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Abstract 

A 3D granular model which simulates fluid flow within solidifying alloys with globular microstructure 

such as found in grain-refined Al alloys is presented. The model geometry within a Representative Volume 

Element (RVE) consists of a set of prismatic triangular elements representing the intergranular liquid 

channels. The pressure field within the liquid channels is calculated using a Finite Elements (FE) method 

assuming a Poiseuille flow within each channel and flow conservation at triple lines. The fluid flow is 

induced by the solidification shrinkage and openings at grain boundaries due to the deformation of the 

coherent solid.. The granular model predictions are validated against bulk data calculated with averaging 

techniques. The results show that a fluid flow simulation of globular semi-solid material is able to 

reproduce both a map of the 3D intergranular pressure, and the localization of feeding within the mushy 

zone. A new Hot Cracking Sensitivity Coefficient (HCSC) is then proposed. Based on a mass balance 

performed over a solidifying isothermal volume element, this coefficient accounts for tensile deformation 

of the semi-solid domain and for the induced intergranular liquid feeding. The fluid flow model is then 

used to calculate the pressure drop in the mushy zone during the Direct Chill (DC) casting of aluminum 

alloy billets. The predicted pressure demonstrates that, deep in the mushy zone where the permeability is 

low, the local pressure can be significantly lower than the pressure predicted by averaging techniques. 
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1. Introduction 

During solidification, the feeding of liquid to counteract solidification shrinkage is hindered by the 

morphology and dense packing of the grain structure. When such regions within a casting are also 

submitted to tensile thermal deformations, a solidification defect known as hot tearing  [1-4], or 

solidification cracking may develop. In industrial metallic alloys, direct observation of semi-solid 

microstructure is challenging due to the high temperatures and metal opacity. While in situ observations of 

model organic systems [5] and small metallic specimens [6] subject to tensile loading are now available, 

accurate modelling of localization of liquid feeding has become a prerequisite for predicting hot tear 

formation.  

Accurate simulations of liquid convection during the solidification of industrially cast components is 

challenging since the typical length scale of the liquid network, i.e. the grain size, is usually much smaller 

than the process dimension. In order to overcome this issue, early researchers used an averaging or a 

multiphase mixture approach at the macro-scale to investigate fluid flow within the mushy zone (e.g. [7-

11]). In this type of simulation, a Representative Volume Element (RVE) methodology is used with the 

RVE assumed to consist of only one “average phase” based on a combination of solid and liquid properties. 

The RVE is large with respect to the grain size yet small with respect to the process scale. The governing 

equations are derived from averaging techniques in which the concepts of volume fractions of solid and 

liquid as well as exchange terms at the solid-liquid interface are introduced. More specifically for the fluid 

flow occurring in the mushy zone, Darcy’s law, which describes the flow of fluid through a porous 

medium, is often used to link the physical structure with fluid flow. This equation relates the average (or 

superficial) intergranular velocity to the pressure gradient, with a parameter that is proportional to the 

permeability of the mushy zone and inversely proportional to the dynamic viscosity [12, 13].  
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Although the averaging approach has been successful in providing insight into porosity formation, hot 

tearing and macrosegregation, it does not provide any information at the level of the microstructure. Thus, 

important physical phenomena, such as feeding variations at the level of the grains, cannot be obtained to 

improve hot tearing predictions. Over the past few years, a new technique based on granular modeling has 

shown much promise for investigating the initiation and propagation of cracks within the liquid films [14-

23]. In this technique, the liquid and solid phases are modeled independently but with a large enough 

domain size to be considered as a RVE.  

Early solidification models based on a granular modeling approach considered a regular arrangement of 

grains for the simulation of liquid feeding within mushy zones (e.g. [17]). However, such models have a 

key shortcoming associated with the intrinsic specific solid-liquid interfacial area ASℓ, i.e. the area of the 

solid-liquid interfacial area normalized by the volume of the solid. In a regular arrangement of grains, all 

the solid grains solidify at the same rate and therefore connect all at the same time when the overall 

volumetric solid fraction (gs) within the RVE reaches unity. Thus, the area ASℓ continuously increases until 

gs = 1. In reality, however, the random arrangement of the grains and thus their different sizes result in the 

formation of clusters (bridging or coalescence of neighboring grains) of increasing size, prior to gs reaching 

unity. The process of coalescence in a random array of grains typically occurs once gs > 0.9 [24] and causes 

ASℓ to reach a maximum at gs < 1. As first proposed in 2D by Mathier et al.[14], a regular arrangement of 

grains can be replaced by a random distribution of nucleation centers combined with a Voronoi tessellation. 

Using this approach, a 2D granular model of fluid flow during equiaxed-globular solidification was then 

developed by Vernède et al.  [18, 21] in order to examine liquid feeding during the solidification and semi-

solid deformation of an Al-1wt.%Cu alloy. In a subsequent work [19], it was shown that a finer grain 

structure has a decreased hot tearing sensitivity due to a more evenly distributed flow within more liquid 

channels, and thus a better feeding of areas under tensile stresses.  
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Although the idea of a random network of grains provides significant improvements in our ability to model 

fluid flow using a granular approach, the 2D geometry remains a severe limitation since granular 

microstructures are inherently 3D. Issues include: (a) The ASℓ predicted by a 2D simulation is smaller than 

reality [16], and hence the semi-solid permeability cannot be accurately quantified; and (b) although 

simultaneous continuity of both the solid and liquid phases can exist in 3D, a topological feature of 2D 

geometry is that only one of the two phases can be percolated through the RVE. 

