MINIMAX SYSTEM MODELLING AND DESIGN



MINIMAX SYSTEM MODELLING AND DESIGN

by

Thandangorai V. Srinivasan, B. Tech. (Hons.), M.E.

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Doctor of Philosophy

McMaster University

July 1973



DOCTOR OF PHILOSOPHY (1973) McMaster University
Hamilton, Ontario

TITLE : Minimax System Modelling and Design

AUTHOR : Thandangorai V. Srinivasan
B. Tech. (Hons.) (Indian Institute of Technology, Kharagpur)
M.E. (Birla Institute of Technology and Science, Pilani)
SUPERVISOR : J.W. Bandler
B.Sc. (Eng.), Ph.D. (University of London)
D.I.C. (Imperial College)
NUMBER OF PAGES: x , 175
SCOPE AND CONTENTS:

Computer-aided system modelling and design for minimax objectives
have been considered in detail. A new algorithm for minimax approximation,
called the grazor search method, has been proposed and successfully used
on a number of network design problems to test the reliability and effi-
ciency of the method. A critical comparison of the method with existing
algorithms has shown the grazor search algorithm tobe reliable in most of
the problems considered. Practical ideas have been presented to deal with
constrained minimax optimization problems and to investigate a solution for
minimax optimality. Two user-oriented computer programs incorporating
these ideas have been included as part of the thesis. Lower-order modelling
of a high-order system has been considered for minimax objectives, and the

suggested ideas make it feasible to design automated models for a variety

of transient and steady-state constraint specifications.

ii



ACKNOWLEDGEMENTS

The author is greatly indebted to Dr. J.W. Bandler for his
expert guidance and supervision throughout the course of this work.
The constant encouragement and inspiration the author derived from
him are thankfully acknowledged.

The author wishes to acknowledge, in particular, Dr. N.K. Sinha
for his advice and interest during the research effort. Special thanks
are due to Dr. C.M. Crowe for his constructive criticisms and useful
suggestions for the thesis.

Thanks are due to Dr. C. Charalambous for helping with the proof
of convergence of the grazor search algorithm and many discussions the
author had with him on a number of occasions. The author is very
thankful to Dr. G. T. Bereznai for timely advice and helpful suggestions
on various aspects of the research work.

The author wishes to acknowledge with thanks the useful dis-
cussions he had with his colleagues, in particular, B.L. Bardakjian,

M. Beshai, J. Chen, V.K. Jha, A.G. Lee-Chan, P.C. Liu, N.D, Markettos,
J.R. Popovi€é, J. Roitman and S.K. Tam.

The financial assistance provided by the National Research Council
of Canada through grants A7239 and C154, and the Department of Electrical
Engineering is gratefully acknowledged.

The competence and reliability of Mrs. Hazel Coxall, who typed

this thesis, has been very much appreciated.

iii



TABLE OF CONTENTS

CHAPTER I - INTRODUCTION

CHAPTER II - REVIEW OF MINIMAX METHODS

NN
YN =

NN
TS

2.6

Introduction

Function Minimization

Least pth Approximation for Single
Specified Function

2.3.1 - The Error Function
2.3.2 - Continuous Approximation
2.3.3 - Discrete Approximation

The Minimax Problem
Minimax Methods

2.5.1 - The Razor Search Method

2.5.2 - Sequential Unconstrained
Minimization Technique

2.5.3 - Algorithm due to Osborne and
Watson

2.5.4 - Method due to Bandler and Lee-Chan

Near-Minimax Methods

CHAPTER III - NEW APPROACHES TO THE MINIMAX PROBLEM

3.1 - Introduction
3.2 - The Grazor Search Strategy

3.2.1 - Theoretical Considerations
3.2.2 - Proof of Convergence

3.2.3 - Practical Implementation
3.2.4 - Example

Constrained Minimax Optimization
3.3.1 - Statement of the Problem
3.5.2 - Formulation 1

3.3.3 - Formulation 2

3.3.4 - Comments

iv

Page

11
13

14
17

17
19

19
21
22
28

34
34
35
36
37



3.4 - Practical Investigation of Minimax

Optimality Conditions

3.4.1 - Introduction
3.4.2 - Conditions for a Minimax

Optimum
3.4.3 - Practical Implementation
3.4.4 - Method 1
3.4.5 - Method 2
3.4.6 - Comments
3.4.7 - Example

3.5 - Conclusions

CHAPTER IV - COMPUTER-AIDED CIRCUIT DESIGN

4

LR
NN

-]

CHAPTER V - SYSTEM

bty
BN

Introduction

Lumped LC Transformer
Quarter-Wave Transmission-Line
Transformer

Cascaded Transmission-Line Filters

4.4.1 - Problem 1
4.4.2 - Problem 2
4.4.3 - Problem 3
Conclusions

MODELLING

Introduction

Statement of the Problem
Minimax System Modelling
Example

5.4.1 - Second-and Third-Order Models
5.4.2 - Optimality of Model Parameters
5.4,3 - Discussion

New Approaches to Minimax System Modelling

5.5.1 - A Generalized Objective Function
5.5.2 - Automated Lower-Order Models
5.5.3 - Optimality Conditions

5.5.4 - Results

5.5.5 - Discussion

Conclusions

38
38

38
39
40
41
41
42

45
46

46
46

48
63

63
66
73

76

77

77
78
78
80

81
94
101

102

103
104
106
106
108

117



CHAPTER VI -

APPENDIX A -

APPENDIX B -

REFERENCES

AUTHOR INDEX

DISCUSSION AND CONCLUSIONS

GRAZOR SEARCH PROGRAM FOR MINIMAX
OPTIMIZATION

A.1 Introduction

A.2 Nomenclature

A.3 Program Description

A.4 Subprograms

A.5 Comments

A.6 Discussion

A.7 Grazor Search Fortran Program Listing

PROGRAM FOR INVESTIGATING MINIMAX
OPTIMALITY CONDITIONS

B.1 Introduction

B.2 Program Description

B.3 Required Subprograms

B.4 Comments

B.5 Fortran Listing for MINIMAX Program

vi

118

120
120
120
122
126
126
127

128

145
145
145
148
148
150
164

173



LIST OF FIGURES
W S e e e

Figure Page

Fig. 3.1 Block diagram summarizing the computer 23
program structure and illustrating the relative
hierarchy of the subprograms.

Fig. 3.2 Mathematlcal flow dlagram of subroutine ; 24
GMme,aBesmﬁw K, Hmnr%yWML

Fig. 3.3 Mathemat%cal flow dlagram of subroutine 25
SELEC (¢ -wi’*m'k’“'“r’?ﬁ’-

Fig. 3.4 Mathemat1ca1 flow dlagram of subroutine 26
GOLDEN (v*,n,4,¢°,4¢° »0;,k,n U¢,B¢of\

NN 4]

Fig. 3.5 Example illustrating how the grazor search 31
strategy follows the narrow path of discontinuous
derivatives,

Fig. 3.6 2-section 10Q to 1Q quarter-wave transmission- 33
line transformer.

Fig. 4.1 3-section LC transformer problém. Optimum match- 47

ing over a frequency range of 0.5-1.179 radians/
sec occurs at the following parameter values:

L,=1.04088, C,=0.979035, L3-2 .34044, C4 =0.780157,
Lg=2.93714, C=0.346960 and u=max|p(¢ Vs )|
=0.075820.
Fig. 4.2 3-section LC transformer problem. Solid points 49

distinguish the grazor search algorithm from the
algorithm based on the Osborne and Watson method.
Starting point: L1 = L3,= L5 = C2 = C4 = C6 =
Fig. 4.3 The m-section resistively terminated cascade of 51
transmission lines. Optimum matching over 100 per-
cent band centred at 1 GHz for R=10 occurs for the
following parameter values.
2-section: 21=22=2q Z1 = 2,23605, Zz = 4.,4721

3-section: 21-22-23?2q,21=1.63471, Z,= 3.16228,

Z; = 6.11729

2q = 7.49481 cm is the quarter-wavelength at centre
frequency.

vii



Figure
Fig. 4
Fig. 4
Fig. 4
Fig. 4.
Fig. 4.
Fig. 4
Fig. 4
Fig. 4.

.4(a)

.4(b)

.4(c)

4(d)

5(a)

.5(b)

.5(¢)

The 2-section transformer problem. Solid points
distinguish the grazor search algorithm from the
algorithm based on the Osborne and Watson method.
21, 2, fixed at 2 _ and impedances varied. Start-
ifig péint zl=1.o,qzz=3.o.
The 2-section transformer problem. Solid points
distinguish the grazor search algorithm from the
algorithm based on the Osborne and Watson method.
Z, fixed at optimum values and lengths varied.
S%artlng point £. /L =0.8, 22/2 =1.2.

The 2-section transformer problem. Solid points
distinguish the grazor search algorithm from the
algorithm based on the Osborne and Watson method.
Z, fixed at optimum values and 21, Z1 varied.
S%artlng point 21/2 =1.2, Z,= =3.5.
The 2-section transformer problem. Solid points
distinguish the grazor search algorithm from the
algorithm based on the Osborne and Watson method.
All 4 parameters varied. Starting point 21/2
1.2, 22/2 =0.8, 2,=3.5, Z,=3. .0.
The 3-section transformer problem. Solid points
distinguish the grazor search algorithm from the
algorithm based on the Osborne and Watson method.
Ls fixed at #_and impedances varied.
s%ar%lng point z,=1%0, 7,=3.16228, Z,=10.0.
The 3-section transformer problem. Solid points
distinguish the grazor search algorithm from the
algorithm based on the Osborne and Watson method.
All 6 parameters varied. Starting point L4 a
£2/1q=1.2, 23/2q=0.8, Zl=1°5’ 22=3.0, 23=6;0.
The 3-section transformer problem. Solid points
distinguish the grazor search algorithm from the
algorithm based on the Osborne and Watson method.
All 6 parameters varied. Starting point 2 /£q=
22/2q=23/z = 1.0, z,=1.0, Zz=3.16228, Z5=1 .0!
Problem 1. Cascaded transmission-line f11te§
operating between R_{(uw)= RL(m) =377/V1-(f_/f (f /)7,
where £_=2.077 GHz #nd £=1.5 cm.

viii

Page

54

55

56

57

58

/% =0.8,

59

64



Figure

Fig. 4.
Fig. 4.
Fig. 4.
Fig. 4.
Fig. 5.
Fig. 5.
Fig. 5.
Fig. 5
Fig. 5.
Fig. 5.
Fig. 5.
Fig. 5

10

1(a)

1(b)

2(a)

.2(b)

3(a)

3(b}

4(a)

.4(b)

Page

Responses of the network of Fig. 4.6. The 65
response of Carlin and Gupta (1969) is the

initial one. The least 10th response was

obtained by Bandler and Seviora (1970). The-

minimax response was produced by the grazor

search method.

Response of the minimax design of the network of 68
Fig. 4.6 with 0.4 dB passband insertion loss pro-
duced by the grazor search method.

Optimal response for Problem 2 with lengths fixed 70
a Zq and impedances varied. Optimal parameters

are ‘: 21-2.528—25, 22-0.254-24, 23-4.842.

Responses for Problem 2 when impedances are fixed 71
and lengths are allowed to vary. The parameter
values at start and finish are shown in Table 4.5.
The initial response corresponds to best results
obtained by Brancher, Maffioli and Premoli (1970),
and the optimized response corresponds to the op-
timal solution obtained by the grazor search

method.

Seventh-order system modelling example. 2- 83
parameter optimum response.

Seventh-order system modelling example. 2- 84
parameter optimum error curve.

Seventh-order system modelling example. 3- 87
parameter optimum response

Seventh-order system modelling example. 3- 88
parameter optimum error curve.

Seventh-order system modelling example. 5- 91
parameter six-ripple optimum response.

Seventh-order system modelling example. 5- 92
parameter six-ripple optimum error curve.

Seventh-order system modelling example. 5- 95
parametrer five-ripple solution response.

“even.i-order system modelling example. 5- 96
parameter five-ripple solution error curve.

ix



Figure

Fig. 5.5(a)
Fig. 5.5(b)
Fig. 5.6(a)
Fig. 5.6(Db)
Fig. 5.7(a)
Fig. 5.7(b)
Fig. A.1l
Fig. A.2
Fig. B.1

Seventh-order system modelling example.
Optimal responses for a second-order model
with no zeros.

Seventh-order system modelling example.
Optimal error curves for a second-order
model with no zeros.

Seventh-order system modelling example.
Optimal responses for a second-order
model with one zero.

Seventh-order system modelling example.
Optimal error curves for a second-order
model with one zero.

Seventh-order system modelling example.
Optimal responses for a third-order
model with two gzeros.

Seventh-order system modelling example.
Optimal error responses for a third-order
model with two zeros.

