
INTEGRATION TESTING

AN APPROACH OF INTEGRATION TESTING

FOR

OBJECT-ORIENTED PROGRAMS

By

ZHE (JESSIE) LI, B.E.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

McMaster University

@Copyright by Zhe (Jessie) Li, May 2007

C•

MASTER OF SCIENCE (2007)
(Computer Science)

McMaster University
Hamilton, Ontario

TITLE: An Approach to Integration Testing for Object-Oriented Programs
AUTHOR: Zhe (Jessie) Li, B.E. (McMaster University)
SUPERVISOR: Professor Tom Maibaum
NUMBER OF PAGERS: ix, 126

ii

Abstract

Object-oriented programs have many unique features that are not present in
conventional programs, such as Inheritance, Polymorphism, Dynamic binding
and Encapsulation, etc. Hence, testing object-oriented programs using only
traditional techniques is unlikely to find the faults associated with these fea­
tures. A study shows that approximately 40% of software errors can be traced
to component interaction problems discovered during integration. Integration
testing is an important part of the testing process. However, few integration
testing techniques have been systematically studied or defined.

The goal of this research is to develop an approach for automatic test
case execution at the integration level. The approach is based on the concept
of Coordination Contract, which was developed by J. Fiadeiro and L. Andrade.
A coordination contract is a connection between a group of objects. Through
contracts, rules and constraints are superposed on the behavior of the partic­
ipants without interfering with their implementation. Due to the contract's
character, integration test case execution and test result evaluation are suit­
ably implemented by contracts. A tool has been developed to automatically
generate the relevant contracts to implement integration test cases generated
by some mechanism for test case generation.

In recent years, more and more software developers use the Unified
Modeling Language (UML) and corresponding visual modeling tools to design
and develop their application software. So we are using UML sequence dia­
grams and class diagrams as integration testing specifications. Actually, there
are few practical tools to generate test cases from UML, and even fewer tools to
execute test cases. Therefore, the result of this research will play an important
role in testing object-oriented programs at the integration level. Our accom­
plishment makes some progress in the integration testing for object-oriented
programs.

iii

Acknowledgement

This thesis is the result of nineteen months of work whereby I have been
accompanied and supported by many people. I would like to express my
warmest gratitude to all those who gave me the possibility to complete this
thesis.

I am deeply indebted to my supervisor Prof. Dr. Tom Maibaum from
McMaster University. I am grateful for his offering me a chance to be one of
his students. His wide knowledge and his logical way of thinking have been
of great value for me. His understanding, encouraging and personal guidance
have provided a good basis for the present thesis. His kind help, stimulating
suggestions helped me in all the time of research for and writing of this thesis.
Without his help, this thesis could not be possible to get there.

I would like to express my deep and sincere gratitude to Prof. Dr.
Kamran Sartipi from McMaster University. His extensive discussions around
my work have been very helpful for this thesis.

I wish to express my warm and sincere thanks to Prof. Dr. Alan
Wassyng from McMaster University for his valuable advices and friendly help.
His kind support and guidance have been of great value in this thesis.

I would also like to thank Dr. Marcelo Frias from University of Buenos
Aires for offering a tool to generate test data, and Georgios Koutsoukos from
ATX Software for providing latest information about the tool CDE.

Especially, I would like to give my special thanks to my husband Jeremy
whose patient love and help enabled me to complete this work, and my parents
who are always encouraging and supporting me.

The financial support of the department of computing and software in
McMaster University and my supervisor is gratefully acknowledged.

I wish I could thank everyone who helped me. But I cannot list all the
names here. In one word: Thank You, Everyone!!

Sincerely,
Jessie Li
Hamilton, Canada
May, 2007

iv

Contents

Abstract ii

Acknowledgement iv

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work 1
1.3 Contribution . 2
1.4 Thesis Contents . 3

2 Object-Oriented Programming 5
2.1 Introduction . . 5
2.2 Features 5
2.3 Design Patterns . . . 7

2.3.1 Introduction . 7
2.3.2 Examples 8

3 Software Testing 11
3.1 Introduction . 11

3.1.1 Software Testing vs. Formal Verification 11
3.1.2 Validation vs. Verification 12
3.1.3 Testing Level 12
3.1.4 Black Box vs. White Box 14

3.2 Integration Testing 15
3.2.1 Introduction 15
3.2.2 Integration Testing Patterns 15
3.2.3 Integration Faults 16

3.3 Related Work: A Survey of 00 Integration Testing Techniques 17
3.3.1 State-based Testing . . . 18
3.3.2 Mutation-based Testing . . 18
3.3.3 Data-flow based Testing . . 19
3.3.4 Control-flow based Testing . 19
3.3.5 Event-based Testing 20

v

3.3.6
3.3.7

Formal Specification based testing .
UML-based Testing

20
21

4 Unified Modeling Language 25
4.1 Introduction 25
4.2 Sequence Diagrams 26

4.2.1 The Basics. 27
4.2.2 Advanced 29

4.3 Class Diagrams . . 30
4.3.1 Elements . . 30
4.3.2 Relationship . 31

4.4 UML Tools 32

5 Coordination Contract 35
5.1 Concepts 35
5.2 An Example of Coordination Contract 36
5.3 Contract Specification for CDE1.1 . 38

5.3.1 Syntax . . . 38
5.3.2 Semantics . 39

5.4 Micro-Architecture 41
5.5 CDE 44
5.6 Other Notions of Contract 45

6 Test Approaches 47
6.1 Introduction 47
6.2 Test Case Generation 49

6.2.1 Testing Sequence of Message Calls 49
6.2.2 Testing Parameters . . 51
6.2.3 Testing Return Value 51

6.3 Test Case Coverage 54
6.3.1 Test Coverage for Integration Testing . 54
6.3.2 Test Coverage Criteria in Our Approach 58

7 Test Design by Contracts 59
7.1 Introduction . 59
7.2 Contract Design . 60

7.2.1 Contract for Testing Sequences of Message Calls . 60
7.2.2 Contract for Testing Parameters . . . 76
7.2.3 Contract for Testing Returned Value 78

7.3 Test Case Execution 83

vi

8 Prototype
8.1 Introduction .
8.2 Algorithms .

9 Case Study
9.1 Test Process .
9. 2 Test Coverage
9.3 Another Case

10 Conclusion and Future Work
10.1 Conclusion ..
10.2 Future Work

Bibliography

Appendices

A Contracts for Testing "transfterTo(ca, amount)"

B Contract One for Testing "cashCheck(check)"

Vll

85
85
88

106
106
111
111

115
115
116

118

122

123

127

List of Figures

2.1 Structure of Proxy Design Pattern [19] 9
2.2 Structure of Chain of Responsibility Design Pattern [19] 9

3.1 V Lifecycle Model 13

4.1 The Thirteen Standard UML Diagrams [23] 26
4.2 An Example of Simple Sequence Diagram. 28
4.3 An Example of Class Diagram. 0 0 •• 0 • 31

5.1 Coordination Contract Design Pattern [4] . 42

6.1 Architecture of Integration Testing Approach. 48

7.1 A Simple Sequence Diagram Example . 62
7.2 Control Flow Graph Examples . 66
7.3 Control Flow Graph Examples ... 69
7.4 Control Flow Graph Examples ... 74
7.5 Sequence Diagram of "transferTo" . 82
7.6 Test Execution Process 84

8.1 Class Diagram of the Main Data Structures 86
8.2 Architecture of Integration Testing Approach. 87
8.3 Sequence Diagram XML Node Tree 91
8.4 Sequence Diagram Example - No Frame ... 95
8.5 Example of Sequence Diagram with Option Frame . 95
8.6 Example of Sequence Diagram with Alt Frame . . 96
8.7 Example of Sequence Diagram with Loop Frame . 97
8.8 Class Diagram XML Node Tree .. 99
8.9 Relationship between three classes. 104

9.1 Sequence Diagram of "transferTo" . 107
9.2 Class Diagram of Bank Accounts 107
9.3 Case Study Folder Tree Structure .. 110
9.4 Class Diagram of Bank Subsystem 112
9.5 Sequence Diagram of "cashCheck(check)" . 113

viii

List of Tables

2.1 Design Patterns Classification by Purpose (19] 7

3.1 The Methodologies of Test Case Design 15

6.1 Coverage criteria based on Sequence Diagrams [33] 57

8.1 Tabular to Define the Location of the Messages to Frames 89
8.2 Relationship between symbols and types 105

9.1 Test Data One for Bank Account Integration Testing 109
9.2 Test Data Two for Bank Account Integration Testing 109

ix

Chapter 1

Introduction

1.1 Motivation

Object-oriented programming is a programming paradigm that uses "objects"
to design applications and computer programs. It has been commonly used
in mainstream software application development since the 1990s. It has many
useful features, such as information hiding, encapsulation, inheritance, poly­
morphism and dynamic binding. These object-oriented features facilitate soft­
ware reuse and component-based development. However, some types of faults
associated with these unique object-oriented features are difficult to detect
using only traditional testing techniques.

A lot of research h~ been done in the field of object oriented test­
ing and various techniques have been developed for testing of object oriented
programs. However, only a small part of them address integration testing.
A study [29] shows that approximately 40% of software errors can be traced
to component interaction problems discovered during integration. Therefore,
integration testing is very important for software quality. But the problem is
few integration testing techniques have been systematically studied or defined.

1.2 Related Work

The common approaches in the integration testing of object-oriented programs
include state-based testing, event-based testing, formal and semi-formal tech­
niques. For example, Gallagher and Offutt [18] extended an existing intra­
class testing technique to inter-class testing. This testing approach relied on
finite state machines, database modeling and processing techniques, and al­
gorithms for analysis and traversal of directed graphs. H.Y.Chen, T.H.TSE
and T.Y.Chen [15] introduced a methodology TACCLE for object-oriented
software Testing At the Class and Cluster LEvels. This methodology in-

1

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

eludes algebraic specifications for the class testing and Contract specifications
for the cluster testing. Offutt and Abdurazik [40] first proposed a mechanism
that adapted their previously developed criteria for generating test cases from
Software Cost Reduction (SCR) specifications to UML statecharts, and a tool
named UMLTest has been built to automatically generate test cases from UML
statecharts. More techniques are reviewed in Chapter 3.

1.3 Contribution

Our work addresses integration testing for object-oriented programs. We
present an approach that effectively tests object-oriented programs at the in­
tegration level. We accomplish the automation of both test case generation
and test execution for object-oriented programs integration testing.

Our approach is completely based on UML (Unified Modeling Lan­
guage). We generate test cases from UML sequence diagrams and class dia­
grams. A test case consists of three parts: the first part is to test the sequence
of message calls; the second part is to test parameters; and the third part is
to test object interactions post-conditions.

The automation of test execution is achieved by applying the concept
of coordination contracts and the well-developed Coordination Development
Environment (CDE) tool. Coordination contract is related to the idea of active
association in UML. It defines a connection among a group of objects, through
which interactions (rules and constraints) can be dynamically superposed over
system components without interfering with their implementations. So we
implement test cases using the concept of coordination contracts. Contracts
are created independently and explicitly so that they can be added and deleted
in a "plug and play" mode. CDE supports the use of coordination contracts for
Java applications. It generates relevant Java implementation of the contracts
on top of the components under test and integrates the contracts with the
components into a larger executable test framework.

00 integration test cases are well designed and the test is automatically
executed through our approach because of the following reasons:

• The test cases are generated from UML sequence diagrams and related
class diagrams. A sequence diagram depicts the sequences of interaction
among different objects over a period of time. Therefore, test cases
derived from the sequence diagrams will reveal software faults caused by
the component's integration effectively through detecting sequences of
the message calls, parameters in the messages and post-conditions of the
component's interaction.

UML specifications can be used for both requirement and design. In
our approach, UML is a design specification. For the sake of testing

2

0

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

correctness, UML design specification is complete and accurate.

• The test case is implemented using the concept of coordination contract
which was introduced by L. Andrade and J. Fiadeiro. A coordination
contract defines a connection among a group of objects without inter­
fering with their implementations. Integration testing deals with the in­
teraction among components. Therefore, integration test cases are well
suited to be realized by coordination contract.

• CDE is a tool which generates the Java code that adapts components
for coordination and that implements the contracts. The test cases au­
tomatic execution is achieved by using CDE to transform the generated
contracts into a Java implementation of the contracts and to combine
the Java version of the contracts with the components under test into a
larger executable test framework.

We have developed a tool to take UML sequence diagrams and class
diagrams and generate test cases in terms of coordination contracts automati­
cally based on the mechanism of test case generation. The CDE tool generates
the contracts and the components together to form a test framework. We use
the tool JAT [17] to generate test data based on the Branch Coverage crite­
rion. The test case execution can also be implemented automatically using a
test driver to run the test framework with the generated test data.

There are few practicable tools to generate test cases from UML di­
rectly, even fewer tools to execute test cases. Our testing methodology imple­
ments the automation of test case generation and test case execution. There­
fore, our research will play an important role in testing object-oriented pro­
grams at the integration level. Our research will fill a gap between the need for
integration testing techniques and the lack of such techniques by developing a
method that implements automation of test case generation and test execution
for object-oriented programs at the integration level.

1.4 Thesis Contents

The remainder of this thesis is organized as follows. In Chapter 2, we pro­
vide an overview of object-oriented programming, focusing on the main fea­
tures and give a general introduction to design patterns, especially about the
"Proxy" and "Chain of Responsibility" patterns which are used in Chapter 5.
Chapter 3 outlines software testing, especially integration testing, and gives a
survey of current object-oriented integration testing techniques. In Chapter 4,
we present the basics of the Unified Modeling Language and list some UML
modeling tools. Chapter 5 gives a brief introduction to coordination contracts,
including the underlying concepts and methodology, contract specification and

3

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

CDE. In Chapter 6, we present our test approaches. We introduce the mecha­
nism to generate test cases and how to evaluate test result. Chapter 7 presents
the detailed design of test cases in terms of the concept of coordination con­
tract. In Chapter 8, we give an overview of the automated testing tool. We
also list the main algorithms used in the tool and their justifications. Chapter
9 is a case study which helps understand the whole test approach. Conclusions
and future work are presented in Chapter 10.

4

Chapter 2

Object-Oriented Programming

In this chapter, we provide an overview of object-oriented programming focus­
ing on the main features and give a general introduction to design patterns,
especially the "Proxy" and "Chain of Responsibility" patterns which are used
in Chapter 5.

2.1 Introduction

Object-oriented programming is a way of thinking about the process of decom­
posing problems and developing programming solutions. It views a program
as a collection of objects. An object is an encapsulation of state (data values)
and behavior (operations). Each object is resptmsible for specific tasks. It
is by the interaction of objects that computation proceeds. The behavior of
objects is dictated by the object's class. Every object is an instance of some
class. An object will exhibit its behavior by invoking a method in response to
a message [12].

Productivity gains from object-oriented development come not only
from reusability, but from the reduction of the semantic gap between the "real
world" and the program [11].

2.2 Features

There are three major features in object-oriented programming: encapsulation,
inheritance and polymorphism.

Encapsulation Encapsulation refers to the creation of self-contained mod­
ules that bind processing functions to the data. These user-defined data types
are called "classes" and one instance of a class is an "object". For example,
in a payroll system, a class could be Manager, and Pat and Jan could be two

5

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

instances (two objects) of the Manager class. Encapsulation ensures good code
modularity, which keeps routines separate and less prone to conflict with each
other.

Inheritance Inheritance is the capability of a class to use the properties and
methods of another class while adding its own functionality. The benefit of in­
heritance is software reusability and code sharing. When behavior is inherited
from another class, the code that provides that behavior does not have to be
rewritten. Reusable code increases reliability and decreases maintenance cost
because of sharing by all users of the code.

Dynamic Binding Dynamic binding is sometimes called "late binding". It
is the linking of a routine or object at runtime based on the conditions at
that moment. Dynamic binding enables applications and developers to defer
certain implementation decisions until run-time. It facilitates a decentralized
architecture that promotes flexibility and extensibility. For example, it is
possible to modify functionality without modifying existing code.

Dynamic binding allows new objects and code to be interfaced with
or added to a system without affecting existing code and eliminates switch
statements. This removes the spread of knowledge of specific classes through­
out a system, as each object knows what operation to support. It also allows
a reduction in program complexity by replacing a nested construct (switch
statement) with a simple call. It also allows small packages of behavior, im­
proving coherence and loose coupling. Another benefit is that code complexity
increases not linearly but exponentially with lines of code, so that packaging
code into methods reduces program complexity considerably, even more than
removing the nested switch statement.

Polymorphism Polymorphism means many shapes. A definition given by
Meyer [34] is the ability of a variable or argument to refer at run-time to
instances of various classes. More precisely, in object-oriented programming,
it indicates a language's ability to handle objects differently based on their
runtime type. The programmer and the program do not have to know the
exact type of the object in advance, so this behavior can be implemented at
run time. For example, the command to show the cursor on screen displays a
different icon due to its current location on the screen.

Two types of polymorphism are overloading and overriding. Overload­
ing occurs when an object has two or more behaviors that have the same
name. The methods are distinguished only by the messages they receive (that
is, by the parameters of the method). Overriding allows a subclass to provide
a specific implementation of a method that is already provided by one of its

6

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

Creational Structural Behavioral
Factory Method Adapter Interpreter
Abstract Factory Bridge Template Method
Builder Composite Chain of Responsibility
Prototype Decorator Command
Singleton Facade Mediator

Proxy Memento
Flyweight
Observer
State
Strategy
Visitor

Table 2.1: Design Patterns Classification by Purpose [19]

super classes. The implementation in the subclass overrides the implementa­
tion in the superclass. The third type of polymorphism is dynamic binding,
mentioned above.

Polymorphism is a very powerful concept that allows the design of
amazingly flexible applications. It separates interface from implementation.
It allows programmers to isolate type specific details from the main part of
the code.

2.3 Design Patterns

2.3.1 Introduction

Design patterns are convenient ways of reusing object-oriented code between
projects and between programmers. The idea behind design patterns is to
write down and catalog common interactions between objects that program­
mers have frequently found useful [16].

Design patterns are classified by the criterion purpose which reflects
what a pattern does, as shown in Table 2.1. Patterns can have a creational,
structural, or behavioral purpose. Creational patterns concern the process of
object creation. Structural patterns deal with the composition of classes or
objects. Behavioral patterns characterize the ways in which classes or objects
interact and distribute responsibility [19].

7

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

2.3.2 Examples

Two design patterns, Proxy and Chain of Responsibility, will be used in coor­
dination contracts underlying micro-architecture described in Chapter 5. We
will give more details about these two design patterns in the following.

Proxy. The Proxy pattern is used when you need to represent a complex
object by a simple one. The intent of this pattern is to provide a surrogate or
placeholder for another object to control access to it [19]. Proxy is applicable
in the following cases:

• Remove Proxy. A remove proxy provides a local representative for an
object in a different address space.

• Virtual Proxy. A virtual proxy creates expensive objects on demand.
This object will not be created until it is really needed.

• Copy-on-write Proxy. A copy-on-write proxy defers copying a target
object until required by client actions. This is a special case of the
"virtual proxy" pattern.

• Protection Proxy. A protection proxy controls access to the original
~-

object.

The structure of the Proxy pattern is represented in Figure 2.1. In the
structure, Subject defines the common interface for RealSubject and Proxy so
that a Proxy can be used anywhere a RealSubject is expected. RealSubject
defines the real object that the proxy represents. Proxy maintains a reference
that lets the proxy access the real subject. Any request to Proxy is forwarded
to RealSubject when it is appropriate, depending on the kind of proxy, men­
tioned above.

Chain of Responsibility The Chain of Responsibility pattern allows a
number of classes to attempt to handle a request, without any of them knowing
about the capabilities of the other classes. It provides a loose coupling between
these classes; the only common link is the request that is passed between them.
The request is passed along until one of the classes can handle it [16].

The structure of the Chain of Responsibility pattern is represented
in Figure 2.2. In the structure, Handler defines an interface for handling
requests. A client initiates the request to a ConcreteHandler object in the
chain. ConcreteHandler handles requests it is responsible for. It can access
its successor, another ConcreteHandler. If the ConcreteHandler can handle
the request, it does so; otherwise, it forwards the request to its successor [19].

8

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

Client
I Subject I

Request()
...

A ------------
I I

ReaiSubject Proxy

Request() Request()---- -~~~aiSubject->Request()j ...

Figure 2.1: Structure of Proxy Design Pattern [19]

~

successor I

.
I Client I Handler I

Handle Request()
...

A
I I

ConcreteHandler1 ConcreteHandler2

HandleRequest() Handle Request()

Figure 2.2: Structure of Chain of Responsibility Design Pattern [19]

9

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

When a client sends a request, the request propagates along the chain until a
ConcreteHandler object takes responsibility for handling it.

To summarize, the Proxy pattern, a structural design pattern, is used
when you need to represent a complex object by a simple one. The Chain of
Responsibility pattern, a behavioral design pattern, uses a chain of objects to
handle a request, which is typically an event. Objects in the chain forward the
request along the chain until one of the objects handles the event. Processing
stops after an event is handled.

In this chapter, we introduced the unique features of object-oriented program­
ming, like Encapsulation, Inheritance, Dynamic Binding, Polymorphism, etc.
These object-oriented features facilitate software reuse and component-based
development. We also presented design patterns which provide convenient
ways of reusing object-oriented code between projects and between program­
mers. We particularly introduced the "Proxy" structural design pattern and
the "Chain of Responsibility" behavioral design pattern because these two pat­
terns are used in coordination contracts underlying micro-architecture, which
will be presented in Chapter 5. In the next chapter, we will give a brief intro­
duction of software testing, integration testing, object-oriented programming
integration testing and existed testing techniques.

10

Chapter 3

Software Testing

In thB chapter, we outlines software testing especially software integration
testing. We present four patterns in integration testing: top-down, bottom-up,
big bang and backbone. We list the common faults associated with software
integration. Lastly we give a survey of current object-oriented integration
testing techniques.

3.1 Introduction

Software testing is an important and integral part of the software development
process. It is used to reveal bugs in a system, to assure that the system
complies with its specification and to verify that the system behaves in the
intended way. Various definitions have been presented for software testing
[8, 9]. Myers [38] defines it as:

"... the process of executing a program for system} with the
intent of finding errors." o

Software testing is a vital part of the software development process. It can
be used for the purposes of quality assurance, reliability estimation and veri­
fication and validation [24]. However, software testing is extremely costly and
time consuming. Studies indicate that more than 50% of the cost of software
development is devoted to testing [24]. Therefore, there is a need for effective
testing strategies.

3.1.1 Software Testing vs. Formal Verification

Formal verification is the act of proving or disproving the correctness of in­
tended algorithms underlying a system with respect to a certain formal spec­
ification or property, using formal methods of mathematics [49]. A formal

11

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

program verification is a mathematical proof that the program executed ac­
cording to its intended model of execution meets the specification. It proves
the algorithms implemented in the program are correct in the technical sense
of being consistent with the specification.

Software testing alone can not prove that a system does not have a
defect. Neither can it prove that a system does have a property. Only the
process of formal verification can prove that a system does not have a certain
defect or does have a certain property, but only if we do not make any mistake
in the mathematics.

3.1.2 Validation vs. Verification

IEEE defines validation as "Confirmation by examination and provisions of ob­
jective evidence that the particular requirements for a specific intended use are
fulfilled". It demonstrates that the software implements each of the software
requirements correctly and completely. In other words, the "right product was
built".

IEEE defines verification as "Confirmation by examination and provi­
sions of objective evidence that specified requirements have been fulfilled". It
is the activity which ensures the work products of a given phase fully imple­
ment the inputs to that phase, or "the product was built right".

3.1.3 Testing Level

Generally, there are four levels of software testing carried out: unit testing,
integration testing, system testing and acceptance testing. We will introduce
each level in details in the following.

