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Abstract

Group testing is a procedure that splits samples into multiple groups based on some

specific grouping criterion and then tests each group. It is usually used in identifying

affected individuals or estimating the population proportion of affected individuals.

Improving precision of group testing and saving cost of experiment are two crucial

tasks for investigators. Cost-efficiency is a ratio of precision to cost; hence improving

cost-efficiency is as crucial as improvement of precision and cost saving. In this thesis,

retesting will be considered as a method to improve precision and cost-efficiency, and

save cost. Retesting is an extension of group testing. It uses two or more group testing

stages, and testing original samples in all of the stages. Hepworth and Watson (2015)

proposed a two-stage group testing procedure where two stages have equal group

sizes, and the number of groups of the second stage is based on the number of positive

groups in the first stage. In this thesis, our main goal is estimating a proportion p

under the circumstance of unequal group sizes in two stages, and discovering the most

cost-efficient experiment design. Analytical solutions of precision will be provided;

we will use these analytical solutions with simulations to analyse some experimental

designs, and discover whether doing one group testing only is precise enough or not

and if it is worth retesting for each design. In the end, we will combine all these

analyses and identify the optimal experiment design.
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Notation

1n Number of groups at the first stage

2n Number of groups at the second stage

1k Number of group sizes at the first stage

2k Number of group sizes at the second stage

1a Correction at the first stage

2a Correction at the second stage

p True population proportion of affected individuals

 True population proportion of affected individuals at the second stage

X Number of positive groups at the first stage

Y Number of positive groups at the second stage

SE Standard Error

RSE Relative Standard Error

RE Relative Cost-Efficiency
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Chapter 1 Introduction

1.1 Group Testing

Group testing (or pooled testing) was first introduced by Dorfman in 1943 to screen

U.S. soldiers for syphilis during World War II. It is a procedure to identify affected

(positive) individuals or estimate the true proportion of affected individuals in a

sample population. An affected or positive individual means a research object is

affected by the research of interest. For example, if the research of interest is studying

infectious disease, then an individual is defined as affected or positive if he/she has

such infectious disease, and an individual is defined as negative if he/she does not

have such disease. The true proportion of affected individuals means the percentage of

individuals who were affected by the research variable of interest in the sampled

population. Group testing is a powerful theory that has broad applications in a great

many areas. Definitely, it has helped a lot with blood screening since the original

intention of group testing is solving blood testing problems, for example, detecting

phenylketonuria, hepatitis B virus and other diseases (Guthrie, 1961; Comanor and

Holland, 2006; Bilder, Tebbs and Chen, 2010). Group testing has also been applied to

many other fields; for instance, solving some network security problems such as

denial-of-service and jamming attacks (Thai 2012; Xuan et al. 2010); encoding the

transform coefficients of an image from the wavelet packet and the discrete cosine
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transform (Hong, Ladner and Riskin 2003); designing an algorithms for random

multiple-access communication channels (Berger et al. 1984); DNA library screening

(Ngo and Du, 2000; Schliep, Torney and Rahmann, 2003); and screening individuals

for drug use (Gastwirth and Johnson, 1994).

Generally speaking, the statistical study of group testing can be broadly classified

into two categories: classification and estimation. Classification will be discussed in

Chapter 4. Estimation is the main goal of this thesis; it targets estimating a proportion

p of positive individuals, such as evaluating the prevalence of disease of interest in a

population (Sobel and Elashoff, 1975; Chen and Swallow, 1990). Gastwirth and

Hammick (1989) proposed group testing to estimate the prevalence of AIDS

antibodies in blood donors; they used estimation rather than identification because

they wanted to protect individuals’ civil liberties. Walter, Hildreth and Beaty (1980)

used group testing of unequal group sizes within a stage to estimate the infection rates

of yellow fever virus in a mosquito population.

1.2 Retesting

When estimating a true proportion, there exists uncertainty about how well an

estimate represents the true population. To conceptualize this uncertainty, we can

consider how an estimate changes if we repeat the experiment many times, with

different samples each time. The closeness of an estimate between different samples is

called precision. The precision is closely related to the variance. Suppose 

represents the average value of an estimate in different samples; then the variance
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measures the closeness of this estimate to  . In group testing, investigators will split

the whole sample into n groups first, each group having k individuals. If there

exist one or more affected individuals in a group, then it will be defined as a positive

group. Then investigators will estimate the population proportion of affected

individuals by using the total number of positive groups. Nevertheless, the estimate of

population proportion is sometimes not precise enough. Therefore, a method that is

able to improve precision is needed. Retesting within positive groups and testing

additional individuals are two common methods to do this. Retesting is a method that

extracts all the positive groups at the first stage, randomly regroups all their

individuals, and then retests new groups in the second stage. Rather than testing

original samples, testing additional individuals requires to collect more new samples.

In statistical studies, testing additional individuals is more popular than retesting

because retesting usually gains less precision than testing additional individuals.

Nevertheless, in addition to consider precision, promoting cost-efficiency is also a

crucial task for investigators. Cost-efficiency is defined as a ratio of precision to cost.

With respect to cost-efficiency, testing additional individuals costs more, on the other

hand, it is sometimes impractical in an experiment. Instead, retesting is cost-saving

and therefore it might have better cost-efficiency than testing additional individuals.

When the number of positive groups is 0 or 1 at the first stage, there is no need to go

to the second stage, therefore we need not do retesting, and the precision and

cost-efficiency will not change; if the number of positive groups is more than 1 at the

first stage, then retesting increases precision. In this thesis, we will focus on studying
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if it is worth retesting at the second stage based on each sample population’s

cost-efficiency, precision, and cost. Walter and Hepworth (2019) derived two

analytical solutions for the variance of the estimate of true population proportion of

affected individuals at the second stage, then compared the two methods by doing

simulations to determine the optimal one; Hepworth and Watson (2015) proposed two

two-stage procedures and compared each of them with other two methods which are

proposed by Hammick and Gastwirth (1994) and Brookmeyer (1999) to determine the

most efficient method of retesting.

The other focus of this thesis is studying the effect of adding a correction or not

when we estimating the population proportion. The correction was proposed by

Burrow (1987) and denoted as a . Its function is eliminating bias and decreasing

mean squared error when estimating the population proportion.

1.3 Thesis Structure

In chapter 2, we will first estimate the population proportion without any corrections

at first and second stage separately; we will then add a correction to the estimate to

compare the estimates with and without correction; next, we will present the

estimation of population proportion of affected individuals using overall two testing

stages. Also, in order to evaluate whether doing the first stage only is precise enough

or not and if it is worth retesting, the variance of the estimate of population proportion

at the first stage only and overall two stages will be estimated. In chapter 3, a

simulation based on the estimates in chapter 2 will be performed. Then, the simulation
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results such as cost-efficiency, precision and bias will be compared using two

alternative cost functions. The most cost-efficient combination will be found and

some recommendations will be offered to investigators. Some extension of group

testing, future work and challenges will be concluded in chapter 4.
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Chapter 2 Estimation

2.1 Estimation of proportion of affected individuals in the

first and second stage

Suppose there are 1n groups and each group with 1k group sizes in the first stage.

After a series of experiments, the results show that there are xX  positive groups.

Assume p is the true probability of an individual being affected and q is the true

probability that an individual is not affected; then X follows a binomial distribution

with parameters 1n and )( pg , where 11 1)1(1)( kk qppg  and 1kq is the

probability that none of 1k individual is infected. Then the expectation of X is

)()( 1 pgnXE  .