Typical main program and analysis program
for the grazor search package.

(a) Typical printout if IDATA is .TRUE.
(b) Typical printout if IPRINT is .TRUE.

Typical printout of results for the problem
given in the text.

Page

110

111

112

113

114

115

124

125

149



CHAPTER I

INTRODUCTION

Computer-aided design is now increasingly being accepted as
a valuable tool whenever classical design techniques fail to achieve
acceptable and realistic design criteria. This is especially true in
electrical network analysis and synthesis where classical circuit theory
restricts the network configuration and the degrees of freedom that may
be demanded by the designer. Computer-aided network design has thus be-
come a state-of-art which tries to accommedate the design specifications
and constraints in a meaningful way so that design objectives, which
would have been considered difficult by claséical designers have now
not only become feasible but are regularly being implemented on the
digital computer. Many optimization algorithms have now been tested on
a number of circuit design problems with the aim of improving circuit
performance and convergence towards an-optimal solution. The algorithms
differ both in the way they generate downhill directions (directions of
decreasing objective function value) and the computational effort involved.

It is thus apparent that there are two steps which are rele-
vant to the circuit designer - the first one being that the design speci-
fications, constraints involving the model parameters, and the objective
function, have to be explicitly specified in advance, and the other be-
ing that a reliable and efficient algorithm has to be chosen for the op-
timization of the design variables. The emphasis of this work has been

to bring both the system modelling and optimization techniques into the

1



foreground so that the advantages and pitfalls encountered in the area
of computer-aided design can be well appreciated.

This thesis concentrates mainly on minimax objectives, and
Chapter II gives a brief review of existing minimax optimization me-
thoﬁs, such as those by Osborne and Watson (1969), Bandler and Macdonald
(1969b), and Bandler and Charalambous (1972d). |

A new algorithm called the grazor search method has been de-

veloped which is guaranteed to converge under certain conditions. See
Bandler and Srinivasan (1971) aﬁd Bandler, Srinivasan and Charalambous
(1972). The problem of function minimizatibn subject.to constraints
can now be formulated as a minimax problem (Bandler and Charalambous
1972a). This approach can be extended to tackle minimax opfimization
problems subject to constraints (Bandler and Srinivasan 1973a). Once

a minimax solution has been achieved by the sfstems designer, it may be
required to investigate the solution for optimality, and suitable me-
thods are available for this investigation (Bandler and Srinivasan 1973c).
Chapter III considers the above mentioned approaches to the minimax
problem.

Chapter IV deals with the area of computer-aided electrical
circuit design for minimax objectives. The problems considered include
the design of lumped LC transformers and cascaded transmission-line |
networks acting as transformers or filters. A critical comparison has
been made between the grazor search method and other optimization
schemes for reliability and efficiency in convergence towards the optima.

System modelling is an area which demands attention primarily

because of the complexity and computational effort involved when



considering the original system, and the introduction of judiciously
chosen models can not only reduce the complexity but also improve the
computation time. It is now possible to model a high-order system and
control this system on-line or off-line by dealing with the lower-ofder
models directly. Chapter V deals with lbwer-order modelling of high-
order systems for a variety of objectives and design considerations.
‘Minimax objectives subject to arbitrary transien; and steady-state con-
straints have been considered, and a method suggested by means of which
the whole modelling procedure can be automated. See Bandler, Markettos
and Srinivasan (1972, 1973), and Bandler and Srinivasan (1973b, 1973e).

Discussions and conclusions on the proposed methods are in-
cluded in Chapter VI, while the Appendices A and B provide two computer
program descriptions for minimax objectives (Bandler and Srinivasan 1972,
1973d).

The adjoint network method of evaluating the first-order de-
rivatives was used for network design problems (Director and Rohrer
1969, Bandler and Seviora 1970). The CDC 6400 computer was used for the
numerical experiments.

The purpose of this work can be described as an attempt to fill
some of the gaps existing in the areas of approximation,optimization and

system modelling.



CHAPTER 11

REVIEW OF MINIMAX METHODS
2.1 Introduction

Minimax optimization methods are assuming significance in the
coﬁputer-aided system design area and much effort has gone into the de-
velopment of suitable algorithms for minimax objectives. The methods
have been used to optimize.electricél networks where the objective is
to minimize the maximum deviatién»of a network response from an ideal
response specification. This chapter gives a brief review of minimax

optimization techniques.

2.2 Function Minimization

The problem of unconstrained function minimization consists of

minimizing with respect to ¢ a real function-
n

f A £(¢) (2.1)
N
where

6 B[y by e b] (2.2)
v

is a column vector consisting of k independent parameter elements, T
denotes the matrix transpose and f is the objective function.

The constrained version of the above problem, also known as the
nonlinear programming problem, consists of minimizing f(¢) subject to

4"

g;(9) > 0 i=1,2, ... ,m (2.3)
N



where the g; are, in general, nonlinear functions of the parameters.

2.3 Least pth Approximation for Single Specified Function

2.3.1 The Error Function
| Define
e(0,¥) & W) (F(,¥) - S(W)) (2.4)
v N
where
S(y) is a specified function (real or complex)
F(¢,¥) is an approximating function (real or complex)
w(z) is a positive weighting function
e($,¥) is the weighted error or deviation between
" S (p) and F(i,np)

U] is an independent variable (e.g., frequency or time)

2.3.2 Continuous Approximation

Define the norm

v
u
Iell, a (I les, )P ap)t/P 1 <p <o (2.5)
p = ¢ " -
Z B
where ¢, and b, are lower and upper bounds, respectively, on the inter-

val of approximation. Minimization of He”P is called least pth approxi-

mation. For p = 2, we have the well-known least squares approximation.
Assume, for example, that |e(¢,y)| is continuous on a finite closed
n

interval [wz’wu]‘ The Chebyshev or uniform norm is given by

el max  [e(s,v)] (2.6)
Wz:\bu v



The process of minimization of ||e||_ is called minimax or
Chebyshev approximation.
It may be noted that

v 17p

u
J les,¥)|P dv (2.7)
by v

|le]| =1im

® po Yy Ve

The larger the value of p, the more emphasis will be given to the
maximum absolute error, and the optimal least pth solution should be

closer to the optimal minimax solution.

2.3.3 Discrete Approximation

In practice the various functions contained in (2.4) are usually
evaluated at discrete values by It is thus appropriate to consider
discrete approximation.,

Define the norm

1
lell, & (2 le;@ PP 1 < pea (2.8)
n P iel N
where
T
e(¢) 4 [e;(9) ey(¢) ... e (4)] (2.9)
o n N n
and
I4{1,2,... , n} (2.10)
The process of minimization of ||e||_  is called discrete least
n

pth approximation. The discrete minimax norm may be defined as

llell, & max |e; (0] (2.11)
N iel n



and minimization of HeH°° is called discrete minimax approximation.
) Y]
As mentioned earlier,

tlell, = lim llellp (2.12)
n, p—)oo o,

and the same comments hold as in the continuous case.
For a sufficiently large number of uniformly sampled values of
¥ and with suitable weighting factors, the discrete approximation approach-

es the continuous approximation.

2.4 The Minimax Problem

Unless otherwise mentioned, the unconstrained discrete non-
linear minimax problem that is considered throughout this work con-
sists of minimizing

U(4) 4 max y, (9) (2.13)
~n iel 4" '

where I,-as defined in (2.10), is an index set relating to discrete
elements corresponding to the i, and the y; are, in general, nonlinear

differentiable functions. It is desired to find a point 5 such that
N

U 4 U@) = min max y, (4) (2.14)
T ow ¢ iel "
n

v
where ¢ is a local or global minimax optimum.
N

2.5 Minimax Methods

Many methods use the direct minimax formulation of (2.13) which,



in general, gives rise to discontinuous partial derivatives of the ob-
jective function with respect to the variable parameters. Otherwise
efficient optimization methods may slow down or even fail to reach an
optimum in such circumstances, particularly when the response hyper-
surface has a narrow curved valley along which the path of discontinuous
derivatives lies.

In direct search strategies, the.minimax problem has been ex-
plored using pattern search and razor search (Bandler and Macdonald
1969a, 1969b). Of the gradient strategies, there are methods involving
the penalty function approach (Fiacco and McCormick 1964a, 1964b), linear
programming (Osbofne and Watson 1969, Ishizaki and Watanabe 1968), quad-
ratic programming (Heller 1969), and a method proposed by Bandler and
Lee-Chan (1971).

Whenever efficient methods of finding derivatives are not avail-
able, direct search methods are useful. For electrical networks, in
particular, it is now possible to evaluate the derivatives of network
responses with respect to network parameters rather easily using the
adjoint network approach (Director and Rohrer 1969, Bandler and Seviora
1970), and the gradient methods are thus more suited for such cases.

The quadratic programming methods are usually more time-consuming than
solution of linear programming problems, while penalty function methods

rely on suitable function minimization algorithms.

2.5.1 The Razor Search Method

The razor search method of Bandler and Macdonald (1969b, 1971)



essentially bégins with a modified version of the pattern search {Hooke
and Jeeves 1951) until.£his fails. A random point is selected auto-
matically in ;he neighbourhood and a second pattern search is initia-
ted until thi% one failsl Using the two points where pattern search
failed, a newgpattern in the direction of the optimum is established
and a patterﬁ.search strategy resumed until it too fails. This pro-
cess is repeéted until any of several possible terminating criteria is
satisfied. fhus, the strategy tries to negotiate certain kinds of
""razor sharp% valleys in multidimensional space. The method has been
compared witﬁ other direct search methods on some test problems, and
has been fouéd to be reliable and computationally efficient in most of

the cases.

2.5.2 Sequential Unconstrained Minimization Technique

The ‘nonlinear minimax optimization problem of Section 2.4 may
be transfor@ed into a nonlinear programming problem (Waren, Lasdon and

Suchman 196?) of Section 2.2 as follows

Minﬁmize ¢k+1 (2.15)

subject to
Orel - yi(i) >0 iel (2.16)
The nonlinear programming problem may, in turn, be solved by

well-established methods such as the Sequential Unconstrained Mini-

mization Te&hnique‘(SUMT) due to Fiacco and McCormick (1964a, 1964b),
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which is a development of the Created Response Surface Teqhnique (CRST)

suggested by Carroll (1961). The problem of (2.15) and (2.16) may be re-

formulated as follows. Minimize

w. .
= ) 1
Pﬁi,¢k+1,r) =01 * T L WEAC (2.17)
v
where

Pral is an independent variéble, and

r,w, >0 el ‘ (2.18)

P(¢,¢k+l,r) is an unconstrained objective where points close to the
n R
constraint boundaries are penalized.

Define the interior of the region of feasible points as
0 .
R™ A {0,4p 1100, - ¥3(0) >0,  iel} (2.19)
N, n .
wherevthe region of feasible points is
RA (0,0, 116, - y;(0) >0,  ieI} | (2.20)
n n
Starting with a point ¢’¢k+1 and a value of r, initially T
N
1

is minimized with respect to ¢ and ¢k+1' The form of (2.17) leads one
n

to expect that a minimum will lie in RO, since as any one of the

such that ¢,¢k+ieR0 and r,>0 the unconstrained function P(¢,¢k+1,rl)
4" n h

¢k+1 - yi(¢) approaches 0, P approaches «». The location of the minimum
4Y
will depend on the value of T and is denoted by ;(ri),$k+1(r1).
N

This procedure is repeated for a decreasing sequence of <t values

such that
T > Ty > ... > rj >0 (2.21)
lim r. = 0 (2.22)
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each minimization being started at the previous minimum. For example,
the minimization of P(i;¢k+1,r2) would be started at %(rl) andAgk+1(rl?n
Every time r 1is reduced, the effect of the penalty is reduced, so that
one would expect in the limit as j - « and rj + 0 that g(r,) - ; and ,
consequently, that ¢k+1(rj) - U(E)D the minimax optimum? "
Conditions which guarantee convergence have been proved by
Fiacco an& McCormick. It is imfortant that the initial value of T

chosen is realistic, and r should be reduced systematically after

each iterative cycle of minimization of P.

2.5.3 Algorithm due to Osborne and Watson

This minimax algorithm (Osborne and Watson 1969, Watson 1970)
deals with minimax formulations by following two steps - a linear pro-
gramming part that provides a given step in the parameter space, follow-
ed by a linear search'along the direction of the step. This algorithm
is very similar to the one proposed by Ishizaki and Watanabe (1968)
and works very well for many minimax problems. In cases where the
linear approximation is not very good in the vicinity of the optimum,
the method may fail to converge toward the optimum for successive it-
erations.

