.

2.3.8 Deep learning vs traditional machine learning

While deep learning is leading the AI revolution, traditional machine learning (e.g.,

gradient boosted ensembles) still outperform deep learning on heterogeneous tabular

data. We provide a brief overview of deep learning and the convolutional neural
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network.

Historically, machine learning methods could not process raw data [77]. Instead,

traditional machine learning techniques relied heavily on feature engineering and se-

lection methods [78]. These methods required deep domain-expertise and ‘hand-

crafted’ features to train a mathematical model (e.g., classifier) to produce useful

outputs. The feature engineering methods have clear limitations, including operator-

dependency and the potential for inadequate data differentiation within, and between,

datasets [79]. Unlike traditional machine learning, which relies on feature selection,

deep learning allows computers to discover the features that are most effective in

differentiating the data using a general-purpose learning procedure [80]. Specifically,

these models involve multiple steps (i.e., layers) to convert input data (e.g., pixel

intensity of an image) into useful output (e.g., category classification).

Deep learning draws its inspiration from the biological neuron. The cell body re-

ceives input from the dendrite and produces output activations (after reaching a volt-

age threshold) to other neurons, transmitted via the axons to the axon terminal. An

artificial neuron outputs a single value, in contrast with the biological neuron’s time

series of spikes. Every input influences every neuron in subsequent layers. Each of

the inputs (x1, x2, x3) is connected to a node, with certain weights (w1, w2, w3). The

output is generated by computing the weighted sum, then applying a non-linearity,

to approximate complex decision boundaries. A bias is also introduced to constrain

output to an appropriate range.

To train deep learning networks, model parameters (weights or connections be-

tween neurons) are identified that minimize the training error (the difference between

the true data from estimated data). Best weights are determined as those that can
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Figure 2.3: An overview of a simple convolutional neural network
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correctly classify as many points as possible. A goal is to minimize an objective

function (cost/loss function) that measures the error between the target and network

output to maximize model performance. Stochastic gradient descent is the most pop-

ular method used to minimize the objective function by computing its gradient. The

gradient of a loss function is imputed with respect to each weight, and then iterated

backwards from the output to the input layer using the chain rule from calculus. The

gradient for each weight, informs the potential error change if the weight is modified.

The goal is to reach the minimum of the objective function (i.e., high performance)

by adjusting the weight vector in the opposite direction to the gradient.

With the rise of computational power and digitized image data, deep convolutional

neural networks have become the cutting-edge approach for image tasks. The deep

learning approach can learn features from the input data in multiple convolutional

layers within a deep architecture, with the term ‘deep’ referring to the depth of

the layers (e.g., more than 5 layers). Image classification tasks using traditional

artificial networks involve converting an image (pixel width x height x depth) into

a 1-dimensional vector. The 1-dimensional vector is constructed by appending the

pixels from each row of the image, whereby the top left region of pixels is represented

at the beginning of the vector, while the end of the vector represents the bottom

right region of the image. But this 1-dimensional representation of an image is not

suited for image tasks as we lose spatial features of an image (i.e., locality) and

results vary based on small shifts in individual pixels (translational invariance). To

take advantage of spatial features of an image and become invariant to small shifts in

individual pixels, deep convolutional neural networks use the process of convolution.

The convolutional neural network comprises of a convolution layer, nonlinearity,
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and a pooling layer; Additional convolutional/pooling layers can follow). In the con-

volutional layer, a matrix of weights (i.e., kernel/feature detector) is applied across

the receptive fields (i.e., patch in input space that produces a feature of an image to

detect features (e.g., horizontal/vertical lines). Element wise multiplication is then

performed with the part of the image that the kernel is on, then sum up the values

to get a single output. In other words, local regions in the input image are linked

to artificial neurons and the convolutional layer computes the output of those artifi-

cial neurons. As the kernel traverses the image, multiple outputs are aggregated to

form a feature/activation map. This allows for similar patterns to appear in differ-

ent locations in the image. During the convolutional layer, weights are learned (via

gradient descent and back propagation) to detect local features from the previous

layer, while the pooling layer combines similar features (e.g., max value in a region),

down-sampling, and reducing the size of the feature map.

With the input of raw data, deep learning, can facilitate the automatic discovery of

features based on the best classification of the data [80]. As raw input (e.g., matrix of

pixel intensities) passes through the multiple layers of the deep learning architecture

to a more abstract level, the suppression of any irrelevant variations and the am-

plification of image characteristics important for classification occurs. For example,

the first layer of a network may represent edges (or lack thereof) at unique positions

or orientations. The second layer may detect recurring patterns by recognizing edge

groupings, irrespective of any minor differences in edge positions. Third layers and

beyond may aggregate patterns into larger amalgamations that begin to resemble a

familiarity in the input image. Thus, the earlier layers are often more general, and as

the layers deepen, they will have an increased specificity to the trained task [77].
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Figure 2.4: The art of convolution
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As a thought experiment, imagine employing a deep learning approach with the

purpose of classifying medical images as belonging to either abnormal or normal cat-

egories (e.g., disease or non-disease states, respectively). Begin by collecting a large,

labeled dataset of both abnormal and normal cases, input the data (e.g., medical im-

ages) and receive the output data as a vector of probability scores for each category

(e.g., abnormal = 0.4, non-disease = 0.6). The goal is to have the largest probability

for our desired category, but this is an unlikely outcome prior to training the model.

In deep learning, mathematically, the function, f , generates outputs, y, from input

data, x. f is approximated using a parameterized function, with parameter values

that are learned during training. Adjusting these parameter values yield varying

degrees of error between output scores and desired scores. A function is quantified

that calculates the error between output scores and the desired scores with an aim

to minimize this error function by allowing the algorithm to change its weights ac-

cording to the error the weights produce. The weights of various features will require

adjustments, depending on the classification probability of an image, estimated by

the statistical properties of a set of training images. To reduce the error, the weights

are adjusted along the direction of the gradient. This function is analogous to finding

the steepest descent in a high-dimensional hilly environment.

2.3.9 Applications for smaller datasets

With the application of smaller datasets, transfer learning can be used on deep learn-

ing models that have been trained on larger training sets [77]. Given that images

contain similar components (e.g., edges), pre-trained networks in one domain can

classify images in a different domain, although, as the data moves further away from
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that of the original data source, the transferability of features decreases. A network

trained on a completely different source material may outperform its original source

material. Also, algorithms can be trained initially on a more general classification

task, and then a more specific task [81]. Data augmentation methods create vari-

ations of the original image training set (e.g., flipping, cropping, rotating, scaling).

These variations exponentially increase the size of the original dataset and allow the

features to be generalizable and reduce overfitting [77]. The augmented training set

does not equate to a non-augmented training set of the same size, as the augmented

images are highly correlated and provide less learned information. While transfer

learning and data augmentation attenuates the need for larger data sets, high per-

formance deep learning models require large data sets. More recently, U-net based

architecture and variations provide efficient and fast segmentation of images, without

the requirement for large samples, and has been utilized in segmentation of medical

images [82]. For small datasets in classical machine learning, it becomes crucial to

use deep domain and statistical expertise to preselect input variables or resampling

(e.g., boot strapping) to improve stability. Cost-sensitive algorithms can help in im-

balanced data in lieu of resampling methods. Alternatively, generative models (e.g.,

CTGAN) can produce statistically similar data Further, semi-supervised approaches

can improve performance on smaller datasets by using the limited data to label a

larger unlabeled dataset to train.

2.3.10 Explainability and Interpretability

While explainability and interpretability is at times used interchangeably, herein,

we differentiate explainability as providing explanations for complex models (e.g.,
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Shapley values) without necessarily understanding the decision process. In contrast,

interpretable models are understandable by design (e.g., decision trees, ML-based lin-

ear models). Further, as mentioned above, gradient boosted algorithms use recursive

decision trees, and offer great interpretability relative to black box approaches (e.g.,

neural networks).

The motivation for explainable or interpretable AI can be illustrated with the fol-

lowing example: A patient may be diagnosed with cognitive impairment. The memory

clinic may have a machine learning algorithm that indicate patients at the highest risk

for developing Alzhemier’s disease dementia, based on the patient’s pre-intervention

clinical state (e.g., baseline neuropsychological testing, blood biomarkers, imaging).

But then the patient or end user may ask why did the algorithm make such a predic-

tion? When using explainable AI, a prediction is generated, but an explanation also

accompanies the prediction. While it’s difficult to understand the inner mechanics of

complex machine learning models, there is a need to discover relationships between

input and output data; however, complex machine learning applications to clinic re-

main challenging due to their lack of explainability.For example, visualizing feature

maps at each convolutional layer allows for correlation of the deep features extracted

by the deep learning to the target object. Interpreting deep learning in a clinical

or research task is still not a trivial and is operated like a blackbox with only a few

algorithmic concepts of explainable AI [83]. While performance is an important met-

ric, future applications of deep learning must strive to establish trust and implement

methods to add the end-user to the training loop so as to provide feedback and inter-

act with the provided explanations from the deep learning models in order to improve

overall classification efficacy].
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SHAP (Shapley ADitive exPlanations) [84] is a model-agnostic, game-theoretic

approach to explaining machine learning outputs, which allocates the value of each

feature for a specific prediction and has been successfully applied to clinic [48]. SHAP

plots provide an intuitive explanation of what led to the patients’ risk. The SHAP

Python package can be found here: https://github.com/slundberg/shap. More re-

cently, SHAP methods have been applied to tree based algorithms (e.g., random

forests, gradient boosted) [45]. SHAP summary plots show feature’s impact and im-

portance. Each point represents a unique occurrence of the dataset (i.e., a single

patient). Their location along the x-axis (i.e., SHAP value) shows that feature’s in-

fluence on the model’s output for that patient. Higher SHAP values are associated

with a higher risk. A feature’s importance is determined by its average absolute

Shapley values and sorted along the y axis (a higher position equates to a greater

importance). SHAP feature dependent plots show global and individual level variabil-

ity. These charts demonstrate how one factor affects model predictions. Each point

represents a patient, like in the prior summary plot. A point’s x-axis location equates

to the feature’s value, the y-coordinate of a point defines its SHAP value. Nonlinear

dynamics and interaction effects are depicted by vertical SHAP value dispersion for a

single feature value. We can identify the most and least important feature values for

the model based on their SHAP value influence. Those features with more influence

had a broader range of SHAP values, whereas those with less significance had values

close to zero. It’s interesting to note that SHAP feature dependency graphs may also

assist us in locating significant inflection points for the various features.
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2.3.11 Limitations in machine learning

Machine learning can discover patterns unbeknownst to domain experts, but it can

also learn undesired approaches that exploit confounding variables or artifacts in the

data set, resulting in right classifications for the wrong reasons [85].

