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ABSTRACT 

Background: Obesity is a multifactorial disease caused by the interplay of environmental 
and genetic risk factors. With the prevalence of obesity more than doubling since 1980, 
this disease has become a global epidemic. The objectives of this research were to (1) 
review the current evidence of gene-environment interactions (GEI) in the field of 
obesity, (2) investigate novel GEI involving sedentary behaviour, sleep duration and 
alcohol consumption, (3) assess GEI using a cumulative environmental risk score, and (4) 
provide an overview of methodological weaknesses in GEI studies and provide 
suggestions for future directions.  
 
Methods: The data for the gene-environment interaction analyses were collected from the 
EpiDREAM study: a cohort study including participants of six ethnic backgrounds from 17 
countries worldwide. A subset of 17 423 participants with complete genotype and phenotype 
information was included in the analysis. Twenty-three obesity predisposing single nucleotide 
polymorphisms (SNPs) were analyzed independently and as a genetic risk score (GRS). Linear 
regression models were used to analyze these interactions.  
 
Results: Heritability, monogenic and polygenic obesity studies provide converging evidence 
that obesity-predisposing genes interact with a variety of environmental exposures including 
physical activity and diet patterns. In the EpiDREAM cohort, we found that increased 
sedentary time did not interact with obesity predisposing SNPs or the GRS to modulate BMI. 
The interaction between sedentary time and physical activity was also not significant. We 
observed a U-shaped association between sleep duration and BMI and sleep duration did not 
appear to moderate the impact of the obesity predisposing SNPs or the GRS. However, we did 
observe an alcohol x FTO rs1421085 interaction, whereby increased alcohol consumption 
attenuated the impact of FTO rs1421085 variation on BMI. We also found that the combined 
effect of several environmental risk factors significantly modified the effect of FTO rs3751812 
on BMI. Specifically, we found that the effect of the FTO rs3751812 SNP on BMI was over 
two times greater among those in the highest quartile of environmental risk compared to those 
in the lowest quartile. The GRS did not interact with any of the exposures tested.  
 
Discussion: Our results indicate that sedentary behaviour did not moderate the impact of 
obesity predisposing genes, while alcohol consumption decreased the impact of variation in 
FTO rs3751812 on BMI. We also observed that variation in FTO rs3751812 interacted with a 
cumulative environmental risk score to moderate BMI. The growing body of GEI evidence has 
provided a deeper understanding of obesity aetiology and may have tremendous applications in 
the emerging field of personalized medicine and individualized lifestyle recommendations. 
Although the number of gene-environment interaction analyses has increased rapidly across 
multiple disciplines, addressing methodological concerns such as statistical modeling, 
confounding, biological assumptions and measurement precision will be necessary to fully 
exploit the potential of the GEI field. With the development of new methodological and 
measurement techniques such as hypothesis-free genome wide interaction studies and deep 
phenotyping, it may be possible to translate the information from GEI studies into public health 
policy and personalized medicine for obesity and other complex human diseases.  



 3 

 

ACKNOWLEDGMENTS 

 
 I would like to extend my gratitude to my supervisor, Dr. David Meyre, for his 

unwavering support, constructive feedback, and warm encouragement over the past three 

years. Without his guidance, consistent help, and engaging teaching style, this thesis 

would not have been possible.  

 I would also like to extend my appreciation to my Advisory Committee, Dr. John 

Cairney, and Dr. Mark Loeb, for their constructive feedback and helpful support 

throughout this project. I am very thankful to have worked with such knowledgeable and 

insightful faculty throughout this project. 

 It would be remiss of me to fail to mention the generous help and encouraging 

feedback from all members of our research group over the past two years: Jackie Hudson, 

Dipika Desai and my colleagues Akram Alyass, Alexandra Mayhew, Sébastien Robiou 

du Pont, Arkan Abadi and Aihua Li. More specifically, Jackie and Dipika provided 

administrative support and the students in our group provided thoughtful feedback 

regarding statistical analysis and research design.  

Finally, I would like to express my sincerest gratitude to my parents, my partner 

Amanda and close friends who have provided me with endless support and 

encouragement throughout this program. 

 

 

  



 4 

Table of Contents 

Abstract	......................................................................................................................................	2	

Acknowledgments	..................................................................................................................	3	
List	of	Abbreviations	..............................................................................................................	8	

Chapter	1-Introduction	.........................................................................................................	9	

Chapter	2-Literature	Review	............................................................................................	11	
ABSTRACT	.........................................................................................................................................	11	
INTRODUCTION	...............................................................................................................................	12	
DEFINITIONS	....................................................................................................................................	13	
Heritability	estimates	are	influenced	by	the	environment	........................................................	15	
Obesity	predisposing	gene	variants	interact	with	the	environment	......................................	18	
Obesity	predisposing	gene	variants	interact	with	non-modifiable	biological	factors	....	18	
Obesity	predisposing	gene	variants	interact	with	lifestyle	factors	.........................................	21	
Obesity	predisposing	gene	variants	interact	with	disease	status/response	to	treatment
	..............................................................................................................................................................................	29	
Biological	processes	underlying	statistical	gene-environment	interactions	......................	34	
Conclusion	.......................................................................................................................................................	37	

Chapter	3-	Sedentary	behaviour	and	genetic	predisposition	to	obesity	in	a	
multiethnic	study	..................................................................................................................	40	
ABSTRACT	.........................................................................................................................................	40	
INTRODUCTION	...............................................................................................................................	41	
METHODS	..........................................................................................................................................	45	
Study	Participants	........................................................................................................................................	45	
Genotyping	.......................................................................................................................................................	45	
Phenotyping	....................................................................................................................................................	46	
Statistical	Analyses	.......................................................................................................................................	48	

RESULTS	.............................................................................................................................................	49	
Characteristics	of	the	studied	cohort	...................................................................................................	49	
Effect	of	Sedentary	Behaviour	on	BMI	.................................................................................................	50	
Effect	of	SNPs/GRS	on	Sedentary	behaviour	....................................................................................	50	
Effect	of	SNPs/GRS	on	BMI	.......................................................................................................................	50	
Interaction	Analyses	....................................................................................................................................	51	

DISCUSSION	.......................................................................................................................................	51	
Chapter	4-Sleep	duration	and	body	mass	index	in	a	multiethnic	study:	
evidence	from	observational	and	genetic	epidemiology	........................................	70	
ABSTRACT	.........................................................................................................................................	70	
INTRODUCTION	...............................................................................................................................	71	
METHODS	..........................................................................................................................................	73	
Study	Participants	........................................................................................................................................	73	
Genotyping	.......................................................................................................................................................	74	
Phenotyping	....................................................................................................................................................	75	
Statistical	Analysis	........................................................................................................................................	76	

RESULTS	.............................................................................................................................................	77	
Characteristics	of	the	studied	cohort	...................................................................................................	77	
Effect	of	Sleep	duration	on	BMI	..............................................................................................................	77	



 5 

Effect	of	SNPs/GS	on	Sleep	duration	....................................................................................................	78	
Effect	of	SNPs/GRS	on	BMI	.......................................................................................................................	78	
Sleep	duration	x	SNP/GRS	Interaction	Analysis	.............................................................................	78	

DISCUSSION	.......................................................................................................................................	79	
Chapter	5-Alcohol	intake	and	obesity:	evidence	of	sex	and	gene	interactions	in	
a	multiethnic	study	...............................................................................................................	89	
ABSTRACT	.........................................................................................................................................	89	
INTRODUCTION	...............................................................................................................................	90	
METHODS	..........................................................................................................................................	93	
Study	Participants	........................................................................................................................................	93	
Genotyping	.......................................................................................................................................................	93	
Phenotyping	....................................................................................................................................................	95	
Statistical	Analysis	........................................................................................................................................	95	

RESULTS	.............................................................................................................................................	97	
Characteristics	of	the	studied	cohort	...................................................................................................	97	
Effect	of	Alcohol	Intake	on	BMI	..............................................................................................................	97	
Effect	of	SNPs/GS	on	Alcohol	Intake	....................................................................................................	98	
Effect	of	SNPs/GRS	on	BMI	.......................................................................................................................	98	
Alcohol	Intake	x	SNP/GRS	Interaction	Analysis	..............................................................................	99	

DISCUSSION	.......................................................................................................................................	99	
Chapter	6-cumulative	environmental	risk	and	genetic	predisposition	to	
obesity	....................................................................................................................................	111	
Abstract	...........................................................................................................................................	111	
INTRODUCTION	............................................................................................................................	112	
METHODS	.......................................................................................................................................	114	
Study	Participants	.....................................................................................................................................	114	
Genotyping	....................................................................................................................................................	115	
Phenotyping	.................................................................................................................................................	116	
Statistical	Analyses	....................................................................................................................................	117	

RESULTS	..........................................................................................................................................	118	
Characteristics	of	the	studied	cohort	................................................................................................	118	
Effect	of	Lifestyle	Factors	on	BMI	.......................................................................................................	119	
Effect	of	FTO	rs3751812	and	GRS	on	BMI	......................................................................................	119	
Interaction	Analyses	.................................................................................................................................	120	

DISCUSSION	....................................................................................................................................	120	
Chapter	7-Methodological	considerations	in	gene-environment	interaction	
studies	of	obesity:	recent	developments	and	future	options	..............................	130	
Abstract	...........................................................................................................................................	130	
Introduction	..................................................................................................................................	131	
Statistical	modeling	issues	in	gene-environment	interaction	research	.............................	132	
Confounding	issues	in	gene-environment	interaction	research	...........................................	136	
Considering	time	of	exposure	in	gene-environment	interaction	research	......................	138	
Measurement	issues	in	gene-environment	interactions	research	.......................................	139	
Future	directions	for	gene-environment	interactions	and	obesity	.....................................	143	
Conclusion	....................................................................................................................................................	147	

References	............................................................................................................................	150	
 



 6 

List of Tables 
 

Table 1. Baseline characteristics by sedentary level in the EpiDREAM study. ................ 56	
Table 2. Effect of sedentary behaviour on BMI (adjusted for sex, age, ethnicity and 

glycemic status). ........................................................................................................ 57	
Table 3. Effect of SNPs/GRS on sedentary behaviour (adjusted for sex, age, ethnicity, 

glycemic status and BMI). ......................................................................................... 58	
Table 4. Effect of SNPs/GRS on BMI (adjusted for sex, age, ethnicity and glycemic 

status). ........................................................................................................................ 59	
Table 5. Interaction analyses between sedentary behaviour and obesity predisposing 

SNPs/GRS (adjusted for sex, age, ethnicity, relatedness, glycemic status, physical 
activity and physical activity x SNP/GRS interaction). ............................................ 60	

Table 6. Baseline characteristics of the EpiDREAM study stratified by sleep duration. .. 82	
Table 7. Linear vs. U-shaped models of the association between sleep duration and BMI.

 ................................................................................................................................... 83	
Table 8. Effect of SNPs/GRS on sleep duration. ............................................................... 84	
Table 9. Effect of SNPs/GRS on BMI. .............................................................................. 85	
Table 10. Interaction analysis between SNPs/GRS and sleep duration on BMI. .............. 86	
Table 11. Baseline characteristics stratified by alcohol consumption in the EpiDREAM 

study. ....................................................................................................................... 104	
Table 12. Effect of alcohol consumption on BMI. .......................................................... 105	
Table 13. Effect of SNPs/GRS on alcohol consumption (adjusted for sex, age, ethnicity, 

glycemic status and BMI). ....................................................................................... 106	
Table 14. Main association between SNPs/GRS and BMI, and interaction effects with 

alcohol consumption (adjusted for sex, age, ethnicity and glycemic status). .......... 107	
Table 15. Baseline characteristics of the EpiDREAM study. ......................................... 124	
Table 16. Effect of lifestyle factors on BMI (adjusted for sex, age, ethnicity and glycemic 

status). ...................................................................................................................... 126	
Table 17. Main effect and interaction between cumulative environmental score and FTO 

rs3751812/GRS and BMI (adjusted for sex, age, ethnicity and glycemic status). .. 127	
Table 18. Summary of methodological issues and solutions for gene-environment 

interaction studies in obesity. .................................................................................. 149	
 
 

List of Supplementary Tables 
 

Supplementary Table 1. Genotype distributions, call rate and Hardy-Weinberg 
Equilibrium values for the 23 SNPs analyzed. .......................................................... 61	

Supplementary Table 2. List of 39 self-reported physical activities. ................................ 66	
Supplementary Table 3. Description of the 23 SNPs selected in EpiDREAM. .............. 109	

 
 
  



 7 

List of Figures 
Figure 1. Biological model to explain gene-environment interactions in obesity. ............ 39	
Figure 2. Mean BMI values stratified by alcohol consumption and FTO rs3751812 

genotype. ................................................................................................................. 108	
Figure 3. Beta value for the effect of the FTO rs3751812 risk allele on BMI in each 

quartile of environmental risk. ................................................................................ 128	
Figure 4. Mean BMI values stratified by FTO rs3751812 genotype and lifestyle quartile.

 ................................................................................................................................. 129	
 

List of Supplementary Figures 
Supplementary Figure 1. Flow chart of EpiDREAM study (sedentary x gene interaction).

 ................................................................................................................................... 67	
Supplementary Figure 2. Power calculation (80%) for the main effect of obesity 

predisposing SNPs for a P-value=0.05. ..................................................................... 68	
Supplementary Figure 3. Power calculation (80%) for the interaction effect between 

obesity predisposing SNPs and sedentary behaviour for a P-value=0.05. ................ 69	
 Supplementary Figure 4. Flow chart of EpiDREAM study (sleep x gene interaction) .... 87	
Supplementary Figure 5. Power calculation for the interaction between obesity 

predisposing SNPs and sleep duration for a P-value=0.05. ....................................... 88	
Supplementary Figure 6. Flow chart of EpiDREAM study (alcohol x gene interaction).

 ................................................................................................................................. 110	
  

Supplementary Figure 1. Flow chart of EpiDREAM study (sedentary x gene interaction).
 ................................................................................................................................... 67	

Supplementary Figure 2. Power calculation (80%) for the main effect of obesity 
predisposing SNPs for a P-value=0.05. ..................................................................... 68	

Supplementary Figure 3. Power calculation (80%) for the interaction effect between 
obesity predisposing SNPs and sedentary behaviour for a P-value=0.05. ................ 69	

 Supplementary Figure 4. Flow chart of EpiDREAM study (sleep x gene interaction) .... 87	
Supplementary Figure 5. Power calculation for the interaction between obesity 

predisposing SNPs and sleep duration for a P-value=0.05. ....................................... 88	
Supplementary Figure 6. Flow chart of EpiDREAM study (alcohol x gene interaction).

 ................................................................................................................................. 110	
 



 8 

LIST OF ABBREVIATIONS 

BMI: body mass index 
 
BPA: basic physical activity score 
 
FSH: follicle stimulating hormone 
 
GEWIS: gene-environment-wide interaction studies 
 
GRS: genetic risk score 
 
GWAS: genome wide association study 
 
HC: hip circumference 
 
IGT: impaired glucose tolerance 
 
METS: metabolic equivalent score 
 
NGT: normal glucose tolerance 
 
PA: physical activity 
 
PCA: principal components analysis 
 
SNP: single nucleotide polymorphism 
 
T2D: type 2 diabetes 
 
 
 
 
 
 
 
 
 
 
 
 
 



 9 

CHAPTER 1-INTRODUCTION 

 
Obesity has become a global epidemic and is a known risk factor for a number of 

adverse health outcomes, including clinical depression and anxiety, osteoarthritis, type 2 

diabetes, hypertension, dyslipidemia, cardiovascular disease, cancer (endometrial, breast, 

colon, kidney, gallbladder, liver) and 8-13 years shorter life expectancy in its more severe 

forms1-3. The economic implications of obesity have also become substantial issues, 

which are particularly extreme in the United States and are growing concerns in Western 

Europe, Canada and New Zealand4. The leading causes of this epidemic include excess 

energy intake and declines in physical activity, although additional environmental risk 

factors have been identified: sleep patterns, psychosocial stress, alcohol consumption and 

smoking patterns5,6.   

In addition to environmental determinants, a substantial portion of the inter-

individual variability in obesity is caused by genetic differences. Twin and family studies 

provided early estimates of the genetic basis for obesity, which indicated that 40-80% of 

the variation in obesity-related traits observed in the population could be attributed to 

genetic differences7. Despite the large genetic contribution, identifying the specific 

sources of genetic variation remains a challenge. Single gene mutations that are 

individually sufficient to cause obesity are less common and the majority of obesity cases 

appear to be caused by the combined influence of several common gene variants, each 

with a modest effect on weight gain8-11. Technological advances such as genome-wide 

association studies (GWAS) have led to the identification of over 160 polygenic obesity 

loci, yet these variants only explain a portion of the variability attributed to genetic 

differences12-14. Gene-environment interactions have been proposed as a possible 
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explanation to account for the remaining variability not explained through classical 

GWAS15. Several environmental factors, including physical activity, diet patterns, 

alcohol consumption and psychosocial stress have been found to moderate the impact of 

obesity genes in various ethnic groups16-19.  

To build on the existing literature, we undertook the current project to advance the 

understanding of gene-environment interaction studies in the obesity field. The specific 

objectives of this thesis were to (1) summarize the findings supporting gene–environment 

interaction in obesity from heritability, monogenic and polygenic studies, and provide a 

biological hypothesis to explain these statistical interactions, (2) examine the interaction 

between obesity predisposing gene variants and sedentary behaviour after adjusting for 

physical activity, (3) analyze a novel gene-environment interaction between obesity 

predisposing gene variants and alcohol consumption, (4) study the effects of a cumulative 

environmental risk score on the impact of obesity risk variants, and (5) outline the 

methodological challenges associated with gene–environment interaction (GEI) studies, 

and provide potential solutions to these issues based on existing evidence and highlight 

future directions for gene-environment interaction research. 
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CHAPTER 2-LITERATURE REVIEW 

ABSTRACT  

The worldwide obesity epidemic has been mainly attributed to lifestyle changes. 
However, who becomes obese in an obesity-prone environment is largely determined by 
genetic factors. In the last twenty years, important progress has been made in the 
elucidation of the genetic architecture of obesity. In parallel with successful gene 
identifications, the number of gene-environment interaction studies has grown rapidly. 
This paper reviews the growing body of evidence supporting gene-environment 
interactions in the field of obesity. Heritability, monogenic and polygenic obesity studies 
provide converging evidence that obesity-predisposing genes interact with a variety of 
environmental exposures including physical activity and diet patterns. Genetic 
predisposition to obesity-related traits may be amplified in the context of specific 
disorders such as depression or preexistent overweight. Gene variants also interact with 
obesity treatments. What follows in this review includes (1) an introduction to the study 
of gene-environment interactions, (2) the evidence of gene-environment interactions 
within the field of obesity and (3) an outline of the biological mechanisms that may 
explain these interaction effects. Thus far, this growing body of evidence has provided a 
deeper understanding of gene-environment interactions influencing obesity and may have 
tremendous applications in the emerging field of personalized medicine and 
individualized lifestyle recommendations. 
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INTRODUCTION 

Obesity has been defined as the accumulation of fat mass that is sufficient to 

negatively impact health and decrease life expectancy20. In epidemiological studies, 

obesity is typically classified based on the body mass index (BMI) guidelines established 

by the world health organization (WHO)21. BMI is calculated as weight in kilograms (kg) 

divided by height in meters (m) squared, and those with a BMI greater than 30 are 

classified into one of the three obesity categories: obese class 1 BMI= 30.00-34.99, obese 

class 2 BMI= 35.00-39.99, obese class 3 BMI	≥ 40.0022. BMI is closely associated with 

body fat 21,23 and increased BMI is an established risk factor for stroke24, ischaemic heart 

disease25 and cancers of the large intestine, kidney and endometrium26,27. Each 5kg/m2 

increase above a BMI of 25kg/m2 is associated with a 30% higher risk of all-cause 

mortality28. Average BMI is increasing by a few percent per decade in many 

populations29, and no specific cause of death is inversely associated with BMI28. Previous 

estimates project a 33% increase in obesity prevalence and a 133% increase in severe 

obesity prevalence (obese class 3) over the next 20 years30. Individuals with a BMI above 

40kg/m2 are at a significantly greater risk for diabetes and other adverse medical 

conditions than those with a BMI in the range of 30-3529. These individuals also have a 

much shorter life expectancy and incur greater lifetime medical costs31. 

Over the past three decades, the prevalence of obesity has reached epidemic 

proportions throughout the world1. This recent epidemic cannot be explained by sudden 

changes in the human population gene pool and has been mainly attributed to lifestyle 

modifications32. Over-nutrition and decline in physical activity are the two “usual 

suspects”, but additional factors (reduced gut microflora diversity, sleep debt, endocrine 
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disruptors, reduction in variability of ambient temperatures) have emerged as significant 

contributors to the escalating prevalence of obesity33. If obesity is a multifactorial 

disorder that requires environmental influences to manifest, some individuals are more 

susceptible than others to weight gain in an obesity-prone environment, and who 

becomes obese at the individual level is largely determined by genetic factors34. 

Technological and methodological breakthroughs in the last twenty years have led to 

important progress in the elucidation of the genetic architecture of obesity35. The first two 

genes (LEP and MKKS) associated with a Mendelian non-syndromic or syndromic form 

of obesity were identified in 1997 and 200036,37. Seven years later, the first common 

variant (located in the intron 1 of the FTO gene) reproducibly associated with polygenic 

obesity was identified38,39. At the time we are writing, over 40 monogenic obesity loci 

(with or without syndromic features) and 130 polygenic obesity loci have been described, 

and this list is destined to grow over the coming years7. In parallel with successful gene 

identification efforts, the number of studies on gene-environment interactions has grown 

rapidly40. In this review, we summarize the findings supporting gene-environment 

interaction in obesity using heritability, monogenic and polygenic studies.  

DEFINITIONS 

The genetic etiology of obesity can be classified into two categories. First, 

Mendelian (or monogenic) obesity describes individuals who carry a rare gene variant 

with a dramatic impact on adiposity 9. These variants are associated with a high lifetime 

risk of disease and exhibit a near one-to-one relationship between genotype and 

phenotype 11,41,42. Monogenic obesity can be classified as syndromic or non-syndromic. 

Syndromic obesity refers to Mendelian obesity that co-occurs with a distinct set of 
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clinical phenotypes, such as mental retardation, dysmorphic features and organ-specific 

developmental abnormalities 43. Syndromic forms of obesity result from chromosomal 

abnormalities or point mutations, which can be autosomal or X-linked disorders 44. Non-

syndromic forms are caused by pathogenic mutations or structural variations in genes 

involved in the leptin / melanocortin pathway, and are mainly characterized by 

hyperphagic obesity 35. While homozygous/compound loss-of-function in monogenic 

genes from the leptin/melanocortin pathway lead to fully penetrant obesity, a 

significantly larger proportion of obesity cases occur among individuals carrying 

heterozygous deleterious coding mutations in these genes8,45. These mutations result in 

non-fully penetrant obesity, yet based on the average penetrance of these genes, they 

account for a significantly higher proportion of obesity cases than homozygous loss-of-

function mutations in obesity genes46,47. Second, other cases of obesity can be attributed 

to the concerted presence of DNA variation in multiple genes, known as polygenic 

obesity 11. With respect to body weight regulation, recent simulations estimated that 

hundreds of variants with small to modest effect may account for the genetic architecture 

of complex traits such as obesity 48.  

The concept of gene-environment interaction in the context of human diseases is 

not recent and has been discussed since proposed by J.B. Haldane in 1946 49. The 

statistical definition of an interaction between two or more risk factors is simply the 

coefficient of the product term of the risk factors, also known as effect modification or 

effect modulation. Interaction is thus measured in terms of departure from a 

multiplicative or an additive model 50,51. Alternatively, biological interaction between two 

factors is defined as their co-participation in the same causal mechanism to disease 
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development 52. For statistical evidence of gene-environment interaction to be 

convincing, it is typically necessary to replicate the findings in additional samples and / 

or support the evidence with plausible underlying biological mechanisms 50.  

 

Heritability estimates are influenced by the environment 

Early indications of the shared influences of genetics and the environment in 

shaping obesity originated from heritability studies involving environmental exposures 

among twins. Heritability is the proportion of total phenotypic variability caused by 

genetic variance in a population. Large pedigree, twin and adoption studies allow the 

calculation of heritability and they all evidence a strong genetic component in human 

obesity 53-55. Before the first obesity gene identification reports, scientists considered the 

possibility that heritability, a global estimate of genetic predisposition to obesity, may be 

modulated by specific environments 56. Specific environmental exposures known to 

mediate heritability estimates include biological, socio-economic factors and lifestyle 

factors.  

In utero factors have been proposed to modulate offspring’s future risk for obesity 

57. The higher estimates of heritability for BMI observed in mother-offspring pairs in 

comparison with father-offspring pairs suggest a possible modification effect of maternal 

in utero environment on the offspring’s genetic predisposition to obesity 58. Maternal 

weight gain during pregnancy may interact with genetic factors to render the offspring 

more susceptible to develop obesity in young adulthood 59.  

Genetic influence on obesity may also interact with sex and age. Sex-specific 

genetic effects on obesity have been observed in adolescents as well as in adults 60,61. 
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Previous studies of genetic loci linked to fat distribution reported that approximately half 

of the SNPs identified displayed stronger effects among females than males 62. 

Heritability of obesity also varies with age. A previous study of over 12,000 twin pairs 

reported a heritability of 4-9% for BMI at birth, which increased to more than 50% at 5 

months of age 63.  Heritability estimates increase from infancy to childhood 64, from 

childhood to pre-adolescence 65, from preadolescence to adolescence 66, and reach a 

plateau  during adolescence and adulthood, and then slightly decrease in late adulthood 

67. Longitudinal BMI change from adolescence to young adulthood and from young 

adulthood to adulthood is a heritable trait, but genetic variants for change in BMI 

partially overlap with those affecting the level of BMI 68,69. Moreover, heritability 

estimates of obesity increase with the severity of obesity status 70.  

The investigation of socio-economic factors and lifestyle behaviours has revealed 

many additional conditions that impact heritability estimates. One may presume that the 

emergence of a society characterized by food abundance and physical inactivity may 

increase the impact of environment (and therefore decrease the impact of genes) in the 

determination of the obese phenotypes. Counter intuitively, the proportion of variability 

in BMI attributable to genetic variation is increased among people born after the 

establishment of a modern ‘obesogenic’ environment 71-73. These results are congruent 

with the seminal work by Claude Bouchard and colleagues showing that the BMI 

response to long-term overfeeding in young adult male twins is mainly influenced by 

genetic factors 56. Twin studies have shown that a high level of physical activity can 

substantially reduce the influence of genetic factors on BMI in both young and older 

adults 74,75. PT. Williams studied the parental contribution to offspring’s BMI in 47,691 
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adult runners and showed that vigorous physical activity (running distance ≥ 9 km/day) 

decreased the parental contribution to BMI, by 48-58 %, in comparison with runners with 

moderate physical activity (running distance < 3 km/day)76. Socio-economic research 

indicates that higher educational status is associated with decreased risk of obesity 77, but 

heritability estimates for BMI in late childhood/adolescence are positively correlated with 

the level of education of parents 78. Sleep duration is negatively associated with obesity 

79. In a twin study, the heritability of BMI (h² = 70%) in short-sleepers (< 7 hours/day) 

was more than twice the heritability of BMI (h² = 32%) when sleep duration was longer 

(≥ 9 h/day) 80. Weight gain is a well-known adverse effect of antipsychotic medication 81, 

but a considerable degree of inter-individual variability has been described in literature 82. 

Two pilot twin/sibs comparison studies have reported heritability estimates of 60-80% for 

body weight gain in response to antipsychotics in adolescents and adults 83,84. Weight loss 

in response to vigorous exercise, diet restriction or bariatric surgery is also highly 

variable which suggests a heritable component 85-87.  

