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Abstract

Group testing is a procedure that splits samples into multiple groups based on some
specific grouping criterion and then tests each group. It is usually used in identifying
affected individuals or estimating the population proportion of affected individuals.
Improving precision of group testing and saving cost of experiment are two crucial
tasks for investigators. Cost-efficiency is a ratio of precision to cost; hence improving
cost-efficiency is as crucial as improvement of precision and cost saving. In this thesis,
retesting will be considered as a method to improve precision and cost-efficiency, and
save cost. Retesting is an extension of group testing. It uses two or more group testing
stages, and testing original samples in all of the stages. Hepworth and Watson (2015)
proposed a two-stage group testing procedure where two stages have equal group
sizes, and the number of groups of the second stage is based on the number of positive
groups in the first stage. In this thesis, our main goal is estimating a proportion p

under the circumstance of unequal group sizes in two stages, and discovering the most
cost-efficient experiment design. Analytical solutions of precision will be provided;
we will use these analytical solutions with simulations to analyse some experimental
designs, and discover whether doing one group testing only is precise enough or not
and if it is worth retesting for each design. In the end, we will combine all these

analyses and identify the optimal experiment design.
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Notation

n, Number of groups at the first stage

n, Number of groups at the second stage

k, Number of group sizes at the first stage

k, Number of group sizes at the second stage

a, Correction at the first stage

a, Correction at the second stage

)% True population proportion of affected individuals

V4 True population proportion of affected individuals at the second stage
X Number of positive groups at the first stage

Y Number of positive groups at the second stage

SE Standard Error
RSE Relative Standard Error

RE Relative Cost-Efficiency

Vi
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Chapter 1 Introduction

1.1 Group Testing

Group testing (or pooled testing) was first introduced by Dorfman in 1943 to screen
U.S. soldiers for syphilis during World War II. It is a procedure to identify affected
(positive) individuals or estimate the true proportion of affected individuals in a
sample population. An affected or positive individual means a research object is
affected by the research of interest. For example, if the research of interest is studying
infectious disease, then an individual is defined as affected or positive if he/she has
such infectious disease, and an individual is defined as negative if he/she does not
have such disease. The true proportion of affected individuals means the percentage of
individuals who were affected by the research variable of interest in the sampled
population. Group testing is a powerful theory that has broad applications in a great
many areas. Definitely, it has helped a lot with blood screening since the original
intention of group testing is solving blood testing problems, for example, detecting
phenylketonuria, hepatitis B virus and other diseases (Guthrie, 1961; Comanor and
Holland, 2006; Bilder, Tebbs and Chen, 2010). Group testing has also been applied to
many other fields; for instance, solving some network security problems such as
denial-of-service and jamming attacks (Thai 2012; Xuan et al. 2010); encoding the

transform coefficients of an image from the wavelet packet and the discrete cosine

1
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transform (Hong, Ladner and Riskin 2003); designing an algorithms for random
multiple-access communication channels (Berger et al. 1984); DNA library screening
(Ngo and Du, 2000; Schliep, Torney and Rahmann, 2003); and screening individuals
for drug use (Gastwirth and Johnson, 1994).

Generally speaking, the statistical study of group testing can be broadly classified
into two categories: classification and estimation. Classification will be discussed in
Chapter 4. Estimation is the main goal of this thesis; it targets estimating a proportion
p of positive individuals, such as evaluating the prevalence of disease of interest in a
population (Sobel and Elashoff, 1975; Chen and Swallow, 1990). Gastwirth and
Hammick (1989) proposed group testing to estimate the prevalence of AIDS
antibodies in blood donors; they used estimation rather than identification because
they wanted to protect individuals’ civil liberties. Walter, Hildreth and Beaty (1980)
used group testing of unequal group sizes within a stage to estimate the infection rates

of yellow fever virus in a mosquito population.

1.2 Retesting

When estimating a true proportion, there exists uncertainty about how well an
estimate represents the true population. To conceptualize this uncertainty, we can
consider how an estimate changes if we repeat the experiment many times, with
different samples each time. The closeness of an estimate between different samples is

called precision. The precision is closely related to the variance. Suppose u

represents the average value of an estimate in different samples; then the variance
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measures the closeness of this estimate to x . In group testing, investigators will split
the whole sample into »n groups first, each group having 4 individuals. If there
exist one or more affected individuals in a group, then it will be defined as a positive
group. Then investigators will estimate the population proportion of affected
individuals by using the total number of positive groups. Nevertheless, the estimate of
population proportion is sometimes not precise enough. Therefore, a method that is
able to improve precision is needed. Retesting within positive groups and testing
additional individuals are two common methods to do this. Retesting is a method that
extracts all the positive groups at the first stage, randomly regroups all their
individuals, and then retests new groups in the second stage. Rather than testing
original samples, testing additional individuals requires to collect more new samples.
In statistical studies, testing additional individuals is more popular than retesting
because retesting usually gains less precision than testing additional individuals.
Nevertheless, in addition to consider precision, promoting cost-efficiency is also a
crucial task for investigators. Cost-efficiency is defined as a ratio of precision to cost.
With respect to cost-efficiency, testing additional individuals costs more, on the other
hand, it is sometimes impractical in an experiment. Instead, retesting is cost-saving
and therefore it might have better cost-efficiency than testing additional individuals.
When the number of positive groups is 0 or 1 at the first stage, there is no need to go
to the second stage, therefore we need not do retesting, and the precision and
cost-efficiency will not change; if the number of positive groups is more than 1 at the

first stage, then retesting increases precision. In this thesis, we will focus on studying
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if it is worth retesting at the second stage based on each sample population’s
cost-efficiency, precision, and cost. Walter and Hepworth (2019) derived two
analytical solutions for the variance of the estimate of true population proportion of
affected individuals at the second stage, then compared the two methods by doing
simulations to determine the optimal one; Hepworth and Watson (2015) proposed two
two-stage procedures and compared each of them with other two methods which are
proposed by Hammick and Gastwirth (1994) and Brookmeyer (1999) to determine the
most efficient method of retesting.

The other focus of this thesis is studying the effect of adding a correction or not
when we estimating the population proportion. The correction was proposed by
Burrow (1987) and denoted as a . Its function is eliminating bias and decreasing

mean squared error when estimating the population proportion.

1.3 Thesis Structure

In chapter 2, we will first estimate the population proportion without any corrections
at first and second stage separately; we will then add a correction to the estimate to
compare the estimates with and without correction; next, we will present the
estimation of population proportion of affected individuals using overall two testing
stages. Also, in order to evaluate whether doing the first stage only is precise enough
or not and if it is worth retesting, the variance of the estimate of population proportion
at the first stage only and overall two stages will be estimated. In chapter 3, a

simulation based on the estimates in chapter 2 will be performed. Then, the simulation
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results such as cost-efficiency, precision and bias will be compared using two
alternative cost functions. The most cost-efficient combination will be found and
some recommendations will be offered to investigators. Some extension of group

testing, future work and challenges will be concluded in chapter 4.



M.Sc. Thesis - Yusang Hu McMaster - Statistics

Chapter 2 Estimation

2.1 Estimation of proportion of affected individuals in the

first and second stage

Suppose there are n, groups and each group with &, group sizes in the first stage.
After a series of experiments, the results show that there are X =x positive groups.
Assume p is the true probability of an individual being affected and ¢ is the true
probability that an individual is not affected; then X follows a binomial distribution
with parameters n, and g(p), where g(p)=1-(1-p)" =1-¢" and ¢" is the
probability that none of %, individual is infected. Then the expectation of X is
E(X)=n,-g(p).
Define E(X)=n, -[1—(1 —p)h ]: n-(1-¢"),and let p, be the estimator of p in

the first stage. Then the estimator of p at the first stage can be expressed as

X =n-(1-¢")
X 1
=g=0-29
n,
X 1
:>f?1:f7=1—[1—n—]k‘ (1)
1

Suppose there are k&, individuals in each group in the second stage where £, is

equal to or smaller than £, . Now, according to the information given above, there
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will be n, = % groups at the second stage. The true prevalence at the second stage

2

isno longer p since it depends on the results of the first stage, therefore we define a

new prevalence of the second stage as 7, which can be expressed as

total number of positive individuals

prevalence at the second stage = —
total number of individuals sampled

nlkli) _ nli) (2)

After a series of experiments, the result shows that there are Y =y positive groups,
where Y follows a binomial distribution conditional on X =x with parameter n,
and g(z)=1-(1-x)". Define E(Y)=n, -g(x)=n,- [1—(1 — ) ] ,and let p, be
the estimator of p in the second stage. Then the estimator of p in the second stage

can be expressed as

y=X5 fi-a-p)ye]
k2
y 1
:>7%:1—(1—Xk—)"2
"
1
. X Y &
:>p2:n—l—(1——/¥k/)k2 3)
1 1
kz

Burrows (1987) proposed an alternative estimator p to improve the estimator’s
properties. p has similar steps of calculation with p but with correction a where

1 k-1 - . .
a= E(T) to eliminate bias and decrease mean squared error. Set the correction at

first stage and second stage as a, and a, separately, where a, :%(%) and
1
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1 k,-1
61225( z

) . Now, the number of positive groups at the first stage X and the
2

number of positive groups at the second stage Y given X =x still follow binomial

distribution, but modified maximum likelihood estimate (MLE) p,  becomes

g(p) = and 7 becomes g(7)=

. Therefore, the alternative
n +a, n,+a,

estimator p, and p, can be expressed as

1-(1-p)" = X
nl+a1
X -
= p=1-(- )" (4)
n1+a1
1-(1-7) =—7F7—

)(k/ +a2
Xk/ +a2
- X

=5 =1l (5)
n ‘W{/ +a2

Although equations (1) and (4), (3) and (5) look very similar, and a@,, a, do not

>z=1-(1-

exceed 0.5, correction strongly influences the results. Some results may look
abnormal if we do not add correction in the equation of estimators. In the next chapter,

we will compare differences between estimators with and without correction by using

real data.
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2.2 Estimation of proportion of affected individuals using

overall two testing stages

We will use a weight function to evaluate the estimator of p for both first stage and
second stage combined. Define the estimator of overall p (i.e. for both first stage
and second stage combined) as p,,, . The weight of the estimate of p at the first
(second) stage is defined as an inverse proportion to its variance, which is able to
minimize the variance of p,, . By using the property of weight function, the
estimator of overall p can be expressed as

~ w P, + W, D,
Dpp=— (6)
Wl + W2

where w, = 1 — and w, = ;A . After simplifying the expression,
Var(p,) Var(p,)

5= pVar(p,)+ p,Var(p,)
142 — A A *
Var(p,)+Var(p,)

Note that the derivation of Var(p,) is very complicated since the equation of p,
contains correction, hence we will use Var(p,) instead, and therefore standardize by
using Var(p,) instead of Var(p,).