The software development life cycle can be represented as a V model,
as shown in Figure 3.1. It begins with the identification of a requirement
for software and ends with the formal verification of the developed software
against that requirement.

On the left side of the diagram, the first three phases produce software
specifications.

• The Requirements phase, in which the requirements for the software
are gathered and analyzed, to produce a complete and unambiguous
specification of what the software is required to do.

• The Architectural Design phase, where a software architecture for the
implementation of the requirements is designed and specified, identifying
the components within the software and the relationships between the
components.

12

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

Requirements System
Analysis -----------------~ Integration

\ I
Architectural Software

Design -----------)> Integration

\ I
Detailed Unit Test Design ---->

\ I
Implementation

Figure 3.1: V Lifecycle Model

• The Detailed Design phase, where the detailed implementation of each
component is specified.

The remaining three phases on the right side of the diagram all involve
testing the software at various levels, requiring test specifications (produced
from the first three phases) against which the testing will be conducted as an
input to each of these phases, horizontally correspondingly.

• The Unit Test phase, in which each component of the software is tested
to verify that it faithfully implements the detailed design.

• The Software Integration phase, in which progressively larger groups of
tested software components are integrated and tested until the software
works as a whole.

The integration testing of software modules and components is espe­
cially concerned with the detection of interface errors. The assumption
is made that during unit testing program parts have been tested suffi­
ciently. Therefore the aim of integration tests is to uncover errors which
are not detectable during unit testing.

• The System Integration phase, in which the software is integrated to the
overall product and tested to show that all requirements are met. It
is conducted on a complete, integrated system to evaluate the system's
compliance with its specified requirements.

13

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

There is another test phase (not shown in the diagram):

• The Acceptance Test phase, in which tests are applied and witnessed
to validate that the software faithfully implements the specified user re­
quirements. It can be conducted by the end-user, customer, or client to
validate whether or not to accept the product. Acceptance tests repre­
sents the customer's interests. Acceptance tests can grow as the system
grows, capturing user requirements as they evolve which they always do.

Our work focuses on the integration testing. We will give a brief intro­
duction to software integration testing, the patterns used in software integra­
tion testing, the faults associated with software integration and the common
integration testing techniques in the following.

3.1.4 Black Box vs. White Box

Black-box and white-box are test design methods. In black-box, the test views
the program as a black box. The test is completely unconcerned about the
internal behavior and structure of the program. Rather, the tester is only inter­
ested in finding circumstances in which the program does not behave according
to its specifications. Test data are derived solely from the specifications with­
out taking advantage of knowledge of the internal structure of the program
[36]. Synonyms for black-box include: behavioral, functional, opaque-box, and
closed-box.

White-box test design allows one to examine the internal structure
of the program. The tester derives test data from an examination of the
program's logic and often unfortunately, at the neglect of the specification
[36]. Synonyms for white-box include: structural, glass-box and clear-box.

It is important to understand that these methods are used during the
test design phase, and their influence is hard to see in the tests once they're
implemented. Note that any level of testing, we introduced in the previous
section, can use any test design methods. For example, unit testing is usually
associated with structural test design.

Myers pointed out that exhaustive black-box and white-box testing are,
in general, impossible, but he also stated that a reasonable testing strategy
might use elements of both. Myers [36] introduced the methodologies for
designing test cases, shown in Table 3.1.

Our approach uses black-box testing method. We generate test cases
from UML specifications. We will give a detailed introduction in the following
chapters.

14

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

Black Box White Box
Equivalence partitioning Statement coverage
Boundary-value analysis Decision coverage

Cause-effect graphing Condition coverage
Error guessing Path coverage

Table 3.1: The Methodologies of Test Case Design

3.2 Integration Testing

3.2.1 Introduction

Definition 1 by Myers [37] in 1976, p173:

"Integration testing is the verification of the interfaces among
system parts (modules, components and subsystems)."

Definition 2 by Beizer [7] in 1984, p141:

"Integration testing is aimed at showing inter element consis­
tency under the assumption that elements themselves satisfy ele­
ment requirements and have passed element level testing."

The integration testing of software modules and components is espe­
cially concerned with the detection of interface errors. The interfaces between
separate parts of a system are determined, fop example, by the calling of other
system parts, by the use of parameters in procedure calls, by data files or
by common global variables. Such connections in a complex system must be
specified in detail and tested after realization. "

The assumption is made that during unit testing program parts have
been tested sufficiently. Therefore the aim of integration tests is to unco:v:er
errors which are not detectable during unit testing. In other words, integration
testing is the testing of the interactions among components in a subsystem.

In object-oriented programs, unit testing can be considered as intra­
class testing, which is the testing of one class only in a component. Interclass
testing is the testing of a set of classes composing a system or subsystem.
Typically, such classes are not stand-alone entities, but mutually cooperation
in several ways.

3.2.2 Integration Testing Patterns

Top-Down Top-down Integration interleaves component integration and in­
tegration testing by following the application control hierarchy. Testing and

15

•

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

integration begin early when the top-level components are coded. The cost
of test driver development is reduced. There is only one driver to maintain,
instead of a driver for. every sub-tree. The test cases can be reused to drive
lower-level tests. However, stub development and maintenance are the most
significant costs and it may be difficult to exercise lower-level components
sufficiently.

Bottom-Up Bottom-Up integration interleaves component integration and
integration testing by following usage dependencies. This pattern is used for
almost any scope or architecture. The advantage of this pattern is that testing
may begin as soon as any leaf-level component is ready. However, driver
development is the most significant cost. Any revision to a previously tested
component is error-prone, costly, and time-consuming .

Big Bang Big Bang Integration attempts to demonstrate system stability
by testing all components at the same time. This pattern is used for small
to medium systems. Big Bang Integration can result in quick completion of
integration testing under favorable circumstances, like a small, well-structured
system whose components have received adequate testing, or an existing sys­
tem where only a few changes have been made. The disadvantages of this
pattern is that debugging is difficult due to fewer clues about fault locations.

Backbone Backbone Integration combines top-down integration , bottom­
up integration, and big bang integration to reach a stable system that will
support iterative development. Backbone integration mitigates the disadvan­
tages of top-down integration and bottom-up integration by curtailing their
use at the point at which they lose effectiveness. Top-down integration is used
only on the upper control levels and bottom-up integration is restricted to the
application subsystems. Big Bang integration of the backbone is preceded by
component testing. But careful analysis of system structure and dependencies
is necessary.

3.2.3 Integration Faults

A study [29] shows that approximately 40% of software errors can be traced
to component interaction problems discovered during integration. Therefore,
integration testing is very important for software quality. Most of these de­
tected errors are clue to misinterpretation of module specifications [9]. The
following is a list of these errors.

• Configuration/version control problems.

• Missing, overlapping, or conflicting functions.

16

Master Thesis- Zhe ·(Jessie) Li McMaster - Computing and Software

• An incorrect or inconsistent data structure used for a file or database.

• Conflicting data views/usage used for a file or database.

• Violations of the data integrity of a global store or database.

• The wrong method called due to coding error or unexpected runtime
binding.

• 'The client sending a message that violates the server's preconditions.

• The client sending a message that violates the server's sequential con­
straints.

• Wrong object bound to message (polymorphic target).

• Wrong parameters, or incorrect parameter values.

• Failures due to incorrect memory management allocation/ deallocation.

• Incorrect usage of virtual machine, ORB, or OS services.

• Attempt by the Implementation under Test (IUT) to use target envi­
ronment services that are obsolete or not upward-compatible for the
specified version/release of the target environment.

• Attempt by the IUT to use new target environment services that are not
supported in the current version/release of the target environment.

• Intercomponent conflicts: thread X will crash when process Y is running,
for example.

• Resource contention: the target environment can not allocate resources
required for a nominal load. For example, a use case may open up to six
windows, but the IUT crashed when the fifth is opened.

3.3 Related Work: A Survey of 00 Integra­
tion Testing Techniques

Object-oriented programming has been used widely, since it increases software
reusability, extensibility, interoperability, and reliability, compared with con­
ventional programming. Software testing is necessary to realize these benefits
by uncovering as many programming errors as possible at a minimum cost.

17

"

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

While object-oriented programming poses new challenges for software
testing, since objects may interact with one another with unforeseen combi­
nations and invocations, which are much more complex to simulate and test
than the hierarchy of modules in conventional programs.

A lot of research has been done on testing object-oriented programs.
The following is a survey of common integration testing techniques for object­
oriented programs. They include state-based, data-flow based, control-flow
based, event-based, formal specification and UML-based testing.

3.3.1 State-based Testing

State-based testing techniques rely on the construction of a finite state machine
(FSM) to represent the change of states of the program under test. But for
integration testing, the construction of the global finite state machines may
become very huge and subject to the state explosion problem. One solution is
to design the components into an FSM hierarchy by reducing composite FSMs
at each level by means of abstraction. From the testing point of view, test
cases can also be selected based on graph traversal.

Gallagher and Offutt [18] extended an existing intra-class testing tech­
nique to inter-class testing. This testing approach relied on finite state ma­
chines, database modeling and processing techniques, and algorithms for anal­
ysis and traversal of directed graphs.

In general, the state-based approach uses interacting finite state ma­
chines to model an integrated system. The difficulty of the technique increases
when the number of concurrent units increases.

3.3.2 Mutation-based Testing

Mutation testing is used to test the quality of the test suite. This is done by
mutating certain statements in the source code and checking if the test code
is able to find the errors.

Mutation-based integration testing techniques are based on State-based
Mutation Test Criteria (SMTC). The SMTC is a test case selection criterion
which can differentiate the state diagram from the mutant state diagram. But
SMTC only covers inter-method testing and intra-class testing. Yoon, Choi
and Jean [50] extend it to inter-class testing by applying mutation analysis to
the state diagram. It can test the interactions between the public methods
from the inheritance and polymorphism. Their techniques include two pro­
cedures: test identification procedure and test case selection procedure. Test
Identification uses Inheritance Call Graph, drawn from the source code and
class diagram, and for the use of the Taxonomy. The test case procedure can
cover the inter-class testing by using SMTC. But they don't give more anal-

18

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

ysis on the fault coverage. We do not know how efficient this criterion could
be. And the ICGraph needs to be drawn from the source code and the class
diagrams, which is not an easy job for inexperienced programmers.

3.3.3 Data-flow based Testing

Data flow analysis of a software can be accomplished statically by inspecting
the source code and tracking the sequence of the uses of the variables of the
program under test without running it, or dynamically by executing it and
tracking the sequence of actions. Dynamic data flow analysis is a method
for analyzing the sequence of actions on data in a program as it is running.
To detect data flow anomalies dynamically, Boujarwah et al [10] introduced
a method that inserts software probes into the original source code program
to gather information during the program execution. The problem is that
conventional probing techniques alone may not be adequate for object-oriented
programs. More research in this area is required.

Jorgensen [28] used the decision-to-decision paths (DD-paths) approach
from unit testing for integration testing. Module-to-Module paths (MM-paths)
were defined as combinations of DD-paths. Leung and White [30] applied
extremal values testing concepts to integration testing.

Martena et al [47] extended their previous work in the automatic gen­
eration of test cases for a single class to address the problem of inter-class
testing. They used data flow analysis to derive a feasible set of test case speci­
fications for interclass testing. A tool is available for the automatic generation
of test cases based on the presented technique. But their technique only ad­
dressed those problems related to the objects' state. So this technique should
be accompanied by other techniques which address the problems related to
other object-oriented programs' features, like inheritance, polymorphism and
dynamic binding.

3.3.4 Control-flow based Testing

Control-flow based testing is a traditional form of white-box testing. Test
cases are designed to cover certain elements of the graph created from the
source code to describe the flow of control. Control-flow based and data-flow
based technologies are often used together to supplement each other. Spillner
[45] developed a pair of integration testing techniques based on unit testing
methods. One technique adapted control flow technology to test software
modules by testing as many different sequences of calls as possible. The other
adapted data flow technology to test for data flow anomalies across procedure
calls. Linnenkugel and Miillerburg [31] also used data flow and control flow
technology to develop criteria for selecting integration test data.

19

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

3.3.5 Event-based Testing

Event-flow technique is an adaption of data-flow techniques to the inter-class
level. Whereas data-flow focuses on the effect of definitions on subsequent
uses of variables, event-flow focuses on the effect of inter-class level events on
subsequent events. Liu and Dasiewicz introduced an event-flow techniques to
select system level test cases using a hierarchical state machine model of the
system [32). The strategy is to require test cases which stress the interac­
tions between related events rather than to simply exercise each transition in
the model. The advantages of the technique are that selected test cases are
meaningful and similar to the way that human testers would select them.

Event-flow handles hierarchical and concurrent specification in a natu­
ral way. However, for systems with a large number of concurrent events, the
number of selected test cases grows exponentially.

3.3.6 Formal Specification based testing

A lot of research work has been done for the testing of object-oriented programs
at the intra-class level using formal specifications. However, relatively little
work has been done on the inter-class level testing.

Contract Specification The contract specification, proposed by Helm et
al in 1990 [26), describes the behavioral dependencies and the interactions
among the cooperating classes in a given cluster (a group of classes). The main
syntax of a contract specification is the message-passing rule (mp-rule). Each
mp-rule in the contracts is individually used for cluster-level testing. Chen et
al [15] introduced a methodology of Testing at the Class and Cluster LEvels
(TACCLE) for object-oriented software. This methodology includes algebraic
specification as a basis for the class testing and contract specification as a basis
for the cluster testing.

For the cluster testing, they defined two testing procedures for individ­
ual mp-rules and for composite mp-rules. A TIM approach for Testing the
interactions using Individual Mp-rules was presented for individual mp-rules.
The implementation of the TIM approach need only write a sub-module AMP
to Analyze the body of the given MP-rule to find the messages passing across
different classes in the cluster. The whole system integrating all the modules
and algorithms has not been considered yet.

The other part analyzes the interactions according to composite message­
passing sequences [15). The TACCLE approach, however, has to detect the
contract specification and find the test cases properly. In their system, some
steps can only be done manually for general situations. This requires much
more test effort. And it does not consider the non-deterministic and concur­
rence issues in Java programs.

20

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

Other specifications Besides the contract specification, some research has
been done on other formal specifications. Different specifications have different
strengths and weaknesses in supporting object-oriented program testing. As
a research trend, more than one formal specification is combined together to
test one program. For example, state-based specification such as finite state
machines and Petri Nets, model-based specification such as Object Z, and
process algebra such as CSP. Change et al [13] generate test scenarios based
on FSM specifications and Object Z; Smith and Derrick [43] combined data
structure modeling in Object Z and communication behavioral descriptions in
CSP. The combined models are very comprehensive for testing all the features
of object-oriented programs, but it is really a challenge for the software testers
because of the increased complexity.

3.3.7 UML-based Testing

The Unified Modeling Language(UML) is a language for specifying, construct­
ing, visualizing and documenting artifacts of software-intensive systems. More
and more software developers like to use UML and associated visual modeling
tools as a basis for the design and implementation of their component-based
applications. Even though UML is widely employed in industry and research,
only a little part of the reported literature has addressed its use in the testing
phase so far. These methods generates test cases for various testing levels from
various UML diagrams. The following are examples of the integration testing
approaches based on different UML diagrams.

• Statecharts. UML statecharts are based on finite state machines using
an extended Harel state chart notation, and are used to describe the
behavior of an object.

Offutt and Abdurazik [40] adapted their previously developed criteria
for generating test cases from Software Cost Reduction (SCR) specifi­
cations to UML statecharts, and a tool named UMLTest has been built
to automatically generate test cases from UML statecharts. This tool,
UMLTest, is the first tool that can generate test cases from UML spec­
ifications. But the tool is not available any more. Furthermore, this
approach is only able to generate test cases for a single component.

Hartmann, et al [25] also introduced an approach to generate test cases
automatically from the UML Startcharts diagrams. They construct a
global behavioral model from the multiple statecharts, each one repre­
senting a component. Test cases can be derived from the model by using
the test generation engine and executed with the help of the test execu­
tion tool. But the global behavioral model used in their approach can

21

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

not support internal data conditions of these state machines influencing
the transition behavior. Concurrent states are not supported as yet.

• Sequence Diagrams. Basanieri and Bertolino [6] introduced an approach
to generate test cases based on the use case diagrams and sequence di­
agrams, called Use Interaction Test (UIT). The use case drives the in­
tegration testing by incremental strategy. They start by analyzing the
low-level functionalities described in a sub-Use Case, and then progres­
sively put them together, until the whole system described in the main
Use Case is obtained. And for each Use Case, they derived the message
sequence from the corresponding sequence diagram. Then they analyzed
the message sequence by using the Category Partition method. This
testing approach is not supported by a tool to automate the process.

• Collaboration Diagrams. It is suitable to consider collaboration dia­
grams for integration testing because collaboration diagrams specify the
interactions among a set of objects. The benefits of using collaboration
diagrams are generating test data using data flow or control flow tech­
niques before the code generation, and stack checking of specification
and code.

Abdurazik and Offutt [1] presented an approach to generate test data to
check the software that is presented by collaboration diagrams. Testing
can be either static or dynamic. For dynamic checking, they assumed
that each operation has a collaboration diagram, which represents a com­
plete trace of messages during the execution of the operation. They also
introduced an algorithm to insert instrumentation into the code for test­
ing the events sequences produced by the system match to the message
sequences derived from the collaboration diagram. But they only focused
on the test criteria and they did not investigate test generation.

• Activity Diagrams. Activity diagrams can be used to model dynamic
aspects of a group of objects, or the control flow of an operation.

Wang Linzhang et al [48] proposed an approach to generate test cases
directly from UML activity diagrams using a gray-box method. A gray­
box method, from the designer's viewpoint, generates test cases from
the high level design model which represents the expected structure and
behavior of the system under test. Gray-Box methods can overcome
the shortcomings of black-box testing methods and white-box testing
methods. First, they traverse the activity diagram to generate the test
§cenarios. And for each test scenario, they derive test cases based on
the category partition method. Test suites are composed from the test
cases for all the test scenarios. A tool named UMLTGF was developed

22

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

to automate the most part of this method. This method is not for
integration testing.

• Transforming Interaction Diagrams. Chen [14] developed an approach
for Object-Oriented cluster-level tests based on UML. This approach
uses guidelines to transform the sequence diagram or collaboration di­
agram into contract specification, proposed by Helm et al in 1990 [26].
Then use TACCLE methodology, introduced by Chen et al in 2001 [15],
for the cluster tests of Object-oriented softwares. This approach makes
the cluster-level testing easier for those object-oriented softwares speci­
fied by UML. But this method need to transform UML description into
another formal description and then derive the test from the latter. This
approach need to consider the transformation cost.

We have presented an overview of research work on integration testing
for object-oriented program. In summary, the state-based approach uses inter­
acting finite state machines to model an integrated system. The difficulty of
the technique increases when the number of concurrent subsystems increases.
The traditional techniques on data-flow and control-flow have been adapted
to integration testing. But one technique cannot address all the problems re­
lated to object-oriented programs' features. Event-flow handles hierarchical
and concurrent specification in a natural way. However, for systems with a
large number of concurrent events, the number of selected test cases grows
exponentially. Formal specification based testing techniques play an impor­
tant role in software testing. However, the complexity of the combined formal
models may be a serious problem for software testers. UML-based techniques
conduct testing by representing UML specification with a formal notation.
With the variety of the UML diagrams, the integration of formal and practical
techniques is a promising area.

It seems like there are a reasonable amount of integration testing tech­
niques for object-oriented programs. However, most of work still remains in
research phase. Few integration testing techniques has been systematically
designed or studied. Some of them only proposed approaches to integration
testing but not practical at all. Furthermore, they don't have practical tools
available to apply their methods in the real application. A need for systematic
and practical methodologies to integration testing for object-oriented programs
becomes exigent.

In this chapter, we gave a brief introduction to software testing. We presented
the difference between software testing and formal verification, and compared
verification with validation. There are four software testing phases in the
software development life cycle. We focused on software integration testing
and introduced object-oriented programming integration testing. We gave

23

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

a survey of the reported literature about the methods generating test cases
for integration test from various UML diagrams. In the next chapter, we
will present the basics of the Unified Modeling Language and list some UML
modeling tools.

24

Chapter 4

Unified Modeling Language

In this chapter, we give an overview of UML and its thirteen diagrams. An
sequence diagram is used primarily to show the interactions between objects in
the sequential order that those interactions occur. Our approach uses sequence
diagrams to generate test cases for integration level testing. We introduce
sequence diagrams and class diagrams from the thirteen UML diagrams in
detail. We also present a short list of UML-based tools on the market and
why we choose Omondo EclipseUML tool in our approach.

4.1 Introduction

The Unified Modeling Language (UML) is "a language for visualizing, specify­
ing, constructing and documenting the artifacts of software systems". UML is
an object-oriented analysis and design language from the Object Management
Group (OMG). UML can be used for business modeling and for modeling other
non-software systems too. Using any one of the large number of UML-based
tools on the market, one can analyze a future application's requirements and
design a solution that meets them, representing the results using UML 2.0's
thirteen standard diagram types [21]. A diagram is a model in a view, a view
consisting of one or more models.

What can one Model with UML? UML 2.0 defines thirteen types of
diagrams, shown in Figure 4.1, divided into three categories: six diagram
types represent static application structure; three represent general types of
behavior; and four represent different aspects of interactions [21]:

• Structure Diagrams include class diagram, object diagram, compo­
nent diagram, composite structure diagram, package diagram, and de­
ployment diagram.

• Behavior Diagrams include the use case diagram (used by some method-

25

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

Diagrams

0
I I

Structure Behavior
Diagram Diagram

0
J I I I I I

Class Component Object Activity Use Case State Machine
Diagram Diagram Diagram Diagram Diagram Diagram

Component Deployment Package Interaction
Structure Diagram Diagram Diagram
Diagram

0

Sequence Interaction

Diagram Overview
Diagram

Collaboration Timing
Diagram Diagram

Figure 4.1: The Thirteen Standard UML Diagrams [23]

ologies during requirements gathering); activity diagram, and state ma­
chine diagram.

• Interaction Diagrams, all derived from the more general behavior
diagram, include the sequence diagram, communication diagram, timing
diagram, and interaction overview diagram.

Our approach generates test cases from sequence diagrams and class
diagrams, so we will introduce these two diagrams in detail in the following.

4.2 Sequence Diagrams

A sequence diagram depicts an interaction by focusing on the sequence of mes­
sages that are exchanged, along with their corresponding event occurrences on
the lifelines of the objects introduced in the interaction. A sequence diagram
includes time sequences but does not include object relationships. A sequence
diagram can exist in a generic form (describes all possible scenarios) and in an
instance form (describes one actual scenario). Sequence diagrams and com­
munication diagrams express similar information, but show it in different ways
[23].

26

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

The sequence diagram is used primarily to show the interactions be­
tween objects in the sequential order that those interactions occur. Another
primary use of sequence diagrams is in the transition from requirements ex­
pressed as use cases to the next and more formal level of refinement. Use cases
are often refined into one or more sequence diagrams. In addition to their use
in designing new systems, sequence diagrams can be used to document how
objects in an existing system currently interact.

4.2.1 Th~ Basics

Most sequence diagrams will communicate what messages are sent between
a system's objects as well as the order in which they occur. The diagram
conveys this information along the horizontal and vertical dimensions: the
vertical dimension shows, top down, the time sequence of messages as they
occur, and the horizontal dimension shows, left to right, the object instances
that the messages are sent to.

• Lifelines Lifelines represent either roles or object instances that par­
ticipate in the sequence being modeled. Lifeline notation elements are
placed across the top of the diagram.