In the present work, a new 3D fluid flow model for granular semi-solid materials with a geometry based on 

a Voronoi diagram has been developed. Its purpose is to investigate the localization of liquid feeding in the 

mushy zone during the solidification of grain-refined aluminum alloys and to overcome the limitations of 

2D geometries discussed before. Firstly, the methodology for generating the liquid film network during 

solidification within the framework of a granular approach is briefly outlined; secondly, the fluid flow 

model is described; thirdly, the model is validated and then used to explore fluid-flow during the globular 

solidification of an aluminum-copper alloy.  

 

2. Development of a 3D Fluid Flow Model of the mushy zone 

2.1. Generation of semi-solid liquid film geometry and mesh  

The liquid film geometry for the semi-solid fluid-flow simulations is created using the 3D granular 

solidification model known as GMS-3D [16, 23]. In this model, it is assumed that the grains are distributed 

randomly within an RVE of nearly uniform temperature. Providing that the grains nucleate simultaneously, 

the final grain structure will be nearly globular, with grain boundaries corresponding to a Voronoi 

tessellation of the random nucleation centers [25]. The RVE used in the present model, shown in Fig. 1(a), 

is a cube 3x3x3 mm3 containing 27,000 grains, i.e., a grain size of about 100 m. Solidification is 
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approximated within each grain using a microsegregation model with infinite diffusion in the liquid and 

some back-diffusion in the solid. As the temperature of the RVE is assumed to be uniform, the solute 

composition of the liquid Cℓ is also uniform in a binary alloy and given by the liquidus Cℓ (T) of the alloy 

(any curvature undercooling is neglected). Although the composition of the solid at the solid-liquid 

interface, Cs
*, is also uniform and given by kCℓ, where k is the partition coefficient, the solute profile in 

each grain (or portion of grain) is not uniform as it also depends on the Fourier number, i.e., on the grain 

size.  

Each polyhedral grain derived from the Voronoi tessellation is divided into a set of pyramids having the 

nucleation center as the summit and the Voronoi facet as the base. The base of the pyramid is subdivided 

into triangles so as to only have tetrahedral elements that can be used either in solid deformation [23] or 

fluid flow calculations (see Fig. 2(b)). Solute exchange between the tetrahedral pyramids is neglected, and 

as a result the microsegregation model simulation solidification reduces to a 1D problem in spherical 

coordinates with the solid / liquid interface advancing from the nucaltion center to the Voronoi facet. As it 

is the height L of each pyramid that enters into the corresponding back-diffusion Fourier number, the 

pyramids solidify at different solidification velocites, * and coalesce with their neighbors at different 

times, thus inducing grain percolation and a decrease of ASℓ at gs < 1. The solid-liquid interface within each 

tetrahedron is parallel to the base (future grain boundary), thus subdividing it into a tetrahedral solid and a 

triangular prismatic liquid channel. At the beginning of solidification, the liquid channels are very wide but 

as gs increases the width of liquid channels is reduced. The coalescence of two neighboring grains is 

assumed to occur once the liquid film thickness is of the order of the diffuse solid–liquid interface 

thickness (1–5 nm) [14, 26]. In such small channels, the permeability of the liquid is very low and the 

pressure drop required to nucleate a void is very large. Therefore, very thin liquid channels are considered 

to act in a way similar to solid-solid bonds. To accommodate this physical behavior, grain coalescence is 

assumed to occur once the thickness of a liquid channel shrinks to 5 nm in width. This phenomenon leads 
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to the formation of grain clusters (group of solid grains which are in mechanical contact). In Fig. 1(a), the 

grains belonging to the same cluster are shaded with the same grey-level. Further details of this model, 

together with a discussion of its limitations and domain of validity, are given in Refs. [16, 23]. 

The fluid flow simulation domain, or mesh, accounts for all channels between grains that have not yet 

coalesced, i.e. all channels with a thickness larger than 5 nm. Flow is assumed to occur in these 

interconnected intergranular regions only and not through the grains as could be the case in dendritic 

specimens. The mesh consists of triangular prismatic elements (wedges with five facets) as shown in Fig. 

2(a) with connectivity provided by GMS-3D. As can be seen in Fig. 2(b), flow conservation holds at each 

triple lines, i.e., where 3 different liquid wedges meet. The fluid flow mesh shown in Fig. 1(b), contains 

1.03×106 elements.  