Define   )1()1(1)( 11
11

kk qnpnXE  , and let 1p̂ be the estimator of p in

the first stage. Then the estimator of p at the first stage can be expressed as

)ˆ1( 1
1

kqnX 

1

1

1

]1[ˆ k

n
Xq 

1

1

1
1 ]1[1ˆˆ k

n
Xpp  (1)

Suppose there are 2k individuals in each group in the second stage where 2k is

equal to or smaller than 1k . Now, according to the information given above, there
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will be
2

1
2 k

Xkn  groups at the second stage. The true prevalence at the second stage

is no longer p since it depends on the results of the first stage, therefore we define a

new prevalence of the second stage as  , which can be expressed as

sampled sindividual ofnumber  total
sindividual positive ofnumber  totalstage second at the prevalence 

X
pn

Xk
pkn ˆˆˆ 1

1

11  (2)

After a series of experiments, the result shows that there are yY  positive groups,

where Y follows a binomial distribution conditional on xX  with parameter 2n

and 2)1(1)( kg   . Define  2)1(1)()( 22
kngnYE   , and let 2p̂ be

the estimator of p in the second stage. Then the estimator of p in the second stage

can be expressed as

 2)ˆ1(1
2

1 k

k
XkY 

2

1

2

1
)1(1ˆ k

k
Xk
Y



















 2

1

2

11
2 )1(1ˆ k

k
Xk
Y

n
Xp (3)

Burrows (1987) proposed an alternative estimator p~ to improve the estimator’s

properties. p~ has similar steps of calculation with p̂ but with correction a where

）（
k
ka 1

2
1 

 to eliminate bias and decrease mean squared error. Set the correction at

first stage and second stage as 1a and 2a separately, where )1(
2
1

1

1
1 k

ka 
 and
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)1(
2
1

2

2
2 k

ka 
 . Now, the number of positive groups at the first stage X and the

number of positive groups at the second stage Y given xX  still follow binomial

distribution, but modified maximum likelihood estimate (MLE) 1
~p becomes

11
1)~(

an
Xpg


 and ~ becomes
22

)~(
an

Yg


 . Therefore, the alternative

estimator 1
~p and 2

~p can be expressed as

11
1

1)~1(1
an

Xp k




1

1

11
1 )1(1~ k

an
Xp


 (4)

2

2

1

2
2

1

2
2

1

)1(1~

)~1(1

k

k

ak
Xk

Y

ak
Xk

Y




























 2

1

2
2

11
2 )1(1~ k

ak
Xk

Y
n
Xp (5)

Although equations (1) and (4), (3) and (5) look very similar, and 1a , 2a do not

exceed 0.5, correction strongly influences the results. Some results may look

abnormal if we do not add correction in the equation of estimators. In the next chapter,

we will compare differences between estimators with and without correction by using

real data.
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2.2 Estimation of proportion of affected individuals using

overall two testing stages

We will use a weight function to evaluate the estimator of p for both first stage and

second stage combined. Define the estimator of overall p (i.e. for both first stage

and second stage combined) as 21
~

p . The weight of the estimate of p at the first

(second) stage is defined as an inverse proportion to its variance, which is able to