A recent analysis of the Framingham Heart Study analysed how the heritability of 

BMI was influenced by historical period, life course and physical activity 88. These 

authors reported that: 1) the heritability estimates of BMI were considerably larger after 

the mid 1980’s compared to the 3 preceding decades; 2) the genetic influence on BMI 

appears to decrease across the lifespan, with the greatest genetic influence observed 

during reproductive ages across historical period and 3) the heritability of BMI was 

considerably smaller among physically active individuals aged 21-50 years, but not 

among those >50 years old 88.  
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Obesity predisposing gene variants interact with the environment  

Although heritability studies provided early evidence for the genetic contribution 

to obesity, recent efforts have focused on the identification of specific gene variants that 

impact obesity risk. Our knowledge about the genetic architecture of Mendelian 

(syndromic and non-syndromic) and polygenic forms of obesity has greatly expanded in 

the last 20 years 35. It is noteworthy that even some forms of Mendelian (syndromic and 

non-syndromic) obesity can display a somewhat variable phenotype 89-92. This can be 

attributed not only to genetic heterogeneity, gene-gene interactions and inheritance model 

93,94, but interactions with environmental factors should be considered as one of the 

causes for the variability in obese phenotypes 51. Since the rapid increase in obesity 

prevalence over the last few decades indicates a strong environmental influence on BMI 

(e.g. physical activity, diet, educational status, age, sex) 33, many researchers have 

worked on the identification of specific environmental factors that interact with 

monogenic and polygenic obesity predisposing genes. The existing evidence regarding 

the study of obesity indicates that lifestyle factors can significantly modify the impact of 

obesity predisposing gene variants.  

Obesity predisposing gene variants interact with non-modifiable biological factors 

Obesity predisposing gene variants interact with pregnancy and in utero factors 

Pre-pregnancy maternal obesity and excessive weight gain during pregnancy are 

both associated with increased birth weight, higher rate of macrosomia in the offspring 

95,96 and higher risk of adiposity in offspring during childhood, adolescence and 

adulthood 57,97,98.  Recently, a morbidly obese female patient with a rare homozygous 

LEPR mutation was reported to gain 110 lbs during pregnancy, far beyond the 11-40 lbs 



 19 

gestational weight gain range recommended by the Institute of Medicine, and gave birth 

to a baby with macrosomia 99. These data suggest that a Mendelian predisposition for 

obesity increases gestational weight gain and offspring’s birth weight. However, no such 

effect on gestational weight gain was observed for a polygenic gene score composed of 

four common obesity-predisposing common variants in or near FTO, MC4R, TMEM18 

and GNPDA2 100. Studies with gene scores including more SNPs are needed to further 

investigate this hypothesis. 

Prenatal exposure to maternal cigarette smoking was found to interact with 

genetic variation in OPRM1 to modulate fat intake in offspring 101. Among 956 

adolescents, the T allele in OPRM1 was associated with lower fat intake but only in those 

without prenatal exposure to cigarette smoke 101. DNA methylation was significantly 

reduced within several CpGs across OPRM1 among adolescents exposed to prenatal 

maternal cigarette smoking compared to those not exposed 101. 

 

Obesity predisposing gene variants interact with sex 

Females are generally more likely to develop morbid obesity than males 102 and 

these discrepancies may be explained in part by sex-specific genetic effects. In line with 

this hypothesis, pathogenic monogenic mutations in MC4R have an effect on BMI about 

twice as strong in females as in males 46,103. Seven out of 14 loci convincingly associated 

with waist-to-hip ratio displayed sexual dimorphism, all with a stronger effect on the 

phenotype in women than in men 104,105. A recent genome-wide interaction meta-analysis 

did not report any sex-specific for variants associated with BMI, but found 44 loci with 
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sex-specific effects on waist-to-hip ratio adjusted for BMI (28 of the 44 loci displayed 

larger effects in women than men) 106.  

 

Obesity predisposing gene variants interact with age 

The syndrome of Prader-Willi has two distinct phenotypic stages. In infancy, it is 

characterized by poor suck, feeding problems and failure to thrive, followed by 

hyperphagia in later childhood that leads to excessive weight gain 107. Rare deletions in 

the region p11.2 of the chromosome 16 have been associated with a highly penetrant 

mendelian form of obesity with additional developmental features 108. These individuals 

generally have early feeding and growth difficulties, and start to gain excessive weight 

around 5-6 years of age. As a result, an incomplete penetrance for childhood obesity but a 

complete penetrance for adult obesity has been observed for the carriers of the 

chromosome 16p11.2 deletion 108,109. The longitudinal study of adult MC4R mutation 

carriers show an increasing age-dependent penetrance 46. The life-course analysis of the 

intronic FTO gene variants and BMI in longitudinal studies indicates that this polygenic 

obesity-predisposing variant is negatively associated with BMI during infancy (age: 0-2.5 

years) but positively associated with BMI from the age of 4 years, with an age-dependent 

increase during childhood, adolescence and young adulthood 65,110-113. Most of the effect 

of the FTO intron gene variants on BMI gain occurs during this period, and no 

appreciable effect of FTO on BMI increase is observed during adulthood and agedness 

112,114-117. Studying the association of an obesity gene score from multiple markers in 

longitudinal cohorts provided similar results: the genetic predisposition score displayed a 

moderately positive association with birth weight, and more strongly associated with 
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BMI gain during early infancy and childhood, but no association with BMI change during 

adulthood was observed 118-120. A negative genotype x age interaction between the 

PCSK1 rs6232 SNP and obesity traits was observed in two independent studies, and a 

recent meta-analysis of up to 331 175 individuals confirmed this result and identified a 

similar interaction between age and the PCSK1 rs6235 SNP on obesity 121-123. A genome-

wide interaction meta-analysis also identified 15 BMI loci with age specific effects, 11 of 

which showed greater effect sizes in younger (<50 years) compared to older (≥ 50 years) 

adults 106.  

 

Obesity predisposing gene variants interact with lifestyle factors 

Obesity predisposing gene variants interact with an obesity-prone environment 

    The promotion and globalization of societal changes leading to an imbalance 

between calorie intake and calorie expenditure partly explain the current obesity 

epidemic, but interactions between genes and this obesity-prone environment also 

contribute to the development of obesity. Dudley et al. reported a significant cohort effect 

on the prevalence of obesity in Prader-Willi syndrome 91. Prevalence of obesity was 

higher in patients born after 1990 than before 91. A generation-dependent penetrance of 

MC4R pathogenic monogenic mutations on obesity was also found in multigenerational 

pedigrees, with the effect of mutations on the obesity phenotype being amplified by the 

emergence of an "obesogenic" environment 46,124. This trend is supported by a recent 

analysis of the Framingham Heart Study (FHS), which demonstrated that risk allele 

carriage in FTO rs9939609 was associated with a greater increase in BMI among 

individuals born after 1942 compared to those who were born before 1942 125. The FTO 



 22 

intron 1 variant is weakly associated with BMI in South Asian Indian populations, but its 

effect on weight is stronger in urban compared to rural dwellers 126,127. A lack of 

association of FTO with obesity-related traits was also observed in a Gambian rural 

population 128. The authors speculate that the impact of genetic variance in FTO 

rs9939609 on BMI may be marginal in lean populations where excess food is scarce, 

compared to populations where food is abundant 128.  Lastly, the growing influence of 

obesity predisposing genes in ‘obesogenic’ environments has also been supported by the 

positive interaction between birth year and the impact of 32 obesity predisposing genes 

129. Together, these data suggest a stronger influence of genetic factors on obesity in 

obesity-prone environments. 

 

Obesity predisposing gene variants interact with physical activity 

Recent data indicate that genetic predisposition to obesity can be blunted in part 

through physical activity. Over twenty independent studies reported an interaction 

between the FTO obesity risk genotype and physical activity on BMI variation or obesity 

in children, adolescents and adults 16,18,76,130-149. An interaction between FTO intron 1 

variant and the level of physical activity on obesity was recently confirmed in a meta-

analysis of 218 166 adults where physical activity attenuated the odds of obesity by 27% 

conferred by the variant 150. No such interaction was found in 19 268 children and 

adolescents 150. We recently studied more accurate surrogates of physical activity and 

adiposity in a multi-ethnic study of 17 423 participants recruited in 17 low-, middle- and 

high-income countries and we observed that the effect of FTO rs1421085 on the variation 

of body adiposity index was reduced by 56% in the higher versus lower metabolic 
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equivalent score tertiles 151. Similar results were obtained for a genetic predisposition 

score combining the information of 12 obesity-associated SNPs, and a high level of 

physical activity was associated with a 40% reduction in the genetic predisposition to 

obesity in adults (N=20 430), as well as for BMI level and BMI change across time 137. 

Physical activity was also found to attenuate the effect of a 28 SNP obesity gene score on 

BMI among a sample of East Asians and Europeans 152. We did not evidence any 

significant interaction between the quantitative level of physical activity and a 14 SNP 

obesity gene score on BMI or body adiposity index in an international multi-ethnic study 

of 17 423 participants 151. Our data, consistent with the conclusions of a recent meta-

analysis in participants of European ancestry living in North America and Europe, 

suggest that the benefits of being physically active may be optimal in genetically 

predisposed people living in the more sedentary countries 151,153. 

A number of recent studies have analysed the interaction between sedentary 

behaviours and genetic risk for BMI, independent of physical activity level 138,154,155. The 

initial report by Qi et al demonstrated that prolonged television watching accentuated the 

impact of a 32 SNP genetic risk score on BMI 138, and a second study of an adolescent 

sample reported that screen time increased the impact of two SNPs (FLJ35779, 

GNPDA2), although these interactions were ethnic specific and of nominal significance 

154. The most recent study of this interaction analyzed how total sitting time impacted the 

association between FTO rs9939609 and BMI among the Framingham Heart Study 

(FHS) and the Women’s Health Initiative Study (WHI), but the results were not 

significant 155.  
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Obesity predisposing gene variants interact with diet 

Rouskas et al. reported that the penetrance of MC4R loss-of-function 

heterozygous mutations on obesity is exceptionally low (6.3 %) in the Greek population, 

in comparison with those observed in other European countries (60-100%)156. A possible 

explanation of this ‘Greek paradox’ may be a protective effect of the Mediterranean diet 

against MC4R deficiency-induced obesity 156.  

Several studies have characterized the impact of diet patterns on genetic 

predisposition to obesity. Independent cross-sectional and longitudinal samples of 

Caucasians and Latin Americans, suggest that a high daily energy intake, high fat intake 

or high saturated fat intake can amplify the effect of the FTO genotype on obesity risk in 

children, adolescents and adults 141,157-163. Higher intake of fried foods has also been 

shown to increase the impact of a 32 SNP gene score (and an FTO variant individually) 

on BMI over follow-up 164. These interactions were replicated in an independent cohort 

of 21 421 women 164. A recent 25 year follow-up study in Australia reported an 

interaction between rs9939609 in FTO and diet on BMI change 165. The prudent/healthy 

diet was associated with a greater BMI change among AA compared to TT genotypes. 

This interaction was observed at 17 years of follow-up, but was restricted to females 165. 

Despite the many studies demonstrating that diet patterns can moderate the genetic risk 

for obesity, two recent meta-analyses did not detect significant interactions between diet 

patterns and obesity-associated gene variants 166,167.  Data from 177 330 adults (87% 

Whites, 10% Asian, 3% African American) did not indicate any significant interactions 

between the FTO variant and dietary intake of total energy, fat, protein or carbohydrate 

on BMI167. A second meta-analysis of 68 317 Europeans did not detect an interaction 
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between a 32 SNP genetic risk score and a multifactorial diet score on BMI 166. The diet 

score moderated the impact of two SNPs on BMI (LRRN6C and MTIF3), although these 

effects were nominal and the impact of these risk variants appeared to be greater among 

those consuming healthier diets 166. The authors speculate that the broad diet assessment 

in their analysis may have masked interactions of varying directions and magnitudes that 

were identified in previous studies 166.  

The Apolipoprotein A-II (APOA2) -265 T>C promoter functional polymorphism 

appears to interact with high-saturated fat to increase BMI and obesity risk in several 

independent populations (Mediterranean, Asian, Caucasian, Hispanic and Carribean) 

168,169. High saturated fat intake was associated with significant increases in the genetic 

risk for obesity across populations 170. Specifically, the C allele homozygotes with high 

saturated fat intake displayed a 1.84 (95% CI, 1.38-2.47) odds of obesity compared to a 

0.81 (95% CI, 0.59-1.11) odds in those with low saturated fat intake 170. A separate 

analysis of 1 225 obese adults demonstrated the C allele homozygotes with a high 

saturated fat intake (> 20.7 g/day) had higher waist circumference values than individuals 

with any other genotype in the high saturated fat intake group 171. While the underlying 

biological mechanism explaining this association is not fully understood, the APOA2 -

265 T>C SNP has been associated with obesity risk eating behaviours such as meal 

skipping, and dietary modulation of plasma ghrelin 171.  

The Apolipoprotein A5 protein influences plasma triglyceride concentrations in 

humans and regulators of the APOA5 gene (peroxisome proliferator-activated receptors, 

insulin, thyroid hormone) have been implicated in obesity risk 172,173. In a weight loss 

study of 606 men with hyperlipidemia, C allele carriers of the -1131 T>C variant in the 
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APOA5 gene displayed significantly greater BMI reduction while on a fat restriction diet 

174. Additional evidence from the Framingham risk study suggests that carriers of the 

mutant C allele may have a lower risk of obesity compared to T allele homozygotes when 

consuming a diet high in monounsaturated fats 175. This interaction was also tested in a 

Mediterranean sample and greater fat intake was associated with obesity among T allele 

homozygotes while no association was observed among carriers of the mutant C allele 

176. These studies suggest that the C allele in APOA5 may have a protective effect against 

obesity among individuals consuming a high fat diet.  

Several studies have examined the interaction between diet patterns and PPARG 

Pro12Ala polymorphism with regards to obesity 177, 178. The risk allele (12Ala) has not 

been consistently shown to increase obesity risk and the heterogenous impact of this 

mutation indicates the potential for interaction effects 179. A study of 720 French 

Canadians found that higher amounts of saturated or total fat consumption were 

associated with greater waist circumference in Pro allele homozygotes but not in 12Ala 

carriers 178. Similar results were observed from studies analysing BMI. An investigation 

of the Nurse’ Health Study demonstrated that high total fat intake was associated with 

greater BMI among participants homozygous for the Pro allele but not among 12Ala 

carriers 180. This study also reported that monounsaturated fat intake was associated with 

decreased BMI among 12Ala allele carriers and this interaction was replicated in an 

independent weight loss study 181. Additional interaction studies of PPARG related to 

body composition have shown sex-specific effects 182,183 and weight change analyses 

have reported inconsistent results 181,184-187.  
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A more recent analysis found an interaction between an eight SNP obesity gene 

score and mono and polyunsaturated fatty acid intake 188. Among 2 346 children with low 

unsaturated fat intake, the gene score was associated with increased body fat mass index 

yet no association was present among unexposed children 188.  

 

Obesity predisposing gene variants interact with psychosocial stress 

 A recent genome-wide interaction analysis identified a significant interaction 

between psychosocial stress and five SNPs within the Early B-cell Factor 1 (EBF1) gene 

and hip circumference 189. The interaction reached genome-wide significance among the 

subset of 2460 Whites in the Multi-Ethnic Study of Atherosclerosis (MESA) but was not 

significant among Chinese Americans, Blacks or Hispanics. This study reported that the 

impact of risk allele carriage in EBF1 on hip circumference was greater among 

participants with a greater chronic stress burden 189. The authors also replicated the 

interaction between psychosocial stress and three of the original five SNPs (rs17056278 

C>G, rs17056298 C>G, and rs17056318 T>C) in EBF1 in the Framingham Offspring 

cohort189. A subsequent analysis by the same research group replicated the EBF1 x 

psychosocial stress interaction on obesity (waist circumference or BMI) in the Family 

Heart Study Whites and at trend level in the Duke Caregiver study 190. The direction of 

the interaction effect was consistent across each of the studies: chronic psychosocial 

stress amplified the effect of EBF1 variation on BMI 190.  
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Obesity predisposing gene variants interact with educational status 

Epidemiological studies have shown an association between a low level of 

education and higher risk of overweight and obesity 77. A significant negative association 

between BMI and educational status was found in non- carriers of MC4R mutations but 

not in MC4R loss-of function mutation carriers issued from the same pedigrees 46. These 

results show that a high level of education has no protective effect on obesity risk in 

presence of MC4R pathogenic mutations. On the contrary, a significant gene x education 

interaction has been found in the intron 1 variant in FTO, the significant effect of the 

SNP on BMI and obesity risk restricted to subjects with no university education 191.  This 

finding is supported by a recent study of European children (N=16 228) indicating that 

favourable socioeconomic status is protective against obesity, yet this effect was only 

observed in participants with the low risk genotype TT in FTO rs9939609 192.  

 

Obesity predisposing gene variants interact with smoking status 

 A meta-analysis of nine European study samples (N=24 198) demonstrated that 

smoking status moderated the association between genetic variation at the CHRNA5-

CHRNA3-CHRNB4 locus (rs1051730) and BMI 193. While there was no evidence of 

association between variation at rs1051730 and BMI in never smokers, each additional 

risk allele (T) was associated with a BMI decrease of 0.16 and 0.33 kg/m2 among former 

and current smokers, respectively 193. A separate study of 14 131 Pakistani adults 

reported another gene x smoking interaction: the minor allele (T) in FLJ33534 was 

associated with lower BMI in current smokers and positively associated with BMI among 

adults who had never smoked 194. A number of gene x smoking interactions were seen 
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when African Americans and Caucasians were analysed separately, but no significant 

interactions were observed in the overall sample from the Southern Community Cohort 

Study 195. Four nominally significant gene x smoking interactions were reported in a 

recent study of 16 157 Pakistani adults, with current smoking status amplifying the effect 

of PTBP2 rs11165643, HIP1 rs1167827 and GRID1 rs7899106 SNPs, and decreasing the 

effect of C6orf106 rs205262 SNP 147.  

 

Obesity predisposing gene variants interact with alcohol consumption 

Among a sample of 3 522 East Asians, increased alcohol consumption was 

associated with an increase in the effect of a 29 SNP GRS on BMI 149. Increased alcohol 

intake was also reported to increase the impact of PPARGC1A rs4619879 among African 

Americans, but this interaction was not significant in Caucasians or in the combined 

sample 195.  

 

Obesity predisposing gene variants interact with disease status/response to 

treatment 

Obesity predisposing gene variants interact with specific health conditions 

Beyerlein et al suggest that pre-existent overweight may double the effect of an 

obesity genetic predisposition score on body fat mass in 4 837 European children 196. 

This association is supported by an independent study of 7 225 children of European 

ancestry which found that previously identified obesity predisposing loci had a greater 

impact on BMI among obese children compared to their non-obese counterparts 197. 

Similar results were observed in 1 930 adults of European descent 198. If true, it signifies 
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that obesity predisposing genes may have an even more detrimental effect on weight gain 

once overweight/obesity is established. Depression predicts subsequent development of 

obesity 199 and depression status has been shown to amplify the effect of FTO SNPs on 

BMI 200. Moreover, obesity has an important role in the etiology of polycystic ovary 

syndrome 201 and FTO intronic SNP has larger effects on BMI in patients with polycystic 

ovary syndrome than in subject from the general population 202,203.  

 

Obesity predisposing gene variants interact with lifestyle modifications 

A strict, fat-reduced, and carbohydrate-modified diet leads to a long-term marked 

weight reduction in adolescents with Prader-Willi syndrome who are already overweight 

204. Importantly, if diagnosis is made at an early age and intensive diet management starts 

early, reasonable weight control is achieved in non-obese patients with Prader-Willi 

syndrome 205,206. Regular exercise training has beneficial effects on body composition and 

weight loss in Prader-Willi syndrome patients 207,208, especially as they tend to be less 

physically active than obese non-syndromic individuals 209. MC4R or POMC monogenic 

patients respond as well as non-monogenic obese patients to hypocaloric dietary or 

multidisciplinary (exercise, behavior, nutrition therapy) interventions 210,211 but MC4R 

monogenic patients fail to maintain weight loss after intervention 211.  

The obesity risk variant rs9939609, an allele in FTO, does not modify the weight 

loss response to lifestyle intervention 212-214 or caloric restriction 215,216, but is associated 

with lower additional weight loss and higher risk of weight regain during the weight 

maintenance phase that follows the caloric restriction program 216. Carriers of the FTO 

intron 1 obesity risk variant experience a higher rate of dropout when they are submitted 
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to a high-fat/low carbohydrate (in comparison with a low-fat / high carbohydrate) 

hypocaloric diet 217, but they achieve better weight maintenance than wild-type 

individuals during a 3-year intervention with a Mediterranean diet 218. FTO variation has 

also been shown to interact with protein intake to moderate the response to weight-loss 

interventions 219,220. A two-year randomized control trial (RCT) found that higher protein 

intake was associated with improved weight loss and body composition among carriers of 

the FTO rs1558902 risk allele compared to non-carriers 219. Another analysis of the same 

trial (N >700) showed that individuals with the FTO rs9939609 risk (A) allele achieved 

more favourable changes in food cravings and appetite when consuming a higher-protein 

weight-loss diet 220.  Carriers of the FTO obesity risk alleles also lose less weight in 

response to exercise training 221,222. Among five childhood obesity susceptibility loci 

identified in a French-German genome-wide association studies (GWAS) meta-analysis 

223, only one (SDCCAG8) was associated with differential weight loss after lifestyle 

intervention in 401 children and adolescents 224. Eight out of 15 obesity predisposing 

gene variants recently identified by GWAS showed trends of association with weight loss 

or weight regain during lifestyle intervention in 3 356 adults of the Diabetes Prevention 

Program 225.  

The PLIN gene has received increasing support for its role in obesity risk and 

insulin resistance and genetic variation at the perilipin locus has been shown to interact 

with diet behaviours 226-228. Two separate weight loss studies ranging from 12 weeks 229 

to 1 year 227 in length have shown that A carriers of the 11 482 G>A SNP at the perilipin 

locus lost less weight compared to non-carriers. Other studies report a gene-diet 

interaction involving the same locus and carbohydrate intake 230. Among 920 participants 
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consuming a high amount of complex carbohydrates (≥144 grams/day), minor allele 

carriers displayed reduced hip and waist circumference compared to major allele 

homozygotes 230.  

 

Obesity predisposing gene variants interact with therapeutic treatment 

As most obese persons are resistant to the weight-reducing effects of leptin, 

administration of recombinant leptin to obese subjects does not generally result in 

significant weight loss 231. However, patients with congenital leptin deficiency markedly 

reverse obesity and associated phenotypic abnormalities when they are treated with daily 

injections of recombinant human leptin 232,233. Leptin administration reduces energy 

intake, fat mass, hyperinsulinemia, and hyperlipidemia, restores normal pubertal 

development, endocrine and immune function and improves neurocognitive 

performances 234. Although patients with complete leptin deficiency are extremely rare, 

leptin supplementation may eventually help a far greater number of obese patients with 

partial leptin deficiency (heterozygous for a loss-of-function mutation in the LEP gene) 

based on the observation that leptin therapy induces more significant weight loss in 

subjects with low leptin levels 235,236.  

The guanine nucleotide binding protein beta polypeptide 3 (GNB3) C825T 

functional gene variant predicts that obese individuals will benefit more from the anti-

obesity drug sibutramine treatment. Sibutramine is a serotonin and norepinephrine 

reuptake inhibitor and given that GNB3 variance is associated with an altered response to 

G protein subunit activation (α 2-adrenergic activation) 237, there is biological evidence to 

support this interaction. Two independent studies showed that the carriers of the 825 T 
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allele lose more weight in response to sibutramine administration than C allele 

homozygotes 238,239. Lastly, obesity predisposing gene variants in FTO and MC4R are 

associated with more weight gain in response to antipsychotic treatments 240-244. 

 

Obesity predisposing gene variants interact with bariatric surgery  

Bariatric surgery is the most effective long-term treatment for severe obesity 245. 

However, this surgery is not recommended for morbidly obese patients with Prader-Willi 

syndrome due to their inability to understand the necessary operative and follow-up 

procedures, altered pain threshold, inability to vomit and the potential development of 

gastric dilation/necrosis. Therefore, an alternative approach including the use of 

supervised reduced-energy diets with vitamin/mineral supplementation, restricted access 

to food, and a daily exercise regimen may be more adequate 246. Laparoscopic adjustable 

gastric banding did not result in a long-term weight reduction in an 18-year-old patient 

with complete MC4R deficiency 247, and was associated with a high risk of conversion to 

bypass operations in individuals with partial MC4R deficiency 248. On the contrary, three 

studies confirmed that Roux-en-Y gastric bypass surgery was an efficient strategy to lose 

weight in MC4R mutation carriers 249-251. These results suggest that diversionary 

operations, which are more invasive but efficiently improve the neuro-hormonal control 

of satiety than gastric banding procedures, be recommended in the context of non-

syndromic monogenic forms of hyperphagic obesity.  

FTO risk allele carriers lose less weight than common allele homozygous 

individuals after banding surgery 252,253, but experience a similar level or more weight 

reduction after gastric bypass surgery 252,254.  
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Biological processes underlying statistical gene-environment interactions 

Epigenetic changes are believed to be a primary mechanism explaining 

interactions between environmental exposures and genetic variation 255,256. Epigenetics is 

defined as heritable changes in gene function that cannot be explained by changes in the 

deoxyribonucleic acid (DNA) sequence, and the three main types of epigenetic 

modification in mammals include DNA methylation, histone modification and non-

coding RNA 256,257. Of these mechanisms, DNA methylation has received the most 

attention in human studies, and in mammals this process mainly occurs at CpG 

dinucleotides 258. Specifically, covalent bonding of a methyl group to the cytosine base 

creates a barrier that inhibits transcription factors from binding to the DNA helix 258,259. 

CpG DNA methylation at gene promoters is typically associated with gene silencing, 

whereas CpG methylation in gene bodies is linked to gene activity 258. Given that 

epigenetic differences have been linked to obesity status, as well as genetic variation and 

a variety of pre and postnatal environmental factors  these processes likely represent a 

plausible mechanism of gene-environment interactions.  

The emergence of new approaches to study epigenetic variation, such as 

epigenome-wide association studies (EWAS), has led to the identification of methylation 

patterns associated with obesity 260. Increased BMI among adults was found to be 

positively associated with increased methylation at the hypoxia-inducible factor 3 alpha 

(HIF-3α) locus in blood cells and adipose tissue 261. This finding was confirmed in two 

replication cohorts in the initial analysis 261, as well as two additional independent studies 

262,263. A separate EWAS of an African American sample identified an association 
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between methylation at 37 CpG sites and BMI, which were replicated in two cohorts of 

European ancestry 262. Analyzing whole-genome DNA methylation and expression data 

in human adipose tissue from 96 males and 94 females revealed that DNA methylation 

and expression of 2 825 genes was correlated with BMI 264.   

Existing evidence also supports the association between environmental exposures 

on DNA methylation patterns. Monozygotic twins, who are epigenetically 

indistinguishable at birth, exhibited drastically different overall content and genomic 

distribution of DNA methylation and histone acetylation in later life 265. Moreover, 

methylation and expression of 1 050 genes have been found to vary with age 264,266. The 

epigenetic divergence that occurs with aging likely reflects the accumulation of 

environmental exposures that influence methylation patterns. Prenatal factors including 

maternal BMI and variations in maternal methyl donor intake during pregnancy have 

been linked to methylation changes in the offspring 267, and multiple studies have shown 

that maternal vitamin B12, folate and cobalamin levels during pregnancy are associated 

with offspring adiposity 268,269. Folate, vitamin B12 and choline are methyl donors and 

involved in the synthesis of methionine, the precursor of the universal donor of methyl 

groups needed for DNA methylation (S-adenosylmethionine). As a result, disregulation 

in any of these components can alter the epigenomic regulation of gene expression 270. 