Consider the problem of minimizing ||e(¢)|]_ in (2.11), where e
consists of real elements. Linearizing ei(¢)ma; some point @j the pro%=

N n

lem may be stated as

Minimize ¢k+1
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subject to
. T i
bepe3 (01 - Vie; (072007 2 0
.oy n n N .
iel (2.23)
J T I aad
Prertey (7] + Vie; (072007 > 0
n n n, N
where
T
5 9 5 | ‘
v = [-_ 2 -—] (2.24)
N I P
n>k (2.25)

V is the first partial derivative operator with respect to the
")

parameter vector ¢, ‘
A denotes incrementzl chanées, and
" n is the number of elements of I.
| Noting that the variables for linear programming should all be

,nonnégative, and imposing a rather practical constraint that the ele-

ments of ¢ should not change sign we have the linear programming prob-

n
lem in
T

: A [x1 Xp wee xk+1] (2.26)
as follows.
Step 1

inimi 2.2

Minimize xk+1 ( 7)

subject to (2.25) and
3V o vTe (ady 1g Jx _ 4 s
t(ei(¢ ) + V ei(¢ ) ¢1 Xy ¢1 ) < X iel (2.28)
N Ny Ny .
6%y = 47
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x>0 - (2.29)
ay n .
where
A¢£J
xﬁé_ﬁ-.‘-l L =1,2, , k
% (2.30)
Xe1 & Pxa1

The solution produces a direction given by A¢J.

N
Step 2
1%
Next we find YJ such that
max|e; (07 + yIa¢)| | (2.31)
iel n n
 is a minimum with respect to YJ. Set
. . - . -
PYALNSIPY RN VY. (2.32)
n n LY

and return to Step 1.

The convergence of the method holds under certain conditions
(Osborne and Watson 1969). This approach is directly applicable to lin-
ear functions such as polynomials, for which k+l equal extrema results at

the optimum.

2.5.4 Method due to Bandler and Lee-Chan

The nonlinear minimax objective given by (2.13) is minimized
here by exploiting the gradient information of the local discrete maxi-
ma of the functions yi(¢) to get a downhill direction by solving a set
of simultaneous equatio;s. The method works very well, except that in

the case of linear dependence of the equations, some problems may arise

in the convergence toward the optimum. See Bandler and Lee-Chan (1971).
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2.6 Near-Minimax Methods

As is well-known to network designers, least pth approxi-
mation for sufficiently large values of p can result in an optimal
solution very close to the optimal minimax solution (Temes and Zai
1969, Temes 1969, Bandler 1969a, Seviora; Sablatash and Bandler 1970). ”
When appropriate error functions are raised to a power p given
by

£0) = = leg@)|P (2.33)
"N iel n '

-and £(¢) is minimized, ill-conditioning may result for nominal values
of p m(usually greater than or equal to about 10). The obj@ctive-func—
tion of the form (2.33) has been used by a number of authors (Temes

. and Zai 1969, Temes 1969, Bandler 1969a, Bandler and Seviora 1870).

Bandler and Charalambous (1972c, 1972d) have given a unified
approach to the least pth approximation problems; as encountered in
network and system design, having upper and lowexr response specifi-
cations e.g., as in filter design. The ill-conditioning is removed

by proper scaling, and least pth optimization has been carried out for
extremely large values of - p, typically 103 to 106u This approach has
been used extensively in a variety of computer-aided network design
problems (Bandler and Bardakjian 1973, Bandler and Charalambous 1972d9
Bandler, Charalambous and Tam 1972, Bandler and Jha 1972, Popovié
19725 Charalambous 1973),

The least pth approximation problem can effectively be tackled

by efficient gradient minimization techmiques such as the Fletcher -

Powell method (1963), Jacobson - Oksman algorithm (1972), and a more



15

recent ﬁethod due to Fletcher (1970). These methods have been com-
pared critically for near-minimax approximation problems in the area
of lower-order modelling of high-order systems (Bandler, Markettos
and Srinivasan 1972, 1973).

The discrete nonlinear minimax approximation problem of Section
2.4 can be formulated as a least pth approximation problem (Bandler 1972).
Suppose at least one of the functions yi(¢) is positive. Then, since

"
u¢) > 0,
v

w.y.(¢) py1/p ,
U(¢) = lim U(¢)] £ |2 (2.34)
v p>> ~ |iel | U(¢)
n

where
(0 for y, <0
Wy = ot (2.35)
11 for Y; 2 0
Suppose all the functions y; are negative. Then, since U(¢) < O,
N
1
Ww.yi (,“!”) pY1/p
U(¢) = 1im U()| & |———— (2.36)
N pr-= ~ (iell U()
LY
where

w, =1 for all Yy < 0 (2.37)

Therefore, the minimization function is chosen as

w,y. () | %29
£(9) = U(P)| = |—+> (2.38)
N a |iel | U(¢)
n,
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where
U(e) Jr1<p<w for U>0
QA —2—p (2.39)
[u(e) | ﬂl}fp<w for U<0
n

A number of interesting features of f(¢) can be stated. For

f\‘ .
1<]q| <=, q having the appropriate sign, and for appropriate values of

w., in accordance with (2.35) for U(¢) > 0 and (2.37) for U(¢) < O,

i
_ v Y
we have a continuous function £(¢) with continuous derivatives with re-
. n
spect to ¢ so long as U(¢) # 0. When U(¢) > 0, £(¢) is like penalty term
n N LY ")

including violated constraints, in this case only positive Yis which it

is desired to make feasible (or acceptable). If min £(¢) > 0, the con-
n

straints remain violated. In least pth apbroximation this indicates

that the specifications have not been satisfied. When U(¢) < O the speci-
4"

fications are satisfied and f(¢) is like a penalty term designed to move
Mg
a solution as far from the boundary of the feasible region as possible.



CHAPTER III

NEW APPROACHES TO THE MINIMAX PROBLEM
3.1 Introduction

In this chapter.a new gradient algorithm for minimax object-
ives called the grazor search (or gradient razor search) method is in-
troduced (Bandler and Srinivasan 1971, Bandler, Srinivasan and
Charalambous 1972). As the ﬁame suggests, the method attempts to follow
thé path of discontinuous derivatives when encountering razor-sharp
valleys in multidimensional parameter space. The method is especially
suitable for nonlinear minimax optimization of network and system re-
sponses. This algorithm uses the gradient information of one or more
of the highest ripples in the error function to produce a downhill
direction by solving a suitable linear programming problem. A linear
search follows to find the minimum in that direction, and the proce-
dure is repeated. This type of descent process is repeated with as
many ripples as necessary until a minimax solution is reached to some
desired accuracy. Unlike the razor search methbd due to Bandler and
Macdonald (1969b), the present method overcomes the problem of dis-
continuous derivatives characteristic of minimax objectives without
using random moves. It can fully exploit the advantages of the adjoint
network method of evaluating partial derivatives of the response func-
tion with respect to the variabie parameters (Director and Rohrer 1969,
Bandler and Seviora 1970).

The problem of constrained minimax optimization is considered

17
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next. This problem has been reformulated as an unconstrained minimax
problem by two methods, one extending a recently proposed method due to
Bandler and Charalambous (1972a, 1973b) and the other using weighting
functions. The reformulated problem can then be tackled by efficient
unconstrained minimax algorithms. The method has a number of appli-
cations, including high-order system modelling and control system de-
signs, where constraints have to be imposed on the pole-zero locations
of the models chosen. Appropriate constraints can also be imposed
on the upper and lower bounds of the parameter ﬁalues. See Bandler and
‘Srinivasan (1973a; 1973e).

Investigation of optimality conditions of a proposed or a design
solution is of great practical importance to the system designer wish-
ing to approximate a desired response by a system response. Conditions
for optimality in the minimax sense in conventional synthesis problems
involving polynomials and rational functions are fairly widely appre-
ciated. However, with the ever-increasing need for network designs con-
taining elements not conducive to the rational function approach, e.g.,
a mixture of lumped and distributed elements, and the application of
automatic optimization methods involving least pth and minimax objectives,
some means of testing for convergence to an optimum for more arbitrary
problems is highly desirable. Depending on the optimization method em-
ployed, é satisfactory minimax solution may be obtained for a problem
after a number of iterations of the algorithm on the computer. It may
then be required to inQestigate the solution for minimax optimality
(Bandler 1971) so as to verify whether the solution is optimal or not.

Though the necessary optimality conditions may seem to be straightforward
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to verify, they are both tedious and difficult to implement in practice.

A practical way of implementing them is cohsidered in detail. See Bandler

and Srinivasan (1973c, 1973d).

3.2 The Grazor Search Strategy

3.2.1 Theoretical Considerations

The grazor search algorithm is a generalization of the method

due to Bandle# and Lee-Chan (1971), and is basically of the steepest

descent type.: The nonlinear minimax optimization problem is the one

already stated in Section 2.4.

where

Define a subset JCI such that

363,¢% 8 i) v -y N ¢ &, ten (3.1)
" = "N N

J s o (3.2)

¢J denotes a feasible point at the beginning of the jth
N

iteration, and
e) is the tolerance with respect to the current

max yi(¢3) within which the Yy for ieJ lie.
iel n

Linearizing Y3 at ¢J, we can consider the first-order changes

N
sy; 07) = 7'y, (7204 1e3(7,¢%) (3.3)
N n N 4" N

A sufficient condition for A¢J to define a descent direction
n



for U($)) is

v
T i s
Vy; (07)ae? <0 ie3(¢7,el)
n N ) n
Consider
87 = -z advy o))
N ied N n
j
I a.” =1
ieJ *
a.d > 0
1 -

(3.4) may now be written as

T _ .
Wy, z edvy ) < o0
n, nooied 0 n,

which suggests the linear program:

Maximize
3
o
k
T

+1(

subject to

¢j,€j) >0
N

icg o) ,ed)
n,

Wy eh) z advy el < ad, ) ies(l,eh)
T

a v ied n N

plus (3.6) and (3.7), where kr denotes the number of elements of

J(4?,e?). Note that if
N

A¢J = 0 for e = 0
ny V]

n

(3.

(3.

(3

(3

(3.

(3.

(3.

the necessary conditions for a minimax optimum are satisfied at ¢J

20

4)

5)

.6)

.7)

8)

9)

10)
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(Bandler 1971). Observe that J is non-empty and that if J has only
one element, we obtain the steepest descent direction for the corres-

ponding maximum of the yi(¢).
A

3.2.2 Proof of Convergence

Before proving the convergence of the algorithm it may be worth

restating the following lemma due to Farkas (Lasdon 1970).

Let {po, Pys +ov s pn} be an arbitrary set of vectors. There
N N

a?)
_exist
B, > 0 (3.11)
such that
n
Po = ik BiPs (3.12)

if iand only if
péfq >0 (3.13)
N

for all q satisfying

n
T .

p. q >0 i=1];,,2, ... ,n (3.14)
e T

It is, therefore, possible to find nonnegative values of aiJ in

the expression for (3.5) if and only if
3ZT j
(-84) " (-4¢4") > O (3.15)

4" v
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for all A¢j satisfying
v

vy, (47) (-a0%) > 0 1e3 (97 ,¢7) (3.16)
N n,

N 4V

where (3.13) and (3.14) correspond to (3.15) and (3.16), respectively,
" and -A¢J, Vyi(¢3), ~A¢J take the place of Pg» Pi» 4.

4" ny n 4"} n '\.cl N

Now (3.15) is always satisfied, though it may not be possible to
satisfy (3.16) if el is too large. By suitably decreasing eJ, (3.16)

‘may be forced to hold.