Deep learning performance has a linear relationship with the volume of the training

data set, up to and beyond 300 million images [77]; thus, data acquisition is a barrier

for efficient deep learning performance. By design, deep learning requires labeled and

large-scale data acquisition. Extensive data sets allow deep learning algorithms to

excel at task classification; however, there are many studies with small training data

and/or which lack validation [79]. Besides large data sets, accurate and high-quality

labelling will have a direct impact on the overall performance of a deep learning

model. Consequently, the benefits of supervised learning are greater than that of an

unsupervised approach for classification tasks.

Abnormal cases are less abundant, and more difficult to acquire data from, than

normal cases, which limits deep learning models in their ability to classify anomalies

as it creates imbalanced classes. If classes are imbalanced, the decision for learning

algorithms will be biased towards the majority class (leading to overfitting) as the

majority class is over-represented in the training data. For example, if abnormal cases

represent only 20% of the training data, then a model, by predicting the majority

class, would result in 80% accuracy without learning meaningful features. Combating

class imbalance can be Addressed with cost-sensitive algorithms or sampling methods

that rebalance the data by creating synthetic data. Data acquisition methods require

the capacity to reach otherwise difficult to recruit populations and collect data from

a spectrum of normal and abnormal cases, which will further help deep learning
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models to form accurate predictions. The acquisition of medical imaging data, with

expert annotations, can prove to be a challenge, with diverse populations presenting

a large variance in abnormal and normal cases, presenting an Additional barrier.

Thus, the data requires high-quality labelling and measurements that depict patient

anthropometrics, age, race, and ethnicity to help models cover more variability in

abnormal case data.

2.4 Fundamental concepts for model development

2.4.1 Bias-variance tradeoff

In machine learning, the bias-variance trade off affects model accuracy and interpre-

tation[54]. Models must be accurate, avoid bias (valid) and low variance (reliable,

precise). The bias-variance trade off speaks to the inverse relationship where the need

to decrease variance results in an increase in the bias, and vice versa . If a model has

high bias, it means that it is underfitting the training dataset (model is too simple,

overlooks important relationships in the data), and will show as low training and

cross-validation accuracy . High bias can be resolved by increasing the number of

features, or by decreasing regularization. High variance models overfit the data and

show a large gap between training and validation accuracy, and can be resolved by

collecting more data, reducing the number of features, or increasing regularization. In

contrast to plotting the training and test accuracies as a function of training sample

size in learning curves, we can use validation curves and plot accuracy as a function

of a regularization parameter (e.g., C-statistic in logistic regression).

For example, to predict a cognitive variable (single value) y, from a predictor
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Figure 2.5: Illustrating the bias and variance trade off for model performance
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variable X, requires determining a best estimate for y. To estimate y we need to

introduce conditional expectation and variance.

Where y and X are random variables that represent our dependent variable, and

predictor(s), respectively. The conditional expectation of y given X is a random

variable that is a function of the random variable X, such that, for any set of possible

values x, the expected value of Y is conditioned on the event that the value of X in

the set x, equals the expected value of f(X) conditioned on the event of X in x.

E[y|X] is the best possible approximation of y, based on the value of X. That

is, knowing something about X, tells us something about y as these variables are

not independent, and f(X) is our best guess. In particular (and by law of total

expectation), the expected value of the expected value of y given X equals the expected

value of y. In other words, the expectation of the conditional expectation is equal to

the overall expectation of the random variable. E[E[y | X] = E[y]

The variance of a random variable, Y, is the expected value of the square of y

minus the square of the expected value of y. Alternatively, the expected value of y

minus the expected value of y, quantity squared.

Intuitively, y is random (e.g., a uniform value between 1-100), E[y] is fixed (an

average with a value of 50), then the variance is, on average, the squared difference

between the actual value of y(0-100) and its expected value (always 50). For a random

sample of y , if we take each of the different values in our random sample, subtract

50 (average/expectation of y), square it and take the average (these values are never

exactly the average, and will be off by a certain amount). The average squared

amount that its off by is the variance (fixed number).
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The conditional variance of y given X, equals (identical to the above with condi-

tional expectations in place of the expectations) the expectation of y squared given

X minus expectation of y given X, quantity squared. Alternately, the expectation of

y minus expectation y given X, quantity squared, given X.

Simply, if we know the value of x, this gives us information or changes our under-

standing of the probability distribution of y, and that changed probability distribution

of y, has its own expectation and variance based on X.

Back to our example or predicting cognitive scores (y) based on age (X). Our

best guess is E[y | X] = f(X). We will not get perfect predictions, as even with a

given sample, two patients can have different cognitive scores and be the same age.

Moreover, we do not know the underlying joint probability distribution of y and X,

and all people that were and will be born in the population as we just have a messy

sample. We create a model that says if the patient’s X has a given value, then their

cognitive score parameter will be this given value. Then we get new patients with X

and now want to predict their cognitive scores based on past data. In this situation,

how accurate do we expect our prediction to be? How do we quantify how good our

function/model is at making predictions?

To quantify our model’s ability to make accurate predictions, we can collect the

deviations of each data point from the prediction (e.g., mean squared/absolute error).

There are theoretical reasons for picking methods to quantify a model’s ability to

make predictions. For simplicity with this illustration, we will focus on mean squared

error (MSE). The mean squared error (MSE) of f(x), is the expected value of the

squared difference of the actual y-values, and the predicted values, quantity squared,

conditioned on the associated X value equaling the little x, as we can have different
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observations for a single value of x.

The mean squared error decomposes into: 1) a (squared) bias term f(X)-E[f(x)], or

the systematic/approximation error, or the bias in using our function f to approximate

the true function (where high bias means the model is systematically off for x values,

i.e., always low or high), 2) the variance of the statistical or machine learning process,

or irreducible error (i.e., y cannot be perfectly predicted based on X, the random

statistical fluctuations even for the most unbiased estimates), and 3) the variance in

estimating our function Var (f(X)) (high variance means the model is hyper-responsive

and changes drastically with a given input). The bias-variance trade-off speaks to

the inverse relationship in the equation above, and specifically describes the need to

increase variance in order to decrease the bias, and vice versa.

If we linearly interpolate the data, and consequently create a model that overreacts

to the data, or overfits and thus has large variance, the f(X) is highly randomized in

response to small changes in data, and thus contributes to a large error, even though

the bias would be very small. At any point, there exists high variability, as the points

can be anywhere, but the bias will be small (not systematically off). If we estimate

based on a constant value, for example the average of all values (horizontal line),

variance will be small and Adding data points will not change the average y value by

much, but now with much higher and systemic bias, as each x value will be far off

from the predication (i.e. large gap between E[f(x)] and the function f(X), and will

increase error). An appropriate or consistent model has the bias and variance terms

shrink towards 0, and error should converge to the irreducible error, as sample size,

n→∞.

In practice, however, we have finite samples, and we choose between having a
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model that has higher bias or higher variance. This phenomenon depends on the

type of model, Var(f(x)). Typically, linear machine learning models require more

assumptions, leading to high bias but low variance as they are unable to capture

relevant relationships. Non-linear algorithms show low bias but high variance (fewer

assumptions), with quadratic and higher polynomials able to model increased com-

plexity, thus having lower bias and higher variance. There is a trade-off between

methods that are explanatory and give insight to the underlying mechanism, and

methods with high predictive power[103]. Neural nets for example, are quite pre-

dictive but not as interpretable, whereas logistic regression is more interpretable.

The relationship between predictability and interpretability can be described by a

u-shaped curve, where with increasing complexity, an increase in predictive power

and decrease in interpretability is observed, but at a certain point, predictive power

will decrease.

2.4.2 Cross-validation

Cross-validation methods for internal validation are intended to assess the model’s

expected performance (by alternating independent test sets while using all available

data) for future estimates of the target population, specifically the model’s predic-

tion accuracy (point estimate) and confidence intervals. In reality, cross-validation

estimates are indicative of the average prediction error of models fit to a hypothet-

ical training set taken out of the same sample [86]. In contrast to popular belief,

cross-validation does not measure the prediction error (for both, data-splitting and

bootstrapping methods) for the model fit to the training data.
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In regular cross-validation we estimate the error of, and find the best hyperpa-

rameters for, the model on the same set of training and testing data, which may lead

to high bias as the independence assumption is violated [86]. Further, a lower aver-

age prediction error is observed relative to the final model and lower and narrower,

variance and confidence intervals, respectively. To estimate the unbiased error with

low variance, we can use nested cross-validation as it produces an unbiased error of

the estimate relative to the test dataset. In a nested cross-validation, albeit com-

putationally expensive, we can run nested loops, an inner loop (feature/parameter

selection) which functions similar to the normal cross-validation, but an Additional

outer loop (to assess model performance) is run that withholds the test data. This

can be repeated (e.g., 100 times) to improve statistical stability. More research needs

to elucidate the efficacy of nested cross-validation over regular cross-validation. After

internal validation, the model can then be trained on the sample in its entirety.

To assess whether these models generalize to the target population, we can use

bootstrapping or the aforementioned nested/cross-validation methods as a form of

internal validation. Bootstrapping (i.e., sampling with replacement) offers statistical

stability, low prediction error score, low bias, and performs better than k-fold cross

validation [87, 88], which preforms better than a single-split. Repeats (e.g., x100) of

10-fold cross validation are recommended for variables¿observations datasets. Fur-

ther, it is important to contain pre-processing, feature selection, or any other pro-

cesses in developing the model, within each bootstrap sample, or fold (see nested

cross-validation above).
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2.4.3 Generalizability

A lack of generalizability happens when the machine learning algorithm is overfit to

the training data (analogous to a student memorizing the practice exam). To reduce

overfitting, we can increase the volume of our dataset, reduce the complexity of our

model (less variables), use regularization techniques, or ensembles methods. More-

over, we need to ensure that data leakage does not occur, in that the test data is

kept away from the pre-processing and training stages (see section on cross-validation

above). Sample data needs to represent the target population of interest. High-

accuracy machine learning models trained on data from a single site (e.g., a single

hospital or city) may not generalize to another clinical or academic site, because of

overfitting and differences associated with, but not limited to, population charac-

teristics (e.g., age, race, ethnicity) and non-medical dependent characteristics of an

image (e.g., image processing/reconstruction, and data collection equipment). Data

acquisition methods need to reach diverse cohorts, with variability in equipment and

settings in which data are collected, thereby increasing generalizability of the models

by covering more variability in the data [89]. Perhaps increasing generalizability of

AI may rely on developing models based on diverse datasets.