By using equation (6), variance of estimator of overall p can be expressed as

1

Var(5,,,) = ( V2 [wVar(p,) + w, Var(p,) + 2Cov(B,. )]

1T W,
Note that covariance of p, and p, is unknown here since its derivation is
complicated, therefore in chapter 3 we will use simulation to obtain the variance of

D.., instead of attempting to derive an analytic expression for it.
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2.3 Variance of estimators

Following the process of the variance estimation by Hepworth and Walter (2019). In
section 2.1, we have assumed that the number of positive groups at the first stage X

follows a binomial distribution with parameter n, and g(p) . Therefore variance of

X can be expressed as

var(X) =ng(p)(1-g(p))) (7)

The modified maximum likelihood estimate (MLE) p, is g(p,)=

. Now, we
n +a,

can express the variance of g(p,) in two ways. The first is obtained based on the
property of the derivative

Var(g(p))=g'(p) Var(p,) (8)

The second is obtained based on the MLE p,

Var(g(5) = —Var(x)—vma , Lo g(p) )
(”1 +a1) (”1 + a1)

Therefore equation (8) and (9) are equal, and new equation can be expressed as

g (p) Var(p) =—ng(p)1-g(p,) (10)
(”1 + al)

Next, in order to get the variance of modified MLE p, , we need to plug

g(p)=1-(1-p)" and g'(p,)=k (1~ p)"" into equation (10) and simplify it,

k- py Trarpy =——nfi-a-py* - "
(”1 +a1)
1_ (1 - pl)kl
(+ k0, (1= py)o?
n

1

= Var(p,) =

(11)

The variance of the modified MLE p, is asymptotically equal to the variance of

10
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MLE p,

1-(1-p)"
k12n1(1_p1)k1—2

Var(p,) =
The variance of the modified MLE p, is calculated very similarly with Var(p,),

& (T War(7) =——— mg(x)(1- g(x))
(n, +a,)

1-(1-7)"

= Var(z) =
(1= 7)7 Xk o, (1+ 2

X"/

s Var(p =X 1-(-n)" (12)

ol A-n)" 2kk(1+X7€/

The variance of p, can be obtained from two approaches. The first approach is

assuming that the estimator of p at the second stage is conditional on the number of
positive groups at the first stage X . Note that if the number of positive groups at the
first stage is zero, then there is no need to do retesting, therefore p,.,=p, =p,=0
and Var(p,|X)=0; if the number of positive groups at the first stage is one, then
doing retesting will be meaningless and wasting money. Therefore the estimator of
overall p  will be equal to the estimator of p in the first stage, and
Var(p,| X)=0 . Now, by using the equation (12), we can express the variance of
MLE p, conditionalon X as

X 1-(1-7)"

. = 1-(1-7) . :
Var(p,| X) = . {}, if X >1
2 n’ (1-7n)* 2kk(1+X/7 (1-n)""kk

11

0, if X=0orl
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Now consider X >1, if z is small, then we can using the Taylor’s first order

expansion to rewrite the expression of Var(p, | X) as

Var(p,| X >1) = £M[H (k, —2)r]
n kik,
R X

= Var(p, | X >1) ~ =21+ (k, - 2)7] (13)

n %

In section 2.1, we have already known 7 = % , therefore
Var(p2|X>1)zi[1+(k2—2) nlpl} (14)
nk, X

Now, in order to obtain the variance of p,, we will apply the law of total variance
Var(p,) = EVar(p, | X)]+Var (E[p, ] X]) (15)

By using equation (3) and the Taylor’s first order expansion,

Elp,| X]= £l 1= (1-
I’l

W (16)

X1 E[Y])

2

Y given X follows a binomial distribution with parameter Xk% and g(r), if
2

s 1s small, then

E[Y]= Xk, [1 7z)k2]z Xk, 7

2

szl nlpl
X

Therefore, equation (16) can be simplified as

x 1 X"

E[p, |X]zn—'—'T~P1

12
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As a result, Var(E[p,|X])=Var(p,)=0 . Hence, we only need to consider
ElVar(p,| X)] inequation (15).

Now, based on equation (14) we can obtain that

E[Var(p,| X)]~ p/i {1+(k2—2)n1 pl~EEﬂ if X>1 (17)

K
Assume 6=g(p,)=1-(-p,)" . Johnson, Kotz and Kemp (1992) derived the
approximate expectation for inverse of the number of positive groups at the first stage

X when X is larger than zero,

E{%|X>O}z[nl_2][(n1+1)9—1]_] (18)

n

Meanwhile, E {% | X > O} can be expressed as

iip[xzx]

E[L|X>O}:X=1X
' PlX >0]

Plx =1]+ Zn:)l(P[X = x]

x=2

PlX >0]

(19)

1 . o
However, we want to know FE [} | X > 1} . By applying the property of conditional

expectation and equation (19),

E[L1X>l}:x‘2
X

1

The number of positive groups at the first stage X follows a binomial distribution

PX =x]

|

X >1]

| X > O}P[X >0]-Plx =1]

| =

PlX >1]

with parameter n and @, therefore P[X >0]=1-(1-6)", P[X =1]=n60(1-60)""

13
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and P[X >1]=1-n60(1-60)""—(1-6)" . Hence,

1

(”1 _2][(;11 +1)o-1]" [1-(1—9)"1 ]—nlé’(l—é’)"“l
} = (20)

E[i X >1 _
X 1-n,0(1-0)"" —(1-6)"

Now, plugging equation (20) into equation (17), we can obtain that

(k, —2)n1p{”1‘2 [(n, + DO -1]"[1-(1-O)]" —n,6(1-6)""
Elvar(p, | X >D]~= L1+ i

|

nk, 1-n0(1-6)"" —(1-6)"

By using equation (15), the variance of the estimator of p at the second stage can be

expressed as

Var(p,) = E[Var(p, | X)]+0
= Var(p,) = E[Var(p,| X > DP(X > 1)+ E[Var(p, | X =0,)]P[X =0,1]

Note that Var(p,|X)=0 when X =0orl , hence the expectation of
Var(p,| X =0,1) will be zero. Therefore,

L@mpgz‘2{ﬁ—mea—aw1—a—ayﬂ+mb—mmp{m;2km+De—ﬂ”h—a—9ﬂ“—mea—eyﬂ}}

nk, |

21)
The second approach assumes that the estimator of p at the second stage is
conditional on the joint distribution of X and 7z . Suppose we have n, groups at
the first stage, and denote m,,...,m, as the number of positive individuals in each
group. Assume group i is positive; then m, will follow a positive binomial

distribution with parameter &k, and p, where 1<m, <k . Now, the number of

positive individuals at the first stage changes from nk p, to Zmi . Hence, the

m; >0

estimated prevalence at the second stage will be

14
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Emi

A m; >0

T = 22
Xk, 22)

If the true probability at the first stage is small, then we expect m, =1, therefore

X
Xk

. 1 . . . R

TR z; . According to the approximate value of 7 , assume that £ (ﬁ)zk—

1 1 1

and E (7%2 )z k—12 . By using equation (13), the variance of the estimator of p at the
1

second stage when X >1 can be expressed as

Var(p,| X > )= E [Var(p, | X >1,7)]

=E{3§ﬂ+wfamﬂ

n kK

X k,—2
1+-—2 23
nzkz( i ) (23)

1™

=Var(p,| X >1) =

From equation (15), we have already known that we only need to consider
E[Var(p,| X)], therefore we need to get E[X | X >1]. Knowing that the number of
positive groups at the first stage follows a binomial distribution with parameter n,

and @, hence

n0
1-1-0)"

Zn: XP[X = x]

~ Plx>0]

E[X|X>0]=

24)

Plx =1]+ iXP[X = x]

PlX >0]

Zn: XP[X = x]

E[X|X>1]:X‘2P[Tl] (25)

Plugging equation (24) into equation (25), we can obtain that
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E[X|X>1]:E[X|X>0]P[X>0]_p[X:1]

Plx >1]
Lm[l—a—e)"l J-noa-0)""
:>E[X|X>1]=1_(1_9) ~
1-n0(1-0)"" —(1-6)"
= E[x| X >1]= nol-a-oy] (26)

1-n,0(1-6)"" —(1-6)"
If p, issmall, then @=1—(1-p,)" =k p, . Therefore, the expectation of equation

(23) can be expressed as

1+f=2

E[Var(p,| X > 1)]=2—kkle[X | X >1]

n K

= E[Var(p,| X > 1]~ pln[lk_;}[;(‘? 1'] ][1 + kzk_z ] (27)

Hence, according to equation (15) and (27), the variance of the estimator of p at the
second stage can be expressed as
Var(p,) = E[Var(p, | X > DIP[X > 1]+ E[Var(p, | X =0,1)]P[X =0,1]+0

Note that Var(p,| X)=0 when X =0orl, therefore

= Var(p,) %[1—(1—6’)”‘1 {1+ kzk_2J (28)

1™ 1
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Chapter 3 Simulation Results

3.1 Simulation

In the simulations, we will choose some typical values of the number of groups at the
first stage ( n, ), the number of individuals in each group at the first stage (4, ) and at
the second stage ( k, ), and the true prevalence of affected individuals p . The values
of n,, k and p are set as in Hepworth and Watson (2015), and Hepworth and
Walter (2019). We will group each number of n,, k and k,, and select five values
of p which correspond to each group. Note that if all groups are positive or negative,
then there is no need to do retesting. Therefore, in order to avoid such a situation as
far as possible, Hepworth and Watson (2015) stated that the five values of p are
selected in order that the probability of a positive group in a group testing is not 0 or 1.

Xk : .
Note that the number of groups at the second stage —- might be non-integral, so

2

we will round these numbers to the next highest integer (e.g. X =3, k, =6, k,=12,

X, _18 ~ 2). Following is the data set:
k, 12

n, = (10,30,50,100)
k, = (6,12,20,50,100) k, = (6,12,20,50,100)
p < (0.001,0.002,0.005,0.01,0.02,0.05,0.1,0.2,0.3)

Generally speaking, there are supposed to be 4x5x5x5=500 combinations. But
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we have to pay attention to the size of k£, and k&, when the group sizes are different
Y
Xk 1
k 2
Y : . .
and ————— must be no greater than 1 if the group sizes are the same in the two

Xk
/k2+a2

stages; but in the case of different group sizes,

in the two stages. According to equation (3) and (5), there is no doubt that

_r might be

Y
W and Xk / »

k, k, ™
larger than 1 if %, islargerthan £, (e.g. n, =10, k=6, X =3, k, =12, Y =2).
Hence, we will drop all groups that have k&, larger than £, in the simulation.

In the simulations, we will perform N =100000 runs on each combination. The
total number of simulations N and combinations are set as in Hepworth and Walter
(2019), but the estimation equations used and the simulation process are somewhat
different since there are many special conditions if group sizes in the two stages are
different. The same simulation process setting with Hepworth and Walter (2019) is
that if the number of positive groups at the first stage X is 0 or 1, then the number
of positive groups at the second stage will always be 0 or 1 which is expensive and
meaningless, therefore there is no need to go to the second stage if X =0or1 and
first and second stage estimation will be same. Due to different group sizes in two
stages, there are two main special conditions that are different with Hepworth and

Walter (2019): first, k, needs to be smaller or equal to £, ; second, if the number of

groups at the second stage n, =—" is indivisible, then the result will be rounded to

2

the next highest integer.
In the next few sections, we will find out one or more most cost-efficient
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combinations by fixing some parameters and then comparing each combination’s

properties including relative cost-efficiency, precision, bias and so on.

3.2 Simulation Comparison

In statistics, simulation is a method that can generate random numbers based on
models rather than collecting a real data set, and it is a fast tool to approximate the
results of a true data set. Our first goal of the simulation is going to evaluate which
analytical solution is better by comparing the variance derived analytically and the
variance of the second stage obtained by simulation. The second goal of the
simulation is to identify one or more most valuable combinations which are composed
by n,, k, k, and p . The ‘value’ of a combination can be evaluated in several

ways, including cost-efficiency, precision, if it is worth retesting and so on.

3.2.1 Comparison of two analytical solutions with and without

correction

To evaluate how correct the equation (21) and equation (28) are, we can calculate the
ratio of the variances derived analytically (i.e. equation (21) and (28)) to the variance
of the second stage obtained by simulation. Note that at the end of section 2.1, we
mentioned that the equation with and without correction looks very similar but
actually ‘correction’ can be very important. The denominator of the ratio is the
variance of the second stage obtained by simulation, in other words, the denominator
of the ratio is obtained from the variance of 100000 results of equation (3) (i.e.

without correction) or equation (5) (i.e. with correction), where n,, k, and k, are
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chosen from the data set in section 3.1 and X, Y are determined by simulation. Let
us first take a look at equation (3) and (5) in detail. The only difference between
equation (3) and (5) is that equation (5) has a correction a, which equation (3) does

not have. The correction a, can be expressed as

where a, must be smaller than 0.5 since is smaller than 1. It looks

negligible since it is very small, for example, if we have a combination n, =10,
k=12, k,=6, X =2, Y =3, then equation (3) will equal to 0.04126 and equation
(5) will equal to 0.03453 which are very close. The effect of correction might not look
very significant if we look at only one case, but if we have 100000 cases and compute
the variance, the difference will become clearer. Table 1 indicates the ratio of the
variance derived analytically (i.e. the first approach means using equation (21), the
second approach means using equation (28)) to the variance of the second stage
obtained by simulation, where upper value is derived by applying equation (5) (i.e.
with correction) and lower value is derived by applying equation (3) (i.e. without
correction) in simulation. The ratio needs to be as close to 1 as possible since it is a
measurement of how different are the variances derived analytically and the variance
of the second stage obtained by simulation. Hence, a ratio is said to be acceptable if it
is close to 1.