minimize the variance of 21
~

p . By using the property of weight function, the

estimator of overall p can be expressed as

21

2211
21

~~~
ww
pwpwp




 (6)

where
)ˆ(

1

1
1 pVar
w  and

)ˆ(
1

2
2 pVar
w  . After simplifying the expression,

)ˆ()ˆ(
)ˆ(~)ˆ(~~

21

1221
21 pVarpVar

pVarppVarpp



 .

Note that the derivation of )~( 2pVar is very complicated since the equation of 2
~p

contains correction, hence we will use )ˆ( 2pVar instead, and therefore standardize by

using )ˆ( 1pVar instead of )~( 1pVar .

By using equation (6), variance of estimator of overall p can be expressed as

 )~,~(2)~()~()1()~( 212
2

21
2

1
2

21
21 ppCovpVarwpVarw

ww
pVar 




Note that covariance of 1
~p and 2

~p is unknown here since its derivation is

complicated, therefore in chapter 3 we will use simulation to obtain the variance of

21
~

p instead of attempting to derive an analytic expression for it.
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2.3 Variance of estimators

Following the process of the variance estimation by Hepworth and Walter (2019). In

section 2.1, we have assumed that the number of positive groups at the first stage X

follows a binomial distribution with parameter 1n and )( pg . Therefore variance of

X can be expressed as

))(1)(()var( 111 pgpgnX  (7)

The modified maximum likelihood estimate (MLE) 1
~p is

11
1)~(

an
Xpg


 . Now, we

can express the variance of )~( 1pg in two ways. The first is obtained based on the

property of the derivative

)~()())~(( 1
2

11 pVarpgpgVar  (8)

The second is obtained based on the MLE 1
~p

))(1)((
)(

1)(
)(

1))~(( 1112
11

eq.(7) using
2

11
1 pgpgn

an
XVar

an
pgVar 


 


 (9)

Therefore equation (8) and (9) are equal, and new equation can be expressed as

))(1)((
)(

1)~()( 1112
11

1
2

1 pgpgn
an

pVarpg 


 (10)

Next, in order to get the variance of modified MLE 1
~p , we need to plug

1)1(1)( 11
kppg  and 1

111
1)1()(  kpkpg into equation (10) and simplify it,

    111 )1()1(1
)(

1)~()1( 1112
11

1
21

11
kkk ppn

an
pVarpk 


 

2
11

2
1

2

1

1

1
1

1

1

)1()1(

)1(1)~(





k

k

pnk
n
a

ppVar (11)

The variance of the modified MLE 1
~p is asymptotically equal to the variance of
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MLE 1p̂

2
11

2
1

1
1

1

1

)1(
)1(1)ˆ(




 k

k

pnk
ppVar

The variance of the modified MLE 2
~p is calculated very similarly with )~( 1pVar ,

2

2

1

2
21

2

12
22

)1()1(

)1(1)~(

))(1)((
)(

1)~()(

2

2

k
Xk
akXk

Var

ggn
an

Varg

k

k












































 2

2

1

2
21

2
2

1
2

)1()1(

)1(1)~(
2

2

k
Xk
akkn

XpVar
k

k



 (12)

The variance of 2p̂ can be obtained from two approaches. The first approach is

assuming that the estimator of p at the second stage is conditional on the number of

positive groups at the first stage X . Note that if the number of positive groups at the

first stage is zero, then there is no need to do retesting, therefore 0ˆˆˆ 2121  ppp

and 0)|ˆ( 2 XpVar ; if the number of positive groups at the first stage is one, then

doing retesting will be meaningless and wasting money. Therefore the estimator of

overall p will be equal to the estimator of p in the first stage, and

0)|ˆ( 2 XpVar . Now, by using the equation (12), we can express the variance of

MLE 2p̂ conditional on X as

1 if  ,
)1(

)1(1

            1or  0 if          , 0

)1()1(

)1(1
)|ˆ(

21
22

1
2

2

1

2
21

2
2

12 2

2

2

2






















































  X

kkn
X

X
k

Xk
akkn

X
XpVar k

k

k

k






 .
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Now consider 1X , if  is small, then we can using the Taylor’s first order

expansion to rewrite the expression of )|ˆ( 2 XpVar as

   )2(1)1(1)1|ˆ( 2
21

2
2

1
2 


 k

kk
k

n
XXpVar

  )2(1)1|ˆ( 2
1

2
1

2  k
kn

XXpVar (13)

In section 2.1, we have already known
X
pn1ˆ  , therefore





 

X
pnk

kn
pXpVar 11

2
11

1
2 )2(1)1|ˆ( (14)

Now, in order to obtain the variance of 2p̂ , we will apply the law of total variance

   )|ˆ()|ˆ()ˆ( 222 XpEVarXpVarEpVar  (15)

By using equation (3) and the Taylor’s first order expansion,

 

  )1(                

)1(1|ˆ

2

121

1

2

11
2

2

k
Xk
YE

kn
X

k
Xk
Y

n
XEXpE k





































(16)

Y given X follows a binomial distribution with parameter
2

1
k

Xk and )(g , if

 is small, then

   

X
pnXk

Xk
k
XkYE k

11
1

1
2

1

         

)1(1 2



 

Therefore, equation (16) can be simplified as

1

2

1

11
1

21
2

1]|ˆ[ p

k
Xk

X
pnXk

kn
XXpE 
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As a result, 0)(])|ˆ[( 12  pVarXpEVar . Hence, we only need to consider

)]|ˆ([ 2 XpVarE in equation (15).

Now, based on equation (14) we can obtain that

  












X

Epnk
kn
pXpVarE 1)2(1)|ˆ( 112

11

1
2 if 1X (17)

Assume 1)1(1)( 11
kppg  . Johnson, Kotz and Kemp (1992) derived the

approximate expectation for inverse of the number of positive groups at the first stage

X when X is larger than zero,

  1
1

1

1 1)1(20|1 






 




  n

n
nX

X
E (18)

Meanwhile, 



  0|1 X
X

E can be expressed as

 

 

   

 0

11
                       

0

1

0|1

2

1













 









XP

xXP
X

XP

XP

xXP
XX

X
E

n

x

n

X

(19)

However, we want to know 



 1|1 X
X

E . By applying the property of conditional

expectation and equation (19),

 

 

   

 1

100|1

                      

1

1

1|1 2







 










 




XP

XPXPX
X

E

XP

xXP
XX

X
E

n

X

The number of positive groups at the first stage X follows a binomial distribution

with parameter n and  , therefore   1)1(10 nXP  ,   1
1

1)1(1  nnXP 
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and   11 )1()1(11 1
1

nnnXP    . Hence,

   
11

11

)1()1(1

)1()1(11)1(2

1|1
1

1

1
1

1
1

1

1

nn

nn

n

nn
n

n

X
X

E













 





  



(20)

Now, plugging equation (20) into equation (17), we can obtain that

 
   




































 



11

11

)1()1(1

)1()1(11)1(2)2(
1)1|ˆ( 1

1

1
1

1
1

1

1
112

11

1
2 nn

nn

n

nn
n

npnk

kn
pXpVarE





By using equation (15), the variance of the estimator of p at the second stage can be

expressed as

 
     1,0)1,0|ˆ()1()1|ˆ()ˆ(

0)|ˆ()ˆ(

222

22




XPXpVarEXPXpVarEpVar
XpVarEpVar

Note that 0)|ˆ( 2 XpVar when 1or  0X , hence the expectation of

)1,0|ˆ( 2 XpVar will be zero. Therefore,

     



















  1

1
1

1
1

1
112

1
1

11

1
2

1111 )1()1(11)1(2)2()1()1(1)ˆ( nnnn nn
n

npnkn
kn
ppVar 

(21)

The second approach assumes that the estimator of p at the second stage is

conditional on the joint distribution of X and  . Suppose we have 1n groups at

the first stage, and denote nmm ,...,1 as the number of positive individuals in each

group. Assume group i is positive; then im will follow a positive binomial

distribution with parameter 1k and 1p where 11 kmi  . Now, the number of

positive individuals at the first stage changes from 111 pkn to 
0im

im . Hence, the

estimated prevalence at the second stage will be
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1

0ˆ
Xk

m
im

i
 (22)

If the true probability at the first stage is small, then we expect 1im , therefore

11

1ˆ
kXk

X
 . According to the approximate value of ̂ , assume that  

1

1ˆ
k

E 

and   2
1

2 1ˆ
k

E  . By using equation (13), the variance of the estimator of p at the

second stage when 1X can be expressed as

 













))2(1(                         

),1|ˆ()1|ˆ(

2
1

2
1

22









k
kn

XE

XpVarEXpVar

)21()1|ˆ(
1

2
2

1
2

1
2 k

k
kn
XXpVar 

 (23)

From equation (15), we have already known that we only need to consider

 )|ˆ( 2 XpVarE , therefore we need to get  1| XXE . Knowing that the number of

positive groups at the first stage follows a binomial distribution with parameter 1n

and  , hence

 

 

 

   

 0

1
                     

0
                     

)1(1
0|

2

1

1
1






















XP

xXXPXP

XP

xXXP

nXXE

n

X

n

X

n


(24)

 
 

 11| 2








XP

xXXP
XXE

n

X (25)

Plugging equation (24) into equation (25), we can obtain that
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       
 

 
 

11

11

1

)1()1(1

)1()1(1
)1(11|

1
100|1|

1
1

1
1

1

nn

nn
n

n

nn

XXE

XP
XPXPXXEXXE





















   
11

1

)1()1(1
)1(11| 1

1

1
1

nn

n

n
nXXE







 



(26)

If 1p is small, then 111
1)1(1 pkp k  . Therefore, the expectation of equation

(23) can be expressed as

   1|

21
)1|ˆ( 2

1
2

1

1

2

2 




 XXE
kn
k

k

XpVarE

   
  







 








1

2

11

1
1

2
21

1
)1(1)1|ˆ(

1

k
k

XPkn
pXpVarE

n (27)

Hence, according to equation (15) and (27), the variance of the estimator of p at the

second stage can be expressed as

        01,0)1,0|ˆ(1)1|ˆ()ˆ( 222  XPXpVarEXPXpVarEpVar

Note that 0)|ˆ( 2 XpVar when 1or  0X , therefore

  






 
 

1

21

11

1
2

21)1(1)ˆ( 1

k
k

kn
ppVar n (28)
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Chapter 3 Simulation Results

3.1 Simulation

In the simulations, we will choose some typical values of the number of groups at the

first stage ( 1n ), the number of individuals in each group at the first stage ( 1k ) and at

the second stage ( 2k ), and the true prevalence of affected individuals p . The values

of 1n , 1k and p are set as in Hepworth and Watson (2015), and Hepworth and

Walter (2019). We will group each number of 1n , 1k and 2k , and select five values

of p which correspond to each group. Note that if all groups are positive or negative,

then there is no need to do retesting. Therefore, in order to avoid such a situation as

far as possible, Hepworth and Watson (2015) stated that the five values of p are

selected in order that the probability of a positive group in a group testing is not 0 or 1.

Note that the number of groups at the second stage
2

1

k
Xk might be non-integral, so

we will round these numbers to the next highest integer (e.g. 3X , 61 k , 122 k ,

2
12
18

2

1 
k
Xk ). Following is the data set:

)100,50,30,10(1 n

)100,50,20,12,6(1 k )100,50,20,12,6(2 k

)3.0,2.0,1.0,05.0,02.0,01.0,005.0,002.0,001.0(p

Generally speaking, there are supposed to be 5005554  combinations. But
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we have to pay attention to the size of 1k and 2k when the group sizes are different

in the two stages. According to equation (3) and (5), there is no doubt that

2

1
k

Xk
Y

and
2

2

1 ak
Xk

Y


must be no greater than 1 if the group sizes are the same in the two

stages; but in the case of different group sizes,

2

1
k

Xk
Y and

2
2

1 ak
Xk

Y


might be

larger than 1 if 2k is larger than 1k (e.g. 101 n , 61 k , 3X , 122 k , 2Y ).