• Messages The first message of a sequence diagram always starts at the
top and is typically located on the left side of the diagram for readability.
Subsequent messages are then added to the diagram slightly lower than
the previous message. To show an object sending a message to another
object, you draw a line to the receiving object with a solid arrowhead
(if a synchronous call operation) or with a stick arrowhead (if an asyn­
chronous signal). The message name is placed above 'the arrowed line.
The message that is being sent to the receiving object represents an op­
eration or method that the receiving object's class implements. Return
messages are an optional part of a sequence diagram. A return message
is drawn as a dotted line with an open arrowhead back to the originating
lifeline, and above this dotted line is placed the return value from the
operation. To indicate an object calling itself, we draw a message and
connect the message back to the object itself instead of connecting it to
another object.

• Combined Fragments A combined fragment is used to group sets of
messages together to show conditional flow in a sequence diagram. So we
could draw a control-flow graph corresponding to a sequence diagram,
which will be introduced in chapter 7. A combination fragment element
is drawn using a frame. A keyword alt (opt or loop) is placed inside
the frame's namebox, representing an alternative combination fragment

27

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

sa : Savi:gAccoynt ca : CheckingAccoynt

I
I

I I

! transferTo(ca, amount) !
1 II

~.'' [amount<=sa.getBalance()J

I 1.1
I I

,J
withdraw(amount)

deposit(amount)

1.2

I I I

Figure 4.2: An Example of Simple Sequence Diagram.

element (or option or loop). Inside the frame's content area, the alt
(opt or loop) guard is placed towards the top left corner, on top of a
lifeline. More details of alternatives, options and loops are presented in
the following:

- Alternatives Alternatives are used to designate a mutually exclu­
sive choice between two or more message sequences. Alternatives
allow the modeling of the classic "if then else" logic.

- Options The option combination fragment is used to model a se­
quence that will occur, given a certain condition; otherwise, the
sequence does not occur. An option is used to model a simple "if
then" statement.

- Loops The loop combination fragment models a repetitive sequence.
Loops allow the modeling of the "while" logic.

An example of basic sequence diagram is shown in Figure 4.2, which
1s m an instance form. The sequence diagram depicts the interactions of
transferring amount many money from the saving account to the checking
account under the condition of the saving account's balance greater than
amount. We have three lifelines: "driver", "sa : SavingAccount" and "ca

28

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

: CheckingAccount". The lifeline "driver" is a role. The lifelines "sa : Savin­
gAccount" and "ca : CheckingAccount" are object instance sa of class Savin­
gAccount and object instance ca of class CheckingAccount. The first message
is transferTo(ca, amount). The message withdraw(amount) indicates the
object calling itself. There is a combined fragment of type "options" in the
diagram. amount < sa.getBalance() is the condition of the control flow,
meaning if amount < sa.getBalance(), then call message withdraw(amount)
followed by message deposit(amount).

4.2.2 Advanced

In addition to the basic elements, which should depict most interactions taking
place in a common system, there are more advanced notion elements that can
be used in a sequence diagram.

• Referencing Another Sequence Diagram The "Interaction Occur­
rence" element is introduced in UML2.0. Interaction occurrences add the
ability to compose primitive sequence diagrams into complex sequence
diagrams. With these we can combine (reuse) the simpler sequences to
produce more complex sequences. , This means that we can abstract a
complete, and possibly complex, sequence as a single conceptual unit. An
interaction occurrence element is drawn using a frame. The text "ref"
is placed inside the frame's name box, and the name of the sequence
diagram being referenced is placed inside the frame's content area along
with any parameters to the sequence diagram.

• Gates Gates can be an easy way to model the passing of information
between a sequence diagram and its context. A gate is merely a message
that is illustrated with one end connected to the sequence diagram's
frame's edge and the other end connected to a lifeline.

• Combined Fragments (Break and Parallel) The break combined
fragment is almost identical in every way to the option combined frag­
ment, with two exceptions. First, a break's frame has a name box with
the text "break" instead of "option". Second, when a break combined
fragment's message is to be executed, the enclosing interaction's remain­
der messages will not be executed because the sequence breaks out of the
enclosing interaction. In this way the break combined fragment is much
like the break keyword in a programming language like C++ or Java.
Breaks are most commonly used to model exception handling. Today's
modern computer systems are advancing in complexity and at times per­
form concurrent tasks. When the processing time required to complete
portions of a complex task is longer than desired, some systems handle

29

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

parts of the processing in parallel. The parallel combination fragment
element needs to be used when creating a sequence diagram that shows
parallel processing activities.

Our approach generates test cases from sequence diagrams, which do
not have the advanced notion elements. We will consider those sequence dia­
grams with advanced notion elements in our future work.

4.3 Class Diagrams

Definition: A class diagram is a diagram showing a collection of classes and
interfaces, along with the collaborations and relationships among classes and
interfaces.

A class diagram consists of a group of classes and interfaces reflecting
important entities of the business domain of the system being modeled, and the
relationships between these classes and interfaces. The structure of a system is
represented using class diagrams. A class diagram is a static view of a system.

4.3.1 Elements

A class diagram consists of the following elements that represents the system's
entities:

• Class A class represents an entity of a given system that provides an en­
capsulated implementation of certain functionality of a given entity. The
UML representation of a class is a rectangle containing three compart­
ments stacked vertically, as shown in Figure 4.3. The top compartment
shows the class's name. The middle compartment lists the class's at­
tributes. The bottom compartment lists the class's operations.

• Interface An interface is a variation of a class. An interface provides
only a definition of business functionality of a system. A separate class
implements the actual business functionality. An interface is drawn like
a class, but the top compartment of the rectangle also has the text
"<<inter face>>".

• Package A package provides the ability to group together classes and/ or
interfaces that are either similar in nature or related. Drawing package
starts with a large rectangle with a smaller rectangle (tab) above its
upper left corner, the package name is written in the smaller rectangle
area. Then you have two ways to display package's membership: place all
the members within the larger rectangle; place all the members outside
the rectangle, a line is drawn from each class/interface to a circle that
has a plus sign inside the circle attached to the package.

30

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

Account
number: int

balance: int

deposit(in amount:int)

getBalance():int

setBalance(in balance:int)

withdraw(in amount: in!)

~
I

CheckingAccount
SavingAccount

SavingAccount(in number: in!, in balance:int)
CheckingAccount(in number:int, in balance:int) transferTo(in ca:CheckingAccount, in amout:int)

Figure 4.3: An Example of Class Diagram.

4.3.2 Relationship

In class diagram, we can see the relationship between the classes. The following
shows the kinds of relationships between classes:

• Association When two classes are connected to each other in any way,
an association relationship is established.

- Multiplicity Multiplicity association is indicated by a solid line be­
tween the two classes. At either end of the line, you place a role
name and a multiplicity value.

- Directed Association Association between classes is bi-directional
by default. You can define the flow of the association by using
a directed association. The arrowhead identifies the container­
contained relationship.

- Reflexive Association Reflexive association models a class which
has a variety of responsibilities. To represent a reflexive association
relationship, you could draw a solid line from the class to itself.

• Aggregation When a class is formed as a collection of other classes,
it is called an aggregation relationship between these classes. It is also

31

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

called a "has-a" relationship. Aggregation is a special type of association
used to model a "whole to its parts" relationship. In basic aggregation
relationships, the life cycle of a part class is independent from the whole
class's life cycle. To represent an aggregation relationship, you draw a
solid line from the parent class to the part class, and draw an unfilled
diamond shape on the parent class's association end.

• Composition The composition aggregation relationship is just another
form of the aggregation relationship, but the child class's instance life
cycle is dependent on the parent class's instance life cycle. Composition
relationship is drawn like the aggregation relationship, but the diamond
shape is filled.

• Inheritance/Generalization Inheritance is an very important concept
in Object-Oriented design. It refers to the ability of one class (child
class) inherits the identical functionality of another class (super/parent
class) and then add new functionality of its own. It is also called "is-a"
relationship. Inheritance is also sometimes called generalization, because
the is-a relationships represent a hierarchy between classes of objects. To
model an inheritance on a class diagram, a solid line is drawn from the
child class with a closed, unfilled arrowhead pointing to the super class.

• Realization In a realization relationship, one entity (normally an inter­
face) defines a set of functionalities as a contract and the other entity
(normally a class) "realizes" the contract by implementing the function­
ality defined in the contract. Realization relationship is drawn like the
inheritance relationship, but the line is dotted instead of solid one.

4.4 UML Tools

There are a lot of UML development tools, most of which implement a particu­
lar methodology. One may find a tool which is suitable for the application one
is developing or the organization one is working for. The following introduces
some of UML tools:

• IBM@Rational@Software Architect and Modeler IBM Rational
Software Modeler is a Unified Modeling Language 2.0-based visual mod­
eling and design tool for architects, systems analysts and designers who
need to ensure that their specifications, architectures and designs are
clearly defined and communicated. IBM@Rational@Software Architect
is an integrated design and development tool that leverages model-driven
development with the UML for creating well-architected applications and
services [44]. It is a commercial software. It represents the combined

32

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

fragment notion elements in sequence diagram by its "note" element,
which can only provide a gr;aphical description instead of any logical
relationship description.

• OMONDO EclipseUML Omondo EclipseUML is a modeling soft­
ware offering full native integration with Eclipse. Omondo EclipseUML
solution has been developed especially and uniquely for Eclipse, which
enables one design and implement software easily by using Eclipse along.
It uses Eclipse Graphical Editing Framework (GEF) and an optimized
plug-in. Omondo EclipseUML is now the best Java UML modeling tool
on the market. It provides full supports to combined fragments notion
elements in sequence diagram. And the diagrams are saved as a standard
XML file format. It is free for non-commercial use.

• ArgoUML ArgoUML is the leading open source UML modeling tool
and includes support for all standard UML 1.4 diagrams. But ArgoUML
can not support combined fragments notion elements in sequence dia­
grams.

• No Magic's MagicDraw UML MagicDraw is a visual UML mod­
eling and CASE tool with teamwork support. Designed for Business
Analysts, Software Analysts, Programmers, Quality Assurance Engi­
neers, and Documentation Writers, this dynamic and versatile devel­
opment tool facilitates analysis and design of Object-oriented systems
and databases [39].

• Others.

Our approach uses the sequence diagrams and class diagrams which are drawn
in Omondo EclipseUML for the following reasons:

1. Omondo EclipseUML is the best Java UML modeling tool on the market.

2. Omondo EclipseUML saves UML diagrams. in the standard XML files
which are easy to be parsed using Simple XML API or DOM API.

3. Omondo EclipseUML provides full supports to the combined fragment
notation elements in sequence diagrams; it represents combined frag­
ments using frames of types 'opt', 'alt', 'loop', 'par' and 'region'.

4. Omondo EclipseUML is free for non-commercial use. Everyone can use
it for non-commercial purpose.

In this chapter, we presented the OMG's UML, which helps one specify, visu­
alize, and document models of software systems. We introduced two standard

33

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

diagrams: sequence diagram and class diagram. We also introduced some
UML-based tools on the market. Next chapter is a brief introduction to coor­
dination contracts, which is a very important idea in our approach. We realize
the test cases in the concept of contracts and make test execution automation
with the aid of coordination development environment.

34

Chapter 5

Coordination Contract

This chapter presents the concept of coordination contract and Coordination
Development Environment (CDE). The coordination contract, proposed by L.
Andrade and J. Fiadeiro, is related to the idea of the association relationship
in UML. The CDE, developed by ATX software SA, supports the use of co­
ordination contracts for Java applications. We also introduce the syntax and
semantics of the contracts in the current version of CDE.

5.1 Concepts

This methodology emerges from a particular concern of separation between
"computation" and "coordination". "Computation is the mechanisms through
which the functionality of services is ensured at the local level of the compo­
nents of the system. Coordination is the mechanisms through which inter­
actions between components can be established so that the global properties
that are required of the system can emerge from the local computations and
the interconnections established between them" [4].

One of the main reasons for advocating the separation is that it facil­
itates the evolution of systems. Changes that do not require different com­
putational properties can be brought about by adding new connectors that
regulate the way existing objects operate, instead of performing changes in
the objects themselves. This can be achieved by superposing, dynamically,
new coordination mechanisms on the objects.

L. Andrade and J. Fiadeiro proposed a concept of coordination con­
tract which provides the mechanisms for the coordination to be modeled and
implemented in compositional way.

A coordination contract is a connection that is established between a
group of objects or participants. Through the contract, rules and constraints
are superposed on the behavior of the participants. A contract is related to
the concept of the association relationship in UML, but the way interaction is

35

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

established between the participants in contracts is more powerful than what
can be achieved within the UML and Object-oriented languages because it
relies on a mechanism of superposition that overrides direct, explicit method
invocation, and replaces it with an external trigger or reaction kind of inter­
action [2].

The Coordination Development Environment (CDE) is a pair of tools
to help develop Java applications using coordination contracts. We give an
example to show the concept of coordination contract in the next section. We
describe how contracts can be edited in the CDE to allow the implementation
of the micro-architecture in Java in the latter sections.

5.2 An Example of Coordination Contract

Firstly, we introduce the contract by presenting an example of banking appli­
cation. Secondly we give the formal specification of a contract in the latter
section. We have two parts in this example: components and contracts:

• Components. The application banking has two classes: Customer and
Account. It allows the withdrawal and deposit of money in a given
account, and the choice of whether a given customer can overdraw a
given account or not, and by how much. The class Account has two
methods: withdraw and deposit, which have no constrains other than
amounts must not be negative.

• Contracts. Vve defined two contracts, Traditional and Credit, each of
them between a Customer and an Account to restrict the availability
of operation "withdraw" in component Account. Contract Traditional
does not allow to withdraw more money than available in the account;
contract Credit allows overdrawing an account up to a given amount,
which is an attribute of the contract.

The following is the contract Traditional. It has a name: Traditional,
and two sections: the participants section lists two participants: customer
and account, and the coordination section contains one rule: TraditionalRule.
Each participant must be of a class in the components listed above. The rule
has a trigger (after when), an optional guard (after with), and an optional
body (after do). A trigger is a call to a method of one of the participants
and (possibly) additional conditions. The Java code in the body is executed
if the trigger occurs and the guard is true. If the trigger occurs and the guard
is false, then the code after failure will execute. That code should end either
by throwing an exception declared in the signature of the trigger method or
by returning a value. So the rule guarantees that a given customer can not
overdraw a given account.

36

Master Thesis- Zhe (Jessie) Li

contract Traditional
participants

customer : Customer;
account : Account;

coordination
TraditionalRule:

McMaster - Computing and Software

when*-» account.withdraw(amount, c) && (customer== c)
with (account.getBalance() >=amount)
failure {

I I throw an exception;
};
do account.withdraw(amount,c)

end contract

The following is the contract Credit, which relaxes the availability con­
dition a bit. The Credit contract allows the participating customer to overdraw
the participating account up to a limit, given by a local variable defined in
attributes session of the contract.

contract Credit
participants

customer : Customer;
account : Account;

attributes
double limit;

coordination
CreditRule:

when*-» account.withdraw(amount, c) && (customer== c)
with (account.getBalance() +limit >=amount)
failure {

I I throw an exception;
};
do account.withdraw(amount,c)

end contract

Through these two examples, we introduced contracts informally. In
the next section, we will give a formal contract specification.

37

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

5.3 Contract Specification for CDEl.l

The Coordination Development Environment (CDE), developed by ATX soft­
ware SA [3], supports the use of coordination contracts for Java applications.
The current version is 1.1. This section presents the general format of a con­
tract in the current version of the CDE. The CDE is introduced in detail in
the latter section.

5.3.1 Syntax

The general format of a contract in the current version of the CDE consists of
a mixture of abstract specifications and Java source code sections. This means
that Java statements are parsed and generated as defined. The CDE compiler
does not detect Java syntax or semantic errors. The following is a contract
template, it includes all possible elements in a contract.

contract contractName
participants

participant1: Component;
... ,

participantn: Component;
attributes

JavaT.y;pe name1 ;

JavaType namek;
operations

JavaType contractOperation() {
I I operation body in Java

}
coordination

TriggerRuleN arne:
when *- >> participanti.operation(args) && (trigger conditions)
with (J avaGuardConditions)

failure {
I I Java guard failure actions
I I throw an exception or return a value
}

before {
I I operations to be executed before participanti. operation(args)

};
do {

I I operations to be executed instead of participanti. operation(args)
};
after {

38

Master Thesis- Zhe (Jessie) Li McMaster- Computing and Software

I I operations to be executed after participanti. operation(args)
};

StateConditionRuleN arne:
when? (condition in Java) on participant1, ... , participantn
do {

I I set of operations of the participants or the contract
};

end contract [4]

5.3.2 Semantics

The semantics of the various constructs in a contract is as follows [4]:

• contract contractN arne: This is the name of the contract as specified
by the user when creating a new contract.

• participants: This is a sequence of formal parameter declarations that
identify the classes that become associated through the contract. This
sequence can consist of one ore more Java classes that have been added
to the current CDE project. The classes should have been added to the
project prior to being declared as contract participants. Otherwise, a
compilation error will occur. There are two ways to define participants:
either by using the syntax participantName:Class; or by using Class
participantN a me

• attributes: These are the private attributes of the contract. The at­
tributes are generated as written by the user in this section and therefore
they have to be specified using Java syntax; The contract file generated
by the CDE defines, by default, two public methods for each attribute:
one to set values and the other to get the current value.

• operations: These are private operations of the contract. They should
be edited in Java and are generated as specified. Therefore they should
be in correct Java syntax and have correct semantics in order to avoid
compilation or behavior errors when integrated in the generated code
for the rest of the application. The Java syntax error in the operation
body will not cause a compilation error in the CDE, but the generated
Java code may give rise to a compilation error. Therefore, it pays off to
be careful to use correct Java syntax and semantics in the definition of
these operations.

• coordination: This section defines the coordination rules that will be
superposed on the participants. There are two types of coordination rules

39

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

that are currently supported by the CDE: rules on calls to operations of
the participants and state condition rules. c

- Trigger Rule. The syntax of this coordination rule for an operation
invocation is a statement of the following form:

when *- >> participant.operation(args)

* The symbol *- >> applied to an operation means "any call to
that operation". The operation arguments should be consistent
with the signature of the operation.

* The && section defines the trigger conditions of the rule, i.e
under which conditions the call to the operation constitutes a
trigger. In other words, if the operation is called when this
condition is false, the contract will not react.

* The with section defines the guard condition for the trigger:
when this condition is false, an exception is raised and a fail­
ure is reported to the object that called the operation. This
condition should also be written in Java.

* The failure stat:ment for the with guard specifies the Java
actions that should be executed in case the guard fails. Because
failure is not a Java feature, it is necessary to model the rule
failure in case the with condition is false, by either throwing an
exception or returning a value to the operation client. Hence,
the last statements inside othe failure block should be either a
throw Exception or a return statement.

* When the trigger corresponds to the call for an operation, three
types of actions may be superposed on the execution of the op­
eration: before (to be performed before the operation), do
(to be performed instead of the operation), and after (to be
performed after the operation). In the case in which an object
participat~. in multiple contracts with the same trigger, the
sequence of execution is the following: first, all the before ac­
tions are performed, then one replace, and finally all the after
actions.

- State Condition Rule. The syntax of this state condition rule is a
statement of the following form:

when? (condition in Java) on participant17 ••• ,participantn

State condition rules are declared by using ? with the condition
statement specified inside parenthesis and in Java syntax. The

40

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

statement, on participant1 , participant2 , ... , is used to declare which
participants the rule refers to. Only statements that do not change
the state of the participants may be defined as conditions on state
rules. For instance, a state condition rule can be of the form:

when '? participant1 . getBalance()> 100 on participant1

• end contract: This defines the end of the contract.

5.4 Micro-Architecture

Manual implementation of coordination contracts, or tools such as the CDE,
require an underlying micro-architecture (design pattern). The micro-archi­
tecture presented herein is only one among several possible alternatives for im­
plementing coordination contracts. There may well be a different architecture
or different implementation of contracts as long as they adhere to the general
principles of contracts [4].

The coordination contract Design Pattern consists of two parts: The
component part and the coordination part. The former consists of the features
that have to be provided for each component so that it can become coordinated
by a contract. The latter concerns the mechanisms that allow for the coor­
dination of a given component through the contracts that are in place for it.
The classes that participate in the proposed pattern are shown in Figure 5.1.

The detailed functionality of the various classes is as follows [4]:

Component Part

• Subjectlnterface. It is an abstract class (type) that defines the oper­
ations under potential coordination. In fact, it is the common interface
of services provided by SubjectToProxyAdapter and ISubjectProxy.

• Subject. This is the real component, candidate for coordination, that
provides the concrete implementation of the various services and inherits
from SubjectToProxyAdapter.

• SubjectToProxyAdapter. Defines the ability to, alternatively, use a
proxy or internal methods for the implementation of a given Subject
interface. It is a concrete class that allows, at run time, and using
the polymorphic entity proxy, for delegating received requests to ISub­
jectProxy in the case in which Subject is under coordination. Such re­
quests are then delegated to ISubjectPartner that links the subject to the
contracts that coordinate it. If no contract is involved, SubjectToProx­
yAdapter may forward requests directly to Subject. In order to achieve

41

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

Coordination
Part

/ Chain of
Responsibility

1 o···· 1 I
ISubjectPartner

<abstract>

f
Ct_1_Subject· Ct_2_ Subject·

Connector Connector

1 1

1 1

Contract 1 Contract 2

' '

i

Component
Part

I I
ISubjectProxy - SubjectToProxy-

<abstract> Adaptor

Doe _operation()
I operation()
I
I _jl

Subject

_operation() oC

Request for

• operation ()

---t> :UML implements

--t> :UML extends

Figure 5.1: Coordination Contract Design Pattern [4]

42

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

this, two actions are necessary. Firstly, Subject inherits from SubjectTo­
ProxyAdapter. Secondly, the operations of Subject are renamed in such
a way that the operations with the initial names are moved to SubjectTo­
ProxyAdapter as concrete operations, and the new operations occurring
in SubjectToProxyAdapter are abstract operations. For instance, oper­
ation() of Subject exists now as operation() in SubjectToProxyAdapter
and as _operation() in Subject. Moreover, _operation() is also declared
as an abstract operation in SubjectToProxyAdapter. Requests for oper­
ation() are made to Subject. However, due to renaming, the operation
does not, in fact, exist in Subject but in SubjectToProxyAdapter from
which Subject inherits. In the case that there is no contract (no proxy)
involved, operation() in SubjectToProxyAdapter forwards the request to
the corresponding real implementation, _operation(), in Subject. Other­
wise, as already stated above, it delegates the request to ISubjectProxy.

• ISubjectProxy. It represents an object with the capability of imple­
menting the Subject interface. It is an abstract class that defines the
common interface of Subject and ISubjectPartner. The interface is in­
herited from Subjectlnterface to guarantee that all these classes offer the
same interface as Subject with which real subject clients have to interact.

Coordination Part

• ISubjectPartner. Defines the general abilities of a concept to be un­
der coordination. It maintains the connection between the real object
(Subject) and the contracts in place for it. The class is responsible for
delegating received requests to CtSubjectConnectors according to a chain
of responsibility. The class contains operations for managing the chain
of responsibility. Alternatively, the required management operations can
be included in an abstract class, ContractPartner, from which !Subject­
Partner inherits. However, this is rather a "low-level" design issue and
therefore such a class is not presented in the pattern.

• CLLSubjectConnector. A partner that represents the specificities of
Subject coordination for a given contract in which Subject is a partici­
pant. For each pair contract-participant there is exactly one CLi_Subject­
Connector. The class implementation may be responsible for the execu­
tion of the rules defined in the coordination part of the contract and for
ensuring satisfaction of the contract semantics.

• Contract-i. A coordination object that defines the rules that will be
superimposed on Subject.