One route to increase generalizability of models may require involvement of hospi-

tals’ Picture Archiving and Communication System (PACS) which houses and links

patient data and history from diverse cohorts. While the PACS suffers from lack

of open-source utility, hardware difficulties, and multi-site/hospital integration [90],

integrating AI models into the PACS as well as developing AI models from PACS

data would present an advantage to generalizability of these models as they would be

developed on a range of diverse cohorts (i.e., socioeconomic status, race, ethnicity)
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with a spectrum of health disorders, accounting for patient history, hospital read-

mittance. Some countries, like Germany, have a PACS that’s connected within the

entire country, whereas in Canada, PACS systems are city-based, which significantly

reduces data-sharing. Improving inter-connectedness of PACS technologies, and fur-

ther access and sharing of data, would improve generalizability of AI models when

applied to PACS as this would mean that model development would not rely solely

on data from a single site.

Machine learning models trained on diverse data or protocols can still introduce

bias. Machine learning-based algorithms aim to reduce bias from researchers but

are still prone to incorporating and exacerbating bias from data itself [91]. There

exists a large disparity with under-represented groups in terms of diagnosis, prescrib-

ing of pain medication, referrals, and treatment, which reduces the effectiveness of

current treatment options [92]. These data are also training future AI algorithms,

which can lead to more bias and deepen the divide for underrepresented groups [93].

With regards to the data, there exists heterogeneity in operator-dependent imaging

modalities but also someone to interpret and label the findings.

These methodological aspects introduce bias and further contribute to repro-

ducibility issues. A recent systematic review[94] found that none of the machine

learning models are fit for clinical use for COVID-19. We encourage readers to follow

the recommendations therein that include, but not limited to Addressing the lack of,

external validation (i.e., in contrast with internal validation, where we test data from

the same source, external validation speaks to testing data from a difference source)

robustness analysis, reporting demographics, assessing significance, confidence inter-

vals for performance, and generalizability. There also exists high heterogeneity in
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the results of machine learning algorithms that stem from the differential validation

methods, or optimization. Data partitioning, feature selection and engineering meth-

ods, the reporting of different performance metrics, and all of this is exacerbated

when methods are under reported. Finally, relative to other fields, machine learn-

ing in healthcare, compared to other domains, has less open source (less code/data

availability) initiatives.

2.4.4 Feature engineering

The quality or robustness of the model depends on the sample size, and specifically

sample amount and quality.

Sample size

Sufficient sample size is important for ascribing weights to covariates, the performance

of the model, and to avoid overfitting. Sample size is dependent on signal to noise

ratio, where lower signal to noise may require more samples. Finally, the complexity or

the number of covariates to include in the model plays a role in sample size selection.

The notion of 10 events per predictor parameter (one for each beta term in the

modelling equation) is ill-advised [94]. The required sample size depends on more

than just events per predictor parameters, but also depends on total participants,

incidence rate in target population, and desired performance. The assumption here

is that variables require only one beta term in the model equation when, more beta

terms are actually required for modelling non-linear effects that are quite ubiquitous

in the medical field, and for multi-category classification. For small datasets, it may

be helpful to use deep domain expertise and/or feature selection methods that don’t

53

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/msbe


M.A.Sc. Thesis – M. Kadem; McMaster University – Biomedical Engineering

involve the labels to pre-select input variables. To calculate the minimum sample size

that is required to minimize overfitting and provide accurate estimates, sample size

formulas can be used, which vary with simulation approaches, or high dimensional

data, or binary,continuous,multi-category outcomes. The accuracy of these models in

the medical world is of high importance as these models may be used in predicting

death and patient outcomes. We direct readers to a a recent paper by Reley at al.

(2020) that discusses sample size for developing prediction models a priori, or for

existing datasets, and how to implement sample size calculations using the R package

pmsampsize.

Standardization

Some machine learning algorithms will require standardization of features, as perfor-

mance issues arise when features exist at different scales (e.g., various cognitive test

scores, brain volumes). For example, support vector machine and K-nearest neighbor

algorithms depend on a distance measure, which becomes biased if features vary in

their scales. It is also recommended to scale before data reduction techniques such as

principal component analysis (PCA, see section on dimensionality reduction below).

Generally, it is recommended to scale variables to the standard normal (i.e., scaling

features to a mean of zero and a standard deviation of one) when algorithms exploit

distances or similarities. Although, some algorithms may benefit from, but do not

require, standardization (e.g., decision trees, näıve bayes, gradient boosted ensembles,

linear models unless regularized).
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Dimensionality reduction

Often, models can overfit high dimensional data, and it is strategic to reduce dimen-

sionality (e.g., feature selection) to prevent overfitting. High-dimensional datasets

result in overfitting to the training set, and consequently under perform in the test

set. To retain most of the information, but reduce the dimensions of the data, we can

use dimension reduction techniques such as PCA.

PCA is a method of summarizing data. For example, we can describe a patient

by their age, by their cognitive testing scores, etc. We can amalgamate a list of char-

acteristics for each patient, but many characteristics will measure related properties

and so are redundant. If some characteristics are redundant then we can summarize

each patient with fewer characteristics. This is what PCA does. PCA does not dis-

card any characteristics, instead it creates synthetic characteristics that turn out to

summarize patients well (i.e., linear combinations of age characteristics). PCA finds

the best possible characteristics, by finding characteristics that show large variation

across patients as possible (instead of using properties that are quite similar across

patients). PCA is a technique to reduce dimension by taking linear combinations of

the original variables. Each linear combination explains the most variance in the data

it can. Each linear combination is uncorrelated with the others. To this end, variable

x at time point y is what we should focus on for further analysis because that is where

the most change is happening.

PCA can reduce the number of predictors by extracting linear combinations of

variables making it useful for data visualization and data reduction for subsequent

analyses. Each component (i.e., eigenvector) is a linear combination of all input

variables and is orthogonal to all others, which allows for accessible figures. Similar
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to the fast Fourier transform (FFT) and independent component analysis (ICA), as

these methods give data an alternative representation, which allows us to see the

structure/patterns of the data and can be used as a form of filtering (e.g., by setting

columns of PCA or ICA separation matrices that correspond to unwanted signals

to zero). While FFT represents data in the frequency domain, ICA/PCA represent

data in the statistical domain. Both ICA and PCA find a measure of independence,

then decorrelate the data by maximizing this measure of independence. For PCA,

the measure of independence is variance, which is used to discover axes which leads

to ordering of independent gaussian noise sources. While ICA uses the non-Gaussian

parts of a set of signals.

Feature selection

Machine learning demands many samples, but not features. Features are also referred

to as independent variables, covariates, predictors, and their selection involves human

based domain expertise (e.g., clinical input), careful selection methods and feature

engineering. Feature selection is an approach for dimensionality reduction that aims

to select relevant and eliminate irrelevant features, reduce noise, redundancy, and

collinearity. Features can either be individually ranked by an algorithm according

to their importance or the best features can be chosen using a specified measure

(e.g., mutual information). Further, feature selection methods can be conceptually

categorized into wrapper (e.g., stepwise selection), filter (e.g., correlation-based), and

embedded methods (e.g., LASSO/Ridge). In contrast with wrappers, and embedded

methods, filter methods are algorithm independent as they depend on the nature of

the data itself. Wrapper methods find optimal features by evaluating a combination
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of features on a specific algorithm. Embedded methods incorporate feature selection

in the model training process. Unsupervised approaches to data reduction techniques

(e.g., PCA) are recommended in lieu of stepwise feature selection. Stepwise feature

selection methods have reduced chances of finding the ‘right’ variables, high chances

of overfitting, distorts confidence intervals and p values, and are ruined by collinear-

ity, whereas these issues are not present with data reduction methods (e.g., PCA).

Optimal data representation may best serve computation but may not be tailored

for human understanding and use. Several feature engineering methods are used and

include, but are not limited to, statistical summaries of the distributions of inter-

est, and features picked based on deep domain expertise in the field (e.g., clinical

input). Processing of the data to extract features can include applying methods such

as wavelet transformations, data and noise reduction methods (e.g., principal and in-

dependent component analyses, log transformation, variable collapsing). To improve

feature stability, we recommend bootstrapping feature selection in a nested cross-

validation design, where feature and hyperparameter selection occurs in the inner

loop and ensures no data leakage.

Collinearity

Ordinary models assume independent observations. However, observations with re-

peated measures, or subsets of measures tend to be correlated at each level, because

lower-level observations share common groupings at higher levels (e.g., multiple mea-

sures of a patient). Failure to take these correlations into account may lead to biased

estimates. In multiple regression for example, it is assumed the variables, X, are

independent. If not, we can run into issues of co-linearity, that is, strong enough
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correlations or multiple correlations that can negatively impact regression estimates

(namely the beta coefficients, errors, and significance).

The partial derivative is the change in Y for a 1-unit change inX1, whileX2 is held

constant, thus when observing X1′s unique impact on Y , we need to ensure that X2

is not interfering with the analysis. When collinearity exists between X1 and X2, our

assumption for multiple regression is violated, thereby leading to inflated variances

(and standard errors) of the regression coefficient, and the signs and magnitude of

the weights may be inaccurate or non-significant with high R2 values.

Variance inflation factor is indicative of the degree to which the standard errors

are inflated due to collinearity and is mathematically the reciprocal of the tolerance.

Tolerance is the % variance in the features that is not accounted for by the other

features (1 − R2) - values of <.10/.20 are problematic). Thus, VIF = 1/tolerance.

For example, 1/.10 = 10, indicating that our standard error will be inflated by a

factor of 10. The regression equation in matrix form, where y is a Nx1 data/response

vector, X is a N×Q matrix, with Q columns/regressors, b is a vector of regression

coefficients Qx1 tell us how strongly our response reflects the input of each column

plus normally distributed noise, e. We can estimate the regression coefficients using

ordinary least squares regression,

XTX is the gram matrix, on the diagonal is the sums of squares of each regressor,

off diagonal is the inner product between first regressor and second regressor. This

matrix is important as the diagonal elements tell us about the linear dependence (if

zero = columns are linearly independent), or lack thereof, of our columns/regressors.

This matrix also determines our variance-covariance matrix of our regression coeffi-

cients. The variance-covariance matrix of the ordinary least squares estimator, is the
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inverse of the gram matrix multiplied by the noise covariance. This matrix contains

the variances of the regression coefficient estimates on the diagonal and the covari-

ance between our regressors off the diagonal. If experiment with different values

of collinearity, we see that regressors that have high co-linearity to other regressors

in the gram matrix, will have higher estimation variance, than estimators that are

independent (linear dependence closer to zero).