With respect to postnatal determinants of DNA methylation, exercise interventions have 

been shown to alter the DNA methylation of 2 817 genes in skeletal muscle and 7 663 

genes in adipose tissue (18 of which were obesity candidate genes) 271. The effect of 

exercise on DNA methylation appeared to be tissue specific, with the majority of genes in 

skeletal muscle displaying decreased DNA methylation 272, and the majority of genes in 
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adipose tissue showed increased DNA methylation 273. These changes mirrored the 

patterns observed for gene expression: most of the genes showing concurrent changes in 

DNA methylation and expression displayed increased expression in skeletal muscle and 

decreased expression in adipose tissue 271.  A recent review of 25 studies (16 

observational 9 interventional) found that both acute and chronic exercise significantly 

influenced DNA methylation, and these changes occurred in a tissue- and gene-specific 

manner 274. DNA methylation changes have also been observed in response to high-fat 

intake 275-278, and after weight loss interventions the methylation profiles of adipose and 

muscle tissue among those formerly obese became more similar to lean individuals 279-282. 

These methylation changes involved a number of known obesity-associated loci, 

including LEPR, STAB1, ZNF608, HMGA1, MSRA, TUB, NRXN3, FTO, MC4R and 

BDNF 280,281. 

Although environmental factors have the potential to influence the epigenetic 

environment, it is estimated that approximately 20-40% of epigenetic variation can be 

attributed to genetic differences 256,283,284. Early evidence demonstrated that the risk allele 

of FTO promotes increased methylation of sites within intron 1 of the FTO gene, as well 

as greater methylation of additional genes 285. Other evidence identified 28 obesity-

associated SNPs that were associated with differential methylation at 107 proximal CpG 

sites 286. A recent study of Trim28 haploinsufficiency used findings from mice and 

humans to demonstrate the variation in obesity phenotypes that can be induced through 

epigenetic changes 287. These authors also reported that FTO expression was decreased 

among Trim28_Low obese children compared to Trim28_Low lean individuals 287.  
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These epigenetic findings support an emerging mechanistic model to explain 

gene-environment interactions in obesity. Existing evidence indicates that obesity, pre 

and postnatal environmental factors and multiple obesity associated gene variants are 

linked with epigenetic patterns (Figure 1). Given that gene variants, such as those in 

FTO, and environmental factors both play a role in the methylation of obesity genes, the 

balance between these two effects likely impact the manifestation of genetic obesity. This 

biological model provides support for many of the statistical interactions reported to date, 

and further integration of genomic, epigenomic and transcriptomic data with gene-

environment interaction studies will aid in uncovering these biological mechanisms. 

 

Conclusion 

Heritability, syndromic, monogenic and polygenic obesity studies provide 

converging evidence that obesity predisposing genetic factors strongly interact with 

environment, from birth to agedness and in a wide range of situations. Emerging 

epigenetic studies have demonstrated that obesity, genetic variants and environmental 

exposures can influence DNA methylation, which provides a mechanistic model to 

support the statistical interactions from genetic epidemiology. A comprehensive 

understanding of gene-environment interactions in obesity may lead to tremendous 

applications in the emerging field of personalized medicine and individualized lifestyle 

recommendations. Evidence from interaction studies suggests that specific subgroups of 

individuals may have an increased risk to develop obesity in specific environments but 

may also benefit more from lifestyle interventions, a treatment or a surgical procedures 
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288. This information will help determine if population-wide or personalized subgroup 

interventions are the best suited to fight the worldwide obesity epidemic 289,290. 
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Figure 1. Biological model to explain gene-environment interactions in obesity. 
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CHAPTER 3- SEDENTARY BEHAVIOUR AND GENETIC 
PREDISPOSITION TO OBESITY IN A MULTIETHNIC STUDY  

 

ABSTRACT 

Background: The objective of this study was to analyze the interaction between 
sedentary behaviour and 23 obesity predisposing variants (analyzed separately and as a 
genetic risk score (GRS)) on obesity in an international multi-ethnic cohort. 

Methods: The data for this analysis were collected through the multi-ethnic cohort 
EpiDREAM (16 063 participants from six ethnic groups). Sedentary behaviour was 
measured as the number of hours per day spent watching television, physical 
activity was measured as a categorical (low-moderate-high) and quantitative 
(metabolic equivalent (MET) score) and obesity was measured using the body mass 
index (BMI).  
 
Results: Increased sedentary behaviour was associated with increased BMI 
independently of physical activity (P=1.3 x 10-49). FTO rs3751812, CDKAL1 
rs2206734, TNNI3K rs1514176, GIPR rs11671664 TAL1 rs2984618, NT5C2 rs3824755, 
TCF7L2 rs7903146 and the GRS were associated with BMI (P=1.5 x 10-12). The duration 
of sedentary time did not moderate the impact of physical activity (measured 
categorically or quantitatively) on BMI. We did not observe any interaction effects 
between sedentary time and any of individual SNPs or 23 SNP GRS for BMI. 
 
Conclusion: Our results indicate that increased sedentary behaviour is a distinct risk 
factor for obesity independent of physical activity level, and increased physical activity 
does not reduce the impact of sedentary behaviour on BMI. We did not find any evidence 
of interaction between sedentary behaviour and the 23 SNPs/GRS on BMI.  
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INTRODUCTION 

Obesity has reached epidemic proportions and is estimated to affect over 600 

million people worldwide1 (http://www.who.int/). Average body mass index (BMI) is 

increasing by a few percent per decade in many populations29, and greater BMI does not 

decrease the risk of any specific causes of death28. Of particular concern is the projection 

of a 33% increase in obesity prevalence and a 133% increase in severe obesity prevalence 

(BMI > 40) over the next 20 years30. Obesity is an established risk factor for type 2 

diabetes (T2D), cardiovascular disease, certain types of cancer, psychiatric disorders and 

decreased life expectancy (8-13 year decrease)2,20. Above a BMI of 25kg/m2, each 5kg/m2 

increase is associated with a 30% higher risk of all-cause mortality28. The etiology of this 

disease is complex and involves both genetic and environmental risk factors.  

Early evidence from twin and family studies suggested that 40-80% of the inter-

individual variation in obesity-related traits observed in the population can be attributed 

to genetic differences7. In addition to Mendelian forms of syndromic and non-syndromic 

obesity, over 160 loci associated with polygenic obesity have been identified12. However, 

these variants only account for a portion of obesity cases291,292. As a result, environmental 

risk factors are believed to be primarily responsible for the increase in obesity prevalence, 

with physical inactivity and excessive energy intake being labeled as “the big two”5. A 

22-year longitudinal study of the National Health and Nutrition Examination Survey 

(NHANES) cohort reported that physical activity had a greater impact on adiposity 

measures than calorie intake293, however the relative contribution of “the big two” is still 

under debate294. 
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The health benefits of physical activity have been recognized for decades295-297, 

and exercise is a vital component of weight management298. Integrating physical activity 

as a routine part of daily living is the first recommendation declared by the Institute of 

Medicine (IOM) to address the obesity epidemic299. However, recent epidemiological 

evidence has focused on the health impacts of sedentary behaviour as a distinct risk factor 

from inactivity300. This distinction has important implications and the Sedentary 

Behaviour Research Network (SBRN) did not establish consensus regarding the 

definitions until 2012301. Sedentary behaviours are defined as any waking behaviour 

characterized by an energy expenditure ≤ 1.5 metabolic equivalents (METs) while in a 

sitting or reclining posture301. Alternatively, inactivity refers to adults who fail to engage 

in at least 150 minutes of moderate to vigorous physical activity (MVPA) (≥ 3 METs) per 

week, as recommended by the physical activity guidelines issued by the World Health 

Organization302 and the U.S. Department of Health and Human Services301,303. After 

adjusting for physical activity, prolonged sitting time is estimated to account for 5.9% of 

all-cause premature mortality, while physical inactivity accounts for 5.5%304. The 

difference between these exposures is supported by an array of empirical evidence. First, 

it is possible to accrue large amounts of sedentary time and MVPA in a single day300,305-

307 and there is often modest association between sedentary behaviour and MVPA308,309. 

Second, several studies have highlighted that sedentary behaviour is associated with 

increased risk of morbidity and mortality regardless of the amount of MVPA306,310-313. In 

conjunction, these results support the distinction between sedentary behaviour and 

inactivity. 
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Despite positive trends in leisure time physical activity in some countries, 

concurrent decreases in incidental, transportation and occupation-related activity have 

been observed314-317. A recent report estimated that 31% of adults and 80% of adolescents 

worldwide are inactive318. With the exception of sleeping and working, TV viewing is the 

most commonly reported daily activity in many populations throughout the world311. 

Recent estimates suggest that the average number of hours spent viewing TV is 5 hours 

per day in the United States319. Moreover, 6-10% of all deaths from non-communicable 

diseases worldwide have been attributed to physical inactivity320. This corresponds to 5.3 

million deaths per year, and one million of these deaths could be averted if the prevalence 

of inactivity decreased by only 10%320.  

The challenges associated with this issue are magnified by health sequelae of 

inactivity. A systematic review of prospective cohort studies analyzing inactivity 

demonstrated a dose-response relationship between TV viewing and increased risk of 

obesity, T2D, fatal and non-fatal cardiovascular disease and all cause mortality311. A 

large prospective study of 71 363 Danish adults followed for a mean of 5.4 years found 

similar associations between total daily sitting time and myocardial infarction, coronary 

heart disease and all-cause mortality321. Another recent cross sectional study of 48 882 

Norwegian adults found increased sitting to be associated with poorer BMI, waist 

circumference, total cholesterol, HDL cholesterol, systolic and diastolic blood pressure, 

non-fasting glucose and gamma glutamyltransferase and triglyceride levels. Importantly, 

these associations were observed after adjusting for sex, age, education, physical activity, 

smoking status, fruit and vegetable consumption and general health status322.  
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Although many studies have analyzed the impact of sedentary behaviours on 

metabolic complications, only three studies have investigated the interaction between 

sedentary behaviours and genetic predisposition to these traits138,154. An analysis by Qi et 

al. indicated that prolonged TV watching may accentuate the impact of a 32 SNP genetic 

risk score on BMI138, while a study by Graff et al. reported two nominally significant TV 

x SNP interactions on BMI154. However, the Qi et al. study included two separate cohorts 

of European men (N=4 564, >40 years old) and women (N=7 740, >30 years old) and did 

not study interaction effects with individual SNPs, while the second analysis by Graff et 

al. was restricted to adolescents (N=7 642) and only reported nominal interactions in 

ethnic subgroups. A recent study of 119 132 participants from the UK biobank analyzed 

the interaction between FTO rs1421085 and several lifestyle factors, yet the interaction 

with TV watching was not significant323.  

Despite the limited study of gene x sedentary behaviour interactions, significant 

gene-environment interactions (GEI) between FTO intron 1 variation and physical 

activity have been repeatedly demonstrated in twenty independent studies and a meta-

analysis of 218 166 adults16,18,76,130-146. A separate meta-analysis of 111 421 found that 

physical activity also moderates the association between genetic risk scores (GRS) and 

BMI324. These interactions are supported by methylation and expression studies 

indicating that physical activity can alter the mRNA expression of the FTO gene, among 

others, in muscle and adipose tissue272,273. Together, these findings suggest that other 

activity related behaviours such as TV viewing may interact with genetic variants to 

influence obesity development. Given the ongoing obesity epidemic and the continual 

integration of sedentary behaviours into daily living315,318,319, we undertook the present 
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study to evaluate 1) the association between sedentary behaviour and physical activity 

with BMI and 2) the interaction between variation in 23 obesity predisposing variants 

(analyzed separately and as a GRS), and sedentary time on BMI in the international 

multi-ethnic cohort EpiDREAM.  

METHODS 

Study Participants 

The EpiDREAM study screened 24 872 individuals aged 18-85 years to be at risk 

of T2D based on family history, ethnicity, gestational diabetes or abdominal adiposity. 

Participants were recruited from 17 countries between 1 July 2001 and 2 August 2003 

and completed a 75-gram oral glucose tolerance test (OGTT) using a standardized 

protocol. This analysis focused on 16 063 subjects from six ethnic groups (South Asian, 

East Asian, European, African, Latin American, Native North American) with both 

phenotypic and 50K gene-centric array information in the EpiDREAM study (Figure 2). 

Ethnicity was validated in the 16 063 individuals using the eigensoft software 

(http://genepath.med.harvard.edu/~reich/Software.htm). If samples failed to cluster with 

individuals of the same ethnic group they were removed from the analysis. Local ethics 

committees have approved the EpiDREAM study and informed consent was obtained 

from each subject before participating in the study, in accordance with the Declaration of 

Helsinki. 

 

Genotyping 

The Gentra System was used to extract the DNA from the buffy coats of 19 498 

participants in the EpiDREAM study (Supplementary Figure 1). Genotyping was 
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performed using the Illumina CVD bead chip microarray ITMAT Broad Care (IBC) array 

325 at the McGill University and Genome Quebec Innovation Centre using the Illumina 

Bead Studio genotyping module, version 3.2. Three resources were used for the key word 

search (e.g. BMI) to complete the SNP selection procedure: (1) the PubMed database 

(www.ncbi.nlm.nih.gov/pubmed), (2) the National Human Genome Research Institute 

(NHGRI) GWAS Catalog (www.genome.gov/gwastudies/) and (3) the HuGE Navigator 

GWAS Integrator  (www.hugenavigator.net/HuGENavigator/gWAHitStartPage.do). This 

search was performed independently by two individuals (HR and DM) and this strategy 

resulted in a list of 72 independent SNPs associated with obesity-related traits in GWAS 

studies. Twenty-three of the 72 SNPs were available on versions 1 and 2 of the IBC 50K 

SNP array (Supplementary Table 1): rs3751812, rs7203521 in FTO, rs1514176 in 

TNNI3K, rs6265 and rs1401635 in BDNF, rs1805081 in NPC1, rs6232, rs6235 in 

PCSK1, rs2206734 in CDKAL1, rs2075650 in TOMM40/APOE/APOC1, rs2272903 in 

TFAP2B, rs997295 in MAP2K5, rs1211166 in NTRK2, rs11671664 in GIPR, rs2984618 

in TAL1, rs1011527 in LEPR, rs7605927 in POMC, rs611203 in USP37, rs2535633 in 

ITIH4, rs3824755 in NT5C2, rs7903146 in TCF7L2, rs671 in ADLH2, rs749767 in KAT8. 

The selected SNPs showed no significant (P > 10-6) deviation from Hardy-Weinberg 

Equilibrium (HWE) in the six ethnic groups. The call rate for the 23 SNPs ranged from 

99.8-100% (Supplementary Table 1).  

 

Phenotyping 

The screening visit also consisted of a questionnaire that collected information on 

medical history, physical activity, diet, sedentary time as well as physical measurements 
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including height, weight, waist and hip circumference using a standardized protocol326. 

Trained medical staff measured standing height to the nearest 0.1 cm and weight was 

measured to the nearest 0.1 kg in light clothing. Measurements of hip circumference were 

performed at the level of the greater trochanters and were assessed in duplicate using a 

non-flexible tape measure with an attached spring balance with a mass of 750g. Averages 

of the two measures were used in all analyses. Body mass index (BMI) was calculated as 

weight in kilograms (kg) divided by height in meters (m) squared.  

The OGTT data and the 2003 American Diabetes Association criteria were used 

to categorize participants into one of four categories: (1) normoglycemia= fasting plasma 

glucose < 5.6 mmol/L, (2) Impaired Fasting Glucose (IFG)= fasting plasma glucose of 

5.6 to 6.9 mmol/L, (3) Impaired Glucose Tolerance (IGT)= fasting plasma glucose below 

7.0 mmol/L and a 2-h glucose between 7.8 and 11.0 mmol/L, and (4) diabetes was 

defined if either the fasting plasma glucose was ≥ 7.0 mmol/L or the 2-h glucose was ≥ 

11.1 mmol/L 327. IFG and IGT were collapsed into one category and these three groups 

(normoglycemia, IFG/IGT, diabetic) comprised the glycemic status variable.  

PA was measured using a self-reported rating scale of work-related and leisure 

time physical activity (1=sedentary, 2=moderately active, 3=very active), hereafter 

referred to as the basic physical activity score (BPAA). A separate measure of energy 

expenditure (metabolic equivalent score (MET score)) was also collected using self-

reported time of participation in 41 different physical activities (Supplementary Table 2). 

The MET score was calculated by multiplying the participation time in each activity by 

the corresponding MET value, and these MET values were summed across all activities 
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to create a total MET score for each participant. Sedentary time was measured as the self-

reported duration of television viewing (hours/day).  

 

Statistical Analyses 

 
All statistical tests were performed using SPSS (version 20) and two-tailed P-

values are presented in this manuscript. An additive model was used to perform the single 

SNP analyses and the obesity risk alleles for each of the 23 SNPs were based on previous 

literature. The risk alleles of the 23 SNPs were summed to create an un-weighted GRS 

ranging from 0-46328. Ethnic-specific imputations for missing genotype values were 

performed as previously described329. Participants with more than one out of 23 missing 

genotypes were not included in the GRS calculation.  

 Prior to conducting the main analyses, two preliminary tests were performed. The 

association between the SNPs/GRS and BMI were analyzed using linear regression 

models to restrict the interaction tests to SNPs / GRS with a significant association with 

the outcome. A P <0.05 was considered significant since existing literature has 

demonstrated associations between these SNPs and BMI. These tests were adjusted for 

sex, age, ethnicity (principal components analysis [PCA]), and glycemic status. All 

SNPs/GRS below the significance threshold were carried forward to the interaction 

analysis. As a second step, GLM were used to analyze the impact of the 23 obesity 

predisposing SNPs and GRS on sedentary behaviour, to ensure that the two interacting 

terms were independent. This test was performed while controlling for sex, age, ethnicity, 

glycemic status and BMI.  
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GLM models, with or without the inclusion of a SNP/GRS x sedentary behaviour 

interaction term were used to analyze our two primary objectives: (1) the association 

between sedentary behaviour and BMI; (2) the interaction between sedentary behaviour 

and 23 obesity predisposing gene variants (analyzed separately and as a GRS) and BMI. 

These analyses were adjusted for covariates including, sex, age, ethnicity, glycemic 

status, physical activity and a physical activity x SNP/GRS interaction term. A separate 

Bonferroni correction was applied to objective one (P <0.017 (0.05/3) and objective two 

(P <6.3 x 10-3 (0.05/8) to adjust for multiple testing. The power of this study was 

calculated using QUANTO (version 1.2.4; University of Southern California, Los 

Angeles, CA).  

 

RESULTS 

Characteristics of the studied cohort 

The characteristics of the EpiDREAM cohort are shown in Table 1. The mean 

BMI was 30.2 (standard deviation [SD]=6.23) and the ethnic distribution of the cohort 

was 52.4% European, 20.3% Latino, 16.4% South Asian, 6.6% African, 3.0% Native 

American, 1.3% East Asian. The average age was 52.7 (SD=11.38) and the mean 

sedentary time was 2.6 hours/day (SD=1.7). Our analysis focused on 16 063 participants 

at baseline with complete genotype and phenotype data. The power calculations for this 

study are shown in Supplementary Figures 2-3.  
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Effect of Sedentary Behaviour on BMI 

 Increased sedentary time was significantly associated with increased BMI (Table 

2). These associations were observed after adjusting for sex, age, ethnicity, glycemic 

status and physical activity (BPAA). Although sedentary behaviour and physical activity 

were independently associated with BMI, physical activity measured as a BPAA or MET 

score did not interact with sedentary time to moderate BMI (Table 2). The interaction 

analyses were adjusted for sex, age, ethnicity and glycemic status.  

 

Effect of SNPs/GRS on Sedentary behaviour 

 We did not observe any significant or even nominally significant associations 

between the 23 SNPs studied and sedentary behaviour (Table 3). The association between 

the GRS and sedentary behaviour was also not significant. These analyses were adjusted 

for sex, age, ethnicity, glycemic status and BMI. Since these associations did not reach 

statistical significance, we are confident that the two interacting variables (obesity 

predisposing SNPs/GRS and sedentary time) are independent.  

 

Effect of SNPs/GRS on BMI 

Of the 23 SNPs analyzed, seven were associated with increased BMI: TNNl3K 

rs1514176, CDKAL1 rs2206734, FTO rs3751812, GIPR rs11671664, TAL1 rs2984618, 

NT5C2 rs3824755, TCF7L2 rs7903146. The GRS was also significantly associated with 

increased BMI (Table 4). These analyses were adjusted for sex, age, ethnicity and 

glycemic status.  
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Interaction Analyses  

To reduce the probability of detecting false-positive interaction, only the subset of 

SNPs/GRS displaying a significant association with BMI were included in the interaction 

analyses. We did not observe any interaction effects between sedentary time and any of 

individual SNPs or 23 SNP GRS (Table 5). These analyses were adjusted for sex, age, 

ethnicity, glycemic status, physical activity and the physical activity x SNP/GRS 

interaction.  

 

DISCUSSION 

In the present study, we observed a significant positive association between TV 

viewing and BMI, and these associations were independent of physical activity level 

(measured categorically and quantitatively). Neither physical activity measure interacted 

with TV viewing to moderate BMI. Our gene-environment interaction analyses revealed 

that TV watching did not interact with the 23 individual SNPs/GRS to modulate BMI in a 

multi-ethnic population. Given that other studies of this interaction have provided 

contrasting results138, further analysis is needed to clarify this association.  

The association between sedentary behaviour and increased BMI (independent of 

physical activity) is consistent with previous evidence that excessive sitting time is an 

established risk factor for obesity, as well as type 2 diabetes, cardiovascular disease, 

cancer (colon, ovarian, endometrial) and premature mortality304,312,330. In the EpiDREAM 

cohort, each additional hour of TV watching was associated with a 0.42 increase in BMI, 

which is similar to previous reports322. Our analysis adds to this literature by confirming 

this relationship in a multi-ethnic cohort from 21 different countries. Lastly, we evaluated 
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the interaction between TV viewing and physical activity (measured as the BPAA and a 

MET score) to determine if the impact of sedentary time on BMI varied based on 

physical activity level. These analyses were performed to test the “Active Couch Potato” 

phenomenon, which describes individuals who achieve the public health guidelines for 

health-enhancing physical activity331 and still experience the damaging dose-response 

effects of sedentary time305. Neither interaction tested (BPAA x sedentary time nor the 

MET score x sedentary time) was significant in our analyses and the subgroup analysis 

indicates that the impact of TV viewing on BMI did not vary by more than more than 

seven percent across the three physical activity subgroups (Table 2). These results 

support the “Active Couch Potato” and further emphasize that achieving physical activity 

guidelines is not sufficient to avoid the harm of sedentary behaviours such as watching 

TV. This phenomenon highlights the need to integrate recommendations for sedentary 

behaviours into future physical activity guidelines.  

Policy reform in Australia has already incorporated similar evidence in several 

novel population health initiatives: 1) the Australian National Preventative Health Task 

Force Report includes specific recommendations to decrease extended periods of sitting 

in the workplace in order to address obesity, type 2 diabetes and cardiovascular disease; 

2) reduced sitting time was introduced as a tenet of a state-wide mass media campaign 

targeted at obesity prevention; 3) Health Promotion Queensland initiated an evidence-

based evaluation of the health impacts of prolonged sitting, and an assessment of 

interventions to decrease workplace sitting300. Another emerging approach to address the 

harm associated with sedentary time involves avoiding long uninterrupted periods of 

sitting. Two randomized trials analyzing the impact of uninterrupted versus interrupted 
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sitting found that two-minute bouts of moderate or even light-intensity walking every 20 

minutes improved postprandial glucose and insulin levels, as well as resting systolic and 

diastolic blood pressure332,333. A separate randomized study reported that alternating 

(every 30 minutes) between sitting and standing using a height-adjustable workstation 

resulted in less fatigue and reduced musculoskeletal discomfort compared to traditional 

seated work posture334. These improvements were observed in only five days of exposure 

to the experimental condition among overweight and obese office workers, and 

productivity did not differ between the two groups334. Overall, our results and those from 

existing studies underscore the harm associated with excessive sedentary time 

(particularly prolonged sitting) and highlight the need to incorporate sedentary time 

recommendations into future health and physical activity policy.  

Our interaction results indicated that sedentary behaviour did not moderate the 

impact of the individual SNPs or the GRS on either obesity measure. This is supported by 

a recent study in the UK Biobank which did not report a significant interaction between 

TV watching and FTO rs3751812335. In contrast, a previous study reported that prolonged 

TV watching accentuated the impact of a 32 SNP GRS on BMI, while a third analysis 

found that screen time interacted with rs2112347 near FLJ35779 in European Americans 

and rs10938357 near GNPDA2 in African Americans, although these results were 

nominally significant138,154. There are several reasons to explain the negative results in 

our analysis. First, our analysis included a GRS with only 23 SNPs, which may have 

decreased our power to detect interaction effects since some genes that may interact 

individually may have been excluded. Second, our study included individuals ages 18-85 

years, while the previous studies by Qi et al focused on females 30-55 and males 40-75, 
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and Graff et al studied adolescents (mean age 16.2 years, SD=1.6). Analyzing samples of 

different ages may lead to different results due to influences such as cohort effects (e.g. 

increasing effects of the obesogenic environment). Third, our sample included 

participants from six ethnic groups recruited from 21 different countries. The ethnic and 

lifestyle heterogeneity of this sample may have introduced important genetic and 

environmental differences that influenced our results. Future studies of this interaction 

should include large samples with accurately measured environmental data to clarify the 

validity of this interaction.  

Although the multi-ethnic context of this study introduces lifestyle and genetic 

heterogeneity, the large multi-ethnic sample is also a strength in terms of generalizability 

of the findings. Other strengths include the interaction analyses with individual SNPs, 

which provide a comprehensive examination of these interaction effects to complement 

the analysis of the GRS. Limitations of this study include the assessment of 

environmental exposures such as TV viewing and physical activity, which were measured 

by self-report. Perhaps most importantly, our measurement of sedentary behaviour only 

included time watching television and did not include other common forms of sedentary 

behaviour such as sitting time in the workplace or commuting. Failure to capture this 

information reduces the accuracy of this measurement and likely decreased the statistical 

power of the analysis. The 23 SNPs analyzed are only a subset of the obesity 

predisposing SNPs identified to date. Also, many of these SNPs were identified in 

European populations and may not be ideal proxies for the causal SNPs in other ethnic 

groups. Lastly, the EpiDREAM participants were identified as at risk for dysglycemia 

and are not representative of the general population.  
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Our results show that prolonged sedentary time is a significant risk factor for 

obesity,of physical activity level. Moreover, increased physical activity did not diminish 

the impact of sedentary time on obesity, which supports the “Active Couch Potato” 

phenomenon and calls for the integration of sedentary behaviour guidelines into future 

health promotion policy. We did not find any evidence of interaction between sedentary 

behaviour and any of the 23 obesity predisposing SNPs or the GRS for BMI. Future 

studies of this interaction should include a more comprehensive assessment of sedentary 

behaviours using objective instruments such as accelerometers.
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 Table 1. Baseline characteristics by sedentary level in the EpiDREAM study. 