43

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

The contracts micro-architecture allows coordination contracts to be directly
implemented using object-oriented languages, while providing the following
advantages [4]:

1. Components are not aware of the presence of contracts and, therefore,
any number of contracts can be added/removed without having to mod­
ify the components.

2. Contracts can be added/deleted in a "plug and play" mode, even in run
time.

3. Even existing components can be easily adapted to accept contracts with­
out making any modifications elsewhere in the application, thus allowing
for easier reengineering/ evolving of existing applications.

5.5 CDE

The Coordination Development Environment (CDE) is a pair of tools to help
develop Java applications using coordination contracts. One of the tools is an
editor to write contracts and translate them into Java classes, which can then
be compiled with the other classes that form the application. The other tool
is an animator, with some reconfiguration capabilities, in which the run-time
behavior of contracts and their participants can be observed using sequence
diagrams, thus allowing rapid testing of different scenarios. The Java classes
generated for coordination contracts provide public methods that allow the
applications to dynamically reconfigure themselves by creating and deleting
contracts, and changing the values of their attributes. The CDE is written in
Java and can be downloaded for free from www.atxsoftware.com/CDE [4].

The CDE generated Java code provides a specific implementation of
the general contracts micro-architecture. In this context, the implementation
points we wish to present are the following:

• In the general micro-architecture Subject and SubjectToProxyAdapter
appear as two different classes. However, for reasons explained in the
micro-architecture document, the previous two classes are merged in one
class, Subject.

• In the general micro-architecture class I SubjectProxy is supposed to im­
plement Subject! nter face and also Subject and I SubjectPartner are
subclasses of (implement) ISubjectProxy. However, in the CDE gener­
ated code instead of ISubjectProxy, a general, not specific to the Sub­
ject, class Crdi Proxy is used. Each Subject either has Crdi Proxy or
inherits it from its parent class. The presence or no presence of contracts

44

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

is determined by controlling Crdi Proxy_proxy. If _proxy ==null there
are no contracts involved, otherwise contracts exists and calls to Subject
are delegated to contracts [4].

• The chain of responsibility management operations are provided by a
framework class CrdContractPartner from which I SubjectPartner in­
herits. For each call on a participant that is forwarded to the chain,
all active partners are determined, the first one takes responsibility and
executes its actions, then it forwards to the next one and so on until
no active partners are left. The current implementation does not al­
low the setting of priorities between contracts in the chain. Therefore,
priorities of contracts is currently a matter of configuration i.e the order
contracts are established between participants is also the execution order
in the chain of responsibility. In the future versions of CDE, however,
the ability to set the contracts priorities in the chain management will
be provided [4].

• Contract's state conditions rules are evaluated whenever a call to an
operation that changes the state of a participant occurs. This is accom­
plished by invoking an operation named stateChange() that is defined
on each contract.

Unfortunately, the current version of the CDE can not coordinate
classes of objects for which the source code is not available. One can only
coordinate components for which the source code is available. Therefore, for
instance, one may not define contracts that superpose behavior on operations
that belong to a Java class library. ATX Software SA said they will imple­
ment this important feature that the CDE will support the coordination of
components for which the source code is not available such as Java .class files
soon.

5.6 Other Notions of Contract

In addition to the coordination contract introduced above, there are several
other notions of contract. The term "contract" is somewhat overloaded. There
are contracts in the sense of Meyer [35] in "Applying Design by Contract";
R.Helm et al [26] proposed a notion of "Contract" in "Contracts: Specifying
Behavioral Compositions in Object-Oriented Systems". A notion of contract
can also be found in "Analysing UML Use Cases as Contracts" [5]. We intro­
duce the different notions of contract as follows.

• Applying Design by Contract. They fulfil a different, but comple­
mentary, role to coordination contracts: their purpose is to support the

45

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

development of object methods in the context of client-supplier relation­
ships between objects. Therefore, they apply, essentially, to the "in-the­
small" construction of systems rather than the "in-the-large" dimension
that cooperation contracts have chosen as target and which is concerned
with architecture and evolution.

• Contracts: Specifying Behavioral Compositions in Object-Ori­
ented Systems. A notion of contract that applies to behaviors and not
to individual operations or methods is the one developed in "Contracts:
Specifying Behavioral Compositions in Object-Oriented Systems". The
aim of contracts as developed therein is to model collaboration and be­
havioral relationships between objects that are jointly required to ac­
complish some task. The emphasis, however, is in software construction,
not so much in evolution.

• Analysing UML Use Cases as Contracts. RJ.Back et al presented
another notion of contract in "Analysing UML Use Cases as Contracts",
that emerged in the context of the action-systems approach. Like coop­
eration contracts, it promotes the separation between the specification
of what actors can do in a system and how they need to be coordinated
so that the computations required of the system are indeed part of the
global behavior. The architectural and evolutionary dimensions are not
explored as such.

In this chapter, we introduced the coordination contract and the CDE. The
coordination contract is a mechanism which superpose behaviors to the com­
ponents without interfering with their implementations. The CDE supports
the use of coordination contracts for Java applications. The coordination con­
tract and the CDE play an important role in our approach because we design
tests in the concept of the contracts and execute tests automatically with the
aid of the CDE. In the next chapter, we will present our test approaches in
detail.

46

Chapter 6
0

Test Approaches

In this chapter, we introduce our test approaches, object-oriented programs in­
tegration tests by testing the sequence of the message calls, testing parameters
and testing post-conditions. We describe the test case generation from UML
sequence diagram, test oracle from class diagram, and test coverage criteria
we use in our approach.

6.1 Introduction

The purpose of our test approach is to detect faults related with the interac­
tions among objects in a system. Test cases are derived from UML sequence
diagrams and class diagrams. Sequence diagrams are used primarily to show
the interactions among objects in the sequential order that those interactions
occur. Thus sequence diagrams are one of the most suitable specifications to
guide our integration testing. Class diagrams consist of classes and the re­
lationships among them. By using a class diagram specification, we can get
enough information for verifying the test result, like an oracle. Given sequence
diagram and class diagram specifications, our integration test process can be
generally described as follows:

1. Generate Test Case from sequence diagram and class diagram. The test
case generator tool parses the sequence diagram and class diagram XML
files and gets the useful information for the integration testing, see details
in next section "Test Case Generation".

2. Realize Test Case in terms of Contracts. What to test, how to test and
how to verify result in terms of contracts can be generated by the tool,
see details in Chapter 7.

3. Create a Test Framework by Generating Contracts and Components in
CDE. We import the components under test and the contracts generated

47

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

XML Parser

TOOL

CDE

;I Test Data }-----+1 Test Driver r-----+<

Figure 6.1: Architecture of Integration Testing Approach.

by the tool into the CDE. To generate a contract and component is to
produce the Java code that implements the micro-architecture that we
introduced in Chapter 5 for allowing coordination contracts to be su­
perposed on components without the latter being aware of the contracts
existence.

4. Generate Test Data by the Tool JTA [17], provided by professor Marcelo
Frias. The JTA Tool takes a sequence diagram, selects the component
code corresponding to the sequence diagram and generates test data for
this part code by Branch Coverage Criteria, see details in the latter
section in this chapter.

5. Develop Test Driver. A test driver is developed to run the test framework
by taking the generated test data.

6. Generate the test result. Test results are generated after running the
test framework with the generated test data.

The whole process is represented in Figure 6.1. The rectangle part at
the right top corner in the figure is the core of the Tool we have developed in

48

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

Java. It takes UML sequence diagram and class diagram and generates the
contracts by the mechanism of test case generation introducing in the next
section. Please refer to Chapter 8 for the implementation details of the Tool.

6.2 Test Case Generation

How should we do the integration testing for object-oriented programs based
on UML specifications? As described above, there are some techniques or
approaches to test object-oriented programs at the integration level based on
UML specifications. We developed an alternative approach by using UML se­
quence diagrams and class diagrams. Through a sequence diagram, we know
the interactions among objects in sequential order represented as sending some
message to some object in sequential order, and the parameters taken from the
first message and when and by which messages are taken again in the later.
Sequence diagrams are primarily used to generate test cases; through a corre­
sponding class diagram, we know each parameter's type, each class's attributes
and the relationships among those classes. Class diagrams are primarily used
to create test oracles. Therefore in order to test object-oriented programs at
the integration level, we test the interactions among objects in three parts:
sequence of method calls, parameters and post-conditions. Our approach will
reveal those faults related with incorrect sequence of method calls, inconsistent
parameters and unexpected behavioral operations. We present each part of
testing as follows.

6.2.1 Testing Sequence of Message Calls

Given a sequence diagram, we want to make sure all the methods in the se­
quence diagram are called in correct sequential order with respect to the values
of the conditions in the control flows. How should we do this? The general
idea of the approach is that we introduce an integer variable step and each
method in the sequence diagram is assigned a unique step value. The value
of step at one time is set to the value related with the message which is the
latest executed. We assert the correctness of the sequence by checking the
current value of step before a certain message is called is what we expect by
the sequence diagram.

If the method which is going to be called is the first method in the se­
quence diagram, we do not check the step value, we only assign a value related
with that method to step. The sequential order of the messages presented in
the sequence diagram depends on the control-flows: different test data indi­
cate different control-flow for the test data are generated by Branch Coverage
Criteria, as a result methods are called in a different order. By checking the
value of step when each message is called, we know if the current message is

49

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

called in the expected sequential order or not. We summarize our approach as
follows:

Approach to Testing Sequence of Method Calls (TSMC)

1. Create an integer variable called step. Initialize step step= 0.

2. Assign each method a unique sequential value, starting from 1, saved in
step.

3. Assure that each method is called in the right sequential order by check­
ing the current value of step is the value corresponding to the method
which is expected to execute before the currently executed method.

4. Reset step to the value corresponding to the currently executed method.

5. At the end, check the value of step; if it is the value we expected (the
step value of the last method executed by the sequence diagram), the
methods are called in the right sequential order. Otherwise, the test
fails.

LEMMA: TSMC succeeds if expected and actual sequences of method calls
are equal, and fails the test if they are not.

PROOF: Proof by Induction.

• Base Step: Suppose there are only two messages: messagei. message2

and message1 is followed by message2 • By applying approach TSMC,
initially, step= 0, after message1 is invoked, step= 1; when message2

is invoked, and now step= 1, reset step= 2. The expected value of step
is 2; therefore, the test passes if message1 is followed by message2 in
the actual message invocations; the test fails if it is not.

• Induction Step: Suppose TSMC asserts that expected and actual se­
quences of message calls are equal when there are n messages invoked.
That is, the test passes when step = n and the test fails when step =/= n
at the last. If there are n+ 1 messages, the expected result is messagen+l
following messagen. When then+ 1st message is invoked, there are two
cases: 1. step = n, which shows the first n messages are called in the
right sequence, reset step= n + 1, test passes; 2. step=!= n, which shows
the first n message are not called in the right sequence, step will not be
reset to n + 1, test fails.

In conclusion, the procedure TSMC guarantees correctness of sequences
of message calls.

50

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

6.2.2 Testing Parameters

Given a sequence diagram and a corresponding class diagram, make sure the
type signatures are consistent within the diagrams. We only check the pa­
rameters introduced in the first message in the sequence diagram. For any
parameter in the first message, if it is used in the later messages, we check
both the value and the type of the parameter. For each parameter under test
in a sequence diagram, we get the name from the sequence diagram and we
can find the type from the relevant class diagram. A class diagram is the
specification from which we create a test oracle for testing parameters.

Approach to Test Type Signatures (TTS)

1. Read the first message in the sequence diagram, save the parameters
appearing in the message one by one.

2. Scan the relevant class diagram, find the message appearing the first in
the sequence diagram, and get the type of the each parameter in the
message.

3. Navigate each message except the first one in the sequence diagram se­
quentially. If any parameter in the first message appears in the following
messages, compare the value and type of the parameter between the
current message and the first one.

4. If the compared parameters have the same value and type, the test
passes; otherwise, the test fails.

In testing parameters, we just check all the parameters taken by the
first message are consistent in a sequence diagram. We do not test those
parameters which are not appearing in the first message.

6.2.3 Testing Return Value

Suppose we have a sequence diagram, depicting the interactions among a group
of classes. We have an assumption that class-level testing has been done on
each class sufficiently. The approach Testing Object Interactions (TOI) de­
scribed below is a general approach to test objects interactions using simulation
technique to check the post-conditions of each participant (object) after the
interactions. The purpose of the approach TOI is to detect the faults related
with the interactions among objects.

The basic idea of the approach is to simulate the execution of the pro­
grams under test. We start from the same states with the program by making
a copy of each object; we simulate the execution of the interactions among

51

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

the objects by manipulating the copies of the objects in a such a way that the
messages, according to the sequence diagram, are sent to the corresponding
copies of the objects sequentially; on the other side, the program is running as
it developed. Finally, we compare each pair of the object and its copy. If they
are equivalent observationally, then the behaviors of each pair are equivalent;
we say the interactions take place correctly; otherwise, test fails. We describe
each step in detail as follows.

Approach to Test Object Interactions (TOI) Suppose we have a se­
quence diagram, depicting the interactions among a group of classes: class~,

class2, ... , classn. Let object1 , object2, ... , objectn denote the objects of each
class, respectively. Let's assume class-level testing has been done on each
class. Given test data generated by the Tool JAT[17] (the test data cover each
branch of the control-flow in the sequence diagram), the following operations
will be executed sequentially by the sequence diagram specification:

object1.operation1 (parameter1);

object2.operation2(parameter2);

objectn-operationn(parametern)·

1. Clone Objects. Before the first operation is invoked on the object1 in
the sequence diagram, clone each of object~, object2, ... , objectn and re­
name new objects as pre_object1, pre_object2, ... , pre_objectn using the
Approach to Clone an Object (CAO), see below.

2. Execute Operations on the Cloned Objects as We Expect. Run

pre_objecti.operationi(parameteri), i = 1, 2, ... , n

sequentially.

3. Execute Operations on the Objects in Actual Program. Continue to
invoke the first operation on the object1, it will trigger all the message
invocations in the sequence diagram.

4. Use the Approach to Determine Objects Behavioral Equivalent (DOBE)
to examine whether the program is executed as we expected by deter­
mining if objecti is equivalent to pre_objecti, i = 1, 2, ... , n.

The TOI is a general approach to test objects interactions by checking
the post-conditions of each participant after the interaction. It consists of the
other two approaches: CAO and DOBE, see below.

52

Master Thesis- Zhe (Jessie) Li McMaster- Computing and Software

Approach to Clone an Object (CAO) Suppose the attributes of class C
are a1 , a 2, ... , an and ai is public fori= 1, 2, ... , n. Furthermore, that object.ai
denotes the value of ai of object fori= 1, 2, ... , n. We have an object instance
of class C: "object". We will make a copy of "object" by the following two
operations.

1. Create a new object instance named "pre_object" with the same type of
"object" using the default construction function, as follows:

pre_object =new ClassOJObject();

2. Initialize the value of each attribute in "pre_object" using the assignment
below:

pre_object.ai = object.ai for i = 1, 2, ... , n

We have a copy of the object instance "object" of class C, named "pre_object",
because both "object" and "pre_object" are object instances of class C and
they have the same value for each attribute, representing by the equal values
in the following two tuples:

(object.a1, object.a2, ... , object.an)

(pre_object.a1, pre_object.a2, ... , pre_object.an)

For example, in a banking system, we have a class Account with two attributes:
number and balance, both are the type integer. The following is an example
of Java code:

public Class Account {
int number;
int balance;
I I operations;

}

Now we have an object instance "account" with the value of number 1 and
the value of balance 200. We will use the approach CAO to make a copy of
"account" using the following Java statements:

1. pre_account =new Account();

2. pre_account.number = account.number;

3. pre_account.balance = account.balance;

Thus, object instance "pre_account" is a copy of object instance "account".
Both are the object instances of class Account and have the same value for
each attribute.

53

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

Approach to Determine whether Objects are Behaviorally Equiva­
lent (DOBE) [15] Suppose the attributes of the implemented class C are
a1 , a2 , ... ,an and ai is public fori = 1, 2, ... , n. Suppose, further, that objectk.ai
denotes the value of ai of objectk fori= 1, 2, ... ,nand k = 1, 2. Check whether
the following two tuples are equal:

If yes, we have
object1 ~ object2

How should we compare the actual result by running the program under test
with the expected result derived from the given specification? The comparison
is based on the objects involved in the interactions. We determine if each object
is behaviorally equivalent with our expected object by the above approach
DOBE.

The approaches TOI, CAO and DOBE are used together to test the
interactions among objects. The approach TOI uses the idea of the simulation
technique to simulate the execution of the program under test; the approach
CAO makes a copy of an object in the program; the approach DOBE compares
the equivalence of two objects behaviorally.

6.3 Test Case Coverage

One important aspect of software testing is deciding when enough testing has
been done. Goodenough and Gerhart [20] first presented the idea of a test
adequacy criterion, which is a criterion that defines what makes an adequate
test. Adequacy criteria play an important role in the testing process. They
can be used as a stopping rule. Testing stops when enough test cases have been
produced to satisfy the criterion. They can also be used as a measurement
of test quality. They also provide a basis for deciding what test cases to use
during testing, making it more likely that faults will be found in the system
[33].

6.3.1 Test Coverage for Integration Testing

Coverage can be used to measure the extent to which an adequacy criterion is
satisfied. Test coverage is usually given in terms of percentage of the chosen
structures covered at lease once. Coverage criteria are a type of adequacy
criteria that specify the percentage of requirements that must be covered. We
introduce several coverage criteria based on data-flow, control-flow and UML

54

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

below. A test strategy can be based on coverage of one or more of the following
[33].

Data Flow Coverage Criteria

Linnenkugel and Mullerburg (1990)[31]defined the following criteria for data
flow based integration testing. All the criteria are defined for communication
variables. A communication variable (CVar) contains data which is shared
between a calling and a called procedure (imported operation) via parameter
parsing or a global variable.

• INT-all-defs criterion. Every definition of a CVar within the calling
module which may affect the call has to be read at least once within the
imported operation.

• INT-all-c-uses/some-p-uses criterion. Every definition of a CVar within
the calling module which may affect the call has to be used for every
possible computation within the imported operation. Predicate uses
have to be tested only if computations do not exist within the operation.

• INT-all-p-uses/some-c-uses criterion. The same as above except that
predicative uses have priority.

• INT-all-uses criterion. Every definition of a CVar within the calling
module which may affect the call has to be tested for every possible use
(c-use and p-use) within the imported operation.

• INT-all-du-paths criterion. This is the enlargement of the INT-all-uses
criterion. Different paths (e.g. decision branches) between definition and
use of a CVar (without loops) are taken into consideration.

A disadvantage of all these criteria is that they are either met or not,
there is no level in between. However, coverage measures are easily defined.
Ratios may be defined for each of the criteria. The advantage is that complete
coverage of a specific criterion is not necessary any more, different levels of
coverage may be defined. For example, the all-clefs integration test coverage
measure is defined in the following:

IC _ number of executed paths containing a CVar definition
ad- total number of paths containing a CVar definition

Control Flow Coverage Criteria

Control-flow criteria are traditionally considered as program-based and useful
for white-box testing [51]. Several criteria and respective coverage measures

55

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

have been introduced by Miller(1977) and extended later by other authors.
The following coverage criteria are based on the control-flow graphs: statement
coverage criterion, branch coverage criterion, condition coverage criterion and
path coverage criterion.

Integration testing requires testing interactions between modules and
operations. Criteria to test modules which export several operations are de­
fined by Herrmann and Spillner in 1992 [27]:

• INT-all-exports criterion. Every exported operation has to be executed
at least once ..

• INT-all-imports criterion. Every exported operation has to be called at
least once from every module importing this operation.

• INT-all-multiple-imports criterion. Every call statement of an imported
operation has to be executed at least once.

• INT-all-import-call-sequences criterion. For every module only a single
import of an operation is taken into consideration. Every sequence of
calls has to be executed at least once in accordance to the sentence above.

• INT-all-multiple-import-call-sequences criterion. Every call within a sys­
tem is taken into consideration. Every possible sequence of calls is exe­
cuted at least once.

The definition of coverage measures is:

ICae = number ofexecuted exported operations
number of all exported operations

I C . _ number of executed imported operations
a~- number of all imported operations

I C . _ number of executed calls of imported operations
am~- number of all calls of imported operations

UML-based Coverage Criteria

The UML is a language for specifying, visualizing, constructing and document­
ing the artifacts of software systems. The UML provides a variety of diagrams
that can be used to present different views of an object-oriented system at
different stages of the development life cycle [22]. Testing techniques that are
based on the UML involve the derivation of the test requirements and cov­
erage criteria from these UML diagrams. McQuillan and Power [33] wrote a
survey paper, presenting these techniques with emphasis on the coverage cri­
teria. They introduced and analyzed various criteria based on different UML
diagrams.

56

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

Author Criterion
Basanieri and Bertoline All-Paths-Coverage
Binder Condition/Iteration Coverage
Briand and Labiche All-Paths-Coverage
Fraikin and Leonhardt All-Paths-Coverage
Rountev et al. All-IRCFG-Paths
Rountev et al. All-RCFG-Paths
Rountev et al. All-RCFG-Branches
Rountev et al. All-Unique-Branches

Table 6.1: Coverage criteria based on Sequence Diagrams [33]

A start-end message path in a sequence diagram is a sequence of messages
that begins with an externally generated event and ends with the production
of a response that satisfies this event. A test requirement based on UML
sequence diagrams is that all the start-end message paths are covered by the
test execution. This can be referred to as the "all-paths coverage criterion"
which can be defined as:

Definition: All-Paths Coverage Criterion A set of message paths P
satisfies the all-paths coverage criterion if and only if P contains all start-to­
end message paths in a sequence diagram [33].

Binder [9] presents a testing technique that considers a subset of all start-to­
end message paths in a sequence diagram. The technique involves converting
the sequence diagram to a control flow graph (CFG) and deriving test cases
from this graph. The coverage criterion he uses provides branch/iteration
coverage and is an extension of the traditional branch coverage criterion which
can be defined as:

Definition: Branch Coverage Criterion A set of paths P satisfies the
branch coverage criterion if and only if for all edges e in the control flow graph,
there is at least one path p E P such that p contains the edge e [33].

Definition: Iteration Coverage Criterion Given a test set T and se­
quence diagram S D, for each loop L E S D, T must cause the loop to be
either bypassed or taken for the minimum number of iterations, to be taken
at lease once and to be taken for the maximum number of iterations [33].

Rountev et al [42] introduced the Inter-procedural Restricted Control-Flow
Graph (IRCFG), which depicts the set of message sequences in a sequence

57

()

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

diagram. An IRCFG contains a set of restricted CFGs (RCFGs), together with
edges which connect these RCFGs. Each RCFG corresponds to a particular
method and shows the sequence of messages that are involved in response to
the method call. This IRCFG is used to define a set of coverage criteria for
sequence diagrams, as follows:

Definition: All-RCFG-Paths Criterion A set of IRCFG paths P satisfies
the all-RCFG-paths coverage criterion if and only if P contains all RCFG paths
[33].

Definition: All-RCFG-Branches Criterion A set of IRCFG paths P
satisfies the all-RCFG-branches coverage criterion if and only if for all edges e
in each RCFG, there is at least one path p E P such that p contains the edge
e [33].

6.3.2 Test Coverage Criteria in Our Approach

Our approach designs an integration testing automation tool for test case
execution and test result evaluation. Test data are generated by the tool JAT
[17] based on the branch coverage criterion. The Branch Coverage criterion
requires a set of paths P if and only if for all edges e in the control flow graph,
there is at least one path p E P such that p contains the edge e [33].