2.2. Liquid feeding model  

Under the solidification conditions presented above, Navier-Stokes equations for fluid flow can be 

simplified to Poiseuille flow between two parallel plates if one considers the specific geometry of the 

interconnected liquid channels that remain between the solidifying polyhedral grains and assumes that  

flow is both parallel to the triangular facet within each element(i.e., the fluid velocity v  has only two 

components, 'xv and 'yv , in a local frame (x’, y’, z’) attached to the facet with the local z’-axis perpendicular 

to the facet surface), and is irrotational (i.e. the vorticity    is nil)  

 2 21
[ ' ]

2
p z h


    (1) 

where the liquid channel width is 2h and the reference position for the z’-axis  is placed at mid-distance 

between the two parallel solid-liquid interfaces of two neighbor grains. 
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Mass conservation within the liquid film must take into account both solidification shrinkage and 

deformation of the solid. Considering Fig. 2, if the velocity of the solid-liquid interface is v*, the normal 

velocity of the fluid at the interface required to compensate solidification shrinkage is given by –v*, where 

 = (s/ℓ - 1) is the shrinkage factor, ρℓ, and ρs the densities of the liquid and solid, respectively. 

Concurrently, deformation of the solid grains can induce variation in the liquid channel width if the normal 

velocity of the two solid grains, vsz’
+ and vsz’

- are different. With these considerations in hand, one can then 

establish a mass balance over the prismatic volume element Vℓ having the axis z’ as generating line and two 

solid-liquid interfacial area Asℓ (see Fig. 2). Integrating this equation over Vℓ and assuming the liquid to be 

incompressible (i.e. . 0v  ) result in 

 
sV S S

v dV v ndS v ndS        (2) 

where Sℓ is the lateral surface of the prism and the divergence theorem has been used. At the solid-liquid 

interface, this integral is simply given by:  

 *( 2 )
s

s n s n sn
S

v ndS S v S v v       (3) 

where snv  measures the difference ' '( )sz szv v  . The integral of the fluid flow velocity along the lateral 

surface of Vℓ  is obtained by replacing v  by Eq. (1). One then has: 

 
3 3 3

2 2 2 21 2 2 2
( ' ) '

2 3 3 3s
s

S S S

h h h
p n z h dz dS p ndS pdS pS

   

  
             (4) 

Please note that after the integration over z’ from –h to +h, one is left with an integral over the perimeter of 

Ssℓ. Using Green’s theorem, this integral is equivalent to an integral over the surface Ssℓ of the Laplacian of 

the pressure field, ∇2p, which over a triangular element is constant for a Poiseuille flow. To summarize, as 

this derivation is valid for any solid-liquid interfacial area Ssℓ, one finally has the equation:  
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3

2 *2
2

3
sn

h
p v v


    (5) 

The left hand side of Eq. (5) is the net volume of liquid that must flow into the control volume to account 

for the effects of solidification shrinkage and deformation on fluid flow shown on the right hand side. The 

term –2v* is unique for every channel, as it depends on the Fourier number, and is calculated based on the 

output of the granular solidification model. However, the term snv depends on the strain rate exerted on 

the mushy zone. In the present work, strain of the solid skeleton is not calculated using a mechanical model 

[25] but instead it is assumed that the grains are rigid and hence all of the deformation is localized in the 

liquid channels. In this case, snv of each triangular element can be approximated as 

 2
(1 )

sv
sn

s

v h
g


 


 (5) 

where 
sv xx yy zz
     

 
is the volumetric part of the strain rate exerted on the mushy zone. 

2.3. Numerical implementation 

A finite element code, written in C++, has been used to calculate the liquid pressure in the semi-solid 

medium based on (8). Since the flow within an element has been assumed to be parallel to the facets only, 

the 3D prism-shaped geometry within which it occurs can be discretized into 3-node 2D triangular 

elements, using the Galerkin method. Please note that in Fig. 2, the polygonal shape of the grain boundary 

between grains j and k has not been subdivided into triangles in order to make the drawing more readable. 

In this method the pressure within each triangular element is approximated as 

 
3

*

1

e

i i
i

p N p


   (6) 
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where, Ni (i=1,2,3) are the shape functions of the triangular element that approximate the pressure field 

within element (e) in the (x’, y’, z’) coordinate system. The *

ip ’s (i=1, 2, 3) define the nodal values of the 

pressure.  Applying the Galerkin finite element method to the governing Eq. (5), the following matrix 

equation is obtained: 

    

*

1

*

2

*

3

K
e ee

p

bp

p



 
 

  
 
 

 (7) 

where,  

  
32

3 ' ' ' 'e

e j ji i

ij

A

N NN Nh
K dA

x x y y

   
  

    
  (8) 

    *2
e

e

sn ii

A

b v v N dA    (9) 

  
3

' '

2

3 ' 'e

e j j

x y j iij

N Nh
n n p N d

x y


 


  
  

  
  (10) 

Matrix [K]e is the stiffness matrix, be is the body load associated with solidification shrinkage and solid 

deformation { }e  the boundary conditions, Ae and e are the area and perimeter of the triangular element, 

respectively, while n = (nx’,ny’) is the outward-pointing unit vector perpendicular to e in the (x’, y’, z’) 

coordinate system (see Fig. 2). The matrix equation (8) is then assembled from Eq. (9)-(11) for each 

element. Once the individual element matrices have been developed they must be assembled into the global 

stiffness matrix. Please note that the boundary contributions { }e  (Eq. 11) correspond to the intergranular 

flow leaving (or entering) the perimeter of each element. The boundary condition {}e will remain only on 

external boundaries of the whole RVE where a Neumann (imposed flux) or Cauchy (mixed) condition is 
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imposed. After developing the global stiffness matrix, it is solved with a Conjugate Gradient linear iterative 

method using a free open access program C++ template library known as IML++ [27]. 

