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Lay Abstract

The trustworthiness of artificial intelligence must be explored before society can fully

reap its benefits. The element of trust that is explored in this thesis is the robustness

of wearable device based artificial intelligence models to changes in data acquisition.

The specific changes that are explored are changes in the wearable device used to

record the input data as well as input data from different recording sessions. Using

human activity recognition models as a vehicle, the results show that performance

degradation occurs when the wearable device is changed and when data comes from

a different recording session. An out of domain discriminator is developed to alert

users when a potential performance degradation can occur.
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Abstract

Trust is explored in this thesis through the analysis of the robustness of wearable de-

vice based artificial intelligence based models to changes in data acquisition. Specif-

ically changes in wearable device hardware and different recording sessions are ex-

plored. Three human activity recognition models are used as a vehicle to explore

this: Model A which is trained using accelerometer signals recorded by a wearable

sensor referred to as Astroskin, Model H which is trained using accelerometer signals

from a wearable sensor referred to as the BioHarness and Model A Type 1 which

was trained on Astroskin accelerometer signals that was recorded on the first session

of the experimental protocol. On a test set recorded by Astroskin Model A had a

99.07% accuracy. However on a test set recorded by the BioHarness Model A had

a 65.74% accuracy. On a test set recorded by BioHarness Model H had a 95.37%

accuracy. However on a test set recorded by Astroskin Model H had a 29.63% accu-

racy. Model A Type 1 an average accuracy of 99.57% on data recorded by the same

wearable sensor and same session. An average accuracy of 50.95% was obtained on a

test set that was recorded by the same wearable sensor but by a different session. An

average accuracy of 41.31% was obtained on data that was recorded by a different

wearable sensor and same session. An average accuracy of 19.28% was obtained on

data that was recorded by a different wearable sensor and different session. An out of
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domain discriminator for Model A Type 1 was also implemented. The out of domain

discriminator was able to differentiate between the data that trained Model A Type

1 and other types (data recorded by a different wearable devices/different sessions)

with an accuracy of 97.60%.
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Chapter 1

Introduction

Artificial intelligence (AI)-powered autonomous medical advisory systems are trans-

forming the medical space. An AI algorithm can make decisions from patterns found

in various types of medical data, such as imaging, electronic health records, and phys-

iological signals. However, as the use of AI-powered autonomous medical advisory

systems becomes more prevalent and model scrutability becomes more opaque, trust

in AI must be fostered for a smooth adoption into clinical settings and more generally,

into society.

1.1 Problem Statement

Trust in autonomous systems is an ongoing discussion in literature. Lee and Moray

(1992) describe trust using the ideas of performance, process, and purpose of the

autonomous system:

Process relates to understanding how the autonomous system operates (Lee and

Moray, 1992; Lee and See, 2004).
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Purpose is defined as the intent of the autonomous system (Lee and Moray, 1992;

Lee and See, 2004)

Performance encompasses the reliability, predictability, or robustness an autonomous

system (Lee and See, 2004; Lee and Moray, 1992)

When specifically discussing trust in AI-powered autonomous systems this frame-

work continues to provide a structured approach to clearly defining the facets of trust

(Siau and Wang, 2018; Hengstler et al., 2016). Trustworthy AI has also been dis-

cussed by governmental groups. The Ethics for Trustworthy AI (High-Level Expert

Group on AI, 2019) details that the seven key requirements of trustworthy AI:

1. Human agency and oversight

2. Technical robustness and safety

3. Privacy and data governance

4. Transparency

5. Diversity, Non-Discrimination and fairness

6. Societal and environmental well-being

7. Accountability

The requirement of technical robustness and safety falls underneath the perfor-

mance aspect of trust in general autonomous systems. This thesis focuses on the

technical robustness and safety element of trust in AI.

Technical robustness and safety includes the reliability or the general safety of

the machine learning algorithm (High-Level Expert Group on AI, 2019). One of the
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factors may that impact the technical robustness and safety of the AI algorithms

is dataset shift. Arnold et al. (2019) place dataset shift underneath the safety in

the elements of trust in the AI services. Generally dataset shift occurs when the

conditions in which the system is developed differs from those in which the system

is used (Storkey, 2009). There are many forms of dataset shift which are described

briefly below (Storkey, 2009):

Simple covariate shift occurs when the feature distributions change between train-

ing and testing

Prior Probability shift occurs when the distribution of the labels change between

the training set and test set

Sample Selection Bias occurs when there is a change in distrbution as a result of

a sample selection procedure

Imbalanced Data occurs when data is balanced in development stages of the model

but the deployment distribution data is inherently imbalanced

Domain Shift occurs as a result of a change in measurement system

Source Component Shift occurs because data is made up of different sources and

the proportions of the sources can change from development to deployment

In this thesis our specific focus is domain shift which “is characterized by the fact

that a measurement system, or method of description, can change” (Storkey, 2009,

p.19). Domain shift can occur as a result of a change in the chain of data acquisition

that provides data for autonomous medial advisory systems. This is not well studied,

specifically how modifications or variance in wearable devices will impact the AI.

3
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Storkey (2009) describes an unchanging feature space which can be denoted as x0.

However x0 can not be observed and what is observed is some mapping of x0 which

is defined as x = f(x0) and this mapping can change between training and testing

distributions (Storkey, 2009). This reasoning can be extended to the measurement

of signals by wearable devices. In this scenario x0 is the signal to be measured

and wearable devices provide the mapping f into observable space. However if the

wearable devices changes, the mapping f may change as well. This can cause a shift

in the data x. This thesis also explores if performance changes can arise when using

a deep learning model with data that arose from a different session of recording.

Even when using the same wearable device, changes in wearable device placement, or

variations in how an activity can be performed from session to session can occur.

1.2 Proposed Research

In this work domain shift is investigated through the lens of human activity recog-

nition (HAR) models. HAR models can use accelerometer (ACC) data to identify

if an individual is performing a specific activity such as walking, sitting or stand-

ing. The performance of HAR models are evaluated by determining the accuracy on

held-out test data set that was recorded by the same wearable device as the train-

ing data. However, in deployment it is possible that these models will be used with

wearable devices that differ from the wearable devices that were used in development

stages. Using different hardware in deployment may introduce domain shift and cause

a degradation in model performance. To explore this issue, this thesis:

1. Designs a 2-by-2 experimental set-up in which HAR models were tested on data

4
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that came from a different wearable device that recorded the training data. This

set-up will be considered as a type of cross-domain test throughout the rest of

this thesis

2. Investigates a method to estimate the performance degradation (if any) that

HAR models experience when deployed on a test set recorded by different wear-

able device.

Another factor investigated that may cause performance degradation is deploying

HAR models on data that arises from different recording sessions. To explore this

issue, this thesis:

1. Designs an experimental setup to evaluate if performance degradation occurs

when a HAR model is evaluated on data recorded from a different session then

the data used to train it

2. Implements a domain discriminator model to alert users of when the data in-

coming into HAR model is detected as out-of-domain (OOD) meaning that the

new incoming data is not the data that was used to train the model

1.3 Thesis Contributions

This thesis has contributed to the field of trust in AI-powered medical advisory sys-

tems in the following ways:

1. Performed cross-domain tests to determine if performance degradation occurs

in HAR models that are used with data that did not come from the same source

as the training data

5
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2. Developed a domain discriminator that is able to detect OOD. Out of domain

data is when data that the HAR model is deployed on differs from the training

data of the HAR model

1.4 Organization of Thesis

This thesis is organized as follows:

1. Chapter 2 presents a rationale for the investigation of domain shift in wearable

device based medical advisory systems and a literature review on the current

related work in medical advisory systems. The purpose of this chapter is give

the reader an overview of how domain shift can present itself in different medical

advisory systems and the proposed ways to address it.