Hence, we will drop all groups that have 2k larger than 1k in the simulation.

In the simulations, we will perform 100000N runs on each combination. The

total number of simulations N and combinations are set as in Hepworth and Walter

(2019), but the estimation equations used and the simulation process are somewhat

different since there are many special conditions if group sizes in the two stages are

different. The same simulation process setting with Hepworth and Walter (2019) is

that if the number of positive groups at the first stage X is 0 or 1, then the number

of positive groups at the second stage will always be 0 or 1 which is expensive and

meaningless, therefore there is no need to go to the second stage if 1or  0X and

first and second stage estimation will be same. Due to different group sizes in two

stages, there are two main special conditions that are different with Hepworth and

Walter (2019): first, 2k needs to be smaller or equal to 1k ; second, if the number of

groups at the second stage
2

1
2 k

Xkn  is indivisible, then the result will be rounded to

the next highest integer.

In the next few sections, we will find out one or more most cost-efficient
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combinations by fixing some parameters and then comparing each combination’s

properties including relative cost-efficiency, precision, bias and so on.

3.2 Simulation Comparison

In statistics, simulation is a method that can generate random numbers based on

models rather than collecting a real data set, and it is a fast tool to approximate the

results of a true data set. Our first goal of the simulation is going to evaluate which

analytical solution is better by comparing the variance derived analytically and the

variance of the second stage obtained by simulation. The second goal of the

simulation is to identify one or more most valuable combinations which are composed

by 1n , 1k , 2k and p . The ‘value’ of a combination can be evaluated in several

ways, including cost-efficiency, precision, if it is worth retesting and so on.

3.2.1 Comparison of two analytical solutions with and without

correction

To evaluate how correct the equation (21) and equation (28) are, we can calculate the

ratio of the variances derived analytically (i.e. equation (21) and (28)) to the variance

of the second stage obtained by simulation. Note that at the end of section 2.1, we

mentioned that the equation with and without correction looks very similar but

actually ‘correction’ can be very important. The denominator of the ratio is the

variance of the second stage obtained by simulation, in other words, the denominator

of the ratio is obtained from the variance of 100000 results of equation (3) (i.e.

without correction) or equation (5) (i.e. with correction), where 1n , 1k and 2k are
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chosen from the data set in section 3.1 and X , Y are determined by simulation. Let

us first take a look at equation (3) and (5) in detail. The only difference between

equation (3) and (5) is that equation (5) has a correction 2a which equation (3) does

not have. The correction 2a can be expressed as








 


2

2
2

1
2
1

k
ka , 02 k

where 2a must be smaller than 0.5 since
2

2 1
k
k  is smaller than 1. It looks

negligible since it is very small, for example, if we have a combination 101 n ,

121 k , 62 k , 2X , 3Y , then equation (3) will equal to 0.04126 and equation

(5) will equal to 0.03453 which are very close. The effect of correction might not look

very significant if we look at only one case, but if we have 100000 cases and compute

the variance, the difference will become clearer. Table 1 indicates the ratio of the

variance derived analytically (i.e. the first approach means using equation (21), the

second approach means using equation (28)) to the variance of the second stage

obtained by simulation, where upper value is derived by applying equation (5) (i.e.

with correction) and lower value is derived by applying equation (3) (i.e. without

correction) in simulation. The ratio needs to be as close to 1 as possible since it is a

measurement of how different are the variances derived analytically and the variance

of the second stage obtained by simulation. Hence, a ratio is said to be acceptable if it

is close to 1.

Overall, the ratio derived by applying equation (5) (i.e. with correction) will be

more recommended than the ratio derived by applying equation (3) (i.e. without
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correction). Let us look at the results without a correction first. There are some

obvious observations for the results without correction that can be found in Table 1:

most ratios will be close to 1 (which is acceptable) if the values of 1k and 2k have

large differences; when 21 kk  , the ratio is always acceptable if the value of p is in

the middle (e.g. when 10021  kk , the middle value of p is 0.005; when

5021  kk , the middle value of p is 0.01) and 1001 n , the ratio is totally

unacceptable if p is very small or large (e.g. when 10021  kk , 001.0p is

very small, 02.0p is very large); when 2k is approximately half of 1k , the ratio

will be acceptable for the most of the time when 1n is 30 or more, but not acceptable

for the most of the time when 101 n . Note that the values of 1k and 2k will be

the same or 2k is approximately half of 1k for the case shown in Table 2.

same 2k is approximately half of 1k

1k 100 50 20 12 6 100 50 20 12

2k 100 50 20 12 6 50 20 12 6

Table 2. Combinations of same 1k and 2k / 2k is approximately half of 1k

From Table 1, we can observe that most ratios that without correction (i.e. lower

values) are acceptable and close to the ratio with correction when 1k and 2k have

large differences, sometimes the ratio without correction is more acceptable than the

ratio with correction, sometimes not. Nevertheless, some ratios without correction are

totally unacceptable when the values of 1k and 2k are the same or 2k is

approximately half of 1k in either the first or second approach. For example, when

1001 k and 1002 k , ratios are extremely low for most values of 1n and p
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except when 1001 n and 0.01 ,005.0p . In contrast, the results of simulation

obtained by applying equation (5) (i.e. upper values, with correction) looks much

better, and only a few ratios with very small 1n (i.e. 101 n ) and p (i.e.

001.0p ) are extremely large. Hence, from Table 1, we can conclude that if we want

to avoid an extremely low ratio of the variance derived analytically to the variance of

the second stage derived by simulation, it is necessary to add a correction when we

evaluate the estimator of p at the second stage.

Concerning the correction, a further question arises: the numerator of the ratio (i.e.

equation (21) or (28)) is derived by not adding any corrections, whereas for the

denominator of the ratio we have confirmed that one should apply the equation with

correction (i.e. equation (5)). A guess here is if we unify the numerator and the

denominator by adding a correction to both sides, the ratio would be closer to 1 than

the ratio (i.e. upper value) in Table 1. Deriving the variance of the estimator of p at

the second stage with correction is a big challenge, but it might be worth to do it in

the future.

Overall, the first approach will be recommended if 1n is very small, or 301 n

when 1k and 2k have large differences; the second approach will be recommended

if 301 n when 21 kk  or the value of 2k is approximately half of 1k . To

compare the results of the ratio with correction for the first approach and second

approaches, let us take a look at the results that are presented in the form of figure and

table. Figure 1 shows the ratio of the variance derived analytically to the variance of

the second stage obtained by simulation for each approach for each combination of



M.Sc. Thesis - Yusang Hu McMaster - Statistics

23

101 n , p , 1k and some appropriate values of 2k (which are depended on the

value of 1k ). Figure 2 and Figure 3 are similar to Figure 1 but with 301 n and

501 n separately. We will choose one or two 2k that is same or approximately half

of 1k for all 1k , and one 2k that has large difference with 1k for )100,50,20(1 k :

1001 k , )100,50,6(2 k ; 501 k , )50,20,6(2 k ; 201 k , )20,12,6(2 k ; 121 k ,

)12,6(2 k ; 61 k , 62 k .

Figure 1. Ratio of the variance derived by




)approach( second
-)-approach(-first 
—

to the variance derived by simulation

when 101 n . x-axis is the value of true prevalence p ; y-axis is the value of the ratio.

Note that x-axis represents the true prevalence; y-axis represents the ratios; the
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dashed line represents the trend of the ratio of the variance derived by the first

approach to the variance derived by simulation, and the solid line represents trend of

the ratio of the variance derived by the second approach to the variance derived by

simulation.

From Figure 1, we can observe that the trend of the ratio for the first approach

and the second approach will have a similar pattern if p is not very small.

Simultaneously, no matter the value of 2k is same, approximately half or has large

difference with 1k , the ratio for the first approach is always larger than the second

approach if p is very small or very large; some ratios for the first approach are

extremely high and totally unacceptable if p is very small; if p is not very small,

most ratios for the first and second approach are very close, but the trend of the ratio

for the second approach is more smoothly than the first approach, and more ratios for

the second approach are closer to 1; the first approach will have more acceptable

ratios as the value of p getting larger, but it has smaller number of acceptable ratios

than the second approach in total. Therefore, the second approach will be

recommended if 1n is very small.

From Figure 2 and Figure 3, we can observe that the trend of the ratio for the first

approach and second approaches have very similar patterns. When 21 kk  (i.e. five

plots in the first column), the ratio for the first approach is always larger than the ratio

for the second approach; the difference between the ratio for the first approach and

second approach will get larger as the value of p gets larger; the first approach has

more acceptable ratios (i.e. close to 1) than the second approach. Hence, the first