Overall, the ratio derived by applying equation (5) (i.e. with correction) will be
more recommended than the ratio derived by applying equation (3) (i.e. without
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correction). Let us look at the results without a correction first. There are some
obvious observations for the results without correction that can be found in Table 1:
most ratios will be close to 1 (which is acceptable) if the values of &, and k&, have
large differences; when k, =k, , the ratio is always acceptable if the value of p isin
the middle (e.g. when k =k, =100, the middle value of p is 0.005; when
k, =k, =50, the middle value of p is 0.01) and n, =100 , the ratio is totally
unacceptable if p is very small or large (e.g. when & =k, =100, p=0.001 is
very small, p=0.02 is very large); when k, is approximately half of £, the ratio
will be acceptable for the most of the time when 7, is 30 or more, but not acceptable
for the most of the time when n, =10 . Note that the values of %, and k&, will be

the same or k, is approximately half of &, for the case shown in Table 2.

same k, 1s approximately half of £,
k, 100 50 20 12 6 100 50 20 12
k, 100 50 20 12 6 50 20 12 6

Table 2. Combinations of same k; and k, / k, isapproximately half of £,

From Table 1, we can observe that most ratios that without correction (i.e. lower
values) are acceptable and close to the ratio with correction when £, and k, have
large differences, sometimes the ratio without correction is more acceptable than the
ratio with correction, sometimes not. Nevertheless, some ratios without correction are
totally unacceptable when the values of &, and k&, are the same or £k, is
approximately half of 4, in either the first or second approach. For example, when
k, =100 and k, =100, ratios are extremely low for most values of »n, and p
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except when n, =100 and p=0.005,0.01. In contrast, the results of simulation
obtained by applying equation (5) (i.e. upper values, with correction) looks much
better, and only a few ratios with very small » (ie. n,=10) and p (ie.
p=0.001) are extremely large. Hence, from Table 1, we can conclude that if we want
to avoid an extremely low ratio of the variance derived analytically to the variance of
the second stage derived by simulation, it is necessary to add a correction when we
evaluate the estimator of p at the second stage.

Concerning the correction, a further question arises: the numerator of the ratio (i.e.
equation (21) or (28)) is derived by not adding any corrections, whereas for the
denominator of the ratio we have confirmed that one should apply the equation with
correction (i.e. equation (5)). A guess here is if we unify the numerator and the
denominator by adding a correction to both sides, the ratio would be closer to 1 than
the ratio (i.e. upper value) in Table 1. Deriving the variance of the estimator of p at
the second stage with correction is a big challenge, but it might be worth to do it in
the future.

Overall, the first approach will be recommended if #, is very small, or n, =30
when k and k&, have large differences; the second approach will be recommended
if n 230 when k =k, or the value of k, is approximately half of £ . To
compare the results of the ratio with correction for the first approach and second
approaches, let us take a look at the results that are presented in the form of figure and
table. Figure 1 shows the ratio of the variance derived analytically to the variance of
the second stage obtained by simulation for each approach for each combination of
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n,=10, p, k and some appropriate values of k, (which are depended on the

value of £k, ). Figure 2 and Figure 3 are similar to Figure 1 but with », =30 and
n, =50 separately. We will choose one or two £, that is same or approximately half

of k, forall k ,andone £k, that has large difference with &, for &, =(20,50,100):

k, =100, k,=(6,50,100);k =50, k, =(6,20,50); k =20, k, =(6,12,20); k =12,
k,=(6,12); k=6, k,=6.

n1=10k1=100 k2=100 n1=10 k1=100 k2=50
1

n1=10k1=100 k2=6
R

nl=10k1=50 k2=50

n1=10k1=50 k2=20
oy

nl=10k1=20 k2=20

nl=10 k1=20 k2=12

nl=10 k1=20 k2=6

nl=10k1=12 k2=12

n1=10k1=6 k2=6

first approach(---)

Figure 1. Ratio of the variance derived by to the variance derived by simulation
second approach(—)

when n, =10. x-axis is the value of true prevalence p ; y-axis is the value of the ratio.

Note that x-axis represents the true prevalence; y-axis represents the ratios; the
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dashed line represents the trend of the ratio of the variance derived by the first
approach to the variance derived by simulation, and the solid line represents trend of
the ratio of the variance derived by the second approach to the variance derived by
simulation.

From Figure 1, we can observe that the trend of the ratio for the first approach
and the second approach will have a similar pattern if p is not very small.
Simultaneously, no matter the value of &, is same, approximately half or has large
difference with £, , the ratio for the first approach is always larger than the second
approach if p is very small or very large; some ratios for the first approach are
extremely high and totally unacceptable if p is very small; if p is not very small,
most ratios for the first and second approach are very close, but the trend of the ratio
for the second approach is more smoothly than the first approach, and more ratios for
the second approach are closer to 1; the first approach will have more acceptable
ratios as the value of p getting larger, but it has smaller number of acceptable ratios
than the second approach in total. Therefore, the second approach will be
recommended if »; is very small.

From Figure 2 and Figure 3, we can observe that the trend of the ratio for the first
approach and second approaches have very similar patterns. When &, =k, (i.e. five
plots in the first column), the ratio for the first approach is always larger than the ratio
for the second approach; the difference between the ratio for the first approach and
second approach will get larger as the value of p gets larger; the first approach has
more acceptable ratios (i.e. close to 1) than the second approach. Hence, the first
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approach will be recommended if &k, =k, when #n, is 30 or more. When the value
of k, is approximately half of %, (i.e. four plots in the second column), most ratios
for the second approach are acceptable if p is not very large, all ratios for the first
approach are acceptable and the trend of the ratio for the first approach is more

smoothly than the second approach. Hence, the first approach will be recommended

n1=30 k1=100 k2=100 n1=30 k1=100 k2=50 n1=30 k1=100 k2=6

0 L K
0 os ¥
04 07
01 0! 0. 1 0.0z 0. 01! 0.
: P P
n1=30 k1=50 k2=50 n1=30 k1=50 k2=20 n1=30 k1=50 k2=6
12 1
e _ 11 R T e eots S W -
o R - e e g 2 3 o
= . & 0 1
L]
3 0. o
p I ;
n1=30k1=20 k2=20 n1=30k1=20 k2=12 n1=30 k1=20k2=6
12 12
11 S e et .4
= i’

Figure 2. Ratio of the variance derived by | firstapproach(---) 4 the variance derived by simulation
second approach(—)

when g, =30. x-axis is the value of true prevalence p ; y-axis is the value of the ratio.

if the value of k, is approximately half of 4, when #n, is 30 or more. When the
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values of &, and k, have large differences (i.e. three plots in the third column), the

ratio for the first approach is always smaller than the ratio for the second approach if
p s very small; the difference between the ratio for the first and second approaches

will get larger as the value of p gets larger; all ratios for the first and second

approaches are very close and acceptable, but the trend of the ratio for the second

n1=50 k1=100 k2=100 n1=50 ki1=100 k2=50 n1=50 k1=100 k2=6
- >
- 12 og b 1]
- 11 . P g
g T
: [}
8 +
0.01 1 0 0. 0 s I
P ¥
n1=50 k1=50 k2=50 n1=50 k1=50 k2=20 n1=50 k1=50 k2=6

- -
.-

Ratio

n1=50 k1=20 k2=20 n1=50 k1=20 k2=12 n1=50 k1=20 k2=6

-

n1=50 k1=12 k2=12 n1=50 k1=12 k2=6

: s, - -—+---"*
- 1
04
i
5 )

Figure 3. Ratio of the variance derived by | firstapproach(---) 4 the variance derived by simulation
second approach(—)

when n =50- x-axis is the value of true prevalence p ; y-axis is the value of the ratio.

approach is smoother than the first approach, and the ratio for the second approach is
closer to 1 than the first approach, which means that the ratio for the second approach
is more acceptable than the first approach. Hence, the second approach will be
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recommended if the values of &, and k&, have large differences when n, is 30 or
more.

In summary, when n, is very small, the second approach will be recommended;
when 7, >30, the first approach will be preferred if & =k, or the value of &, is
approximately half of £, and the second approach will be preferred when the values
of k, and k, have large differences.

Now, we will move to look at the results that are presented in the form of a table.
We will look at the second approach first. When the values of &, and k, have large
differences and n, is large enough (i.e. larger or equal to 30), the ratio of variance is
always between 0.9 to 1.1 for all values of p . The ratio in such range is approaching
to 1, in other words, the variance derived analytically by using the second approach is
close to the real result when k&, and k, vary greatly with 30 or more n,. However,
when the values of &, and k&, have large differences but with n, =10, most ratios
of variance are between 0.84 to 1.04 for the largest four values of p , but some ratios
are around 0.65 when the value of p is smallest. For the range of 0.84 to 1.04, it is
certain that the ratio between 0.9 to 1.04 is an nearly ideal ratio, and the ratio between
0.84 to 0.9 is still narrowly acceptable although it is not that perfect. When the values
of k, and k, are the same and n, >30, the variance derived analytically by using
the second approach is close to the real result for the three smallest values of p ;
when £k, is approximately half of k4, and n, is 30 or more, the second analytical
solution is acceptable for the four smallest values of p . When n, is the smallest and
k, and k, are the same or k, is approximately half of £, , the second analytical
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solution is always between 0.9 to 1.08 for the middle three values of p , and
sometimes acceptable for the largest value of p (i.e. k, =k, =100; k =k, =20).
The first approach has a similar overall pattern to the second approach, but it still
has some minor changes. First, when the values of &, and k, have large differences,
the acceptable ratio changes towards larger n, (i.e. 50 or more) for all value of p
and towards larger p (largest three value of p instead of largest four) when
n, =10 ; the first analytical solution is appropriate when n, =30 for the largest four
values of p . Second, when the values of &, and k, are same or £, is

approximately half of £, , the acceptable ratio changes towards larger p forall n,.

3.2.2 Determine the most valuable combination

In an experiment, in addition to get a good experimental result, investigators are also
interested in discovering the most cost-efficient combination which is able to
accomplish an experiment with a minimum cost and get the most precise result.

Cost-efficiency is closely related to precision and cost, it can be expressed as

Precision y :
Cost - Efficiency = = £/ Varance (29)
Cost Cost

We will use different cost functions in the next two subsections. In section 3.2.2.1, we
will define ‘cost’ as the total cost using a testing function, in other words, it is equal to

the number of groups at the first stage »n, if we are only interested at the

cost-efficiency of the first stage; it is equal to the total number of groups at first and

second stage n, +n, if we are interested in the cost-efficiency of two stages overall.
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Instead, in section 3.2.2.2, we will define ‘cost’ as the total cost using a sampling
function, equal to the total number of individuals being tested nk, . Note that when
applying the cost function in section 3.2.2.2, the cost is still equal to nk, if we are
going to do retesting, because the individuals being tested in the second stage are the
same as in the first stage.

In the next two subsections, we will determine whether using the first stage only
is precise enough or not and if it is worth to go on to the second stage. By looking at
the cost-efficiency of overall two stages, all the most efficient combinations will be
chosen by fixing n,, k, and p or by fixing nk, and p , then, the optimal
combination will be determined by looking at these ‘the most efficient’ combinations’

criterion, including standard error, relative cost-efficiency, precision, and bias.

3.2.2.1 Simulation Comparison by fixing »,, k£, and p

The first goal of this subsection is finding out the value of %, which would form the
most efficient combination with given n, , k, and p . Table 3 displays the
cost-efficiency of each combination when applying the cost function that is based on
the total number of groups tested. In each combination, the first value represents the
cost-efficiency of testing overall two stages, and the numerator of equation (29) is the
variance of overall p which is derived by using the first approach (i.e. equation
(21)); the second value represents the similar thing with the first value, but the
numerator of equation (29) is derived by using the second approach (i.e. equation

(28)); the third value represents the cost-efficiency of testing the first stage only. From
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this table, we can observe that the cost-efficiency of testing the first stage only is
always greater than the cost-efficiency of testing overall two stages, which means that
retesting will reduce the cost-efficiency. In fact, it is not a surprising observation
because retesting requires additional cost, and some retesting will probably increase a
little precision which is not worth the extra cost. Nevertheless, some investigators
might still want to go to the second stage, for example, the precision of testing the
first stage only is not enough, and then investigators decide to spend a little more
money to go to the second stage to improve precision. Note that the cost-efficiency of
testing overall two stages by using the first and second approaches are both shown in
Table 3, but we will only look at one of them based on the conclusions in section 3.2.1.