2. Chapter 3 describes the data collection process for development of the HAR

models. It also describes the methodology for implementing the HAR model.

3. Chapter 4 presents the methodologies for exploring trust through the lens of

robustness with the HAR models developed.

4. Chapter 5 presents the results.

5. Chapter 6 discusses the results and its importance in the context of trust.

6. Chapter 7 concludes the thesis and suggests other avenues for future work.

6



Chapter 2

Literature Review

This literature review addresses in what ways dataset shift, with a particular focus

to domain shift, is investigated in medical advisory systems. The methodology of the

literature review was inspired by the guidelines for conducting literature reviews in

computer science (Kofod-Petersen, 2012).

2.1 Literature Review Methodology

This section covers the search strategy used for the literature review, the primary

selection of studies after the search and the inclusion criteria used to screen papers

found.

2.1.1 Search Strategy

The overall aim of this literature review is to investigate how existing AI-powered

autonomous methods address dataset shift with a particular focus to domain shift

in medical advisory systems. The IEEE Xplore database was searched with the

7
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key words: dataset shift, technical robustness, domain shift, machine learning, deep

learning, artificial intelligence, health care and medical.

2.1.2 Primary Selection of Studies

Literature dating before than 2018 as well as studies written by the author, literature

reviews, comparative studies and surveys were excluded from the literature review.

2.1.3 Assessment of Studies

The full title and abstract of the papers retrieved from the search terms in Section

2.1.1 must have met the following inclusion criteria (IC) to in order to enter the full

text screening:

1. IC1 - The paper’s main concern is dataset shift/domain shift in medical advisory

systems that use AI to make decisions.

2. IC2 - The study is a primary or secondary study that details the results have

been derived by empirical methods. In this literature review this means that

the study must present results that are drawn from a database. The database

used to present results can be an online database or a database that was not

created by the authors of the paper

3. IC3 - The study brings awareness to, solves or discusses domain shift in AI-

powered medical advisory autonomous systems

If the papers were able to surpass the title and abstract screening the next IC

were applied.

8
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1. IC4 - The cause of the dataset/domain shift is a because of a real-world change

in data collection due to hardware or recording session changes

The quality criteria of the papers was identified as:

1. QC1 - The paper is written clearly

2.2 Conducting Review

The selected papers are the papers whose abstracts met the IC1, IC2 and IC3 re-

quirements. Table 2.2 shows the search terms that were used, the results from these

search terms as well as the papers that were selected.

Table 2.1: Search terms and results

Search Database Results Selected
(dataset shift OR technical robustness OR do-
main shift) AND (machine learning OR ar-
tificial intelligence OR deep learning) AND
(health care OR medical)

IEEE
Xplore

257 98

After reviewing the abstracts, it was clear that the papers that were reviewed fell

into two categories of medical advisory autonomous systems that use different types

of data, ones that used medical images and ones that used temporal data. This was

summarized in Table 2.2:

Table 2.2: Selected papers by category

Category
Number of
Papers

Medical Images 83
Temporal Data 15

9
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The medical imaging category contains papers that discuss dataset/domain shift

in the context of autonomous AI systems that use medical images to make decisions.

There are 83 papers contained in this category. The temporal data category contains

papers that discuss dataset/domain shift in context of autonomous AI systems that

use temporal or time series data such as physiological signals to make decisions. There

are 15 papers contained in this category. In this initial analysis is it evident that

dataset/domain shift has garnered attention in the medical imaging community but

less attention in medical data that are time series. Dataset/domain shift in medical

imaging applications is outside the scope of this thesis because medical imaging data

is a different data type than medical temporal data. Inherently, medical images are

typically static data while temporal data is dynamic data. The purpose of including

the medical imaging reflection into the study is to demonstrate to the reader that

the imaging field receives a lot more attention in dataset/domain shift than in the

medical temporal field. IC4 further separated the amount of papers to be included in

the data extraction process. Out of the 15 medical temporal data papers that speak

about dataset/domain shift, 9 mainly focus on dataset/domain shift that arised due

to subject variability and those were excluded as that is out of the scope of this thesis.

2.3 Reporting the Review

The data extracted from the papers contained in this literature review (which is papers

that received a quality score of 1) was presented by category of the physiological

signals that were investigated. Out of the 15 temporal data papers, 6 papers were

reviewed. One paper that was relevant to the topic of interest was included and in

total 7 papers were analyzed.

10
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2.3.1 Electrocardiography Signals

AI models that use electrocardiography (ECG) signals can experience domain shift as

a result of varying recording protocols that sample ECG signals at different frequen-

cies or apply different gains to the signal (Hasani et al., 2020). Varying recording

protocols can be used to record the different online ECG databases that are fre-

quently used to develop AI models for ECG based problems. Each ECG online

database can be interpreted as a domain. Hasani et al. (2020) used adversarial do-

main generalization to learn features that are indistinguishable between the different

ECG databases. To evaluate their methodology they created 4 domains based on

different heart databases. They evaluated their technique using a leave one database

out manner. With their adversarial domain generalization they achieved a better

score on tests from different databases then when adversarial domain generalization

was not employed. The presence of domain shift in ECG signals from different online

databases is also present in ECG delination problems (Chen et al., 2020). Chen et al.

(2020) employed a similar technique as Hasani et al. (2020) and learned features that

did not change amongst the domains (which were also different databases). Their

model had improved performance when compared to a model that did not account of

domain shift on inter-dataset experiments.

2.3.2 Inertial Measurement Unit Signals

Domain shift can also be introduced by changes in the placement and orientation of

the inertial measurement units (IMUs). This has been investigated in gait monitor-

ing tasks of gait event detection and pathological gait pattern recognition (Mu et al.,

2020). Mu et al. (2020) state that domain shift can occur due to the changes of the
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placement and orientation of IMUs that can occur between trials. In this work an

end-to-end position-independent IMU based gait framework that utilized unsuper-

vised domain adaption was successfully able to obtain good results in the presence of

domain shift. Their model, like the solutions for domain shift regarding ECG, learns

domain invariant features. Pan et al. (2021) investigate domain shift when inertial

measurement unit are placed on different body parts. The method used to reduce

domain shift is joint transfer strategy in which the differences between the domains

are reduced but the key structural information is preserved. This method performed

well and was able to mitigate the domain shift between sensors placed on different

body parts.

2.3.3 Electroencephalography Signals

Accurate classification of electroencephalography (EEG) signals are essential to brain

computer interfaces. However EEG signals can be impacted by domain shift because

of electrode placement changes as well as changes in the state of a subject (Han

and Jeong, 2021). Han and Jeong (2021) use empirical risk minimization in order to

improve the inter-session domain shift experienced. Domain shift also presents itself

in classifying emotions from EEG signals. Lew et al. (2020) aim to use a network that

is able to learn emotion representations that are able to correctly classify emotions but

are not impacted by different domains. In particular the model that was developed

performed better than a base model on an experiment in which the training and

testing sets arose from different trials (Lew et al., 2020).
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2.3.4 Electromyography Signals

In gesture recognition with electromyography (EMG) signals, domain shift can be

caused by intra-session, inter-session and intra-subject factors (Ketykó et al., 2019).