3. Results and Discussion 

The 3D fluid flow simulations using the geometry derived from the granular solidification model [16] have 

been performed on the domain shown in Figure 1(a), unless otherwise states, under an imposed cooling rate 

of -1 K/s. The solidifying material is a binary Al-1wt.%Cu alloy, with the following physical parameters : 

ρℓ = 2440 kg m-3 ,  = 1.5x10-3Pa s and  = 0.074. This alloy was chosen due to its long freezing range and 

susceptibility to hot tear formation [4]. Below, initial results are presented followed by a model validation. 

The model is then used to propose a new hot tearing sensitivity coefficient. The sensitivity coefficient 

similar to the RDG criterion[4], based upon a mass balance performed over liquid and solid phases, 

accounts for the tensile deformation of the RVE and for the induced intergranular liquid feeding. Finally, 

the pressure drop within the mushy zone during the Direct Chill casting of an aluminum alloy extrusion 

billet is examined.  

3.1. Model Validation 

The model has been validated using three comparison methods. First, the assumption of Poiseuille flow is 

verified. Second, the permeability of the mushy zone is calculated and compared to the bulk permeability 

predicted by the Carman-Kozeny relationship [12]. Third, the amount of liquid needed to account for the 

volumetric change during solidification and semi-solid deformation is calculated and compared with the 

results obtained from a bulk analysis. The first case demonstrates the model validity at gs>0.90, while the 

second and third cases demonstrate the model validity below gs=0.90.  
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Solidification Geometry 

Figure 3(a) shows the distribution of the liquid channels widths predicted by the granular solidification 

model for three values of gs (gs=0.80, 0.93, and 0.98). As solidification proceeds, smaller liquid channels 

close, while larger ones remain open due to the effects of back diffusion and the Fourier number on the 

microsegregation model. As can be seen the majority of the open channels have a width of ~3 µm for 

gs=0.93 and decreasing to ~1 µm for gs=0.98. Also, the number of closed channel increases with gs so that 

there is an ~40% increase in the number of closed channels between gs=0.93 and gs=0.98.  Since the 

Reynolds number of the fluid flow through small narrow channels is very small (≃10-5), fluid motion can 

be considered laminar. Figure 3(b) shows the distribution of the ratio of the liquid channel thickness to the 

square root of Ssℓ. As can be seen, the majority of the liquid channels have a width to length ratio of less 

than 6% when gs>0.90 and hence the channels can be considered infinite parallel plates. Thus, the 

assumption of Poiseuille flow (laminar flow between two infinite parallel plates) is valid for the case when 

0.9<gs<1. 

  

Permeability 

For semi-solid materials with equiaxed microstructure, such as grain-refined industrial castings susceptible 

to hot tearing, the bulk permeability, K, has often been expressed by the Carman-Kozeny relation [12]:  

 
3

2

(1 )

5

s

s

g

A


K  (11) 

The factor 5 is an empirical fitting factor which seems to provide good agreement with experimental data 

over a wide range of solid fraction gs for the case of an isotropic porous medium composed of 

unconsolidated material [12, 13, 28, 29]. In order to assess the ability of the new 3D fluid flow model to 
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predict the bulk permeability, a series of isothermal flow simulations were performed at various gs on the 

interval [0,1] with the following boundary conditions: a constant pressure P0, i.e. a Dirichlet boundary 

condition, on the top side and a fixed flux q, i.e., a Neumann boundary condition, on the bottom side. 

Please note that q has the units of a velocity, since it is a flow (m3/s) per unit area (m2).  Furthermore, for a 

valid comparison with Carman-Kozeny permeability, it is necessary to neglect solidification shrinkage and 

to close the lateral boundaries. Darcy’s law is then used to calculate permeability using the pressure P1 

found at the bottom boundary:  

 
1 0

q

P P

L




 
 
 

K  (12) 

where L is the height of the domain and P1 is the average pressure on the bottom side of the RVE.  

 Figure 4 shows the pressure contours for four values of gs (gs=0.50, 0.80, 0.92 and 0.98) with q = 50 m/s 

and P0 = 0. In this figure, the calculated liquid flow in each facet is represented with a plate of finite 

thickness proportional to the local flow and normalized by the overall flow (i.e. relative flow intensity). 

The legend is shown to the right of each image and although the pressure is defined only in the liquid 

channels, the color is also represented within the grains for visibility. For the two images at lower gs, Fig. 

4(a) and Fig.4 (b), the fluid flow is fairly well distributed in the liquid channels. However, the flow appears 

to localize along a few preferential paths at gs = 0.92 (Fig. 4(c)) and even more at gs = 0.98 (Fig. 4(d)). 

Also, note that the maximum local pressure drop (P0 - P1) increases with gs; at gs=0.98, it is approximately 

4 orders of magnitude larger than its value for gs=0.50.  