2.4.5 Performance metrics

A confusion matrix elucidates what occurred during classification (i.e., predictions

compared to the ground-truth labels), from which we can derive other metrics of

performance. Recall (i.e., also known as true positive rate, or sensitivity) indicates

the proportion of participants who were correctly labeled (i.e., actual positives, iden-

tified as positives) and can be calculated as correct labels or true positive (TP) di-

vided by total number of people with the label (TP + false negative (FN)). Speci-

ficity refers to the true negative rate or the proportion of actual negatives, identi-

fied as negatives (true negative/true negative + false positive; TN/TN+FP). Pre-

cision (i.e., 1-specificity) refers to the proportion of positive predictions that were

actual positives). The false positive rate indicates the proportion of incorrectly la-

belled patients divided by all who do not have that label (i.e., all actual negatives).

We might optimize for sensitivity for our model when our goal is to identify the

most patients with the disease (i.e., less cases of disease are missed), or optimize

for specificity when we want to reduce the positive rate. For example, accuracy

(TP+TN/TP+FP+TN+FN) is the proportion of correct predictions, and an F1
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score (2x precision x recall/precision+recall) of 1 indicates perfect recall and pre-

cision scores. R-squared indicates the goodness of fit of a regression-based model.

Predicted

Positive Negative Total

Actual Positive True Positive (TP) False Negative (FN) TP + FN

Negative False Positive (FP) True Negative (TN) FP + TN

Total TP + FP FN + TN N

Table 2.1: Confusion matrix for binary classification

Accuracy = TP+TN
TP+TN+FP+FN

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 = 2∗Precision∗Recall
Precision+Recall

= 2∗TP
2∗TP+FP+FN

Sensitivity = Recall = TP
TP+FN

Specificity = TN
FP+TN

Using receiver operating characteristic (ROC) curves is a way to visually diagnosis

or assess performance of a classifier and is a plot of the true positive rate (y-axis)

against the false positive rate (x-axis). The diagonal identity line is indicative of

random guessing and models falling above this line indicate above chance guessing.

A perfect model would form an L shape in the top left corner of the graph (True

positive rate = 1, False positive rate = 0). ROC area under the curve (ROC AUC,

between 0 and 1) is a single value that measures the performance of the model and

agrees with accuracy metrics [95]. Intuitively, AUC represents the probability that a

randomly chosen disease subject is correctly rated with greater suspicion than a ran-

domly chosen non-diseased patient. The concordance statistic (C-statistic) is another

performance metric indicative of a covariate’s predictive accuracy or to quantify a
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single model’s predictive discrimination. In practice, it may not be feasible to acquire

more data to minimize overfitting (i.e., hypersensitivity to training data heterogene-

ity). Even if one can acquire more data, this may not resolve overfitting issues (e.g.,

low signal to noise ratio). One way to evaluate models for potential overfitting is

through learning curves. A learning curve is a graphical representation of a chosen

performance metric as a function of training and validation samples. highlights the

training and validation curves in the presence or absence of overfitting (i.e., presence

of variance and bias). In other words, the learning curve plot illustrates the bias and

variance of the model (Figure 2.5).

2.5 Results

Based on our search strategy (Fig. 2.1), we have identified three key limitations in

existing AI-based AD prediction models: 1) models based on difficult to acquire, inva-

sive and costly data: machine learning has been applied to predict patients that may

end up developing AD [96, 41], but the machine learning-based predictive models have

included costly [41–44], manually selected, and invasive measures (e.g., cerebrospinal

fluid analysis of β-amyloid (Aβ42) [34], Aβ-positron emission tomography [35, 36]

which limits the availability of these biomarkers and their usage, 2) models lacking

clinical uptake: Further, while identifying high-risk factors is valuable to risk as-

sessment, establishing threshold cut-off values for these risk factors provides clinical

utility by outlining informed decision paths (i.e., threshold values to discriminate high

vs. low-risk individuals), and 3) complex models: There is still room for improvement

in explaining the machine learning decision process in complex machine learning al-

gorithms while maintaining performance. The clinical adoption and end-user trust of
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Table 2.2: AD-specific prediction models

Approach n Data Cite Interpretable? Year Metric Score

TS 162 Multimodal [97] Yes 2021 c-index 95%
TS 3777 Cog tests [98] Yes 2013 aucroc 85%
TS 1606 Cog tests [99] Yes 2013 aucroc 89%
SML 1342 Genetic [100] No 2022 acc 92%
SML 168 Imaging [101] No 2022 aucroc 90.7%
SML 7703 Accessible [102] No 2022 aucroc 84.8%
SML 1048 Multimodal [103] Yes 2021 acc 93.95%
SML 678 Accessible [104] No 2022 acc 70%
DL 159 Imaging [105] No 2021 acc 93.8%
DL 536 Imaging [106] No 2021 acc 93.8%
DL 210 Eye-tracking [107] No 2022 aucroc 85%
DL 416 Imaging + Cog tests [108] No 2021 acc 84.82%

Note : TS - Traditional statistics, SML- Supervised Machine Learning, DL - Deep learning

machine learning models requires intuitive explanation of the decision processes [46];

Yet, interpretable risk prediction models for disease diagnosis are limited [37, 47, 42],

as models for diagnosis must strike a balance between performance and interpretable

risk prediction. The complexity of high performing machine learning algorithm hin-

ders the formation of clinically intuitive explanations of the decision process, thus

impeding clinical adoption.

2.6 Summary

In summary, rapid, accurate, low-cost, easily accessible, non-invasive and early clini-

cal evaluation of AD is critical at this time. There is a need to identify novel clinical

features in routinely collected clinical data that identify patients at the highest risk of

AD. This will expedite the development of interpretable and explainable diagnostic
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risk prediction models that can predict long-term AD risk of patients, and potentially

expedite research into the intervention initiatives. The current predictive markers

highlight the multifaceted nature of risk prediction in AD and suggests the use of

indices beyond the current indices to assess AD risk following mild cognitive symp-

toms, and highlight the importance of personalized, accurate, and rapid patient risk

stratification. This scoping review suggest the importance of examining interactions

of physical, cognitive, demographic and vascular features for treatment planning and

assessing risk stratification for patients and many modifiable risk factors have been

identified. Finally, there is a need for predictive models motivated for clinical uptake

and to act as a tool in supporting clinical decisions.
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Chapter 3

Data sources

Data for model development included retrospectively studied multi site (57+ US and

Canadian sites) heterogeneous tabular data (i.e., brain imaging, genetic, neuropsycho-

logical testing, lifestyle and health history). Experiment 1 (n=441) classified controls

(n= 369) vs AD (n = 72) (Table 3.1), while Experiment 2 (n=738) classified MCIstable

(n = 444) vs MCIAD(n = 294) (Table 3.2). ADNI research data (adni.loni.usc.edu)

was obtained in accordance with the Declaration of Helsinki and Institutional Re-

view Boards. Informed consent was obtained from all participants. All methods and

measurements were performed in accordance with the relevant guidelines and regu-

lations. Study data were de-identified and anonymized prior to transfer to our study

database. Variables missing more than 25% of evaluations and were removed from the

dataset. One variable was removed due to high collinearly (95% threshold). Model

development relied only on baseline data in addition to follow up AD outcome data.

Overall, 43 features were considered for experiment 1 (Figure 3.1), and 25 features

(Figure 3.2) were considered for experiment 2. The referenced tables and violin plots

highlight the distributions of all the features for healthy and disease groups across
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both experiments.

Table 3.1: Experiment 1 Data. Data were tested for normality using the Kol-
mogorov–Smirnov test. Continuous data are described by the median and quartiles, as
all continuous variables did not fit a normal distribution (alpha = 0.05, and p <0.05). Cat-
egorical variables are described by percentages. The Mann-Whitney U test was used to
compare continuous data, while the chi-square or Fisher exact tests were used to compare
categorical variables.

Grouped by Diagnosis
Overall Clinically Normal AD P-Value

Demographics, n 441 369 72
Age, median [Q1,Q3] 69.3 [65.8,74.8] 68.5 [65.6,73.5] 74.7 [69.0,79.6] <0.001
Gender, n (%)

Female 263 (59.6) 235 (63.7) 28 (38.9) <0.001
Male 178 (40.4) 134 (36.3) 44 (61.1)

Race, n (%)
White/Asian 356 (83.2) 292 (82.0) 64 (88.9) 0.212
Black 72 (16.8) 64 (18.0) 8 (11.1)

Ethnicity, n (%)
Not Hisp/Latino 401 (90.9) 332 (90.0) 69 (95.8) 0.174
Hisp/Latino 40 (9.1) 37 (10.0) 3 (4.2)

Marital Status, n (%)
Not Married 115 (26.2) 106 (28.9) 9 (12.5) 0.006
Married 324 (73.8) 261 (71.1) 63 (87.5)