Ketykó et al. (2019) look specifically at inter-session and inter-subject shift but the

inter-session results are summarized here since it covers an the area of study in the

thesis. The domain adaption approach used by Ketykó et al. (2019) was an addition

of a domain adaption layer that performed a linear transformation of the features

to the neural network. The domain adaption neural network was able to improve

inter-session recognition.

2.4 Literature Review Summary

The survey of literature demonstrates that:

1. Dataset/domain shift in medical temporal data is an understudied field

2. Dataset/domain shift receives more attention in the medical imaging field then

it does in the medical temporal data field

3. Papers that focus on medical temporal data mostly focuses on domain shift

caused by subject variability

4. Papers that focus on dataset/domain shift because of hardware changes or ses-

sion changes mostly use pre-existing databases

5. The most common way to reduce domain shift is to learn features that are

invariant to domains
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This thesis addresses the research gap concerning dataset shift/domain shift in

medical temporal data. Although there has been investigation into this work, this

area of study is still understudied. In this thesis, we will using data that did not

arise from a pre-recorded database. We address domain shift caused by changes in

hardware as well as the datast shift due to changes in recording session.
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Chapter 3

Human Activity Recognition

This chapter describes the methodology used to develop the HAR models which served

as our wearable device based medical advisory system of interest. In Section 3.1 the

experimental protocol for recording human activity data is described. The data is

divided into Dataset 1 and Dataset 2. The details of both datasets are described in

Subsection 3.1.1. The pre-processing steps for Dataset 1 and Dataset 2 are detailed in

Section 3.2. In Section 3.3 the development process of the HAR models is described.

Figure 3.1 provides a graphical overview of this chapter.

Figure 3.1: Methodology overview
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3.1 Data Collection Procedure

The data collection for this thesis was conducted in a home setting with the authour

as the sole participant due to Government and University research restrictions around

COVID-19. The authour recorded tri-axial acceleration through two wearable devices,

the BioHarness and the Astroskin, whilst performing 6 human activities. The 6 human

activities performed were:

1. Walking in the hallways, living room and kitchen

2. Sitting upright at a chair in front of a desk

3. Standing in a room in the author’s home

4. Laying face-up on a mattress

5. Walking Downstairs

6. Walking Upstairs

A comparison of the Astroskin and the BioHarness wearable devices used in the

collection of the data are shown below. The hardware properties such as the range of

the accelerometer measurement, the resolution of the analog to converter was taken

from the respective datasheets (Ast, 2009; Zep, 2018). The cost are provided by the

quotes provided whilst purchasing.
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Table 3.1: Properties of Astroskin and BioHarness

Property Astroskin Zephyr BioHarness

Range of Accelerometer Measurement -16 g to 16 g - 16 g to 16 g

Resolution of Analog to Digital Converter 13 bit 12 bit

Sampling Frequency 50 Hz 100 Hz

Body Worn Position
Right Side

of Lower Abdomen

Left Side

of Upper Abdomen

Cost $6500 $901.39

The BioHarness was placed on the left side of the upper abdomen and the As-

troskin was placed on the right side of the lower abdomen.

The differences between the BioHarness and the Astroskin devices are:

1. Resolution of Analog to Digital Converter: Astroskin has a slightly higher

resolution then BioHarness

2. Sampling Frequency: BioHarness has a higher sample frequency

3. Placement of Body Sensor: As visualized in Figure 3.2 and detailed in Table

3.1 the BioHarness was placed on the left side of the upper abdomen and the

Astroskin was placed on the right side of the lower abdomen

Astroskin has a slightly higher resolution then BioHarness meaning it could cap-

ture the digital representation of the ACC signal more accurately. Even though the

BioHarness has a higher sampling frequency, the sampling rate of the BioHarness

was down-sampled to 50 Hz to match the sampling rate of Astroskin. The differences
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in the wearable device placement and resolution will translate to a slightly different

ACC signal recording.

The Astroskin and the BioHarness also have a stark difference in price. The

Astroskin device were used as part of the data collection process because it was a part

of a larger project spear-headed by the Canadian National Defence Department. The

Zephyr BioHarness was selected as a comparison device because it had a difference

in properties compared to the Astroksin and also it was a cheaper alternative.

The activities were not performed in a specific sequence therefore transitions be-

tween activities were not recorded. This experimental choice allowed to author to be

certain that windows of data taken from specific recordings only contained the de-

sired activity, thus providing certainty for model training ground truth. The potential

limitation is that the data does not include the transition between activities.

The BioHarness was placed on the left side of the upper abdomen and the As-

troskin was placed on the right side of the lower abdomen. During the data collection

process the orientation and placement of both sensors on the authour’s body were kept

consistent. The BioHarness and the Astroskin wearable devices were synchronized

through a light tap at the beginning of each recording session for each activity - this

action created a spike in the data that was easily observed. After the synchronization

step, the authour performed the designated activity. When activity was completed

the wearable sensors were removed from the authors body and the collected data was

uploaded to a Mac Mini for further processing.

Table 3.2 describes the amount of data collected for each activity and which

recording session of the experimental protocol it was recorded. In each session the

activity was performed continually.

18



M.A.Sc. Thesis – A. Simons McMaster – Biomedical Engineering

Figure 3.2: Location of sensors
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Table 3.2: Amount of data recorded from each session

Activity Session Amount of Time (min)
Walking 1 16.3
Walking 2 3.5
Sitting 1 13.3
Sitting 2 3.0
Standing 1 15.0
Standing 2 2.8
Laying 1 12.7
Laying 2 3.0
Walking Upstairs Multiple 18.5
Walking Downstairs Multiple 21.2

Total N/A 109.3

3.1.1 Data Organization

The collected data is organized into two datasets. Dataset 1 includes all the data

recorded. Dataset 2 is a subset of Dataset 1 that only includes the activities walking,

sitting, standing and laying. Dataset 2 is further organized into types of data based

on the session the data was recorded and the wearable device that performed the

recording. The different types of data are summarized in Table 3.3. When referring

to Dataset 2, this terminology will be used throughout the thesis. The different data

types are not to be confused with Type 1 and Type 2 error that are used in statistical

hypothesis testing. In this thesis the types of the data refer to different categories of

data present in Dataset 2.
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Table 3.3: Types of data

Session Wearable Sensor

Type 1 1 Astroskin

Type 2 2 Astroskin

Type 3 1 BioHarness

Type 4 2 BioHarness

3.2 Preprocessing

For HAR models that use deep learning methods the preprocessing step is often omit-

ted, especially if the signals are to be used in an end-to-end deep learning fashion.

An example of this omitted step in an end-to-end approach was demonstrated by

Imran and Latif (2020). However in this thesis some preliminary preprocessing steps

are performed. This section describes the preprocessing of the acquired accelerome-

ter (ACC) signals from Astroskin and BioHarness. Initally before the preprocessing

steps the ACC signal of the BioHarness device is downsampled by a factor of two

to match the sampling frequency of the Astroskin wearable device. The re-mapping

and filtering stages of preprocessing is done on Dataset 1. Then the subset of data,

Dataset 2 is extracted. Standardization and segmentation were performed on the two

data sets separately.