The choice of approach for cost-efficiency is shown below:

The value of n,

The values of &, and £,

The choice of approach for

cost-efficiency

n, 1s very small

Any value of k, and £,

The second approach

n, 230 k =k, The first approach
n, 230 k, is approximately half of £, The first approach
n, 230 k, and k, have large

differences

The second approach

Overall, in the case where n,, £k,

would form the most efficient combination with given n,, &,

Table 4. The choice of approach for cost-efficiency

and p are fixed, the value of &, which

and p 1is always

equal to k, or approximately half of £, . This can be proved by observing the results
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in Table 3. From Table 3, we can observe that when £, =(12,50,100), the value of £,
which would form the most cost-efficient combination with given n,, k, and p is
half of &, if n,=10 and p is relative small; when £ =(12,20,50), the value of
k, which would form the most cost-efficient combination with given n,, k, and p
is half of & if n =(50,100) and p is relative large; otherwise, the value of £,
which would form the most cost-efficient combination with given n,, k, and p is
always equal to £, . Thus, we can conclude that the most cost-efficient combination is
consisted by using k, =k, when £k, is very small all the time and 4, is not very
small (i.e. £, =(12,20,50,100) ) for most of the time; however, when £, is not very
small, some of the most cost-efficient combinations will be consisted by a given &,
and a value of k, that is approximately half of £,.

Next, we will evaluate the ‘value’ of those ‘most cost-efficient’ combinations and
determine the optimal combination based on some criterion. Table 5 displays the most
cost-efficient combination for each given n,, k, and p , and their standard error,
bias and relative cost-efficiency. Note that the standard error, bias, and relative
cost-efficiency of testing overall two stages are all shown in Table 5, but we will only
look at the criterion of one approach based on the conclusions in Table 3.

First, the standard error will be discussed. The standard error is a square root of
the variance, it measures how precise an estimate is, as the standard error getting
smaller, an estimate will be more precise. Column 5 and 9 in Table 5 represent the
standard error of overall p which is derived by using the first approach and second
approach separately. From these two columns, we can observe that it is very hard to
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determine which combination has a better estimate of overall p because each
estimate is corresponding with different true prevalence. Therefore, we will use the
Relative Standard Error (RSE) to evaluate the standard error of these combinations.
RSE is defined as a fraction of the standard error and the true prevalence, and it can

be expressed as

Relative Standard Error = (estimate) Standard Error of overall p _ SE(p,.,)

(30)
True prevalence

Usually, RSE is displayed as a percentage. The combination with a high percentage of
RSE represents that there is more relative variation in the estimates, which means that
such combination will subject to high estimation error and it needs to be careful when
using such design. If a combination has a low percentage of RSE, then it represents
that there is less relative variation in the estimates, which means that this combination
is acceptable and it is good enough for using the first stage only. In this thesis, a
relative standard error is defined as acceptable if it is below 20%; in other words, if
the RSE is below 20%, then testing the first stage only is precise enough.

Overall, we will recommend investigators to use the combination that has as large
n, as possible. This can be proved by comparing the RSE of combinations in Table 5.
Column 6 and 10 in Table 5 represent the relative standard error where the overall p
is derived by using the first approach and second approach separately. Based on the
conclusions in Table 3, we will look at column 6 (i.e. the RSE of the first approach)
when 7, >30, and we will look at column 10 (i.e. the RSE of the second approach)

when 7, =10 . From these two columns, we can observe that the relative standard
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error will be more acceptable when »n, and p are getting larger, and extremely
unacceptable when »n, and p are very small no matter what the values of &, and
k, are. However, different kinds of experiments will have a different range of true
prevalence. For example, rat-bit fever is a rare infectious disease with only several
cases in the world each year, so it has extremely low true prevalence; instead, malaria
is a common disease and it has high true prevalence. Therefore, by looking at (relative)
standard error only, if the research variable of interest is common and has high true
prevalence, then the combination of large enough number of groups n, with any
value of &, and a value of k, that is the same or approximately half of &, will be
recommended. Under this condition, the estimate of proportion is good enough for
using the first stage only, thus one recommendation for next step is investigators can
decide to accept the experiment result and not go on to the second stage; the other
recommendation is they can decide to go on to the second stage if they have enough
cost and interested at seeing if the second stage will give them a more precise result.
However, if the research variable of interest is rare and has low true prevalence, the
difficulty of the experiment will increase and it is very hard to get an estimate of the
proportion which has a very small relative standard error. Even so, the recommended
combination is still to have a large enough number of groups », with any value of
k, and a value of £, that is the same or approximately half of £, , which is able to
minimize the error in the case of low true prevalence. Under this condition, the
estimate of the proportion is not so bad but not that ideal for using the first stage only,
so one recommendation for next step is investigators can decide to stop the
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experiment and change a different design, the other recommendation is they may
decide to continue the experiment and go on to the second stage to see whether the
result has improved or not.

Overall, if the cost function is based on the total number of groups tested, then the
estimate of p using two testing stages combined is close to the true prevalence.
Column 7 and 11 in Table 5 represent the bias between the estimate of p using two
testing stages combined and the true prevalence, where column 7 represents the
estimate of p using two stages combined is derived by using the first approach and
column 11 represents the estimate of p using two stages combined is derived by
using the second approach. Note that both two columns are multiplied by 100000 to
make it easier to read. Based on the conclusions in Table 3, we will look at column 7
(i.e. the bias of the first approach) when », >30, and we will look at column 11 (i.e.
the bias of the second approach) when n, =10 . A small bias represents that the
difference between the estimation and the true result are small; in other words, the
estimation is close to the true result. Therefore, bias needs to be as small as possible.
From these two columns, we can observe that all bias are very small. The largest bias
(times 100000) is -2078.97 when n =10, p=0.2 and k =k, =12, but since it is
100000 times bias, so the estimate of p using two testing stages combined is
Dy, = p+bias= 0.2+%: 0.1792103 , which is close to the true prevalence
p =0.2. Therefore, we can conclude that all estimates of p using two testing stages
combined are close to their true prevalence.

Column 8 and 12 in Table 5 represent the relative cost-efficiency which is derived
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by using the first approach and second approach separately. Based on the conclusions
in Table 3, we will look at column 8 (i.e. the relative cost-efficiency of the first
approach) when n, >30 , and we will look at column 12 (i.e. the relative
cost-efficiency of the second approach) when n, =10 . Relative cost-efficiency is one
of the important criteria to evaluate the ‘value’ of a combination. It is a fraction of the

cost-efficiency of two stages combined and the first stage only, it can be expressed as

Cost - Efficiency ..,

Relative Cost - Efficiency = -
Cost - Efficiency g ue

_ Var(p,)-Cost,
Var(ﬁlﬁ-z) ) C'()’St1+—2

1)

where the cost function here is based on the total number of groups tested, Cost, =n,
and Cost, , = n, +n,. Therefore,

Var(ﬁl)'nl
Va’"(ﬁuz) “(n, +ny)

Relatlve COSt - EfﬁCIenCY(the total cost using testing function) = (32)

The relative standard error tells investigators whether doing the first stage only is
precise enough or not, instead, the relative cost-efficiency tells investigators if it is
worth to go on to the second stage. Usually, a combination is optimal if its relative
cost-efficiency is larger or equal to 1, which means that the cost-efficiency of retesting
is larger or equal to the cost-efficiency of doing the first stage only. But note that in
Table 3, we can observe that the cost-efficiency of using the first stage only is always
larger than the cost-efficiency of retesting. Even so, some investigators might still
want to do retesting if it is worth to go on to the second stage, where ‘worth’ means

spending more funds to get a more precise result. A relative cost-efficiency that is
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close to 1 represents that cost relative to precision of testing two stages combined is
approximately same with doing the first stage only, which means that if investigators
are testing overall two stages by using the cost as doing the first stage only, then they
will get an approximately same precision with doing the first stage only. For example,
if the relative cost-efficiency is 0.9, then it indicates that testing two stages combined
is 90% as efficient as testing the first stage only. Since the cost-efficiency of using the
first stage only is always larger than the cost-efficiency of retesting when the cost
function is based on the total number of groups tested, therefore, in table 5, a relative
cost-efficiency is defined as acceptable if it is above 0.8 (below 1 but close to 1), and
we may recommend investigators to go on to the second stage.

Let us look at the RE when n, =10 (i.e. column 12, the second approach) first.
From column 12, we can observe that if p is very small (0.5% or less), then the
relative cost-efficiency is always acceptable when &, =(20,50) and acceptable for
most of the time when 4, =100 ; if p is small (larger than 0.5%, less or equal to
1%), then the relative cost-efficiency is acceptable when &, =(12,20), and entirely
not acceptable when k&, =(50,100) ; if p is large (larger than 1%, less or equal to
5%), then the relative cost-efficiency is always acceptable when & =(6,100) ,
sometimes acceptable when 4, =(12,50), and entirely not acceptable when &, =20;
if p is very large (larger than 5%), then the relative cost-efficiency is always
acceptable when &, =20, sometimes acceptable when £, =(6,12) . Next, let us look
at the RE when 7, >30 (i.e. column 8, the first approach). From column 8§, we can
observe that all findings when #n, >30 are the same as the findings when n, =10,
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except the following conditions: when 0.01< p <0.05, the relative cost-efficiency is
sometimes acceptable when k&, =6 instead of acceptable for all the time, and not
acceptable when &, =100 instead of acceptable for all the time; when p >0.05, the
relative cost-efficiency is totally not acceptable when k& =6 instead of acceptable
for some time, and not acceptable when k&, =20 instead of acceptable for all the time.

The summary of the observations from column 8 and 12 are listed in Table 6.

acceptable or not
p k1 nl1=10 nl1>=30
p<=0.005 100 acceptable for most of the time acceptable for most of the time
50 always acceptable always acceptable
20 always acceptable always acceptable
0.005<p<=0.01 100 not acceptable not acceptable
50 not acceptable not acceptable
20 always acceptable always acceptable
12 always acceptable always acceptable
0.01<p<=0.05 100 always acceptable not acceptable
50 sometimes acceptable sometimes acceptable
20 not acceptable not acceptable
12 sometimes acceptable sometimes acceptable
6 always acceptable sometimes acceptable
p>0.05 20 always acceptable not acceptable
12 sometimes acceptable sometimes acceptable
6 sometimes acceptable not acceptable

Table 6. The summary of the observations of relative cost-efficiency

Note that the final recommendation will be given based on the true prevalence,
therefore, since p <0.005 and 0.005< p <0.01 are close, these two ranges will be
combined ( p<1% ) and defined as relatively low true prevalence or rare;
0.01<p<0.05 and p>0.05 will be combined ( p >1% ) and defined as relatively
high true prevalence or common. When we analyzing the RSE, we have concluded
that the combination that has as large n, as possible will be recommended. Therefore,
it is significant to have an acceptable RE when n, is large.

Let us look at Table 6 for relatively low true prevalence first. We can observe that

if p is very small (0.5% or less), then the RE is acceptable for all »n, ~when
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k, =(20,50,100) ; if p 1is small (larger than 0.5%, less or equal to 1%), the RE is
acceptable for all » ~ when & =(12,20) , but no longer acceptable when
k, =(50,100) . In summary, if & =(12,20), the RE is acceptable when n, is large,
which means that it is worth to go on to the second stage if n, is large, &, =(12,20)
and a value of £, that is the same or approximately half of £, . Next, let us look at
Table 6 for relatively high true prevalence. We can observe that if p is large (larger
than 1%, less or equal to 5%), the RE is acceptable for all », when £k, =(6,12,50); if
p is very large (larger than 5%), then the RE is acceptable for all n, when k =12,
but no longer acceptable when 4 =6 . In summary, if & =(12,50) , the RE is
acceptable when n, is large, which means that it is worth to go on to the second
stage if n, is large, k =(12,50) and a value of k&, that is the same or
approximately half of £, .

Overall, by looking at the relative standard error, the bias and the relative

cost-efficiency, if the cost function we applied is based on the total number of groups
tested, and the value of n,, k&, and p are fixed, then we will make the following
recommendation:
1. If the research variable of interest has relatively high true prevalence ( p >1% ) and
investigators do not have extra cost or they are not interested at seeing if the second
stage can give a better result, then the combination of large », with any value of &,
will be recommended, and investigators only need to do the first stage if they follow
the recommendation.

2. If the research variable of interest has relatively high true prevalence ( p >1% ) and
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investigators have extra fund and they are interested in seeing if the second stage can
give a better result, then the combination of large n,, k, =(12,50) and a value of &,
that is same or approximately half of %, will be recommended.