3.2.3 Practical Implementation

Fig. 3.1 illustrates how the different subroutines are called
and their relative hierarchy. Flow charts of subroutines GRAZOR, SELEC
and GOLDEN appear in Figs. 3.2 - 3.4, See Appendix A for further de-
tails and definitions. The objective function U(¢j) is calculated by
subroutine LOCATE. v

As given by linear programming (see, for example, Subroutine

" SIMPLE), A¢J is normalised to

N
Y
j _ n
) = _ (3.17)
A1 |1a¢7 ]
n,

by subroutine NORM. Starting at ¢J, a step aJA¢nJ is taken for ol = aOJ;
n Y

if no improvement in U results, o) is reduced by factors of B until a
. .

better point is obtained or ol < ¥. Let o’ produce the first improved

point from ¢J. Then

Y .
~n 2° = o ae ] (3.18)
2"} ’\:n
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Main Program

:

Subroutine GRAZOR

‘i 1 i % i &ﬁ
. Fi
‘Subroutine Subroutine Subroutine Subroutine
~ NORM GOLDEN SELEC SIMPLE
¥
Subroutine Subroutine
LOCATE TGSORT
i - k|
Function Y
Subroutine ANAL
Fig. 3.1 Block diagram summarizing the computer program structure

and illustrating the relative hierarchy of the subprograms.
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obtain Kps Xay eren xzkf'l x
r
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L N 2]

€all NOK\i(k,A;.A%) to get
s - AQIHAQ;H

@« af8 g<a > a+a

no ‘

£+ 4% otgy
Call LOCATE(g,¥;.k.n,
Ug) to get Uy

i, «1_ el
st st a* +a
At" + a* ‘tn
Call GOLDEN(Y* ,n,4.4°.04°0¥; 0 =
k,n.u‘,u“) to get y* and
- I *: . "‘to yes
]
LA
igp ¢ 0
Yeo * Us
6, + a'y*
TERM + ,TRUE,

Fig. 3.2 Mathematical flow diagram of subroutine

SRAZOR (o ,¥,8,2,2",m,8%, 05,k Kk m,n, U TERM)
N . o



Call TGSORT(YgjsJpoRg) 26 SOER
the yo4 in decreasing values and
jp idencifies the mch highest of the voj

Ya ™ Yoj

. mel My
by < é'ojm

Fig. 3.3 Mathematical flow didgram of subroutine

SELEC (47,9, 00, 5k,m,m ,5,)
"
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n, + n(lex)
t ° °
<0 'tu - 2 * 'u “?.
Ty
at’e Call LOCATE(4, .4;,
« 1 -
Yu k,n,U) to get U,
!.la - “Qe
Ye© Y
no yes Y+ Yy
Ya®t Yy
T * l’Yu"
Yyt Oy v /e
$,%4%%7, AQ“
° ) : Y1,
tb « z + LY 62 Y - Yb
a
Call LOCATE(4, ,¥, )k, Up + U,
n,U,) to get U b+ Ye Oy el
4
Yt Ve Bty

Yot Vgt (vu-'fl)hz

fa* 870 vy ¢°
Call LOCATE(g,.v, k.n,

Ua) to get IJ.

ey,

!Jo U,
Yt - Yb 2'_‘0“.520
U+ %

Fig. 3.4 Mathematical flow diagram of subroutine

* °,80%,.,k,n,U , U
GOLDEN (y ’n’i'i .Ai byskom, Uy, Uy )
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is defined.

Next a method based on golden section search (Temes 1969) is

3%
used to find YJ corresponding to the constrained minimum value of

max yi(¢J + yJA¢J). The jth iteration ends by setting
iel N N

j+1 j j* o
) (3.19)
4 4" n,
and
. v sa
aoJ+1 = o YJ (3.20)
In Fig. 3.4,
T = %-(1+¢§) (3.21)

is the factor associated with the golden section. Subscripts % and u
- denote lower and upper limits, respectively, and a and b denote interior
points of the interval of search. An attempt to bound the minimum is
made. Then golden section search is used to locate the minimum to a de-
sired accuracy. The search is terminated wﬁen the resoluticn between
two interior points falls beiow a factor n of the initial interval.

In Fig. 3.3 the maxima implied by the functions Y5 sampled in
a certain order, are located and sortéd out in decreasing magnitude
(by, say, Subroutine TGSORT).

Fig. 3.2 shows the grazor search strategy. Note that in setting
up

Ax = b ' (3.22)
n 4"

slack variables (xkr+2,xkr+3, .

generate a descent direction based on the gradient of the maximum

.y kar+1) are introduced. We try to
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function (kr = 1), proceed to the minimum of U in that direction, and
repeét the process. If, at any stage, this process or the linear pro-
gram does not yield a direction of decreasing U, or does not provide an
improvement greater than e, the procedure is repeated after including
the function corresponding to the next largest of the current n dis-
crete local maxima (i.e., ripp;es) if one exists. When all local maxi-
ma have been included and U can still not be reduced or improved satis-
factorily by a value greater than e, we repeat the procedure with kr
functions corresponding to the first kr larggst of the candidates, be-
ginning with kr = 1, in another series of attempts to reduce U. The
algorithm terminates only when there are no more suitable functions left
and when there are either no improvements or improvements less than €'

over one complete cycle of kr’ starting-from 1 and ending with n_.

3.2.4 Example

The design of a two-section 10Q to 19 quarter-wave transmission-
line transformer network over a 100 percent bandwidth centred at 1GHz
is considered (Matthaei, Young and Jones 1964) as an example for testing
the grazor search strategy. This pfoblem has already received atten-
tion from the optimization point of view (Bandler and Macdonald 1969a,

1969b). The lengths 21,1 are fixed at lq’ the quarter-wavelength at

2

centre frequency, and the impedances Z.,Z, are varied.

1’72
Table 3.1, in association with Fig. 3.5, illustrates how the
grazor search strategy effectively follows the path of discontinuous

derivatives to locate the optimum in the course of minimax optimization
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TABLE 3.1

SUMMARY OF IMPORTANT STEPS IN THE EXAMPLE
ILLUSTRATING THE GRAZOR SEARCH STRATEGY

$ = (2.23605, 4.47210),U'(§) = 0.42857

Iteration Points of " Starting Point Values of Scale Factors
Number Iteration of Iteration

Point Scale Factor

£1=(1.o, 3.0)
*2 a*=1,00

1 " 1-5 u'(21)=o.70954 y=l+t

$
£5=$2 y*=1.000

$5=(1.99996, 3.00893)

25 a=1.00
2 5-12 u'(25)=o.63086 37 a*=0,10
| $12 Y*=24T
N .
112=(1.69865, 3.20921)
213 a=0.1(1+2)
. 21“ 0=0.01(1+2)
3 12-20 U'(£12)=o.4so73
, $15 a*=0,001(t+2)
¢20 y*=t+l
- A\
$20=(1,70806, 3.20821)
m =
321 a=9.472x10"3
4 20-26 U' (629)=0.47843 222 a*=9.472x10"%
N
$26 v*=1,000
L")
$26=(1.70723, 3.20865)
n
' $30 a*=1.0x10~6
5 26-35 U' (¢26)=0.47794 v T
v ¢35 Y*=1+l
"
235=(1.7o723, 3.20866)
' $36 a*=9,472x10~"
6 35-64 U' (¢35)=0.47794 ~
" 5" y*=1.096x103




TABLE 3.1 (continued) 30

SUMMARY OF IMPORTANT.STEPS IN THE EXAMPLE
ILLUSTRATING THE GRAZOR SEARCH STRATEGY

§ = (2.23605, 4.47210), U'(}) = 0.42857
N n

Iteration Points of Starting Point Values of Scale Factors

Number Iteration of Iteration
Point Scale Factor

$5“=(2.05489, 4.18669) .

7 64-72 U'(zs“)=0.44084 i yt=142

372=(2.ogozs, 4.17411)

8 72-78 u-(372)=o.43199 $78 y*=1,000

$78=(2.09380, 4.17280)

9 78-96 U'($78)=0.43146 ggﬁ Y*=60.69
$96=(2.18832, 4.38018) 293 a*=2,279x10-3
10 96-103 v
U'($%6)=0.42929 3103 Y*=1,000

$1°3=(2.1904o, 4.37924)
11 103-117 U'($1°3)=0.42886 $117 . y*=30.03
4"

$117=(2.22029, 4.44082)
N

12 117-126 U'($117)=0.42864 $126 y*=10.47

$126=(2.23088, 4.46221)

13 126-132
u'(g125)=o.4zsez
2133 - *125
134 o -3
$l36 y*=T42
2159=(2.23595, 4.47237)
18 169-176 lﬂ(£159)=0.42861 3175 ¥ *=1.000

169
=$ ’




31

l

{

N

.70 @5

by

| -
(8 . -
N Qpe 4
\\’/Te . :
iteration 1 4 /

ptimum

133,1269'9°

/

Fig. 3.5 Example illustrating how the grazor search strategy follows the

narrow path of discontinuous derivatives.
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of the network (see Fig. 3.6). Let

1 2
y; () = §4p(igwi)l (3.23)
-and define
Ut ($) = max|p(4,¥;)] (3.24)
. n d n .

where ¢ = [Z1 ZZ]T, and p is the reflection coefficient on 11 uniformly
f\’ .

spaced frequencies by in the band 0.5-1.5 GHz.

The grazor search strategy starts at

¢1 = [1.0 s.olT
ny

u' o1 = 0.70954
n

and the values of the parameters used are o = 1 (at start),
-6 -6

v

%¥=10% g=10,n=05,e=10%ander =10

The first iteration extends from ¢1 to ¢5; ¢2 is the new point
n 4V] N

obtained when taking a unit step along the direction suggested by the

negative gradient. Since ¢2 is a satisfactory improvement, a golden
N
section search is initiated, yielding ¢3(y=1+1) which is not an im-
provement over ¢2° The interval of se:rch is thus found. ¢4(y'=1)
N v
is found to be noc improvement over ¢2. The golden section search is
n
now terminated, since the current resolution between two interior points
of search falls below the minimum allowed value. ¢5 = ¢2 is thus the
\u n

best point attained at the end of iteration 1. At the end of itera-

tion 5, U(¢26)=U(¢35)<e, S0 kr is increased from 1 to 2 in the next
N Ny
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Fig. 3.6 2-section 10Q to 1Q quarter-wave transmission-line transformer.
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iteration. For a similar reason, kr is increased from 2 to 3 for itera-
tion 12, and reset to 1 from 3 for iteration 13. During iteration 18,
the parameter values remain the same to 5 significant digits, and the
improvement in U at the end is less than €'; all successive attempts

to achieve a better point with an improvement greater than €' (by con-

sidering 1, 2 and 3 ripples) fail, and the procedure is terminated.

3.3 Constrained Minimax Optimization
3.3.1 Statement of the Problem

The constrained minimax problem considered may be stated as

follows.
Minimize
U(¢) = max y. (¢) (3.25)
N iel 4"
subject to
g.(4) >0 jeM (3.26)
I -
where
I {1,2,...,n} (3.27)
M A {1,2,...,m} (3.28)

(see Sections 2.2 and 2.4)

It will be assumed that the functions Y and gj are continuous
with continuous partial derivatives, and that the inequality constraints
(3.26) are such that a Kuhn-Tucker solution exists (Lasdon 1970, Zangwill

1969).

Let y,(¢) for %eL be the largest local discrete maxima (ripples)
Y
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of yi(¢) for iel, in decreasing magnitude, where
n

Laf{l, 2, ..,n} (3.29)

3.3.2 Formulation 1

The constrained minimax problem of (3.25) and (3.26) can be

formulated as a non-linear programming problem as follows.

Minimize Pl (3.30)

subject to (3.26) and
Opey -~ Y1(9) 20 iel (3.31)
v

The above problem can then be reformulated as an unconstrained

minimax problem as follows.

Minimize with respect to ¢ and ¢k+1
n

V (¢D¢k+1.ra)= max ¢k+13¢k+1-a1(¢k+1—}’i(¢)]D
N Teny iel

. {(3.32)
jeM L
$rpq~%s 185 (9
k+l “j+1%] ~
where
¢ A [a;, o a ]T (3.33)
N -1 2 * Tm+l ’
aj >0 i=1,2, ..., m+l (3.34)

For a large enough value of o one can obtain, in principle, the
4"
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exact optimal solution for the original problem by minimizing this re-
formulated objective function.

When implementing this scheme one can, for the problem defined
earlier, slightly modify the formulation in order to save on computation-

al effort, so that the minimization function chosen is

V‘(¢,¢ ,a) = max ¢ ’¢ -0 (¢ _? (¢))3
" k+l1 " tel k+1*"k+1 1Y'k+1 72 "

jeM 1 (3.35)
ka1 T %541 8500

3.3.3 Formulation 2

In this formulation, weighting functions are used to convert

the original problem into an unconstrained minimax problem as follows.

Minimize with respect to ¢

n,

W(¢,W) = max [yi(¢):'wjgj(¢)] (3'36)
LYY iel n n
jeM
where
T

x A [w1 Wy oes wm] (3.37)
wj >0 jeM (3.38)

For purposes of practical implementation, as long as U(p) >0
n

and one wishes to apply nonzero weights only to violated constraints of

(3.26), the minimization function may be chosen as

W' (¢,w') = max lf'z(tb),-WJ! g; (4] (3.39)
o Lel, 4" n
jeM
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where

v T
x' A [wyt Wyt wow ] (3.40)
w.' >0 for g.(¢) < O
J g
jeM (3.41)

w.' =0 for g.(¢) > 0
j it

The advantage of this formulation is apparent when U > 0 implies
that certain specifications are violated and U < 0 implies that they are
satisfied. In this case, comparison with violated and satisfied con-

straints seems appropriate.