In sequence diagrams, the combined fragment notation elements are
used to group sets of messages together to show conditional flows. We can
represent different control flows by using different types of combined fragment
notation elements. The types of combined fragments include OPT, ALT and
LOOP which represent optional (like if statement), alternative (like if-else
statement) and loop (like while statement) control flow, respectively. By ap­
plying the Branch Coverage criterion to generate test data, each branch is
guaranteed to be traversed at least once by running the test data. Thus we
cover every possible branch in any control flow in the sequence diagrams. We
will introduce the derivation of a control flow graph from a sequence diagram
in details in Chapter 7.2.

In this chapter, we gave a very detailed introduction to our test approaches for
object-oriented programs at the integration level. The approaches include the
TSMC testing the sequence of the methods calls, the TTS testing parameters,
and the TOI testing return values along with the CAO and the DOBE. We also
presented integration testing coverage criteria based on data-flow, control-flow
and UML. In the next chapter, we will introduce how to realize the test cases
in the concept of coordination contract and how to execute tests automatically
by generating the contracts and the components in CDE.

58

Chapter 7

Test Design by Contracts

In this chapter, we present the detailed realization of test cases in the concept
of coordination contract based on the mechanism of test case generation in­
troduced in Chapter 6. We also give an introduction to the use of the CDE,
generating the contracts and the components to fulfil tests execution automa­
tion.

7.1 Introduction

As we introduced in the chapter on coordination contract, which defines rules
that coordinate the behavior of given objects in a system, and allowing for
this rules to be added, or modified, without having to modify the way those
objects are implemented. This feature of the contract matches our approach
for integration testing.

The integration testing for object-oriented programs is to assure the
interactions among the objects are correct with respect to the specifications.
The test cases for the integration testing, based on the mechanism of test case
generation introduced in chapter 6, manage the interactions among the objects,
including what interactions should happen, how they should interact and do
they interact as we expect, thus making contracts suitable to implement the
test cases.

By using contracts to superpose behaviors on the components, we can
detect, modify, and analyze the interactions among the objects for the purpose
of the integration testing. Most importantly, we can add and modify the test
cases without having to modify the way those objects are implemented. In
other words, all the test cases implemented in the concept of the contracts
do not interfere with the original program code. We introduce the detailed
implementation using the contracts in the following section.

59

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

7. 2 Contract Design

Used in integration testing, the contracts are based on sequence diagrams. As
we introduce in chapter 6, for each sequence diagram, we test three things:
messages/calls sequences, parameters and return values. Correspondingly, we
have one contract for each test item, totally three contracts for one sequence
diagram. Contract one is implemented for testing message calls invoked in
the sequence specified by the sequence diagram; contract two is implemented
for testing parameters appearing in the first message that are used in the
later messages; contract three is implemented for testing the return values by
checking the interacted objects behavior as what we expect.

7.2.1 Contract for Testing Sequences of Message Calls

The contract for testing sequences of message calls is designed to ensure the
sequence of the method calls is consistent with the sequence specified in the
sequence diagram. The contract is implemented based on the approach TSMC
introduced in chapter 6. The following is the approach TSMS and correspond­
ing contract implementation.

Approach to Testing Sequence of Method Calls (TSMC}

1. Create an integer variable called step. Ini'tialize step step= 0.

2. Assign each method a unique sequential value, starting from 1, saved in
step.

,.,
3. Assure that each method is called in the right sequential order by check­

ing the current value of step is the value corresponding to the method
which is expected to execute before the currently executed method.

4. Reset step to the value corresponding to the currently executed method.

5. At the end, check the value of step; if it is the value we expected (the
step value of the last method executed by the sequence diagram), the
methods are called in the right sequential order. Otherwise, the test
fails.

With respect to each step in the above approach, we implement the contract
accordingly as follows.

• In the contract attributes section, define step with respect to step 1.

60

Master Thesis- Zhe (Jessie) Li McMaster- Computing and Software

• We define some trigger rules and one state condition rule in the contract.
Each trigger rule checks if a certain message is called in the right order.
The number of the trigger rules in the contract equals the number of
methods called in the sequence diagram. The name of a trigger rule is
"CheckStepi"; i is the sequence of the related message in the sequence
diagram. The state condition rule is used for checking the final result.

• With respect to step 4, in the before section of a certain trigger rule, we
reset step to the value related with the method in this rule.

• With respect to step 2, in the trigger rule related with the first message,
only the call to the message constitutes the trigger. In other words,
when the first message is called, just reset step value in before section as
mentioned above.

• With respect to step 3, in the trigger rules other than related with the
first message, the call to the message and the condition, which the cur­
rent value of step is the value of related message which was just called,
constitute the trigger. In other words, if the method is called when this
condition is false, the contract will not react; as a result, step will not
be reset.

• With respect to the final result checking, check the step value. It could
be implemented either in the after section of the last trigger rule or in
a state condition rule. In most cases, we use trigger rule; only in one
special case of conditional message, we have to use a state condition rule
to check the value of step. We will i!!troduce this special case in detail
below.

Let's look at a very simple sequence diagram, shown in figure 8.4. In
this sequence diagram, objectl and object2 are two object instances of Classl
and Class2, respectively. Message_!() is called on objectl, followed by the
message_2 called on object2. Applying the approach TSMC, we implement
the test case in the following contract.

Contract for Testing Sequence of Message Calls in Figure 8.4.

contract example
participants

objectl :Classl;
object2:Class2;

attributes
boolean result = false;
int step= 0;

61

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

object1 : Class1 object2 : Class2

message_1()

message_2()

1.1

Figure 7.1: A Simple Sequence Diagram Example

coordination
CheckStep1:

when *- >> objectl.message_1()
before {

step= 1;
};

CheckStep2:
when *- >> object2.message_2() && (step == 1)
before {

step= 2;
};
after {

if(step == 2) {
result = true;
System.out. println(" Sequence Test Passes!");
step= 0;

}
};

end contract

62

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

In the above contract, two objects: object1 and object2, are defined
in participants section. Step is defined in attributes section. There are two
messages: message_1() and message_2(), in the sequence diagram. So there
are two trigger rules in the contract accordingly. The "CheckStep1" rule will
be triggered when message_1() is called on objectl. And step is reset to 1
before message_1 () is executed. The "CheckStep2" rule will be triggered when
message_2() is called on object2 and the condition "step==1" is true. And
step is reset to 2 before message_2() is executed. If the condition is false, this
contract rule will not react. In after section, we check if step equals 2, if so,
the sequence test in this sequence diagram passes and reset step to the original
value 0; otherwise, it fails.

The above is a simple example, consisting only two messages. Let's
suppose there are n messages: message1 , message2 , ... messagen, and they are
invoked in order. When message1 is invoked, set step = 1; when message2

is invoked under the condition step == 1, set step = 2, and the message
calls are in the right sequence so far. When messagei is invoked under the
condition step== i- 1, set step= i, and so on. When messagen is invoked
under condition step== n- 1, set step= n. Check if step== n, if so, the
sequence of the message calls is correct. We will define n trigger rules in the
corresponding contract. With respect to the complicate case, we generate a
contract template for testing sequence of message calls as follows.

Contract Template for Testing Sequence of Message Calls

contract MCS_template
participants

participant 1: Component;
participant2:Component;

participantn:Component;
attributes

boolean result = false;
int step= 0;

coordination
CheckStep1:

when *->> participant1.operation(parameter(i))
&& (trigger conditions in Java)

with (JavaGuardConditions)
failure {

I I Java guard failure actions
I I throw an exception or return a value

}
before {

63

Master Thesis- Zhe (Jessie) Li

step = 1;
};

CheckStep2:

McMaster - Computing and Software

when*->> participanti.operation(parameter(i)) && (step== 1)
with (J avaGuardConditions)
failure {

//Java guard failure actions
// throw an exception or return a value

}
before {

step= 2;
};

CheckStepn:
when *->> participanti.operation(parameter(i)) && (step == n-1)
with (JavaGuardConditions)
failure {

//Java guard failure actions
//throw an exception or return a value

}
before {

step= n;
};
after {

if(step == n) {
result = true;
System.out.println("Sequence Test Passed!");
step= 0;

}
};

end contract / /MCS_template

In chapter on UML, we introduced "combined fragment" notion ele­
ment in a sequence diagram. A combined fragment is used to group sets of
messages together to show conditional flow in a sequence diagram. So we could
draw a control-flow graph corresponding to a sequence diagram. We give a
definition of a control-flow graph for a sequence diagram as follows.

Definition: Control Flow Graph for Sequence Diagram A control
flow graph for a sequence diagram is a representation, using graph notation,
of all paths that might be traversed through the sequence diagram during its

64

(o

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

execution. Each node in the graph represents either a message or a condition
(the condition in the combined fragment). The edge represents the flow of
the next message or the condition. According to the type of the combined
fragment, there are sequential, optional, conditional, and loop, which corre­
sponds to four different control flow graphs, shown in Figure 7.2: (c) represents
sequential, (d) represent optional, (a) and (b) represent conditional, (e) rep­
resent loop. Defining the values of variable step in contracts is different for
different control flow graphs. We will introduce the difference as follows.

• SEQUENTIAL For sequential messages/calls, step is incremented by
one in each contract rule, as in the case of the contract template for
testing sequence of message calls. In the last contract rule corresponding
to the last message in the sequence diagram, check the value of step, and
reset step to zero.

Contract Rules for Sequential Messages

contract //Figure 7.2.(c)
participants

participant1:Component;
participant2:Component;

partici pantn: Component;
attributes

boolean result = false;
int step= 0;

coordination
CheckStep1:

CheckStepi:
when *- >> participanti.mi() && (step== i-1)
before {

step= i;
};

CheckStepi + 1:
when *- >> participanti.mi+1 () && (step == i)
before {

step= i + 1;
};

CheckStepi+2:
when *- >> participanti.mi+zO && (step == i+1)
before {

65

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

(a) (b)

(c) (d) (e)

Figure 7.2: Control Flow Graph Examples

66

Master Thesis- Zhe (Jessie) Li

step= i + 2;
after {

if(step == i+2) {
result = true;

McMaster - Computing and Software

System.out.println("Sequence Test Passed!");
step= 0;

}
};

System.out.println("step is set to 0.");

end contract

• OPTIONAL such as if ... without else. Optional messages/calls will
be invoked if the optional condition is satisfied. If the condition is sat­
isfied in one scenario, the control flows into the optional compartment,
then continues with the rest. Otherwise, the optional compartment will
be skipped, like the usual sequential messages. The message right af­
ter the optional compartment could be invoked following the messages
in the optional compartment or following the message before the op­
tional compartment and skipping the optional compartment. Therefore
the contract rule corresponding to the message right after the optional
compartment checks the value of step, the value set in the contract rule
corresponding to either the last message in the optional compartment,
or the message right before the optional compartment.

Example: Figure 7.2.(d) is part of control flow graph showing optional
messages. The following contract segment is designed for Figure 7.2.(d).

- Suppose step = i -1 right before mi is invoked. When mi is invoked
and at the same time step == i - 1 is satisfied, set step = i (the
contract rule "CheckStepi");

- Whether mi+l is invoked or mi+2 is invoked depends on the value
of the if condition. If it is true, mi+1 is invoked, otherwise mi+2 is
invoked.

* When mi+1 is invoked and step == i under if condition, set
step= i + 1 (the contract rule "CheckStepi+1");

* When mi+2 is invoked and either step == i or step == i + 1 is
satisfied, set step= i + 2 (the contract rule "CheckStepi+2").

Please note here the trigger condition (the value of step) in "Check­
Stepi+2" has two options: either step== i or step== i + 1, be­
cause mi+2 may follow mi+1 if it goes into the optional compartment
or mi if it skips the optional compartment.

67

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

The contract rules design asserts messages/ calls invoked are in the right
sequence whichever conditional branch is taken.

Contract Rules for Optional Messages

contract //Figure 7.2.(d)
participants

participant! :Component;
participant2:Component;

participantn:Component;
attributes

boolean result = false;
int step= 0;

coordination
CheckStep1:

CheckStepi:

,.

when*->> participanti.mi() && (step== i-1)
before {

step= i;
};

CheckStepi+1:
when *- >> participanti.mi+1 () && (step == i)
with (IfCondition)
failure {

//Java guard failure actions
// throw an exception or return a value

}
before {

step= i + 1;
};

CheckStepi+2:
when*->> participanti.mi+2 () && (step== ilistep == i + 1)
before {

step= i + 2;
};

end contract

68

Master Thesis- Zhe (Jessie) Li McMaster- Computing and Software

(a) (b)

Figure 7.3: Control Flow Graph Examples

• CONDITIONAL such as if then ... else.... For conditional mes­
sages/calls, either messages in the then compartment or messages in
the else compartment are executed in one procedure depending on the
value of the condition. In order to check that messages are invoked in the
correct sequence for one procedure, first of all determine the value of the
condition of the if statement; if it is true, checking if all the methods
in the then compartment are executed in order and no method in the
else compartment is executed, vice versa. Other methods outside the if
then ... else... remains the same.

A special case may occur and need to be dealt with differently: the if
then ... else... compartment is the end of the sequence diagram, which
means there is no message after the else compartment. In this case, the
messages/calls are invoked in the right sequence when the step is the
value set in the last method of either the then compartment or the else
compartment.

Example: Figure 7.3.(a) is part of control flow graph showing con­
ditional messages. Figure 7.3.(b) is the special case mentioned above.
The following two contract segments are designed for Figure 7.3.(a) and
Figure 7.3.(b). Firstly we introduce the contract ConditionalMessage,
shown below, for Figure 7.3.(a).

- Suppose step = i -1 right before mi is invoked. When mi is invoked
and at the same time step == i - 1 is satisfied, set step = i (the

69

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

contract rule "CheckStepi" in the contract below).

- Whether mi+1 is invoked or mi+2 is invoked depends on the value
of the if condition. If it is true, mi+1 is invoked, otherwise mi+2 is
invoked.

* When mi+1 is invoked and at the same time step == i + 1 is
satisfied, set step= i + 1 (contract rule "CheckStepi+l");

* When mi+2 is invoked and at the same time step == i + 1 is
satisfied, set step= i + 2 (contract rule "CheckStepi+2").

Please notice here the trigger condition (the value of step) in
"CheckStepi+l" and "CheckStepi+2" is the same; the reason is
mi+1 and mi+2 are two possibly consecutive messages after mi while
they are mutually exclusive.

- When mi+3 is invoked and either step== i + 1 or step== i + 2 is
satisfied, set step== i + 3 (contract rule "CheckStepi+3").

The contract rule design guarantees messages/calls invoked are in the
right sequence whichever conditional branch it is taken.

Contract Rules for Conditional Messages

contract ConditionalMessage/ /Figure 7.3.(a)
participants

participant! :Component;
participant2:Component;

participantn:Component;
attributes

boolean result = false;
int step= 0;

coordination
CheckStepl: ...

CheckStepi: when *->> participanti.mi() && (step== i-1)
before {

step= i;
};

CheckStepi+l:
when*->> participanti.mi+IO && (step== i)
with (IfCondition)
before {

70

Master Thesis- Zhe (Jessie) Li

step= i + 1;
};

CheckStepi+2:

McMaster - Computing and Software

when *- >> participanti.mi+2 () && (step == i)
with (!lfCondition)
before {

step= i + 2;
};

CheckStepi +3:
when *->> participanti.mi+3() &&

(step == i+l II step== i+2)
~ before {

step= i + 3;
};

end contract

Example: Figure 7.3.(b) is part of control flow graph showing condi­
tional messages. But it is a special case mentioned above. The following
contract segment is designed for Figure 7.3.(b). The contract rule design
is similar to the previous one, but it is different in checking the final re­
sult. In this example, there are two messages in the then compartment,
one message in the else compartment.

- Suppose step = i -1 right before mi is invoked. When mi is invoked
and at the same time step == i - 1 is satisfied, set step= i (rule
"CheckStepi" in contract 7.2.1);

- When mi+1 is invoked and step == i is satisfied, set step = i + 1
(contract rule "CheckStepi + 1");

- When mi+2 is invoked and step == i + 1, set step= i + 2 (contract
rule "CheckStepi + 2");

- When mi+3 is invoked and step == i + 1 is satisfied, set step = i + 3
(contract rule "CheckStepi +3").

- We have one more contract rule for this case: "StepResultCheck" .
When step == i + 2 or step == i + 3, the whole messages/calss
sequence is correct.

Please notice here we use state condition rule for checking the final com­
pared to the usual case; the reason is the final state, in this case, could be
step= i + 2 (mi+2 invoked) or step= i + 3 (mi+3 invoked), which is not

71

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

easy to do in the last trigger rule. The contract rule design guarantees
messages/calls invoked are in the right sequence whichever state it ends
in. The following the contract implementation for this special case.

Contract Rules for Conditional Messages - Special Case

contract CondMess_Special//Figure 7.3.(b)
participants

participant1:Component;
partici pant2: Component;

participantn:Component;
attributes

boolean result = false;
int step= 0;

coordination
CheckStep1:

CheckStepi:
when *- >> participanti.mi() && (step== i-1)
before {

step= i;
};

CheckStepi+ 1:
when *- >> participanti.mi+1() && (step== i)
with (!IfCondition)
before {

step= i + 1;
};

CheckStepi+2:
when *- >> participanti.mi+2() && (step== i + 1)
before {

step = i + 2;
};

CheckStepi+3:
when *->> participanti.mi+3 () && (step == i)
with (!IfCondition)
before {

step= i + 3;
};

StepResultCheck: when ? (step == i+2 II step == i+3)
on participant!, participant2

72

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

do {
result = true;

};
end contract

• LOOP such as a while ... loop. For loop messages/calls, the loop body
could be executed once, twice, ... , n times or none at all. Therefore the
messages/ calls in the body of the loop could be invoked none, once, twice,
even n times in order depending on the values of the loop condition. The
contract rule should work for all the cases.

The coordination rules related with the following messages are the same
~

as those for sequential messages.

- the messages before the loop body;

- the messages in the loop body other than the last one;

- the messages after the loop body other than the first one.

Only two coordination rules need to be dealt with differently: one is the
last message in the loop body, another one is the first message after the
loop body.

1. When it comes to the last message in the body of the loop, we set
the value of step to the value before it goes into the body of the
loop.

2. When it comes to the first message after the body of the loop, the
trigger condition in the coordination rule is whether the step equals
the value related with the last message before the body of the loop.

Therefore item 1 guarantees the right order of the messages whenever the
loop is executed or not; item 2 guarantees the message invoked before the
first message after the loop could be either the last message before the
loop (no entry into the loop) or the last message in the loop body (entry
into the loop at least once). The message following the last message in
the body of the loop consists of the same possibilities as the last message
before the loop does.

The coordination rules guarantee the sequence of the following cases:
before the loop, entry into the loop at least once, after the loop and not
entry into the loop.

73

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

Figure 7.4: Control Flow Graph Examples

Example: Figure 7.4 is part of a control flow graph showing loop mes­
sages. The following contract segment is designed for Figure 7.4. In this
example, mi is the last message before the loop; the related step value
is i. mi+1 and mi+2 are two sequential messages in the body of the loop.
mi+3 is the first message after the loop.

- Suppose step = i - 1 is invoked just before mi. When mi is in­
voked and at the same time step == i - 1 is satisfied, set step = i
(coordination rule "CheckStepi").

- When mi+1 is invoked and step == i is satisfied with the while
loop condition satisfied, set step = i + 1 (coordination rule "Check­
Stepi+1").

- When mi+2 is invoked and step == i + 1, set step = i (contract
rule "CheckStepi + 2").

- When mi+3 is invoked and step == i is satisfied with the loop
condition being false, set step = i + 3 (coordination rule "Check­
Stepi+3").

The coordination rules, such as "CheckStepi+1", "CheckStepi+2", may
apply more than once in one procedure depending on the values of the
loop condition. The contract rule design guarantees messages/calls in­
voked are in the right sequence whichever state is the end result.

Contract Rules for Loop Messages

74

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

contract ContractLoop //Figure 7.4
participants

participant1:Component;
participant2: Component;

participantn:Component;
attributes

boolean result = false;
int step= 0;

coordination
CheckStep1:

CheckStepi:
when *->> participanti.mi() && (step == i-1)
before {

step= i;
};

CheckStepi + 1:
when *->> participanti.mi+l() && (step== i)
with (WhileCondition)
failure {

//Java guard failure actions
// throw an exception or return a value

}
before {

step= i + 1;
};

CheckStepi + 2:
when *->> participanti.mi+20 && (step == i + 1)
before {

step= i;
};

CheckStepi+3:
when *- >> participanti.mi+3() && (step == i)
with (!WhileCondition)
failure {

//Java guard failure actions
// throw an exception or return a value

}
before {

step= i + 3;
};

75

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

end contract

We introduced the contracts for testing the sequences of messages calls in this
section above. Basically, each message corresponds to one cooperation trigger
rule which checks if the related message is invoked in the right order by the
step value, that in turn will be reset to a value related with the message being
invoked. We also present the difference in the rule between there is a sequential,
optional, conditional and loop control-flow in the sequence diagram.

7.2.2 Contract for Testing Parameters

Our approach tests the parameters introduced in the first message of the se­
quence diagram. We put these parameters into a set, called ParameterSet.
We only test the parameters belonging to ParameterSet. For each parameter
in ParameterSet, if it is taken in a later message in the sequence diagram, we
test if its name, type and value equal to the one in the Parameter Set. We have
one cooperation rule related with the first message, and one cooperation rule
related with the message whose parameters need to be tested. In our design,
we suppose all the parameters are correct, so result is initialized to true. If
any parameter test fails, set result to false. The detailed implementation of
the contract is as follows.

• In the contract attributes section:

- we define a new variable "expected_parameter(i)" for each parame­
ter(i) in ParameterSet, and "expected_parameter(i)" has the same
type as parameter(i);

- we define a boolean variable "precondition" showing whether the
first message in the sequence diagram is invoked or not;

- we define a boolean variable "result" recording the parameter test
result for the sequence diagram.

• In the contract coordination rules section:

- In the coordination rule which is related with the first message,
in the before section, "precondition" is set to true and each "ex­
pected_parameter(i)" is initialized to the value of "parameter(i)",
parameter(i) E ParameterSet (the coordination rule "Parameter­
Precondition").

76

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

- Check each message following the first one in the sequence diagram,
if any parameter has the same name as one in ParameterSet, cre­
ate a new coordination rule related with that message, checking
whether the parameter is the same as we expected under the trig­
ger condition of the value of "precondition" being true; otherwise,
set result to false.

In our design, we suppose all the parameters are correct, so result is ini­
tialized to true. If any parameter test fails, set result to false. Therefore
the value of result guarantees the correctness of testing parameters.

The following is the contract template for testing parameters.

Contract Template for Testing Parameters

contract TS_template
participants

participantl:Component;
participant2:Component;

attributes
boolean precondition = false;
boolean result = true;
JavaType expected_parameter(i); // parameter(i) E ParameterSet

coordination
Parameter Precondition:

when *- >> participantl.operation(parameter(i))
&& (trigger conditions in Java)

with (J avaGuardConditions)
failure {

//Java guard failure actions
//throw an exception or return a value

}
before {

precondition = true;
expected_parameter(l) =parameter(!);

expected_parameter(i) = parameter(i);
};

ParameterTest_l:
when *- >> participanti.operation(parameter(i)) && (precondition)
before {

if(parameter(i) == expected_parameter(i)) {
System.out.println("Parameter parameter(i) test is passed.");

77

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

}
else {

result = false;
System.out. println("Parameter parameter(i) test failed.");

}

};
ParameterTesLk:

when *->> participanti.operation(parameter(i)) && (precondition)
//kEN

before {
if(parameter(i) == expected_parameter(i)) {

System.out.println("Parameter parameter(i) test is passed.");
}
else {

}
};

result = false;
System. out. println("Parameter parameter(i) test failed.");

end contract/ /TS_template

7.2.3 Contract for Testing Returned Value

In chapter 6, we introduce the approach TOI, a general approach to test
objects interactions by checking the post-conditions of each participant after
the interaction. It consists of the other two approaches: CAO and DOBE. The
details of CAO and DOBE are presented in chapter 6. In this section, we will
introduce how to realize the test cases by the mechanism of the approach TOI
in terms of coordination contract. The following is the approach TOI and the
corresponding contract implementation.