Years of Education, median [Q1,Q3] 16.0 [15.0,18.0] 16.0 [16.0,18.0] 16.0 [14.0,17.2] <0.001
Cognitive Measures
Montreal Cognitive Assessment, median [Q1,Q3] 26.0 [23.0,28.0] 26.0 [24.0,28.0] 17.0 [14.0,20.0] <0.001
Mini Mental State Exam, median [Q1,Q3] 29.0 [25.0,30.0] 29.0 [29.0,30.0] 23.0 [21.0,24.0] <0.001
Delayed Total Recall, median [Q1,Q3] 12.0 [9.0,15.0] 13.0 [10.0,15.0] 1.0 [0.0,3.0] <0.001
Everyday Cognition Questionnaire (Patient) - Total, median [Q1,Q3] 1.3 [1.1,1.6] 1.3 [1.1,1.4] 1.9 [1.4,2.4] <0.001
Everyday Cognition Questionnaire (Patient) - Divided Attention, median [Q1,Q3] 1.2 [1.0,1.8] 1.2 [1.0,1.8] 2.0 [1.5,2.5] <0.001
Everyday Cognition Questionnaire (Patient) - Planning, median [Q1,Q3] 1.0 [1.0,1.4] 1.0 [1.0,1.2] 1.6 [1.2,2.2] <0.001
Everyday Cognition Questionnaire (Patient) - Visuospatial, median [Q1,Q3] 1.0 [1.0,1.3] 1.0 [1.0,1.2] 1.3 [1.0,2.2] <0.001
Everyday Cognition Questionnaire (Patient) - Memory, median [Q1,Q3] 1.6 [1.2,2.0] 1.5 [1.2,1.9] 2.4 [1.9,3.1] <0.001
Everyday Cognition Questionnaire (Patient) - Language, median [Q1,Q3] 1.2 [1.1,1.7] 1.2 [1.1,1.6] 1.9 [1.2,2.6] <0.001
Everyday Cognition Questionnaire (Patient) - Organization, median [Q1,Q3] 1.2 [1.0,1.4] 1.0 [1.0,1.3] 1.7 [1.2,2.2] <0.001
Everyday Cognition Questionnaire (Study partner) - Memory, median [Q1,Q3] 1.2 [1.0,1.8] 1.1 [1.0,1.4] 3.4 [3.1,3.8] <0.001
Everyday Cognition Questionnaire (Study partner) - Language, median [Q1,Q3] 1.1 [1.0,1.3] 1.0 [1.0,1.1] 2.7 [2.0,3.1] <0.001
Everyday Cognition Questionnaire (Study partner) - Divided Attention, median [Q1,Q3] 1.0 [1.0,1.5] 1.0 [1.0,1.2] 3.0 [2.2,3.7] <0.001
Everyday Cognition Questionnaire (Study partner) - Visuospatial, median [Q1,Q3] 1.0 [1.0,1.2] 1.0 [1.0,1.0] 2.5 [1.8,3.2] <0.001
Everyday Cognition Questionnaire (Study partner) - Total median [Q1,Q3] 1.1 [1.0,1.4] 1.1 [1.0,1.2] 2.7 [2.4,3.3] <0.001
Everyday Cognition Questionnaire (Study partner) - Organization, median [Q1,Q3] 1.0 [1.0,1.3] 1.0 [1.0,1.0] 2.8 [2.0,3.7] <0.001
Everyday Cognition Questionnaire (Study partner) - Planning, median [Q1,Q3] 1.0 [1.0,1.2] 1.0 [1.0,1.0] 2.3 [2.0,3.4] <0.001
Rey Auditory Verbal Learning Test - Forgetting, median [Q1,Q3] 4.0 [2.0,6.0] 3.0 [1.0,5.0] 5.0 [4.0,6.0] <0.001
Rey Auditory Verbal Learning Test - Percent Forgetting, median [Q1,Q3] 36.0 [15.4,69.2] 28.6 [13.3,50.0] 100.0 [100.0,100.0] <0.001
Rey Auditory Verbal Learning Test - Immediate, median [Q1,Q3] 44.0 [34.0,54.0] 47.0 [39.0,56.0] 23.0 [19.0,27.0] <0.001
Rey Auditory Verbal Learning Test - Learning, median [Q1,Q3] 4.0 [2.0,6.0] 3.0 [2.0,5.0] 5.0 [4.0,6.0] <0.001
Modified Preclinical Alzheimer Cognitive Composite - Trails, median [Q1,Q3] 0.3 [-6.4,1.9] 1.3 [-0.5,2.6] -13.3 [-15.8,-11.6] <0.001
Modified Preclinical Alzheimer Cognitive Composite - Digit, median [Q1,Q3] 0.3 [-6.9,2.0] 0.9 [-0.7,2.7] -16.5 [-17.8,-13.8] <0.001
Alzheimers Disease Assessment Scale (13 items), median [Q1,Q3] 9.0 [5.7,14.0] 7.3 [5.0,11.0] 29.5 [24.2,35.3] <0.001
Alzheimers Disease Assessment Scale (11 items), median [Q1,Q3] 6.0 [3.7,11.7] 4.3 [3.3,7.0] 17.2 [14.4,21.8] <0.001
Task 4 of ADAS11, median [Q1,Q3] 3.0 [1.0,7.0] 2.0 [1.0,4.0] 9.0 [8.0,10.0] <0.001
Trail Making Test Part B Time, median [Q1,Q3] 71.0 [54.2,98.0] 67.0 [52.0,86.0] 180.0 [100.5,300.0] <0.001
Brain Imaging
Intracranial Volume, median [Q1,Q3] 1444730.0 [1333600.0,1559175.0] 1438330.0 [1334740.0,1554250.0] 1450070.0 [1330005.0,1560957.5] 0.829
Whole Brain Volume, median [Q1,Q3] 1034000.0 [962302.0,1130290.0] 1049365.0 [971227.8,1135525.0] 978824.0 [883139.0,1062370.0] <0.001
Ventricle Volume, median [Q1,Q3] 28216.8 [20749.7,44062.0] 25886.4 [19008.1,38448.6] 48664.9 [33408.2,62852.5] <0.001
Middle Temporal Gyrus Volume, median [Q1,Q3] 20609.0 [18603.5,22929.0] 20962.0 [19260.8,23218.5] 18211.5 [16149.2,19730.8] <0.001
Entorhinal Volume , median [Q1,Q3] 4015.0 [3590.5,4518.8] 4087.0 [3708.2,4579.2] 3222.5 [2559.0,3911.0] <0.001
Fusiform Volume, median [Q1,Q3] 18305.0 [16710.0,20324.0] 19282.0 [17296.0,20920.0] 16219.0 [14809.0,17816.2] <0.001
Hippocampus Volume, median [Q1,Q3] 7471.6 [6770.6,8067.4] 7610.2 [7050.5,8182.4] 5748.3 [5057.3,6355.1] <0.001
Genetic
APOE4, median [Q1,Q3] 0.0 [0.0,1.0] 0.0 [0.0,1.0] 1.0 [0.0,1.0] <0.001
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Figure 3.1: Violin plots highlighting distributions of numerical variables in experiment 1
hued on diagnosis (CN/AD)
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Figure 3.2: Violin plots highlighting distributions of numerical variables in experiment 2
hued on conversion (stable/AD)
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Grouped by Conversion
Overall MCIstable MCIAD P-Value

Demographics, n 738 444 294
Age, median [Q1,Q3] 73.4 [67.9,78.5] 72.4 [66.5,77.9] 74.5 [69.6,79.1] 0.001
Gender, n (%)

Female 298 (40.4) 177 (39.9) 121 (41.2) 0.784
Male 440 (59.6) 267 (60.1) 173 (58.8)

Race, n (%)
White/Asian/Other 710 (97.5) 425 (97.7) 285 (97.3) 0.901
Black 18 (2.5) 10 (2.3) 8 (2.7)

Ethnicity, n (%)
Not Hisp/Latino 713 (97.0) 428 (96.8) 285 (97.3) 0.905
Hisp/Latino 22 (3.0) 14 (3.2) 8 (2.7)

Marital Status, n (%)
Not Married 153 (20.8) 99 (22.4) 54 (18.4) 0.214
Married 582 (79.2) 342 (77.6) 240 (81.6)

Years of Education, median [Q1,Q3] 16.0 [14.0,18.0] 16.0 [14.0,18.0] 16.0 [14.0,18.0] 0.085
Cognitive Measures
Mini Mental State Exam, median [Q1,Q3] 28.0 [26.0,29.0] 28.0 [27.0,29.0] 27.0 [26.0,28.0] <0.001
Delayed Total Recall, median [Q1,Q3] 6.0 [3.0,9.0] 8.0 [5.0,9.0] 3.0 [1.0,6.0] <0.001
Rey Auditory Verbal Learning Test - Forgetting, median [Q1,Q3] 5.0 [3.0,6.0] 4.0 [3.0,6.0] 5.0 [4.0,6.0] <0.001
Rey Auditory Verbal Learning Test - Percent Forgetting, median [Q1,Q3] 62.5 [33.3,100.0] 50.0 [25.0,73.3] 87.5 [60.0,100.0] ¡0.001
Rey Auditory Verbal Learning Test - Immediate, median [Q1,Q3] 32.0 [26.2,41.0] 37.0 [30.0,45.0] 27.0 [23.0,32.0] <0.001
Rey Auditory Verbal Learning Test - Learning, median [Q1,Q3] 4.0 [2.0,6.0] 5.0 [3.0,7.0] 3.0 [2.0,4.0] <0.001
Alzheimers Disease Assessment Scale (13 items), median [Q1,Q3] 16.0 [11.0,21.3] 13.0 [9.3,17.0] 21.0 [17.2,25.0] <0.001
Task 4 of ADAS11, median [Q1,Q3] 5.0 [4.0,7.0] 4.0 [3.0,6.0] 7.0 [6.0,9.0] <0.001
Trail Making Test Part B Time, median [Q1,Q3] 96.0 [70.2,131.0] 83.5 [65.0,112.8] 120.0 [85.0,194.8] <0.001
Brain Imaging
Intracranial Volume, median [Q1,Q3] 1533305.0 [1432292.5,1651465.0] 1527450.0 [1431647.5,1636420.0] 1542475.0 [1436612.5,1671352.5] 0.217
Whole Brain Volume, median [Q1,Q3] 1026515.0 [958550.5,1116612.5] 1074340.0 [969606.0,1139420.0] 970229.0 [904029.0,1075140.0] 0.007
Ventricle Volume, median [Q1,Q3] 42001.5 [28566.5,55888.8] 32882.0 [22479.0,52877.0] 48112.0 [39494.0,58946.0] 0.020
Middle Temporal Gyrus Volume, median [Q1,Q3] 18848.5 [16957.5,21570.0] 19393.5 [18706.0,23108.2] 17021.0 [15046.2,18222.5] <0.001
Entorhinal Volume , median [Q1,Q3] 3311.5 [2776.0,3777.0] 3584.0 [3167.5,4004.5] 2891.5 [2454.8,3418.2] 0.001
Fusiform Volume, median [Q1,Q3] 16922.0 [15265.8,19518.5] 17826.0 [15784.5,20555.8] 15838.0 [13265.8,17248.5] 0.008
Hippocampus Volume, median [Q1,Q3] 6400.0 [5772.5,7235.5] 6630.0 [5998.0,7712.0] 5753.0 [4925.5,6941.0] 0.007
Genetic
APOE4, median [Q1,Q3] 0.0 [0.0,1.0] 0.0 [0.0,1.0] 1.0 [0.0,1.0] 0.309

Table 3.2: Experiment 2 Data. Data were tested for normality using the Kol-
mogorov–Smirnov test. Continuous data are described by the median and quartiles, as
all continuous variables did not fit a normal distribution (alpha = 0.05, and p <0.05). Cat-
egorical variables are described by percentages. The Mann-Whitney U test was used to
compare continuous data, while the chi-square or Fisher exact tests were used to compare
categorical variables.
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Chapter 4

Machine Learning Process

Herein, we highlight the machine learning process (Fig. 4.1) for both experiments

that begins with the model and feature selection and ends with model evaluation and

interpretation.