21



M.A.Sc. Thesis – A. Simons McMaster – Biomedical Engineering

3.2.1 Re-mapping

Astroskin and BioHarness have different frame of references for the x, y and z coordi-

nate system. In order to obtain a common frame of reference for the ACC signal the

y-axis and x-axis of the Astroskin ACC signal recordings were exchanged. Figure 3.3

shows frame of reference shared between the BioHarness and Astroskin.

Figure 3.3: Coordinate system
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3.2.2 Filtering

To inspect the recorded tri-axial ACC signals for noise (unwanted signals present in

the signal of interest), the power spectrum for each recorded activity on each day was

computed. The power spectrum was calculated by computing the fourier transform

of the ACC signal and then taking the square of the absolute value of the spectrum.

There is a constant 1 g force that acts downwards on the body and therefore a large

DC component is present in the power spectrum of the data. The power spectrum of

the x-axis for walking on Session 1 is shown in Figure 3.4 as an example.

Figure 3.4: Power spectrum of session 1 walking: x-axis

The large DC spike makes it difficult to inspect other frequencies that are present

in the signal. Therefore displayed power spectrums start at approximately 0.5 Hz in

order to show the frequency content of the signal. For brevity the power spectrums

of the walking activity from both sessions and wearable devices are included in this

section. The power spectrums of the remaining activities are located in Appendix

A. The power spectrum of the walking activity recorded by Astroskin on Session 1
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is shown in Figure 3.5. The power spectrum of the walking activity recorded by

Astroskin on Session 2 is shown in Figure 3.6. The power spectrum of the Walking

activity recorded by the BioHarness on Session 1 is shown in Figure 3.7. The power

spectrum of the walking activity recorded by BioHarness on Session 2 is shown in

Figure 3.8.

(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure 3.5: Walking session 1 recorded by Astroskin
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(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure 3.6: Walking session 2 recorded by Astroskin
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(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure 3.7: Walking session 1 recorded by BioHarness
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(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure 3.8: Walking session 2 recorded by BioHarness

With a quick inspection it can be seen that the power spectrums are all quite

different. Furthermore, it can be seen that there are some frequency components

beyond 20 Hz. Karantonis et al. (2006) states that all measured body movements

are contained within frequency components below 20 Hz. Therefore as in Anguita

et al. (2013) a 3rd-order 20 Hz cutoff Butter-worth filter was implemented remove

unwanted frequencies that may contaminate the signal.
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3.2.3 Standardization

For a machine learning algorithm, to perform well the features should have similar

scales (Géron, 2019). Standardization was used in this work to have similar scales

in the features, which in this case was the x, y and z axis of the accelerometer

data. “Standardization subtracts the mean value (so standardized values always

have a zero-mean) and then divides by the standard deviation so that the resulting

distribution has unit variance” (Géron, 2019, p.69). The mean and standard deviation

was calculated from what was designated as the training set of the data as advised

by Géron (2019). Then the mean and standard deviation was calculated over the

training set of data. The standardization was performed following the technique of

Zhang et al. (2019) were the x, y and z axes were standardized by subtracting the

mean and dividing by the standard deviation of each channel of accelerometer data.

3.2.4 Segmentation

The data from each activity was then sectioned into 3 second windows with no over-

lap. In this thesis the windowing of the data was performed on the signal from each

activity individually. The data collection process allowed for this because the ac-

tivities were not performed sequentially by the participant. This methodology was

employed because it would ensure that the windows have ground truth data and are

not contaminated with transitional data. The windowing size was selected because it

provided reasonable results during model development. Although outside the scope

of this thesis, the study of the windowing for human activity recognition has been

reviewed in literature and readers may refer to a comprehensive discussion by Banos

et al. (2014).
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3.3 Model Architecture

Firstly, the 1-D convolutional neural network was selected because it is a popular

network used in HAR from ACC data because it requires no feature engineering.

Kusuma et al. (2020) used a 1-D convolutional neural network and raw ACC data

to classify walking, upstairs, standing, sitting, jogging and downstairs activities and

achieved an accuracy of 95.9%. In terms of the trust aspect, a deep learning model was

selected because deep learning models are regarded as opaque. The model architecture

of 1-D convolutional neural network used in this thesis is shown in Figure 3.9.
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Figure 3.9: Model architecture

3.4 Model Development

This section describes the development of the proposed model architecture given in

Section 3.3. In total three models with this architecture were created.
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1. Model A

2. Model H

3. Model A Type 1

3.4.1 Model A

Model A was trained with Dataset 1 and therefore has the ability to classify all six

activities. However only the data recorded by Astroskin on Session 1 and Astroskin

on Session 2 was used to train Model A. The data was partitioned into three sets: the

training set which was 80% of the data, the validation set which is 10% of the data

and the test set which is 10% of the data. This partition is visualized in Figure 3.10

Figure 3.10: Partitioning of the data for evaluation

After this the data was standardized using the method described in Subsection

3.2.3. The mean and the standard deviation was calculated from the training portion

of the data. Then the same mean and standard deviation was applied to the validation

portion of the data and then the test portion of the data.

In the training set, validation set and the test set an equal amount of walking,

sitting, standing and laying recorded on Session 1 and Session 2 was included. This

was to ensure that data from Session 1 of the experiment did not end up solely into

one set of the data. The upstairs and downstairs data was conducted over a course
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of multiple days so there was no attention paid to the distribution over the training,

validation and the testing set. After the data was partitioned the windows were

generated. The distribution of the windows of the training, validation and test set by

class are shown in Figure 3.11.

(a) Train (b) Validation

(c) Test

Figure 3.11: Window distribution over train validation and test sets

As visualized in Figure 3.11 the data is balanced and activities are distributed

relatively equally amongst the training set, the validation set and the test set.

The model was trained for 60 epochs with the Adam optimization algorithm

(Kingma and Ba, 2014). A training batch size of 128 samples was used. A learning

rate of 0.01 and a learning decay rate of 0.03 was selected. The loss function used dur-

ing training was categorical cross entropy. The model architecture was determined
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by evaluation on the the validation set. After a sufficient model architecture was

determined, the validation set was re-added to the training set and the model was

retrained on the training set as visualized in Figure 3.12. This technique was used in

(Géron, 2019).

Figure 3.12: Partitioning of the data for evaluation

The model was trained using a GPU cluster. For reproducible results a seed was

set.

3.4.2 Model H

Model H was also trained with Dataset 1 and therefore has the ability to classify

all six activities. However only the data recorded by the BioHarness on Session 1

and BioHarness on Session 2 was used to train Model H. Like Model A the data was

partitioned as visualized in Figure 3.10 and was also standardized in the same manner.

The distribution of windows follow the same distribution visualized in Figure 3.11 as

the BioHarness and Astroskin Data recorded the same amount of data simultaneously.