Approach to Test Object Interactions (TOI) Suppose we have a se­
quence diagram, depicting the interactions among a group of classes: class1,

class2 , ••. , classn. Let object1 , object2 , •.• , objectn denote the objects of each
class, respectively. Given test data, the following operations will be executed
sequentially by the sequence diagram specification:

object1 .operation1 (parameter1);

object2 .operation2 (parameter2);

objectn.operationn(parametern)·

78

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

1. Clone Objects. Before the first operation is invoked on the object1 in
the sequence diagram, clone each of object1 , object2 , .•. , objectn and re­
name new objects as pre_object1 , pre_object2 , .•. , pre_objectn using the
Approach to Clone an Object (CAO), see below.

2. Execute Operations on the Cloned Objects as We Expect. Run

pre_objecti.operationi(parameteri), i = 1, 2, ... , n

sequentially.

3. Execute Operations on the Objects in Actual Program. Continue to
invoke the first operation on the object1, it will trigger all the message
invocations in the sequence diagram.

4. Use the Approach to Determine Objects Behavioral Equivalent (DOBE)
to examine whether the program is executed as we expected by deter­
mining if objecti is equivalent to pre_objecti, i = 1, 2, ... , n.

Now we give the corresponding contract implementation as follows.

• The contract participants section defines n participants by listing pairs
of objecti and its class classi, i = 1, 2, ... , n.

• In the contract attributes section:

- we define a copy of each participant object, named "pre_participanti"
(0::; i::; n);

- we define n boolean variable "isEquaLObjectk" (0::; k ::; n), each of
which records the result of the comparison between the participant
and its object copy.

• In the contract cooperation rule section, only one coordination rule is
defined. The trigger is that the first message in the sequence diagram is
invoked.

- In before section, we make a clone of each participant object using
approach CAO with respect to step 1 in the approach TOI;

- with respect to step 3 in the approach TOI, the original operation
is executed if do section is omitted;

- in after section:

1. firstly, we call messages on the cloned objects as we expect,
with respect to step 2 in the approach TOI;

79

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

2. secondly, with respect to step 4 in the approach TOI, we com­
pare the cloned object instance "pre_participanti" with the orig­
inal object instance "participanti" using approach DOBE and
record the result by means of "isEquaLObjecti";

3. lastly, if all "isEquaLObjecti" for i = 1, 2, ... , n are true, then
we set result true;

The above contract guarantees the correctness of the objects interactions. The
following is a contract template for testing returned value using the implemen­
tation mentioned above.

Contract Template for Testing Returned Value

contract RV _template
participants

participant 1 :Component;
participant2:Component;

participantn:Component;
attributes

//define the same type objects with participanti
Component pre_participantl;
Component pre_participant2;

Component pre_participantn;
boolean result = false;
boolean isEquaLObjectl = false;
boolean isEquaLObject2 = fal8e;

boolean isEquaLObjectn = false;
coordination

Return ValueTest:
when *->> participantl.operation(arguments)

&& (trigger conditions in Java)
before {
//initialize objects
pre_participantl = new Component;
pre_participant2 = new Component;

pre_participantn = new Component;
//make copies of participanti
/ /attribute(i) in participant!
pre_participantl.attribute(i) = participantl.attribute(i);

80

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

}

/ /attribute(j) in participant2
pre_participant2.attribute(j) = participant2.attribute(j);

/ jattribute(k) in participantk
pre_participantn.attribute(k) = participantn.attribute(k);

after {
pre_participanti.message();

};

//compare two objects
if((pre_participantl.attribute(1) == participantl.attribute(1)) &&

... &&
(pre_participant1.attribute(i) = participantl.attribute(i)))
{isEquaLObject1 = true;}

if((pre_participantn.attribute(1) == participantn.attribute(1)) &&
... &&
(pre_participantn.attribute(i) = participantn.attribute(i)))
{isEquaLObjectn = true;}

if(isEquaLObjectn && ... && isEquaLObject2 && isEquaLObjectl)
{result = true;}

end contract //contract RVTest_template

Example of Contract for Testing Returned Value Suppose we have
bank application, where there are two classes: Class SavingAccount and Class
CheckingAccount. Both classes have two attributes: accountNumber and
balance; and two operations: deposit(int amount} which subtracts amount
money from the current balance and withdraw(int amount) which add amount
money to the current balance. Class SavingAccount has one more operation
transferTo(CheckingAccount chkAccount, int amount} which transfers amount
money from current saving account to a checking account chkAccount, an in­
stance of class CheckingAccount. This method has an instance of another class
as one of its parameters. A sequence diagram depicting transfer money from
saving account to checking account is shown in Figure 9 .1.

Using the implementation introduced above, we generate a contract
based on the approach TOI for testing the interactions between two objects.
The contract is as follows.

an example of contract for testing returned value

contract transferTo_RVTest

81

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

sa : SavingAcCQUnt ca : CheckjngAccount

:
I

J transferTo(ca, amount) J

II
I

1 I
I

~II
I
I
I

[amount<=sa.getBalanceO] I
I
I
I

1.1 I
I
I

I I
I

withdraw(amount)
I
I
I
I
I
I
I
I
I

deposit(amount) I
I

1.2 I

Figure 7.5: Sequence Diagram of "transferTo"

participants
savingaccount :SavingAccount;
checkingaccount :CheckingAccount;

attributes
SavingAccount pre..savingaccount;
CheckingAccount pre_checkingaccount;
boolean result .= false;
boolean isEquaLObjectl =false;
boolean isEquaLObject2 = false;

coordination
Return Value'lest:

when *->> savingaccount.transferTo(ca,amount) &&
(checkingaccount == ca)

before{
pre..savingaccount =new SavingAccount();
pre_savingaccount. balance = savingaccount. balance;
pre..savingaccount .accountN umber =

savingaccount.accountNumber;
pre_checkingaccount =new CheckingAccount();
pre_checkingaccount. balance = checkingaccount. balance;
pre_checkingaccount.accountNumber =

checkingaccount. accountN umber;

82

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

}
after{

if(amount <= savingaccount.balance) {
pre..savingaccount. withdraw(amount);
pre_checkingaccount.deposit(amount);

}
//compare two objects
if((pre..savingaccount. balance == savingaccount. balance) &&

(pre_savingaccount.accountN umber ==
savingaccount.accountN umber))
{isEquaLObjectl =true;}

if((pre_checkingaccount. balance == checkingaccount. balance) &&
(pre_checkingaccount.accountN umber ==

checkingaccount .accountN umber))
{isEquaLObject2 =true;}

if(isEquaLObject2 && isEquaLObjectl)
{result = true;}

};
end contract

7.3 Test Case Execution

Test cases are generated using the concept of coordination contract. The
details of the realization of the test cases in the concept of the contracts have
been presented in this chapter. From the implementation of the contracts, one
test case includes what to test, how to test and how to get the test result.
CDE, introduced in chapter 5, is a tool to help develop Java applications
using coordination contracts. The CDE translates the contracts into Java
classes, which can then be compiled with the other classes of the program
under test that form a test framework. We also developed a test driver, which
is shown in Figure 8.2 in chapter 6, to run the test framework by taking the
test data. Running the test driver with the test data, we get the test result
for the program under test at the integration level. The process is depicted
by Figure 7.6. Hence, we implement the test execution automation, which is
hardly implemented by other integration testing approaches.

In this chapter, we gave an detailed introduction to the implementations of
contracts for testing the sequence of the messages calls, testing parameters
and testing returned value of the interactions among objects, based on the
testing approaches introduced in Chapter 6. In testing the sequence of the
messages calls, we defined a control-flow graph for a sequence diagram; and we
introduced how to implement the contracts for sequential, optional, conditional

83

Master Thesis - Zhe (Jessie) Li

Contracts

Program
Under Test

McMaster - Computing and Software

Test Data

Test Result

Figure 7.6: Test Execution Process

and loop, respectively. We also gave some examples to help understand the
contract implementation.

Having a sequence diagram, we need to generate three contracts for test­
ing the sequence of the message calls, testing parameters and testing returned
value respectively. While generating contracts manually could be error-prone
and increase test costs. We have developed a tool which takes a sequence
diagram and class diagram, and generates the contracts automatically. Next
chapter will give the main algorithms using in the tool and justifications of
some algorithms.

84

Chapter 8

Prototype

The contracts for testing object-oriented programs integration testing based
on the approaches we introduced in chapter 6 can be generated automatically
from the sequence diagrams by a tool we developed. In this chapter, we present
the main algorithms used in the tool and the justifications of the algorithms.

8.1 Introduction

A prototype tool has been developed to support the methodologies, known
as TSMC, TP, TOI, CAO and DOBE, and enables test case generation and
execution automation. The tool was developed using Java SDK 5.0. It con­
sists of three modules: package DataStructure, class X M LPar ser and class
DS2Contract.

• The module DataStructure defines the main data structure by the fol­
lowing classes: Object, ObjectCollection, Message, MessageCollection,
Class, ClassCollection, Parameter, ParameterCollection, Frame, Frame­
Collection and CFSEnum. Class Object is used to describe the object
instances participating in the sequence diagram. Class ObjectCollection
is a set of objects of Class Object. Class Messagetis used for representing
the messages in the sequence diagram. Class MessageCollection is a set
of objects of Class Message. Class Class is used to describe each class in
the class diagram. Class Class Collection is a set of objects of Class Class.
Class Parameter is used to represent the parameter taken in the message
in the sequence diagram. Class ParameterCollection is a set of objects
of Class Parameter. Class Frame is used to describe the combined frag­
ment notion element in a sequence diagram. Class FrameCollection is a
set of objects of Class Frame. Class CFSEnum is a type of enumeration,
describing the type (alt, opt and loop) of the combined fragment notion
element in sequence diagram. The relationship between the classes is
shown in Figure 8.1.

85

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

Message
atFrameEnd:boolean
atFrameStart:boolean
inFrameType:CFSEnum
input:Object
instance:Object

~ ...
Message()
setAtFrameEnd(in value:boolean)
setAtFrameStart(in value: Boolean)
setlnFrametype(in type:CFSEnum)
...

+
Object

classNmae: String
instanceName: String

MessageCollection
r-------- Messages:List 1
I
I
I
I
I
I
I --------J

~------­_______ J

L-•

•

Message Collection()
addMessage(in message:Message)

ParameterCollection
Parameters: Parameter

ParameterCollection()
addParameter(in parameter:Parameter)

Parameters
name:String
type:String

Object(in cName:String, in iName:String)
Parameters(in name:String,in type:String)

Object()
getCiassName():String

Parameters()

getlnstanceName():String
setCiassName(in className:String) <<enumeration>>
setlnstanceName(in instanceName:String) CFSEnum

t ""------,

ObjectCollection
I
I
I
I
I

Objects: List 1

r-------------------r-'
ObjectCollection()
addObject(in object:Object)

Class
attributes: String
id:String
methods:String
name:String
parented:String

Class(in id:String,in name:String)
addAttributes(in attribute:String)
addMethods(in method:String)
setParentiD(id parented:String)

..

ELSE
IF
WHILE

• I
I
I

condition:String
location:String
size:String
type:CFSEnum

<<import>>
-------11>

Frame

Frame(in type:CFSEnum,location:String,,size:String)

Class Collection
Classes:List

Class Collection()
addCiass(in myCiass:Ciass)

•

FrameCollection
Frames: List

FrameCollection()
addFrame(in frame:Frame)

Figure 8.1: Class Diagram of the Main Data Structures

86

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

XML Parser

TOOL

CDE

;/rest Data)-----+~ Test Driver 1------.<:

Figure 8.2: Architecture of Integration Testing Approach.

• The module X M LPar ser.java consists of a XML parser based on DOM,
which reads sequence diagrams and class diagrams and saves the infor­
mation about the diagrams in terms of the data structures defined in
package DataStructure.

• The module DS2Contract.java formulates the three contracts corre­
sponding to the given sequence diagrams and class diagrams and gener­
ates the three contracts automatically.

The logical structure view of the tool can be still shown in Figure 8.2.
In using the tool, the INPUT is sequence diagram and class diagram

drawn by Omondo EclipseUML, the OUTPUT are coordination contracts
designed by the methodologies introduced above. Import the contracts and
the components under test into CDE, generate and compile them together.
Having successfully compiled all the files, test suites are bundled together with
the program under test to form a test framework. Given the test data, we use
the test driver to run the test framework. Test results are then generated.

87

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

8.2 Algorithms

In this section, the main algorithms in the tool are described and justified. In
summary,

• Algorithm 1, processSDWithDOM(XMLFile), parses an XML file which
represents a sequence diagram, gets all information about the sequence
diagram and saves it into objectslnSD and messageslnSD, which are ob­
jects of Class ObjectCollection and MessageCollection, respectively.

• Algorithm 2, CreateContractOne(objectsinSD, messagesinSD), given
objectslnSD and messages!nSD which are generated from algorithm 1,
designs contract one for testing the sequence of messages/calls and gen­
erates the contract automatically.

• Algorithm 3, processCDWithDOM(XMLFile), parses an XML file which
represents a class diagram, gets all the information about the class dia­
gram and saves it into classeslnCD, which is an object instance of Class
Class Collection.

• Algorithm 4, CreateContractThree(objectsinSD, messagesinSD, class­
esinCD), given objectslnSD, messages!nSD and classeslnCD which are
generated from algorithm 1 and algorithm 3, designs contract three for
testing the result of the interactions among those objects and generates
a contract automatically.

• Algorithm 5, getAttributeList(classesinCD, currentClass, attributeList),
retrieves all the attributes of the current class including ones from its
parent's classes and saves them into attributeList.

• Algorithm 6, CreateContractTwo(objectsinSD, messagesinSD, class­
esinCD), given objectslnSD, messages!nSD and classeslnCD which are
generated from algorithm 1 and algorithm 3, formulates contract three
for testing the parameters taken by the messages in the sequence diagram
and generates contract automatically.

• Algorithm 7, addParameters2Message(classes, current Message), attaches
the currentMessage's attributes to the message object.

ALGORITHM 1: processSDWithDOM(xmlfile) This call reads an
XML file and saves its graphical information into objectslnSD and messageslnSD.

1. Parse an XML file, get elements by tag name "children", save to NodeList
instanceList.

88

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

isPreviousMessagelnFrame -,isPreviousMessagelnFrame
M essageFrameType = FrameType
if(last message), then Message InFrameEnd

MessagelnFrame two messages in not in the same Message inFrameStart
same frame frame
previousMessage -,previous Message
inFrameEnd inFrameEnd
current Message
inFrameStart

-,MessagelnFrame previousMessage inFrameEnd

Table 8.1: Tabular to Define the Location of the Messages to Frames

2. for each element in instanceList: if the value of attribute "xsi:type"
equals "editmodel:InstanceEditModel", initialize an object of class Ob­
ject for which the initial value of className and instanceName is the
value of attribute "id" and "itemName", respectively; add the object to
ArrayList objectslnSD.

3. for each element in instanceList, if the value of attribute "xsi:type" equals
to "editmodel:FrameEditModel", initialize an object of class Frame which
the initial value of type, location, size and condition is the value of at­
tribute "type", "location", "size" and "condition" respectively, add the
object to ArrayList frames.

4. Parse the XML file again, get elements by tag name "sourceConnec­
tions", save to NodeList messageList.

5. for each element in messageList: if the value of attribute "associat­
edMethod" is not empty, initialize an object of class Message which
the initial value of index and messageName is the value of attributes
for "associatedSequenceNumber" and "associatedMethod", respectively,
the initial value of relatedObject is the return value of method getRe­
latedObject(int instance Target Code), the argument instanceTargetCode
is the value of attribute "target"; then add the object to Array List mes­
sages.

6. check the relationship between the messages and the frames, assign value
to the attributes: inFrameType, atFrameStart and atFrameEnd of each
message by the conditions presented in Table 8.1.

LEMMA: All the messages in a sequence diagram is translated into a messageslnSD
of type List.

89

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

PROOF: The sequence diagram drawn in Omondo EclipseUML is saved
with a .usd postfix, and it is a standard XML file, converting it to a tree
structure, shown in Figure 8.3. The nodes in the tree represent actor, object,
message and frame respectively in a sequence diagram:

• The red node (the first node from the left on the second level from the
top) (children xsi:type = editmodel : ActorEditMode) corresponds to
the actor in the sequence diagram;

• the blue node (the second node from the left on the second level from the
top) (children xsi:type = editmodel : InstanceEditModel) corresponds
to the object in a sequence diagram;

• the green node (all the nodes at the bottom level) (SourceConnections
xsi:type = editmodel : SequenceMessageEditModels) corresponds to
message in a sequence diagram;

• the yellow node (the first node from the right on the second level from
the top) (children xsi:type = editmodel:FrameEditModel) corresponds
to frame in a sequence diagram.

The relationship among these elements is determined by the attributes of the
nodes: "location" and "size" .

In order to parse the XML file, we could use either Simple API for
XML (SAX) or Document Object Model (DOM) API. The tool uses DOM
API to parse XML file. A DOM parser reads an entire document and then
makes the tree for the entire document available to program code for reading
and updating. The sequence diagram information is in (children) elements
and the value of attribute "xsi:type" determines which role the node is.

For example, element (SourceConnections xsi:type = editmodel : Se­
quenceMessageEditModel) records message information. These elements are
found by calling getElementsByTagN arne("SourceConnections"). The getEle­
mentsByTagName method returns a NodeList; this is a simple collection of
Nodes. Each Node is then cast to an Element in order to use the convenience
method getAttribute(). The getAttribute method gets the message's name. All
the messages information are in elements (SourceConnections). The process­
WithDOM(xmlfile) in XMLParser class navigates every (SourceConnections)
element and save message information into messages. So all the messages are
stored in List messages one by one.

ALGORITHM 2: CreateContractOne(objectslnSD, messageslnSD)
The call CreateContractOne(objectslnSD, messageslnSD) generates con­
tract One by manipulating data saved in two objects: objectslnSD and
messages! nS D.

90

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

Editmodei:Sequence
DiagramEditModel

I
I I 1---·······-··

children children children
xsi:type=editmodel xsi:type=editmodel xsi:type=editmodel

:ActorEditModel :lnstanceEditModel :FrameEditModel

I
1

children
xsi:type=editmodel:
ActivationEditModel

I -------------
I I

SourceConnections SourceConnections
xsi:type=editmodel: xsi :type=editmodel:

SequenceMessageEditModel SequenceMessageEditModel

Figure 8.3: Sequence Diagram XML Node Tree

1. take arguments objectslnSD and messageslnSD, create iterators:
messagelter and objectlter.

2. write contract name part in contract.

3. write attributes part in contract.

4. write participants part in contract: for each object in objectlter, the
values of attributes "instanceName" and "className" are the "partici­
pants" and "components" in contract, respectively, separated by a comma.

5. write coordination rules part in contract: create a trigger rule for each
message object in messagelter:

(a) The participant is the value of attribute "className and the op­
eration is the the value of attribute "instanceName".

(b) In the case that the message is not the first message in the se­
quence diagram: define trigger condition by a condition state­
ment step == counter - 1, but if the message is the first one
in the alt frame else part, the condition statement is step ==
ifConditionStartPoint - 1.

91

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

(c) In the case that the message is the first one in a frame represent­
ing a combined fragment in the sequence diagram, add the frame's
condition to the guard condition for the trigger of the rule, fol­
lowing keyword with. Assign the value of counter to ifCondition­
StartPoint (elseConditionStartPoint or loopConditionStartPoint) if
the the type of the frame is if (else or loop) by checking the value
of the attribute "inFrameType" of the current message.

(d) In the case that the message is the last one in a loop frame, set
counter-= loopConditionStartPoint- 1.

(e) In the case that the message is in else frame and the last one in
messagelter as well, write a state condition rule; the condition
is (step== elseConditionStartPoint -l)ll(step ==counter), the
body of do is result is true. And set hasM oreRules to false.

(f) If hasMoreRules is true, write after part to the rule. The body of
after is if step equals counter, set result true.

6. write end contract.

7. concatenate each part of the contract, output the contract.

LEMMA: The algorithm 2 preserves the relationship of the message and
the receiving object that the message being sent to between the contracts and
the sequence diagram.

PROOF: The information about objects in a sequence diagram is in those
(children) elements with an attribute of xsi :type= editmodel: Instance­
EditModel, the blue node (the second node from the left at the second level
from the top) in figure 8.3. These elements are found by calling the func­
tion getElementsByTagN arne("children") under condition getAttribute("xsi :
type") == "editmodel : I nstanceEditM odel".

The method getElementsByTagName() is a Document Object Method;
it returns a NodeList of all elements with a specified name. The method
getAttribute() is an XML Document Object Method; it gets an attribute value
by name. For example, the getAttribute() method gets the object's instance
name and class name.

The call "processWithSDDOM(xmlfile)" in class "XMLParser" finds
those elements, creates instances of the class "Object" and saves them into a
List "objects". So all the objects are stored in a List "objects" one by one
sequentially. For one message, its related instance location information is saved
in attribute "target". We get its target instance location by calling the method
getAttribute("target"). The argument instanceTargetCode in the following
procedure is the index of the related object in List "objects" (index starts from

92

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

1). The value of instanceTargetCode is at least 1 because Actor corresponds
to number 0 while Actor can't be the target of any message. Then we get the
target instance object by the following procedure.

procedure getRelatedObject(int instanceTargetCode)
1: Iterator iter= objects.Objects.iterator();
2: DataStructure.Object relatedObject =new DataStructure.Object();
3: while (instanceTargetCode--) =I 0 do
4: relatedObject = (DataStructure.Object)iter.next();
5: end while
6: return relatedObject;

The object related to a given message is saved in the attribute "in­
stance" of class Message; when initialize an instance object of class Message,
we get the value of the related object by calling the above procedure and as­
sign it to the attribute "instance". Hence for each object "message" in the List
messages, we can get the related object by getting the attribute "instance" of
the object "message". When writing contract, the name of the related object
is found by getting the name of the attribute "instance"; the relevant Java
code is:

currentM essage.instance.getl nstanceN a me()

LEMMA: The relationship between the message and its frame in contracts
preserves that in the sequence diagram.

PROOF: There are three types of frames in a sequence diagram: OPT,
ALT and LOOP. For the ALT frame, we can select to use a frame for an
"ELSE" statement or not. So we classify them to four frames: OPT, IF, ELSE
and LOOP. Let us assume no nesting among the frames. The relationship
between message and frame may be one of the following three:

1. is the message in the frame?

2. is the message the first one in the frame?

3. is the message the last one in the frame?

The answer to question one is the return value of the following method:

isMessagelnFrame(£Location, fSize, mLoc_ Y)

The message is in the frame if and only if the message location Y coordinate is
between frame location Y coordinate and frame location Y coordinate + size Y
coordinate. If the message location Y coordinate is between the frame location
Y coordinate and the frame location Y coordinate + size Y coordinate, a
call to method isM essagel nFrame(J Location, f Size, mLoc_Y) returns true.

93

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

Answers to questions two and three are determined by the value given in
Table 8.1.

The relationship between a message and a frame is represented by the
values of the attributes defined in class Message. These attributes are: re­
latedCondition, inFrameType, atFrameStart, atFrameEnd. The attribute re­
latedCondition, a type of String, denotes the frame's condition. The empty
value of inFrameType means the message is not in any frame. The true value
of atFrameStart means the message is the first one in the frame. Once the
location of one message is determined by the answers to the above questions,
we save these data to the relevant attributes of message object. Therefore, we
can get the relationship between messages and frames in the sequence diagram
by getting the values of the attributes of all the instances "message".