In Fig. 5, a comparison is shown for the bulk semi-solid permeability using (a) the new 3D fluid-flow 

model, (b) a previously developed 2D granular fluid-flow model [18, 21] and (c) the predictions of the 

Carman-Kozeny relation. Note that the results for gs < 0.3 have not been presented since at low gs, the 
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liquid channels are wide and therefore both the Poiseuille laminar flow assumption is no longer valid and 

the contribution of the flow at vortices, i.e., points where 4 grains meet, becomes also important. As can be 

seen in the figure, the permeability calculated with the 3D fluid-flow model follows the Carman-Kozeny 

relation closely until the very end of solidification with the accuracy improving with increasing gs. In 

contrast, the permeability of the 2D fluid-flow model is higher than the Carman-Kozeny predictions, a 

difference that can be explained by the smaller value of Ss for a 2D assembly of grains compared to the 3D 

case considered here [16]1. While averaging methods, such as the Darcy equation, dictate that lower 

permeability represents a higher average pressure drop, the local pressure drop predicted by the 2D model 

is higher than the local pressure drop predicted by the 3D model. This is because the local pressure drop is 

closely linked to the actual number of channels available for feeding. In the 2D model, liquid cannot pass 

once two grains have coalesced, whereas the liquid can go around in the 3D model, due to the additional 

third dimension. As pointed out in [16], both the solid and liquid phases can be percolated in 3D, while this 

cannot be the case in 2D.  

Solidification Shrinkage 

In the second test, the volume of liquid required to feed solidification shrinkage is considered. The amount 

of liquid required to feed a deforming and solidifying isothermal RVE can be calculated analytically, and is 

given by:  

  s

sv

dgQ

V dt
 

 
  

 
 (13) 

where V is the volume of the RVE, and Q is the volumetric flow (m3/s). To simulate this case using the 

present 3D fluid flow granular model, all the surfaces of the RVE are closed except for one where feeding 

                                                 

1 Please note that this discrepancy does not appear in Ref. [17] as the product KSv
2, where Sv = ASℓ/gs, and not K was reported as 

a function of gs. 
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is allowed. Solidification and deformation is then initiated, and the volumetric liquid flowing into the RVE 

through the open surface is recorded as a function of gs. Figure 6 shows a comparison of the variation in net 

fluid inflow with gs due to solidification shrinkage and semi-solid deformation as calculated using Eq. (14), 

and as calculated by the 3D fluid-flow model for two different cooling rates ( 5 /T K s   and 1 /T K s 

) and two different strain rates ( 0.0
sv
   and 

3 12 10  s
sv
    ). The evolution of gs for this alloy was 

calculated using the granular solidification model [16]. As can be seen, there is a good agreement for both 

cooling rates between the two curvesHence, the 3D fluid flow model is able to simulate accurately the 

liquid flow induced by solidification shrinkage and semi-solid deformation. The formation of hot tears is 

similar to porosity formation in the sense that it is linked to a lack of liquid feeding in the mushy zone, but 

requires additionally shear or tensile deformation. As can be seen in Figure 6,  although the need for fluid 

to account for solidification shrinkage decreases with increasing gs the need for fluid to account for 

deformation remains nearly constant at high gs. Previous work has also shown that, locally, the fluid 

needed to counteract deformation may even increase at high gs since the deformation localizes along few 

preferential paths [25]).  

3.2. Hot Tearing Sensitivity Index 

Although many hot tearing criteria have been suggested in the literature [review by Eskin et al. [30]  for 

example], the pressure drop due to shrinkage and deformation is a key parameter of most recently-

developed criteria. In the RDG criterion [4], the amount of liquid needed for feeding a mushy zone under 

deformation is given by: 

 ( )
s sv

Q g V     (14) 

Assuming an isothermal mushy zone under uniform straining of the solid skeleton, the pressure drop or 

pressure gradient according to Darcy’s law is thus proportional to: 
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 s sv
g

p
  

   
 K

 (15) 

Therefore the coefficient, s sv
g

M
  

  
 K

, represents the sensitivity of the mushy zone to hot tearing.  

Using the simulations performed for Figs. 5 and 6, the expression M has been computed. The results are 

shown in Fig. 7 as a function of gs at a cooling rate of 1 /T K s  for different strain rates between 0
sv
 

and 0.01
sv
  . As can be seen, M values at gs < 0.9 are insignificant but increase sharply beginning at gs = 

0.9; with increasing strain rate, the rapid increase in M occurs at lower gs. As shown by many previous 

authors (e.g. [31]), hot tearing susceptibility is significantly increased at gs > 0.9. These results confirm 

those findings, and indicate that it is the feeding ability of the mushy zone that determines hot tear 

formation. At values of gs > 0.9, the feeding ability becomes significantly reduced. The addition of the 

strain-rate term, i.e. a deforming mushy zone, simply enhances the problem of feeding and enables the 

crack to form and grow at an earlier stage.   