3. If the research variable of interest has relatively low true prevalence ( p <1% ),
then the combination of large n,, k =(12,20) and a value of k&, that is same or
approximately half of &, will be recommended, and investigators can either decide
to change the design of combination after doing the first stage or go to the second

stage to see if they can get a better result.

3.2.2.2 Simulation comparison by fixing nk, and p

In this subsection, we will do a similar work with section 3.2.2.2, but the value of

nk, and p will be fixed, and the cost function, the equation of cost-efficiency and
relative cost-efficiency will be changed. The cost function we used in this subsection

is based on the total number of individuals tested, where

Cost = Cost =n,k, . Therefore, the new equation for the relative

(first stage only) (overall two stages)

cost-efficiency can be expressed as

Var(p,)-(mk,)
Var(p,,,) (nk,)

(33)

Relatlve COSt - EfﬁCIenCY(the total cost using sampling function) =

By comparing the equation (32) and (33), if investigators decide to not go to the
second stage, then 7, =0, and the relative cost-efficiency by using the testing based
cost function (i.e. equation (32)) will be equal to the relative cost-efficiency by using

the sampling based cost function (i.e. equation (33)); if investigators decide to do
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retesting, then the relative cost-efficiency by using the sampling based cost function
will be larger than the relative cost-efficiency by using the testing based cost function.
Therefore, the RE by using the sampling based cost function is always greater or
equal to the RE by using the testing based cost function.

We have n, =(10,30,50,100) and £k, =(6,12,20,50,100) , so nk, can be

combined as

niki m=10 n1=30 ni=50 n1=100
ki=6 60 180 300 600
ki=12 120 360 600 1200
ki=20 200 600 1000 2000
ki1=50 500 1500 2500 5000

ki1=100 1000 3000 5000 10000
Table 5. Different combinations of 7k,
Note that since we want to compare the cost-efficiency of each combination with
given nk, and p , therefore the nk, that only appears once in Table 5 will be
dropped and we will select common p ineach (n,,k;) with given nk,.Hence, we
will find the proper value of %, to form the most cost-efficient combination with the
following nk, and p:
nk, =600: (n,k)=1{100,6),(50,12),(30,20)}, p=(0.02,0.05,0.1)
mk, =1000: (n,,k)={(50,20),(10,100)}, p=(0.005,0.01,0.02)
nk, =5000: (n,,k)=1{(100,50),(50,100)}, p=(0.002,0.005,0.01,0.02).

Table 7 displays the cost-efficiency of each combination above when applying the

cost function that is based on the total sample size. Column 6 and 7 represent the

cost-efficiency of testing overall two stages by using the first approach and second
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approaches separately; column 8 represents the cost-efficiency of testing the first
stage only. Note that the cost-efficiency of testing overall two stages by using the first
and second approaches are both shown in Table 7, but we will only look at one of
them based on Table 4. Different with the observations from Table 3, we can observe
that in Table 7, most cost-efficiency of testing overall two stages are approximately
equal or larger than the cost-efficiency of testing the first stage only, which means that
doing additional stage will have similar precision with doing the first stage only, or
even increasing the precision of the first stage. This observation makes more sense for
investigators to do retesting. From Table 7, we can observe that the value of &%,
which would form the most cost-efficient combination with given nk, and p is
always equal to 6 whatever the value of nk, and p are. Therefore, k, =6 will be
recommended if the value of nk, and p are fixed.

Table 8 displays the standard error, relative standard error, bias, and relative
cost-efficiency for ‘most cost-efficient’ combination we found in Table 7. Based on
Table 4, we will look at column 6 to 9 (i.e. the first approach) when nk, =600 since
all three ‘most cost-efficient” combinations have large enough », (n, >30) and the
value of k, 1is the same or approximately half of £, ; we will look at column 10 to 13
(i.e. the second approach) when nk, =1000 since the first two ‘most cost-efficient’
combinations have large enough n, ( » >30) and %k and k&, have large
differences, and the last ‘most cost-efficient’ combination has very small n,
( n,=10 ); we will look at column 10 to 13 (i.e. the second approach) when
nk, =5000 since all four ‘most cost-efficient’ combinations have large enough n,
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(n,230)and k, and k, have large differences.

The relative standard error in Table 8 shows that doing the first stage only is
precise enough (i.e. below 20%) if the total sample size is small (i.e. 600, 1000) and
p 1is very large ( p >0.05) or if the total sample size is large (i.e. 5000) and p is
relatively large ( p >1% ); doing the first stage only is not precise enough if the total
sample size is small and p <0.05 or if the total sample size is large and p is

relatively small ( p < 0.01). Table 9 concludes the observations above.

total sample size doing the first stage only
(niki) P is precise enough or not
small (i.e. 600,1000) p<0.05 not precise enough
small (i.e. 600,1000) p>=0.05 precise enough
large (i.e. 5000) p<0.01 not precise enough
large (i.e. 5000) p>=0.01 precise enough

Table 9. The observations of RSE
However, different experiment has different research object, therefore the total
number of individuals can be collected is depended on the variety of research object.
For example, humans and mosquitoes, it is more possible for investigators to collect
over ten thousand mosquitoes than to collect over ten thousand people. Therefore, the
total sample size will not be very large if the research object is human, instead, the
total sample size can be extremely large if the research object is mosquitoes. In this
section, we only analyzed the experiment with a total sample size that is not
extremely small or large (i.e. 600, 1000, 5000) because our setting of combination is
limited. Nevertheless, we can still make a guess for the experiment with extremely
small or large total sample size based on the observations of the relative standard error
(Table 9): if the total sample size is extremely small, then it needs a true prevalence
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that is much larger than 5% to make the result of doing the first stage only precise
enough; if the total sample size is extremely large, then it needs a true prevalence that
is much smaller than 1% to make the result of doing the first stage only precise
enough; otherwise, doing the first stage only will be not precise enough. Analyzing
the experiment with an extremely small or large total sample size is a significant work,
and this guessing will be verified or against in future work.

Overall, if the cost function is based on the total sample size, then the estimate of
p using two testing stages combined is close to the true prevalence. From column 8
and column 12 in Table 8, we can observe that all bias are very small. The largest bias
(times 100000) is -13.91 when nk, =1000 and p=0.02, but since it is 100000
times bias, so the estimate of p  using two testing stages combined is

_13.91
D, =p+bias=0.02 +
Pra=P 100000

=0.0198609 , which is close to the true prevalence
p =0.02 . Therefore, we can conclude that all estimates of p using two testing
stages combined are close to their true prevalence.

From the relative cost-efficiency in Table 8, we can observe that the relative
cost-efficiency is larger than 1 for all the time, which means that it is worth to do
retesting whatever the value of nk, and p are.

Overall, by looking at the relative standard error, the bias and the relative
cost-efficiency, if the cost function we applied is based on the total sample size, and
the value of mk, and p are fixed, then we will make the following
recommendation:

1. If investigators can collect either small or large sample sizes, and the research
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variable of interest has a relative small true prevalence to the total sample size, then a
combination with &, =6 will be recommended. Under this situation, doing the first
stage only is not precise enough, so investigators can either decide to change the
design or go to the second stage. However, retesting will be more recommended since
testing overall two stages will gain a little bit more precision at most of the time.

2. If investigators can collect either small or large sample sizes, and the research
variable of interest has a relative large true prevalence to the total sample size, then a
combination with &, =6 will be recommended. Under this situation, doing the first
stage only is precise enough, so investigators can either decide to stop at the first stage
or go to the second stage. However, retesting will be more recommended since testing
overall two stages will always gain much more precision, which is worth the extra

fund.
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Chapter 4 Discussion

4.1 Extension of Group testing: Classification

Our main goal of this thesis is estimating the true proportion of affected units, which
is one reason for using group testing. Classification is the other category of group
testing. It is Dorfman (1943)’s primary incentive for using group testing, and it is
aimed at identifying positive units, or in other words, detecting individuals with the
disease of interest (Kim et al., 2007). Nevertheless, there exist some imperfect cases
in group testing, such as misclassification. Misclassification occurs when an
individual is classified into the wrong population subgroup. For example, suppose
there are 50 people in an experiment, 45 of them are healthy and 5 of them have
cancer. Now these 50 people are mixed up and tested individually to see if they have
cancer, if a healthy person is diagnosed with cancer or a people who have cancer is
diagnosed as health, then this person is classified into the wrong subgroup, which is a
misclassification. Many statistical studies of group testing assume that the test
samples can be analyzed by group testing precisely without any errors. However,
when the proportion p is relatively large to the total sample size, we need to be

cautious in choosing the number of group size k. If the group size & is too large, it will
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result in a high mean squared error (MSE) of the estimation of the true proportion,
and test samples will be misclassified into the wrong subgroup. Therefore, it is very
important to choose an optimal group size k (Liu et al., 2011; Chen and Swallow,
1990). Graff and Roeloffs (1972) gave an extension of group testing based on
Dorfman (1943) under the condition of known test error between outcome and true
state. Burns and Mauro (1987) summarized the former’s conclusion and proposed

group testing with accidental test error .

4.1.1 Dorfman’s group testing

Dorfman (1943)’s group testing has a different objective with this thesis. The goal of
group testing in this thesis is estimating the proportion of affected individuals,
nevertheless, Dorfman’s incentive is identifying individuals with the disease of
interest. Dorfman (1943) (see also Malinovsky and Albert 2018) proposed a screening
procedure intended to decrease the expected number of tests required to identify
soldiers with syphilis. He regards » soldiers as a whole group, and then collected
their blood samples separately. He began with a test on this group of blood samples. If
the result shows negative, then it declares that none of the soldiers have syphilis in
this group, therefore no further test is needed; if the result shows positive, it states that
there exists at least one soldier has syphilis in this group, then each soldier has to be
retested individually, therefore it needs n+1 tests in this group, we can also call this
as the Dorfman two-stage procedure or retesting. Nevertheless, the total number of

tests needed will not exceed n+1 in any case. When the population proportion of
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affected individuals is small, then it requires a small expected number of tests.

4.1.2 Sterrett’s group testing

Sterrett (1957) modified and suggested a more advanced procedure based on
Dorfman’s screening procedure. He aimed at further reduction in the expected number
of tests needed. If the result of group test is positive in the first stage, then each
individual is tested one-by-one instead of testing all individuals in the second stage,
this process stops after the first appearance of a nonconforming individual. Then
group the remaining untested individuals as a new group, and repeat the same
procedure in the first stage. If the result is negative, then it states that there exists only
one nonconforming individual; if the result is positive, then test each individual
one-by-one until the first appearance of a nonconforming individual. The rest can be

done in the same manner until all items are tested.

4.2 Future work and Challenge

One extension for our work would be determining an appropriate number of group
sizes at the second stage based on the estimate of the true proportion at the first stage,
which is called an adaptive group testing scheme. Normally, group testing can be split
into two categories: non-adaptive group-testing scheme and adaptive group-testing
scheme. The former is more common than the latter since the derivation of the
adaptive scheme is more complicated. In this thesis, we used a non-adaptive scheme.

The number of group sizes at the first stage and the second stage are fixed at the
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beginning. A non-adaptive group-testing scheme tests N groups and each with group
size k; if the test result of a certain group is positive, then it means one or more
individuals in this group has a trait that conforms to the research variable of interest.
An adaptive group-testing scheme tests N, groups and each with group size &, in
the first stage, N, groups and each with group size k, in the second stage, and so
on in a similar manner, the number of group sizes of the next stage will be determined
during the experiment and depending on the maximum likelihood estimation of p in
the previous stage and the number of tests in the stage to be tested currently. An
adaptive scheme refers to a multi-stage scheme, Hughes-Oliver and Swallow (1994)
proposed a two-stage adaptive algorithm and derived the number of group sizes in the
second stage based on the MLE of p in the first stage.

In addition to the one-stage and two-stage algorithm, the research of three or
more schemes is also concerned, which could be an extension of our work. Schultz et
al. (1973) proposed multiple-stage procedures for drug screening and gave an
example of three-stage designing, then concluded that drugs might be declared active
if and only if they pass through all three stages. In statistical research, it is important
to choose the most optimal number of stages. The derivation of formulas will be
complicated when there are three or more stages, simultaneously, the cost of
additional stages must be considered. However, the number of stages needs to be
determined on the exact situation, sometimes one- or two-stage would be better, but
sometimes it may require more stages.