LEMMA: The test result given by running the compiled contract one as­
serts the correctness of the sequence of the messages calls with respect to the
specification.

PROOF: In contract one, which is designed for testing the sequence of the
messages calls, we define trigger rules, each of which corresponds to one mes­
sage. We set counter = 0 at the beginning. Every time we read a new message,
counter is incremented by 1, so counter represents the sequence number of the
current message. step is an integer variable, defined in the attribute part of
the contract. Each message has a unique value of step, which is set in the cor­
responding rule. The variable step is used in trigger conditions to check the
sequence of the message calls. When the trigger message is called, set step to 1
in before part of contract. When the next expected message is called and step
equals the value set in previous message's corresponding rule, the sequence of
message calls is correct and we set step= counter in before body of contract.
Finally, if step is the value set in the expected last message, the sequence of
message calls in the program preserves that defined in the sequence diagram.
How do we get the value of step corresponding to the previous message? We
answer this question by considering different control flows.

• No Frame: shown in Figure 8.4. When message_! is called, step= 1;
when message_2 is called and the condition step = 1 is satisfied as well,
set step= 2; finally, if step= 2, the test result is true.

• OPTION: shown in Figure 8.5. There are two cases: there are no more
message calls after the optional message or there are more message calls
after the optional message.

1. When message_! is called, step = 1; when message_2 is called
under condition C and the condition step== 1 is satisfied as well,

94

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

object1 : Class1 object2 : Class2

message_1()

message_2()

1.1

Figure 8.4: Sequence Diagram Example- No Frame

object1 : Class1 object2 : Class2

message_1()
' 1 ' ' '

~ ' '
message_2() ' [C] ' '

1.1

- ' '
message_3() ' ' '

1.2
«

4

Figure 8.5: Example of Sequence Diagram with Option Frame

95

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

0

object1 : Class1 object2 : Class2

message_1()
0
0

1 0
0

~ 0

message_2()
0
0
0 [C) 0

1.1 ·u
----- -------------------------------------:------

message_3() 0
0

1.2 -~
- 0

0

message 4() 0
0
0

1.3 ·u

Figure 8.6: Example of Sequence Diagram with Alt Frame

set step = 2; finally, if step == 1 when condition C is not satisfied,
the result is true. If step == 2 when condition C is satisfied, the
result is true. Whether the optional message is called or not, the
step value for checking the result is always the value of step in the
last rule.

2. This case is a continuation of the above case. When message_3
is called, and step == 1(message_2 is not called) or step == 2
(message_2 is called) is satisfied, set step= 3. Finally, if step== 3,
the result is true.

• ALT: shown in Figure 8.6. There are two cases: there is no more message
calls after the else frame or there are more message calls after the if ... else
frame.

1. When message_! is called, step = 1; when message_2 is called
under the IF condition C and step == 1 is satisfied as well, set
step= 2; when message_3 is called under the ELSE condition •C
and step == 1 is satisfied as well, set step = 3. We know step = 1
from the value of the step defined in the rule corresponding to the
message last called before the if statement. Finally, if step == 2 or
step== 3, the result is true. This is a special case because the final

96

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

'

object1 : Class1 object2 : Class2

message_1()
' ' 1 '

§i} ' '
message_2() ' ' [C) ' '

1.1 ·~
message_3() ' '

1.2 u '-----
' ' message 4() ' '

1.3 -~ .,

Figure 8. 7: Example of Sequence Diagram with Loop Frame

value of step has two possibilities. We define a state condition
rule to determine the test result.

2. When message_! is called, step = 1; when message_2 is called
under the condition C and step == 1 is satisfied as well, set step =
2; when message_3 is called under the condition -,C and step == 1
is satisfied as well, set step = 3; when messageA is called and
either step == 2 or step == 3 is satisfied, set step = 4. Finally, if
step == 4, the result is true.

If the ALT frame does not include an ELSE statement, we will reuse the
argument for OPTION.

• LOOP: shown in Figure 8.7. When message_! is called, set step= 1;
when message_2 is called under the LOOP condition C and step == 1
is satisfied as well, set step = 2; when message_3 is called and step == 2
is satisfied as well, set step= counter. In this case, counter = 1 because
counter has been reset to the value of counter corresponding to the last
message before the LOOP statement if the current message is the last
one in the LOOP frame. This is another special case because we reset
counter to the value before the LOOP statement begins. If the LOOP
condition C is still satisfied, repeat the above steps. When the LOOP

97

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

condition C is not satisfied, the program either terminates or has more
message calls outside the loop. If the program terminates and step= 1
is satisfied, the result is true. If messageA is called under condition
step == 1, set step = 4. Finally, if step == 4, the result is true.

ALGORITHM 3: processCDWithDOM(xmlfile) Given a class dia­
gram drawn in Omondo EclipseUML, which is saved in a standard XML
file, we can obtain all the necessary class information via a call to method
processCDWithDOM(xmlfile).

Class Diagrams and the corresponding XML files: classes! nC D
is a class collection, collecting all the classes in turn from the class diagram.
Each class is an instance of Class class with five attributes: id, name, methods,
attributes, parentiD. Attributes methods and attributes are of List type, an
ordered collection of all the methods and attributes, respectively. The others
are of String type. Attribute id is the class name including which package it
belongs to. Attribute parentiD is the identifier of the parent class.

In the corresponding XML file, each (children) element just under the
root represents a class. The value of the attribute runTimeClassModel is a
string, saving all the methods and attributes in turn. The (sourceConnections)
element under the first level (chilren) element saves the class Inheritance re­
lationship. The parent class name is in the value of attribute id. The XML
node tree is shown in Figure 8.8.

The call processCDWithDOM reads an xml file and saves graphical
information into classeslnCD.

1. Parse XML file, get elements by tag name "children", save to NodeList
classList. For each element in classList:

(a) If attribute "xsi:type"'s value equals "editmodel:ClassEditModel",
initialize an instance of Class class which the initial values of clas­
siD and className are the values of attributes "id" and "name',
respectively.

(b) All the attributes and methods for the new initialized instance of
class are the value of attribute runTimeClassM odel of the current
element. Get the value by calling the method:

getAttribute("runTimeClassModel")

Separate attributes and methods into Lists attributes and methods,
respectively, which are another two attributes of the new initialized
instance of class, by calling the following method:

getClassAttributeAndMethod(current Class, runTimeClass)

98

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

Editmodei:Ciass
DiagramEditModel

I
I I I -1

children children children children
xsi:type=editmodel xsi:type=editmodel ... xsi :type=editmodel
:CiassEditModel :CiassEditModel :FrameEditModel

I
I I I I

children children children
Classifier

xsi:type=editmodei:Co
Preferences

mpartmnetEditModel
I

I I I I

children children children children
xsi:type=editmodel: ... xsi:type=editmodel: ...
AttributeEditModel MethodEditModel

Figure 8.8: Class Diagram XML Node Tree

The idea of the method can be described in the following three
steps:

• step 1: read the string runTimeClass until char ",";

• step 2: if the substring includes char "(", add it to methods of
currentClass, otherwise add it to attributes of currentClass.

• repeat step 1 and step 2 until there is no more char ","; then
repeat step 2 for the rest of the substring.

(c) If the fourth sibling of the first child of the current element is named
"sourceConnections", the currentClass has a parent class, whose ID
is in the value of the attribute "id". Get the value of the attribute
"id" by calling method getAttribute("id"). The ID of the parent
class is the substring before char'<'. Set the currentClass's parent
class ID to the substring.

(d) Add the currentClass to the class collection classesinCD.

LEMMA: A class diagram is correctly represented by a relevant object
Classes! nOD.

99

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

PROOF: Class diagram information consists of classes and relationships
among them. Information about each class consists of class name, attributes
list and methods list. Glasses/nOD is an instance of class "ClassCollection",
which is a list of objects of class "Class". Class "Class" has the following
attributes: class name, class ID, attributes, methods and parent id, referring
to all the information about classes and relationships among them. All the
classes in the class diagram are saved in an instance of class "ClassCollection"
via the above algorithm because each class entity, saved in the class diagram
as a (children) node with attribute "xsi:type=editmodel:ClassEditModel", is
visited and a new object of Class "Class" is initialized with the class id and
class name, and each object in turn is added to an object class/nOD of Class
"ClassCollection" .

The attributes of each object of Class "Class" are assigned according
to the class diagram. Class attributes and methods are saved in the attribute
"runTimeClassModel" of the (children) node as a long string. Parsing the
string, we get a lot of separated substrings by commas, each of which represents
one attribute (if the string does not end with parentheses) or one method (if
the string does end with parentheses).

The relationship among the classes can be found from the attribute
"parent id" in Class "Class" . If a class has a parent class in the class diagram,
then it has a child node "sourceConnections"; the parent class id is saved in
the attribute "id" of the (sourceGonnections) node. Get the parent id and
store it in the attribute "parent id" of the current class. Therefore the object
Glasses! nG D can represent the class diagram correctly.

ALGORITHM 4: CreateContractThree(objects, messages, classes)
The call GreateGontractOne(objects, messages, classes/nOD) generates con­
tract one by taking objects, messages and classes/nOD as the arguments.

1. take arguments objects and messages, get the iterator: messagelter,
objectlter and objectlter2.

2. write contract name part in contract. Contract name is concatenation
of two substrings: one is the first message in the sequence diagram, the
other is "_RVTest", meaning Return(R) Value(V) test.

3. write attributes part in contact. There are two parts in attributes for
contract:

(a) for each object in objectlter, define a variable of the same class
type and name it as "pre_< objectName >".

(b) define local boolean variables, indicating the result of comparing
two objects, assign the initial values "false".

100

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

(c) define a local boolean variable indicating the testing result, name
it as "result" and assign the initial value "false".

4. write participants part in contract: for each object in objectlter, write
attribute value instanceName and className into the "participants",
separated by comma.

5. write coordination rules part in contract. There is only one coordina­
tion rule in this contract: when the first message in the sequence diagram
is called under the condition:

(a) write the before part in the rule: make a copy of each object in
objectlter.

(b) write the after part in the rule: call methods in turn according
to the sequence diagram by the copy of the object instead of the
object itself; compare the object and its copy in turn; determine
the test result.

6. write end contract.

7. combine each part of the contract in the whole, and output the contract.

ALGORITHM 5: getAttributeList(classesinCD, currentClass, at­
tributeList) This is a recursive algorithm. It takes three arguments: DataS­
tructure.ClassCollection myClasses, DataStructure.Class currentClass, and List
attributeList, returns List attributeList. The purpose of the algorithm is to
get all the attributes of the current class, including all its parent classes and
save them into the List attributeList.
procedure getAttributeList(classes! nC D, currentClass, attributeList)

1: if currentClass.parentiD.length()> 0 then
2: parentClass = getClassByiD(myClasses, currentClass.parentiD);
3: attributeList = getAttributeList(myClasses, parentClass, attributeList);
4: end if
5: Iterator classAttrilter = currentClass.attributes.iterator();
6: while classAttrilter.hasNext() do
7: String currentAttr = (String)classAttrilter.next();
8: attributeList.add(currentAttr);
9: end while

10: return attributeList;

ALGORITHM 6: CreateContractTwo(objects, messages, classes)
This call generates contract two by taking objects, messages and classes as
arguments. Contract two is designed to test parameters appearing in other

101

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

message calls in the sequence diagram consistent with the input parameters
to the sequence.

1. take arguments objects and messages, get the iterator: messagelter,
objectlter and objectlter3.

2. write contract name part in contract. Contract name is concatenation
of two substrings: one is the first message in the sequence diagram, the
other is "_TSTest", meaning Type(T) Signature(S) test.

3. write attributes part in contact. There are two parts in attributes for
contract:

(a) define two boolean variables: "precondition" and "result" and as­
sign the initial values "false".

(b) for each parameter in current message, obtained by calling
addParameters2M essage(myClasses, currentM essage), define a
variable with the same type and name with "expected_" as prefix.

4. write participants part in contract: for each object in objectlter, write
attribute value instanceName and className into the "participants",
separated by comma.

5. write coordination rules part in contract.

(a) write the first coordination rule, "ParameterPrecondition": when
the first message in the sequence diagram is called and the trig­
ger condition is satisfied, in this rule's before section: set "pre­
condition" true, and set all the parameter variables defined in the
attributes part equal to the parameters taken by the message.

(b) the remaining coordination rules except the last one correspond to
the testing of parameters taken in other messages. For each mes­
sage except the first one, get the parameter list by calling method
getParameterList(currentMessage). For each parameter, if it is in­
troduced in the first message, write a rule to check if the parameter
is equal to the one in the first message, including value and type,
and add a boolean variable in attributes to record the test result;
also add the boolean variable value in a list "ResultList" to track
the overall result.

(c) the last coordination rule, "ParameterResultCheck", checks the
overall result. If all the boolean variables in "ResultList" are true,
set result = true.

6. write end contract.

7. combine each part of the contract in the whole; output the contract.

102

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

LEMMA: Contract two tests the message parameters correctly.

PROOF: Our approach only tests the parameters introduced in the first
message of the sequence diagram, which are all the elements in Parameter Set.
We have the following relationship:

parameter(i) E ParameterSet ~ parameter(i) in first message of SD

The message may be invoked or not according to the control flow graph. If
one message is invoked, each parameter is compared with the elements in
ParameterSet. If there is a matching one in the ParameterSet, a coordina­
tion rule is created in the contract, testing if the parameter equals the expected
one in the Parameter Set. Boolean variable "result" is initialized as "true". If
the type or value of the parameter is changed, "result" is assigned to "false"
and a system message is sent about which parameter testing failed. Finally,
the value of variable "result" gives the parameter testing result: if it is "false",
some parameter is not correct; if it is "true", no incorrect parameter is found
among invoked messages.

ALGORITHM 7: addParameters2Message(classes, currentMessage)
This call attaches the current message's parameters to the message. The class
message has an attribute "parameters" whose type is class ParameterCol­
lection. Class ParameterCollection has an attribute "parameters" whose
type is ArrayList and each element type in the list is class parameter which
has two attributes "name" and "type". An object message is initialized when
parsing the sequence diagram, from which we can only get the parameter name
for message. While parameter type is saved in object classes when parsing the
corresponding class diagram. This algorithm matches each parameter name
to its type and saves them to the current message; refer to the Figure 8.9.

procedure addParameters2M essage(classes, currentM essage)
1: Initiate an object of class ParameterCollection, named "parameterColl"
2: Retrieve object myClass by class name in currentMessage.
3: Search by currentMessage's message name in myClass messages list, as-

sign the search result to string "methodidCD".
4: if method! nC D .length > 0 then
5: intercept parameters names and assign the value to string "paramN arne"
6: intercept parameters types and assign the value to string "paramType"
7: while paramN ame.length() > 0 do
8: if paramName.contains(",") then
9: assign the front string "paramName" before "," to string "name"

10: assign the corresponding part of string "paramType" to string "type"
11: if paramType.startWith("L") then

103

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

1 Message Panneter
1 _.

+parameters:ParameterCollection +name:string -
+type:string

-parameters
PanneterCollectlon

1 -parameters
+parameters: Parameter

+addParameter() 1

Figure 8.9: Relationship between three classes.

12: assign the part of string "paramType" before ";" to string "type".
13: reset "paramType" to the rest of string "paramType" after ";"
14: else
15: assign string "type" value as int, boolean, char, double, float,

long, short if the first char of "paramType" is I, Z, C, D, F, J, S
respectively.

16: reset string "paramType" to paramType.substring(l).
17: end if
18: Initiate a new object "myPara" of class Parameter with the initial

value of "name" and "type";
19: add "my Para" to "parameterColl".
20: else
21: if pararnType.startWith("L") then
22: assign the string "paramType" to string "type".
23: else
24: assign string "type" value as int, boolean, char, double, float,

long, short if the first char of "paramType" is I, Z, C, D, F, J, S
respectively.

2/E: end if
26: Initiate a new object "myPara" of class Parameter with the initial

value of "paramName" and "type";
27: add "myPara" to "parameterColl".
28: reset "paramName" to empty string
29: end if
30: end while

104

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

Ljava.lang.String;
String

Table 8.2: Relationship between symbols and types

31: end if
32: assign "parameterColl" to current message's attribute "parameters".

LEMMA: Both name and type of parameters added to the message are
correct, and no parameter is missing.

PROOF: Parameters in the message from the sequence diagram are only
the names of parameters. Parameters in the corresponding method from the
class diagram are only the types of parameters. And the names match the
types correspondingly, meaning each name corresponds to one type. Names
are separated by commas in the message, Types are different. If the type is
a type of "String" or other classes defined by the user, it begins with capital
letter "L" and ends with a semicolon; otherwise, the type is only one capital
letter 'I', 'Z', 'C', 'D', 'F', 'J', 'S', representing int, boolean, char, double,
float, long, short, respectively. The relationship described above is shown in
Table 8.2.

Get one name by reading the string "names" until reaching a comma,
get the corresponding type by reading the string "types" until reaching a
semicolon; the real type is the substring if it starts with capital 'L' or there
is only one capital letter in the substring; otherwise we need to convert the
symbol to the real type by Table 8.2. Repeat the same operation until there is
no more comma in names. Then repeat the operation once for the last name
and type. Therefore name and type are matched correctly and none is missing.

Chapter 6 introduces the approaches to generate test cases from UML sequence
diagrams and class diagrams for object-oriented programs integration testing.
Chapter 7 presents how to realize the test cases in the concept of coordination
contract and execute tests automatically using CDE. We have developed a
tool to generate the contracts from sequence diagrams and class diagrams
automatically. In this chapter, we introduced seven main algorithms used in
the tool, developed in Java, and justified each algorithm. These three chapters
are the main part in our research work and also our contributions to object­
oriented programs integration testing. In the next chapter, we will give a case
study showing how to apply our approaches and how to use the tool and the
CDE to help testing.

105

Chapter 9

Case Study

In this chapter, we describe how to test a subsystem using our approach.
We have a component bank, including three classes: Account, CheckingAc­
count and SavingAccount. Class Account has two attributes: accountNumber
and balance, both are of type the integer. Class Account has two methods:
deposit(int amount) which subtracts the amount money from the current bal­
ance and withdraw(int amount} which adds amount money to the current
balance. Class CheckingAccount and Class SavingAccount are two sub-classes
of Class Account, inheriting attributes and methods in class Account. Class
SavingAccount has its own method transferTo(CheckingAccount chkAccount,
int amount) which transfers the amount money from the current savings ac­
count to a checking account chkAccount, an instance of class CheckingAccount.
This method has an instance of another class as one of its parameters. Any
faults in this method cannot be detected by unit testing because it involved
two classes.

9.1 Test Process

The detailed steps are presented as follows.

• Analyze UML Specifications and Identify Components under
Test. We have been given UML sequence diagram and class diagram
specifications, shown in Figure 9.1 and Figure 9.2. We identify the com­
ponents involved in the interactions presented by the sequence diagrams;
and find the corresponding class diagram.

• Generate Contracts Automatically. We model the test suites by
required collaborations using contracts. Given the input of the sequence
diagram and class diagram, we run our tool to generate three contracts
automatically:

106

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

I
I
I

sa : SavinqAccount ca : CheckingAccount

I I

! transferTo(ca, amount) !
1 II

~II
[amount<=sa.getBalance()]

1.1
I

J
withdraw(amount)

I

deposit(amount)
I
I
I

1.2

Figure 9.1: Sequence Diagram of "transferTo"

Account
number: int

balance: int

deposit(in amount:int)

getBalance():int

setBalance(in balance:int)

withdraw(in amount: in!)

I
CheckingAccount

SavingAccount

SavingAccount(in number:int, in balance:int)
CheckingAccount(in number:int, in balance:int) transferTo(in ca:CheckingAccount, in amout:int)

Figure 9.2: Class Diagram of Bank Accounts

107

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

- contract transferTo_MCSTest.ctr for testing the sequence of the
message calls;

- contract transferTo_TSTest.ctr for testing parameters;
- contract transferTo..RVTest.ctr for testing the interactions among

objects.

The code of the three contracts are shown in Appendix A. Currently
we have the components under test and corresponding contracts for test
ready and they are put in the subdirectory src.

• Add Components into CDE. In CDE, we build a new project for this
test task by clicking File->New Project and we name it bank.cdp. The
component subdirectory is also created. We add the three components
under test into CDE and CDE saves them in the component subdirec­
tory. The original Account.java file in src subdirectory has been renamed
as Account. java. original, and similarly for the SavingAccount class and
CheckingAccount class.

The reason for this is that the CDE has to adapt the component classes
in order for them to work with contracts. For that purpose, the CDE
will change the original Java files and put the result in the generation
directory, together with the compiled contracts. The files in the genera­
tion and source directories make up the application, and therefore there
cannot be two files with the same name in those directories: hence, all
files in the source directory that implement classes under coordination
must be renamed [4].

• Add Contracts into CDE. We add the three contracts generated by
our tool into CDE and the contracts are compiled automatically by CDE.
The CDE contract compiler checks whether a specific contract specifica­
tion is consistent with the CDE specification for contracts and, also, if
its Java sections are correct in terms of Java syntax. We use the CDE to
develop the Java version of our contracts on top of the components un­
der test and generate the code that implements the adapted components
and the contracts.

The differences between the contracts at the modeling level and the
CDE-Java specific ones are that the former are abstract and the latter
are superposed on top of existing specific Java components. All the
contracts classes are saved in package cde. contracts under the generation
subdirectory.

• Generate Test Framework. Using CDE to generate the contracts
and the components is to produce the Java code that implements the
micro-architecture that we have introduced in chapter 5.4 for allowing

108

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

accountN umber balance amount transferred
CheckingAccount 1 100 26
SavingAccount 2 200

Table 9.1: Test Data One for Bank Account Integration Testing

accountN umber balance amount transferred
CheckingAccount 1 100 250
SavingAccount 2 200

Table 9.2: Test Data Two for Bank Account Integration Testing

the coordination contracts to be superposed on the components without
the latter being aware of the contracts existence.

Now we have built a test framework that uses the coordination con­
tracts API to dynamically test the interactions between the objects in
the components under test. The whole directory structure and files in
each subdirectory are shown in Figure 9.3.

• Create Test Driver and Compile it. We now develop a Java fi­
nal application by applying instances of the contracts to th~ instances
of the components, also known as participants objects. By doing so,
the selection of the test aspects of our integration is feasible by simply
reconfiguring the contracts and components relationships (add, delete,
substitute, change contracts). The application is in file Driver.java in
the source directory. To compile and run the application, we open file
Driver.java in the src/bank by directory by selecting File,Open File ... ;
select Project, Compile, Java Compile.

• Generate Test Data. We generate the test data using tool JAT[17]
based on the Branch Coverage criterion. In this example, the follow­
ing test data are required: the initial values of number and balance
for CheckingAccount and SavingAccount, respectively, and the value of
amount which is going to be transferred from the SavingAccount to the
CheckingAccount. Two sets of the test data are shown in Table 9.1 and
Table 9.2, respectively.