                     Sedentary Time (hours/day) 

 Category < 2 2-3 > 3 All P-value 
Total at baseline 
N(%) 

 4419 (27.5%) 8128 (50.6%) 3516 (21.9%) 16063 (100%)  

Sex 
N(%) 

Male 1803 (28.8%) 3157 (50.4%) 1301 (20.8%) 6261 (39.0%) 2.5 x 10-3 
Female 2616 (26.7%) 4971 (50.7%) 2215 (22.6%) 9802 (61.0%) 

aAge  
(years) 

 49.84 ± 10.46 
 

52.90 ± 11.25 
 

54.61 ± 12.17 
 

52.66 ± 11.38 1.4 x 10-82 

Glycemic status 
N (%) 

Normal 
IFG/IGT 
Diabetes 

2160 (30.9%) 
1704 (24.9%) 
555 (24.8%) 

3466 (49.7%) 
3564 (52.1%) 
1098 (49.1%) 

1354 (19.4%) 
1578 (23.0%) 
584 (26.1%) 
 

6980 (43.5%) 
6846 (42.6%) 
2237 (13.9%) 

8.7 x 10-21 

 
 

Activity Low 
Moderate 
High 

1169 (26.5%) 
2685 (60.7%) 
564 (12.8%) 

2046 (25.2%) 
5075 (62.4%) 
1004 (12.4%) 
 

1302 (37.0%) 
1884 (53.6%) 
329 (9.4%) 

4517 (28.1%) 
9644 (60.1%) 
1897 (11.8%) 

7.4 x 10-39 

aMETS  5.18 ± 6.55 
(2963) 

5.46 ± 6.90 
(5644) 

5.31 ± 7.00 
(2287) 

5.35 ± 6.83 
(10894) 

0.14 

aBMI 
(kg/m2) 

 28.98 ± 5.77 
(4417) 

30.27 ± 6.05 
(8126) 

31.58 ± 6.84 
(3514) 

30.20 ± 6.23 
(16057) 

5.8 x 10-76 

Ethnic groups N(%) 
 

South Asian 1127 (42.8%) 1131 (43.0%) 375 (14.2%) 2633 (16.4%) 1.4 x 10-12 
East Asian 77 (35.8%) 92 (42.8%) 46 (21.4%) 215 (1.3%) 
European  2069 (24.6%) 4439 (52.8%) 1904 (22.6%) 8412 (52.4%) 
African 228 (21.7%) 434  (41.2%) 390 (37.1%) 1052 (6.6%) 
Latino 
American 

809 (24.7%) 1801  (55.1%) 660 (20.2%) 3270 (20.3%) 

Native-
North 
American 

109 (22.7%) 231 (48.0%) 141 (29.3%) 481 (3.0%) 

Notes: BMI: body mass index, SD = standard deviation; N = sample size 

aData are presented as mean ± S.D. (N). 
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Table 2. Effect of sedentary behaviour on BMI (adjusted for sex, age, ethnicity and glycemic 
status). 

 Outcome β  (95% CI) P-value 
TV (hours/day) BMI 0.42 (0.37 to 0.48) 1.3 x 10-49 

Interaction between sedentary time and physical activity on BMI  
(adjusted for sex, age, ethnicity and glycemic status) 

            β  (95% CI) P-value 
aBPAA -1.49 (-1.75 to 1.24) 6.5x10-30 
aSedentary behaviour 0.29 (0.15 to 0.44) 8.9x10-5 
aBPAA x Sedentary behaviour 0.01 (-0.07 to 0.09) 0.75 
bMET score -0.04 (-0.07 to -0.01) 3.7x10-3 
bSedentary behaviour 0.45 (0.37 to 0.53) 8.7x10-28 
bMET score x Sedentary behaviour -2.9x10-3 (-0.01 to 6.5x10-3) 0.55 
        Subgroup analysis <500 MET mins/wk 

  500-1000 MET mins/wk 
>1000 MET mins/wk 

5 

0.44 (0.37 to 0.51) 
0.41 (0.27 to 0.55) 
0.44 (0.17 to 0.71) 

1.4x10-31 

8.5x10-9 

1.5x10-3 

Notes: a Signifies terms included in the first model 
b Signifies terms included in the second model 
BPAA=basic physical activity score 
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Table 3. Effect of SNPs/GRS on sedentary behaviour (adjusted for sex, age, ethnicity, glycemic 
status and BMI). 

SNP gene β  (95% CI) P-value 
rs1514176 TNNI3K 0.03 (-4.0x10-3 to 0.07) 0.08 
rs6235 PCSK1 0.01 (-0.03 to 0.05) 0.65 
rs6232 PCSK 0.07 (-0.02 to 0.16) 0.14 
rs2206734 CDKAL1 -0.01 (-0.05 to 0.04) 0.82 
rs2272903 TFAP2B -0.03 (-0.08 to 0.02) 0.20 
rs1211166 NTRK2 -0.01 (-0.05 to 0.03) 0.69 
rs6265 BDNF 0.03 (-0.02 to 0.08) 0.22 
rs1401635 BDNF -0.01 (-0.05 to 0.03) 0.69 
rs997295 MAP2K5 -0.01 (-0.04 to 0.03) 0.69 
rs7203521 FTO -0.01 (-0.04 to 0.03) 0.79 
rs3751812 FTO -2.0x10-4 (-0.04 to 0.04) 0.98 
rs1805081 NPC1 0.01 (-0.03 to 0.05) 0.64 
rs2075650 APOE 2x10-3 (-0.05 to 0.05) 0.95 
rs11671664 GIPR -1.0x10-3 (-0.06 to 0.06) 0.96 
rs2984618 TAL1 4.0x10-3 (-0.03 to 0.04) 0.85 
rs1011527 LEPR 0.04 (-0.02 to 0.10) 0.15 
rs7605927 POMC 0.02 (-0.02 to 0.06) 0.30 
rs611203 USP37 -0.01 (-0.05 to 0.02) 0.44 
rs2535633 ITIH4 0.02 (-0.02 to 0.05) 0.41 
rs3824755 NT5C2 0.03 (-0.02 to 0.08) 0.19 
rs7903146 TCF7L2 -0.02 (-0.06 to 0.02) 0.25 
rs671 ALDH2 0.09 (-0.27 to 0.54) 0.62 
rs749767 KAT8 -0.01 (-0.04 to 0.03) 0.74 
 GRS -1.6x10-3 (-0.01 to 7.3x10-3) 0.73 
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Table 4. Effect of SNPs/GRS on BMI (adjusted for sex, age, ethnicity and glycemic status). 

 

 

 

 

 

 

 

 

 

 

 

  

 BMI 
SNP gene β  (95% CI) P-value 
rs1514176 TNNI3K 0.19 (0.06 to 0.32) 3.3x10-3 
rs6235 PCSK1 -0.10 (-0.16 to 0.14) 0.90 
rs6232 PCSK 0.08 (-0.25 to 0.41) 0.65 
rs2206734 CDKAL1 0.31 (0.16 to 0.47) 9.2x10-5 
rs2272903 TFAP2B 0.17 (-0.01 to 0.35) 0.06 
rs1211166 NTRK2 0.09 (-0.07 to 0.24) 0.27 
rs6265 BDNF 0.10 (-0.07 to 0.28) 0.25 
rs1401635 BDNF 0.10 (-0.05 to 0.24) 0.21 
rs997295 MAP2K5 0.08 (-0.05 to 0.20) 0.24 
rs7203521 FTO -0.08 (-0.21 to 0.05) 0.25 
rs3751812 FTO 0.51 (0.37 to 0.64) 5.7x10-14 
rs1805081 NPC1 0.02 (-0.12 to 0.16) 0.76 
rs2075650 APOE 0.03 (-0.17 to 0.21) 0.80 
rs11671664 GIPR 0.31 (0.10 to 0.51) 3.2x10-3 
rs2984618 TAL1 0.29 (0.16 to 0.42) 1.2x10-5 
rs1011527 LEPR -0.14 (-0.35 to 0.06) 0.17 
rs7605927 POMC 0.01 (-0.13 to 0.14) 0.92 
rs611203 USP37 0.01 (-0.12 to 0.14) 0.84 
rs2535633 ITIH4 3.9x10-3 (-0.13 to 0.13) 0.95 
rs3824755 NT5C2 0.19 (0.12 to 0.37) 0.04 
rs7903146 TCF7L2 0.44 (0.31 to 0.58) 3.3x10-10 
rs671 ALDH2 -0.03 (-1.34 to 1.28) 0.96 
rs749767 KAT8 0.06 (-0.07 to 0.20) 0.36 
 GRS 0.11 (0.08 to 0.14) 5.2x10-14 
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Table 5. Interaction analyses between sedentary behaviour and obesity predisposing SNPs/GRS 
(adjusted for sex, age, ethnicity, relatedness, glycemic status, physical activity and physical activity x 
SNP/GRS interaction). 

Interaction Tests 
Outcome: BMI 
Interaction terms SNP Main Effect SNP Interaction 

β  95% CI P-value β  95% CI P-value 
TNNI3K rs1514176 x 
Sedentary behaviour 

0.30 0.08 – 0.53 0.01 -0.05 -0.13- 0.02 0.18 

CDKAL1 rs2206734 x 
Sedentary behaviour 

0.13 -0.15 – 0.40 0.06 0.07 -0.02 – 0.16 0.13 

FTO rs3751812 x 
Sedentary behaviour 

1.27 0.81 – 1.73 8.1x10-8 -0.05 -0.12 – 0.03 0.21 

GIPR rs11671664 x 
Sedentary behaviour 

0.37 0.02 – 0.73 0.04 -0.02 -0.14 – 0.10 0.76 

TAL1 rs2984618 x  
Sedentary behaviour 

0.33 0.11 – 0.56 3.3x10-3 -0.02 -0.10 – 0.05 0.53 

NT5C2 rs3824755 x  
Sedentary behaviour 

0.41 0.10 – 0.73 0.01 -0.10 -0.20 – 3.7x10-3 0.06 

TCF7L2 rs7903146 x  
Sedentary behaviour 

0.32 0.08 – 0.57 0.01 0.05 -0.03 – 0.13 0.26 

GS x Sedentary 
behaviour 

0.12 0.06 – 0.17 2.2x10-5 -4.2x10-5 -0.02 – 0.02 0.96 
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Supplementary Table 1. Genotype distributions, call rate and Hardy-Weinberg 
Equilibrium values for the 23 SNPs analyzed. 

Ethnicity Genotype Counts Risk Allele 
Frequency 

Genotype 
Call Rate 
(%) 

HWE P-
Value 

rs1514176 in 
TNNI3K AA GA GG G   
European 565 1357 834 0.549 100 % 0.762 
South Asian 35 70 120 0.689 100 % 3.90x10-5 
East Asian 3173 4555 1652 0.419 100 % 0.804 
African 137 551 559 0.669 100 % 0.944 
Latinos 805 1564 918 0.517 100 % 0.010 
Native American 97 245 157 0.560 100 % 0.935 
Total 4812 8342 4240 0.484 100 % - 
rs6235 in PCSK1 CC CG GG C   
European 262 1096 1397 0.294 99.96 % 0.029 
South Asian 20 93 112 0.296 100 % 0.912 
East Asian 684 3612 5083 0.265 99.99 % 0.225 
African 27 329 891 0.154 100 % 0.600 
Latinos 157 1084 2046 0.213 100 % 0.384 
Native American 27 188 284 0.242 100 % 0.568 
Total 1177 6402 9813 0.252 99.99 % - 
rs6232 in PCSK1 AA GA GG G   
European 2431 309 16 0.062 100 % 0.074 
South Asian 223 2 0 0.004 100 % 0.947 
East Asian 8491 866 23 0.049 100 % 0.853 
African 1229 18 0 0.007 100 % 0.797 
Latinos 3099 185 3 0.029 100 % 0.889 
Native American 470 29 0 0.029 100 % 0.504 
Total 15943 1409 42 0.043 100 % - 
rs2206734 in 
CDKAL1 CC TC TT C   
European 1623 974 159 0.766 100 % 0.421 
South Asian 102 94 29 0.662 100 % 0.321 
East Asian 6015 3018 346 0.802 99.99 % 0.174 
African 715 460 72 0.758 100 % 0.861 
Latinos 2104 1047 136 0.799 100 % 0.689 
Native American 299 182 18 0.782 100 % 0.128 
Total 10858 5775 760 0.790 99.99 % - 
rs2272903 in 
TFAP2B AA AG GG G   
European 132 945 1679 0.781 100 % 0.948 
South Asian 8 77 140 0.793 100 % 0.513 
East Asian 118 1778 7484 0.893 100 % 0.286 
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Ethnicity Genotype Counts Risk Allele 
Frequency 

Genotype 
Call Rate 
(%) 

HWE P-
Value 

African 120 487 640 0.709 100 % 0.054 
Latinos 72 783 2432 0.859 100 % 0.338 
Native American 4 99 396 0.893 100 % 0.417 
Total 454 4169 12771 0.854 100 % - 
rs1211166 in 
NTRK2 AA GA GG A   
European 1436 1105 215 0.722 100 % 0.905 
South Asian 151 63 11 0.811 100 % 0.196 
East Asian 6115 2898 365 0.806 99.98 % 0.351 
African 567 540 139 0.671 99.92 % 0.542 
Latinos 2114 1019 154 0.798 100 % 0.030 
Native American 378 111 10 0.869 100 % 0.582 
Total 10761 5736 894 0.784 99.98 % - 
rs6265 in BDNF AA AG GG G   
European 146 952 1658 0.774 100 % 0.540 
South Asian 46 117 62 0.536 100 % 0.497 
East Asian 345 2807 6228 0.814 100 % 0.194 
African 4 74 1169 0.967 100 % 0.018 
Latinos 94 859 2334 0.841 100 % 0.166 
Native American 14 128 357 0.844 100 % 0.539 
Total 649 4937 11808 0.821 100 % - 
rs1401635 in 
BDNF CC CG GG C   
European 424 1255 1076 0.382 99.96 % 0.067 
South Asian 4 28 193 0.080 100 % 0.020 
East Asian 826 3801 4752 0.291 99.99 % 0.094 
African 77 478 692 0.253 100 % 0.645 
Latinos 156 1119 2012 0.218 100 % 0.979 
Native American 28 168 303 0.224 100 % 0.462 
Total 1515 6849 9028 0.284 99.99 % - 
rs997295 in 
MAP2K5 GG GT TT T   
European 835 1336 585 0.455 100 % 0.239 
South Asian 151 63 11 0.189 100 % 0.196 
East Asian 1597 4495 3288 0.590 100 % 0.363 
African 261 616 370 0.544 100 % 0.876 
Latinos 994 1584 708 0.456 99.97 % 0.102 
Native American 168 222 109 0.441 100 % 0.029 
Total 4006 8316 5071 0.531 99.99 % - 
rs7203521 in FTO AA GA GG A   
European 521 1325 909 0.429 99.96% 0.328 
South Asian 15 86 124 0.258 100 % 0.986 
East Asian 3538 4370 1472 0.610 100 % 0.045 
African 503 569 175 0.632 100 % 0.489 
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Ethnicity Genotype Counts Risk Allele 
Frequency 

Genotype 
Call Rate 
(%) 

HWE P-
Value 

Latinos 769 1548 969 0.469 99.97 % 0.002 
Native American 93 202 203 0.389 99.80 % 0.001 
Total 5439 8100 3852 0.546 99.98 % - 
rs3751812 in FTO GG GT TT T   
European 3236 4464 1680 0.417 100 0.039 
South Asian 1253 1180 323 0.332 100 0.088 
East Asian 154 66 5 0.197 100 0.501 
African 991 244 12 0.108 100 0.479 
Latinos 1575 1367 345 0.313 100 0.060 
Native American 307 160 32 0.224 100 0.078 
Total 7516 7481 2397 0.353 100 - 
rs1805081 in 
NPC1 AA GA GG A   
European 1628 973 155 0.767 100 % 0.545 
South Asian 133 77 15 0.762 100 % 0.402 
East Asian 3552 4385 1443 0.612 100 % 0.140 
African 1083 158 6 0.92 100 % 0.928 
Latinos 1588 1372 327 0.692 100 % 0.226 
Native American 224 231 44 0.680 100 % 0.151 
Total 8208 7196 1990 0.679 100 % - 
rs2075650 in 
TOMM40-APOE-
APOC1 

AA GA GG A 
  

European 2084 621 51 0.869 100 % 0.549 
South Asian 173 47 5 0.873 100 % 0.402 
East Asian 6951 2248 181 0.861 100 % 0.962 
African 956 278 13 0.878 100 % 0.144 
Latinos 2593 647 47 0.887 100 % 0.361 
Native American 398 96 5 0.894 100 % 0.767 
Total 13155 3937 302 0.870 100 % - 
rs11671664 in 
GIPR AA AG GG G   
European 33 521 2202 0.894 100 % 0.727 
South Asian 41 89 95 0.620 100 % 0.016 
East Asian 122 1767 7488 0.892 99.97 % 0.126 
African 15 256 976 0.885 100 % 0.696 
Latinos 29 531 2726 0.910 99.97 % 0.577 
Native American 3 102 394 0.892 100 % 0.187 
Total 243 3266 13881 0.892 99.98 % - 
rs2984618 in 
TAL1 GG TG TT T   
European 554 1313 889 0.561 100 % 0.084 
South Asian 3 19 203 0.944 100 % 0.003 
East Asian 3414 4445 1521 0.399 100 % 0.245 
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Ethnicity Genotype Counts Risk Allele 
Frequency 

Genotype 
Call Rate 
(%) 

HWE P-
Value 

African 87 484 676 0.736 100 % 0.977 
Latinos 766 1513 1008 0.537 100 % 2.0x10-5 
Native American 115 248 136 0.521 100 % 0.924 
Total 4939 8022 4433 0.485 100 % - 
rs1011527 in 
LEPR GG AG AA A   
European 1362 1144 250 0.299 100 % 0.660 
South Asian 184 40 1 0.093 100 % 0.449 
East Asian 8038 1284 56 0.074 99.98 % 0.544 
African 928 293 26 0.138 100 % 0.612 
Latinos 2845 428 13 0.069 99.97 % 0.467 
Native American 450 47 2 0.051 100 % 0.520 
Total 13807 3236 348 0.113 99.98 % - 
rs7605927 in 
POMC GG GC CC G   
European 586 1364 794 0.536 99.56 % 0.996 
South Asian 73 113 39 0.424 100 % 0.675 
East Asian 577 3386 5413 0.758 99.96 % 0.123 
African 263 578 406 0.557 100 % 0.032 
Latinos 508 1491 1282 0.617 99.82 % 0.031 
Native American 77 215 207 0.630 100 % 0.092 
Total 2084 7147 8141 0.673 99.87 % - 
rs611203 in 
USP37 AA GA GG G   
European 1351 1101 303 0.310 99.96 % 0.001 
South Asian 149 66 10 0.191 100 % 0.442 
East Asian 3264 4517 1599 0.411 100 % 0.591 
African 452 616 179 0.391 100 % 0.183 
Latinos 1094 1630 563 0.420 100 % 0.292 
Native American 218 219 62 0.344 100 % 0.544 
Total 6528 8149 2716 0.390 99.99 % - 
rs2535633 in 
ITIH4 GG GC CC G   
European 456 1287 1013 0.399 100 % 0.168 
South Asian 27 111 87 0.367 100 % 0.351 
East Asian 1565 4503 3309 0.407 99.97 % 0.618 
African 584 538 125 0.684 100 % 0.946 
Latinos 774 1618 894 0.482 99.97 % 0.426 
Native American 123 245 131 0.492 100 % 0.691 
Total 3529 8302 5559 0.442 99.98 % - 
rs3824755 in 
NT5C2 GG CG CC C   
European 178 961 1617 0.761 100 % 0.030 
South Asian 15 100 110 0.711 100 % 0.220 
East Asian 103 1671 7606 0.900 100 % 0.297 
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Ethnicity Genotype Counts Risk Allele 
Frequency 

Genotype 
Call Rate 
(%) 

HWE P-
Value 

African 45 395 807 0.806 100 % 0.696 
Latinos 93 903 2291 0.834 100 % 0.723 
Native American 8 122 369 0.862 100 % 0.562 
Total 442 4152 12800 0.855 100 %  - 
rs7903146 in 
TCF7L2 TT TC CC C   
European 272 1170 1314 0.689 100 % 0.624 
South Asian 2 22 201 0.942 100 % 0.126 
East Asian 956 3903 4521 0.690 100 % 0.01 
African 112 520 615 0.702 100 % 0.890 
Latinos 280 1304 1703 0.716 100 % 0.177 
Native American 10 145 344 0.835 100 % 0.238 
Total 1632 7064 8698 0.703 100 %  - 
rs749767 in KAT8 GG GA AA A   
European 52 620 2082 0.868 99.93 % 0.461 
South Asian 154 60 11 0.182 100 % 0.114 
East Asian 1437 4477 3466 0.608 100 % 0.889 
African 111 496 640 0.712 100 % 0.291 
Latinos 715 1559 1012 0.545 99.97 % 0.013 
Native American 109 232 158 0.549 100 % 0.172 
Total 2578 7444 7369 0.638 99.98 % - 
rs12617233 in 
FANCL TT CT CC T   
European 352 1301 1103 0.636 100 % 0.297 
South Asian 67 119 39 0.438 100 % 0.264 
East Asian 1537 4480 3363 0.597 100%  0.489 
African 152 579 516 0.646 100 % 0.593 
Latinos 638 1583 1066 0.565 100 % 0.247 
Native American 76 247 176 0.600 100 % 0.483 
Total 2822 8309 6263 0.599 100 %  - 
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Supplementary Table 2. List of 39 self-reported physical activities. 

1.  Aerobics/Calisthenics 
2.  Badminton 
3.  Basketball 
4.  Bicycling 
5.  Bowling 
6.  Pilates 
7.  Dance 
8.  Fishing 
9.  Soccer 
10.  Yard work 
11.  Golfing 
12.  Hiking 
13.  Hockey 
14.  Horseback riding 
15.  Jogging 
16.  Jump rope 
17.  Martial arts 
18.  Squash 
19.  Mountain climbing 
20.  Rugby 
21.  Scuba diving 
22.  Skating 
23.  Snowshoeing 
24.  Downhill skiing 
25.  Cross country skiing 
26.  Softball 
27.  Stairs 
28.  Weightlifting 
29.  Swimming 
30.  Ping pong 
31.  Tai chi 
32.  Tennis 
33.  Volleyball 
34.  Walking 
35.  Aquatics exercise 
36.  Water skiing 
37.  Wood chopping 
38.  Yoga 
39.  Rowing 
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Supplementary Figure 1. Flow chart of EpiDREAM study (sedentary x gene 
interaction). 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total enrolled 24,872 

Blood sample not collected or low DNA concentration 5,374 

DNA extracted 19,498 

Sample duplicates 125 
Sex inconsistency 159 
Ethnic mismatch 40 

Incorrect sample ID 2 
Overlap (excluded for more than one of reasons above 25) 

Total excluded 301 
 

Genotyped 19,197 

50K CVD array genotyping failure 711 

Successfully genotyped 
18,486  

Missing phenotypic data at baseline 1,390 
Ethnic groups with limited sample size                                      
(e.g. Tibetans, Middle Eastern) 1,033 

 

Total included 
 16,063 
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Supplementary Figure 2. Power calculation (80%) for the main effect of obesity 
predisposing SNPs for a P-value=0.05. 
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Supplementary Figure 3. Power calculation (80%) for the interaction effect between 
obesity predisposing SNPs and sedentary behaviour for a P-value=0.05. 
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CHAPTER 4-SLEEP DURATION AND BODY MASS INDEX IN A 
MULTIETHNIC STUDY: EVIDENCE FROM OBSERVATIONAL AND 

GENETIC EPIDEMIOLOGY 

 

ABSTRACT  

Background: Obesity is a global epidemic that is caused by a range of environmental 
and genetic influences. We assessed the interaction between sleep duration and 23 single 
nucleotide polymorphisms (SNPs) on obesity.  
 
Methods: The study included 17 377 participants from six ethnic groups with phenotypic 
and genotypic information available. We analysed the impact of sleep duration on the 
association between 23 SNPs (analyzed individually and as a genetic risk score (GRS)) 
and body mass index (BMI).  
 
Results: We observed a significant U-shaped (quadratic) relationship between sleep 
duration and BMI (P=6.5x10-4). FTO rs3751812, CDKAL1 rs2206734, TNNl3K 
rs1514176, GIPR rs11671664, TAL1 rs2984618, NT5C2 rs3824755, TCF7L2 rs7903146 
and the GRS were associated with BMI (4.7x10-14 ≤ P ≤ 0.01). We did not observe any 
significant interaction effects between sleep duration and any of the 23 individual SNPs 
or GRS on BMI.  
 
Conclusion: Our results indicate a U-shaped association between sleep duration and 
BMI, whereby moderate sleepers display lower BMI values than short or long sleepers. 
We did not detect an interaction effect between sleep duration and obesity predisposing 
SNPs in a multi-ethnic international sample.  
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INTRODUCTION 

Obesity is the outcome of an imbalance between energy intake and expenditure336. 

Currently affecting more than 600 million adults worldwide according to the World 

Health Organization, obesity has reached epidemic proportions and shows no sign of 

slowing down337. Obesity is a risk factor for several adverse health outcomes, including 

type 2 diabetes, hypertension, cardiovascular disease, osteoarthritis, certain types of 

cancers and mental health disorders2. In its more severe forms, obesity is associated with 

a 8-13 year decrease in life expectancy3. 

Obesity and obesity-related health problems place a significant financial burden 

on the healthcare infrastructures of countries338. Part of the explanation is that obesity is 

difficult to treat. Traditional treatments include diet restriction and physical exercise 

programs, yet the effects of lifestyle interventions on long-term weight reduction are 

limited339. Weight loss medications including orlistat, lorcaserin, and phentermine-

topiramate, result in 3-9% more weight loss than lifestyle modifications alone, yet carry 

the potential for adverse side effects340. Bariatric surgery is the most efficient method of 

treating severe obesity yet it is highly invasive and associated with post-operative 

complications and death in 1% of cases341. Additionally, only a small fraction of eligible 

patients can benefit from a surgical treatment due to the increasing divide between the 

severe obesity epidemic and the evolution of health infrastructures341. There is a growing 

consensus among the scientific and medical communities that the key to curbing the 

obesity epidemic lies in prevention rather than treatment342.  

 The environmental causes of obesity are multiple and accumulate in a variable 

fashion among individuals. The two most commonly cited causes of obesity are excess 
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food consumption and lack of physical activity, yet an increasing amount of research has 

highlighted the role of sleep patterns in the development of obesity343. Variation in sleep 

duration influences the neuroendocrine control of appetite by modulating circulating 

levels of ghrelin and leptin which can alter food intake and obesity risk344. Although 

several studies have reported that only decreased sleep duration is associated with 

increased obesity risk345,346, another substantial body of evidence, including long-term 

follow-up studies347 and large-scale cross-sectional analyses348,349, support a U-shaped 

relationship between sleep duration and obesity. These inconsistent findings create 

uncertainty regarding the nature of this relationship and this association deserves further 

investigation.  

Although the obesity epidemic is driven by environmental and social changes, 

inter-individual variations in BMI involve biological roots. For instance, age and sex are 

strong predictors of obesity33. The existence of significant ethnic disparities in the 

prevalence of obesity suggests that specific genes and lifestyles play a role in causing the 

disorder350. Admixture studies confirm that ethnic specific genetic variations account for 

BMI differences351. Data from twin and family studies provide heritability estimates for 

BMI ranging between 0.24-0.90352. Twelve genes involved in the neuronal differentiation 

of the paraventricular nucleus and in the leptin-melanocortin system lead to Mendelian 

forms of hyperphagic obesity353. Currently, more than 160 common gene variants have 

been associated with obesity phenotypes at a genome-wide level of significance12,45. The 

recent progress in obesity gene identification has been followed by gene-environment 

interaction (GEI) studies. Obesity predisposing genes have been shown to interact with 

obesogenic environments, physical activity, TV watching, and diet354. A recent twin 
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study indicates that habitual sleep duration had a significant effect on heritability 

estimates among 1,088 twin pairs355. The heritability of BMI when sleep duration was < 

7 hr (h² = 70%) was more than twice as large as the heritability of BMI when sleep 

duration was ≥ 9 hr (h² = 32%) in this study355. A recent analysis of the UK Biobank 

found that the effect of a genetic risk score on BMI was greater among participants who 

slept less than seven hours per day or more than nine hours per day compared to normal 

length sleepers (7-9 hours per day). 

In this study, we assessed: (1) the association between sleep duration and obesity; 

and (2) the interaction between obesity predisposing SNPs and sleep behaviors on 

obesity-related traits. These objectives were analyzed using 23 obesity predisposing 

SNPs (analyzed individually and as a genetic risk score (GRS)) in the multi-ethnic 

EpiDREAM study.  

MATERIALS AND METHODS 

Study Participants 

The data for this study were assembled through a multi-ethnic study of 

participants at risk for type 2 diabetes, which has been described in detail 

previously326,356. In brief, 24 872 individuals from 17 countries who were enrolled in 

EpiDREAM were assessed for eligibility to enter the DREAM clinical trial326. Study 

participants completed a survey that collects information including physical activity, 

demographic data, medical history, and sleep behaviors. A 75-gram oral glucose 

tolerance test (OGTT) was administered to those individuals who were identified as at 

risk for type 2 diabetes based on ethnicity, abdominal adiposity, and family history. 