Model H was trained using the same methodology as Model A. Again like Model H

it trained using a GPU cluster. For reproducible results a seed was set.
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3.4.3 Model A Type 1

Model A Type 1 was trained with Dataset 2 and therefore has the ability to only

classify four activities. As mentioned in Chapter 3 Section 3.1.1 Dataset B is further

organized into types. The table is included here for convenience:

Table 3.4: Different data types

Session Wearable Device

Type 1 1 Astroskin

Type 2 2 Astroskin

Type 3 1 BioHarness

Type 4 2 BioHarness

Model A Type 1 is only trained on data from Astroskin that is recorded on Ses-

sion 1. Type 1 data is partitioned into three sets as visualized in Figure 3.10 and

standardized in the same manner as Model A and Model H. The distribution of the

windows for Type 1 data across the training, validation are shown in Figure 3.13.
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(a) Type 1 train (b) Type 1 validation

(c) Type 1 test

Figure 3.13: Window distribution over train validation and test sets

The model is trained is a similar way as Model A and Model H. However, setting

the seed for this model did not produce reproducible results. Therefore the training

of this model was repeated 50 times and the average accuracy as the well as the

standard deviation was reported.
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Chapter 4

Exploration of Trust Methodology

This chapter outlines the approach to evaluate robustness. Section 4.1 outlines the

methodology for the cross-domain tests. Section 4.2 outlines the method used to

predict performance degradation that may occur when using an alternate wearable

sensor for the input ACC data. Section 4.3 discusses the approach of implementing

the out of domain discriminator.

4.1 Cross-Domain Tests

The cross-domain test mimics a test that has been used on image-datasets (Torralba

and Efros, 2011) in which a classifier is evaluated on a test set that differs from the

training set used in development. To perform the cross-domain test for Model A,

Model A was evaluated with a test set that was recorded by the BioHarness. Model

H was evaluated with a test set that was recorded by the Astroskin. For Model A

Type 1 the cross-domain tests were performed with regards to the wearable device as

well as the session of recording. First Model A Type 1 was evaluated on Type 2 data
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(recorded by the same sensor on a different session), Type 3 data (recorded on the

same session simultaneously but by a different sensor) and Type 4 data (recorded on

a different session and by a different sensor).

4.2 Performance Prediction

It was then investigated if the performance of Model A on a test set that was recorded

by the BioHarness could be predicted. To do this, first different levels of thermal

noise were added to the windows of the test set of Model A (which was recorded

by Astroskin). Electrical noise caused by the random motion of electrons is called

thermal noise (Haykin, 2001). This is visualized in Figure 4.1. The process of thermal

noise generation is described in Subsection 4.2.1. The addition of different levels of

thermal noise to each of the test set windows serve as simulations of different wearable

devices. Each level of thermal noise provides a different ACC signal that can be

interpreted as coming from a different wearable devices. The distance between the

test set with the added thermal noise and the original test set is then calculated. The

methodology for this calculation is presented in Subsection 4.2.2. The accuracy of

Model A on test sets at different levels of thermal noise is computed. Through fitting

a curve, this accuracy and the distance from the different test sets with different levels

of added noise and the original test set is related. Then the distance between the test

set recorded by the BioHarness and the test set recorded by Astroskin is calculated.

The predicted accuracy on the BioHarness test set is obtained by evaluating the

equation of the curve. The curve fitting procedure is presented in Subsection 4.2.3.
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Figure 4.1: Noise Addition

4.2.1 Generating Thermal Noise

Hammad and El-Sankary (2019) based on work done by Madgwick et al. (2013)

modelled thermal noise as additive zero-mean Gaussian noise and added it to ACC

data. Based on acceptable signal to noise (SNR) levels found in literature Hammad

and El-Sankary (2019) generated desired SNR values by adding noise of a specific

power to the test set. In this thesis, a similar approach is adopted to add varying

levels of noise to the test set. However, only one random simulation of noise is

generated. This noise level is made reproducible (pseudo-random) by setting the seed

of noise generator in the random Numpy library (Harris et al., 2020) used for noise

generation.

SNR is defined as the ratio of the average signal power to the average noise power

(Haykin, 2001).

SNR =
Power of Signal

Power of Noise
(4.2.1)

Often the ratio is expressed in decibels.

SNR(dB) = 10 log(SNR) (4.2.2)

To generate a desired SNR, noise of a specific power was added to each of the axes

38



of the ACC data individually. The power of one axis of ACC is calculated as:

Power of ACC =
1

N

N∑
i=1

X(i)2 (4.2.3)

where N represents the length of ACC signal and X(i) is the value of the ACC

signal X at the ith index.

From the given SNR in dB, the ratio is calculated using:

SNR = 10
SNR(dB)

10 (4.2.4)

The power of the noise to be added is calculated as:

Desired Noise Power =
Power of ACC

SNR
(4.2.5)

A zero mean Gaussian random variable with the desired noise power is generated

and then added to the signal. This procedure is executed for each axis of the tri-axial

ACC data.

4.2.2 Distance Measure

The distance measure between an example window in the original test set with no

noise and an example window in the test set with noise uses the distance function de-

scribed by Bai et al. (2012). The distance function (D) is presented in Equation 4.2.6:

D[X1, X2)] = 1/3
3∑

p=1

√√√√ m∑
b=0

[X1p(b) −X2p(b)]2 (4.2.6)

In this equation:
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1. X1 represents the original window with no noise

2. X2 represents the noisy window

3. b is the index of the individual samples in the windows

4. m is the number of samples within the window

To determine the distance measure from the original test set, which contains

clean windows and the noisy test set which contains noisy windows the methodology

in Figure 4.2 was employed.

40



Figure 4.2: Distance Across Test Set

The distance measure between an example window in the original test set with no

noise and an example window in the test set that was recorded by the BioHarness is

also computed with Equation 4.2.6. The distance measure from the original test set

and the test set recorded by the BioHarness is computed following the methodology

in Figure 4.2 excluding the process of adding noise to the windows.
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4.2.3 Curve Fitting

The accuracy of Model A on the test sets with different levels of thermal noise and

the distances of these test sets from the original test set were plotted. The type of

curve used is the equation below.

Accuracy = A +
C

1 + (Distance
B

)3
(4.2.7)

where A, B and C are to be determined. The variables A, B and C were determined

through using the optimize function provided by the SciPy library (Jones et al., 01

). By substituting the distance of the BioHarness test set to the original test set into

the equation the expected accuracy Model A on the BioHarness test set is estimated.

4.3 Out of Domain Discriminator

A discriminator is used in generative adversarial networks which was proposed by

Goodfellow et al. (2014). As a part of a generative adversarial network, the discrimi-

nator attempts to distinguish between real and fake generated samples. In this work

a domain discriminator is explored with Dataset 2 and Model A Type 1. The domain

discriminator is tasked with three different challenges.

1. Challenge 1: Can it differentiate Type 1 and Type 2 data?

2. Challenge 2: Can it differentiate Type 1 data and Type 3 data?

3. Challenge 3: Can it differentiate Type 1 and Type 4 data?

The walking activity was selected to perform this analysis. The challenge of the

discriminator can then be more specifically rephrased as:
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1. Can the discriminator differentiate between walking recorded by Astroskin on

Session 1 and Session 2?

2. Can the discriminator differentiate between walking recorded by Astroskin on

Session 1 and walking recorded by the BioHarness on Session 1?

3. Can the discriminator differentiate between walking recorded by the Astroskin

on Session 1 and Walking recorded by the BioHarness on Session 2?