In section 4.1, we talked about an imperfect case—misclassification—in group
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testing. In addition to the imperfect case, there exists a special case in group testing:
unequal group sizes. Unequal group sizes can be divided into two varieties: unequal
group sizes between stages, and unequal group sizes within a stage. Both of these two
varieties might be caused by either deliberate design or unforeseen occurrence.
Unequal group sizes between stages are talked in this thesis. An extension of our work
would be allowing unequal group sizes within a stage. Furthermore, a more
complicated extension work would be allowing unequal group sizes within both two
stages, and simultaneously, allowing unequal group sizes between two stages.
Statisticians have done some researches on the case of unequal group sizes within a
stage. For example, Walter, Hildreth and Beaty (1980) used group testing of unequal
group sizes within a stage to estimate the infection rates of yellow fever virus in a
mosquito population; Chen and Swallow (1990) designed a set of unequal group sizes
within a stage and proposed a grouping test based on the Binomial model with these
group sizes; Le (1981)‘s research of interest is estimating the infection rates in
populations of organisms, but unfortunately, it is impractical to test every unit
separately, so instead, he chooses to divide the organisms into multiple groups at
random. The derivation of a confidence interval is difficult and complicated when
group sizes are unequal. Hepworth (2005) and Hepworth (1996) developed
confidence intervals and exact confidence intervals for unequal group sizes.

Overall, there were three challenges in this thesis.

The first is deriving the equation of the variance of the estimate of overall p ,
Var(p,,,) , which includes Burrow’s correction and was talked in section 2.2. The
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difficulty for this challenge is deriving the covariance of modified MLE at the first
and second stage, Cov(p,,p,).

The second challenge is evaluating whether doing the first stage only is precise
enough or not and if it is worth to go to the second stage when the total sample size is
extremely small or large, which was talked in section 3.2.2.2. We have this challenge
in this thesis because we only set 4 numbers in the figure of n,  (ie.
n, =(10,30,50,100) ) and 5 numbers in the figure of £, (i.e. & =(6,12,20,50,100)),
our setting of combination is very limited. In the future, we may solve this challenge
by examining more », and k.

The last challenge is finding out an appropriate cost function. In this thesis, we
considered two cost functions: total cost using the testing function (section 3.2.2.1)
and total cost using the sampling function (section 3.2.2.2). However, in addition to
consider the cost of testing a group or an individual in an experiment, we also need to
consider other factors that would cost extra funds. For example, investigators need to

spend some costs on collecting data set before testing (Sobel and Elashoff, 1975).
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Table 1. The ratio of the variance derived analytically (i.e. first approach means using equation (21),
second approach means using equation (28)) to the variance of the second stage obtained by simulation.
The upper value is derived by applying equation (5) (i.e. with correction) and the lower value is derived

by applying equation (3) (i.e. without correction) in simulation.
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nl(First Approach) n2(Second Approach)

ki k2 P Correction 10 30 50 100 10 30 50 100
100 100 0.001 with 7.5175 | 0.9622 | 1.0917 | 1.1660 | 0.8537 1.0793 1.0747 | 1.0944
without 0.0022 | 0.0004 | 0.0008 | 0.0053 | 0.0003 0.0005 0.0008 | 0.0049
0.002 with 0.8519 | 1.0888 | 1.1348 | 1.1552 | 1.0505 1.0390 1.0526 | 1.0847
without 0.0003 | 0.0008 | 0.0030 | 0.0745 | 0.0003 0.0008 0.0028 | 0.0700
0.005 with 1.0141 | 1.0329 | 1.0668 | 1.1131 | 1.0425 0.9202 0.9468 | 0.9852
without 0.0004 | 0.0025 | 0.0292 | 1.0465 | 0.0004 0.0022 0.0259 | 0.9263
0.01 with 1.0691 | 0.9278 | 0.9848 | 1.0206 | 0.9186 0.7434 0.7796 | 0.8007
without 0.0004 | 0.0026 | 0.0447 | 0.9558 | 0.0003 0.0021 0.0354 | 0.7499
0.02 with 1.4294 | 0.7498 | 0.7240 | 0.7828 | 0.9980 0.4758 0.4513 | 0.4817
without 0.0003 | 0.0005 | 0.0017 | 0.0754 | 0.0002 0.0003 0.0010 | 0.0464
50 0.001 with 4.6584 | 0.9858 | 1.1452 | 1.1984 | 0.7879 1.1284 1.1471 | 1.1493
without 1.2263 | 0.3377 | 0.8818 | 1.1713 | 0.2074 0.3865 0.8832 | 1.1233
0.002 with 0.7631 | 1.1722 | 1.1881 | 1.1884 | 0.9976 1.1426 1.1305 | 1.1398
without 0.0660 | 0.7029 | 1.0681 | 1.1709 | 0.0863 0.6852 1.0163 | 1.1231
0.005 with 1.0164 | 1.1595 | 1.1646 | 1.1662 | 1.0494 1.0733 1.0753 | 1.0748
without 0.0640 | 1.1184 | 1.1402 | 1.1541 | 0.0661 1.0353 1.0527 | 1.0636
0.01 with 1.0601 | 1.1405 | 1.1519 | 1.1629 | 0.9575 0.9811 0.9824 | 0.9855
without 0.1045 | 1.0994 | 1.1273 | 1.1506 | 0.0944 0.9457 0.9614 | 0.9752
0.02 with 0.9632 | 1.0961 | 1.1127 | 1.1272 | 0.7506 0.7958 0.7972 | 0.7996
without 0.0424 | 1.0381 | 1.0784 | 1.1102 | 0.0330 0.7538 0.7726 | 0.7875
20 0.001 with 2.0568 | 0.8831 | 1.0446 | 1.0994 | 0.6856 1.0322 1.0651 | 1.0780
without 1.8922 | 0.8519 | 1.0317 | 1.0958 | 0.6308 0.9957 1.0519 | 1.0745
0.002 with 0.6549 | 1.0875 | 1.0997 | 1.0953 | 0.9114 1.0834 1.0742 | 1.0738
without 0.6178 | 1.0764 | 1.0946 | 1.0927 | 0.8598 1.0724 1.0692 | 1.0712
0.005 with 0.9949 | 1.0914 | 1.0945 | 1.0970 | 1.0317 1.0517 1.0533 | 1.0548
without 0.9704 | 1.0844 | 1.0903 | 1.0949 | 1.0063 1.0449 1.0493 | 1.0527
0.01 with 1.0662 | 1.1020 | 1.1060 | 1.1037 | 1.0154 1.0237 1.0230 | 1.0176
without 1.0442 | 1.0945 | 1.1015 | 1.1015 | 0.9944 1.0168 1.0188 | 1.0155
0.02 with 1.0733 | 1.1316 | 1.1264 | 1.1316 | 0.9471 0.9611 0.9496 | 0.9488
without 1.0451 | 1.1219 | 1.1205 | 1.1287 | 0.9222 0.9528 0.9447 | 0.9463
12 0.001 with 1.2713 | 0.8439 | 1.0053 | 1.0581 | 0.6504 0.9939 1.0317 | 1.0459
without 1.2135 | 0.8291 | 0.9995 | 1.0567 | 0.6208 0.9765 1.0257 | 1.0446
0.002 with 0.6145 | 1.0437 | 1.0561 | 1.0609 | 0.8755 1.0481 1.0416 | 1.0484
without 0.5993 | 1.0389 | 1.0540 | 1.0598 | 0.8538 1.0432 1.0395 | 1.0473
0.005 with 0.9702 | 1.0564 | 1.0563 | 1.0617 | 1.0077 1.0331 1.0323 | 1.0370
without 0.9598 | 1.0532 | 1.0544 | 1.0607 | 0.9969 1.0300 1.0304 | 1.0360
0.01 with 1.0405 | 1.0663 | 1.0684 | 1.0662 | 1.0107 1.0198 1.0192 | 1.0150
without 1.0304 | 1.0628 | 1.0664 | 1.0652 | 1.0009 1.0165 1.0172 | 1.0140
0.02 with 1.0557 | 1.0875 | 1.0900 | 1.0864 | 0.9780 0.9835 0.9811 | 0.9745
without 1.0430 | 1.0832 | 1.0874 | 1.0851 | 0.9663 0.9796 0.9788 | 0.9733
6 0.001 with 0.6628 | 0.8115 | 0.9712 | 1.0214 | 0.6220 0.9621 1.0023 | 1.0166
without 0.6489 | 0.8070 | 0.9693 | 1.0209 | 0.6089 0.9567 1.0003 | 1.0162
0.002 with 0.5824 | 1.0096 | 1.0219 | 1.0302 | 0.8469 1.0208 1.0162 | 1.0250
without 0.5809 | 1.0081 | 1.0212 | 1.0298 | 0.8447 1.0192 1.0155 | 1.0247
0.005 with 0.9479 | 1.0216 | 1.0235 | 1.0287 | 0.9858 1.0120 1.0135 | 1.0184
without 0.9456 | 1.0204 | 1.0228 | 1.0283 | 0.9835 1.0108 1.0128 | 1.0181
0.01 with 1.0129 | 1.0331 | 1.0333 | 1.0309 | 1.0007 1.0136 1.0126 | 1.0093
without 1.0091 | 1.0318 | 1.0325 | 1.0305 | 0.9970 1.0123 1.0118 | 1.0090
0.02 with 1.0330 | 1.0432 | 1.0449 | 1.0371 | 0.9994 0.9985 0.9981 | 0.9890
without 1.0283 | 1.0416 | 1.0440 | 1.0366 | 0.9949 0.9970 0.9972 | 0.9886
50 50 0.002 with 7.2277 | 0.9593 | 1.1040 | 1.1636 | 0.8379 1.0769 1.0875 | 1.0931
without 0.0087 | 0.0016 | 0.0032 | 0.0208 | 0.0010 0.0018 0.0032 | 0.0195
0.005 with 0.8240 | 1.0874 | 1.1077 | 1.1279 | 1.0676 1.0117 1.0255 | 1.0529
without 0.0011 | 0.0042 | 0.0196 | 0.6249 | 0.0014 0.0039 0.0181 | 0.5834
0.01 with 1.0108 | 1.0340 | 1.0736 | 1.1027 | 1.0395 0.9232 0.9550 | 0.9782
without 0.0015 | 0.0098 | 0.1015 | 1.0373 | 0.0016 0.0087 0.0903 | 0.9202
0.02 with 1.0679 | 0.9435 | 0.9843 | 1.0289 | 0.9205 0.7590 0.7823 | 0.8105
without 0.0015 | 0.0102 | 0.1219 | 0.9644 | 0.0013 0.0082 0.0969 | 0.7597
0.05 with 2.0840 | 0.7615 | 0.6312 | 0.6425 | 1.3187 0.4347 0.3534 | 0.3547
without 0.0016 | 0.0011 | 0.0020 | 0.0200 | 0.0010 0.0006 0.0011 | 0.0111
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20 0.002 with 3.5997 | 0.9455 | 1.1276 | 1.1584 | 0.7419 1.0902 1.1365 | 1.1196
without 29706 | 0.8604 | 1.0867 | 1.1437 | 0.6122 0.9920 1.0953 | 1.1054

0.005 with 0.7648 1.1441 | 1.1432 | 1.1326 | 0.9942 1.1018 1.0957 | 1.0906

without 0.5854 1.1139 | 1.1257 | 1.1239 | 0.7608 1.0728 1.0790 | 1.0822

0.01 with 1.0050 1.1385 | 1.1378 | 1.1432 1.0392 1.0692 1.0662 | 1.0696

without 0.7684 | 1.1144 | 1.1235 | 1.1360 | 0.7945 1.0466 1.0528 | 1.0629

0.02 with 1.0889 1.1391 | 1.1450 | 1.1621 1.0024 1.0068 1.0048 | 1.0144

without 1.0087 1.1146 | 1.1302 | 1.1547 | 0.9286 0.9852 0.9918 | 1.0079

0.05 with 0.9864 | 1.1048 | 1.1218 | 1.1427 | 0.7508 0.7856 0.7874 | 0.7944

without 0.9295 1.0639 | 1.0974 | 1.1304 | 0.7076 0.7565 0.7703 | 0.7858

12 0.002 with 2.2073 | 0.8930 | 1.0703 | 1.1030 | 0.6880 1.0419 1.0898 | 1.0797
without 2.0007 | 0.8548 | 1.0543 | 1.0984 | 0.6236 0.9974 1.0734 | 1.0751