Participants were screened between July 2001 and August 2003, and were between 18-85 
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years of age. This study focused on 17 337 subjects having both phenotypic and gene-

centric 50 K single nucleotide polymorphism (SNP) array information in the EpiDREAM 

study (Supplementary Figure 4). Overall, the participants included in this study 

represented six ethnic groups (South Asian, East Asian, European, African, Latin 

American, Native North American). Self-reported ethnicity of the participants was 

validated using Eigensoft software357 and the first 10 principal components were included 

in the analyses to adjust for population stratification. The EpiDREAM study has been 

approved by local ethics committee and in accordance with the Declaration of Helsinki, 

each participant provided informed consent before participating in the study. 

Genotyping 

DNA was extracted from buffy coats using the Gentra System (Supplementary 

Figure 1). Illumina CVD bead chip microarray ITMAT Broad Care (IBC) array was 

genotyped using the Bead Studio genotyping module, version 3.2 at the McGill 

University and Genome Quebec Innovation Centre325. We established a list of SNPs that 

reached genome-wide significance (P<5x10-8) with BMI or binary obesity status in 

populations of European ancestry. Three separate approaches were used to select SNPs 

using a key word search (e.g. BMI) on i) the National Human Genome Research Institute 

(NHGRI) GWAS Catalog (www.genome.gov/gwastudies/), ii) the HuGE Navigator 

GWAS Integrator  (www.hugenavigator.net/HuGENavigator/gWAHitStartPage.do), iii) 

the PubMed database (www.ncbi.nlm.nih.gov/pubmed). This search was performed 

independently by two individuals (HR and DM) and in October 2015, this approach 

yielded 136 independent SNPs that were found to be associated with BMI or binary 

obesity status. If lead SNPs were not available, proxy SNPs were selected if they 
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displayed an r2 >0.90 with the lead SNP in a population of similar ancestry from the 1000 

Genomes Project, and were included in the Illumina cardiovascular gene-centric array. 

The SNAP (SNP Annotation and Proxy Search) tool from the Broad Institute website was 

coupled with an independent method we developed to identify proxy SNPs. Twenty-three 

lead or proxy SNPs from the list of 136 were available on version 1 and 2 of the IBC 50K 

SNP array (Supplementary Table 1). All SNPs selected were in Hardy-Weinberg 

Equilibrium in the six ethnic groups (P > 10-6) and the call rate for each of the 23 SNPs 

was comprised between 99.8-100% (Supplementary Table 1).  

Phenotyping 

A standardized protocol was used to assess anthropometric measurements. Weight 

(kg) and height (m) measurements were assessed by trained medical staff. Weight was 

measured to the nearest 0.1 kg in light clothing and standing height was measured to the 

nearest 0.1 cm. Body mass index (BMI) was calculated as weight in kilograms (kg) 

divided by height in meters (m) squared. The oral glucose tolerance test was used to 

categorize participants into four groups: normal glucose tolerant (NGT), impaired fasting 

glucose (IFG), impaired glucose tolerance (IGT), or T2D at baseline, all based on the 

2003 ADA criteria327. The IFG and IGT categories were combined to form a three-level 

categorical variable referred to as glycemic status (normoglycemia, IFG/IGT, diabetic). 

 Measures of sleep duration were based on self-reported information from the 

participant questionnaire. Sleep duration was measured by average number of hours spent 

sleeping per day. Participants were placed into one of three sleep categories that reflect 

current practice in the sleep literature: sleep-low (<6), sleep-moderate (6-8), sleep-high 

(>8)358.  
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Statistical Analysis 

  Single SNPs analyses were performed under the additive model, and the 

previously identified obesity risk alleles for each of the 23 SNPs were used as the risk 

allele for the analyses. The GRS was calculated by summing the alleles of the 23 obesity 

predisposing SNPs so that the GRS ranged from 0 to 46. An un-weighted GRS was used 

for these analyses359. We performed ethnic-specific imputations for the missing genotypic 

values as previously described329.  

Before conducting the main analyses, two preliminary verification tests were 

performed. First, the associations between the SNPs / GRS and BMI were analyzed using 

linear regression models. Since the associations between the SNPs and obesity measures 

have been shown in previous studies, a P <0.05 was considered significant. These tests 

were adjusted for sex, age, ethnicity and glycemic status and all SNPs / GRS below the 

significance threshold were carried forward to the interaction analysis. Second, 

linear/ordinal regression were used to analyze the impact of the 23 obesity predisposing 

SNPs and GRS on sleep duration. These tests were performed to ensure that the two 

interacting terms were independent. A Bonferroni adjusted level of significance was used 

for this analysis P < 2.1 x 10-3 (0.05/24 (23 SNPs + GRS)). This analysis was performed 

while controlling for sex, age, ethnicity, glycemic status and BMI.  

Linear regression models, with or without the inclusion of a SNP / GRS x sleep 

interaction term were used to analyze (1) the association between sleep parameters and 

BMI; (2) the interaction between sleep duration and the 23 obesity predisposing gene 

variants (analyzed independently and as a GRS) on BMI. These tests were adjusted for 
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covariates including, sex, age, ethnicity and glycemic status. A Bonferroni correction was 

applied to the interaction analysis P < 6.3 x 10-3 (0.05/8 (7 SNPs + GRS)).  

Given the conflicting evidence regarding the nature of the association between 

sleep duration and obesity (inverse linear346,360-363 versus U-shaped347,348,364), two linear 

regression models were generated with and without the inclusion of a quadratic term to 

compare the two associations. A partial F-test was used to determine if the addition of the 

quadratic term significantly improved the fit of the model. These tests were adjusted for 

covariates including, sex, age, ethnicity and glycemic status. Two-tailed P-values are 

presented in this manuscript and SPSS (version 20, New York, USA, IBM Corporation) 

was used to perform all statistical analyses.  

RESULTS 

Characteristics of the studied cohort 

The EpiDREAM cohort enrolled 24 872 people from 17 countries and 6 different 

ethnic groups. Of the original sample, 17 337 had complete genotype and phenotype data 

for this analysis. The baseline characteristics of the study sample are outlined in Table 6. 

The majority of the sample was European (53.89%), followed by Latino (18.93%), South 

Asian (15.88%), African (7.15%), Native North American (2.87%), and East Asian 

(1.29%). Participants had a mean age of 52.65 years, the average sleep duration was 6.95 

hours/day (Standard deviation [SD]= 1.54) and the mean BMI was 30.16 (SD= 6.22) 

kg/m2.  

Effect of sleep duration on BMI 

Comparing the linear and U-shaped relationship between sleep duration and BMI 

revealed that the quadratic term (sleep duration variable (hours/day) squared) was 
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significantly associated with BMI (β= 0.04, 95% CI= 0.02 to 0.06, P= 6.5 x 10-4) (Table 

7). In addition, the addition of this term significantly increased the explanatory ability of 

the model (F (1,17336)=10.15, P=0.002).  

Effect of SNPs/GS on sleep duration  

The effect of the 23 obesity predisposing SNPs / GRS on the sleep duration is 

presented in Table 8. The 23 SNPs and the GRS were not associated with sleep 

parameters after appropriate correction for multiple tests (P < 2.1 x 10-3). Therefore, the 

interaction terms (sleep and SNPs) were assumed to be independent.  

Effect of SNPs/GRS on BMI 

Seven SNPs displayed significant associations with BMI: TNNI3K rs1514176 (β= 

0.20, 95% confidence interval [CI]= 0.07 to 0.32, P= 2.0 x 10-3), CDKAL1 rs2206734 (β= 

0.28, 95% CI= 0.13 to 0.43, P= 2.6 x 10-4), FTO rs3751812 (β= 0.51, 95% CI= 0.38 to 

0.64, P= 4.7 x 10-14), GIPR rs11671664 (β= 0.27, 95% CI= 0.08 to 0.47, P= 6.7 x 10-3), 

TAL1 rs2984618 (β= 0.28, 95% CI= 0.16 to 0.41, P= 8.5 x 10-6), NT5C2 rs3824755 (β= 

0.24, 95% CI= 0.05 to 0.43, P= 0.01), TCF7L2 rs7903146 (β= 0.43, 95% CI= 0.30 to 

0.57, P= 2.3 x 10-10). The GRS was also significantly associated with greater BMI (β= 

0.11, 95% CI= 0.09 to 0.14, P= 4.2 x 10-14). 

Sleep duration x SNP/GRS interaction analysis 

 The interaction analysis was restricted to SNPs/GRS that were significantly 

associated with BMI. Sleep duration did not moderate the impact of the seven individual 

SNPs of the GRS on BMI (Table 10). These analyses were adjusted for sex, age, ethnicity 

and glycemic status.  
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DISCUSSION 

In this study, we observed a significant U-shaped association between sleep 

duration and BMI, whereby those who slept a moderate amount (6-8 hours per night) had 

lower BMI values than participants who slept less than six hours per night and those who 

slept more than eight hours per night. We did not identify any significant associations 

between the 23 obesity predisposing SNPs or the GRS with sleep duration. Our 

interaction analyses did not indicate that sleep duration moderated the effect of any of the 

23 obesity predisposing SNPs or the GRS. 

Even though the association between sleep duration and BMI has been studied 

extensively, there have been mixed findings regarding the nature of this relationship 

(inverse linear vs. U-shaped) and this is the first study to analyze this association in a 

multi-ethnic international sample. Our analyses showed a significant U-shaped 

relationship and inclusion of a U-shaped (quadratic) coefficient improved the overall fit 

of the model. This indicates that both short and long sleep duration is associated with 

increased BMI compared to moderate sleep duration. This pattern of association is 

consistent with the relationship between sleep duration and mortality365,366. Sleep 

reduction is known to decrease insulin sensitivity, a consequence of both increased 

growth hormone secretion during sleep and an amplification of sympathetic nervous 

system activity367,368. The changes in endocrine and sympathoadrenal functioning are also 

established risk factors for the development of obesity367, and short sleep duration is 

associated with a number of pathological metabolic traits such as dyslipidemia, type 2 

diabetes, and hypertension2. Experimental sleep restriction studies have demonstrated an 

increase in calorie consumption and a preference for higher glycemic index foods in 



 80 

individuals with restricted sleep369. Sleep loss is also associated with an increase in 

ghrelin and a decrease in leptin, which creates synergistic changes that favor weight 

gain344. The specific mechanisms linking long sleep duration to obesity are not as well 

understood, although disrupted eating patterns (e.g. excessive snacking), high fat intake 

and decreased fruit and vegetable consumption have been associated with long sleep 

duration370. Together, this evidence and our findings herein support the U-shaped 

relationship between sleep duration and obesity. Future studies analyzing this association 

could advance our understanding by using objectively measured sleep data.  Additional 

avenues for future research include the analysis of sleep quality measures such as 

snoring, since these measures have been associated with BMI and DNA methylation in 

existing studies 371,372.  

Our interaction analysis did not reveal any significant interactions between sleep 

duration and the 23 obesity predisposing SNPs or GRS. However, two recent studies with 

larger sample sizes from the UK Biobank have found that sleep duration moderated the 

impact of variation in FTO rs1421085 and a 93 SNP GRS on BMI 335,373. In these studies, 

short and long sleep duration increased the effect of FTO rs1421085 and the 93 SNP 

GRS on BMI compared to the effect among moderate sleepers. This association is 

consistent with the main effect of sleep duration on BMI that we observed in our study 

although we did not observe significant interaction effects. Our results may differ from 

these studies for several reasons. The EpiDREAM sample included six ethnic groups 

living in 17 different countries, which include both high- and low-income countries, 

while the UK Biobank analyzed white Europeans in the UK. These differences likely 

introduced significant heterogeneity into the analysis in terms of genetic differences and 
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unmeasured lifestyle behaviours that may have influenced the sleep x gene interactions 

tested (residual confounding)373. The sleep duration categories used in our analysis (<6, 

6-8, >8 hours per day) also differ from that of the UK Biobank analyses (<7, 7-9, >9 

hours per day) and this could also potentially account for differences in the effect of sleep 

between studies. Future studies using objectively measured sleep data will be useful to 

further clarify the pattern of interaction between sleep duration and genetic susceptibility 

to obesity.  

Strengths of our study include the multi-ethnic nature of our sample, which 

provides greater ethnic generalizability of the results. Our study was limited in that the 23 

SNPs that were analyzed represent only a subset of currently identified obesity 

predisposing SNPs12. Furthermore, most of the analyzed SNPs were identified in 

Europeans and may exert different effects in other ethnicities. We also acknowledge that 

the power of our study is modest (Supplementary Figure 5). Additionally, study 

participants were selected based on being at high-risk for dysglycemia, and are not 

representative of the general population. All sleep phenotype information was self-

reported and likely contained a degree of error or bias.  

 In summary, we observed a U-shaped relationship between sleep duration and 

BMI, whereby those who slept a moderate amount displayed lower BMI values than 

participants with shorter and longer sleep durations. We did not detect any associations 

between the obesity predisposing SNPs analyzed and sleep duration, and sleep duration 

did not moderate the impact of the obesity predisposing SNPs or the GRS. Since other 

larger scale studies have provided evidence of gene-sleep interactions, future large 
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studies with objectively measured sleep information and more SNPs may provide more 

insight into this interaction.  

 

 

 
Table 6. Baseline characteristics of the EpiDREAM study stratified by sleep duration.  

 Category Sleep-Low 
<6 hrs/day 

Sleep-Moderate 
6-8 hrs/day 

Sleep-High 
>8 hrs/day All P-value 

Total at baseline 
N(%) 
 

 5927 (32.1%) 9864 (53.4%) 1586 (8.6%) 17337 (100%)  

Gender 
N(%) 

Male 2292 (38.7%) 1970 (43.0%) 2529 (36.8%) 6791 (39.1%)  
1.51 x 10-10 Female 3635 (61.3%) 2609 (57.0%) 4342 (63.2%) 10586 (60.9%) 

aAge  
(years) 
 

   54.28 ± 11.14 
 

   51.80 ± 11.30 
 

  51.87 ± 12.02 
 

  52.65 ± 11.37 
 

 
2.83 x 10-41 

Glycemic status 
N (%) 

Normal 
IFG/IGT 
Diabetes 

2370 (40.0%) 
2646 (44.6%) 
911 (15.4%) 

2057 (44.9%) 
1861 (40.6%) 
661 (14.4%) 

3003 (43.7%) 
2878 (41.9%) 
990 (14.4%) 

7430 (42.8%) 
7385 (42.5%) 
2562 (14.7%) 

3.24 x 10-7 

8.84 x 10-5 

0.245 
aSleep 
(hrs/day) 

 4.23 ± 0.97 7.13 ± 0.80 9.54 ± 0.80 6.95 ± 1.54 1.00 x 10-36 

aBMI at baseline  
(kg/m2) 

 30.67 ± 6.41 
(5924) 

29.72 ± 6.10 
(4584) 

30.00 ± 6.10 
(6869) 

30.16 ± 6.22 
(17377) 

3.78 x 10-15 

Ethnic groups 
N(%) 
 

South 
Asian 

797 (13.4%) 933 (20.4%) 1029 (15.0%) 2759 (15.9%)  
 
 

3.80 x 10-83 
East Asian 81 (1.4%) 60 (1.3%) 83 (1.2%) 224 (1.3%) 
European 2900 (48.9%) 2473 (4.0%) 3991 (58.1%) 9364 (53.9%) 
African 658 (11.1%) 227 (5.0%) 357 (5.2%) 1242 (7.1%) 
Latino 
American 

1354 (22.8%) 753 (16.4%) 1183 (17.2%) 3290 (18.9%) 

Native-
North 
American 

137 (2.3%) 133 (2.9%) 228 (3.3%) 498 (2.9%) 

IFG: impaired fasting glucose, IGT: impaired glucose tolerance, BMI: body mass index, SD = standard deviation; N = 
sample size   

aData are presented as mean ± S.D. (N). 
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Table 7. Linear vs. U-shaped models of the association between sleep duration and BMI. 

 Linear Model  U-shaped Model 

Variable β  
(95% CI) P- value 

 β  
(95% CI) P- value 

Sex      
(female vs. male) 1.35 (1.17 – 1.53) 4.1x10-49  1.34 (1.16 – 1.52) 6.7x10-48 

Age      
(per years older) -0.07 (-0.08 – -0.06) 1.0x10-56  -0.07 (-0.08 – -0.06) 4.7x10-57 

South Asian      
(vs. European) -4.39 (-4.65 – -4.12) 1.5x10-229  -4.35 (-4.61 – -4.09) 5.4x10-225 

East Asian      
(vs. European) -4.83 (-5.60 – -4.06) 9.4x10-35  -4.81 (-5.58 – -4.04) 2.1x10-34 

African      
(vs. European) 1.37 (1.02 – 1.72) 8.9x10-15  1.35 (1.01 – 1.70) 1.8x10-14 

South American      
(vs. European) 0.24 (0.01 – 0.47) 0.044  0.25 (0.02 – 0.48) 0.034 

Native North American      
(yes vs. no) 1.46 (0.93 – 1.98) 5.3x10-8  1.46 (0.93 – 1.98) 5.6x10-8 

Glycemic status      
(IGT/IFG vs. normal) 1.97 (1.78 – 2.16) 5.5x10-88  1.97 (1.78 – 2.16) 6.5x10-88 

Glycemic status      
(Diabetic vs. normal) 2.75 (2.48 – 3.01) 8.8x10-90  2.75 (2.48 – 3.01) 9.4x10-90 

Sleep duration      
(per hour increase) -0.18 (-0.24 – -0.12) 8.1x10-10  -0.66 (-0.94 – -0.38) 4.4x10-6 

Sleep duration squared      
(per hour increase) NA NA  0.04 (0.02 – 0.06) 6.5x10-4 

Notes: NA= not applicable since not included in the model.  
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Table 8. Effect of SNPs/GRS on sleep duration. 

 (adjusted for gender, age, ethnicity, glycemic status and BMI) 
 Sleep Duration 

SNP Gene β  95% CI P-value 
rs1514176 TNNI3K -0.02 0.05 - 0.02 0.29 

rs6235 PCSK1 0.03 -0.01 - 0.06 0.21 

rs6232 PCSK -0.10 -0.18 - -0.01 0.02 
rs2206734 CDKAL1 0.02 -0.03 - 0.05 0.47 

rs2272903 TFAP2B -0.01 -0.05 - 0.04 0.71 

rs1211166 NTRK2 0.01 -0.03 - 0.05 0.58 

rs6265 BDNF 0.05 1.3x10-3 - 0.09 0.04 

rs1401635 BDNF -0.01 -0.04 - 0.03 0.80 

rs997295 MAP2K5 1.8x10-3 -0.03 - 0.03 0.92 

rs7203521 FTO -2.6x10-3 -0.04 - 0.03 0.88 

rs3751812 FTO -0.04 -0.08 - -0.01 0.02 

rs1805081 NPC1 -0.01 -0.04 - 0.03 0.77 

rs2075650 APOE -0.01 -0.06 - 0.03 0.56 

rs11671664 GIPR -0.04 -0.09 - 0.01 0.12 

rs2984618 TAL1 -0.01 -0.05 - 0.02 0.47 

rs1011527 LEPR 0.05 2.0x10-3 - 0.11 0.04 

rs7605927 POMC 0.02 -0.02 - 0.05 0.32 

rs611203 USP37 -0.01 -0.04 - 0.03 0.71 

rs2535633 ITIH4 -0.01 -0.04 - 0.03 0.67 

rs3824755 NT5C2 -0.02 -0.06 - 0.03 0.50 

rs7903146 TCF7L2 0.02 -0.02 - 0.05 0.34 

rs671 ALDH2 0.09  -0.03 - 0.05 0.62 
rs749767 KAT8 -0.01 -0.05 - 0.02 0.49 

 GRS -2.1x10-3 -0.01 - 0.01 0.59 
Notes: GRS=genetic risk score, bold text indicates p<0.05. 

 
 
  



 85 

 
 
 
 
 

Table 9. Effect of SNPs/GRS on BMI. 

 (BMI analysis adjusted for sex, age, ethnicity and glycemic status.) 
 BMI  
SNP gene β  (95% CI) P-value 
rs1514176 TNNI3K 0.20 (0.07 to 0.32) 2.0x10-3 
rs6235 PCSK1 0.03 (-0.12 to 0.18) 0.68 
rs6232 PCSK 0.05 (-0.27 to 0.37) 0.75 
rs2206734 CDKAL1 0.28 (0.13 to 0.43) 2.6x10-4 
rs2272903 TFAP2B 0.12 (-0.06 to 0.29) 0.19 
rs1211166 NTRK2 0.06 (-0.09 to 0.20) 0.46 
rs6265 BDNF 0.10 (-0.07 to 0.26) 0.26 
rs1401635 BDNF 0.07 (-0.07 to 0.22) 0.32 
rs997295 MAP2K5 0.05 (-0.08 to 0.17) 0.45 
rs7203521 FTO -0.05 (-0.18 to 0.08) 0.47 
rs3751812 FTO 0.51 (0.38 to 0.64) 4.7x10-14 
rs1805081 NPC1 0.06 (-0.07 to 0.20) 0.36 
rs2075650 APOE 0.08 (-0.11 to 0.26) 0.41 
rs11671664 GIPR 0.27 (0.08 to 0.47) 6.7x10-3 
rs2984618 TAL1 0.28 (0.16 to 0.41) 8.5x10-6 
rs1011527 LEPR -0.11 (-0.31 to 0.09) 0.30 
rs7605927 POMC -0.02 (-0.16 to 0.11) 0.73 
rs611203 USP37 -0.03 (-0.16 to 0.09) 0.59 
rs2535633 ITIH4 -2.7x10-3 (-0.13 to 0.12) 0.97 
rs3824755 NT5C2 0.24 (0.05 to 0.43) 0.01 
rs7903146 TCF7L2 0.43 (0.30 to 0.57) 2.3x10-10 
rs671 ALDH2 -0.02 (-1.29 to 1.31) 0.96 
rs749767 KAT8 0.08 (-0.05 to 0.21) 0.25 
 GRS 0.11 (0.09 to 0.14) 4.2x10-14 

Notes: GRS=genetic risk score, bold text indicates p<0.05. 
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Table 10. Interaction analysis between SNPs/GRS and sleep duration on BMI. 

 (adjusted for gender, age, ethnicity, rosiglitazone use, and glycemic status) 
Sleep Continuous (hrs squared) 

  Main effect of SNP Interaction 
SNP Gene β  95% CI P-value β  95% CI P-value 

rs1514176 TNNI3K -0.19 -0.51 – 0.13 0.26 1.4x10-3 -0.01 – 0.01 0.49 
rs2206734 CDKAL1 0.11 -0.30 – 0.52 0.60  3.3x10-3  -4.2x10-3 – 0.01 0.39 
rs3751812 FTO 0.72 0.39 – 1.05 2.3x10-5 -4.5x10-3    -0.01 – 1.6x10-3  0.15 

rs11671664 GIPR 0.14 -0.38 – 0.65 0.61 2.7x10-3 -0.01 – 0.01 0.58 
rs2984618 TAL1 0.24 -0.08 – 0.55 0.14 8.8x10-4 -0.01 – 0.01 0.77 
rs3824755 NT5C2 0.06 -0.44 – 0.57 0.80 3.2x10-3 -0.01 – 0.01 0.50 
rs7903146 TCF7L2 0.20 -0.16 – 0.55 0.28 0.01 -1.6x10-3 - 0.01  0.14 

 GRS 0.15 0.07 – 0.22 1.3x10-4 -6.7x10-4 -2.3x10-3 – 7.0x10-4 0.34 
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 Supplementary Figure 4. Flow chart of EpiDREAM study (sleep x gene interaction) 

 

 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total enrolled 24,872 

Blood sample not collected or low DNA concentration 5,374 

DNA extracted 19,498 

Sample duplicates 125 
Sex inconsistency 159 
Ethnic mismatch 40 

Incorrect sample ID 2 
Overlap (excluded for more than one of reasons above 25) 

Total excluded 301 
 

Genotyped 19,197 

50K CVD array genotyping failure 711 

Successfully genotyped 
18,486  

Missing phenotypic data at baseline 116 
Ethnic groups with limited sample size                                      
(e.g. Tibetans, Middle Eastern) 1,033 

 

Total included at 
baseline 17,337 



 88 

 
Supplementary Figure 5. Power calculation for the interaction between obesity 
predisposing SNPs and sleep duration for a P-value=0.05. 
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CHAPTER 5-ALCOHOL INTAKE AND OBESITY: EVIDENCE OF SEX 
AND GENE INTERACTIONS IN A MULTIETHNIC STUDY 

ABSTRACT  

Background: A number of studies have analyzed the association between alcohol intake 
and obesity with inconsistent results. This study analyzed the impact of alcohol 
consumption on obesity in interaction with obesity predisposing genetic variants.  
 
Methods: We investigated these associations using 23 obesity predisposing variants 
(analyzed independently and as a genetic risk score (GRS)) in the multiethnic study 
EpiDREAM (14828 participants from six ethnic groups). Alcohol intake was 
measured as self-reported drinks/week (non-drinkers, 1-3 drinks/week, >3 
drinks/week) and the body mass index (BMI) was used to measure obesity.  
 
Results: Increased alcohol intake was associated with decreased BMI and the 
magnitude of this association was four-fold greater among females compared to 
males. The risk alleles of seven SNPs and the GRS were significantly associated 
with increased BMI (TNNI3K rs1514176, CDKAL1 rs2206734, FTO rs3751812, GIPR 
rs11671664, TAL1 rs2984618, NT5C2 rs3824755, TCF7L2 rs7903146). We did not 
observe any significant associations between the obesity risk variants and alcohol intake. 
An alcohol intake x FTO rs3751812 was also observed, whereby increased alcohol intake 
decreased the impact of FTO rs3751812 on BMI by 68%.  
 
Conclusion: Our results indicate that alcohol consumption significantly reduced the 
impact of FTO rs3751812 variation on BMI in a multi-ethnic sample. Further study of 
this association is needed to determine the implications for public health intervention and 
prevention strategies. 
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INTRODUCTION 

According to World Health Organization (http://www.who.int/), the prevalence of 

obesity has more than doubled since 1980 and over 600 million adults are currently 

defined as obese. Obesity is a risk factor for osteoarthritis, type 2 diabetes, dyslipidemia, 

hypertension, fatty liver, cardiovascular disease, cancer and ultimately decreased life 

expectancy3,374,375. The rise in obesity has also created substantial economic concerns. 

This financial burden is attributed to direct medical expenditures and indirect 

productivity costs, transportation costs and human capital costs375,376. The traditional 

treatments for obese individuals include diet restriction augmented by physical 

exercise377. Individuals who cannot improve their health through lifestyle changes alone 

often use weight loss medication in conjunction340,378. A subset of individuals with severe 

obesity resort to bariatric surgery as a method of treatment341. Based on the limited 

efficacy or accessibility of current treatments, prevention through modifiable 

environmental risk factors has become an important focus of research379. 

While obesity remains a multifactorial condition, it has largely been attributed to 

environmental risk factors, particularly ‘the big two’: physical inactivity and excessive 

energy intake33,380. Additional environmental factors such as smoking cessation, sleep 

duration/quality, psychosocial stress or exposure to pollutants / endocrine disruptors have 

also been identified as contributors to obesity33,380-382. While many of these risk factors 

have shown clear relationships with obesity development, research pertaining to the 

effects of alcohol intake has been less conclusive6,383. Considering its high caloric value 

(7 kilocalories/gram), one may expect energy consumed through alcohol to have an 

additive effect on other dietary sources of energy and increase obesity risk384,385. 
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However, findings remain controversial and paradoxical385,386. Alcohol has been shown 

to interfere with metabolic and cognitive functions387, and has been suggested to enhance 

food consumption after an alcoholic preload condition, and promote short-term over-

consumption385. However, epidemiological studies over longer periods of time showed no 

consistent evidence of increased food intake on days when alcohol was consumed385,388. 