3.3. Case study: Direct Chill Casting of round billets 

The Direct Chill (DC) semi-continuous casting process [32] is widely used in the aluminum alloy industry; 

the process is schematically presented in Fig. 8. Experimentally, hot tears are observed in the center of 

round billets when the casting speed is increased [32]. To examine fluid-flow within DC casting in the 

context of hot tearing, a column of semi-solid metal located at the center of the billet and spanning over the 

distance between the solidus and liquidus temperatures has been studied using the new 3D fluid flow / 

granular model. In this region, lateral feeding is assumed to be negligible due to axisymmetric reasons. The 

characteristics of the primary and cooling systems such as the amount and quality of the cooling water and 

the mold geometry together with the casting speed determine the sump depth, h, and the cooling rate, T . 
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The typical values of h and for a billet of 200 mm diameter, considered in this study are 100 mm and 5 

K/sec at a casting speed of 90 mm/min (i.e., vertical thermal gradient of 3.33×103 K/m) [32]. Using the 

granular solidification model [16] again and this thermal history, the evolution of gs along any point of the 

selected line in the DC cast ingot can be computed. It will be used to calculate the pressure drop associated 

with solidification shrinkage  and semi-solid deformation under uniform volumetric strain rate sv . 

As shown in Fig. 8, the semi-solid column as is performed for multiprocessors calculations is sub-divided 

into 6 smaller RVE’s, each containing 16,000 (40x20x20) grains, in order to reduce the computational cost. 

The size of each RVE is H = 4 mm along the axis of the billet, and 2x2 mm2 in cross-section. Since the 

values of the fluxes Qij exchanged at the boundary between the RVE domains (i) and (i+1) (i = 1 to 5) are 

unknown, the simulation is performed twice. Please note that since Qij only depends on the pressure 

gradient, the actual pressure value imposed is not critical to the flux computation. For the first simulation, 

the Qij‘s are calculated sequentially in order to acquire the fluid flow within the mushy zone. The 

sequential calculation begins with the first RVE (i = 1) located at the bottom of the mushy zone. Since 

there is no flux possible at the bottom boundary (i.e., at the interface with the fully solid material), the 

simulation can be performed by imposing a constant pressure equal to zero at the upper boundary. This 

allows one to calculate the entering flow Q12 at this upper boundary since the evolution of gs is known from 

the thermal field. This value is then imposed on the bottom side of the second RVE (i = 2) if a constant 

pressure is imposed on the upper side. The flow Q23 is thus obtained and the problem is repeated up to the 

sixth RVE. For the second simulation, the process is reversed in order to acquire the actual pressure drop 

within each RVE. This time, the simulation begins with the RVE i = 6 since the pressure on the upper side 

of this volume (Pa + gh), is known, where Pa is the atmospheric pressure. This pressure is imposed on the 

upper side of this RVE, while the flow Q56 calculated from the first simulation is imposed at the bottom 

boundary. With these two conditions, as for Fig. 5, the actual pressure at the surface S56, i.e., P56, can be 

T
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computed with the granular fluid flow model. This process is continued until the pressure drop within each 

RVE is acquired.  

Figure 9 shows the calculated pressure drop through the centerline mushy zone of a DC cast billet along 

with the associated Darcy’s velocity. The pressure drop is entirely due to solidification shrinkage and semi-

solid deformation at uniform and fixed volumetric strain rates of (a) 10.0 s
sv
   (b) 4 110  s

sv
    and (c) 

3 110  s
sv
   . Although the minimum average pressures reported are approximately -15 kPa (a) , -29 kPa 

(b) and -156 kPa (c) , the minimum calculated local pressure is much lower, typically  -459 kPa (a), -498 

kPa (b) and -795 kPa (c), in some of the channels which are recognizable as some dark spots in Fig. 9. This 

extremely large pressure drop occurs due to the low feeding ability of some individual thin channels. 

However, in a granular model that includes additional physical phenomena including porosity formation 

and solid grain deformation/displacement [23], such a high depression will be lessened. In this case when 

the pressure within the thin liquid channels falls below a cavitation pressure (Pc), a void forms and give rise 

to a crack [4]. Since the radius of curvature of the pores is also dictated by the width of the liquid channel, 

the cavitation pressure itself also depends on the thickness of the liquid channel. As shown in Fig. 9, if Pc is 

set to 2 kPa for the sake of simplicity [4, 32], hot tearing occurs at gs=0.979 (a), gs=0.964 (b) and  

gs = 0.938 (c). Therefore, with increasing   the hot tearing occurs at lower gs and hot tearing susceptibility 

is significantly increased. This remark was also deduced previously from the sensitivity coefficient M. 

4. Conclusions 

A 3D granular model has been developed to simulate the localization of feeding through the mushy zone. 

In this new fluid flow model, the pressure drop was calculated assuming Poiseuille flow in each channel. 

The model predictions (permeability and shrinkage) were validated against the results obtained from 

averaging techniques. The results show that the model is able to calculate the permeability of the mushy 

zone and the flow associated with solidification shrinkage accurately for values of gs greater than 0.4. 
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Although the average values fit well with those obtained by simple averaging techniques such as Carman-

Kozeny’s model, it is also shown that locally, in particular in the thinnest channels of liquid, the pressure 

drop can deviate substantially from the analytical solution. 