3.3.4 Comments

By proper choice of the elements of a, w, or w', the reformulated
n N n
functions V, V', W or W' can be minimized by a suitable minimax or near-
minimax algorithm. In case of parameter constraints, upper and lower

specifications can be considered as follows.

v
o

gzi_l(f’) = ¢i - ¢i£ -

gZi(¢) = ‘(¢i - ¢;.) >0
n

iu
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gj(¢) >0 j = 2k+1, 2k+2, ... , m (3.43)
n

3.4 Practical Investigation of Minimax Optimality Conditions

3.4.1 Introduction

In recent paper (Bandler 1971), the conditions for a minimax
optimum were derived for a general nonlinear minimax approximation prob-
lem from the Kuhn-Tucker (1950) conditions for a constrained optimum in
nonlinear programming. See also Dem'yanov (1970), Medanic (1970). The
minimax optimality conditions have also been derived from conditions for
optimality in generalized least pth approximation problems for p-= by

Bandler and Charalambous (1971, 1972b, 1973a).

3.4.2 Conditions for a Minimax Optimum

The minimax problem considered is the unconstrained version of
. the problem stated in Section 3,3.1 (i.e., when (3.26) is ignored).
The necessary (Theorem 1) and sufficient (Theorem 2) conditions for a
minimax optimum are stated as follows,

Theorem 1

At an optimum point ¢° for the minimax approximation problem
v

there exist
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u >0 L =1, 2, » kg (3.44)
such that

k

r ~ 0

I u2 \ Y£(¢ ) =0 (3.45)

2=1 " n "

T

uy =1 (3.46)
=1

where §2(¢°) for # =1, 2, ... , k_ are the equal maxima.
’\‘ .

Theorem 2
If the relations in Theorem 1 are satisfied at a point ¢° and

Y]
all the functions yi(¢) for iel are convex, then ¢° is optimal.

4" n
Theorems 1 and 2 have been proved by Bandler (1971), and the
optimality conditions as derived by Curtis and Powell (1966) follow

immediately from these theorems.

3.4.3 Practical Implementation

Once a proposed or a design solution is obtained for a minimax
problem, it may be necessary to investigate the necessary optimality

conditions. If the point ¢, corresponding to a selution, is to be tested
n
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for optimality, an attempt is made to solve

k
zr uzv§z(¢) = 0 (3.47)
=1 n N N
plus (3.44) and (3.46) for kr =1, 2, ... until for a value of k; (fnr),-
(3.44), (3.46) and (3.47) are satisfied. If this is not possible, the
necessary conditions are not satisfied.

A computer program has been developed which can test a solution
for the necessary-conditions for a minimax optimum by two formulations.
~ One uses a linear programming approach, and the other the solution of a

set of linear independent equations. See Appendix B, Bandler and

Srinivasan (1973c¢c, 1973d).

3.4.4 Method 1
(3.44), (3.46) and (3.47) are solved here by minimizing
>0 (3.48)
%k t1 2

such that (3.44), (3.46) are satisfied and

i=1,2, ..., k (3.49)

<u
- kr+1
Linear programming ensures that

u, >0 2=1,2, .., kol (3.50)
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3.4.5 Method 2

Here, we solve a set of linearly independent equations

k oy
t 535- = 0 iek! (3.51)
g=1 i

and (3.46), where K'is a suitable subset of {1, 2, ..., k}.

There is no guarantee, however, that (3.44) will hold. When
kr-l is greater than the number of elements of K',the system of equations
(3.46) and (3.51) have more unknowns than equations, and we use Method

1 to get the U,

3.4.6 Comments

Appendix B contains a program description incorporating the ideas
of the previous two sections. The program package can be called from the
user's main program and either of the two, or both the methods can be used

to test the optimality conditions. The user can either specify the value

~

of kr or a tolerance £ relative to ?1 within which some of the 92,...,yh
T

lie. The necessary conditions for optimality are satisfied when the

norm ||r|| of the residual vector

N
. mr R '
ra oWV, (3.52)
N o=l n

falls within a user-specified value e, and (3.44), (3.46) hold, for a
value of m, starting with 1. If the conditions are not satisfied for mr=1,
m, is incremented by 1 and the procedure is repeated. The investigation

ends as soon as the conditions are satisfied for a value of m, < k_, or

r,
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the conditions are not satisfied for m, =1, 2, ...,k.. The user-
specified definitions of ||+|| and the value of e should be realistic
so that the program may give meaningful results.

~ The importance of this investigation cannot be underestimated
especially when there may be a number of solutions obtained by the same,
or different optimization methods for a given problem and one wishes
to test these solutions for optimality so as to be able to detect local
optima, and to compare the methods for convergence towards the optima.
This program may be used in such a way that it is possible to investi-
gate the solutions after a certain number of iterations of the algorithm,
or when a certain convergence criterion is re?ched, so that one may de-
cide whether to carry on with further optimization, or to terminate
altogether.

The program also makes it possible to find the maxima which

are active in the vicinity of the optimum, so that the user may gain

insight into the various scaling factors associated with the problem.

3.4.7 Example

The problem chosen was the lower-order modelling of a ninth-
order nuclear reactor system when the operating reactor power level
is in the 90-100 percent range of the full power (Bereznai 1971). A
second-order model was chosen and the step-response of the system was
approximated by that of the model for 2 minimax objective over a time-
interval of 0-10 seconds. A solution was obtained for this problem

and the program described in Appendix B was used to test the solution
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for optimality.

The relevant input parameters are: k = 2, n =4, €= 10'6,
& = 0,01, and the norm chosen is given by :
Il = max x|
N I<i<k
V y is given by
'T\J N
- -3 - -1~
.38711013 x 10 -.29632883 x 10
291 = _3"Zy2 = )
|-.14208087 x 1077 | .10876118 x 1071
- -3 - 27
.79840875 x 10" .17968278 x 10
Vy. = 3V, =
v 3 4" 4

| 68487328 x 1072 - .14014776 x 107°]

and y is given by

120234162 x 1072, §, = .20234034 x 1072

<
-
i

¥ = 23141899 x 1072, §4

62431057 x 107

Corresponding to £ = 0.01, the value of kr is equal to 2. Both the methods
were used to test the solution for optimality, and the results obtained
are shown below.

(i) m, = 1

Both the methods give the same result as there is only one func-

tion under consideration.



r = [0.38711013 x 10°° -.14208087 x 107317

v
llx]| = 0.38711013 x 107>
v

(3.44) and (3.46) are satisfied, while ||r|| is not less than e. Thus
N

the conditions are not satisfied for mr = 1.

(ii) m, = 2

Method 1
u = [0.98710491 0.12895086 x 10 17T
n
-9 9. T
r = [-0.25789922 x 10° 0.25789922 x 10

4t
Hrl| = 0.25789922 x 107
n,

Method 2
' -1,T
u = [0.98710492 0.12895077 x 10 "]
4]
r = [0. -0.35255563 x 107217
n,
Ilr]] = 0.35255563 x 1079
") N

(3.44)and (3.46) are satisfied and ||r||<e for both the methods. The
")

necessary optimality conditions are thus satisfied for m, = 2, It is

also observed that due to the type of formulation of the problem in

Method 1, the elements of r have equal magnitude.
v

44
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3.5 Conclusions

A new minimax algorithm called grazor search has been pro-
posed. Conditions which guarantee the convergence of the algorithm
have also been stated. The spectrum of problems that can be accomo-
dated has been extended to include constrained minimax objectives, and
any efficient unconstrained minimax method can suitably be used for
this purpose. The practical investigation of a solution for necessary
optimality conditions has been implemented on the computer, so that it
is now possible to check solutions at any stage of the optimization
process. The subject matter of this chapter makes it possible to tackle
unconstrained and constrained minimax problems by a new gradient algorithm,

and to test intermediate or final solutions for optimality, on line.



CHAPTER 1V

COMPUTER-AIDED CIRCUIT DESIGN
4.1 Introduction

This chapter primarily concentrates on applying the ideas
presented in Chapter III to computer-aided design of electrical net-
works. Minimax designs are of special interest to the designer
maiﬁly because they attempt to achieve an equiripple behaviour of the
response error function, which is useful in many cases. The prob-
lems considered include the design of LC transformers and cascaded
transmission-line transformers and filters. Appropriate constraints
have been incorporated whenever necessary, and the grazor search
algorithm has been compared with the Osborne and Watson method and
razor search strategy for reliability and efficiency (See Bandler,
Srinivasan and Charalambous 1972, Bandler and Srinivasan 1973a2). Un-
less otherwise mentioned, the objective function to be minimized is

chosen as (2.13).

4.2 Lumped LC Transformer

The problem considered (Hatley 1967) is the design of a 3-
section lumped-element LC transformer to match a 1Q load to a 30 genera-
tor over the angular frequency range of 0.5 - 1.179 radians/sec. Fig. 4.1

shows the structure of the network, and the objective is to minimize

U(¢) = max |o,(e) ] (4.1)

1

46
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i T

!

!

|

}

| )

A o
*wF < v

=P

Fig. 4.1 3-section LC transformer problem. Optimum matching over a frequency range

of 0.5-1.179 radians/sec occurs at the following parameter values: L

1=1,04088D
N
C2=0.979035, L3=2n540449 C4=0°780157, L5=2°93714” C6=0°346960 and U=maxlp(¥,¢i)|
i n

'=0,075820.

Ly
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where pi(¢) = p(¢,¢i) is the reflection coefficient over 21 uniformly
4" n

spaced frequencies Y. in the passband, and
p i P

_ T
3 = [L, C, Ly C, Lg C,]

(4.2)
The six parameters were optimized by the grazor search strategy
and the Osborne and Watson method, and Fig. 4.2 shows a typical graph of
objective function against function evaluations for the two methods for
identical starting points. As can be seen from the graph, the Osborne
and Watson method fails to reach the vicinity of the optimum, while the
grazor search algorithm achieves an optimal solution. Table 4.1 shows
the number of function evaluations needed to get within 0.01 percent of
the optimum for different values of n, the factor of resolution between
two interior points of the golden section for the grazor search, and it

is clear that the value of n chosen need not be very small.

4.3 Quarter-Wave Transmission-Line Transformer

The problem considered is the design of 2-section and 3-section
102 to 1Q transmission-line transformers over a 100 percent relative
bandwidth centred at 1 GHz(Matthaei, Young and Jones 1964, Bandler and
Macdonald 1969a, 1969b). The objective is to minimize m§x|p(¢,¢i)| on
11 frequencies vy in the band 0.5-1.5 GHz for the networ; sho:n in
Fig. 4.3, where Py is the reflection coefficient of the network at wi.

The grazor search method and the Osborne and Watson algorithm

were used for minimax optimization. For both the methods, the objective



Fig. 4.2 3-section LC transformer problem. Solid
points distinguish the grazor search algorithm
from the algorithm based on the Osborne and Watson

method. Starting point: L1 = L3 = L5 = C2 = C4
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TABLE 4.1
COMPARISON OF THE NUMBER OF FUNCTION EVALUATIONS REQUIRED BY THE
GRAZOR SEARCH METHOD TO REACH WITHIN 0.01 PERCENT OF THE OPTIMUM"

FOR DIFFERENT VALUES OF n FOR IDENTICAL STARTING POINTS

Function Evaluations : n
1316 0.01
880 0.10

561 0.50




£4.4Z, £2+Z, L+ T, § R

Fig. 4.3 The m-section resistively terminated cascade of transmission lines. Optimum
matching over 100 percent band centred at 1 GHz for R=10 occurs for the follow-

ing parameter values.

2-section: 21 = 22 = zq, Z1 = 2.23605, 22 = 4.4721
3-section: zl = 22 = 13 = lq” Z1 = 1.,63471, 22 = 3016223,
23 = 6.11729

lq = 7.49481 cm is the quarter-wavelength at centre frequency.

1S



function is given by (2.13) where
1 2
yi () = 5|p; (9] (4.3)
N N

In the 2-section examples, the 11 frequencies were uniformly spaced. In
the 3-section examples, the frequencies were 0.5, 0.6, 0.7, 0.77, 0.9,
1.0, 1.1, 1.23, 1.30, 1.40, and 1.50 GHz. The progress of the algorithms
from identical starting points with respect to the number of function
evaluations (one corresponding to 11 evaluations of p) is recorded in
Figs. 4.4 and 4.5. The points shown mark the successful end of a linear
searcﬂ or the beginning of linear programming.

A comparison was made between the grazor search, Osborne and
Watson, and razor search methods, as shown in Tables 4.2 and 4.3. From
Table 4.2, it is clear that the grazor search algorithm is, in general,
faster than the razor search technique for the 2-section case when the
lengths are kept fixed and the impedances are varied. From Table 4.3,
it is clear that the grazor search algorithm is the best. The Osborne
and Watson algorithm, though fairly fast initially, may in some cases
fail or slow down near the optimum.

The grazor search method and the Osborne and Watson algorithm
were further compared on the 3-section transformer problem when the
lengths were fixed at quarter-wavelength values and the impedances were
varied. For a starting point of Z

= 3,16228, Z, = 1.0 and Z3 = 10.0,

1 2
the former took 184 and 218 function evaluations, while the latter con-
sumed 151 and 219 function evaluations to reach within 0.01 and 0.001

percent of the optimum value of the maximum reflection coefficient,



max |p]

0 50 100 150 200

function evaluations .