Current evidence has not established a consistent relationship between alcohol intake and 

obesity measures6. Several studies indicate a negative or no association, while some 

report sex-specific effects or a J-shaped relationship between alcohol intake and obesity6. 

The J-shaped association suggests that moderate alcohol intake is associated with lower 

risks of obesity compared to heavy drinkers or abstainers385,386,388.  

 Despite the impact of obesogenic environmental risk factors, biological factors 

such as sex, age and ethnicity are important determinants of variation in body weight33,72. 

Admixture, twin, adoption and family studies suggest a strong genetic influence despite 

their varying environmental influences352,389,390. At this time, 20 Mendelian obesity 

syndromes (e.g. Bardet-Biedl) have been fully genetically elucidated391. Defects in 

twelve genes involved in the neuronal differentiation of the paraventicular nucleus and 

leptin/melanocortin pathway have been linked to monogenic non-syndromic obesity353. 

Candidate gene and genome-wide association studies (GWAS) have identified over 160 

single-nucleotide polymorphisms (SNPs) associated with polygenic obesity353 and 

emerging gene-environment interaction studies (GEI) have identified lifestyle factors 

(socioeconomic status, physical activity, diet) that can moderate the impact of a subset of 

genetic variants (e.g. FTO) on BMI392. However, only one study to date has analyzed the 

interaction between alcohol intake and genetic predisposition to obesity. This analysis 
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found that increased alcohol intake decreased the impact of FTO rs1421085 on BMI 

among 119 132 individuals from the UK Biobank. Genome wide- analysis confirmed that 

the majority of these participants were of northern-European ancestry, although genetic 

diversity was evident in a subset of this sample323.  

Existing studies have also revealed that alcohol use and abuse display a heritable 

component, with 36-40% of the variance in drinking measures attributable to genetic 

factors393. Similarities in personality traits, neural mechanisms, functional brain 

abnormalities and a likelihood of disruptive behaviour syndromes have been reported to 

be shared between obesity and addictive disorders, including alcohol dependence394,395. 

However, the overlap between genetic predisposition to obesity and alcohol 

overconsumption has been poorly investigated. Several studies explored the association 

of FTO intron 1 variation with alcohol consumption or dependence and found conflicting 

results144,386,396,397. The rs671 major allele (G) in the ALDH2 gene has been associated 

with increased alcohol consumption and increased BMI in East Asian population through 

GWAS398,399.   

In this study, we aimed to assess: (1) the relationship between alcohol intake and 

BMI (2) the interaction between alcohol intake and sex on BMI; and (3) the interaction 

between alcohol intake and obesity predisposing SNPs on BMI. We used 23 obesity 

predisposing SNPs (analyzed independently and as a genetic risk score (GRS)) in the 

multi-ethnic study EpiDREAM. 
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MATERIALS AND METHODS 

Study Participants 

The EpiDREAM study is an international multi-ethnic cohort of participants at 

risk for type 2 diabetes (T2D)400,401. This cohort consists of 24 872 individuals from 17 

countries and includes those who participated in the DREAM trial401.  Between July 2001 

and August 2003 individuals between the ages of 18 – 85 years, who were identified as 

being at risk for T2D based on abdominal adiposity, ethnicity and family history were 

screened using a 75-gram oral glucose tolerance test (OGTT). A detailed description of 

the cohort and methodology has been published previously401. 

This analysis included 14 828 individuals with both phenotypic and gene-centric 

50 K single nucleotide polymorphism (SNP) array information (Supplementary Figure 6). 

The participants represented six ethnic groups (South Asian, East Asian, European, 

African, Latin American and Native North American). Self-reported ethnicity of all 14 

828 individuals were validated using Eigensoft software357 and the first 10 principal 

components were included in the analyses to adjust for population stratification. In 

accordance with the Declaration of Helsinki, informed consent was obtained from each 

participant prior to participation in the study. The EpiDREAM study has been approved 

by local ethics committees and all experiments were performed in accordance with 

relevant guidelines and regulations.  

Genotyping 

The Qiagen Gentra System was used to extract the DNA from the buffy coats of 

19 498 participants in the EpiDREAM study (Supplementary Figure 4). Genotyping was 
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performed on the Illumina CVD bead chip microarray ITMAT Broad Care (IBC) array 

through the Illumina Bead Studio genotyping module, version 3.2 at McGill University 

and Genome Quebec Innovation Centre325. We established a list of SNPs that reached 

genome-wide significance (P < 5x10-8) with BMI or binary obesity status in literature. 

Three different approaches were implemented for the SNP selection process using a key 

word search (e.g. BMI) on i) the National Human Genome Research Institute (NHGRI) 

GWAS Catalog (www.genome.gov/gwastudies/) ii) the HuGE Navigator GWAS 

Integrator (www.hugenavigator.net/HuGENavigator/gWAHitStartPage.do) and iii) the 

PubMed database (www.ncbi.nlm.nih.gov/pubmed). This search was performed 

independently by two individuals (HR and DM) and this strategy generated a list of 136 

independent SNPs associated with BMI and/or binary obesity status in October 2015. 

When a lead SNP was not present, we used the following criteria to select proxy SNPs: 1) 

SNPs were included in the Illumina cardiovascular gene-centric array; 2) r2 >0.90 in a 

population of similar ancestry in which the lead SNP was identified from the 1000 

Genomes Project. We used the Broad Institute website tool SNAP (SNP Annotation and 

Proxy Search) paired with an independent method we developed to identify proxy 

SNPs402. Of these 136 SNPs, 23 lead or proxy SNPs were available on version 1 and 2 of 

the IBC 50K SNP array (Supplementary Table 3). Supplementary Table 1 illustrates the 

genotype distributions of the 23 obesity-associated gene variants stratified by ethnicity. 

The SNPs showed no significant (P < 10-6) deviation from Hardy-Weinberg Equilibrium 

(HWE) within the six ethnic groups. The call rate for each of the 23 SNPs was between 

99.8 – 100% (Supplementary Table 1). 
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Phenotyping 

 A standardized protocol was implemented to assess demographic data and direct 

anthropometric measurements including height (m) and weight (kg). Trained staff at 

clinical centers measured standing height to the nearest 0.1 cm and weight to the nearest 

0.1 kg in light clothing. Standing height measurements required the individual to stand 

with his/her back against a wall, look straight ahead standing with bare feet on the 

ground. Averages of the two measures were used in all analyses. BMI was calculated as 

total weight in kilograms (kg) divided by height in meters (m) squared.  

 Based on the 2003 ADA criteria, the oral glucose test was used to classify 

participants into four distinct groups: normal glucose tolerant (NGT), impaired fasting 

glucose (IFG), impaired glucose tolerance (IGT) and T2D403. IFG and IGT categories 

were collapsed to form the three groups (NGT, IFG/IGT, T2D) which comprised the 

glycemic status variable. 

Average alcohol consumption (drinks/week) was measured based on self-reported 

information from the participant questionnaire as a six-level categorical variable: 1 = 

non-drinkers, 2 = 1-3 drinks/week, 3 = 4-6 drinks/week, 4 = 7-10 drinks/week, 5 = 11-14 

drinks/week, 6 = > 15 drinks/week. Based on the limited sample size of the groups who 

reported drinking more than three drinks/week, these six categories were collapsed to 

form a three-category alcohol consumption variable (non-drinkers, 1-3 drinks/week, >3 

drinks/week).  

Statistical Analysis 

All statistical analyses were performed using SPSS (version 20, New York, USA, 

IBM Corporation). Statistical power calculations were performed using QUANTO 
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(version 1,2,4, University of Southern California, Los Angeles, CA, USA). Risk alleles 

for the 23 SNPs were based on existing literature and single SNP analyses were 

performed under the additive inheritance model.  

The genetic risk score (GRS) was determined by summing the alleles of the 23 

obesity risk SNPs. Based on previous work by Dudbridge, an unweighted GRS was used 

for these analyses to generate a range from 0 to 46404. Ethnic-specific imputations were 

assigned using the mean number of obesity predisposing alleles in successfully 

genotyped individuals, as previously described405. Before conducting the primary 

analyses, two preliminary verification steps were performed. First, the linear regression 

models were applied to test association between the 23 SNPs/GRS and BMI, and the 

SNPs/GRS significantly associated with BMI were carried forward to the SNP/GS x 

alcohol consumption interaction analysis. A significance threshold of P<0.05 was 

selected for this step based on the strong prior evidence of association between the SNPs 

and BMI in literature (Supplementary Table 3). This test was adjusted for sex, age, 

ethnicity and glycemic status. Second, the association between the SNPs/GRS and 

alcohol consumption was tested using ordinal logistic regression to ensure that the 

environmental confounding was not influencing the interaction results406. A Bonferroni 

adjusted P value <2.1 x 10-3 (0.05/24 (23 SNPs + GRS) was used as a significance 

threshold for this step. This analysis was adjusted for sex, age, ethnicity, glycemic status 

and BMI. As the primary analysis, linear regression models were used to examine (1) the 

association between alcohol consumption and BMI (with inclusion of an alcohol x sex 

interaction term) and (2) the interaction between alcohol consumption and the SNPs/GRS 

on BMI. These tests were adjusted for covariates including, sex, age, ethnicity, and 
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glycemic status. A Bonferroni correction for multiple testing was applied to the alcohol x 

SNP/GRS interaction analysis yielding a significance threshold of P <6.3 x 10-3 (0.05/8). 

 

RESULTS 

Characteristics of the studied cohort 

 The baseline clinical and anthropometric characteristics of the EpiDREAM study 

stratified by alcohol consumption are summarized in Table 11. The mean age of the 14 

828 participants in the study was 52.1 years and 62.1% of the sample was female. 

Participants in this analysis represented 17 of the 21 countries from which recruitment 

originally took place. Of the 14 828 participants, the ethnic distribution of the cohort was 

54.0% European, 19.3% Latino American, 15.6% South Asian, 6.9% African, 3.0% 

Native North American and 1.2% East Asian. The mean BMI was 30.0 (standard 

deviation [SD]=6.17) kg/m2. The majority of the sample was non-drinkers (N=9 641, 

65.0%) while 15.3% (N=2 267) reported 1-3 drinks/week and 19.7% (N=2 920) reported 

>3 drinks/week. The unadjusted analysis suggests that alcohol intake varies by sex, age 

and ethnicity (Table 11).  

 
Effect of Alcohol Intake on BMI 

Increased alcohol intake was associated with decreased BMI (β= -0.25, 95% 

confidence interval [CI]= -0.42 to -0.07, P= 6.3 x 10-3) and the impact of alcohol intake 

on BMI varied significantly by sex (βinteraction= -0.82, 95% CI= -1.06 to -0.58, P= 1.7 x 

10-11) (Table 12). The inverse relationship between alcohol intake and BMI was 

consistent among both males (β= -0.26, 95% CI= -0.42 to -0.10, P= 1.2 x 10-3) and 
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females (β= -1.05, 95% CI= -1.24 to -0.86, P= 2.2 x 10-26), although the magnitude of the 

effect was four-fold greater among females. These tests were adjusted for age, ethnicity 

and glycemic status.  

 
  
Effect of SNPs/GS on Alcohol Intake  

 
The association between the 23 obesity predisposing SNPs and the corresponding 

GRS on alcohol intake was analyzed adjusting for sex, age, ethnicity, glycemic status and 

BMI (Table 13). Of the 23 SNPs analyzed, none surpassed the Bonferroni adjusted 

threshold of significance. The association between the obesity risk GRS and alcohol 

intake was also not significant (Table 13). 

Effect of SNPs/GRS on BMI 

 At baseline, significant associations were observed between the obesity risk 

alleles of seven SNPs and BMI: TNNI3K rs1514176 (β= 0.23, 95% CI= 0.09 to 0.36, P= 

1.0 x 10-3), CDKAL1 rs2206734 (β= 0.25, CI= 0.09 to 0.42, P= 2.6 x 10-3), FTO 

rs3751812 (β= 0.49, 95% CI= 0.35 to 0.63, P= 2.6 x 10-11), GIPR rs11671664 (β= 0.23, 

95% CI= 0.01 to 0.44, P= 0.04), TAL1 rs2984618 (β= 0.31, 95% CI= 0.17 to 0.44, P= 7.5 

x 10-6), NT5C2 rs3824755 (β= 0.24, 95% CI= 0.05 to 0.43, P= 0.01) and TCF7L2 

rs7903146 (β= 0.45, 95% CI= 0.30 to 0.59, P= 2.1 x 10-9). The GRS was also 

significantly associated with greater BMI (β= 0.12, 95% CI= 0.09 to 0.15, P= 2.1 x 10-14) 

(Table 14).   
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Alcohol Intake x SNP/GRS Interaction Analysis 

The interaction analysis was restricted to the seven SNPs and GRS, which 

displayed an association (P<0.05) with BMI. A significant interaction was observed 

between the FTO rs3751812 and alcohol intake on BMI (β= -0.23, 95% CI= -0.40 to -

0.06, P= 7.0 x 10-3) (Table 14). This suggests that increased alcohol intake decreased the 

impact of the FTO rs3751812 risk allele (T) on BMI. The subgroup analysis 

demonstrated that each additional FTO rs3751812 risk allele (T) was associated with a 

0.53 increase in BMI among non-drinkers (CI= 0.35 to 0.71, P= 1.1 x 10-8), a 0.44 

increase in BMI among those consuming 1-3 drinks/week (CI= 0.12 to 0.76, P= 6.5 x 10-

3) and a 0.17 increase in BMI among those consuming over 3 drinks/week (CI= -0.11 to 

0.44, P= 0.23). This suggests that the impact of FTO rs3751812 can change by up to 68% 

depending on the frequency of alcohol intake (Figure 2).  

The interactions between alcohol consumption and the six remaining SNPs 

(TNNI3K rs1514176, CDKAL1 rs2206734, GIPR rs11671664, TAL1 rs2984618, NT5C2 

rs3824755, TCF7L2 rs7903146) were not significant. The interaction between alcohol 

consumption and the GRS was also not significant for BMI (Table 14).  

   

DISCUSSION 

In the present study, we analyzed the complex relationship between alcohol 

consumption and BMI from an observational and genetic epidemiology perspective using 

a multi-ethnic study. Our results indicated that greater alcohol consumption was 

associated with decreased BMI, and the magnitude of this effect was four-fold greater 

among females compared to males. Increased alcohol consumption also attenuated the 
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impact of FTO rs3751812 variation on BMI, suggesting that the association between 

alcohol consumption and BMI may be partially explained by gene-environment 

interactions. We did not observe any significant evidence of direct association between 

the 23 SNPs or GRS and alcohol consumption.  

The negative association between alcohol consumption and BMI has been 

observed in several existing studies407-413. These investigations include large-scale 

longitudinal studies in the United States (N=7 230 - 19 220, follow-up 7 - 12.9 years), 

and have reported larger inverse associations among women compared to men407,408,410-

412. This finding is consistent with the alcohol intake x sex interaction identified in our 

study and is also supported by a cohort study of 43 543 Danish men and women followed 

prospectively for five years409. Previous evidence indicates that men add alcohol to their 

daily dietary intake whereas alcohol consumption tends to replace the intake of other 

macronutrients, particularly carbohydrates among women408, without increasing total 

energy intake414-417. Women also display reduced alcohol dehydrogenase activity 

compared to men and are therefore more likely to metabolize ethanol via the hepatic 

microsomal ethanol-oxidizing system (MEOS)414,418,419. The MEOS system is stimulated 

by chronic alcohol intake and produces ATP less efficiently than alcohol dehydrogenase 

oxidation since most of the energy derived from MEOS metabolism of alcohol increases 

heat production412,414. Another explanation supported by metabolic studies suggests that 

the acute thermogenic effect induced by low doses of alcohol consumption varies by 

sex420. In men, the change in energy expenditure associated with alcohol consumption is 

modest, while in women the energy expenditure increased substantially beyond the 

energy content of the alcohol consumed421,422.  
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Although three previous studies have reported that risk allele carriage in FTO is 

associated with decreased alcohol intake, we did not find a significant association in our 

study following Bonferroni correction144,386,423. However, the relationship between FTO 

rs3751812 and alcohol consumption displayed nominal evidence of association and the 

direction of effect was consistent with the existing studies (Table 3)144,386,423. Challenges 

with replicating this finding were also reported in a previous replication effort that 

analyzed three independent cohorts397. These results reinforce the difficulty associated 

with identifying gene pleiotropy between obesity and drinking patterns, with the 

exception of ALDH2398,399. It is important to note that we did not analyze extreme 

phenotypes (e.g. alcohol addiction), and we cannot exclude association with specific 

alcohol consumption patterns, such as binge drinking. Finally, ethnic or country specific 

trends in drinking patterns and ethnic variations in the alcohol associated variants may 

explain the lack of association between FTO rs3751812 and alcohol consumption in this 

study.  

The only gene-environment interaction observed in the present study involved 

alcohol consumption and FTO rs3751812, whereby increased alcohol intake appeared to 

attenuate the impact of the FTO rs3751812 risk allele (T) on BMI by 68%. Although this 

interaction was nominally significant, a large-scale study (N=119 132) from the UK 

biobank also identified an alcohol x FTO interaction with a similar direction of effect, 

suggesting that this interaction may be valid and the nominal significance level could be 

attributed to a lack of power. There is also additional evidence to support this association. 

First, variation in FTO has been shown to interact with a variety of lifestyle factors 

including physical activity, diet patterns and socioeconomic status18,164,424. Second, FTO 
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functions as a demethylase and differential methylation and BMI variance have been 

linked to variation in intron 1 of FTO285,425. Third, reduction in S-adenosylmethionine 

levels associated with ethanol consumption inhibits methyl group transfer and contributes 

to DNA hypomethylation426-428. In addition, alcohol consumption alters the 

NAD+/NADH ratio and produces reactive oxygen species and acetate, both of which can 

influence epigenetic regulatory mechanisms428. Disrupting DNA methylation through 

these pathways may compromise gene regulation at the transcription level428-430. Since 

DNA methylation is influenced by alcohol consumption, DNA methylation may 

represent the biological mechanism that is influenced by both alcohol consumption and 

FTO variation431,432.  

Strengths of this study include the large sample size, the multiethnic sample and 

the international recruitment. This study was limited by the lack of detail involved in the 

assessment of alcohol consumption. The type of alcohol consumed (e.g. beer, wine, 

spirits), patterns of consumption (e.g. binge drinking) and presence of disorders (e.g. 

alcoholism) were not assessed, which limits the complexity of the analysis and creates the 

potential for residual confounding. Assessing alcohol intake by self-report also creates 

the possibility for recall bias, such as socially desirable reporting. Another limitation is 

that is that since a portion of the study sample is dysglycemic, it is possible that some of 

the participants may have been taking medications that restricted them from consuming 

alcohol, or perhaps interfered with the metabolism of alcohol. The SNPs selected for this 

study may not be ideal proxies in each ethnic group since most were originally identified 

in European populations. Finally, the 23 SNPs analyzed do not represent the complete list 

of currently identified obesity risk variants.  
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In summary, we observed an inverse relationship between alcohol consumption 

and BMI in a multiethnic cohort recruited from 17 countries. Although this effect was 

identified in both men and women, the size of the effect was four-fold greater among 

females. We were not able to replicate the association between FTO variation and alcohol 

consumption, yet the direction of effect was consistent with previous studies. An alcohol 

x FTO interaction was observed whereby increased alcohol consumption appeared to 

attenuate the impact of FTO rs3751812 on BMI by 68%. While this interaction has been 

identified in previous studies, this is the first report of this interaction in a multi-ethnic 

sample and further study of this association is needed to determine the impact for public 

health intervention and prevention strategies.  
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Table 11. Baseline characteristics stratified by alcohol consumption in the EpiDREAM study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Category Non drinkers 1-3 drinks/week >3 drinks/week All P-value 
Total at 
baseline 
N(%) 

 9641 (65.0%) 2267 (15.3%) 2920 (19.7%) 14828 (100%)  

Gender 
N(%) 

Male 2786 (28.9%) 1032 (45.5%) 1803 (61.7%) 5621 (37.9%) 3.8 x10-24 
Female 6855 (71.1%) 1235 (54.5%) 1117 (38.3%) 9207 (62.1%) 

aAge  
(years) 

 51.13 ±11.52 52.43 ± 11.02 
 

55.10 ± 10.59 
 

52.11 ± 11.37  1.9 x 10-60 

Glycemic 
status 
N (%) 

Normal 
IFG/IGT 

5067 (52.6%) 
4574 (47.4%) 

1169 (51.6%) 
1098 (48.4%) 

1200 (41.1%) 
1720 (58.9%) 

7436 (50.1%) 
7392 (49.9%) 

9.2 x 10-27 

aBMI at 
baseline  
(kg/m2) 

 30.23 ± 6.53 29.57 ± 5.59 29.42 ± 5.26 29.97 ± 6.17 2.2 x 10-11 

Ethnic groups 
N(%) 
 

South 
Asian 

2129 (22.1%) 111 (4.9%) 74 (2.5%) 2314 (15.6%) 5.8 x 10-48 

East Asian 147 (1.5%) 12 (0.5%) 15 (0.5%) 174 (1.2%) 
European  4214 (43.7%) 1614 (71.2%) 2185 (74.8%) 8013 (54.0%) 
African 841 (8.7%) 105 (4.6%) 77 (2.7%) 1023 (6.9%) 
Latino 
American 

2035 (21.1%) 359  (15.9%) 470 (16.1%) 2864 (19.3%) 

Native-
North 
American 

275 (2.9%) 66 (2.9%) 99 (3.4%) 440 (3.0%) 
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Table 12. Effect of alcohol consumption on BMI. 

Effect of alcohol consumption on BMI (adjusted for age, ethnicity, 
and glycemic status) 
 β  95% CI P-value 
Sex 1.10 0.85 to 1.35 1.1 x 10-17 

Alcohol -0.25 -0.42 to -0.07 6.3 x 10-3 
Alcohol x sex -0.82 -1.06 to -0.58 1.7 x 10-11 

Subgroup analysis 
Females 

Males 

 
-1.05 
-0.26 

 
-1.24 to -0.86 
-0.42 to -0.10 

 
2.2 x 10-26 

1.2 x 10-3 
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Table 13. Effect of SNPs/GRS on alcohol consumption (adjusted for sex, age, ethnicity, glycemic 
status and BMI). 

SNP gene     OR (95% CI) P-value 
rs1514176 TNNI3K 1.00 (0.95 to 1.05) 0.88 
rs6235 PCSK1 0.98 (0.92 to 1.05) 0.61 
rs6232 PCSK 0.96 (0.84 to 1.10) 0.55 
rs2206734 CDKAL1 0.98 (0.92 to 1.04) 0.54 
rs2272903 TFAP2B 1.02 (0.95 to 1.11) 0.54 
rs1211166 NTRK2 0.97 (0.91 to 1.03) 0.38 
rs6265 BDNF 1.09 (1.02 to 1.17) 0.01 
rs1401635 BDNF 1.01 (0.95 to 1.07) 0.87 
rs997295 MAP2K5 1.00 (0.95 to 1.05) 0.93 
rs7203521 FTO 1.05 (1.00 to 1.11) 0.06 
rs3751812 FTO 0.94 (0.89 to 0.99) 0.02 
rs1805081 NPC1 1.02 (0.97 to 1.08) 0.47 
rs2075650 APOE 1.09 (1.01 to 1.17) 0.03 
rs11671664 GIPR 0.96 (0.88 to 1.04) 0.29 
rs2984618 TAL1 1.01 (0.96 to 1.07) 0.67 
rs1011527 LEPR 1.00 (0.91 to 1.09) 0.97 
rs7605927 POMC 0.98 (0.93 to 1.04) 0.49 
rs611203 USP37 1.04 (0.99 to 1.10) 0.12 
rs2535633 ITIH4 0.98 (0.93 to 1.03) 0.44 
rs3824755 NT5C2 0.96 (0.89 to 1.04) 0.31 
rs7903146 TCF7L2 0.98 (0.92 to 1.03) 0.42 
rs671 ALDH2 1.04 (0.98 to 1.08) 0.62 
rs749767 KAT8 0.97 (0.92 to 1.02) 0.19 
rs12617233 FANCL 0.97 (0.92 to 1.02) 0.24 
 GRS 1.00 (0.99 to 1.01) 0.82 
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Table 14. Main association between SNPs/GRS and BMI, and interaction effects with alcohol 
consumption (adjusted for sex, age, ethnicity and glycemic status). 

 Main SNP effect Interaction analysis 
(SNP/GRS x alcohol) 

SNP gene β  (95% CI) P-value β  (95% CI) P-value 
rs1514176 TNNI3K 0.23 (0.09 to 0.36) 1.0x10-3 0.13 (-0.03 to 0.30) 0.11 
rs6235 PCSK1 0.06 (-0.11 to 0.22) 0.47  -  
rs6232 PCSK 0.01 (-0.34 to 0.35) 0.96  -  
rs2206734 CDKAL1 0.25 (0.09 to 0.42) 2.6x10-3 -0.20 (-0.40 to 0.01) 0.06 
rs2272903 TFAP2B 0.18 (-0.01 to 0.37) 0.07  -  
rs1211166 NTRK2 0.08 (-0.08 to 0.24) 0.30  -  
rs6265 BDNF 0.09 (-0.10 to 0.27) 0.35  -  
rs1401635 BDNF 0.13 (-0.03 to 0.28) 0.11  -  
rs997295 MAP2K5 0.05 (-0.08 to 0.18) 0.46  -  
rs7203521 FTO -0.04 (-0.17 to 0.11) 0.63  -  
rs3751812 FTO 0.49 (0.35 to 0.63) 2.6x10-11 -0.23 (-0.40 to -0.06) 7.0x10-3 
  Subgroup analysis Non-drinkers 0.53 (0.35 to 0.71) 1.1x10-8 
    1-3 drinks/week 0.44 (0.12 to 0.76) 6.5x10-3 
    >3 drinks/week 0.17 (-0.11 to 0.44) 0.23 
rs1805081 NPC1 0.05 (-0.10 to 0.19) 0.54  -  
rs2075650 APOE 0.09 (-0.11 to 0.28) 0.39  -  
rs11671664 GIPR 0.23 (0.01 to 0.44) 0.04 -0.12 (-0.38 to 0.15) 0.40 
rs2984618 TAL1 0.31 (0.17 to 0.44) 7.5x10-6 -0.02 (-0.18 to 0.15) 0.86 
rs1011527 LEPR -0.13 (-0.35 to 0.09) 0.23  -  
rs7605927 POMC -0.05 (-0.19 to 0.10) 0.54  -  
rs611203 USP37 -0.06 (-0.20 to 0.07) 0.38  -  
rs2535633 ITIH4 0.00 (-0.14 to 0.13) 0.95  -  
rs3824755 NT5C2 0.24 (0.05 to 0.43) 0.01 0.12 (-0.12 to 0.37) 0.32 
rs7903146 TCF7L2 0.45 (0.30 to 0.59) 2.1x10-9 -0.01 (-0.19 to 0.16) 0.88 
rs749767 KAT8 0.06 (-0.08 to 0.20) 0.40  -  
rs12617233 FANCL 0.04 (-0.09 to 0.18) 0.53  -  
 GRS 0.12 (0.09 to 0.15) 2.1x10-14 -0.03  (-0.07 to 0.01) 0.18 
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Figure 2. Mean BMI values stratified by alcohol consumption and FTO rs3751812 
genotype. 
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Supplementary Table 3. Description of the 23 SNPs selected in EpiDREAM. 