0.005 with 0.7356 1.0834 | 1.0930 | 1.0855 | 0.9575 1.0595 1.0640 | 1.0598

without 0.6920 1.0726 | 1.0869 | 1.0825 | 0.9007 1.0490 1.0581 | 1.0569

0.01 with 0.9928 1.1002 | 1.0918 | 1.0989 | 1.0290 1.0571 1.0475 | 1.0533

without 0.9618 1.0913 | 1.0864 | 1.0962 | 0.9968 1.0485 1.0424 | 1.0507

0.02 with 1.0645 1.1066 | 1.1128 | 1.1179 | 1.0099 1.0221 1.0229 | 1.0240

without 1.0371 1.0973 | 1.1071 | 1.1150 | 0.9839 1.0134 1.0177 | 1.0214

0.05 with 1.0717 1.1413 | 1.1497 | 1.1541 0.8950 0.9088 0.9072 | 0.9044

without 1.0300 1.1268 | 1.1411 | 1.1498 | 0.8601 0.8973 0.9003 | 0.9010

6 0.002 with 1.0576 | 0.8340 | 1.0068 | 1.0402 | 0.6388 0.9842 1.0351 | 1.0306
without 1.0140 | 0.8210 | 1.0017 | 1.0390 | 0.6125 0.9689 1.0298 | 1.0294

0.005 with 0.6958 1.0242 | 1.0357 | 1.0313 | 0.9069 1.0165 1.0233 | 1.0203

without 0.6843 1.0210 | 1.0340 | 1.0304 | 0.8919 1.0134 1.0217 | 1.0194

0.01 with 0.9591 1.0431 | 1.0404 | 1.0456 | 0.9962 1.0245 1.0212 | 1.0259

without 0.9502 1.0404 | 1.0388 | 1.0448 | 0.9870 1.0218 1.0196 | 1.0250

0.02 with 1.0349 1.0535 | 1.0555 | 1.0565 1.0110 1.0161 1.0158 | 1.0152

without 1.0260 1.0505 | 1.0537 | 1.0556 1.0023 1.0133 1.0141 | 1.0143

0.05 with 1.0693 1.0974 | 1.0940 | 1.0966 | 0.9830 0.9854 0.9778 | 0.9768

without 1.0568 1.0932 | 1.0914 | 1.0954 | 0.9715 0.9816 09755 | 09757

20 20 0.005 with 6.5689 | 0.9307 | 1.0799 | 1.1462 | 0.8111 1.0473 1.0660 | 1.0798
without 0.0486 | 0.0100 | 0.0204 | 0.1213 | 0.0060 0.0113 0.0201 | 0.1143

0.01 with 0.8208 1.0863 | 1.1140 | 1.1434 | 1.0235 1.0408 1.0386 | 1.0785

without 0.0063 | 0.0211 | 0.0715 | 0.7562 | 0.0078 0.0202 0.0667 | 0.7133

0.02 with 0.9580 1.0462 | 1.0828 | 1.1065 1.0775 0.9546 0.9876 | 1.0092

without 0.0087 | 0.0460 | 0.2697 | 1.0407 | 0.0098 0.0420 0.2460 | 0.9492

0.05 with 1.0826 | 0.9494 | 0.9932 | 1.0318 | 0.9424 0.7727 0.7989 | 0.8228

without 0.0093 | 0.0574 | 0.4648 | 0.9707 | 0.0081 0.0469 0.3739 | 0.7741

0.1 with 1.5195 | 0.7779 | 0.7401 | 0.8044 | 1.0844 0.5059 0.4731 | 0.5076

without 0.0084 | 0.0108 | 0.0319 | 0.4371 0.0060 0.0070 0.0204 | 0.2758

12 0.005 with 4.6356 | 0.9653 | 1.1151 | 1.1685 | 0.7962 1.1041 1.1163 | 1.1202
without 2.1196 | 0.7678 | 0.9528 | 1.1325 | 0.3641 0.8781 0.9538 | 1.0857

0.01 with 0.7693 1.1451 | 1.1943 | 1.1541 1.0049 1.1159 1.1364 | 1.1072

without 0.5242 | 0.9225 | 1.1173 | 1.1320 | 0.6848 0.8990 1.0632 | 1.0860

0.02 with 0.9290 1.1346 | 1.1525 | 1.1415 1.0346 1.0628 1.0793 | 1.0690

without 0.1393 1.0650 | 1.1190 | 1.1252 | 0.1552 0.9976 1.0479 | 1.0537

0.05 with 1.0457 | 1.1159 | 1.1301 | 1.1440 | 0.9468 0.9613 0.9650 | 0.9705

without 0.1178 1.0606 | 1.0979 | 1.1281 0.1066 0.9136 0.9375 | 0.9570

0.1 with 1.1279 1.0158 | 1.0630 | 1.0999 | 0.8796 0.7370 0.7608 | 0.7793

without 0.1274 | 0.9311 | 1.0139 | 1.0756 | 0.0993 0.6755 0.7256 | 0.7621

6 0.005 with 2.1401 | 0.8674 | 1.0333 | 1.0819 | 0.6864 1.0118 1.0521 | 1.0593
without 1.9083 | 0.8238 | 1.0145 | 1.0761 0.6120 0.9610 1.0329 | 1.0536

0.01 with 0.6514 | 1.0658 | 1.0856 | 1.0789 | 0.9019 1.0602 1.0589 | 1.0565

without 0.5968 1.0491 | 1.0775 | 1.0749 | 0.8264 1.0435 1.0510 | 1.0526

0.02 with 0.9241 1.0817 | 1.0917 | 1.0804 | 1.0172 1.0464 1.0558 | 1.0450

without 0.8811 1.0707 | 1.0850 | 1.0771 0.9698 1.0358 1.0494 | 1.0418

0.05 with 1.0749 1.1107 | 1.1087 | 1.1082 | 1.0218 1.0280 1.0213 | 1.0173

without 1.0404 1.0991 | 1.1018 | 1.1047 | 0.9890 1.0173 1.0150 | 1.0141

0.1 with 1.0816 1.1475 | 1.1607 | 1.1715 | 0.9478 0.9650 0.9684 | 0.9716

without 1.0342 1.1313 | 1.1509 | 1.1666 | 0.9062 0.9514 0.9602 | 0.9675
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12 12 0.01 with 1.5494 | 0.9613 | 1.0921 | 1.1220 | 0.8640 1.0415 1.0488 | 1.0632
without 0.0308 | 0.0332 | 0.0748 | 0.4346 | 0.0172 0.0360 0.0718 | 0.4118

0.02 with 0.7997 | 1.0854 | 1.0934 | 1.1146 | 1.0417 1.0219 1.0221 | 1.0506

without 0.0178 | 0.0709 | 0.2467 | 0.9814 | 0.0232 0.0667 0.2306 | 0.9251

0.05 with 1.0488 1.0228 | 1.0525 | 1.0914 | 1.0222 0.9117 0.9324 | 0.9625

without 0.0280 | 0.1650 | 0.6476 | 1.0359 | 0.0273 0.1471 0.5737 | 0.9136

0.1 with 1.1308 | 0.9235 | 0.9581 | 1.0174 | 0.9599 0.7304 0.7479 | 0.7866

without 0.0247 | 0.1050 | 0.5279 | 0.9526 | 0.0209 0.0831 0.4121 | 0.7365

0.2 with 2.2810 | 0.8550 | 0.6850 | 0.6862 1.5314 0.5209 0.4098 | 0.4050

without 0.0303 | 0.0189 | 0.0288 | 0.1571 0.0203 0.0115 0.0172 | 0.0927

6 0.01 with 0.9499 | 0.9780 | 1.0980 | 1.1116 | 0.7905 1.0646 1.0808 | 1.0788
without 0.7208 | 0.8710 | 1.0666 | 1.0964 | 0.5999 0.9558 1.0499 | 1.0640

0.02 with 0.7407 1.1184 | 1.1088 | 1.1086 | 0.9729 1.0840 1.0678 | 1.0728

without 0.5557 1.0771 | 1.0879 | 1.0981 0.7298 1.0440 1.0478 | 1.0626

0.05 with 1.0469 1.1247 | 1.1179 | 1.1259 1.0396 1.0541 1.0440 | 1.0487

without 0.8620 1.0961 | 1.1012 | 1.1176 | 0.8560 1.0273 1.0283 | 1.0409

0.1 with 1.0790 1.1446 | 1.1438 | 1.1663 | 0.9828 0.9993 0.9907 | 1.0043

without 0.9130 1.1114 | 1.1243 | 1.1565 | 0.8316 0.9704 0.9738 | 0.9958

0.2 with 0.9911 1.1248 | 1.1434 | 1.1687 | 0.7809 0.8315 0.8349 | 0.8458

without 0.4536 1.0648 | 1.1082 | 1.1511 0.3574 0.7871 0.8092 | 0.8330

6 6 0.02 with 1.3052 | 0.9292 | 1.0551 | 1.0814 | 0.8161 1.0109 1.0215 | 1.0335
without 0.0995 | 0.1230 | 0.2546 | 0.7499 | 0.0622 0.1338 0.2464 | 0.7167

0.05 with 0.8246 1.0541 | 1.0680 | 1.0956 1.0279 0.9931 1.0072 | 1.0369

without 0.0771 | 0.3016 | 0.6736 | 1.0372 | 0.0961 0.2841 0.6353 | 0.9817

0.1 with 1.0508 1.0210 | 1.0655 | 1.0973 1.0341 0.9309 0.9659 | 0.9906

without 0.1113 | 0.4321 | 0.8877 | 1.0508 | 0.1095 0.3939 0.8047 | 0.9487

0.2 with 1.1693 | 0.9686 | 1.0012 | 1.0486 | 1.0262 0.7976 0.8146 | 0.8458

without 0.0991 | 0.2976 | 0.7155 | 0.9894 | 0.0870 0.2451 0.5822 | 0.7980

0.3 with 1.6117 | 0.8980 | 0.8738 | 0.9172 1.2775 0.6579 0.6307 | 0.6548

without 0.1019 | 0.1198 | 0.2682 | 0.7597 | 0.0808 0.0878 0.1936 | 0.5424
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Table 3. The cost-efficiency of combination with given 7, k, and p when applying the cost

function that is based on the total number of groups tested

Cost-efficiency of testing

Cost-efficiency of testing

Cost-efficiency of testing

ki ni two stages combined by |two stages combined by .
. . . the first stage only
using the first approach |using the second approach
100 10 0.001 100 90477.58 85966.93 94441.29
50 88420.55 88166.73
20 84600.95 85539.72
12 82427.75 83112.36
6 80133.99 80199.48
0.002 100 37775.78 38377.59 44575.75
50 36557.15 36825.76
20 32392.92 32350.44
12 29532.24 29416.65
6 26368.76 26206.66
0.005 100 11314.99 11331.58 14691.45
50 9771.42 9770.96
20 6730.21 6719.22
12 5051.38 5040.97
6 3338.39 3330.36
0.01 100 4019.76 4020.02 5182.43
50 3294.70 3314.46
20 2043.34 2055.02
12 1408.56 1413.83
6 798.55 799.85
0.02 100 1808.32 1803.73 2171.72
50 1255.77 1232.80
20 823.39 827.36
12 567.15 569.66
6 318.92 319.67
30 0.001 100 81556.98 82528.11 95791.75
50 80569.21 80987.11
20 70025.37 70124.93
12 61234.89 61250.01
6 48920.69 48885.77
0.002 100 36931.00 36759.21 45390.12
50 34300.66 34275.14
20 26161.46 26161.99
12 20513.34 20512.21
6 13624.21 13621.24
0.005 100 11306.08 11186.06 15370.14
50 9698.56 9695.90
20 6262.71 6271.37
12 4448.99 4453.75
6 2581.04 2582.39
0.01 100 3994.55 3911.88 5719.04
50 3383.60 3403.18
20 2053.16 2067.16
12 1408.02 1414.58
6 788.08 789.79
0.02 100 1094.88 1037.74 1382.26
50 1071.87 1107.37
20 698.39 719.48
12 483.71 493.17
6 273.09 275.47
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50 0.001 100 81402.93 81271.99 94920.14
50 79004.16 79009.26
20 66711.00 66723.16
12 56475.84 56477.05
6 41548.19 41541.05
0.002 100 36986.66 36727.94 45150.72
50 33887.88 33836.75
20 25484.80 25487.24
12 19748.93 19752.33
6 12724.36 12725.75
0.005 100 11396.56 11281.49 15421.48
50 9672.44 9669.40
20 6207.74 6216.50
12 4392.84 4397.59
6 2538.50 2539.86
0.01 100 4089.04 4010.17 5819.44
50 3404.02 3422.41
20 2056.16 2070.21
12 1408.54 1415.18
6 787.13 788.86
0.02 100 1093.93 1017.53 1448.26
50 1081.01 1113.93
20 696.53 716.71
12 486.40 495.73
6 274.27 276.64
100 0.001 100 82625.24 82116.13 95589.58
50 79310.50 79174.59
20 66319.70 66307.44
12 55484.86 55484.43
6 39458.50 39459.53
0.002 100 37549.98 37336.77 45815.92
50 34235.22 34189.36
20 25435.50 25435.58
12 19652.21 19654.61
6 12518.39 12519.52
0.005 100 11507.81 11402.46 15484.68
50 9658.01 9653.88
20 6183.23 6191.99
12 4374.48 4379.33
6 2519.21 2520.60
0.01 100 4117.46 4041.13 5872.50
50 3403.78 3422.07
20 2043.11 2057.03
12 1401.10 1407.75
6 782.34 784.08
0.02 100 1144.10 1066.91 1529.68
50 1096.01 1124.86
20 703.76 722.96
12 488.62 497.48
6 274.75 277.01
50 10 0.002 50 22408.28 21247.26 23414.28
20 21663.84 21721.91
12 21087.94 21315.08
6 20536.34 20679.39
0.005 50 7092.39 7234.63 8638.41
20 6421.41 6450.13
12 5797.91 5792.77
6 4941.92 4922.01
0.01 50 2866.65 2871.32 3754.42
20 2269.54 2268.76
12 1831.97 1829.69
6 1276.42 1274.00
0.02 50 1018.61 1018.20 1323.60
20 766.37 77121
12 573.04 576.28
6 356.92 357.98
0.05 50 478.28 463.54 587.95
20 231.56 220.26
12 191.58 187.85
6 121.47 120.83
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30 0.002 50 20398.33 20638.85 23906.49
20 19560.91 19639.21
12 18076.25 18105.08
6 15356.13 15353.75