Fig. 4.4(a) The 2-section transformer problem. Solid points distinguish the grazor search

algorithm from the algorithm based on the Osborne and Watson method. %., %

1° 72

1]

fixed at lq and impedances varied. Starting point Zl=1'0’ Z,=3.0,

2
y



max | p|

4 n . L !
o) 10 20 30 40

function evaluations

Fig. 4.4(b) The 2-section transformer problem. Solid points distinguish the grazor search

algorithm from the algorithm based on the Osborne and Watson method. Zl’ 22

fixed at optimum values and lengths varied. Starting point 21/2q=0.8, 22/2q=1.2.

¥S



max |p |

1
l
75
function evaluations
Fig. 4.4(c) The 2-section transformer problem. Solid points distinguish the grazor search
algorithm from the algorithm based on the Osborne and Watson method. 22, 22

fixed at optimum values and ll, Zl varied. Starting point 21/£q=1.2, Zl=3.5.



Fig. 4.4(d)

1 i
150 200

function evaluations

The 2-section transformer problem.

Solid points distinguish the grazor search

algorithm from the algorithm based on the Osborne and Watson method. All 4

parameters varied. Starting point Ql/ﬂ.q:l.zs 22/2q=0.8, Zl=3“5’ 2.=3.0.

2

9§



0 20 40 60 80 100 120 140 160 180
function evaluations

Fig. 4.5(a) The 3-section transformer problem. Solid points distinguish the grazor search
algorithm from the algorithm based on the Osborne and Watson method. 21,22,13

fixed at ﬂq and impedances varied. Starting point Z.=1.0, Z

1 2

=3.16228, Z,=10.0.

LS
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Fig. 4.5(b) The 3-section transformer problem. Solid points distinguish the grazor search
algorithm from the algorithm based on the Osborne and Watson method. All 6 para-

meters varied. Starting point 21/2q=008s R2/£q=1°23 23/£q=0°8s 21=1n59'22=390»

&
2,=6.0.
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) 50 100 150 ' 200
function evaliuations

Fig. 4.5(c)

The 3-section transformer problem. Solid points'distinguish the grazor search
algorithm from the algorithm based on the Osborne and Watson method. All 6 para-

meters varied. Starting point Zl/zq = zz/zq = ls/zq = 1.0, Zl=l°0’ Zz=30162283

69
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TABLE 4.2
OPTIMIZATION OF A 2-SECTION 10Q TO 1@

TRANSMISSION-LINE TRANSFORMER OVER 100 PERCENT RELATIVE BANDWIDTH

Starting Point Function Evaluations+
Zq Zy Razor Search Grazor Search
1.0 3.0 | 157 126
207
1.0 6.0 34 83
152
3.5 6.0 223 52
100
3.5 3.0 210 : 29
163

t+ Number of function evaluations required to bring the reflection

coefficient within 0.01 percent of its optimum value.



TABLE 4.3

OPTIMIZATION OF A 3-SECTION 102 TO 1$2 TRANSMISSION-LINE

TRANSFORMER OVER 100 -PERCENT RELATIVE BANDWIDTH

Fixed Lengths

Variable Lengths and Impedances

Maximum Maximum Maximum
Reflection Reflection Reflection
Parameters Coefficient Starting Coefficient Starting Coefficient
¢i Starting Point at Start Point at Start Point at Start

zl/zq 1.0 1.0 0.8
Zl 1.0 1.0 1.5
22/1 1.0 1.0 1.2
22 3.16228 0.70930 3.16228 0.70930 3.0 0.38865
23/2 1.0 1.0 0.8
Z3 10.0 10.0 6.0

Final Maximum

Reflection 0.19729 0.19733 0.19731
Razor Coefficient
Search
Algorithm Number of

Function .

Evaluations 406 1300 1250

Final Maximum

Reflection 0.19729 0.19729 0.19729
Grazor Coefficient
Search '
Algorithm Number of

Function 219 696 498

Evaluations

19



TABLE 4.3 (continued)
OPTIMIZATION OF A 3-SECTION 10Q TO 1 TRANSMISSION-LINE

TRANSFORMER OVER 100 PERCENT RELATIVE BANDWIDTH

Fixed Lengths Variable Lengths and Impedances

Algorithm

due to Osborne

and Watson
(1969)

Final Maximum

Reflection 0.19729 .0.20831 - 0.19788
Coefficient

Number of

Function 199 860 237
Evaluations

29
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respectively. This case illustrates how the two algorithms compare when

both methods work efficiently.

4.4 Cascaded Transmission-Line Filters

In this section, the grazor search algorithm is used to achieve
the minimax design of cascaded transmission-line filters with desired
attenuation characteristics. Three examples are chosen, and the ideas

presented in Chapter III are applied to the problems.

4.4.1 Problem 1

The design of a 7-section cascaded transmission-line filter with
,fréquency-dependent terminations is considered here (see Fig. 4.6). This
problem has been considered by Carlin and Gupta (1969). The_frequency
variation of the terminations is like that of rectangular waveguides

operating in the H, . mode with cutoff frequency 2.077 GHz. All section

10
léngths were kept fixed at 1.5cm so that the maximum stopband insertion
loss would occur at about 5 GHz. The passband 2.16 to 3 GHz was selected,
for which a maximum passband insertion loss of 0.4dB was specified.

Fig. 4.7 shows the response of Carlin and Gupta which was used
as an initial design. The other responses in Fig. 4.7 ‘are a least 10th
optimum obtained by Bandler and Seviora (1970) and a minimax optimum ob-

tained by the grazor search strategy. In both cases only the passband

was optimized. The minimax response has a maximum passband insertion



ol —te—f —— f vl [ st ) b f —o— L

RL(w)

: Z ’ y 4
Rg (‘"é Z ) Z4 5 26 7
Fig. 4.6 Problem 1. Cascaded transmission-line filter operating between Rg(w)

= RL(w)=377/91—(fé/f)2, where fc=2.077 GHz and 2=1.5 cm.

¥9
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Fig. 4.7 Responses of the network of Fig. 4.6. The response of

Carlin and Gupta (1969) is the initial one. The least

10th response was obtained by Bandler and Seviora (1970).

The minimax response was produced by the grazor search

method.
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loss of 0.086 dB. Table 4.4 gives the appropriate parameter values.
Fig. 4.8 shows the results of applying the grazor search method

to optimize the sections in a filtering sense. Thus, it was desired to

meet the 0.4 dB passband insertion loss while maximizing the stopband

insertion loss at a single frequency (5GHz). Let

f

-%(]pi(¢)|2=r2) in the passband
v

y;(0) = ) - (4.4)

%{1-]Dif¢)|2) in the stopband
] ny
where

T

¢ = [zq 25 oov Z5] (4.5)

N
and r 1is the reflection coefficient magnitude corresponding to an in-
sertion loss of 0.4 dB. Here 22 uniformly-spaced points were selected
from the passband. Table 4.4 gives the resuiting parameter values. A
similar response was attained by the grazor search technique when the

section impedances were assumed symmetrical i.e., 25=Z3, Zf’=zz,9 Zz=zl°

4.4.2 Problem 2

The problem chosen consists of a S5-section cascaded transmission-
line low-pass filter design and has been previously considered by Brancher,
Maffioli and Premoli (1970). The filter structure is the éame~a§'in Fig. 4.3
for R=1. The terminating impedances are real and normalised to be 1Q.

It is required to have a passband insertion loss of less than 0.01 dB
from 0 to 1 GHz and as high a stopband insertion loss as possible at
5 GHz. Twenty-one uniformly spaced points were chosen in the passband

and one point in the stopband (5 GHz). The length of each section is



TABLE 4.4

COMPARISON OF PARAMETER VALUES FOR THE 7-SECTION FILTER (PROBLEM 1)

Characteristic Carlin Minimax Minimax

Impedances and Design Design
(Normalized) Gupta (1969) (Fig. 4.7) (Fig. 4.
zZq 1476.5 1305.2 3069.4
22 733;6 607.8 2856.4
Zq 1963.6 1323.3 25871.2
Z4 461.8 362.7 10573.3
ZS 1963.6 1323.2 25874.0
Zg 733.6 607.9 2856.7
yA 1476.5 1305.2 3069.8
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Fig. 4.8 Response of the minimax design of the network of Fig. 4.6 with 0.4 dB passband

insertion loss produced by the grazor search method.
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normalized with respect to lq = 1,49896 cm, the quarter-wavelength at
5 GHz.
The yi(¢) are given by (4.4) where r is the reflection coeffi-
N
cient magnitude corresponding to an insertion loss of 0.01dB, and
T

Z, % Z, % Z

b= 01 41 *n2 %2 s %3 %ag 24 Bps sl (4.6)

gy = gi/g,q i=1,2,..., 5 (4.7)

The lengths were initially fixed at zq, and the impedances
varied., Levy (1965) has derived an optimal solution to this problem
analytically. The grazor search method was used on this problem for
minimax optimization, and the result obtained was‘identical to the ome
derived by Levy and Fig. 4.9 shows the optimal response obtained.

Brancher, Méffioli and Premoli (1970) have achieved some re-
sults for the problem, and an observation of their responses leads one
to suspect that the results are not optimal. The grazor search method
was used to test whether an improvement on the results of Brancher,
Maffioli and Premoli was possible, and improved results were obtained.

Fig. 4.10 and Table 4.5 show the results for the problem where
the impedances are fixed at some practicalhvalues and only the lengths
are allowed to vary. As the final values obtained by the grazor search
method indicate, the response at finish represents a good improvement

over the response at start, both from passband and stopband considerations.
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Fig. 4.9 Optimal response for Problem 2 with lengths fixed at zq and impedances

varied. Optimal parameters are: Zl=2°528=Z , Lp=0.254=7,, Zz=4.842.
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Fig. 4.10

Responses for Problem 2 when impedances are fixed and lengths are allowed to
vary. The parameter values at start and finish are shown in Table 4.5. The

70+ initial response corresponds to best results obtained by Brancher, Maffioli
and Premoli (1970), and the optimized response corresponds to the optimal
solution obtained by the grazor search method.
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TABLE 4.5
5-SECTION FILTER DESIGN (PROBLEM 2)

IMPEDANCES FIXED AT Z1 = 23 = Z5 = 0.2, Z2 = Z4 = 5, AND LENGTHS VARIED

Parameter Start Finish
% 0.389 0.480
nl
L 0.788 0.814
n2
2 0.924 0.990
n3
2n4 0.806 0.814
L 0.448 0.480

ns
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4.4.3 Problem 3

Tﬁe design of a 5-section cascaded transmission-line filter
subject to parameter constraints is considered here, and the ideas
presented in Section 3.3 are used to tackle this problem. The filter
structure is the same as the one considered in Section 4.4.2. The
problem has been previously considered by Carlin (1971) for fixed
lengths at a quarter-wavelength of iq = 2.5 cm corresponding to 3 GHz,
and for a required attenuation of 0.4 dB in the passband (0-1 GHz).
Optimal values have been derived for characteristic impedance values
when a stopband frequency of 3 GHz was chosen (Levy 1965). The ob-
jective function to be minimized was chosen as (2.13) where |
r|Pi(i)|-r ¥ie 0-1 GHz

AN ) (4.8)

. = 3 GHz
i ;

Ll = Ipi(z)l ¥

¢ corresponds to (4.6) and r corresponds to an attenuation of 0.4 dB.
4"

Twenty-one uniformly-spaced points were chosen in the passband.
Initially the lengths were fixed at Zq and the impedances Z.

were varied. The impedance constraints imposed were

+

0.5<Z, < 2.0 i=1,2,...,5 (4.9)

and the minimization function was chosen as W'(¢,w') of (3.39) where
Y

W' is given by (3.40), n = 22, m= 10, and

n, .

82319 =2y - 0.520

i=1,2,...,5 (4.10)

[}

22 (#) -(2; - 2.0) > 0
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1000 for gj(¢) <0
w' = " j=1,2,...,m (4.11)
0 for g.(¢) > O
it -

The result of optimizing the impedances using the grazor search
method is shown in Table 4.6 where U corresponds to mix yi(i), and Y
is given by (4.8). It is observed that some of the impedances of the
constrained solution lie on constraint boundaries. Moreover, there are
two distinct solutions, for which the impedances are reciprocals of each
other.

As a further step, it was desired to investigate the possibility
of improving the unconstrained optimal solution (for length fixed at 2q)

of Table 4.6, by allowing both the lengths and impedances to vary, and

imposing the following constraints:

0 < lni <2 i=1,2,...,5 (4.12)
0.4416 < z_ < 4.419 i=1,2,...,5 (4.13)

: 5

0<x f..<5 (4.14)

where the Lo correspond to (4.7) and the upper and lower bounds of Z;
in (4.13) correspond to upper and lower values of the unconstrained op-

timal values of Table 4.6.