A hot tearing criterion has been developed for globular solidification and the sensitivity of mushy zone to 

hot tearing at various gs has been analyzed using the results obtained with the fluid flow model. Although 

the hot tearing sensitivity coefficient at gs < 0.9 has an insignificant value, it rapidly increases above 

gs = 0.9. This rapid increase confirms that the susceptibility of the mushy zone to hot tearing occurs at high 

solid fraction and near the end of solidification due to its low feeding ability. Finally, the model has been 

applied to the particular case of DC casting of an aluminum extrusion billet. The calculated pressure 

demonstrates that, deep in the mushy zone where the permeability is low, the local pressure can be very 

low in the thinnest liquid channels even though the average pressure drop remains limited. This low 

pressure in such channels will have to be put into relation with the cavitation pressure required to nucleate 

and grow a non-wetting pore at those locations. Furthermore, this fluid flow model is being coupled with a 

semi-solid deformation model [23] by the present authors. The hydro-mechanical coupling will provide a 

fairly unique tool and good insight into the determinant phenomena of hot tearing and in particular into the 

contribution of localization of strains and feeding.  

5. Acknowledgements 

The authors would like to thank the Swiss Competence Centre for Materials Science and Technology 

(CCMX), and partner companies within the thematic area “Multi-scale, multi-phenomena modelling of 

metallic systems” for funding this research. We would like also to thank Jean-Luc Desbiolles for writing a 

portion of the GMS-3D code. 

  



 

 

19 

 

6. References 

[1] Dantzig JA, Rappaz M. Solidification. Lausanne: EPFL Press, 2009. 

[2] Feurer U. Mathematical model by the hot cracking tendency of binary aluminum alloys 

[Mathematisches Modell Der Warmrissneigung Von Binaeren Aluminium legierungen.] 

Giessereiforschung 1976;28:75. 

[3] Niyama E. US joint seminar on solidification of metals and alloys. Japan: Japan Society for 

Promotion of Science, 1977. p.271. 

[4] Rappaz M, Drezet JM, Gremaud M. A new hot-tearing criterion. Metall. Trans. A 1999;30:449. 

[5] Farup I, Drezet JM, Rappaz M. In situ observation of hot tearing formation in succinonitrile-acetone. 

Acta Materialia 2001;49:1261. 

[6] Terzi S, Salvo L, Suery M, Limodin N, Adrien J, Maire E, Pannier Y, Bornert M, Bernard D, 

Felberbaum M, Rappaz M, Boller E. In situ X-ray tomography observation of inhomogeneous 

deformation in semi-solid aluminium alloys. Scripta Materialia 2009;61:449. 

[7] Ludwig O, Drezet JM, Martin C, Suéry M. Rheological behavior of Al-Cu alloys during solidification 

constitutive modeling, experimental identification, and numerical study. Metallurgical and Materials 

Transactions A 2005;36:1525. 

[8] Mathier V, Vernède S, Jarry P, Rappaz M. Two-Phase Modeling of Hot Tearing in Aluminum Alloys: 

Applications of a Semicoupled Method. Metallurgical and Materials Transactions A 2009;40:943. 

[9] M'Hamdi M, Mo A, Fjaer HG. TearSim: A two-phase model addressing hot tearing formation during 

aluminum direct chill casting. Metallurgical and Materials Transactions a-Physical Metallurgy and 

Materials Science 2006;37A:3069. 

[10] Mo A, M'Hamdi M, Fjaer HG. Mushy zone rheology and hot tearing in aluminium DC casting. 

Modeling of Casting, Welding and Advanced Solidification Processes-X 2003:199. 

[11] Monroe CA, Beckermann C, Klinkhammer J. Simulation Of Deformation And Hot Tear Formation 

Using A Visco-Plastic Model With Damage. In: Cockcroft SL, Maijer DM, editors. Modeling of 

Casting, Welding, and Advanced Solidification Processes - Xii, 2009. 

[12] Carman P. Fluid flow through granular beds. Trans. Inst. Chem. Eng. 1937;15:150. 

[13] Carman P. The determination of the specific surface of powders. J. Soc. Chem. Ind. 1938;57:225. 

[14] Mathier V, Jacot A, Rappaz M. Coalescence of equiaxed grains during solidification. Mod Sim Mater 

Sci Eng 2004;12:479. 

[15] Vernède S, Rappaz M. A simple and efficient model for mesoscale solidification simulation of 

globular grain structures. Acta Materialia 2007;55:1703. 

[16] Phillion AB, Desbiolles JL, Rappaz M. A 3D granular model of equiaxed-granular solidification. In: 

Cockcroft S, Maijer D, editors. Modeling of Casting, Welding, and Advanced Solidification 

Processes - Xii. Vancouver, Canada: TMS, Warrendale, PA, 2009. p.353. 

[17] Dijkstra WO, Vuik C, Dammers AJ, Katgerman L. Network modeling of liquid metal transport in 

solidifying aluminium alloys. In: Rappaz M, Beckerman C, Trivedi R, editors. Solid Proc & Microst: 

Symp Hon of W Kurz, : TMS, 2004. p.151. 

[18] Vernède S, Jarry P, Rappaz M. A granular model of equiaxed mushy zones: Formation of a coherent 

solid and localization of feeding. Acta Materialia 2006;54:4023. 

[19] Phillion AB, Vernede S, Rappaz M, Cockcroft SL, Lee PD. Prediction of solidification behaviour via 

microstructure models based on granular structures. Int. J. Cast Met. Res. 2009;22:240. 