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approach will be recommended if 21 kk  when 1n is 30 or more. When the value

of 2k is approximately half of 1k (i.e. four plots in the second column), most ratios

for the second approach are acceptable if p is not very large, all ratios for the first

approach are acceptable and the trend of the ratio for the first approach is more

smoothly than the second approach. Hence, the first approach will be recommended

Figure 2. Ratio of the variance derived by




)approach( second
-)-approach(-first 
—

to the variance derived by simulation

when 301 n . x-axis is the value of true prevalence p ; y-axis is the value of the ratio.

if the value of 2k is approximately half of 1k when 1n is 30 or more. When the
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values of 1k and 2k have large differences (i.e. three plots in the third column), the

ratio for the first approach is always smaller than the ratio for the second approach if

p is very small; the difference between the ratio for the first and second approaches

will get larger as the value of p gets larger; all ratios for the first and second

approaches are very close and acceptable, but the trend of the ratio for the second

Figure 3. Ratio of the variance derived by




)approach( second
-)-approach(-first 
—

to the variance derived by simulation

when 501 n . x-axis is the value of true prevalence p ; y-axis is the value of the ratio.

approach is smoother than the first approach, and the ratio for the second approach is

closer to 1 than the first approach, which means that the ratio for the second approach

is more acceptable than the first approach. Hence, the second approach will be
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recommended if the values of 1k and 2k have large differences when 1n is 30 or

more.

In summary, when 1n is very small, the second approach will be recommended;

when 301 n , the first approach will be preferred if 21 kk  or the value of 2k is

approximately half of 1k , and the second approach will be preferred when the values

of 1k and 2k have large differences.

Now, we will move to look at the results that are presented in the form of a table.

We will look at the second approach first. When the values of 1k and 2k have large

differences and 1n is large enough (i.e. larger or equal to 30), the ratio of variance is

always between 0.9 to 1.1 for all values of p . The ratio in such range is approaching

to 1, in other words, the variance derived analytically by using the second approach is

close to the real result when 1k and 2k vary greatly with 30 or more 1n . However,

when the values of 1k and 2k have large differences but with 101 n , most ratios

of variance are between 0.84 to 1.04 for the largest four values of p , but some ratios

are around 0.65 when the value of p is smallest. For the range of 0.84 to 1.04, it is

certain that the ratio between 0.9 to 1.04 is an nearly ideal ratio, and the ratio between

0.84 to 0.9 is still narrowly acceptable although it is not that perfect. When the values

of 1k and 2k are the same and 301 n , the variance derived analytically by using

the second approach is close to the real result for the three smallest values of p ;

when 2k is approximately half of 1k and 1n is 30 or more, the second analytical

solution is acceptable for the four smallest values of p . When 1n is the smallest and

1k and 2k are the same or 2k is approximately half of 1k , the second analytical
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solution is always between 0.9 to 1.08 for the middle three values of p , and

sometimes acceptable for the largest value of p (i.e. 10021  kk ; 2021  kk ).

The first approach has a similar overall pattern to the second approach, but it still

has some minor changes. First, when the values of 1k and 2k have large differences,

the acceptable ratio changes towards larger 1n (i.e. 50 or more) for all value of p

and towards larger p (largest three value of p instead of largest four) when

101 n ; the first analytical solution is appropriate when 301 n for the largest four

values of p . Second, when the values of 1k and 2k are same or 2k is

approximately half of 1k , the acceptable ratio changes towards larger p for all 1n .

3.2.2 Determine the most valuable combination

In an experiment, in addition to get a good experimental result, investigators are also

interested in discovering the most cost-efficient combination which is able to

accomplish an experiment with a minimum cost and get the most precise result.

Cost-efficiency is closely related to precision and cost, it can be expressed as

Cost
Variance

1

Cost
PrecisionEfficiency-Cost  (29)

We will use different cost functions in the next two subsections. In section 3.2.2.1, we

will define ‘cost’ as the total cost using a testing function, in other words, it is equal to

the number of groups at the first stage 1n if we are only interested at the

cost-efficiency of the first stage; it is equal to the total number of groups at first and

second stage 21 nn  if we are interested in the cost-efficiency of two stages overall.
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Instead, in section 3.2.2.2, we will define ‘cost’ as the total cost using a sampling

function, equal to the total number of individuals being tested 11kn . Note that when

applying the cost function in section 3.2.2.2, the cost is still equal to 11kn if we are

going to do retesting, because the individuals being tested in the second stage are the

same as in the first stage.

In the next two subsections, we will determine whether using the first stage only

is precise enough or not and if it is worth to go on to the second stage. By looking at

the cost-efficiency of overall two stages, all the most efficient combinations will be

chosen by fixing 1n , 1k and p or by fixing 11kn and p , then, the optimal

combination will be determined by looking at these ‘the most efficient’ combinations’

criterion, including standard error, relative cost-efficiency, precision, and bias.

3.2.2.1 Simulation Comparison by fixing 1n , 1k and p

The first goal of this subsection is finding out the value of 2k which would form the

most efficient combination with given 1n , 1k and p . Table 3 displays the

cost-efficiency of each combination when applying the cost function that is based on

the total number of groups tested. In each combination, the first value represents the

cost-efficiency of testing overall two stages, and the numerator of equation (29) is the

variance of overall p which is derived by using the first approach (i.e. equation

(21)); the second value represents the similar thing with the first value, but the

numerator of equation (29) is derived by using the second approach (i.e. equation

(28)); the third value represents the cost-efficiency of testing the first stage only. From
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this table, we can observe that the cost-efficiency of testing the first stage only is

always greater than the cost-efficiency of testing overall two stages, which means that

retesting will reduce the cost-efficiency. In fact, it is not a surprising observation

because retesting requires additional cost, and some retesting will probably increase a

little precision which is not worth the extra cost. Nevertheless, some investigators

might still want to go to the second stage, for example, the precision of testing the

first stage only is not enough, and then investigators decide to spend a little more

money to go to the second stage to improve precision. Note that the cost-efficiency of

testing overall two stages by using the first and second approaches are both shown in

Table 3, but we will only look at one of them based on the conclusions in section 3.2.1.

The choice of approach for cost-efficiency is shown below:

The value of 1n The values of 1k and 2k The choice of approach for

cost-efficiency

1n is very small Any value of 1k and 2k The second approach

301 n 21 kk  The first approach

301 n 2k is approximately half of 1k The first approach

301 n 1k and 2k have large

differences

The second approach

Table 4. The choice of approach for cost-efficiency

Overall, in the case where 1n , 1k and p are fixed, the value of 2k which

would form the most efficient combination with given 1n , 1k and p is always

equal to 1k or approximately half of 1k . This can be proved by observing the results
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in Table 3. From Table 3, we can observe that when )100,50,12(1 k , the value of 2k

which would form the most cost-efficient combination with given 1n , 1k and p is

half of 1k if 101 n and p is relative small; when )50,20,12(1 k , the value of

2k which would form the most cost-efficient combination with given 1n , 1k and p

is half of 1k if )100,50(1 n and p is relative large; otherwise, the value of 2k

which would form the most cost-efficient combination with given 1n , 1k and p is

always equal to 1k . Thus, we can conclude that the most cost-efficient combination is

consisted by using 21 kk  when 1k is very small all the time and 1k is not very

small (i.e. )100,50,20,12(1 k ) for most of the time; however, when 1k is not very

small, some of the most cost-efficient combinations will be consisted by a given 1k

and a value of 2k that is approximately half of 1k .

Next, we will evaluate the ‘value’ of those ‘most cost-efficient’ combinations and

determine the optimal combination based on some criterion. Table 5 displays the most

cost-efficient combination for each given 1n , 1k and p , and their standard error,

bias and relative cost-efficiency. Note that the standard error, bias, and relative

cost-efficiency of testing overall two stages are all shown in Table 5, but we will only

look at the criterion of one approach based on the conclusions in Table 3.

First, the standard error will be discussed. The standard error is a square root of

the variance, it measures how precise an estimate is, as the standard error getting

smaller, an estimate will be more precise. Column 5 and 9 in Table 5 represent the

standard error of overall p which is derived by using the first approach and second

approach separately. From these two columns, we can observe that it is very hard to
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determine which combination has a better estimate of overall p because each

estimate is corresponding with different true prevalence. Therefore, we will use the

Relative Standard Error (RSE) to evaluate the standard error of these combinations.