0.005 50 6999.33 6951.83 8747.65
20 5955.01 5952.34
12 4958.39 4958.93
6 3515.44 3515.92

0.01 50 2845.69 2816.67 3861.64
20 2231.07 2232.60
12 1744.07 1746.44
6 1117.84 1118.83

0.02 50 1010.99 992.63 1431.05
20 769.15 775.07
12 579.12 583.25
6 353.99 35537

0.05 50 190.40 175.48 222.40
20 184.86 190.71
12 150.94 155.89
6 96.92 98.67

50 0.002 50 20679.59 20648.30 24032.76
20 19435.10 19439.31
12 17674.83 17678.19
6 14350.27 14349.78

0.005 50 7038.22 6987.84 8816.77
20 5945.64 5941.75
12 4944.28 4944.79
6 3456.55 3457.29

0.01 50 2871.63 2843.77 3889.69
20 2223.26 2224.42
12 1728.04 1730.15
6 1104.35 1105.30

0.02 50 1025.49 1007.02 1456.25
20 774.22 779.96
12 581.86 586.04
6 354.25 355.65

0.05 50 163.84 147.18 202.23
20 17717 185.29
12 144.38 150.48
6 92.95 94.99

100 0.002 50 20642.78 20519.69 23842.45
20 19168.43 19148.75
12 17347.93 17343.40
6 13859.62 13859.70

0.005 50 7051.39 7009.04 8821.50
20 5913.73 5909.94
12 4900.69 4901.00
6 3398.24 3398.86

0.01 50 2888.52 2861.95 3898.13
20 2224.46 2225.70
12 1726.96 1729.19
6 1098.19 1099.17

0.02 50 1039.33 1022.29 1467.13
20 776.14 782.23
12 581.04 585.30
6 352.81 354.23

0.05 50 167.85 149.11 212.91
20 179.61 187.44
12 145.41 151.25
6 93.52 95.51
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20 10 0.005 20 3614.20 3599.15 3784.02
12 3523.74 3383.44
6 3462.15 3486.08

0.01 20 1513.07 1538.56 1792.93
12 1440.77 1448.39
6 1373.12 1375.20

0.02 20 635.73 640.44 813.35
12 568.87 569.92
6 475.94 475.24

0.05 20 170.15 170.15 221.67
12 153.00 152.84
6 109.36 109.92

0.1 20 81.46 81.30 99.19
12 50.17 48.21
6 46.14 46.17

30 0.005 20 3233.47 3272.71 3805.64
12 3215.71 3240.32
6 2987.20 2994.85

0.01 20 1485.72 1479.83 1818.39
12 1385.43 1384.04
6 1200.04 1200.02

0.02 20 622.25 617.03 826.82
12 566.75 565.81
6 443.27 443.50

0.05 20 168.25 165.38 240.07
12 150.59 151.05
6 110.57 111.26

0.1 20 48.36 46.09 60.77
12 47.70 48.52
6 38.89 40.02

50 0.005 20 3263.89 3259.77 3788.95
12 3132.67 3132.80
6 2917.08 291791

0.01 20 1489.61 1479.93 1823.99
12 1437.11 1434.50
6 1191.46 1191.29

0.02 20 631.15 626.25 833.51
12 572.99 572.11
6 445.13 445.36

0.05 20 170.29 167.55 242.01
12 150.76 151.23
6 109.99 110.68

0.1 20 47.30 44.32 66.07
12 48.76 49.70
6 39.13 40.28

100 0.005 20 3291.94 3273.60 3801.81
12 3207.39 3200.86
6 2915.06 2914.08

0.01 20 1502.58 1495.23 1824.73
12 1408.49 1406.15
6 1186.61 1186.45

0.02 20 630.62 626.04 832.45
12 568.60 567.63
6 440.78 440.98

0.05 20 171.40 168.78 244.42
12 151.23 151.70
6 109.86 110.54

0.1 20 50.02 46.98 66.07
12 50.06 50.93
6 39.72 40.82
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12 10 0.01 12 1048.57 1013.71 1142.19
6 1036.57 1033.25
0.02 12 440.23 449.23 536.62
6 419.40 422.24
0.05 12 133.84 133.69 177.66
6 113.86 113.88
0.1 12 49.57 49.76 63.26
6 40.47 40.77
0.2 12 35.44 34.65 44.47
6 18.54 17.60
30 0.01 12 957.10 964.70 1136.23
6 933.42 936.19
0.02 12 437.12 434.73 545.03
6 398.04 397.79
0.05 12 133.79 132.52 185.74
6 113.38 113.47
0.1 12 47.29 46.39 67.26
6 40.81 41.18
0.2 12 14.37 13.56 16.62
6 14.57 14.91
50 0.01 12 966.29 962.61 1134.02
6 924.82 924.35
0.02 12 433.31 430.74 539.89
6 391.28 390.95
0.05 12 133.71 132.49 185.50
6 112.12 112.19
0.1 12 47.79 46.86 68.54
6 40.74 41.09
0.2 12 12.17 11.17 14.89
6 13.82 14.34
100 0.01 12 968.18 963.43 1134.59
6 922.57 921.68
0.02 12 436.79 434.64 543.55
6 392.71 392.41
0.05 12 135.34 134.17 187.07
6 112.44 112.50
0.1 12 48.77 47.96 69.35
6 41.01 41.38
0.2 12 12.30 11.18 15.40
6 14.10 14.62
6 10 0.02 6 263.61 256.49 288.45
0.05 6 86.39 87.79 108.83
0.1 6 36.07 36.04 48.47
0.2 6 14.16 14.21 18.48
03 6 10.62 10.70 13.30
30 0.02 6 245.99 248.00 292.35
0.05 6 86.11 85.68 110.63
0.1 6 35.51 3527 49.77
0.2 6 13.43 13.28 19.03
0.3 6 6.85 6.73 8.80
50 0.02 6 247.81 247.07 291.40
0.05 6 86.53 86.11 110.97
0.1 6 36.21 35.97 50.34
0.2 6 13.58 13.42 19.40
0.3 6 6.91 6.72 9.19
100 0.02 6 246.81 245.84 288.85
0.05 6 87.01 86.65 111.06
0.1 6 36.37 36.14 50.41
0.2 6 13.81 13.66 19.70
03 6 7.05 6.87 9.46
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Table 5. The standard error, relative standard error, bias (x100000) and relative cost-efficiency of each

‘most efficient’ combination with given n,, k, and p.

“** indicates the criterion when the second approach is best

‘#’ indicates the criterion when the first approach is best
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Table 7. The cost-efficiency of combination with given 71k, and p when applying the cost

function that is based on the total sample size

Cost-efficiency of
testing

Cost-efficiency of testing
two stages combined by

Cost-efficiency of

niki P la m le two stages combined by using the second . testing
B . the first stage only
using the first approach approach
600 0.02 6 100 6 45.80 45.62 48.14
12 50 12 43.78 43.53 4499
12 50 6 46.34 46.30 44.99
20 30 20 41.30 40.95 4134
20 30 12 44.00 43.92 4134
20 30 6 46.12 46.14 4134
0.05 6 100 6 18.45 18.45 18.44
12 50 12 16.23 16.08 15.46
12 50 6 17.84 17.85 15.46
20 30 20 13.77 13.54 12.00
20 30 12 15.59 15.64 12.00
20 30 6 17.26 17.37 12.00
0.1 6 100 6 8.89 8.84 8.40
12 50 12 6.83 6.70 5.71
12 50 6 8.24 8.31 5.71
20 30 20 4.54 432 3.04
20 30 12 5.89 5.99 3.04
20 30 6 7.64 7.86 3.04
1000 0.005 20 50 20 178.38 178.15 189.45
20 50 12 182.75 182.77 189.45
20 50 6 190.48 190.53 189.45
100 10 100 155.01 155.24 146.91
100 10 50 167.37 167.36 146.91
100 10 20 178.09 177.80 146.91
100 10 12 181.25 180.88 146.91
100 10 6 183.74 183.30 146.91
0.01 20 50 20 87.87 87.30 91.20
20 50 12 93.58 93.41 91.20
20 50 6 94.93 94.92 91.20
100 10 100 65.07 65.07 51.82
100 10 50 73.23 73.67 51.82
100 10 20 81.87 82.34 51.82
100 10 12 84.56 84.88 51.82
100 10 6 86.75 86.90 51.82
0.02 20 50 20 41.95 41.62 41.68
20 50 12 44.03 43.97 41.68
20 50 6 46.55 46.57 41.68
100 10 100 33.65 33.57 21.72
100 10 50 34.12 33.49 21.72
100 10 20 43.46 43.67 21.72
100 10 12 46.24 46.44 21.72
100 10 6 48.65 48.77 21.72
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5000

0.002 50 100 50 451.82 449.13 476.85
50 100 20 473.88 473.39 476.85
50 100 12 482.31 482.18 476.85
50 100 6 488.70 488.70 476.85
100 50 100 436.02 432.97 451.51
100 50 50 458.85 458.15 451.51
100 50 20 475.92 475.96 451.51
100 50 12 480.66 480.74 451.51
100 50 6 485.05 485.10 451.51
0.005 50 100 50 172.09 171.06 176.43
50 100 20 183.29 183.18 176.43
50 100 12 187.42 187.43 176.43
50 100 6 190.84 190.88 176.43
100 50 100 158.52 156.92 154.21
100 50 50 171.98 171.93 154.21
100 50 20 181.95 182.21 154.21
100 50 12 185.11 185.31 154.21
100 50 6 187.81 187.91 154.21
0.01 50 100 50 80.49 719:75 77.96
50 100 20 88.20 88.25 77.96
50 100 12 90.98 91.10 77.96
50 100 6 93.48 93.56 77.96
100 50 100 66.70 65.41 58.19
100 50 50 76.92 77.34 58.19
100 50 20 85.16 85.74 58.19
100 50 12 87.86 88.28 58.19
100 50 6 90.20 90.40 58.19
0.02 50 100 50 33.97 33.42 29.34
50 100 20 40.15 40.46 29.34
50 100 12 42.32 42.64 29.34
50 100 6 44.28 44.46 29.34
100 50 100 20.42 18.99 14.48
100 50 50 29.53 30.43 14.48
100 50 20 37.10 38.18 14.48
100 50 12 39.96 40.73 14.48
100 50 6 42.30 42.67 14.48
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Table 8. The standard error, relative standard error, bias (x100000) and relative cost-efficiency of each

‘most efficient’ combination with given n,k; and p .
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