[20] Phillion AB, Cockcroft SL, Lee PD. A three-phase simulation of the effect of microstructural features 

on semi-solid tensile deformation. Acta Materialia 2008;56:4328. 

[21] Vernède S, Dantzig JA, Rappaz M. A mesoscale granular model for the mechanical behavior of alloys 

during solidification. Acta Materialia 2009;57:1554. 



 

 

20 

 

[22] Phillion AB, Cockcroft SL, Lee PD. Predicting the constitutive behavior of semi-solids via a direct 

finite element simulation: application to AA5182 Modelling and Simulation in Materials Science and 

Engineering 2009;17:055011 (15pp). 

[23] Sistaninia M, Phillion AB, Drezet JM, Rappaz M. Simulation of semi-solid material mechanical 

behavior using a combined discrete/finite element method. Metall. Trans. A 2011;42:239. 

[24] Rappaz M, Jacot A, Boettinger WJ. Last-stage solidification of alloys: Theoretical model of dendrite-

arm and grain coalescence. Metall. Trans. A 2003;34:467. 

[25] Charbon C, Rappaz M. Shape of grain boundaries during phase transformations. Acta Materialia 

1996;44:2663. 

[26] Drezet J-M, Sistaninia M, Rappaz M. Modeling of hot tearing: two-phase models, coalescence and 

mesoscale granular models. Matériaux & Techniques 2010;98:261. 

[27] Dongarra J, Lumsdaine R, Pozo R, Remington K. A sparse matrix library in C++ for high 

performance architectures. Proceedings of the second object oriented numerics conference, 1992. 

p.214. 

[28] Bernard D, Nielsen O, Salvo L, Cloetens P. Permeability assessment by 3D interdendritic flow 

simulations on microtomography mappings of Al-Cu alloys. Materials Science and Engineering a-

Structural Materials Properties Microstructure and Processing 2005;392:112. 

[29] Khajeh E, Maijer DM. Physical and numerical characterization of the near-eutectic permeability of 

aluminum-copper alloys. Acta Materialia 2010;58:6334. 

[30] Eskin DG, Suyitno, Katgerman L. Mechanical properties in the semi-solid state and hot tearing of 

aluminium alloys. Prog. Mater. Sci. 2004;49:629. 

[31] Davidson C, Viano D, Lu L, StJohn D. Observation of crack initiation during hot tearing. Int. J. Cast 

Met. Res. 2006;19:59. 

[32] Drezet JM, Rappaz M. A new hot tearing criterion: application to DC casting of alminium alloys. In: 

Whiteley PR, Grandfield JF, editors. Sixth Australian Asian Pacific Conference Aluminium cast 

house technology. Australian, 1999. 

 

 

  



 

 

21 

 

7. Figure captions 

Fig. 1 The semi-solid simulation domain – (a) a partially solidified RVE, at gs = 0.93, containing 27000 

(30x30x30) grains (b) the liquid film network in-between the polyhedral grains.  
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Fig. 2 A schematic of the liquid control volume – (a) its location in relation to the facets of two 

neighboring grains; (b) the triangular network of liquid elements. 
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Fig. 3 The liquid channels variations as a frequency distribution (a) the distribution of the thickness of the 

triangular liquid elements (b) the distribution of the ratio of the liquid channel thickness, 2h to the square 

root of the SSℓ for three different gs (0.80, 0.93 and 0.98) 

a)  

b)  
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Fig. 4 Fluid flow through a mushy zone volume element (3x3x3 mm3) consisting of 27000 grains for (a) 

gs=0.5 (b) gs=0.80, (c) gs=0.93 and (d) gs=0.98; the width of each channel is proportional to the local flow 

normalised by the total flow within the volume element. 
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Fig. 5 The variation in permeability, K, with gs for a random network of grains calculated using the 3D 

fluid flow model. The 2D fluid flow model of  Vernède et al. [18] and Carman–Kozeny relationship are 

also provided for comparison. 

 

Fig. 6 A comparison of the variation in net fluid inflow per unit volume with gs due to solidification 

shrinkage and semi-solid deformation as calculated with the 3D fluid flow model and with Eq. (17) at two 

different cooling rates ( 5 /T K s   and 1 /T K s  ) and two different strain rates ( 0.0
sv
   and 

3 12 10  s
sv
    ).  
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Fig. 7 Variation in hot tearing sensitive coefficient M, i.e. s sv
  

 
 K

g
, with gs for four different strain 

rates. 
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Fig. 8 A schematic diagram illustrating the DC casting process for round billets. As shown on the right, the 

mushy zone has been subdivided into six segments in order to simulate fluid-flow within the sump region. 
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Fig. 9 The calculated pressure drop through a mushy zone located at the center of a solidifying aluminum 

alloy DC cast round billet for an Al–1 wt.% Cu alloy cooled at -5 K/s in a gradient of 3.33x103 K/m at 

strain rate of (a) 10.0 s
v
   , (b) 4 110  s

v
    and (c) 3 110  s

v
   . The Pa has been set to 0 in this case. The 

grain view and flow shown on the left corresponds to case (a). 

 

 