RSE is defined as a fraction of the standard error and the true prevalence, and it can

be expressed as

p
pSEp )~(

prevalence True
 overall ofError  Standard estimate)Error Standard Relative 21

（ (30)

Usually, RSE is displayed as a percentage. The combination with a high percentage of

RSE represents that there is more relative variation in the estimates, which means that

such combination will subject to high estimation error and it needs to be careful when

using such design. If a combination has a low percentage of RSE, then it represents

that there is less relative variation in the estimates, which means that this combination

is acceptable and it is good enough for using the first stage only. In this thesis, a

relative standard error is defined as acceptable if it is below 20%; in other words, if

the RSE is below 20%, then testing the first stage only is precise enough.

Overall, we will recommend investigators to use the combination that has as large

1n as possible. This can be proved by comparing the RSE of combinations in Table 5.

Column 6 and 10 in Table 5 represent the relative standard error where the overall p

is derived by using the first approach and second approach separately. Based on the

conclusions in Table 3, we will look at column 6 (i.e. the RSE of the first approach)

when 301 n , and we will look at column 10 (i.e. the RSE of the second approach)

when 101 n . From these two columns, we can observe that the relative standard
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error will be more acceptable when 1n and p are getting larger, and extremely

unacceptable when 1n and p are very small no matter what the values of 1k and

2k are. However, different kinds of experiments will have a different range of true

prevalence. For example, rat-bit fever is a rare infectious disease with only several

cases in the world each year, so it has extremely low true prevalence; instead, malaria

is a common disease and it has high true prevalence. Therefore, by looking at (relative)

standard error only, if the research variable of interest is common and has high true

prevalence, then the combination of large enough number of groups 1n with any

value of 1k and a value of 2k that is the same or approximately half of 1k will be

recommended. Under this condition, the estimate of proportion is good enough for

using the first stage only, thus one recommendation for next step is investigators can

decide to accept the experiment result and not go on to the second stage; the other

recommendation is they can decide to go on to the second stage if they have enough

cost and interested at seeing if the second stage will give them a more precise result.

However, if the research variable of interest is rare and has low true prevalence, the

difficulty of the experiment will increase and it is very hard to get an estimate of the

proportion which has a very small relative standard error. Even so, the recommended

combination is still to have a large enough number of groups 1n with any value of

1k and a value of 2k that is the same or approximately half of 1k , which is able to

minimize the error in the case of low true prevalence. Under this condition, the

estimate of the proportion is not so bad but not that ideal for using the first stage only,

so one recommendation for next step is investigators can decide to stop the
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experiment and change a different design, the other recommendation is they may

decide to continue the experiment and go on to the second stage to see whether the

result has improved or not.

Overall, if the cost function is based on the total number of groups tested, then the

estimate of p using two testing stages combined is close to the true prevalence.

Column 7 and 11 in Table 5 represent the bias between the estimate of p using two

testing stages combined and the true prevalence, where column 7 represents the

estimate of p using two stages combined is derived by using the first approach and

column 11 represents the estimate of p using two stages combined is derived by

using the second approach. Note that both two columns are multiplied by 100000 to

make it easier to read. Based on the conclusions in Table 3, we will look at column 7

(i.e. the bias of the first approach) when 301 n , and we will look at column 11 (i.e.

the bias of the second approach) when 101 n . A small bias represents that the

difference between the estimation and the true result are small; in other words, the

estimation is close to the true result. Therefore, bias needs to be as small as possible.

From these two columns, we can observe that all bias are very small. The largest bias

(times 100000) is -2078.97 when 101 n , 2.0p and 1221  kk , but since it is

100000 times bias, so the estimate of p using two testing stages combined is

1792103.0
100000

97.20782.0bias~
21 


 pp , which is close to the true prevalence

2.0p . Therefore, we can conclude that all estimates of p using two testing stages

combined are close to their true prevalence.

Column 8 and 12 in Table 5 represent the relative cost-efficiency which is derived
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by using the first approach and second approach separately. Based on the conclusions

in Table 3, we will look at column 8 (i.e. the relative cost-efficiency of the first

approach) when 301 n , and we will look at column 12 (i.e. the relative

cost-efficiency of the second approach) when 101 n . Relative cost-efficiency is one

of the important criteria to evaluate the ‘value’ of a combination. It is a fraction of the

cost-efficiency of two stages combined and the first stage only, it can be expressed as

stagefirst 

overall

Efficiency-Cost
Efficiency-CostEfficiency-Cost Relative 

2121

11

)~(
)~(

 



CostpVar
CostpVar (31)

where the cost function here is based on the total number of groups tested, 11 nCost 

and 2121 nnCost  . Therefore,

)()~(
)~(Efficiency-Cost Relative

2121

11
function)  testingusingcost   total(the nnpVar

npVar







(32)

The relative standard error tells investigators whether doing the first stage only is

precise enough or not, instead, the relative cost-efficiency tells investigators if it is

worth to go on to the second stage. Usually, a combination is optimal if its relative

cost-efficiency is larger or equal to 1, which means that the cost-efficiency of retesting

is larger or equal to the cost-efficiency of doing the first stage only. But note that in

Table 3, we can observe that the cost-efficiency of using the first stage only is always

larger than the cost-efficiency of retesting. Even so, some investigators might still

want to do retesting if it is worth to go on to the second stage, where ‘worth’ means

spending more funds to get a more precise result. A relative cost-efficiency that is
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close to 1 represents that cost relative to precision of testing two stages combined is

approximately same with doing the first stage only, which means that if investigators

are testing overall two stages by using the cost as doing the first stage only, then they

will get an approximately same precision with doing the first stage only. For example,

if the relative cost-efficiency is 0.9, then it indicates that testing two stages combined

is 90% as efficient as testing the first stage only. Since the cost-efficiency of using the

first stage only is always larger than the cost-efficiency of retesting when the cost

function is based on the total number of groups tested, therefore, in table 5, a relative

cost-efficiency is defined as acceptable if it is above 0.8 (below 1 but close to 1), and

we may recommend investigators to go on to the second stage.

Let us look at the RE when 101 n (i.e. column 12, the second approach) first.

From column 12, we can observe that if p is very small (0.5% or less), then the

relative cost-efficiency is always acceptable when )50,20(1 k and acceptable for

most of the time when 1001 k ; if p is small (larger than 0.5%, less or equal to

1%), then the relative cost-efficiency is acceptable when )20,12(1 k , and entirely

not acceptable when )100,50(1 k ; if p is large (larger than 1%, less or equal to

5%), then the relative cost-efficiency is always acceptable when )100,6(1 k ,

sometimes acceptable when )50,12(1 k , and entirely not acceptable when 201 k ;

if p is very large (larger than 5%), then the relative cost-efficiency is always

acceptable when 201 k , sometimes acceptable when )12,6(1 k . Next, let us look

at the RE when 301 n (i.e. column 8, the first approach). From column 8, we can

observe that all findings when 301 n are the same as the findings when 101 n ,
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except the following conditions: when 05.001.0  p , the relative cost-efficiency is

sometimes acceptable when 61 k instead of acceptable for all the time, and not

acceptable when 1001 k instead of acceptable for all the time; when 05.0p , the

relative cost-efficiency is totally not acceptable when 61 k instead of acceptable

for some time, and not acceptable when 201 k instead of acceptable for all the time.

The summary of the observations from column 8 and 12 are listed in Table 6.

Table 6. The summary of the observations of relative cost-efficiency

Note that the final recommendation will be given based on the true prevalence,

therefore, since 005.0p and 01.0005.0  p are close, these two ranges will be

combined ( %1p ) and defined as relatively low true prevalence or rare;

05.001.0  p and 05.0p will be combined ( %1p ) and defined as relatively

high true prevalence or common. When we analyzing the RSE, we have concluded

that the combination that has as large 1n as possible will be recommended. Therefore,

it is significant to have an acceptable RE when 1n is large.

Let us look at Table 6 for relatively low true prevalence first. We can observe that

if p is very small (0.5% or less), then the RE is acceptable for all 1n when
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)100,50,20(1 k ; if p is small (larger than 0.5%, less or equal to 1%), the RE is

acceptable for all 1n when )20,12(1 k , but no longer acceptable when

)100,50(1 k . In summary, if )20,12(1 k , the RE is acceptable when 1n is large,

which means that it is worth to go on to the second stage if 1n is large, )20,12(1 k

and a value of 2k that is the same or approximately half of 1k . Next, let us look at

Table 6 for relatively high true prevalence. We can observe that if p is large (larger