TABLE 4.6
5-SECTION TRANSMISSION-LINE LOWPASS FILTER DESIGN (PROBLEM 3)

FOR LENGTHS FIXED AT lq

Parameters Unconstrained Constrained Solution
Optimal Solution
(1) (ii)
Z1 3.151 0.5683 1.760
Z2 0.4416 2.000 0.5000
23 ‘ 4,419 0.5000 2.000
24 0.4416 2.000 0.5000
Z5 3.151 0.5683 1.760
-5 -3 -3
U 3.951x10 3.255x10 3.255x10
W 2.419x10° 3.255x10"° 3.255x107°
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The function to be minimized was chosen as V(¢,¢k+1 a) in (3.32)
" ’n,
where o is given by (3.33) and (3.34), n = 22, m = 22,

a, = 10 j=1,2,...,m+1 A " (4.15)

-and gj(i), j = lngaan,m correspond to the constraints (4.12)-(4.14)

It was observed that no improvement could be achieved from the starting
value (corresponding to the unconstrained optimal solution of Table 4.6) and
that the starting point satisfies the necessary conditions for a minimax

optimum, as verified by the method described in Section 3.4 and Appendix B.

4.5 Conclusions

The results indicate that the grazor search algorithm is gemnerally

more reliable in reaching an optimal minimax solution than thé Osborne

and Watson algorithm, and is faster than the razor search technique. Ty-
piéally 1 min is sufficient time to optimize a six-parameter design, and
2 to 3 min are sufficient to optimize a ten-parameter problem, depending
on how far from the optimum one starts aﬁd how close one wishes to get,

on a CDC 6400 computer. The grazor search algorithm is capable of hand-
ling, without any difficulty, filter design problems with upper and lower
specifications over many frequency bands. The method should be very use-

ful in design problems for which exact methods are not available.



CHAPTER V

SYSTEM MODELLING
5.1 Introduction

Lower-order modelling of complex high-order systems is now
widely being used in the area of systems design and control both on-
1line and off-line. The modelling can be performed for a variety of per-
formance criteria and objectives, using different model derivation tech-
niques. Some of the techniques obtain a model by neglecting modes of the
original system which contribute little to the overall response of the
system (Davison 1966, Chidambara 1969, Mitra 1969, Marshall 1966).

Other methods search for optimal coefficients of a set of differen-

tial or difference equations of a given order, the response of which is
approximated as closely as possible to that of the system, when both are
driven by the same inputs (Anderson 1967, Sinha and Pille 1971, Sinha
and Bereznai 1971, Markettos 1972). The search of these coefficieﬁts
has been, in the past, carried out using both direct search and gradient
methods of optimization for a least-squares or quadratic cost function,
but for this work, the investigation is mainly on near-minimax and mini-
max objectives, and the input-output data of the system is assumed to be

known. See also Chen and Shieh (1968) and Kokotovic and Sannuti (1968).

77
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5.2  Statement of the Problem

It is required to find a transfer function of a model of a
given order, the response of which is the best approximation to the
response of the actual system to a particular input for a specified
error criterion.

In'general the transfer function of a given order n may be

written as

bmsm+bm_1sm"1+...+bls+b0
Hm’n(S) i sT+a sn'1+ ;a s+a
n-1 B | 0
(5.1)
m
m-i
§=0b“"is
Sn+2 st
fop -

where m < n for physical systems. For this work the input is a unit step
and the criterion chosenis to directly or indirectly minimize an error
function over a specified time interval [0,T]. The problem, therefore,

is the determination of the parameters ¢, given by
N

_ T
Z = [a0 a) +.. 2 4 b0 b1 ...bm] (5.2)

such that an error function is minimized. Optimization of model para-
meters for a least-squares error criterion has already received attention

(Bandler, Markettos and Sinha 1973, Markettos 1972).

5.3 Minimax System Modelling

The error criterion chosen is to minimize the maximum error
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between the system and model responses over [0,T], where ¢ is given

Y
by (5.2). The following notation is introduced.
ts ‘ is an i th time instant in [0,T]
1 is an index set of i such that ti€[0,T]
cz is the response of the system at t;
c?(¢) is the response of the approximating
n
model at t,
i
ei(¢)=c?(¢)—c§ is the error between the system and the model
y 4
responses at ti
cz is the steady-state value of the system
™ is the steady-state value of the model

In Section 5.4, the approximation problem considered assumes

that cz is fixed at a convenient value (usually ci or ci at ti=T), SO

that the objective is to minimize

U(¢) = max Yi(¢)
" tis[O,T] N

where

v; () = Iei(t)l

(5.3)

(5.4)

This problem can now be solved by an efficient minimax or near-

minimax optimization method as suggested in Sections 2.5 and 2.6.
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5.4 Example

The problem considered is the modelling of a seventh-order
system representing the control system for the pitch rate of a super-
sonic transport aircraft (Dorf 1967, Bandler, Markettos and Sinha 1973).

The transfer function of the system is given by

375000 (s+0.08333)

s/+83.645°%+40075°+7034257+8537035°+ (5.5)
2

2814271s7+3310875s5+281250

G(s) =

with a steady-state value of 0.11111 for a unit step.

Minimax optimization of the model parameters as performed by the
grazor search method consists of minimizing (5.3), while near-minimax
optimization minimizes

1

£(¢) = U(® i — (5.6)
n " tiE[O,‘T] U((b)

k n
for large values of p (Bandler and Charalambous1972d). Let JCI be an
index set relating only to the extrema of the error functions yi(¢)

A\

given by (5.4). If I is replaced by J in (5.6), considerable economy
in computing time results at a slight risk of creating false optima.
The larger the value of p, the closer the solution gets to the minimax
result, but the central processor time increases considerably. For this
work, a value of p=1000 was considered suitable for optimization purposes.
For least p th optimization, three gradient methods due to Fletcher and

Powell (1963), Jacobson-Oksman(1972) and Fletcher (1970) have been used

for the modelling problem.
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5.4.1 Second- and Third-Order Models

The time-interval over which the approximation was made was
0-8 seconds (T=8 sec). 101 uniformdy-spaced sample points were chosen
over the interval. The steady state value of the model for a unit step
(E=c2), was set at 0.11706, corresponding to the response of the system
at the final sample point (ci for ti=T). See Bandler, Markettos and
Srinivasan (1972, 1973).

Two second-order and one third-order models were considered for
minimax approximation of the system. The transfer functions of the chosen

models were

an
HOZ(S) i sz+a s+a -7
1 0
‘b.s+Ea
21 0
2t -9
1 0
b252+bls+Ea0
H23(s) = 3 (5.9)
s"+a,s +als+§D
x552+x4s+Ex1x3
= 5 (5.10)
(s+x3)(s +xzs+x1)
where
EAch (5.11)

[+

For this work, the response of the models in the time domain were
obtained by using standard Laplace Transform Tables to invert from the
s to the t domain.

(a) 2-Parameter Problem

The model transfer function chosen is (5.7) and the parameter



vector is given by

¢ = la, allT (5.12)

2"

The optimum parameters using the grazor search method were

= 3.06472, a, = 2.38338

o) 1

resulting in a four-ripple error curve with a maximum error value
-3
U = 3.76347x10

The response and error curves are shown in Figs. 5.1(a) and 5.1(b) re-
spectively.

The optimum parameters using least pth approximation for p=1000 were

= 3.06549, a.=2.38414

a9 1

resulting in a similar four-ripple curve with a maximum error value

U= 3.76510x10"°

Table 5.1 shows the number of function evaluations required for
each of the methods to reach a maximum error value of 3.76619x10>. For

this problem the Fletcher method and Jacobson-Oksman method appeared to

be the most efficient.

(b) 3-Parameter Problem

By allowing the model to have a zero, as indicated by (5.8) a

3-variable problem results, where

. T
¢ = la;a bl (5.13)

4"
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TABLE 5.1

SEVENTH-ORDER SYSTEM MODELLING EXAMPLE

NUMBER OF FUNCTION EVALUATIONS REQUIRED TO REACH U = 3.76619x10-3
FOR THE 2-PARAMETER MODEL

Minimization of £(¢)
n,

Starting point Minimization Jacobson - Oksman

9 of U(¢) Fletcher Fletcher-
v v Powell Quadratic Homogeneous
Grazor Step Step
Prediction Prediction
3.0 107 42 59 36 36
2.0
1.0 130 78 334 91 127
1.0
1.0 165 96 718 834 *
4.0 .
4.0 129 64 false 41 45
1.0 optimum

%
* Indicates an ARGUMENT TOO LARGE message was given by the computer.
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The optimum parameters using the grazor search method were

= 3.83255, a, = 3.00365, b1 = -.0176390

a
0 1
giving a maximum error value

U = 2.48724x10"°

The response and error curves are shown in Figs. 5.2(a) and 5.2(b) re-
spectively.

For p=1000 the optimum parameters obtained were

ag = 3.83592, a; = 3.00605, b1 = -.0177277
giving similar response and error curves as in Figs. 5.2(a) and 5.2(b)

and;

U = 2.48794x10">

The number of function evaluations needed for the three para-
meter problem to reach the value U = 2.48794x10_3 are shown in Table 5.2.
The grazor search technique and the Fletcher method required a smaller

number of function evaluations.

(¢) 5-Parameter Problem

The third-order model of (5.9) is considered next. For computional
efficiency, the transfer function of the form (5.10) is chosen. The model

has five parameters given by
o=[x; x, x, x, X ]T (5.14)
" 172737475 )

The optimum parameters obtained using the grazor search method
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TABLE 5.2

SEVENTH-ORDER SYSTEM MODELLING EXAMPLE

NUMBER OF FUNCTION EVALUATIONS REQUIRED TO REACH U = 2.48794x10_3
’ FOR THE 3-PARAMETER MODEL

Minimization of f($)

Starting Minimization Jacobson - Oksman

poiht of Quadratic Step
2 : U(i) Fletcher Fletcher- Prediction Homogeneous
Grazor Powell 0 =1 o = 0.5 - Step
Prediction

2.5 149 339 *500 279 * 339
2.0

-2.0

1.0

1.0 368 362 + 104 276 137
’1-0

4.0

3.0 165 242 184 142 97 260
0.01 ‘
3.5

1.5 358 280 342 . 217 151 *
“‘1\.0

5.0 . ‘

1.0 325 193 * * 205 *
-1.0

5.0

1.0 406 245 + 159 119 *
3.0

*Indicates time limit of 64 seconds was reached.

. .
Indicates an ARGUMENT TOO LARGE message was given by the computer.



were

»”
"

4.34547, x 3.36809, x, = .108248

2 3

X -.0356180

.514475, x

4 5

resulting in a six-ripple error curve with a maximum error value
-3
U = 1.02062x10

The response and error curves are shown in Figs. 5.3(a) and 5.3(b) re-
spettively.

The optimum parameters using p=1000 were

X

1 4.34682, x .0996086

3.36738, x

2 3"

X

4 = 514728, x = -.0356154

giving response and error curves similar to those of Figs. S;S(a) and 5.3(b)
and' a maximum error

U = 1.02063x10"°

Some runs with the Fletcher-Powell method, on the five-parameter
problem, indicated that the method was the slowest and since this was al-
ready established in the previous models, as indicated in Tables 5.1 and
5.2; further runs with Fletcher-Powell method were considered unnecessary.
The results of optimization by the other three methods are shown in
Table 5.3.

The Fletcher method reached a unique six-ripple solution in all
the cases tried, although there was a large variation in the number of

function evaluations required. The grazor search technique reached the
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TABLE 5.3

SEVENTH-OﬁDER SYSTEM MODELLING EXAMPLE

NUMBER OF FUNCTION EVALUATIONS REQUIRED TO REACH THE INDICATED
VALUE OF 1000 U FOR THE 5-PARAMETER MODEL

Starting Minimization Minimization of £(g)
point of Jacobson-Oksman Quadratic Step
¢ u(e) Prediction
e : v Fletcher
Grazor ' p=1 p = 0.5
3.0 .
3,0 437 530 886 778
1.5 '
- 0.5 1.2139 1.0207 1.0206 1.0206
‘001
1.5
3.0 782 768 931 325*
2,5
1.0 1.2473 1.0207 1.0206 45.086
0.1
4.0
3.0 489 177 114* 108
0.1
0.5 1.0206 1.0207 1.5061 1.0206
"0.03
3.0
5.0 634 862 248 350
0.2
0.3 1.1720 1.0207 1.0206 1.0207
=-0.1 :
5.0
4.0 817 484 17* 582
0.5
1.0 1.0337 1.0207 19.660 1.0207
-0.5
. ++
Least 537 799 263* 1208
Squares
- Optimum 1.2472 1.0206 1.8954 1.0283

**Indicates time limit 6f 128 seconds was

*Indicates an ARGUMENT TOO LARGE message was given by the computer.

reached.
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six-ripple solution in one of the cases shown, while in some of the
other cases it terminated in a five-ripple solution.