We implemented a supervised extreme gradient boosting (XGBoost) classifier, a

more regularized form of the stochastic gradient boosting ensemble algorithm, outper-

forming its predecessor in performance, scalability, and efficiency[109]. We theoreti-

cally (Table 4.1) and empirically ([45, 110] motivate our model selection. XGBoost

combines decision trees sequentially, and each new tree in sequence corrects the er-

rors of the previous tree to minimize the objective function in Eq. 4.0.1 . Because of

XGBoost’s iterative decision tree-based architecture, XGBoost can be highly inter-

pretable.
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Table 4.1: Motivating model selection

Models Scaling Bias-Variance Limitations

Linear models C(d) ↑ Bias, ↓ Variance Plateaus in N >> M

Decision Trees C(N) ↓ Bias, ↑ Variance Deep trees lack generalization

KNN C(1/Nd) ↑ Bias, ↓ Variance Curse of dimensionality

Näıve Bayes C(Nd) ↑ Bias, ↓ Variance complex/non-linear interactions

Random forest C(N2) ↓ Bias, ↑ Variance Homogeneous trees

XGBoost C(N) ↑ Bias, ↓ Variance, boosting ↓ Bias Heterogenous trees

The XGBoost algorithm optimizes an objective function:

Obj = Loss+ Ω (4.0.1)

For binary classification tasks, the loss function (Loss) often uses the log loss

function:

Loss =
∑
i

[yi log(1 + e−ypredi ) + (1− yi) log(1 + eypredi )] (4.0.2)

The regularization term (Ω) helps prevent overfitting:

Ω = γ ∗ T + 0.5 ∗ λ ∗
T∑
j=1

w2
j (4.0.3)

Using Taylor expansion and fixed-term simplifications, the approximate objective

function at the t-th iteration is:

Obj(t) ≈
n∑
i=1

[giwq(xi) +
1

2
hiw

2
q(xi)

] + γT +
1

2
λ

T∑
j=1

w2
j (4.0.4)
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Gradients (gi) and Hessians (hi) of the loss function are calculated as:

gi =
∂Loss

∂ypredi
, hi =

∂2Loss

∂y2predi
(4.0.5)

The algorithm selects the best feature split using a greedy method, choosing the

split with the highest gain:

Gain =
1

2

[
G2
L

HL + λ
+

G2
R

HR + λ
− (GL +GR)2

HL +HR + λ

]
− γ (4.0.6)

Figure 4.1: Machine Learning Process
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4.1 Feature selection

Feature selection allows us to reduce the dimensionality and complexity of the data

and model, respectively. We begin the machine learning process by elucidating which

features were important in AD risk. We first split the training dataset into 70% train-

ing and 30% test subsets. The average feature importance according to XGBoost was

calculated based on each feature’s proportionate contribution to the model, computed

for each tree in the model. Specifically, when comparing proportionate contribution

across features, a higher gain value is indicative of greater predictive performance

and thus greater feature importance, and this process was repeated 100 times with

different random number seeds (0-99) to ensure statistical stability. Thereafter, we

selected the top 10 ranked features (Fig. 5.1).

To include the fewest features while maintaining performance, we initialized a

baseline ROC-AUC score of 0, then trained, predicted and calculated the new ROC-

AUC score using the XGBoost model with the top ranked feature only. Thereafter,

we added both the first and second ranked feature, repeated the training, predicting,

and calculating process to acquire a new ROC-AUC score. If the ROC-AUC score

of the current selected features (e.g., top two features) showed improvement over

the old score (e.g., top feature alone), the new feature was kept (i.e., second ranked

feature), otherwise, the process stopped at the last added feature (i.e., top feature

alone); Table 5.2). The models’ performances were evaluated with fivefold stratified

cross-validation for 100 iterations. This approach was utilized for both experiments.

For experiment 2, we employed an additional greedy feature selection algorithm that

evaluates the classifier’s performance based on the best subset of features.
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4.2 Model Evaluation

The simplified decision route XGBoost model (i.e., constrained to a single decision

tree) was compared to that of the default XGBoost (i.e., trained with the default num-

ber of decision trees)(Figures 5.3 and 5.10). Fivefold stratified cross-validation for

100 iterations was used to decrease overly optimistic outcomes and improve statistical

stability. To test model performance, we estimated the area under the curve (AUC)

of the receiver operating characteristic (ROC) and precision-recall (PR) curves, as

well as classification reports and confusion matrices. Plotting the true positive rate

(TPR) against the false positive rate (FPR) at various thresholds (0-1) creates the

ROC curves. This value indicates how well the model classifies patients who end

up developing AD. Values closer to 1 indicate better classification performance. The

PR curves show precision and recall for various thresholds (0 to 1). High recall and

precision result in a high area under the curve score, with high precision indicating

low false AD and high recall indicating low false AD. Each AUC value is computed

as the mean over 100 iterations of fivefold stratified cross-validation.

4.3 Model interpretation

Understanding how a model makes a decision is important to establish trust for end

users (e.g., clinicians). However, many complex models are not easily transparent.

XGBoost constructs decision trees recursively from pseudo residuals and can develop

decision trees that contribute most to a predictive model. If the performance of a

decision tree remains high, lowering the model’s complexity might yield a transparent

decision path. To identify the decision path, we reduced the complexity of XGBoost
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by reducing the number of trees from 150 (default XGBoost) to 1 (Interpretable-

XGBoost) by randomly splitting the available patients into training and validation

datasets (70:30) and limiting the number of estimators to 1.

In experiment 2, we added SHAP explainability. SHAP (Shapley ADitive ex-

Planations) [84] is a model-agnostic, game-theoretic approach to explaining machine

learning outputs, which allocates the value of each feature for a specific prediction

and has been successfully applied to clinic [48]. SHAP plots provide an intuitive ex-

planation of what led to the patients’ risk. The SHAP Python package can be found

here: https://github.com/slundberg/shap. More recently, SHAP methods have been

applied to tree based algorithms (e.g., random forests, gradient boosted) [45]. SHAP

summary plots show feature’s impact and importance. Each point represents a unique

occurrence of the dataset (i.e., a single patient). Their location along the x-axis (i.e.,

SHAP value) shows that feature’s influence on the model’s output for that patient.

Higher SHAP values are associated with a higher risk. A feature’s importance is de-

termined by its average absolute Shapley values and sorted along the y axis (a higher

position equates to a greater importance).

4.4 Integration test

Here we integrate our code with a public dataset to ensure that it processes the data

correctly and produces the expected output.
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Figure 4.2: Integration test with public breast cancer data set
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Chapter 5

Results

5.1 Experiment 1

Baseline patient characteristics and significant associations with develop-

ing AD

Compared to clinically normal controls, AD patients were older, male, married, had

lower education, performed worse on all cognitive tests, were genetically predisposed,

and had lower whole brain volume, middle temporal gyrus volume, entorhinal volume,

hippocampus volume, fusiform volume and larger ventricle volume (Table ??).

XGBoost classifiers’ performance

We implemented a supervised XGBoost classifier with the objective of identifying

high risk factors and patients at the highest risk of AD. Machine learning tools se-

lected three features for experiment 1 (Table 5.2). Using the selected features, the

XGBoost performance model achieved cross-validation accuracy of 98%(Table 5.2).
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Table 5.1: Experiment 1 - XGBoost classification in differentiating between clinically
normal and AD patients using 100-repeated fivefold cross-validation

Top Features Training Validation Improvement

Everyday Cognition Questionnaire (Study partner) - Total 0.973 ± 0.007 0.948 ± 0.037
Alzheimers Disease Assessment Scale (13 items) 0.997 ± 0.004 0.968 ± 0.029 .02

Delayed Total Recall 0.995 ± 0.004 0.977 ± 0.025 .009
Everyday Cognition Questionnaire (Study partner) - Memory 0.995 ± 0.004 0.974 ± 0.027 No improvement

Note : Mean % AUCROC scores +/- SD

The interpretable model maintained performance while improving on interpretability

(Figures 5.3. The models can reliably predict patient diagnosis.

Figure 5.1: Exp 1: Top 10 ranked features by XGBoost according to their importance.
Average feature importance accumulated from the XGBoost model, using random splits in
a ratio of 7:3, over 100 repetitions with varied number seeds (0-99).
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Figure 5.2: Pairplot for selected features in experiment 1 hued by diagnosis (0: Clinically
Normal, 1: AD)

.
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Figure 5.3: Area under the curve (0 - 1) of the receiver operating curves (ROC) for valida-
tion comparing XGBoost performance and interpretable models with all/selected features.
The ROCs are created by plotting the true positive rate (TPR) against the false positive
rate (FPR) for different thresholds (0 - 1). This value represents how good the model is
at distinguishing between clinically normal and patients that end up developing AD, with
values closer to 1 indicative of better classification performance.

5.1.1 Interpretability

Here we couple the identified, noninvasive and accessible clinical features, together

with a decision route, to diagnose patients with Alzheimer’s disease (Fig. 5.6)
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Figure 5.4: Confusion matrix for validation set

Figure 5.5: Confusion matrix for training set

Figure 5.6: Data-driven decision route
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5.2 Experiment 2

5.2.1 Baseline patient characteristics and significant associ-

ations with MCI-AD progression

In experiment 2 and compared to those that remained stable at mild cognitive impair-

ment, those that converted to AD were older, scored higher on the Alzheimer’s Dis-

ease Assessment Scale (13 items), had reduced whole brain, middle temporal gyrus,

entorhinal, fusiform, and hippocampus volume. Moreover, stablized MCI patients

performed better on the Rey Auditory Verbal Learning Test in the cagegories for

learning, forgetting, and immediate (Table 3.2).

5.2.2 XGBoost classifiers’ performance

We implemented a supervised XGBoost classifier with the objective of identifying

high risk factors and patients at the highest risk of converting from MCI to AD.

By combining genetic, cognitive evaluation, demographic, and brain imaging, the

algorithm identified the primary indicators of MCI-to-AD progression with ROC AUC

values over 87% (Table 5.3. The model can reliably predict patient prognosis. We’ve

improved the performance limitations of the minimal feature selection method (Table

?? and Fig. 5.7 by comprehensively testing subsets of all features using a greedy

sequential feature selection algorithm (Table 5.3 and Fig 5.8, 5.8) . We’ve also shown

that we can improve interpretability while maintaining performance (Fig. 5.10).
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Figure 5.7: Exp 2: Top 10 ranked features by XGBoost according to their importance.
Average feature importance accumulated from the XGBoost model, using random splits in
a ratio of 7:3, over 100 repetitions with varied number seeds (0-99).

Table 5.2: Experiment 2 - XGBoost classification in differentiating between MCIstable and
MCAD patients using 100-repeated fivefold cross-validation.

Top Features Training Validation Improvement

Alzheimers Disease Assessment Scale (13 items) 0.754 ± 0.011 0.670 ± 0.035
Delayed Total Recall 0.791 ± 0.010 0.719 ± 0.032 0.049

Rey Auditory Verbal Learning Test - Immediate 0.958 ± 0.007 0.707 ± 0.034 No improvement

Note : Mean % AUCROC scores +/- SD

5.2.3 Interpretability

In Figure 5.13, the model’s prediction of higher risk is driven by a combination of

factors: higher genetic predisposition, lower Verbal Learning - Immediate Test scores,

lower hippocampus volume, and longer Trail Making Test Part B tim, followed by de-

layed total recall, years of education, ethnicity, and race. Furthermore, a longer Trail

Making Test Part B time points to difficulties in cognitive processing, particularly in

executive function tasks that require task switching.
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Table 5.3: Experiment 2 - XGBoost classification in differentiating between MCIstable and
MCAD patients using 10-repeated fivefold cross-validation and a greedy forward feature
selection algorithm.