Gene SNP Risk 
Allele 

Other 
Allele 

Traits Chromosome Publication  

TNNI3K rs1514176 G A  BMI 1 Speliotes, Nat Genet  2010 

PCSK1  rs6235 C G Obesity 5 Benzinou, Nat Genet  
2008 rs6232 G A 

CDKAL1 
 

rs2206734 C T BMI 6 Okada, Nat Genet  
2012 

BDNF 
 

rs6265 G A BMI  11 Thorleifsson, Nat Genet 2009 
rs1401635 C G 

FTO  
 

rs3751812 T G BMI 16 
 

Frayling, Science  
2007 

rs7203521 A G Thorleifsson Nat Genet 2009 
NPC1 
 

rs1805081 A G Obesity 18 Meyre Nat Genet  
2009 

TFAP2B 
 

rs2272903 G A BMI 6 Speliotes, Nat Genet  
2010 

NTRK2 
 

rs1211166 A G BMI 9 Guo, Hum Mol Genet  
2013 

MAP2K5 
 

rs997295 T G BMI 15 Speliotes, Nat Genet 
 2010 

APOE 
 

rs2075650 A G BMI 19 Guo, Hum Mol Genet 
 2013 

GIPR 
 

rs11671664 G A BMI 19 Speliotes, Nat Genet  
2010 

TAL1 
 

rs2984618 T G BMI 1 Locke et al., Nat Genet 2015 

LEPR 
 

rs1011527 A G Obesity 1 Wheeler Nat Genet 2013 

POMC 
 

rs7605927 G C BMI 2 Graff Hum Mol Genet 2013 

USP37 
 

rs611203 G A BMI 2 Locke et al., Nat Genet 2015 

ITIH4 rs2535633 
 

G C BMI 3 Wen Hum Mol Genet  
2014 

NT5C2 rs3824755 
 

C G BMI 10 Wen Hum Mol Genet  
2014 

TCF7L2 rs7903146 
 

C T BMI 10 Locke et al., Nat Genet 2015 

KAT8 rs749767 
 

A G BMI 16 Locke et al., Nat Genet 2015 

FANCL rs12617233 C T BMI 2 Guo et al., HMG 2012 
 
 
 
 
 

 



 110 

 
Supplementary Figure 6. Flow chart of EpiDREAM study (alcohol x gene interaction). 

 
  

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total enrolled 24,872 

Blood sample not collected or low DNA concentration 5,374 

DNA extracted 19,498 

Sample duplicates 125 
Sex inconsistency 159 
Ethnic mismatch 40 

Incorrect sample ID 2 
Overlap (excluded for more than one of reasons above 25) 

Total excluded 301 
 

Genotyped 19,197 

50K CVD array genotyping failure 711 

Successfully genotyped 
18,486  

Missing phenotypic data at baseline 2,625 
Ethnic groups with limited sample size                                      
(e.g. Tibetans, Middle Eastern) 1,033 

 

Total included at 
baseline 14,828 
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CHAPTER 6-CUMULATIVE ENVIRONMENTAL RISK AND GENETIC 
PREDISPOSITION TO OBESITY  

ABSTRACT  

Background: Several gene-environment interaction studies have identified lifestyle 
factors that can moderate the impact of obesity predisposing gene variants. However, the 
extent to which the cumulative effect of multiple lifestyle factors influences the genetic 
risk to obesity is uncertain.  
 
Methods: The data for this analysis were collected from the EpiDREAM study (17,373 
participants from six ethnic groups). Exposure to 12 lifestyle factors was measured and 
combined into a cumulative environmental score. We analyzed the interaction between 
this score and variation in FTO rs3751812 and a genetic risk score (GRS) on body mass 
index (BMI).  
 
Results: The genetic risk score, FTO rs3751812 and the cumulative environmental score 
were significantly associated with BMI. We also observed a significant interaction 
whereby the accumulation of unhealthy lifestyle exposures increased the impact of FTO 
rs3751812 variation on BMI. The interaction between the GRS and the cumulative 
environmental score was not statistically significant.  
 
Conclusion: In the present study, genetic and lifestyle were independently associated 
with BMI in a large multi-ethnic sample. These findings also demonstrate that the 
accumulation of unhealthy lifestyle factors can create a two-fold increase in the impact of 
FTO rs1751812 on BMI. 
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INTRODUCTION 

 Obesity has become a worldwide epidemic, with 600 million adults classified as 

obese in 2014433.  It is associated with several comorbidities including type 2 diabetes 

mellitus, cardiovascular disease, certain cancers and psychological distress434.  

Furthermore, obesity can reduce life expectancy by approximately 8-13 years3. Although 

treatments such as lifestyle modifications, pharmacotherapy and bariatric surgery are 

available, they offer modest long-term benefit to the patient435-437. While obesity is 

challenging to treat, it is also preventable, making effective prevention a critical aspect of 

the solution to this epidemic438. Therefore, a comprehensive understanding of the genetic 

and environmental determinants is crucial to develop effective prevention strategies.   

The recent development of the obesity epidemic has been attributed to an 

‘obesogenic’ environment resulting from lifestyle and societal changes439. It constitutes 

obesity-promoting factors such as a high calorie diet, physical inactivity, lack of sleep, 

and increased stress439-441. While this environment creates favourable conditions for the 

development of obesity, it is not solely responsible for this epidemic. Biological factors 

such as ethnicity, age, and sex determine which individuals develop obesity in unhealthy 

environments47. If ethnic-dependent prevalence of obesity can be explained in part by 

lifestyle differences, admixture studies elegantly demonstrated that the genetic landscape 

was an important contributor as well442. The genetic basis of obesity has also been 

established through twin and family studies that report heritability estimates of 40-70% 

352. The genetic determinants of obesity can be classified into two categories: monogenic 

and polygenic443. Monogenic forms of obesity can be syndromic or non-syndromic, with 

more than 70 syndromic forms identified and 11 human genes associated with non-
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syndromic forms 353,444,445. Polygenic forms of obesity result from the accumulation of 

multiple common gene variants with modest effects and genome-wide association studies 

have identified over 160 independent loci associated with body mass index (BMI) and 

obesity status353,446.  

Obesity is also influenced by the interaction of predisposing genes and 

environmental exposures, likely through epigenetic regulation447,448. Interaction between 

genetic and environmental factors may increase the prevalence of obesity synergistically. 

Gene-environment interaction studies (GEI) have demonstrated that heritability estimates 

for BMI are affected by the environment (e.g. physical activity)72,449. Even highly 

penetrant forms of monogenic obesity are sensitive to the obesogenic environment46. 

Several studies have demonstrated interaction between an FTO variant or genotype score 

and environmental factors such as age, diet, physical activity and socioeconomic status 

47,450. Ahmad et al. investigated the cumulative effects of physical activity and caloric 

intake on the FTO rs8050136 variant and demonstrated that the risk allele had the 

greatest effect in the low physical activity-high calorie intake subgroup141.  

While these studies demonstrate that there is an interaction between obesity genes 

and environmental factors, there are several limitations in current literature. It is unclear 

whether the interaction between an obesogenic environment and genotype scores is 

driven by FTO variant, considering its major genetic contribution in comparison with 

other variants148. In addition, most studies have been conducted in people of European 

ancestry and in high-income populations, which limits the generalizability of results on a 

global scale451,452. Lastly, the vast majority of GEI studies have analyzed the interaction 

between genetic risk factors and individual environmental exposures, yet the cumulative 
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effect of only two of these factors on genetic predisposition has only been explored in one 

previous study141. This prompted us to investigate the effect of the FTO rs3751812 

variant and a genetic risk score (GRS) on adiposity in interaction with cumulative risk 

environments. We used data from a multiethnic, international study that includes 

measurements of multiple environmental exposures and adiposity. Our specific objective 

was to investigate the interaction between this gene variant and the GRS, and a 

cumulative measure of environmental risk on obesity.  

 

METHODS 

Study Participants 

Data from the EpiDREAM cohort was used for this investigation. This study 

enrolled 24 872 individuals from 17 countries and from six major ethnic groups (South 

Asian, East Asian, European, African, Latin American, Native North American). 

Participants were screened for eligibility to enter the DREAM clinical trial. Eligibility 

was based on being at risk for type 2 diabetes (T2D) based on family history, ethnicity 

and abdominal adiposity, and participants were screened using a 75-gram oral glucose 

tolerance test (OGTT). All participants were screened between July 2001 and August 

2003 and were between the ages of 18-85 years. Our analysis focused on 17 373 

individuals with complete phenotypic and 50K gene-centric array information. The 

eigensoft software (http://genepath.med.harvard.edu/~reich/Software.htm) was used to 

validate self-reported ethnicity and samples that did not group with participants of the 

same self-reported ethnicity were excluded from the analysis. In accordance with the 
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Declaration of Helsinki, all individuals provided informed consent prior to participating 

and local ethics committees have approved the EpiDREAM study.  

 

Genotyping 

DNA was extracted from the buffy coats of 19 498 participants using the Gentra 

System (Supplementary Figure 1). Genotyping was performed at the McGill University 

and Genome Quebec Innovation Centre using the Illumina Bead Studio genotyping 

module, version 3.2 and the Illumina CVD bead chip microarray ITMAT Broad Care 

(IBC) array 325. Three strategies were employed to identify SNPs associated with BMI or 

binary obesity status that reached genome-wide significance (P<5x10-8) in European 

populations: i) the National Human Genome Research Institute (NHGRI) GWAS Catalog 

(www.genome.gov/gwastudies/) ii) the HuGE Navigator GWAS Integrator  

(www.hugenavigator.net/HuGENavigator/gWAHitStartPage.do) iii) the PubMed 

database (www.ncbi.nlm.nih.gov/pubmed). This strategy produced a list of 72 

independent SNPs, 23 of which were available on versions 1 and 2 of the IBC 50K SNP 

array (Supplementary Table 1): rs3751812, rs7203521 in FTO, rs1514176 in TNNI3K, 

rs6265 and rs1401635 in BDNF, rs1805081 in NPC1, rs6232, rs6235 in PCSK1, 

rs2206734 in CDKAL1, rs2075650 in TOMM40/APOE/APOC1, rs2272903 in TFAP2B, 

rs997295 in MAP2K5, rs1211166 in NTRK2, rs11671664 in GIPR, rs2984618 in TAL1, 

rs1011527 in LEPR, rs7605927 in POMC, rs611203 in USP37, rs2535633 in ITIH4, 

rs3824755 in NT5C2, rs7903146 in TCF7L2, rs671 in ADLH2, rs749767 in KAT8. None 

of these SNPs showed significant deviation from Hardy-Weinberg Equilibrium (HWE) in 

the six ethnic groups (P<0.001). The call rate for each of the 23 SNPs was between 99.8-
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100% (Supplementary Table 1). For the purpose of this analysis we focused the 

interaction tests to a genetic risk score (GRS) comprised of these 23 SNPs and FTO 

rs3751812 since variation in this SNP has been shown to interact with multiple lifestyle 

factors and there is strong biological evidence to support gene-environment interactions 

involving this SNP150,164,453.  

Phenotyping 

Participants also completed a questionnaire that included demographic data, 

medical history. Lifestyle information was collected by self-report and included physical 

activity, alcohol consumption, depression status, employment status, stress at home, 

financial stress, stressful life event, income, marital status, sleep duration, smoking status 

and TV watching (Table 15). Trained medical staff measured weight and standing height 

to the nearest 0.1 kg and 0.1 cm using a standardized protocol. Hip circumference was 

measured in duplicate at the level of the greater trochanters using a non-flexible tape 

measure with an attached spring balance with a mass of 750g and averages of the two 

measures were used in all analyses. Body mass index (BMI) was calculated as weight in 

kilograms (kg) divided by height in meters (m) squared.  

The OGTT results and the 2003 ADA criteria were used to classify participants as 

having normal glucose tolerance (NGT), impaired fasting glucose (IFG), impaired 

glucose tolerance (IGT), or T2D at baseline: normoglycemia=fasting plasma glucose < 

5.6 mmol/L, IFG=fasting plasma glucose of 5.6 to 6.9 mmol/L, IGT=fasting plasma 

glucose < 7.0 mmol/L and a 2-h glucose between 7.8 and 11.0 mmol/L, and 

diabetes=fasting plasma glucose ≥ 7.0 mmol/L or the 2-h glucose ≥ 11.1 mmol/L 327. 
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After combining the IFG and IGT groups, the glycemic status variable included three 

categories (normoglycemia, IFG/IGT, diabetic).  

 
Statistical Analyses 

  Statistical analyses were performed using SPSS (version 20, New York, IBM 

Corporation). Single SNP analyses were performed under the additive model, and the 

obesity risk alleles previously identified for each of the 23 SNPs in literature were used as 

the risk allele. Linear regression models were used to examine (1) the association 

between each of the lifestyle factors (individually in separate models) and BMI (2) the 

association between FTO rs3751812 and the GRS on BMI. These tests were adjusted for 

covariates including, sex, age, ethnicity and glycemic status. To determine if there was 

multicollinearity between the lifestyle factors, the variance inflation factor was calculated 

for each of the 12 lifestyle factors. Since the variance inflation factor did not exceed a 

value of two for any of the lifestyle factors, they were all retained in the analysis 454. We 

expect that the lack of correlation among the variables could be attributed to the multi-

ethnic international recruitment, whereby these lifestyle factors may cluster differently 

among participants in different ethnic groups or living in different countries. To combine 

the information from each of the 12 lifestyle factors, we created a cumulative 

environmental score. This score was generated by summing the values for each of the 

lifestyle factors that displayed a significant association (P<0.05) with BMI. The score 

was weighted based on the regression coefficients between each environmental factor and 

their association with BMI. Participants missing data for more than five of the lifestyle 

variables were excluded from the analysis. The genetic risk score was calculated by 

summing the alleles of the 23 obesity predisposing SNPs so that the score could range 
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from 0 to 46. Since weighting has been shown to have no major impact on the effect of a 

GRS, 328 an unweighted GRS was used. We performed imputations for missing genotypic 

values as previously described 329 using the mean number of predisposing obesity alleles 

in successfully genotyped individuals. This procedure was performed separately in each 

ethnic group. Individuals with more than one missing genotype out of 23 were not 

included in the genetic risk score calculation. The association between FTO rs3751812 

and the GRS with the cumulative environmental score was analyzed to ensure that the 

interacting terms were independent. Linear regression models were used to test the gene-

environment interactions with the inclusion of a cumulative environmental score x FTO 

rs3751812 interaction term, and a cumulative environmental score x GRS interaction 

term. The interaction between the cumulative environmental score and FTO rs3751812, 

and the cumulative environmental score and the GRS were analyzed in separate models.  

These tests were also adjusted for covariates including, sex, age, ethnicity and glycemic 

status. Two-tailed P-values are presented in this manuscript and P<0.05 were considered 

as statistically significant.  

RESULTS 

Characteristics of the studied cohort 

Table 15 summarizes the baseline clinical and anthropometric characteristics of 

participants included in the EpiDREAM study. The average BMI was 30.16 (SD = 6.22), 

the mean age was 52.66 years (SD = 11.38), and the majority of individuals included in 

the study were female (61.0%). The sample represented six ethnic groups, including 

South Asian (15.8%), East Asian (1.3%), European (53.9%), African (7.2%), Latino 
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(18.9%) and Native North American (2.9%). Participants in this study had both 

phenotypic and 50K gene-centric array information available.  

 

Effect of Lifestyle Factors on BMI 

The effect of the 12 lifestyle factors on BMI is summarized in Table 16. Of the 12 

lifestyle factors, 10 were significantly associated with BMI. Seven lifestyle factors were 

associated with increased BMI: depression (β= 0.87, SE= 0.12, P= 1.41 x 10-13), 

employment status (β= 0.08, SE= 0.04, P= 0.04), stress at home (β= 0.52, SE= 0.11, P= 

1.36 x 10-6), financial stress (β= 0.53, SE= 0.12, P= 1.11 x 10-5), stressful life event (β= 

0.49, SE= 0.09, P= 1.04 x 10-7), smoking status (β= 0.42, SE= 0.05, P= 8.96 x 10-16) and 

TV watching (β= 0.44, SE= 0.03, P= 3.31 x 10-53). In contrast, three lifestyle factors 

displayed negative associations with BMI: physical activity (β= -1.59, SE= 0.08, P= 5.38 

x 10-95), alcohol consumption (β= -0.40, SE= 0.04, P= 4.78 x 10-25) and sleep duration 

(β= -0.34, SE= 0.07, P= 3.40 x 10-6). These ten environmental factors were combined 

into a weighted cumulative environmental score with a mean of 4.77 (SD = 1.45).  

 

Effect of FTO rs3751812 and GRS on BMI 

The effect of the FTO rs3751812 risk allele on BMI was statistically significant 

(β= 0.51, SE= 0.07, P= 5.93 x 10-14). The GRS was also significantly associated with 

increased BMI (β= 0.12, SE= 0.02, P= 3.26 x 10-16). This analysis was adjusted for sex, 

age, ethnicity and glycemic status (Table 17).  
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Interaction Analyses  

The results of the interaction analyses between the FTO rs3751812 SNP, the GRS 

and the cumulative environmental score are presented Table 17. We observed a 

statistically significant interaction whereby increases in the cumulative environmental 

score increased the impact of FTO rs3751812 on BMI (β= 0.17, SE= 0.04, P= 9.8 x 10-5). 

The subgroup analysis revealed that the effect of the risk allele in FTO rs3751812 

increased substantially across each quartile of the cumulative environmental score: first 

quartile (β= 0.36, SE= 0.11, P= 1.3 x 10-3), second quartile (β= 0.30, SE= 0.12, P= 0.02), 

third quartile (β= 0.42, SE= 0.13, P= 9.5 x 10-4), fourth quartile (β= 0.83, SE= 0.15, P= 

4.1 x 10-8) (Figure 3). This indicates that the effect of the FTO rs3751812 risk allele on 

BMI among those with an unhealthy lifestyle can be more than twice as large as among 

those with a healthy lifestyle. The accumulation of unhealthy lifestyle factors increased 

BMI across all FTO rs3751812 subgroups, although the effect of the unhealthy lifestyle 

factors was more pronounced among the high-risk FTO rs3751812 subgroup (Figure 4). 

The interaction between the GRS and the cumulative environmental risk score was not 

statistically significant (β= 0.33, SE= 0.27, P= 0.22) 

 

DISCUSSION 

 In the present study, we identified a significant statistical interaction between the 

FTO rs3751812 risk allele and a score reflecting the accumulation of lifestyle behaviours 

that increase the risk of obesity. Specifically, we found that the accumulation of 

unhealthy lifestyle factors significantly increased the effect of the FTO rs3751812 risk 

allele on BMI in a large multiethnic sample recruited from 17 different countries. 
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Specifically, the effect of the FTO rs3751812 risk allele among participants with a less 

healthy lifestyle was 2.3 times greater than the effect among those with a more healthy 

lifestyle. These results also indicated a threshold effect whereby the effect of FTO 

rs3751812 variation on BMI was relatively stable among the first three quartiles of the 

cumulative environmental score (β= 0.30-0.42), and then increased significantly among 

those in the fourth quartile (most unhealthy) of the cumulative environmental score (β= 

0.83). While this study is the first to assess the cumulative impact of lifestyle behaviours 

on genetic risk to obesity, these findings are supported by previous studies demonstrating 

gene-environment interactions with individual lifestyle factors such as physical activity, 

diet patterns and alcohol intake.  

 As demonstrated in previous studies, there is strong biological rationale to support 

interaction effects involving variation in the FTO gene. FTO functions as a nucleic acid 

demethylase and variation in FTO has been linked to distinct methylation profiles and is 

associated with BMI 455-457. Since lifestyle behaviours such as physical activity and diet 

are also known to influence DNA methylation, methylation may be a biological 

mechanism that “bridges” the impact of FTO variation and lifestyle factors on BMI 

272,458. In addition, lifestyle behaviours and variation in FTO influence energy expenditure 

through their impact on adipocyte browning in visceral and subcutaneous adipose tissue 

459,460. Recent evidence also indicates that both sedentary behaviour and physical activity 

were significantly associated with methylation of the obesity-related gene FAIM2, which 

suggests that multiple lifestyle factors could impact the effect of a specific obesity 

gene461.  
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 This study also demonstrates that the impact of certain obesity genes is highly 

malleable depending on lifestyle behaviours. The accumulation of healthy lifestyle 

behaviours was associated with a dose-response decrease in BMI in all genetic risk 

groups (Figure 4). From a public health perspective, these results support the benefits of a 

healthy lifestyle for all individuals462. The cumulative effect of the interactions is also 

noteworthy since the presence of many risk factors amplified the effect of FTO variation 

more than one individual risk factor (environmental dosage effect). Personalized lifestyle 

recommendations for obesity prevention and treatment may benefit from including 

information from gene-environment interaction studies, in addition to genetic 

information. This would allow patients to identify their specific genetic risk factors for 

obesity, as well as the lifestyle behaviours that can moderate the effect of the genes that 

they carry. It should be noted that in terms of disease prediction, FTO variation alone has 

little predictive value for obesity and genetic risk scores are more informative for this 

application. However, we did not observe a significant interaction between the genetic 

risk score and the cumulative environmental score in this study. This may be due to the 

limited number of obesity SNPs included in this score: only 23 of the 160 identified 

obesity SNPs were available in this study. It is also likely that since only certain SNPs, 

such as FTO rs3751812, interact with environmental exposures, that including SNPs with 

a stable impact on BMI regardless of environmental exposure will decrease the 

probability of detecting an interaction with a genetic risk score. As an alternative, 

including only SNPs that display a variable magnitude of effect with BMI across 

environmental risk may increase the value of gene-environment interaction tests for 

disease prediction and prevention. Providing this form personalized information to inform 
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behavioural change may provide a message of hope for individuals with an increased 

genetic risk for disease. Patients often perceive DNA-based risk estimates as 

deterministic, yet our findings, and those from other gene-environment interaction 

studies, provide evidence that modifiable lifestyle behaviours can substantially influence 

disease risk regardless of genetic predisposition 450,463.  The expectation is that disclosure 

of genetic information may provide a greater incentive for behavioural change among 

participants with a greater genetic risk for disease 462. Although the evidence for the 

effectiveness of this approach is mixed, a randomized controlled trial demonstrated that 

disclosure of genetic information for personalized nutrition resulted in greater changes in 

some dietary intake patterns compared to general population-based dietary advice after a 

12-month follow-up period 464.  

The strengths of this study include the multiethnic sample, international 

recruitment and the measurement of several different environmental factors associated 

with obesity facilitated the calculation of a comprehensive environmental risk score. 

However, a major limitation of this score was the unavailability of diet information. 

Dietary intake is one of the two largest environmental contributors to obesity and the 

validity of the cumulative environmental score is threatened by the absence of this 

information. The self-report data collection method for the remaining lifestyle factors 

also creates the possibility for recall bias and socially desirable responding. Additional 

limitations of this study involve the genetic data. The SNPs selected may not be ideal 

proxies in each ethnic group since they were originally identified in samples of European 

ancestry and the 23 SNPs included in the GRS only represent a subset of the obesity 

predisposing SNPs currently identified in the literature.  
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 In conclusion, we identified a statistical interaction between a cumulative 

environmental risk score and FTO rs3751812 on BMI in a multi-ethnic international 

sample. The impact of the FTO rs3751812 was more than twice as large among those 

who accumulate unhealthy lifestyle behaviours compared to those with a healthier 

lifestyle. The presence of multiple environmental risk factors was also cumulative and 

amplified the effect of FTO variation on BMI significantly more than one individual risk 

factor. This finding contributes to the evidence demonstrating that a variety of lifestyle 

factors can significantly moderate the impact of obesity risk genes. Integrating this 

message into obesity prevention initiatives may be valuable strategy to improve the 

effectiveness of obesity interventions.  

 
 

Table 15. Baseline characteristics of the EpiDREAM study. 

Variable  Frequency N (%)* 
BMI (kg/m2) 30.16 ± 6.22* 
Ethnicity  

South Asian (Indian) 2762 (15.9) 
East Asian (Chinese/Japanese) 225 (1.3) 
European (Caucasian) 9395 (53.9) 
African (Black) 1249 (7.2) 
Latino (South American) 3292 (18.9) 
Native (North American) 500 (2.9) 

Age (years) 52.66 ± 11.38* 
Gender  

Male  6805 (39.0) 
Female 10618 (61.0) 

Income  
$0 – $29,999 5199 (31.7) 
$30,000 - $39,999 3177 (19.4) 
$40,000 - $49,999 2515 (15.4) 
$50,000 - $69,000 2304 (14.1) 
> $70,000 3179 (19.4) 

Physical Activity level  
Sedentary 4727 (27.2) 
Moderately active 10529 (60.5) 
Active  2151 (12.4) 

Marital status 
Never married  1490 (8.6) 
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Common law/married 12949 (74.4) 
Divorced/separated 1814 (10.4) 
Widowed 1148 (6.6) 

Smoking status  
Never smoker 9505 (54.6) 
Current smoker 2577 (14.8) 
Former smoker  5317 (30.6) 

Alcohol consumption  
0 drinks/week 11329 (65.1) 
1-3 drinks/week 2642 (15.2) 
4-6 drinks/week 1503 (8.6) 
7-10 drinks/week 987 (5.7) 
11-14 drinks/week 520 (3.0) 
>14 drinks/week 420 (2.4) 

Depression status   
Depressed 3203 (18.4) 
Not depressed 14172 (81.6) 

Employment status   
Retired 53.2 
Not retired  46.8 

Stress  
Money stress  

Yes  3049 (17.5) 
No 14374 (82.5) 

Home stress   
Yes  4063 (23.3) 
No 13360 (76.7) 

Stressful life event   
Yes  8646 (49.6) 
No 8777 (50.4) 

TV (hours/day)  
0  785 (4.9) 
1  3634 (22.6) 
2  4889 (30.4) 
3  3239 (20.2) 
4  1924 (12.0) 
5  738 (4.6) 
6+  854 (5.3) 

Sleep (hours/day)  
< 6 5927 (34.1) 
6-8 9864 (56.6) 
> 8 1586 (9.1) 

*Denotes standard deviation 
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Table 16. Effect of lifestyle factors on BMI (adjusted for sex, age, ethnicity and glycemic status). 

Environmental Factor β  (SE) P-value 
Physical activity  - 1.59 (0.08) 5.38 x 10-95 

Alcohol consumption - 0.40 (0.04) 4.78 x 10-25 
Depression status   0.87 (0.12) 1.41 x 10-13 
Employment status   0.08 (0.04) 0.04 
Stress at home   0.52 (0.11) 1.36 x 10-6 
Income    0.03 (0.03) 0.33 
Marital status   0.11 (0.07) 0.13 
Financial stress   0.53 (0.12)  1.11 x 10-5 
Sleep duration - 0.34 (0.07) 3.40 x 10-6 
Stressful life event   0.49 (0.09) 1.04 x 10-7 
Smoking status   0.42 (0.05) 8.96 x 10-16 
TV watching   0.44 (0.03) 3.31 x 10-53 
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Table 17. Main effect and interaction between cumulative environmental score and FTO 
rs3751812/GRS and BMI (adjusted for sex, age, ethnicity and glycemic status).  