than 1%, less or equal to 5%), the RE is acceptable for all 1n when )50,12,6(1 k ; if

p is very large (larger than 5%), then the RE is acceptable for all 1n when 121 k ,

but no longer acceptable when 61 k . In summary, if )50,12(1 k , the RE is

acceptable when 1n is large, which means that it is worth to go on to the second

stage if 1n is large, )50,12(1 k and a value of 2k that is the same or

approximately half of 1k .

Overall, by looking at the relative standard error, the bias and the relative

cost-efficiency, if the cost function we applied is based on the total number of groups

tested, and the value of 1n , 1k and p are fixed, then we will make the following

recommendation:

1. If the research variable of interest has relatively high true prevalence ( %1p ) and

investigators do not have extra cost or they are not interested at seeing if the second

stage can give a better result, then the combination of large 1n with any value of 1k

will be recommended, and investigators only need to do the first stage if they follow

the recommendation.

2. If the research variable of interest has relatively high true prevalence ( %1p ) and
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investigators have extra fund and they are interested in seeing if the second stage can

give a better result, then the combination of large 1n , )50,12(1 k and a value of 2k

that is same or approximately half of 1k will be recommended.

3. If the research variable of interest has relatively low true prevalence ( %1p ),

then the combination of large 1n , )20,12(1 k and a value of 2k that is same or

approximately half of 1k will be recommended, and investigators can either decide

to change the design of combination after doing the first stage or go to the second

stage to see if they can get a better result.

3.2.2.2 Simulation comparison by fixing 11kn and p

In this subsection, we will do a similar work with section 3.2.2.2, but the value of

11kn and p will be fixed, and the cost function, the equation of cost-efficiency and

relative cost-efficiency will be changed. The cost function we used in this subsection

is based on the total number of individuals tested, where

11stages)  twooverall(only) stagefirst ( knCostCost  . Therefore, the new equation for the relative

cost-efficiency can be expressed as

 
)()~(

)~(Efficiency-Cost Relative
1121

111
function) sampling usingcost   total(the knpVar

knpVar






(33)

By comparing the equation (32) and (33), if investigators decide to not go to the

second stage, then 02 n , and the relative cost-efficiency by using the testing based

cost function (i.e. equation (32)) will be equal to the relative cost-efficiency by using

the sampling based cost function (i.e. equation (33)); if investigators decide to do
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retesting, then the relative cost-efficiency by using the sampling based cost function

will be larger than the relative cost-efficiency by using the testing based cost function.

Therefore, the RE by using the sampling based cost function is always greater or

equal to the RE by using the testing based cost function.

We have )100,50,30,10(1 n and )100,50,20,12,6(1 k , so 11kn can be

combined as

Table 5. Different combinations of 11kn

Note that since we want to compare the cost-efficiency of each combination with

given 11kn and p , therefore the 11kn that only appears once in Table 5 will be

dropped and we will select common p in each ),( 11 kn with given 11kn . Hence, we

will find the proper value of 2k to form the most cost-efficient combination with the

following 1nk and p :

60011 kn :  )20,30(),12,50(),6,100(),( 11 kn , )1.0,05.0,02.0(p

100011 kn :  )100,10(),20,50(),( 11 kn , )02.0,01.0,005.0(p

500011 kn :  )100,50(),50,100(),( 11 kn , )02.0,01.0,005.0,002.0(p .

Table 7 displays the cost-efficiency of each combination above when applying the

cost function that is based on the total sample size. Column 6 and 7 represent the

cost-efficiency of testing overall two stages by using the first approach and second
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approaches separately; column 8 represents the cost-efficiency of testing the first

stage only. Note that the cost-efficiency of testing overall two stages by using the first

and second approaches are both shown in Table 7, but we will only look at one of

them based on Table 4. Different with the observations from Table 3, we can observe

that in Table 7, most cost-efficiency of testing overall two stages are approximately

equal or larger than the cost-efficiency of testing the first stage only, which means that

doing additional stage will have similar precision with doing the first stage only, or

even increasing the precision of the first stage. This observation makes more sense for

investigators to do retesting. From Table 7, we can observe that the value of 2k

which would form the most cost-efficient combination with given 11kn and p is

always equal to 6 whatever the value of 11kn and p are. Therefore, 62 k will be

recommended if the value of 11kn and p are fixed.

Table 8 displays the standard error, relative standard error, bias, and relative

cost-efficiency for ‘most cost-efficient’ combination we found in Table 7. Based on

Table 4, we will look at column 6 to 9 (i.e. the first approach) when 60011 kn since

all three ‘most cost-efficient’ combinations have large enough 1n ( 301 n ) and the

value of 2k is the same or approximately half of 1k ; we will look at column 10 to 13

(i.e. the second approach) when 100011 kn since the first two ‘most cost-efficient’

combinations have large enough 1n ( 301 n ) and 1k and 2k have large

differences, and the last ‘most cost-efficient’ combination has very small 1n

( 101 n ); we will look at column 10 to 13 (i.e. the second approach) when

500011 kn since all four ‘most cost-efficient’ combinations have large enough 1n
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( 301 n ) and 1k and 2k have large differences.

The relative standard error in Table 8 shows that doing the first stage only is

precise enough (i.e. below 20%) if the total sample size is small (i.e. 600, 1000) and

p is very large ( 05.0p ) or if the total sample size is large (i.e. 5000) and p is

relatively large ( %1p ); doing the first stage only is not precise enough if the total

sample size is small and 05.0p or if the total sample size is large and p is

relatively small ( 01.0p ). Table 9 concludes the observations above.

Table 9. The observations of RSE

However, different experiment has different research object, therefore the total

number of individuals can be collected is depended on the variety of research object.

For example, humans and mosquitoes, it is more possible for investigators to collect

over ten thousand mosquitoes than to collect over ten thousand people. Therefore, the

total sample size will not be very large if the research object is human, instead, the

total sample size can be extremely large if the research object is mosquitoes. In this

section, we only analyzed the experiment with a total sample size that is not

extremely small or large (i.e. 600, 1000, 5000) because our setting of combination is

limited. Nevertheless, we can still make a guess for the experiment with extremely

small or large total sample size based on the observations of the relative standard error

(Table 9): if the total sample size is extremely small, then it needs a true prevalence
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that is much larger than 5% to make the result of doing the first stage only precise

enough; if the total sample size is extremely large, then it needs a true prevalence that

is much smaller than 1% to make the result of doing the first stage only precise

enough; otherwise, doing the first stage only will be not precise enough. Analyzing

the experiment with an extremely small or large total sample size is a significant work,

and this guessing will be verified or against in future work.

Overall, if the cost function is based on the total sample size, then the estimate of

p using two testing stages combined is close to the true prevalence. From column 8

and column 12 in Table 8, we can observe that all bias are very small. The largest bias

(times 100000) is -13.91 when 100011 kn and 02.0p , but since it is 100000

times bias, so the estimate of p using two testing stages combined is

0198609.0
100000

91.1302.0bias~
21 


 pp , which is close to the true prevalence

02.0p . Therefore, we can conclude that all estimates of p using two testing

stages combined are close to their true prevalence.

From the relative cost-efficiency in Table 8, we can observe that the relative

cost-efficiency is larger than 1 for all the time, which means that it is worth to do

retesting whatever the value of 11kn and p are.

Overall, by looking at the relative standard error, the bias and the relative

cost-efficiency, if the cost function we applied is based on the total sample size, and

the value of 11kn and p are fixed, then we will make the following

recommendation:

1. If investigators can collect either small or large sample sizes, and the research
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variable of interest has a relative small true prevalence to the total sample size, then a

combination with 62 k will be recommended. Under this situation, doing the first

stage only is not precise enough, so investigators can either decide to change the

design or go to the second stage. However, retesting will be more recommended since

testing overall two stages will gain a little bit more precision at most of the time.

2. If investigators can collect either small or large sample sizes, and the research

variable of interest has a relative large true prevalence to the total sample size, then a

combination with 62 k will be recommended. Under this situation, doing the first

stage only is precise enough, so investigators can either decide to stop at the first stage

or go to the second stage. However, retesting will be more recommended since testing

overall two stages will always gain much more precision, which is worth the extra

fund.
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Chapter 4 Discussion

4.1 Extension of Group testing: Classification

Our main goal of this thesis is estimating the true proportion of affected units, which

is one reason for using group testing. Classification is the other category of group

testing. It is Dorfman (1943)’s primary incentive for using group testing, and it is