Feature subsets AUC-ROC score

1 Task 4 of ADAS11 0.788 ± 0.03

2 Delayed Total Recall,
Task 4 of ADAS11

0.817 ± 0.03

3 Delayed Total Recall,
Task 4 of ADAS11,
APOE4

0.792 ± 0.02

4 Delayed Total Recall,
Task 4 of ADAS11,
APOE4,
Hippocampus Volume

0.803 ± 0.03

5 Delayed Total Recall,
Rey Auditory Verbal Learning Test - Immediate,
Task 4 of ADAS11,
APOE4,
Hippocampus Volume

0.823 ± 0.03

6 Delayed Total Recall,
Rey Auditory Verbal Learning Test - Immediate,
Task 4 of ADAS11,
APOE4,
Trail Making Test Part B Time,
Hippocampus Volume

0.838 ± 0.03

7 Delayed Total Recall,
Rey Auditory Verbal Learning Test - Immediate,
Task 4 of ADAS11,
Rey Auditory Verbal Learning Test - Forgetting,
APOE4,
Trail Making Test Part B Time,
Hippocampus Volume

0.854 ± 0.02

8 Delayed Total Recall,
Rey Auditory Verbal Learning Test - Immediate,
Task 4 of ADAS11,
Years of Education,
Rey Auditory Verbal Learning Test - Forgetting,
APOE4,
Trail Making Test Part B Time,
Hippocampus Volume

0.860 ± 0.02

9 Delayed Total Recall,
Rey Auditory Verbal Learning Test - Immediate,
Task 4 of ADAS11,
Years of Education,
Rey Auditory Verbal Learning Test - Forgetting,
APOE4,
Trail Making Test Part B Time,
Hippocampus Volume,
Fusiform Volume

0.863 ± 0.02

10 Delayed Total Recall,
Rey Auditory Verbal Learning Test - Immediate,
Task 4 of ADAS11,
Race,
Years of Education,
Rey Auditory Verbal Learning Test - Forgetting,
APOE4,
Trail Making Test Part B Time,
Hippocampus Volume,
Fusiform Volume

0.867 ± 0.03

11 Delayed Total Recall,
Rey Auditory Verbal Learning Test - Immediate,
Task 4 of ADAS11,
Race,
Years of Education,
Ethnicity,
Rey Auditory Verbal Learning Test - Forgetting,
APOE4,
Trail Making Test Part B Time,
Hippocampus Volume,
Fusiform Volume

0.870 ± 0.03
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Figure 5.8: Performance as a function of number of features

.

Table 5.4: Exp 2 - Performance metrics of the interpretable model on validation set

Precision Recall F1-score Support
MCIstable 89 95 92 134
MCIAD 91 82 86 88

Accuracy 90 222
Macro avg 90 99 89 222

Weighted avg 90 90 90 222
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Figure 5.9: Pairplot for selected features in experiment 2 hued by prognosis (0: Stabilized,
1: Converted to AD), highlighting a more challenging classification task (i.e., less divisive
features) compared to experiment 1

.
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Figure 5.10: Area under the curve (0 - 1) of the receiver operating curves (ROC) for
validation comparing XGBoost performance and interpretable models to that of other ma-
chine learning approaches with all/selected features. The ROCs are created by plotting
the true positive rate (TPR) against the false positive rate (FPR) for different thresholds
(0 - 1). This value represents how good the model is at distinguishing between clinically
normal and patients that end up developing AD, with values closer to 1 indicative of better
classification performance.
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Figure 5.11: Confusion matrix for training set

Figure 5.12: Confusion matrix for validation set
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Figure 5.13: SHAP summary plots. SHAP summary plots show feature’s impact and
importance. Each point represents a unique occurrence of the dataset (i.e., a single patient).
Their location along the x-axis (i.e., SHAP value) shows that feature’s influence on the
model’s output for that patient. Higher SHAP values are associated with a higher risk. A
feature’s importance is determined by its average absolute Shapley values and sorted along
the y axis (a higher position equates to a greater importance).
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Chapter 6

Discussion

This work is significant in six ways. First, our work extends beyond the identification

of high-risk factors for developing AD. It provides an intuitive explanation of the

intricate interactions and non-linear relationships among the high-risk factors that

lead to the patient’s risk. Second, the most prominent predictors are easily accessible

and readily acquired without the need of invasive procedures (e.g., lumbar punctures,

PET), and can be collected easily. This is particularly useful during a pandemic

when healthcare resources are limited. Third, the elucidation of the machine learning

decision process and identification of absolute thresholds in the resulting decision

tree may increase clinical adoption. Fourth, we further emphasize the ability of

XGBoost to preserve performance while increasing its interpretability by constraining

the number of decision trees to a single tree. Fifth, this work highlights the advantage

of gradient boosted ensembles, in performance and explainability, over linear models,

for heterogeneous tabular data and particularly in the context of predicting ADD

risk. Finally, this paper proposes a simple decision path for identifying patients with

the greatest risk of developing ADD, at the earliest possible time to inform symptom
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treatment, for memory clinic referral, and soon, interventions.

In experiment 1, the supervised extreme gradient boosting classifier performed

well in predicting AD risk, selecting three features (i.e., Everyday Cognition Ques-

tionnaire (Study partner) - Total, Alzheimers Disease Assessment Scale (13 items)

and Delayed Total Recall) with AUC ROC and AUC PR values consistently above

95% (Figure 5.3, Table 5.2. In experiment 2, the XGBoost classifier identified 11 fea-

tures, including genetic, cognitive, demographic and brain imaging data, that reliably

predict MCI-to-AD progression with ROC AUC scores consistently above 87(Table

5.3). Here, we expand on each clinical feature’s capacity to assess AD risk by provid-

ing an absolute threshold. The interpretable models for both experiments maintained

or improved performance (sensitivity and specificity above 90%) over their complex

counterparts while improving their interpretability (Fig. 5.3 and Fig. 5.10). Predict-

ing whether patients end up developing or converting to AD might prompt clinicians

to pursue alternative patient-specific symptomatic treatment. Further, high-risk pa-

tient groups may be targeted for tighter surveillance and soon-preventive therapies,

reducing healthcare system costs.

In the machine learning process, and out of the considered variables, Everyday

Cognition Questionnaire (Study partner) - Total, Alzheimers Disease Assessment

Scale (13 items) and Delayed Total Recall were the most important predictors of

AD risk, followed by brain imaging and the Mini Mental State Exam. These features

point to a multifaceted challenge stemming from cognitive health to a potential dis-

turbance in the executive functions networks. The top key features suggest that the

multi-modal acquisition (i.e., imaging, genetic, cognitive testing) of cognitive factors

may play an important role in determining AD-risk.

90

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/msbe


M.A.Sc. Thesis – M. Kadem; McMaster University – Biomedical Engineering

6.1 Explaining the heterogeneity

AD patients were older, male, married, had lower education, performed worse on all

cognitive tests, and were genetically predisposed (i.e., APOE4 variant). AD risk is

multi-factorial and includes demographics, lifestyle, environmental factors and genetic

predisposition. Age, especially beyond 65, is the greatest risk factor for AD. Higher

education may postpone AD onset by increasing ”cognitive reserve”¡citestern cogni-

tive 2012. Higher education, operationalized as years of schooling, is related with

reduced AD diagnosis. Our demographics showed that there was not a difference in

race across AD and clinically normal groups; however, we did not conduct analyses

stratified by race categories. Educational attainment (measured by years of school-

ing) did not enhance memory function in Black AD patients, but it did in White AD

patients[61]. These characteristics affect AD outcome, yet minorities are underrep-

resented in research studies, and future studies should focus on stratified and/or in-

tentional analysis across race and ethnicity. Across AD and clinically normal groups,

cognitive measures across several cognitive domains and assess via numerous tests

(see Table 3.1) were different with the AD group performing poorly compared to the

clinically normal group. The mini mental state examination (MMSE) and Montreal

Cognitive Assessment (MoCA) have been suggested as cut-off thresholds for identi-

fying adults with baseline mild cognitive impairment who are at risk of developing

AD. MMSE alone may not be sensitive enough to identify minor cognitive changes in

persons with mild cognitive impairment, but when combined with more comprehen-

sive cognitive evaluations, it may be useful for tracking cognitive changes over time.

Whether variations in MMSE scores over time may be used with other cognitive mea-

surements and biomarkers to diagnose AD earlier is uncertain. However, the top two
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ranked features by the XGBoost model based on their importance were the Every-

day Cognition Questionnaire and Alzheimers Disease Assessment Scale, with MMSE

showing up as our 5th most important feature and MoCA as the 9th most important

feature. The Alzheimers Disease Assessment Scale and delay-total recall differenti-

ated the groups well (see Figure 6.6). Memory paradigms (e.g., delayed total recall)

can track neurodegenerative disease trajectories [111].Taken together, delay-total re-

call and Alzheimers Disease Assessment Scale may be sensitive to neurodegenerative

disease trajectories more so than MMSE or MoCA.

AD patients had lower whole brain volume, middle temporal gyrus volume, en-

torhinal volume, hippocampus volume, fusiform volume, and larger ventricle vol-

ume than clinically normal controls. Compared to stable mild cognitive impairment

patients, those who converted to AD were older, scored higher on the Alzheimer’s

Disease Assessment Scale (13 items), and had smaller total brain, middle temporal

gyrus, entorhinal, fusiform, and hippocampal volumes. Stabilized MCI patients fared

better on the Rey Auditory Verbal Learning Test in learning, forgetting, and imme-

diate categories. With AD, ventricular enlargement, sulcal widening, cortical thin-

ning, and hippocampal broadening increase. Hippocampal shrinkage is a hallmark

of AD-related neurodegeneration, although early stages of AD are associated with

parahippocampal gyrus atrophy. Our findings align with previous work highlighting

entorhinal, perirhinal, and parahippocampal cortex changes with early AD [25, 24].