The architecture of the domain discriminator is visualized in Figure 4.3.

Figure 4.3: Model Architecture Domain Discriminator

It trained using the Adam optimizer(Kingma and Ba, 2014), with the default

learning rate and a batch size of 128 training samples for 60 epochs.
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4.4 Out of Domain Generalizable Discriminator

The generalizable domain discriminator’s task is to be able to alert the user when

the data is out of domain. First, the generalizable domain discriminator is trained

to differentiate between noisy Type 1 data and non-noisy Type 1 data. The level of

thermal noise is treated as a hyperparameter and is tuned until the domain discrim-

inator can achieve perfect classification on the task. Then it is investigated if this

same discriminator can differentiate other data types (Type 2, Type 3, Type 4) as

out of domain with respect to Type 1.

The walking activity was selected to perform the analysis for this exploratory

study. The walking activity was selected because the pattern of walking was is the

most variable from the other collected activities in Dataset 2. Sitting, Standing and

Laying produce similar accelerometer signatures because there is no defined movement

in these activities. The architecture of the generalizable domain discriminator is the

same architecture depicted in Figure 4.3. It was trained using the Adam optimizer,

with the default learning rate, and a batch size of 128 training samples for 60 epochs.
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Chapter 5

Results

This thesis investigated the robustness of Model A, Model H and Model A Type 1.

The chapter describes the results of the tests conducted to analyze the robustness of

the HAR models. Section 5.1 describes the results obtained in the cross-domain tests.

Section 5.2 presents the results obtained for predicting the performance of Model A

on test set that was recorded by the BioHarness. Section 5.3 discusses the results

obtained from the out of domain discriminator. A summary of the models developed

as well as the results for the cross-domain tests is given in Table 5.1 for easy reference.
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Table 5.1: Summary of results

Model Dataset Data Acquisition Train Set Data Acquistion Test Set Accuracy

A 1 Astroskin Astroskin 99.07%

A 1 Astroskin BioHarness 65.74%

H 1 BioHarness BioHarness 95.37%

H 1 BioHarness Astroskin 29.63%

A Type 1 2 Type 1 Type 1 99.57% +/- 1.76%

A Type 1 2 Type 1 Type 2 50.95% +/- 5.99%

A Type 1 2 Type 1 Type 3 41.31% +/- 13.71%

A Type 1 2 Type 1 Type 4 19.28 +/- 11.83%

5.1 Cross Domain Tests

The cross domain tests evaluated were as follows:

1. The performance of Model A and Model H on test sets that were recorded by

a wearable sensor that did not record the training set

2. The performance of Model A Type 1 on the different types of data each of which

represented a different domain
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5.1.1 Model A

First, Model A is evaluated on the held out test set that was recorded from Astroskin,

which is the same sensor that recorded its training set. The accuracy of Model

A on this test set was 99.07%. The confusion matrix is presented in Figure 5.1.

All confusion matrices values represent the amount of windows that were predicted

correctly.

Figure 5.1: Confusion matrix of test set recorded by Astroskin

Model A achieved a good classification on the test set recorded by Astroskin. As

seen in Figure 5.1, some walking samples were confused with downstairs samples.

This is expected because walking and downstairs ACC signals are similar. However,
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the accuracy of Model A on a test set recorded by the BioHarness was 65.74%. The

confusion matrix is presented in Figure 5.2.

Figure 5.2: Confusion matrix test set recorded by Bioharness

In Figure 5.2, Model A experiences confusion between walking, downstairs and

upstairs. Furthermore, sitting which was originally perfectly classified by in the test

set recorded by Astroskin is confused with standing. The classes that are confused by

Model A are reasonable because the ACC signals of walking, downstairs and upstairs

and the ACC signals of sitting and standing are visually similar.
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5.1.2 Model H

The accuracy of Model H on a test set recorded by the BioHarness was 95.37% percent.

The confusion matrix is presented in Figure 5.3.

Figure 5.3: Confusion matrix test set recorded by Bioharness

In Figure 5.3 Model H misclassifies 1 walking sample as a downstairs sample and

there is some misclassification between the sitting and standing classes. Next Model H

was evaluated on the held out test set that was recorded by Astroskin. The accuracy

of Model H on this test set was 29.63%. The confusion matrix is presented in Figure

5.4.
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Figure 5.4: Confusion Matrix test set recorded by Astroskin

In Figure 5.4 Model H wrongly predicts the activities of sitting and laying to

be walking. It also confuses the downstairs and upstairs activities. Some standing

activities are also confused with sitting activities.

5.1.3 Model A Type 1

Firstly, as a benchmark, the performance Model A Type 1 is evaluated on a Type 1

test set. The accuracy of the model was 99.57% +/- 1.76%.

Figure 5.5 presents an example of a confusion matrix on the first one trial run.
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Figure 5.5: Confusion Matrix Type 1 Data

Next Model A Type 1 was evaluated on Type 2 data. The accuracy of this model

on this test set was 50.95% +/-5.99%. Figure 5.6 presents an example of a confusion

matrix on the first trial run.

51



Figure 5.6: Confusion matrix type 2 data

On Type 2 data Model A Type 1 misclassifies the walking activities to be the

standing. There is also some misclassification between sitting and standing.

Model A Type 1 is then evaluated on Type 3 data. The achieved accuracy was

41.31% +/-13.71%. Figure 5.7 demonstrates the confusion matrix for the first trial

run of the experiment.
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Figure 5.7: Confusion Matrix Type 3 Data

On Type 3 data Model A Type 1 classifies most samples to be standing. Only the

laying class correctly classified.

Lastly, the model was then evaluated on Type 4 data. The achieved accuracy is

19.28% +/- 11.83%. Figure 5.8 presents the confusion matrix from one trial run.
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Figure 5.8: Confusion matrix type 4 data

Model A Type 1 confuses the sitting and the standing classes. It also incorrectly

classifies the samples from the walking class.

5.2 Performance Prediction

The results for the performance prediction of Model A on the BioHarness test set are

provided below. The trend of accuracy with increasing distance from the original test

set is shown in Figure 5.9
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Figure 5.9: Distance vs. Accuracy

The equation of the fitted curve is:

Accuracy = 0.034 +
0.941

1 + (Distance
17.601

)3
(5.2.1)

The graph of the fitted curve (without the error bars for clarity), the accuracy

on the orginial test set, the predicted accuracy on BioHarness test and the actual

accuracy on the BioHarness test set of Model A is shown on Figure 5.10.
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Figure 5.10: Fitted curve

As a further investigation the trends of accuracy with each increasing distance

from the original test set in terms of the classes of Walking, Sitting, Standing, Laying,

Downstairs and Upstairs and where the actual accuracy of Model A falls on this curve

is shown in Figure 5.11. The no noise added data points often overlap with data points

around distance 0 and therefore can not always be properly observed in Figure 5.11.
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(a) Walking (b) Sitting

(c) Standing (d) Laying

(e) Downstairs (f) Upstairs

Figure 5.11: Distance vs. accuracy - individual activities
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5.3 Out of Domain Discriminator

A discriminator was trained in order to differentiate between the different types of

data. The results of the 3 different challenges as outlined in Chapter 4 Section 4.3

are presented in the following subsections.