Variable  
 

β  (SE) P-value 

FTO rs3751812 
   0.51 (0.07) 5.93 x 10-14 

GRS 
 0.12 (0.02) 3.26 x 10-16 

Cumulative environmental score 
 0.86 (0.04) 3.0 x 10-87 

GRS x Cumulative environmental score 
 0.33 (0.27) 0.22 

FTO rs3751812 x Cumulative environmental score 
 0.17 (0.04) 9.8 x 10-5 

                    Subgroup analysis 
 β  (SE) P-value 

1st quartile of cumulative environmental score 
  0.36 (0.11) 1.3 x 10-3 

2nd quartile of cumulative environmental score 
 0.30 (0.12) 0.02 

3rd quartile of cumulative environmental score 
 0.42 (0.13) 9.5 x 10-4 

4th quartile of cumulative environmental score 
 0.83 (0.15) 4.1 x 10-8 
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Figure 3. Beta value for the effect of the FTO rs3751812 risk allele on BMI in each 
quartile of environmental risk. 
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Figure 4. Mean BMI values stratified by FTO rs3751812 genotype and lifestyle quartile. 
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CHAPTER 7-METHODOLOGICAL CONSIDERATIONS IN GENE-
ENVIRONMENT INTERACTION STUDIES OF OBESITY: RECENT 

DEVELOPMENTS AND FUTURE OPTIONS 

ABSTRACT  

Although the number of gene-environment interaction (GEI) analyses has increased 
rapidly in recent years, particularly in the obesity field, some skepticism remains for the 
validity of these studies based on several issues, which include statistical modelling, 
confounding, low replication rate, underpowered analyses, biological assumptions and 
measurement precision. In this review, we outline these issues and provide potential 
solutions to these problems based on existing evidence. Suggestions for future research of 
GEI are provided. These future directions include 1) studying disorders in the context of 
different genetic etiologies (syndromic, polygenic, monogenic) and diverse experimental 
designs (observational, intervention), 2) gene-environment-wide interaction studies 
(GEWIS) that apply a joint test for the main genotype effect and the GEI, 3) variance 
prioritization and 4) combining statistical tests of interaction effects with biological data 
to identify variants that ‘redundantly’ interact with multiple environments. Applying 
these methods will help to exploit the potential of GEI studies and translate this 
information to public health policy and personalized medicine for obesity and other 
human complex diseases.  
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INTRODUCTION 

Obesity is now considered to be a global epidemic that is caused by genetic and 

environmental risk factors 1,5. Twin and family studies have indicated that 40-80% of the 

inter-individual variation in obesity-related traits can be attributed to genetic differences 

291. Despite technological innovations such as genome-wide association studies (GWAS) 

or next-generation sequencing (NGS), the gene variants identified to date only explain a 

modest proportion of this variance 291. Interactions between gene variants and 

environmental exposures may modulate obesity risk and account for part of this ‘missing 

heritability’ 465. For instance, obesity predisposing gene variants in the FTO gene have 

been found to interact with physical activity 16,466 (among other exposures), and these 

findings have been successfully replicated in diverse ethnic groups 151.  

Interest in the area of gene-environment research is growing across multiple 

disciplines although there has been increasing scrutiny regarding the validity of these 

studies based on several issues including statistical modeling 467-469, confounding 406,467, a 

low replication rate 470-472, underpowered analyzes 473, lack of biological assumptions 

474,475 and measurement precision 476. The relevance of testing interactions between 

individual genetic variants and specific environmental exposures has also been 

questioned 467. Based on these concerns, some leaders of opinion have suggested that a 

large proportion of significant gene x environment interaction (GEI) findings are in fact 

false positives 51,467. This skepticism has been adopted by multiple journals, which have 

implemented stringent criteria for candidate gene and interaction studies considered for 

review 477,478.  
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This review will focus on issues in GEI studies related to (1) statistical modelling 

of interaction terms, (2) modelling of confounding variables, (3) timing of environmental 

exposure across the life span and (4) measurement of predictor and outcome variables. 

The final section will provide suggestions to address these issues based on existing 

evidence and will outline future directions of GEI research.  

 

Statistical modeling issues in gene-environment interaction research   

 
Although the study of gene-environment interactions is an active area of research, 

there has been considerable scrutiny regarding the appropriate statistical method to study 

these effects. Using a multiple linear regression model with the inclusion of a cross-

product term signifying the product of environmental (E) and genetic (G) variables is the 

most common method to assess interactions 16,141,144,324. However, the specific terms 

included in the model are a point of contention. Coding genetic polymorphisms is either 

performed to create a binary variable (under a recessive or dominant model) or a three-

category variable based on an additive model, with the latter often used when the true 

functional model of a given marker is not known 468. A recent analysis demonstrated that 

modelling gene-environment interactions with a simple cross-product term (G x E) often 

produces misleading results when assuming an additive model 468. This limitation has 

important implications for interpreting the results of interaction effects, which were likely 

not considered in many existing interaction studies. First, the simple cross-product model 

always forces the regression lines to be ordered (0, 1, 2 and never 0, 2, 1). While this 

assumption may be intuitive from a biological perspective, this approach will always 

predict an ordered effect of genotypic differences even when the data do not reflect this 
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assumption 472. Second, the differences in slopes between the adjacent regression lines 

are always assumed to be the same 468. There is no rationale for this assumption and in 

practice, sampling error alone would be expected to create uneven differences between 

regression slopes 479. Alternatively, non-linear gene-environment interaction effects may 

be present, which could not be estimated accurately with only a cross-product interaction 

term 468,480. Third, this model constrains all three regression lines to cross at the same 

point when interaction effects are present 468. This implies that there is a certain level of 

environmental exposure that confers the same level of risk/disease for all three different 

genotypes. There is no statistical or biological evidence to justify this assumption, 

especially since the specific genetic model is often not established for the genetic marker 

of interest 467. These simulations indicate that the models using only the cross-product 

term are more vulnerable to Type 1 and Type 2 errors 468. In all cases, including two 

additional coefficients, one to model non-linear genetic effects (β4G2) and another to 

account for non-linear interaction effects (β5G2 x E), represent the interaction (or lack of 

interaction) more accurately. Many authors recommend this model for genetic variants 

following an additive or unknown genetic model, and emphasize that failure of an 

interaction to match a plausible biological interaction likely indicates a false positive 

result 468,481. In summary, re-conceptualizing interaction models to account for non-linear 

effects removes the constraints of traditional regression techniques and provides a more 

accurate representations of gene-environment interaction effects 468. A complete 

discussion of this approach is provided by Aliev et al 468.   

 Other authors contend that traditional GEI analyses neglect to test the a priori 

hypotheses that form the basis of these studies 482. The implicit framework adopted in 
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traditional GEI analyses is the diathesis-stress model of environmental action 483, which 

specifies that certain individuals are more vulnerable to the adverse consequences of 

some exposures than others 484. As an extension of this limitation, exploratory approaches 

also fail to test or compare the competing predictions from alternative theoretical 

frameworks such as the more recent differential-susceptibility framework 485. This theory 

posits that some individuals are more susceptible to not only negative exposures, but to 

positive environmental influences as well 486. Based on this characterization some authors 

have proposed that gene variants classically referred to as ‘vulnerability genes’ be 

reclassified as ‘plasticity genes’ to correspond with the differential susceptibility 

framework 487. This theory has been proposed by several authors 485,488, and has been 

applied to the study of GEI 487,489,490. In response to these competing frameworks, many 

statistical criteria were developed to distinguish differential-susceptibility interactions 

from those representing diathesis-stress theory 486,491, and Widamen’s confirmatory 

method appears to be the most efficient 492. This technique directly evaluates alternative 

theoretical frameworks by aligning the analyses with each hypothesis 492. Specifically, 

this method systematically adjusts the parameters included in the regression equation to 

compare different theoretical frameworks, and specifies where the regression lines 

(representing each genetic subgroup) will cross relative to the value of the environmental 

exposure 492. With respect to the frameworks discussed above, the diathesis-stress theory 

models an ordinal interaction whereby the predicted outcome value for the genetically 

vulnerable subgroup is always less than that of the genetically low-risk group. The 

differential-susceptibility framework predicts that the risk of the outcome for the 

genetically malleable group can be higher or lower than the genetically non-malleable 
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group depending on the level of the environmental exposure 482. A graphical 

representation of these interaction effects is provided by Bakermans-Kranenburg and van 

IJzendoorn 493. It is important to note that Widaman’s confirmatory approach can be used 

for dominant/recessive or additive genetic models, and can be applied to other forms of 

statistical interaction involving competing hypotheses about the nature of the interaction 

482,494. Integration of this technique into interaction studies where the theoretical 

framework is uncertain may help to improve the accuracy and replication rates of 

interaction studies. This model is supported by biological evidence from a recent study, 

which demonstrated that TRIM28 knockout mice are alternatively lean or obese 

depending on subtle environmental changes 287.  

Another consideration when analyzing interaction effects is the selection of either 

an additive or multiplicative interaction scale 495-497. This decision has important 

implications given that different scales can lead to different conclusions and 

consequently, different public health recommendations 498. An additive interaction exists 

when the combined genetic and environmental risk is significantly greater than would be 

expected if their effects were additive, whereas a multiplicative interaction describes a 

joint genetic and environmental risk that is greater than expected from multiplying their 

effects 51,499. Some authors contend that the selection of measurement scale is less crucial 

when the underlying biological processes are not known, and both scales can be 

appropriate in certain situations 500-502. If the pathophysiology consists of a multistage 

process, such as cancer initiation and promotion stages, two factors that act at the same 

stage will generally fit an additive model and those acting at different stages will 

typically fit a multiplicative model 503,504. It has also been suggested that if the main 
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objective is to study public health impact, an additive scale is better suited to identify 

heterogeneous effects across subgroups, while the multiplicative scale is more 

appropriate for studying disease etiology 503.  

Selecting the measurement scale of the outcome is another issue that has the 

potential to alter the conclusions of interaction analyses 505. As an example, a 

multiplicative interaction between two predictors on an outcome will interact additively if 

the outcome is log-transformed 481. In situations where transformation of the outcome is 

necessary, this implication must be taken into account.  

 

Confounding issues in gene-environment interaction research   

 
Several modeling strategies have been proposed to address the impact of 

confounding in gene-environment interaction studies 406,467. Variables with the potential 

to offer alternative explanations of an interaction are typically entered into the regression 

equation as covariates to control for their potential confounding effects 472. While this 

method controls the influence of confounding on the main effect of the genotype and 

environment, it does not adjust for potential confounding of the interaction term 467. In 

response, an alternative method has been proposed whereby all covariate x gene and 

covariate x environment interaction terms are included in the model that tests the gene x 

environment interaction of interest 467. If significant covariate interactions are observed, 

the validity of any gene x environment interactions that are found may be compromised 

by the covariate and warrant additional analysis. Although there are potential objections 

to this modelling technique, the justifications of this approach are outlined by Keller 467. 

First, there is a potential that over-fitting the model will preclude accurate measure of the 
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parameter estimates for the many covariate interactions. While this appears problematic, 

the purpose of including covariate interactions is to control for their effects on the gene x 

environment interaction rather than producing accurate parameter estimates. Second, 

multicolinearity between the many interaction terms may diminish the strength of the 

main gene x environment interaction. This however is the purpose of this procedure and 

if inclusion of the covariates weakens the main interaction, then the covariates may be 

significantly influencing the interaction. Lastly, it is reassuring to recognize that the gene 

x environment interaction term is only marginally affected if there is no ‘true’ 

relationship between the covariate and the gene x environment interaction 467. One caveat 

to this approach is that shared heritability between the covariates and the outcome can 

introduce bias and increase the risk of false-positive results 506. Therefore, including 

heritable covariates in the model should be avoided if they are associated with gene 

variant being tested 506.  

Confounding issues can be further complicated if the interacting genetic variant 

and environmental exposure of interest are correlated 507. Under these circumstances, 

simulations have demonstrated that uncontrolled confounding will bias the estimates of 

the main genetic effect and the gene-environment interaction even if the genetic and 

environmental factor are not associated with the outcome 508. If the genetic variant and 

environmental factors are independent, this is no longer an issue as long as unmeasured 

environmental confounders are not related to genetic factor. The issue of gene-

environment dependence has been highlighted in extreme cases where the genetic 

variants are associated with both the environmental factor and the outcome. For example, 

variants on 15q25 have been linked to both smoking behaviours and lung cancer 509-511. 
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As a result, some authors suggest directly analyzing the relationship between the 

interacting genetic variant and environmental exposure 508.  

 

Considering time of exposure in gene-environment interaction research   

 
Given that gene expression and silencing varies significantly throughout 

development, it may be important to consider time of exposure when modelling 

exposures that can have differential effects throughout the life cycle 512. Evidence from 

toxicology research indicates that many environmental exposures display distinct dose 

response curves that vary based on the developmental stage at which exposure occurs 

513,514. The identification of these developmental windows suggests a need to include time 

of exposure as a third interacting factor when analysing gene-environment interactions 

475. However, the inclusion of a three-way interaction term dramatically increases the 

necessary sample size 467,515 and this information is rarely available. Simulation studies 

have shown that the sample size required to detect three-way interactions is four-fold the 

sample size necessary to detect a two-way interaction of the same magnitude 516. 

Although these estimates were derived from a clinical trial design with balanced group 

sizes, the four-fold increase was virtually identical with unbalanced group sizes 516. 

Another statistical method to address this issue involves considering environmental 

exposure as a time-varying factor to analyze the lag effects of gene x time-varying 

environment interactions 475. Yet, the repeated measurements needed to measure lag 

effects are often not feasible due to the cost of repeated measurement in large studies. 

This constraint explains the high prevalence of cross-sectional case-control designs to 

study gene-environment interactions 475. The challenge of measuring variations in the 
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impact of environmental exposures is compounded by changes in the heritability of the 

outcome across time. A meta-regression of heritability studies of BMI found that the 

genetic contribution to BMI varies with age: heritability was positively associated with 

age among child studies and negatively associated with age among studies of adults 517. A 

recent genome-wide interaction meta-analysis identified 15 BMI loci that interacted with 

age, 11 of which had a greater effect impact in younger (<50 years) compared to older (≥ 

50 years) adults 106. Failure to address the time-varying effects of environmental 

exposures and heritability may account for some of the challenges with replicating gene-

environment interactions 51,467,518.  

 

Measurement issues in gene-environment interactions research 

Aside from issues related to statistical modeling, the measurement of the exposure 

and outcome represent important considerations for gene-environment interaction 

research. Major determinants of power include allele frequency, genetic effect size, the 

magnitude of interaction effect, risk allele frequency, degree of genetic misclassification 

and measurement error associated with the exposure and outcome 476,515,519. Although the 

trade-off between precision and feasibility is common to most study designs, the large 

samples required to study interaction effects make this balance particularly important. 

Currently, the most notable gene-environment interactions in obesity have measured diet 

patterns or physical activity as environmental exposures 16-19. The gold standard criterion 

measure for these exposures are a 7-day weighed diary and doubly labelled water, 

respectively. Unfortunately, the large number of participants required for these studies 

have restricted the measurement of these exposures to less precise instruments. The error 
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associated with exposure measurement generally attenuates the estimate of the true effect 

size 520,521. Similar problems occur when the outcome used is an indirect measure for the 

true outcome of interest. In gene-environment analyses of obesity, BMI is commonly 

used as the outcome 18,21,28,324, which further contributes to this error given that BMI fails 

to distinguish between fat and fat-free mass 522. 

Previous simulations have characterized how varying different determinants of 

power can impact the required sample size of gene-environment interaction studies 476,515. 

As an example of these analyses 476, genetic misclassification was fixed at 2.5% to be 

consistent with prior empirical studies 523,524 and the magnitude of effect for the common 

allele was also constant. With a correlation between the true and observed exposure and 

outcome of 0.6 and 0.7, respectively, a sample size of just over 9 500 is needed to detect 

an interaction at a significance of 10-4 with 95% power (17). However, the correlations of 

0.6 and 0.7 between the true and observed exposure and outcome are unusually high for 

gene-environment interactions in obesity due to the cost of precise measurement tools 

324,519,525. With more typical correlations of 0.3 and 0.4, the required sample size can 

increase to over 100 000 participants with all other variables held fixed 476. If precise 

instruments are not available to mitigate this error, performing repeated measurements is 

a useful strategy on condition that the error in repeated measures is not correlated 520. As 

an example, performing two independent repeated measures using a tool with a validity 

coefficient of 0.6 increases the overall validity coefficient to almost 0.8. With all other 

variables being fixed, this reduces the necessary sample size by more than a factor of six 

476.  



 141 

Although all gene-environment interaction studies must balance the practical 

trade-off between sample size and measurement precision, the evidence addressed above 

suggest that this balance should favour better measurement 476. The value of this 

approach can be reinforced with the example of physical activity measurement, a 

common exposure analyzed in gene-environment interactions of obesity 144,324. Physical 

activity is usually assessed by questionnaire, and even comprehensive instruments that 

address occupational and leisure activity rarely correlate with objective measures of 

energy expenditure above 0.3 526. Specific examples include the ARIC/Baeke 

questionnaire with a correlation of 0.24 in men and 0.19 in women when compared to 

estimates of energy expenditure derived from objective accelerometer data 527. The 

physical activity assessment used in the EPIC-Norfolk study displayed an overall 

correlation of 0.44 with objective measures, although this fell to 0.28 after adjustment for 

age and sex 528. The error associated with measuring this exposure is compounded by the 

moderate correlation (0.5) of BMI with body fat percentage as measured by dual-energy 

x-ray absorptiometry 529. Using the EPIC-Norfolk questionnaire with BMI as an outcome 

would require almost 90 000 participants to detect an interaction that doubled the effect 

of a genetic variant, when the variant is present in 20% of the population 476. Since a 

doubling of genetic risk from an environmental exposure is at the upper limit of 

interaction effect estimates reported for common variants and exposures 530-532, some 

authors speculate that the majority of published interaction studies are underpowered and 

report “lucky” true-positives or false-positive results 51. A recent study by our group 

provides an empirical example of how measurement precision can influence statistical 

power. We analyzed physical activity x FTO  interactions on BMI using two measures of 



 142 

physical activity: a three-level categorical variable and a quantitative estimated measure 

of energy expenditure. The categorical data was available in 99% of the sample while the 

quantitative energy expenditure data was only available in 63% of the sample. Despite 

this disparity, similar interactions were detected using both measures, which may suggest 

that the added precision of the energy expenditure data compensated for the decrease in 

sample size 148.  

Given the sample size requirements imposed by this type of data, more direct 

measurement techniques have been proposed. Objective measures such as heart rate 

monitors carry increased precision while maintaining feasibility in moderately sized 

epidemiological studies 533. Heart rate monitor data have demonstrated a correlation with 

the gold standard of energy expenditure methods (doubly labelled water) of 0.73 534. Two 

repeated measures can increase this correlation to over 0.88. Substituting this method of 

exposure measurement for questionnaire methods would decrease the necessary sample 

size to 9453, a decrease by a factor of 10 476. Therefore, the gain in precision associated 

with more accurate measurements of exposure appear to be less resource intensive than 

accruing large sample sizes. The power implications of using precise measurement 

techniques suggest that smaller studies with more accurate measures of exposure and 

outcome may be better suited to detect gene-environment interactions than large sample 

sizes with imprecise measurement 476. The issue of measurement imprecision has long 

been debated in the nutrition field and ‘deep phenotyping’ strategies (measuring 

metabolic markers such as circulating plasma lipids as a surrogate of a high-fat diet) may 

be worthwhile alternatives to traditional self-report measures 535-537. Other assessments 

that may mitigate the concerns associated with traditional diet measures include ad 
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libitum energy intake tests or analyzing the dietary information of food consumed in 

cafeterias or restaurants 538.  

The issue of direct and indirect measurement of genetic variants also has 

important implications for statistical power. In many current GWAS and GEI studies, the 

true susceptibility loci involved in the disease etiology is not known (or unavailable) and 

the linkage disequilibrium (LD) between marker alleles and the actual disease loci is used 

to study associations between gene variants and the phenotype under study 539,540. Since 

this is an indirect approach, the effect estimate will be underestimated if the LD between 

the two variants is incomplete (r2< 1) 541. Previous studies have demonstrated that the 

sample size requirements of GEI studies can be strongly influenced by the marker allele 

frequency, disease allele frequency, the LD between these loci, as well as the main 

genetic and environmental effect, the prevalence/impact of the environmental exposure 

and the magnitude of the interaction 540,541. A summary of these methodological issues is 

summarized in Table 18.  

 

Future directions for gene-environment interactions and obesity 

Given that specific environments can greatly impact the magnitude of genetic 

predisposition to obesity, the systematic study of gene-environment interactions 

constitutes an important field of investigation in order to inform public health strategies 

to prevent and manage obesity and other complex diseases. Gene-environment interaction 

studies in the context of various forms of obesity (monogenic, polygenic) and in diverse 

experimental designs (observational, interventional) 50 may lead to a better understanding 

of the protective or detrimental environmental exposures that modify the impact of 
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certain genetic variants. Existing interactions need to be studied in additional obesity-

prone (e.g. response to smoking cessation, response to insulin therapy in diabetic 

subjects) or obesity-protective (e.g. lifestyle intervention, response to the anti-obesity 

drug orlistat administration or to bariatric surgery) conditions. Gene-environment 

interaction studies are complementary to observational epidemiology, interventional 

study or clinical trials, and will certainly help to elaborate efficient strategies to reverse 

the obesity epidemic.  

Currently, GWAS for obesity-related traits have focused on the marginal gene 

effect ignoring gene-environment interaction entirely 542. Gene-environment interactions 

are nevertheless frequent in obesity, and statistical models that do not properly account 

for gene-environment interactions may attenuate the marginal effect size and reduce the 

power to detect true associations 51,543. Applying a joint test for a main genotype effect 

and gene-environment interaction may increase the power to identify an individual SNP 

associated with a disease outcome 544-546. As many completed GWAS for obesity have 

been conducted on samples with large amounts of existing environmental data, 

performing gene-environment-wide interaction studies (GEWIS) in these existing 

datasets is a cost-effective strategy to find additional obesity-associated gene variants that 

interact with specific environments but have been missed by conventional GWAS 547. 

Since large sample sizes and meta-analytical approaches are required to reliably detect 

SNPs with subtle gene-environment interaction patterns 548, GEWIS for obesity have 

been initiated in the context of large international obesity consortiums like GIANT 549. 

Although these methods show promise, recent simulations indicate that this technique is 

more appropriate for analyzing interactions between genetic risk scores rather than 
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individual SNPs, due to the reduced power when analyzing the small effect sizes of 

individual SNPs 550. As a potential solution, Marigorta and Gibson suggest selecting 

participants who are at a high-risk for obesity based on environmental exposure 550. This 

strategy has the potential to identify environmental exposures that can modulate the 

impact of specific variants associated with obesity 550.  

While hypothesis-free GEWIS have potential to identify gene variants that are less 

amenable with GWAS, there are limitations to this technique. These include the 

challenges of identifying adequately sized cohorts with appropriate genetic and 

phenotypic data, as well as issues with statistical power. As a novel alternative to these 

techniques, variance prioritization was developed as a method to model genetic 

associations with genetic variance, without requiring knowledge of the interacting 

variables 551. The main effects of gene variants involved in interactions are typically 

associated with a large degree of variance 551. This strategy exploits this pattern to rank 

and prioritize variance estimates to identify gene variants whose variance per genotype 

significantly varies 551.  

Bayesian methods have also been developed to integrate variations in multiple 

SNPs within a given gene/region, and examine how an environmental exposure 

moderates the risk of these genetic profiles 552. This method was applied to the 

Environment and Genetics of Lung Cancer Etiology (EAGLE) study and detected a 

smoking x genetic profile interaction that was not detected by conventional interaction 

tests 552. Artificial neural networks have been applied to interaction analyses and 

simulations suggest that this technique may be particularly valuable for detecting non-

linear penetrance and interaction effects 553. Other analytical approaches have been 
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developed to test interactions while addressing the common concern of statistical power. 

These techniques, termed “cocktail methods,” involve a three-step approach to testing 

genome-wide gene-environment interactions while preserving the type 1 error rate and 

increasing power by 30-40% under certain circumstances 554. These three steps include 

screening, multiple testing and GxE testing, and current simulations of this technique 

have been applied to binary environmental variables, although this approach is applicable 

to continuous environmental data 554. While early analysis of these novel techniques has 

been positive, further real data application of these methods will reveal the 

generalizability of these approaches.  

Recent GWAS for obesity have collected phenotypic information in individuals 

living in a broad range of environments. While successful, this approach may fail to 

identify potential gene variants associated with obesity-related traits in a context 

dependent manner. Gene identification efforts may therefore be targeted in populations 

that display homogeneous environment and lifestyle factors across time and across the 

community, as observed in the Plain people 555. Performing genetic association studies 

for adiposity change in response to a standard major environment modification 

(antipsychotic drug use, smoking cessation, intensive caloric restriction, anti-obesity drug 

therapy, obesity surgery) is another valuable way to control the environmental exposure, 

lower sources of heterogeneity and provide a more comprehensive molecular basis for 

genetic predisposition to obesity.  

In order to refine the search for interaction variants, statistical GEI tests could be 

combined with methylation quantitative trait loci (meQTL), expression quantitative trait 

loci (eQTL), and protein quantitative trait loci (pQTL) to focus on SNPs with a plausible 
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biological mechanism for interaction 286. Specifically, a joint test could be applied to 

identify genetic variants that statistically interact with a given environmental exposure 

(e.g. physical activity level) to modulate an outcome (e.g. BMI), with the same genetic 

variants being also eQTL, meQTL and/or pQTL for a given locus. Ideally, the 

methylation expression and protein level of the same locus would be modulated by the 

same environmental factor 273. A similar test could be applied to analyse the interaction 

between an individual SNP and multiple environmental factors. Since methylation is 

influenced by several environmental exposures (physical activity 273, diet 278, sleep 556) 

identifying SNPs that redundantly interact with multiple exposures may be a method to 

exploit this pattern. The ‘Identifying REdundant Gene-environment InteractionS’ 

(REGIS) method may increase the probability of detecting ‘true’ and replicable gene-

environment interactions. Another avenue for future research is to study gene-

environment interactions jointly in mouse and human studies 557. The development of the 

clustered regularly interspaced short palindromic repeat (CRISPR) system for gene 

targeting and editing creates a new opportunity to study ‘humanized’ genetically 

modified mice carrying human mutations 558,559. Combining this biological data from 

animal studies with statistical evidence of interaction form human epidemiological 

studies is also likely to improve the validity of gene-environment interaction studies 51.  

 

Conclusion 

A prolific period of discovery is foreseen in this fast-moving field, especially with 

the many methodological innovations that attempt to address the ‘missing heritability’ of 

obesity. To effectively tackle this knowledge gap, prospective studies need to incorporate 
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current evidence related to statistical modelling, confounding, biological assumptions, 

temporal aspects and variable measurement to optimize the validity of emerging 

evidence. Given the potential of GEI research to identify high-risk subgroups of the 

population that experience greater benefit from specific environmental exposures, the 

application of this knowledge may improve targeting of public health policies and further 

develop the field of personalized medicine to combat the obesity epidemic.  
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Table 18. Summary of methodological issues and solutions for gene-environment interaction 
studies in obesity. 

Methodological Issue Suggested Solution Reference 
(Lead author  

Modelling the G x E cross-
product terms 

Include an additional coefficient to 
model non-linear genetic effects 
(β4G2), and a second to account for 
non-linear interaction effects (β5G2 x 
E) 

Aliev, Bavav Genet, 2014 

Comparing biological 
frameworks (e.g. diathesis-
stress model vs. differential 
susceptibility framework) 

Adjust the parameters in the 
regression equation to compare 
alternate theoretical frameworks  

Belsky, Psychol Bull, 2009 
Widamen, Psychol Methods, 
2012 

Selection of interaction scale 
(e.g. additive vs. 
multiplicative) 
 

Consider the application of the 
interaction test a priori. Additive 
scales have been recommended for 
identifying heterogeneous effects 
across subgroups in public health 
settings, while multiplicative scales 
are suggested for studying disease 
etiology 

Ottman, Prev Med, 1996 

Confounding of the G x E 
interaction term 

Include all covariate x gene and 
covariate x environment interaction 
terms 

Keller, Biol Psychiatry, 2014 

Shared heritability between the 
outcome and covariates 
 

Avoid the inclusion of heritable 
covariates that are associated with 
the gene variant being tested  

Aschard, Am J Hum Genet, 
2015 

Correlation between the gene 
variant under study and the 
interacting environmental 
factor 

Directly analyze the relationship 
between the interacting gene variant 
and environmental exposure to 
ensure that they are not correlated  

VanderWeele, Am J 
Epidemiol, 2013 

Variations in gene 
expression/silencing, and 
changing the heritability of 
BMI throughout development 

Use a repeated measures design or 
include a G x E x Time term if the 
sample size is sufficient 

Liu, Environ Health, 2012 

Changing heritability of BMI 
throughout development 

Use existing gene x age interactions 
to identify variants with differential 
effects across the lifespan 

Elks, Front Endocrinol, 2012 
Winkler, PLoS Genet, 2015 

Measurement error associated 
with the environmental 
exposure and outcome 

Consider more accurate 
measurement tools or repeated 
measures in favour of large sample 
sizes with less accurate measures 

Wong, Int J Epidemiol, 2003 
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