Interestingly, the SHAP summary plot elucidated important markers for MCI-

to-AD conversion (Fig. 5.13). SHAP is currently state of the art for model ex-

plainability and is a powerful tool that helps in interpreting the output of machine

learning models by attributing feature importance to individual predictors. In 5.13,
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the higher genetic predisposition, lower Verbal Learning - Immediate Test scores,

lower hippocampus volume, and longer Trail Making Test Part B time have col-

lectively contributed to a higher risk prediction from the model. A higher genetic

predisposition signifies an increased likelihood of developing the condition based on

the individual’s genetic makeup (i.e., APOE4). Lower scores on the Verbal Learn-

ing - Immediate Test indicate poorer cognitive performance in memory and learning

tasks, which suggest potential cognitive decline. A reduced hippocampus volume is

known to be associated with memory impairments and is often observed in individ-

uals with neurodegenerative disorders. Lastly, a longer Trail Making Test Part B

time implies difficulties in cognitive processing, especially in executive function tasks

that include task switching. Bilinguals demonstrate reduced switching costs during

task-switching exercises. Additionally, existing research implies that bilingualism may

enhance cognitive reserve, as bilingual individuals usually display initial Alzheimer’s

disease symptoms around 5 years later than their monolingual counterparts [112].

Taken together, these modifiable factors provide valuable insights into the specific

attributes that lead to a higher risk prediction, enabling a better understanding of

the model’s decision-making process and aiding in the development of soon targeted

interventions.

6.2 Comparison with previous models

Most AD risk models use traditional statistical methods. More recently, machine

learning has been applied to predict patients that may end up developing AD [96,

41], but the machine learning-based predictive models have included costly [41–

44], manually selected, and invasive measures (e.g., cerebrospinal fluid analysis of
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β-amyloid (Aβ42) [34], Aβ-positron emission tomography [35, 36] which limits the

availability of these biomarkers and their usage. The most important predictors in

our study were not invasive and can be obtained with little effort. Additionally,

while identifying high-risk indicators is useful for risk assessment, setting threshold

cut-off values for these factors provides clinical relevance by delineating informed

decision routes (i.e., threshold values to distinguish high-risk from low-risk persons).

Complex machine learning algorithms need better and more intuitive explanation

of their decision processes while preserving performance [46]; Yet, interpretable risk

prediction models for disease diagnosis and prognosis are limited [37, 47, 42]. Complex

machine learning algorithms hinder clinically intuitive decision process explanations,

preventing clinical uptake. Previous machine learning models for predicting AD risk

are limited in their explainability and interpretability, but also in their approach to

feature selection. Our complex models highlighted the performance capabilities of

gradient boosted models, especially when conducting comprehensive feature selection

(Exp 2), which allowed our interpretable model to surpass the performance of the

latest AD-specific model ([104]) . The interpretable models were designed to support

clinical uptake. XGBoost is more interpretable than ML-based logistic regression,

especially with non-linear data [14]. Particularly when utilizing all features (data

nonlinearity affects the performance of linear models like logistic regression, due to

a mismatch between model and data) and when using metrics suited for imbalanced

data and high-stakes classification like precision and recall (Fig. 5.10).
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6.2.1 The role of multimodal machine learning in multiscale

modelling of the brain

Integrating machine learning with multimodal data (e.g., tabular, imaging, time-

series, text, simulation) will push medical AI beyond what humans can do [113]. The

integration of machine learning in imaging and translational multiscale modelling en-

ables 1) faster modelling/imaging as well as reduced computational burden [114], 2)

enhanced data fidelity in both experimental and simulated datasets, and 3) optimiza-

tion of methods involved in the modelling ranging from image segmentation [115] to

preprocessing (e.g., imputation of missing values in tabular data [116]), supplement-

ing (e.g., dealing with an imbalanced dataset [117]), analyzing (e.g., finding high risk

factors) and interpreting (e.g., interpretable and explainable machine learning) data

to investigate the pathophysiology [118]. In multi-scale modelling, machine learning

can be used to improve the quality and accuracy of both experimental and simulation

data [119]. In terms of data fidelity, machine learning may be used to 1) replace

missing data, 2) streamline data with regards to minimizing data redundancy (e.g.,

PCA (See Dimensionality Reduction section below) to convert high-dimensional data

to low-dimensional space), and/or 3) minimize noise in both experimental, image and

simulation data, hence enhancing quality and accuracy. Recent methods that high-

light how machine learning can improve data fidelity in physics-informed modelling

include 1) a physics-informed neural network that improved resolution and reduced

noise in fluid flow data[78], and 2) implementing machine learning when using 4D flow

MRI trained using 3D modelling-generated synthetic 4D flow MRI data to increase

spatial resolution [79].

Multiscale modelling approaches of the brain go beyond in vivo, in vitro and ex
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vivo experiments and provide non-invasive estimation of difficult-to-access parameters

for identifying and understanding mechanisms across the brain’s innervated struc-

tural hierarchy [120]. Multiscale modelling in the biomedical domain ranges from the

quantum mechanical atomic scale to nanoscale (e.g., membranes), microscale (cel-

lular damage), mesoscale (tissue heterogeneity), macroscale (tissue damage). The

combination of 0-dimensional (0-D) to 3-dimensional (3-D) modelling to couple 1-D

brain networks with 3-D morphology. The 0-D model is also called lumped parameter

modelling and relates the of flow of fluids (e.g., brain blood flow related to vascular

dementia) to the flow of electrons and use circuit elements to model flow and pres-

sure across time. Lumped parameter models use “sources” and “sinks” to describe

flow into and out of the brain’s vascular beds. In the lumped parameter model, the

electrical analog of blood flow is current. Viscous blood resistance and inertia are

analogous to resistance and inductance, respectively, and vessel compliance is anal-

ogous to capacitance. Different formulations of these elements allow modelling from

microvascular to macrovascular networks in cerebrovascular beds. In contrast with

0-D/lumped parameter models, whereby variables fluctuate only as a function of time

and are represented by ordinary differential equations, 3-D model variables vary as a

function of time and 3-D space and are represented by non-linear partial differential

equations. 3-D models require solving Navier-Stokes equations (i.e., continuity and

momentum), within a region of interest, and involve computational methods such

as finite volume, element and difference methods or lattice Boltzmann method to

obtain approximate numerical solutions[63]–[68]. Patient specific geometries of the

region of interest are obtained from imaging modalities and can be used for developing

computational models for estimating individualized metrics [121].
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Despite the promise for machine learning to speed up, improve and automate

processes in the clinical domain, the benefits of machine learning models are only

as good as the data they are trained on. Thus, multi site representative samples

that account for the heterogeneity from patients to imaging modalities and their

algorithmic acquisition and construction of images is necessary to improve trust and

clinical adoption. It is becoming more feasible to view the human architecture in

more detail with increased computing, evolution of digital information, and advances

in medical imaging, which will feedforward to computational modelling and machine

learning methodologies. More advancements in broad integration of multimodal data

and machine learning, are necessary before these technologies may be implemented

in the clinical context. (see Kadem et al., (2022) for more details[122]).

6.3 Limitations

There is potential for improvement in this study, which will be addressed in future

research. The approach herein is data dependent, and thus varies depending on

different variable distributions. Despite the multi-site retrospectively studied data,

external validation from a different continent is necessary to thoroughly assess the

generalizability of the features and model, and thus this is a preliminary diagnostic

and prognostic evaluation of AD patients. We look forward to incorporating addi-

tional data from additional sites to further improve the performance of the model.

We compromised performance for interpretability and avoided overfitting by using a

minimal number of clinical features as clinical settings favor interpretable models.
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Chapter 7

Conclusion

7.1 Summation

Our work extends beyond the identification of high-risk factors for AD risk, providing

an intuitive explanation of the decision process behind assessing risk. We identified

data-driven decision routes with for key clinical features with diagnostic and prog-

nostic performances above 97% and 87%, respectively. Finally, the most prominent

predictors are non-invasive and easily collected.

In summary, we’ve identified accessible clinical features, together with clinically

operable decision routes, to reliably and rapidly predict patients at the highest risk of

developing Alzheimer’s disease. We developed interpretable diagnostic and prognostic

risk prediction models based on XGBoost with AUC ROC consistently above 0.87+

that can predict short-term AD risk of patients, enabling prevention and potentially

expediting research into interventions. The key features highlight the multifaceted

nature of risk prediction in AD and suggests the use of indices beyond the current

markers to assess AD risk following mild cognitive symptoms. Of clinical relevance,
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these features explain some of the heterogeneity observed in short-term AD risk and

serve to highlight the importance of personalized, accurate, and rapid patient risk

stratification. Specifically, our findings suggest the importance of examining inter-

actions of cognitive testing for treatment planning and assessing risk stratification

for patients, and particularly older adults. Finally, our work provides a base for fu-

ture studies focusing on explainable and interpretable predictive models motivated

for clinical uptake and to act as a tool in supporting clinical decisions.

7.2 Future directions

In contrast with the revolution in language and computer vision, AI has yet to rev-

olutionize medicine due to the heterogeneity of the population and clinical features.

Current medical AI applications are confined to a particular disease and modality,

but the rise in large biobanks and cheaper genome sequencing are powering multi-

modal medical AI models beyond human capabilities. Future studies should leverage

larger and more diverse databanks and explainable multimodal AI approaches to help

explain the heterogeneity in Alzhemier’s Disease.

With the rise of computational power and digitized data, machine learning will

continue to gain momentum in its applications to research and clinical settings. In

this paper, we described key concepts in machine and deep learning, to familiarize

students, clinicians, scientists, and engineers with fundamental principles of machine

and deep learning. We identify important potential pitfalls that must be consid-

ered when building models with practical implications. Machine and deep learning

will continue to 1) contribute to our understanding of medical abnormalities and 2)

improve our capacity to create patient-specific diagnostic and prognostic tools for
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classifying and assessing outcomes following medical treatments, 3) help in treatment

option selection and optimization, 4) minimize time, automate, and improve each

part of the clinical processes and 5) adapt to heterogenous conditions.

To improve the generalizability of machine and deep learning and their uptake

in clinical settings, we need multi-site, diverse datasets including data from under-

presented groups that account for the heterogeneity in patients and imaging modal-

ities, and operator interpretations. Implementing machine learning approaches in

different research domains will also require adopting open science principles to im-

prove reproducibility and reduce “blackbox” approaches.

Advances in machine and deep learning in recent and future years will require

multidisciplinary collaborations between clinicians, scientists, industry and engineers

to form personalized, robust, trustworthy, generalizable, explainable, reliable, repro-

ducible, and safe diagnostic and predictive tools. Future work is required to deter-

mine whether machine learning-based approaches outperform traditional statistical

approaches for risk assessment and to determine ways to increase uptake of reliable

machine learning models across research domains.
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deau, Malo Gaubert, Alexandre Bejanin, Robin de Flores, Miranka Wirth,
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der Koppara, Carolin Lange, Hanna Leicht, Tobias Luck, Melanie Luppa, Man-
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