5.3.1 Challenge 1

The first challenge evaluated is if the the discriminator was able to differentiate be-

tween Type 1 and Type 2 data. The discriminator differentiated between these two

data types with an accuracy of 100%. The confusion matrix is seen below in Figure

5.12.

Figure 5.12: Confusion matrix: discrimination between type 1 and type 2 Data
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5.3.2 Challenge 2

For the second challenge the discriminator was tasked to differentiate between Type

1 and Type 3 data. The discriminator achieved an accuracy of 100% on this task.

Figure 5.13: Confusion matrix: discrimination Between type 1 and type 3 Data

5.3.3 Challenge 3

For the third challenge the discriminator was tasked with being able to differentiate

between between Type 1 and Type 4 data. The discriminator achieved an accuracy

of 100% on this task.
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Figure 5.14: Confusion matrix: discrimination between Type 1 and Type 4 Data

5.4 Out of Domain Generalizable Discriminator

The results in Subsection 5.3 demonstrate that the discriminator can differentiate

between Type 1 and the other Types of data recorded in this thesis. The following

results show a generalizable discriminator trained to discriminate between Type 1

and a noisy version of Type 1 data. This discriminator is then tasked with the

challenge of discriminating between Type 1 data and the other types of data present.

A discriminator that is able to do this provides a more generalized out of domain

detection.
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The discriminator achieved an 100% accuracy in the task of discriminating be-

tween noisy data with a thermal noise level of 8 dB and non-noisy data. The confusion

matrix is presented below.

Figure 5.15: Confusion matrix: discrimination between noisy Type 1 and non-Noisy
Type 1 data

The next task for this discriminator trained on the noise data is to see if it can

discriminate between Type 1 data and the other data, using what it has learned

as a different data type from the noisy data. The discriminator achieved an 97.6%

accuracy on the task of discriminating between Type 1 data and the data of the other

sets. The confusion matrix is shown below.
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Figure 5.16: Confusion matrix: discrimination between type 1 and other types of
data
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Chapter 6

Discussion

This chapter discusses the results and the limitations present in this thesis. Section

6.1 discusses the cross-domain test results. Section 6.2 discusses the performance

prediction results. Section 6.3 discusses the out of domain discriminator results and

Section 6.4 discusses the generalizable out of domain discriminator results. Section

6.5 outlines the limitations of the research work presented in this thesis.

6.1 Cross-Domain Tests

The results of the cross domain tests gives an indication of the robustness of a de-

veloped HAR model when deployed in an environment other than the one it was

developed in. When Model A was evaluated on a held out test set that came from

Astroskin, the wearable devices that also recorded the training set, an accuracy of

99.07% was obtained. However when Model A was deployed on the same test set

recorded by the BioHarness it achieved an accuracy of 65.74% (a 33.33% drop). This

demonstrates that Model A is not robust to changes in wearable sensors that was
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designed to measure the same physical phenomenon (accerolmetery), implying that

if the wearable sensor is changed in the data acquisition process, a decrease of model

performance and predictive accuracy may be observed.

Likewise when Model H was deployed on a test set recorded by the BioHarness

an accuracy of 95.73% was observed. However when Model H was applied to a test

set recorded by Astroskin the accuracy was reduced to 29.63% (a 66.10% drop).

This demonstrates that if the wearable device is changed in the data acquisition

process, a decrease in may be observed. Model A Type 1, expanded on the initial

investigation of Model A and Model H by separating the recordings with respect to

the recording session as well as the wearable device that was involved in the recording.

The accuracies of Model A Type 1 on data from different types is demonstrated in

Table 6.1.

Table 6.1: Model A Type 1 accuracies

Data Type Accuracy

Type 1 99.57%

Type 2 50.95%

Type 3 41.31%

Type 4 19.28%

The decrease in accuracy on Type 1 data to Type 2 data was 48.62%. Although

these two types of data were recorded by the same wearable sensor, the data was from

different sessions. This suggests that different sessions could also introduce a decrease

in accuracy. However, it is interesting to note that in the example confusion matrix
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presented walking was completely misclassified and the rest of the classes had less

classification errors. This suggests that walking varies the most in between sessions

as compared to the other activities. The decrease in accuracy on Type 3 data was

58.26%, which was a larger decrease than compared to Type 2 data. This suggests

that a change in wearable device has more of an impact then a change in session. In

Type 3’s case almost all the classes were incorrectly classified. For Type 4 data a

decrease of 80.29% from Type 1 accuracy for Model A occurred. The large decrease

is expected because the both wearable device and the recording session are different

from Type 1 data.

6.2 Performance Prediction

The curve that was fitted in order to estimate the accuracy of Model A on a test set

that was recorded by the BioHarness was not able to accurately predict the accuracy.

The Actual BioHarness accuracy on the test set was 65.74% and the predicted Bio-

Harness accuracy was 81.58%. The curve over-estimated accuracy on the BioHarness

test set.

6.3 Out of Domain Discriminator

The preliminary results from the cross-domain test suggest that the reason why the

model’s performance decreases when evaluated on data other than the data it was

trained on (Type 1) is because the data must be in some way different from Type

1 data. The ability of a discriminator to differentiate between the data types with

100% accuracy in all cases, difference between Type 1 and Type 2 data, difference
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between Type 1 and Type 3 data, difference between Type 1 and Type 4 data for the

walking class supports this assumption.

6.4 Out of Domain Generalizable Discriminator

As the results in Section 6.1 and Section 6.3 suggest that the HAR model would

perform poorly on data other than data involved in the training process, a method

to account for this is presented in Section 5.4. Although we have determined that

the model performed poorly on 3 types of data that differ from the Type 1 data, it is

impractical to gather all the different types of data that may exist in the real world.

This thesis evaluated two changes, a wearable device change and a session change.

The changes that could occur in deployment include this and much more. Although

we can not gather all the different types of data that the HAR model may face, we

trained a discriminator that is able to differentiate between Type 1 data and Type

1 data with an SNR of 8 dB. This discriminator was successful in discriminating

between the Type 1 and Type 1 noisy data. More importantly, it was also successful

in determining that the other types of data were ”out of domain” or were not alike

the Type 1 data that was involved with the training of the model. The model would

be useful in deployment because this model can determine if these data differs from

the original data. If these data does differ from the model that it was trained with

then the user should expect a lower accuracy then the accuracy reported when the

model is trained and evaluated on the same data type.
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6.5 Limitations

6.5.1 Data Collection

The first limitation encountered in the thesis was the data collection process. The

data collection process was performed with only one individual, who was the author.

This presents two limitations, the sample size as well as cognitive bias present in

the collection of the data process. In terms of sample size, this limitation was intro-

duced because of the COVID-19 pandemic. This resulted in university closures and

the prohibition of non-essential human research. This work presented in this thesis

was deemed as non-essential because it did not directly respond to the COVID-19

pandemic, did not involve clinical trials and did not have to be continued because

of ethical reasons. Therefore, the data size of the experiments had to be reduced to

one individual. As only the authour’s data trained the HAR models developed in

this thesis, these models would not be able to generalize for other subjects. However,

it was not the goal of the thesis to create a HAR model that can be used for other

subjects, but to create HAR models with the purpose of investigating the aspect of

technical robustness and safety. In the experimental process the deep learning models

were evaluated on a test set that was never seen before. Bias is also a limiting factor

in the data collection process. The author was solely responsible for the generation,

collecting as well as the analysis of the data.