aimed at identifying positive units, or in other words, detecting individuals with the

disease of interest (Kim et al., 2007). Nevertheless, there exist some imperfect cases

in group testing, such as misclassification. Misclassification occurs when an

individual is classified into the wrong population subgroup. For example, suppose

there are 50 people in an experiment, 45 of them are healthy and 5 of them have

cancer. Now these 50 people are mixed up and tested individually to see if they have

cancer, if a healthy person is diagnosed with cancer or a people who have cancer is

diagnosed as health, then this person is classified into the wrong subgroup, which is a

misclassification. Many statistical studies of group testing assume that the test

samples can be analyzed by group testing precisely without any errors. However,

when the proportion p is relatively large to the total sample size, we need to be

cautious in choosing the number of group size k. If the group size k is too large, it will
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result in a high mean squared error (MSE) of the estimation of the true proportion,

and test samples will be misclassified into the wrong subgroup. Therefore, it is very

important to choose an optimal group size k (Liu et al., 2011; Chen and Swallow,

1990). Graff and Roeloffs (1972) gave an extension of group testing based on

Dorfman (1943) under the condition of known test error between outcome and true

state. Burns and Mauro (1987) summarized the former’s conclusion and proposed

group testing with accidental test error .

4.1.1 Dorfman’s group testing

Dorfman (1943)’s group testing has a different objective with this thesis. The goal of

group testing in this thesis is estimating the proportion of affected individuals,

nevertheless, Dorfman’s incentive is identifying individuals with the disease of

interest. Dorfman (1943) (see also Malinovsky and Albert 2018) proposed a screening

procedure intended to decrease the expected number of tests required to identify

soldiers with syphilis. He regards n soldiers as a whole group, and then collected

their blood samples separately. He began with a test on this group of blood samples. If

the result shows negative, then it declares that none of the soldiers have syphilis in

this group, therefore no further test is needed; if the result shows positive, it states that

there exists at least one soldier has syphilis in this group, then each soldier has to be

retested individually, therefore it needs 1n tests in this group, we can also call this

as the Dorfman two-stage procedure or retesting. Nevertheless, the total number of

tests needed will not exceed 1n in any case. When the population proportion of
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affected individuals is small, then it requires a small expected number of tests.

4.1.2 Sterrett’s group testing

Sterrett (1957) modified and suggested a more advanced procedure based on

Dorfman’s screening procedure. He aimed at further reduction in the expected number

of tests needed. If the result of group test is positive in the first stage, then each

individual is tested one-by-one instead of testing all individuals in the second stage,

this process stops after the first appearance of a nonconforming individual. Then

group the remaining untested individuals as a new group, and repeat the same

procedure in the first stage. If the result is negative, then it states that there exists only

one nonconforming individual; if the result is positive, then test each individual

one-by-one until the first appearance of a nonconforming individual. The rest can be

done in the same manner until all items are tested.

4.2 Future work and Challenge

One extension for our work would be determining an appropriate number of group

sizes at the second stage based on the estimate of the true proportion at the first stage,

which is called an adaptive group testing scheme. Normally, group testing can be split

into two categories: non-adaptive group-testing scheme and adaptive group-testing

scheme. The former is more common than the latter since the derivation of the

adaptive scheme is more complicated. In this thesis, we used a non-adaptive scheme.

The number of group sizes at the first stage and the second stage are fixed at the
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beginning. A non-adaptive group-testing scheme tests N groups and each with group

size k; if the test result of a certain group is positive, then it means one or more

individuals in this group has a trait that conforms to the research variable of interest.

An adaptive group-testing scheme tests 1N groups and each with group size 1k in

the first stage, 2N groups and each with group size 2k in the second stage, and so

on in a similar manner, the number of group sizes of the next stage will be determined

during the experiment and depending on the maximum likelihood estimation of p in

the previous stage and the number of tests in the stage to be tested currently. An

adaptive scheme refers to a multi-stage scheme, Hughes-Oliver and Swallow (1994)

proposed a two-stage adaptive algorithm and derived the number of group sizes in the

second stage based on the MLE of p in the first stage.

In addition to the one-stage and two-stage algorithm, the research of three or

more schemes is also concerned, which could be an extension of our work. Schultz et

al. (1973) proposed multiple-stage procedures for drug screening and gave an

example of three-stage designing, then concluded that drugs might be declared active

if and only if they pass through all three stages. In statistical research, it is important

to choose the most optimal number of stages. The derivation of formulas will be

complicated when there are three or more stages, simultaneously, the cost of

additional stages must be considered. However, the number of stages needs to be

determined on the exact situation, sometimes one- or two-stage would be better, but

sometimes it may require more stages.

In section 4.1, we talked about an imperfect case—misclassification—in group
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testing. In addition to the imperfect case, there exists a special case in group testing:

unequal group sizes. Unequal group sizes can be divided into two varieties: unequal

group sizes between stages, and unequal group sizes within a stage. Both of these two

varieties might be caused by either deliberate design or unforeseen occurrence.

Unequal group sizes between stages are talked in this thesis. An extension of our work

would be allowing unequal group sizes within a stage. Furthermore, a more

complicated extension work would be allowing unequal group sizes within both two

stages, and simultaneously, allowing unequal group sizes between two stages.

Statisticians have done some researches on the case of unequal group sizes within a

stage. For example, Walter, Hildreth and Beaty (1980) used group testing of unequal

group sizes within a stage to estimate the infection rates of yellow fever virus in a

mosquito population; Chen and Swallow (1990) designed a set of unequal group sizes

within a stage and proposed a grouping test based on the Binomial model with these

group sizes; Le (1981)‘s research of interest is estimating the infection rates in

populations of organisms, but unfortunately, it is impractical to test every unit

separately, so instead, he chooses to divide the organisms into multiple groups at

random. The derivation of a confidence interval is difficult and complicated when

group sizes are unequal. Hepworth (2005) and Hepworth (1996) developed

confidence intervals and exact confidence intervals for unequal group sizes.

Overall, there were three challenges in this thesis.

The first is deriving the equation of the variance of the estimate of overall p ,

)~( 21pVar , which includes Burrow’s correction and was talked in section 2.2. The
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difficulty for this challenge is deriving the covariance of modified MLE at the first

and second stage, )~,~( 21 ppCov .

The second challenge is evaluating whether doing the first stage only is precise

enough or not and if it is worth to go to the second stage when the total sample size is

extremely small or large, which was talked in section 3.2.2.2. We have this challenge

in this thesis because we only set 4 numbers in the figure of 1n (i.e.

)100,50,30,10(1 n ) and 5 numbers in the figure of 1k (i.e. )100,50,20,12,6(1 k ),

our setting of combination is very limited. In the future, we may solve this challenge

by examining more 1n and 1k .

The last challenge is finding out an appropriate cost function. In this thesis, we

considered two cost functions: total cost using the testing function (section 3.2.2.1)

and total cost using the sampling function (section 3.2.2.2). However, in addition to

consider the cost of testing a group or an individual in an experiment, we also need to

consider other factors that would cost extra funds. For example, investigators need to

spend some costs on collecting data set before testing (Sobel and Elashoff, 1975).
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Table 1. The ratio of the variance derived analytically (i.e. first approach means using equation (21),
second approach means using equation (28)) to the variance of the second stage obtained by simulation.
The upper value is derived by applying equation (5) (i.e. with correction) and the lower value is derived
by applying equation (3) (i.e. without correction) in simulation.
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Table 3. The cost-efficiency of combination with given n , 1k and p when applying the cost

function that is based on the total number of groups tested
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Table 5. The standard error, relative standard error, bias (x100000) and relative cost-efficiency of each

‘most efficient’ combination with given 1n , 1k and p .

‘*’ indicates the criterion when the second approach is best

‘#’ indicates the criterion when the first approach is best
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Table 7. The cost-efficiency of combination with given 11kn and p when applying the cost

function that is based on the total sample size
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Table 8. The standard error, relative standard error, bias (x100000) and relative cost-efficiency of each

‘most efficient’ combination with given 11kn and p .
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