• Execute Tests and Generate Test Results. In Windows, open a
Command prompt, go to the application directory and execute the com­
mand java -cp "classes;CDE" bank.Driver, where classes is the classes
subdirectory under this project and CDE is the CDE runtime library
that we have indicated in the project options. After running the test

109

Master Thesis- Zhe (Jessie) Li

bank.cdp

classes
cde

L contracts
transferTo MCSTest.class

McMaster - Computing and Software

transferTo = MCSTestsavingaccount_ SavingAccountConnector. class
transferTo_MCSTestcheckingaccount_CheckingAccountConnector.class

bank
CheckingAccount.class
Account. class
CheckingAccountlnterface.class
ICheckingAccountPartner.class
IAccountPartner.class
SavingAccount. class
SavingAccountlnterface.class
ISavingAccountParner.class
Driver. class

genetation
cde

src

L contracts
transferTo_MCSTest.java

bank

transfer To_ MCSTestsavingaccount_ SavingAccountConnector.java
transferTo _ MCSTestcheckingaccount_ CheckingAccountConnector.java

CheckingAccount.java
CheckingAccountlnterface.java
ICheckingAccountPartner.java
SavingAccount.java
SavingAccountlnterface.java
ISavingAccountParner.java
Account. java
Account! nterface.java
IAccountPartner.java

L
transferTo_MCSTest.ctr
transferTo rVTest.ctr
transferTo= TStest.ctr
bank

Driver.java
Account.java. original
CheckingAccount.java.original
SavingAccount.java.original

components
L_bank

Account.java
CheckingAccount.java
Saving Account. java

110

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

driver with the given test data, tests are executed and test results are
displayed, including sequence of message calls test result, parameter test
result and objects interactions test result.

9.2 Test Coverage

The faults related with the interactions can be found efficiently using our
approach. An experimental data shows the sequence of message calls, the
message parameters and the return values can be tested sufficiently. The
faults related with the three parts mentioned above can be found using our
approach. Let us introduce some faults in the code under test on purpose:

• We exchange method withdraw(amount) and method deposit(amount).

• We change the parameter amount in method withdraw to amountl.

• We add another method setBalance(number) to reset the balance of the
checking account.

• We take off the condition in the code. In other words, methods with­
draw(amount) and deposit(amount) are executed anyway.

The above faults in the code under test can be detected using our approach.
It even can detect more faults which are not listed above.

9.3 Another Case c

Let us look at another more complicated example. We have four classes:
Bank, Check, AccountLedger and CheckingAccount. The classes and their re­
lationship are shown in Figure 9.4. Class CheckingAccount inherits from class
Account. Class AccountLedger has an attribute accounts of type List. Accoun­
tLedger stores all the bank accounts in the subsystem. A new account will be
added into List accounts by calling method addAccount(account). We can
also get an account by calling method retrieveAccount(number). Class Bank
has an attribute ledger of type AccountLedger. Method cashCheck(check)
in class Bank gets the amount of money and the account number by calling
getAmount() and getNumber() on object check, then get the account by call­
ing method retrieveAccount(number) on object ledger, and get the balance
by calling method getBalance() on object account. If the condition "bal­
ance >= account" is true, send message addDebitTransaction(amount) and
storePhotoOfCheck(check) to object account; otherwise, send message insuf­
ficientFundFee() to object account and message returnCheck(check) to object
myBank. This scenario is shown by the sequence diagram in Figure 9.5.

111

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

r---------------,
'¥ I

Account
I
I
I

number: in!
I ____

balance:int

deposit(in amount:int)

getNumber():int

ge!Balance():int E-----------~

withdraw(in amount:int) I
I
I ...
I

6
I
I
I
I

Ba nk
ledger:Account Ledger

Bank()

Accountledger
amounts:Ust

Account ledger()

addAccount(in account:Account)

retrieveAccount(in number:int):Account

1"

r---

cashCheck(in check: Check)

check: Check) returnCheck(in -------.
I
I
I
I
I
I
I
I

I
I ...
I
I
I
I
I
I
I

..v
CheckingAccount

-1-
Check

number: in!

CheckingAccount(in number:int,in balance:int)
amount: in!

addDebtTransaction(in amount:int) Check(in number:int,in amount:int)

addlnsufficientfundfee() --------~ getNumber():int

storePhotoOfCheck(in check:Check) getAmount():int

<<import»
---------~

inheritance

Figure 9.4: Class Diagram of Bank Subsystem

112

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

myBank : Bank check : Check ledge : AccountLedger account : CheckingAccount

cashCheck(check) ,.
getAccount()

amount

retrieveAccount(number)

account
I ------------------,-----------------------
1 getBalance()

I
I

l balance l
------------------ ~--- ------ ----------------~- ---------------------------

[balance>=amount] addDebitTransaction(amount)

I
I

I I

l storePhotoOfCheck(check) l
I
I
I
I<

I I ------------,---------------,-------------------r-----
addlnsufficientFundFee() l

return Check(check)

Figure 9.5: Sequence Diagram of "cashCheck(check)"

113

Master Thesis - Zhe (Jessie) Li McMaster- Computing and Software

The purpose of the testing is to find faults related with the interactions
among the objects participating in this scenario. The details of the testing
steps are similar to the previous one. The contracts are displayed in the
Appendix B.

In this chapter, we presented two cases about how to test a subsystem using
our approach and the tools in details. One is transferring the amount of money
from a saving account to a checking account; another is to cash a check from a
checking account. We also gave the experimental test result if there are some
faults in the code under test.

114

Chapter 10

Conclusion and Future Work

10.1 Conclusion

Object-oriented programming is very popular in software development because
of its unique features, which facilitate software reuse and component-based
development. Integration testing plays a very important role in improving
object-oriented software quality. Our research work is about integration testing
for object-oriented programs. We have proposed a systematic approach to test
object-oriented programs at the integration level. In our approach, we generate
test cases from UML sequence diagrams and class diagrams and realize the test
cases using the concept of coordination contract. We have developed a tool
to generate the contracts for a sequence diagram automatically, based on the
mechanism of test case generation we designed.

Our research work presents a new approach for software integration
testing. It makes some progress in both test case generation and test case
execution for object-oriented program integration testing. The most distinct
features of our approach is as follows.

0

• In recent years, more and more software engineers would like to use
UML diagrams to specify software design. UML is a standardized speci­
fication language for object modeling using thirteen modeling diagrams.
We generate test cases for the integration testing from UML sequence
diagrams and class diagrams directly. A sequence diagram depicts an
interaction by focusing on the sequence of messages that are exchanged.
Our approach is completely based on UML models. Test cases generated
from UML sequence diagrams give us good coverage for the interactions
among objects. Therefore, it is capable of revealing the faults related
with the interactions among components.

• Test cases are implemented by the concept of coordination contracts.
The coordination contract is related with the idea of the association class

115

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

in UML. It superposes behaviors on the components without interfering
their implementation. One of the most important advantages of using
the contract is that test cases can be added, deleted, and modified in
terms of contracts without interfering with the implementation of the
program under test and other established test cases. This strengthens
the flexibility of test case generation greatly. As a result, it supports the
cooperation of team work very well.

• Executing test cases and checking test results manually is a very tedious
task for the software testers in industry and is very error-prone. In our
approach, test case execution can be implemented automatically by us­
ing the CDE to generate the components and the related contracts into
an executable application. Test case execution automation has been con­
sidered along with test case design in the concept of contract. The CDE
translates the contracts into Java classes, which then can be compiled
with the other classes that form a test framework. We can get the test
result by running the test framework by a test driver with generated test
data.

Even though UML is widely employed in industry and research, only
a little part of the reported literature has addressed its use in the integration
testing phase so far, and most of them addressed only test case generation
instead of test case execution. Our approach presents how to generate test
cases and how to automate test case execution. It could be applied in the
industry.

Object-oriented program has some unique features, like inheritance and
polymorphism. Our test approach does not address a specific feature of object­
oriented programs. We proposed an integration testing approach addressing
the automation of test case generation and test execution. It would be better
to work with other testing techniques [41, 46] addressing these object-oriented
features. ~

10.2 Future Work

• The tool we developed for the testing reads each message in the sequence
diagram from top to bottom and generate relevant contracts automati­
cally. The combined fragment notion elements in the sequence diagram,
however, break up the sequence of messages by employing decision mak­
ing, looping, and branching, enabling you to conditionally execute a
particular path. The decision-making statements (if-then, if-then-else,
switch), the looping statements (for, while, do-while), and the branching
statements (break, continue, return) supported by the Java programming

116

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

language. While our TOOL has only implemented if-then, if-then-else
for decision making statements, while for looping statement. One of our
near future work is to make our tool recognize every statement supported
by Java programming language.

• We divide elements in UML Sequence Diagrams into basic and advanced
notion elements. The basic notion elements, including lifelines, messages
and combined fragments, depict most interactions taking place in a com­
mon system. Our approach to generate test cases at the integration level
has considered all cases of the sequence diagram consisting of the basic
notion elements. One of the future work could be extending our ap­
proach to a more complex sequence diagram consisting of the advanced
notion elements.

• The current version of the CDE does not support coordinating classes of
objects for which the source code is not available, for instance .class files
or Java library classes. We can only coordinate components for which
the source code is available. Therefore, for instance, we may not define
contracts that superpose behavior on operations that belong to a Java
class library. Without this feature of the CDE, the integration testing is
limited. It is promising but uncertain that the next version of CDE will
support the coordination of components for which the source code is not
available such as Java .class files by ATX.

117

Bibliography

[1] Aynur Abdurazik and Jeff Offutt. Using UML collaboration diagrams
for static checking and test generation. In Andy Evans, Stuart Kent,
and Bran Selic, editors, UML 2000 - The Unified Modeling Language.
Advancing the Standard. Third International Conference, York, UK, Oc­
tober 2000, Proceedings, volume 1939, pages 383-395. Springer, 2000.

[2] Lufs F. Andrade, Jose L. Fiadeiro, Joao Gouveia, and Georgios Kout­
soukos. Separating computation, coordination and configuration. Journal
of Software Maintenance, 14(5):353-369, 2002.

[3] SA ATX Software. http:/ fwww.atxsoftware.comj.

[4] SA ATX Software. CDE Documents. http:/ /www.atxsoftware.com/CDE.

[5] Ralph-Johan Back, Luigia Petre, and Ivan Porres. Analyzing UML Use
Cases as Contracts. In Proc. of UML '99 - Second International Confer­
ence on the Unified Modeling Language: Beyond the Standard, number
1723 in Lecture Notes in Computer Science, pages 518-533, York, UK,
1999. Springer-Verlag.

[6] F. Basanieri and Antonia Bertolino. A Practical Approach to UML-based
Derivation of Integration Tests. In Proc. of the 4th International Quality
Week Europe QWE2000, pages-, 2000.

[7] Boris Beizer. Software System Testing and Quality Assurance. Van Nos­
trand Reinhold (March 1984), 1984.

[8] Boris Beizer. Software Testing Techniques. International Thomson Com­
puter Press; 2nd edition (June 1990), 1990.

[9] Robert V. Binder. Testing Object-Oriented Systems: Models, Patterns
and Tools. Addison-Wesley Professional; 1st edition (October 28, 1999),
1999.

[10] A. S. Boujarwah, K. Saleh, and J. Al-Dallal. Testing java programs using
dynamic data flow analysis. In SAC '00: Proceedings of the 2000 ACM

118

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

symposium on Applied computing, pages 725-727, New York, NY, USA,
2000. ACM Press.

[11] David E. Brumbaugh. Object-oriented development: building CASE tools
with C++. John Wiley & Sons, Inc., 1994.

[12] Timothy Budd. An Introduction to Object-Oriented Programming. Addi­
son Wesley; 3 edition (October 12, 2001), 2001.

[13] Kai H. Chang, Shih-Sung Liao, Stephen B. Seidman, and Richard Chap­
man. Testing object-oriented programs: from formal specification to test
scenario generation. Journal of Systems and Software, 42(2):141-151,
1998.

[14] Huo Y. Chen. An Approach for Object-Oriented Cluster-Level Tests
Based on UML. In IEEE International Conference on Systems, Man
and Cybernetics, 2003, pages 1064-1068, 2003.

[15] Huo Y. Chen, T.H. TSE, and T.Y. Chen. Taccle: a methodology for
object-oriented software testing at the class and cluster levels. ACM
Trans. Softw. Eng. Methodol., 10(1):56-109, 2001.

[16] James W. Cooper. The Design Patterns Java Companion. Addison­
Wesley Desing Patterns Series, 1998.

[17] Juan P. Galeotti and Marcelo Frias. Dynalloy as a formal method for
the analysis of java programs. InK. Sacha, editor, Software Engineering
Techniques: Design for Quality, volume 227, pages 249-260. IFIP Inter­
national Federation for Information Processing, Springer, 2006.

[18] Leonard Gallagher and Jeff Offutt. Integration Testing of Object-oriented
Components Using FSMS: Theory and Experimental Details. Technical
report.

[19] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De­
sign Patterns: Elements of Reusable Object-Oriented Software (Addison­
Wesley Professional Computing Series). Addison-Wesley Professional; 1st
edition (January 15, 1995), 1995.

[20] John B. Goodenough and Susan L. Gerhart. Toward a theory of test
data selection. In Proceedings of the international conference on Reliable
software, pages 493-510, New York, NY, USA, 1975. ACM Press.

[21] The Object Management Group. Introduction to OMG's Unified Modeling
Language. http://www .omg.org/ gettingstarted/what.is_uml.htm.

119

Master Thesis- Zhe (Jessie) Li McMaster- Computing and Software

[22] The Object Management Group. UML 2.0 draft specification, 2003.

[23] The Object Management Group. UML 2. 0 Superstructure Final Adopted
Specification. http:/ /www.omg.org/cgi-bin/doc?ptc/2003-08-02.

[24] Mary J. Harrold. Testing: a roadmap. In ICSE '00: Proceedings of the
Conference on The FUture of Software Engineering, pages 61-72, New
York, NY, USA, 2000. ACM Press.

[25] Jean Hartmann, Claudio Imoberdorf, and Michael Meisinger. Uml-based
integration testing. In ISSTA '00: Proceedings of the 2000 ACM BIG­
SOFT international symposium on Software testing and analysis, pages
60-70, New York, NY, USA, 2000. ACM Press.

[26] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Con­
tracts: specifying behavioral compositions in object-oriented systems.
In OOPSLA/ECOOP '90: Proceedings of the European conference on
object-oriented programming on Object-oriented programming systems,
languages, and applications, pages 169-180, New York, NY, USA, 1990.
ACM Press.

[27] J. Herrmann and Andreas Spillner. Kriterien fUr den Intergrationstest
modularer Softwaresysteme. In In Informatik zwischen Wissenschaft und
Gesellschaft = Zur Erinnerung an reinhold Franck, H.-J. Kreowski(ed},
pages 21-26, York, UK, 1999. Springer-Verlag, Heidelberg.

[28] Paul C. Jorgensen. MM-Path: A white-box approach to software integra­
tion testing, 1984.

[29] Hareton K.N. Leung and Lee White. A study of integration testing and
software regression at the integration level. In Proceedings of the Con­
ference on Software Maintenance 1990, pages 290-301, San diego, CA,
1990.

[30] Hareton K.N. Leung and Lee White. Insights into testing and regression
testing global variables, 1990.

[31] Ursula Linnenkugel and Monika Miillerburg. Test data selection criteria
for (software) integration testing. In !SCI '90: Proceedings of the first
international conference on systems integration on Systems integration
'90, pages 709--717, Piscataway, N J, USA, 1990. IEEE Press.

[32] Wayne Liu and Paul Dasiewicz. The Event-Flow Technique for Selecting
Test Cases for Object-Oriented Programs, 1997.

120

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

(33] Jacqueline A. McQuillan and James F. Power. A Survey of UML-Based
Coverage Criteria for Software Testing. Technical report.

(34] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall
1988, 1988.

(35] Bertrand Meyer. Applying "design by contract". Computer, 25(10):40-51,
1992.

(36] Glenford J. Myers. The art of software testing. John Wiley & Sons, Inc.,
1946.

(37] Glenford J. Myers. Software Reliability: Principles and Practices. Wiley;
1 edition (September 22, 1976), 1976.

(38] Glenford J. Myers, Corey Sandler, Tom Badgett, and Todd M. Thomas.
Art of Software Testing. Wiley; 2 Rev Upd edition (June 21, 2004), 2004.

(39] Inc. No Magic. MagicDraw UML. http:/ /www.magicdraw.com/.

(40] Jeff Offutt and Aynur Abdurazik. Generating tests from UML specifica­
tions. In Robert France and Bernhard Rumpe, editors, UML '99 - The
Unified Modeling Language. Beyond the Standard. Second International
Conference, Fort Collins, CO, USA, October 28-30. 1999, Proceedings,
volume 1723, pages 416-429. Springer, 1999.

[41] Alessandro Orso and Mauro Pezze. Integration testing of procedural
object-oriented languages with polymorphism. In Proceedings of the 16th
International Conference on Testing Computer Software: Future Trends
in Testing (TCS 1999}, Washington, D.C., USA, june 1999.

(42] Atanas Rountev, Scott Kagan, and Jason Sawin. Coverage Criteria for
Testing of Object Interactions in Sequence Diagrams. Springer Berlin /
Heidelberg, 2005.

[43] Graeme Smith and John Derrick. Specification, refinement and verifi­
cation of concurrent systems-an integration of object-z and csp. Form.
Methods Syst. Des., 18(3):249-284, 2001.

(44] IBM@ Rational@Software. IBM Rational Software Modeler.
http:/ jwww-306.ibm.com/softwarejawdtools/modeler/swmodelerj.

(45] Andreas Spillner. Control flow and data flow oriented integration testing
methods. Software Testing, Verification, and Reliability, (2):83-98, 1992.

121

Master Thesis- Zhe {Jessie) Li McMaster - Computing and Software

[46) Siros Supavita and Taratip Suwannasart. Testing Polymorphic Interac­
tions in UML Sequence Diagrams. In Proceedings of the the Interna­
tional Conference on Information Technology: Coding and Computing
(ITCC'05} - Volume II- Volume 02, pages 449-454, Washington, DC,
2005.

[47] Alessandro Orso Vincenzo Martena and Mauro Pezze. Interclass testing
of object oriented software. In ICECCS '02: Proceedings of the Eighth
International Conference on Engineering of Complex Computer Systems,
page 135, Washington, DC, USA, 2002. IEEE Computer Society.

[48] Linzhang Wang, Jiesong Yuan, Xiaofeng Yu, Jun Hu, Xuandong Li, and
Guoliang Zheng. Generating Test Cases from UML Activity Diagram
based on Gray-Box Method. In Proceedings of the the 11th Asia-Pacific
Software Engineering Conference (APSEC'04} - Volume 00, pages 284-
291, Washington, DC, 2004.

[49] The Free Encyclopedia Wikipedia. http:/ /en.wikipedia.org/wiki/For­
maL verification.

[50] Hoijin Yoon, Byoungju Choi, and Jin-Ok Jeon. Mutation-based Inter­
class Testing. In Proceedings of the Software Enginnering Conference,
1998 Asia Pacific, pages 174-181, Taipei, Taiwan, 1998.

[51] Hong Zhu, Patrick A.V. Hall, and John H.R. May. Software unit test cov­
erage and adequacy. ACM Computing Surveys, 29{4):366-427, December
1997.

122

Appendix A

Contracts for Testing
"transfterTo (ca, amount)"

transferTo_MCSTest.ctr

contract transferTo_MCSTest
participants

savin~account:SavingAccount;
checkingaccount: CheckingAccount;

attributes
boolean result = false;
int step= 0;

coordination
CheckStep1:

when *- >> savingaccount. transferTo(chkAccount,amount) &&
(checkingaccount == chkAccount)
before {

step= 1;
};

CheckStep2:
when*->> savingaccount.withdraw(amount) && (step== 1)
with(amount <= savingaccount.balance)
before {

step= 2;
};

CheckStep3:
when*->> checkingaccount.deposit(amount) && (step== 2)
before {

step= 3;
};
after {

123

Master Thesis- Zhe (Jessie) Li

if(step == 3) {
result = true;

McMaster - Computing and Software

System.out.println("the sequence of the method calls is correct!");
step= 0;
System.out.println("step is set to 0");

}
};

end contract //contract transferTo_MCSTest

transferTo_TSTest.ctr

contract transferTo_ TSTest
participants

savingaccount:SavingAccount;
checkingaccount: CheckingAccount;

attributes
boolean precondition = false;
boolean result = true;
CheckingAccount expected_chkAccount;
int expected_amount;

coordination
Parameter Precondition:

when*->> savingaccount.transferTo(chkAccount,amount) &&
(checkingaccount == chkAccount)

before{

};

precondition = true;
expected_chkAccount = chkAccount;
expected_amount = amount;

ParameterTest_l:
when*->> savingaccount.withdraw(amount) && (precondition)
before{

if(amount == expected_amount) {
System.out.println("parameter amount test is passed.");

}
else {

result = false;
System.out.println("parameter amount test failed.");

}
};

ParameterTesL2:
when *- >> checkingaccount.deposit(amount) && (precondition)

124

0

Master Thesis - Zhe (Jessie) Li McMaster - Computing and Software

before{
if(amount == expected_amount) {

System.out.println("parameter amount test is passed.");
}
else {

result = false;
System.out.println("parameter amount test failed.");

}
};

end contract //contract transferTo_ TSTest

transferTo_RVTest.ctr

contract transferTo_RVTest
participants

savingaccount:SavingAccount;
checkingaccount:CheckingAccount;

attributes
SavingAccount pre..savingaccount;
CheckingAccount pre_checkingaccount;
boolean result = false;
boolean isEquaLObjectl = false;
boolean isEquaLObject2 = false;

coordination
Return ValueTest:

when *->> savingaccount. transferTo(chkAccount,amount) &&
(checkingaccount == chkAccount)

before{

}

pre..savingaccount =new SavingAccount();
pre..savingaccount. balance = savingaccount. balance;
pre..savingaccount .accountN umber = saving account. accountN umber;
pre_checkingaccount = new CheckingAccount();
pre_checkingaccount. balance = checkingaccount. balance;
pre_checkingaccount .accountN umber =

checkingaccount .accountN umber;

after{
if(amount j= savingaccount.balance) {

pre..savingaccount. withdraw(amount);
pre_checkingaccount.deposit(amount);

}
//compare two objects

125

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

if((pre...savingaccount.balance == savingaccount.balance) &&
(pre...savingaccount. accountN umber ==

savingaccount.accountNumber))
{isEquaLObjectl = true;}

if((pre_checkingaccount. balance == checkingaccount. balance) &&
(pre_checkingaccount.accountNumber ==
checkingaccount. accountN umber))

{isEquaLObject2 = true;}
if(isEquaLObject2 && isEquaLObjectl)

{result =true;}
};

end contract I I contract transferTo_RVTest

126

Appendix B

Contract One for Testing
"cash Check (check)"

cashCheck_MSCTest.ctr

contract cashCheck_MCSTest
participants

bank: Bank;
checkingaccount:CheckingAccount;
accountledger:AccountLedger;
check: Check;

attributes
boolean result = false;
int step= 0;

coordination
CheckStep 1 :

when *- >> bank.cashCheck(Check)
before {

step= 1;
};

CheckStep2:
when *- >> check.getAmount() && (step == 1)
before {

step= 2;
};

CheckStep3:
when *- >> check.getAccountNumber() && (step == 2)
before {

step= 3;
};

CheckStep4 :

127

Master Thesis- Zhe (Jessie) Li McMaster - Computing and Software

when *->> accountledger.retrieveAccount(int) && (step== 3)
before {

step= 4;
};

CheckStep5:
when *- >> checkingaccount.getBalance() && (step == 4)
before {

step= 5;
};

CheckStep6:
when *- >> checkingaccount.addDebitTransaction(amount) &&

(step== 5)
with(balance >= amount)
before {

step= 6;
};

CheckStep 7:
when*->> checkingaccount.storePhotoOfCheck(Check) &&

(step == 6)
before {

step= 7;
};

CheckStep8:
when *- >> checkingaccount.addlnsufficientFundFee() &&

(step== 5)
with(!balance >= amount)
before {

step= 8;
};

CheckStep9:
when*->> bank.returnCheck(Check) && (step== 8)
before {

step= 9;
};

Step Result Check:
when ? (step == 7 II step == 9) on bank, checkingaccount
do {

result = true;
System.out.println("the sequence of the method calls is correct!");

};
end contract/ /contract cashCheck.MCSTest

128