6.5.2 Performance Prediction

In order to calculate the distance between windows in the Astroskin test set win-

dow and the BioHarness test set windows the Euclidean distances between individual
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windows were calculated. However this calculation requires that the data is perfectly

synchronized. There are multiple factor that can challenge the attempt for synchro-

nization. Firstly, the synchronization was performed manually with visual inspection.

Secondly after synchronization the data from the BioHarness was downsampled. In

addition, requiring that accelerometer signals be synchronized in order calculate the

Euclidean distances would not work from accelerometer signals from different datasets

that can not be synchronized. Therefore the out-of-domain discriminator was imple-

mented to address this shortcoming.

6.5.3 Out of Domain Discriminator and Out of Domain Gen-

eralizable Discriminator

The out of domain discriminator as well as the out of domain generalizable discrimi-

nator experiments were only conducted on the walking class and therefore conclusions

drawn were done all on the walking class. Other classes should be explored in order

to determine the applicability of the experiments to other classes of human activity

recognition.
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Chapter 7

Conclusions and Future Directions

This chapter summarizes the contributions of this thesis as well as directions for

future research.

7.1 Summary of Contributions

The goal of this research was to investigate trust in AI-powered autonomous medical

advisory systems. Using HAR as a vehicle the author demonstrated that human

activity recognition deep learning models are not robust to changes in wearable devices

or sessions. The author determined data recorded from a different session and a

different wearable device can be differentiated by a discriminator for the walking

class. Furthermore the author was able to build a generalizable discriminator that

was able to differentiate when data was out of domain for the walking class. This

thesis adds to the field of trust in AI in medical advisory systems as it evaluates the

robustness of an HAR model in different environments and also investigates a method

to inform the user if a model is deployed on data that is out of domain.
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7.1.1 Cross Domain Test

The idea of the cross-domain test is not new, however this thesis applies the cross-

domain test in a field in which it has gotten less attention, wearable device based

AI. Image recognition, which initially inspired the cross-domain test, had seen it

fair share of tests that analyze the robustness of models especially when it comes to

robustness across hardware. The analysis presented in this thesis, especially the tests

in regard to possible performance degradation across wearable devices will alert the

AI community to ensure that models developed using wearable devices are robust.

This is especially important since new wearable devices is a ever-growing market.

7.1.2 Out of Domain Generalizable Discriminator

In this thesis we harness the power of a generalizeable discriminator to be able to

detect when data differs from the training data of the artificial intelligence model.

In this regard the generalizable discriminator can alert a user when the model is

about to be presented with data that differs from the data used in the development

stage, signifying to users the decision made by the model cannot be trusted. This

discriminator is generalizable in this experiment meaning that it uses noisy data to

learn what an ”out of domain” data type is. It then can predict other out of domain

data types.

7.2 Future Directions

Firstly, the human activity recognition model was developed using a very small

amount of data collected by only one participant. This choice was because of the
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University Restrictions concerning research conducted in COVID-19. In future work,

these experiments should be tested with larger amount of data tests. This would

increase the robustness of the results.

In addition, this thesis concludes that there is a performance degradation when the

model is exposed to data that differs from the training data and provides a method

to be able to detect when different data is presented. However, the analysis is only

conducted using one class, walking. A more thorough investigation of the other HAR

classes would provide a more complete view. In addition it would be ideal if the

amount of degradation could be estimated.
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Appendix A

Appendix

Figure A.1: Astroskin session 1 walking
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Figure A.2: Astroskin session 1 sitting
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Figure A.3: Astroskin session 1 standing
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Figure A.4: Astroskin session 1 laying
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Figure A.5: Astroskin session 2 walking
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Figure A.6: Astroskin session 2 sitting
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Figure A.7: Astroskin session 2 standing
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Figure A.8: Astroskin session 2 laying

79



Figure A.9: Astroskin downstairs
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Figure A.10: Astroskin upstairs
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Figure A.11: BioHarness session 1 walking
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Figure A.12: BioHarness session 1 sitting
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Figure A.13: BioHarness session 1 standing
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Figure A.14: BioHarness session 1 laying
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Figure A.15: BioHarness session 2 walking
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Figure A.16: BioHarness session 2 sitting
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Figure A.17: BioHarness session 2 standing
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Figure A.18: BioHarness session 2 laying
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Figure A.19: BioHarness downstairs
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Figure A.20: BioHsrness upstairs
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(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure A.21: Power spectrum sitting session 1 recorded by Astroskin
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(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure A.22: Power spectrum sitting session 1 recorded by Astroskin

93



(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure A.23: Power spectrum sitting session 2 recorded by Astroskin
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(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure A.24: Power spectrum sitting session 1 recorded by BioHarness
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(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure A.25: Power spectrum sitting session 2 recorded by BioHarness
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(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure A.26: Power spectrum standing session 1 recorded by Astroskin
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(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure A.27: Power spectrum standing session 2 recorded by Astroskin
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(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure A.28: Power spectrum standing session 1 recorded by BioHarness
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(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure A.29: Power spectrum standing session 2 recorded by bioHarness
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(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure A.30: Power spectrum laying session 1 recorded by Astroskin
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(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure A.31: Power spectrum laying session 2 recorded by Astroskin
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(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure A.32: Power spectrum laying session 1 recorded by bioHarness
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(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure A.33: Power spectrum laying session 2 recorded by BioHarness
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(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure A.34: Power spectrum upstairs recorded by Astroskin
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(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure A.35: Power spectrum downstairs recorded by Astroskin

106



(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure A.36: Power spectrum upstairs recorded by BioHarness
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(a) X-Axis (b) Y-Axis

(c) Z-Axis

Figure A.37: Power spectrum downstairs recorded by Bioharness
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M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W.,

Abbasi, H., Gohlke, C., and Oliphant, T. E. (2020). Array programming with

NumPy. Nature, 585(7825), 357–362.

Hasani, H., Bitarafan, A., and Baghshah, M. S. (2020). Classification of 12-lead ecg

110



signals with adversarial multi-source domain generalization. In 2020 Computing in

Cardiology, pages 1–4. IEEE.

Haykin, S. (2001). Communication systems. John Wiley Sons, 4th edition.

Hengstler, M., Enkel, E., and Duelli, S. (2016). Applied artificial intelligence and

trust—the case of autonomous vehicles and medical assistance devices. Technolog-

ical Forecasting and Social Change, 105, 105–120.

High-Level Expert Group on AI (2019). Ethics guidelines for trustworthy ai. Report,

European Commission, Brussels.

Imran, H. A. and Latif, U. (2020). Hharnet: Taking inspiration from inception and

dense networks for human activity recognition using inertial sensors. In 2020 IEEE

17th International Conference on Smart Communities: Improving Quality of Life

Using ICT, IoT and AI (HONET), pages 24–27. IEEE.

Jones, E., Oliphant, T., Peterson, P., et al. (2001–). SciPy: Open source scientific

tools for Python.

Karantonis, D. M., Narayanan, M. R., Mathie, M., Lovell, N. H., and Celler, B. G.

(2006). Implementation of a real-time human movement classifier using a triax-

ial accelerometer for ambulatory monitoring. IEEE transactions on information

technology in biomedicine, 10(1), 156–167.
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