In some instances, the real pole of the model had the tendency
to move to the right-hand side of the s-plane and since this would pro-
duce an unstable model, the last parameters giving stable results were
taken as the final values. In ail cases, however, the real pole seems to
lie very close to the axis and ény éonstraint, although easily imple-
mented in the formof asquare transformation, would have made the pole
go to zero.

It was further noted that when the Fletcher method, used wifh
p=1000, was started from one of the five-ripple solutions where the grazor
search technique terminated, a direction was found which decreased f(¢)

n
while temporarily increasing U(¢) and the method converged towards the

R \
six-ripple minimax solution, though slowly. When the same procedure
was repeated with p=106, the algorithm failed to move from that point.

Figs. 5.4(a) and 5.4(b) show the response and error curves for a five-

ripple solution obtained by the gfazor search method.

5.4.2 Optimality of Model Parameters

The conditions for minimax optimality, as mentioned in Section
3.4.2, were applied to the final parameter values arrived at through
optimization of the grazor search method (the corresponding responses
are shown in Figs. 5.1-5.4), and the results are indicated in Tables
5.4-5.7. The necessary conditions are satisfied in all the cases, as

observed from the tables. The ?z(¢) for & = 1,2...,nr are the local
f\,
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TABLE 5.4
VERIFICATION OF CONDITIONS FOR MINIMAX OPTIMALITY

2-PARAMETER SOLUTION CORRESPONDING TO FIG. 5.1

Time Instant Error Maximum Multiplier
(1000y£) (ug)
0.24 3.76347 0.75047
0.88 3.76347 0.16519
2.16 3.76347 8.4342 x 1072
4.40 2.55235 -
*
kr g T
r= IuVy = 0.0 0.0]
n =1 "~
*
kr
z um = 1.0

=




VERIFICATION OF CONDITIONS FOR MINIMAX OPTIMALITY

3-PARAMETER SOLUTION CORRESPONDING TO FIG. 5.2

TABLE 5.5

Time Instant Error Maximum Mulfipl ier
(1000,) (u,)
4.0 2.48724 0.90758
0.24 2.48724 4.2744 x 1072
0.96 2.48724 4.9680 x 1072
2.00 2.00700 x 107! -
k*
r= 3 uvy, =[0.0 0.0 1.1x107°)"T
n =1 n




TABLE 5.6
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VERIFICATION OF CONDITIONS FOR MINIMAX OPTIMALITY

jS—PARAMETER, 6-RIPPLE SOLUTION CORRESPONDING TO FIG. 5.3

+

T

*
n =6,k =6
T

Time Instant Error Maximum Multiplier
1000y
( OYQ) (uz)
.84 1.020616 3.6510 x 1072
.72 1.020616 8.4333 x 1072
.08 1.020616 0.51806
.76 1.020616 2.7915 x 1072
.24 1.020616 0.32227
.00 1.016870 1.0910 x 1072
*
kr ~ T
T X uVy, = [0.0 0.0 0.0 0.0 0.0]
N 2=1 "~ *
' K
z’ u, = 1.0
-1
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TABLE 5.7
VERIFICATION OF CONDITIONS FOR MINIMAX OPTIMALITY

S-PARAMETER, 5-RIPPLE SOLUTION CORRESPONDING TO FIG. 5.4

Time Instant Error Maximum Multiplier
(1000y£) (ug)
0.32 1.213988 0.23428
5.12 1.213988 0.19815
0.08 1.213988 0.39281
0.96 1.213986 0.10217
0.32 1.212651 7.2598 x 1072
*
kr " -5 T
r= XTuVy =[-1.5x10" 0.0 0.0 0.0 0.0]
4y £=1 "n
*®
kr
I u =1.0
=1 L

2
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discrete maxima of yi(¢), iel as mentioned in Section 3.3.1, and
Metqod 2 described in ;ection 3.4.5 is used for verifying the optimality
condﬁtions.

For the cases corresponding to Tables 5.5 and 5.7, k: is equal to
k and there are k:+1 equations and k; unknowns for the solution of (3.46)
and (3.51). The non-zero values of the components of r for these cases
correspond to the residuals of the dependent equationsm(refer to Sections
3.4.5, 3.4.6 and Appendix B).

In interpreting these results one may associate the results cor-
responding to Tables 5.4 and 5.6 in saying that the main criterion is how
close to equal the ripples are and the results of Tables 5.5 and 5.7
in how small the size of the linear combination is in comparison with the
sizes of the individual gradient vectors. In the first case we are
satisfied with the criterion from a practical point of view, in the second

the linear combination is about 2 to 4 orders of magnitude smaller than

the gradient vectors.

5.4.3 Discussion

The grazor search algorithm is found to be more efficient than
the Fletcher-Powell method on the problems chosen. The method proposed
by Fletcher appears to be the most efficient of the methods used for near-
minimax results in efficiency and consistency in reaching the vicinity of

the optimum. The Jacobson-Oksman method, although giving good results,
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appéared to be sensitive to scaling.

‘ It has to be mentioned that the Fletcher-Powell package, as
available in the IBM Scientific Subroutine Package, has a programming
error. Appropriate corrections have been made and the Fletcher-Powell
method has been applied to a number of test problems. The results have
indicated that very little improvement is obtained for the correéted
version. The Fletcher-Powell results, as shown in Tables 5.1-5.2, corres-
pond to the uncorrected version, and it is expected that the corrected

version might improve the function evaluations slightly.

5.5 New Approaches to Minimax System Modelling

In this section, some new ideas are presented so as to satisfy
stringent design requirements (Béndler and Srinivasan 1973b, 1973e). In
Section 5.4, cz was assumed fixed. It may, however, be unacceptable to
fix ci at a certain value, in which case a realistic trade-off between
transient and steady-state errors can be achieved. The design require-
meht may be such that arbitrary transient and steady-state response
specifications need be imposed on the model for a desired performance
criterion. It would also be realistic to expect the modelling procedure
to be automated in such a way that it is possible to move from lower-
order models to high-order ones whenever, say, the solutions satisfy the

necessary optimality conditionms.
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S.SLl A Generalized Objective Function

It is possible to extend the ideas of constrained minimax op-
timization (discussed in Section 3.3) to system modelling so that a
generalized objective function can be defined to take into‘aécount both
the transient and steady-state response errors. The following additional
notation is introduced.

Suco is the upper bound of the system specifications at
steady-state
S is the lowér bound of the system specifications at
steady-state
e =¢ -S is the error between upper steady-staie specifications
and model steady-state value
is the error between lower steady-state specifications
and model steady-state value
The problem may now be formulated into two forms as follows. The

first one minimizes with respect to ¢ and ¢k+l
N

V(9,8 ,q2%,0,,,0 ) = max (41 ,7507,1-0 (b, - 1e; (OID)
Pabpr1®tpastyd toeto,m et P Te

¢k+1_a£me2m’¢k+1+auweuw]
(5.15)

- m . .
where o, % % are positive. If c, is fixed such that ezw and €0

are positive, the objective function (5.15) reduces essentially to U(¢)

4v)
in (5.3). The second one minimizes with respect to ¢
N
W = . -
(@5Wps¥ye) = max  Lleg (81w e v e ] (5.16)

tie[O,T] no 2
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where

=0 for -e, &0

Qoo
W ' (5.17)
> 0 for € 2 0
= 0 for € oo <0
LA | | (5.18)

>0 for e
uon

[
o

if cﬁ is fixed within satisfied specifications the above cbjective
fuﬁction reduces to U(¢) in (5.3).

0, .

In cases where suitable constraints - including parameter con-
straints - are imposed, the above procedure may be used to incorporate
them in the objective function. In many cases, it is convenient to
choose 5, =5 = cl .

yeo )

5.5.2 Automated Lower-order Models

One of the major problems that is encountered in modelling is to
decide whether a certain lower-order model is acceptable or not. If the
model is too simple so that computing time for optimizing model parameters
'is small, the approximation to the original system may be very bad, while
if the medel is complex; then the very need for system modelling is lost.
If one were to strike a reasonable compromise between the speed with
which the model is optimized, and the accuracy of the approximation, it

would not be unreasonable to devise a scheme whereby one could increase
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the komplexity of the model in an automated fashion after a certain
numﬁer of iterations or computer time. It is, however, important to
keeﬁ in mind the desirability of making this increase in complexity as
smooth as possible, so that the objective function value is not degraded.
Thus, either the number of parameters could be increased for a model with
a certain order, or the order of the model itself can be increased.

Let H; n denote an optimized model of the form (5.1). Three

2

possibilities occur as follows.

(i) Increase in parameters only

*
Hm,n(s) M Hm+p,n(s)
Here bm+p’ bm+p-1”"’bm+1 are initially assumed to be zero so that
x
H | = H in the first iteration.
m+p,n m,n

(ii) Increase in order

*
Hm,n(s) M Hm+q,n+q(s)
nge q poles of Hm+q,n+q(s) are assumed to cancel with ¢ zeres

‘ *
initially, so that H =H in the first iteration. In this case,
m+q,n+q m,n

initial guesses for q poles (or zeros) are necessary.

(iii) Increase in order and parameters

H (s) + H (s)

m,n m+p+q,Nn+q
Here b PN ) are assumed to be zero initially and that there is
m+qg+p m+q+1

a cancellation of q zeros and q poles at start, so that
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*
H in the first iteration.

Hm+ﬁ+q,n+q = “m,n
| A careful choice of initial parameters can make the increase in
model complexity smooth so that the whole modelling procedure can be

automated on a small digital computer on-line.

5.5.3 Optimality Conditions

When a certain low-order model is being optimized, it may be use-
ful to investigate intermediate or final solutions after a certain number
of iterations of the modelling algorithm, or after a certain convergence
criterion is reached, so that one may decide whether to carry on with
further optimization, to increase the order of the model, or to terminate
altogether. For minimax objectives, it is possible to test the optimality

by the procedure outlined in Section 3.4.

5q5.4 Results

Two examples were considered, and two second-order models and a

third-order model were chosen as follows.

b

Hyp(s) = ———— (5.19)
S +als+a0
B,s+B
H, . (s) = —t——9_ (5.20)
12 52+A S+A
1549
2
X, S +X_.S+X
) 65 "X55*Xy
Hys(s) = (5.21)

2
(s+x3)(s +x25+x1)
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The transition between the models can be made smooth by making

theffollowing substitutions ‘at the start of the new model.

% * % *
Hop > Hyp * Ag = g, Ay = 2y, By = by, By =0

* * * . . *
»H02 -+ H23 : xl = ao, X, = al, Xg = positive value, X, = x3b0’

*
Xg = bO’ Xe = 0

* * %* &

H,, >~ H s X, = A =

1 0 X2 T Al’ Xz positive value, X, = B0 Xz,

* %* *
X. = B, x B

5 = By Xz + By, X = By

Two cases were considered for both examples.

In|the first case, c. is fixed, and

wzw = wuoo =0
U) = max e (9)]

n tie[O,T] n

m . .
In the second case, c_ is varied, and

w =W =W
Qoo u®e oo

U(¢) = max  [(le () |,-w e, ,w_e I
vootel0, T T . u

A 9th-order nuclear reactor system was chosen for one example,
where a step input is considered so that the power level of the reactor

system changes from 90 to 100 percent of the full power (See Bereznai 1971
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and /Section 3.4.7). T was equal to 10 seconds.

The results, shown in Table 5.8, indicate that the increase
in order of the model did not produce any large improvement in ﬁ, the
minimum value of U, and in this case a model increase is quite waste-
ful from the computing viewpoint. On the other hand, an improvement
in the transient error at a slight expense on the stéady—state error
is bbtained.

Another system considered was the 7th-order control system prob-
lem mentioned in Section 5.4. T was equal to 8 seconds though the re-
qunses shown in Figs. 5.5-5.7 were taken up to 20 seconds. c: was equal

toiO.lllll. The results are summarized in Table 5.9.

1
5.5.5 Discussion

The results indicate that when cz is fixed increasing the order
oféthe model does improve the transient errors, and it has been shown in
SeLtion 5.4.2 that for the third-order model both the 5-ripple and 6-
ripple solutions satisfy the necessary minimax optimality conditions.

It is interesting to note that in all the cases considered, the third-
oﬂder model gives the best result corresponding to the same transient
eﬁror and three different steady-state errors. Some of the optimal para-
meters when CE is fixed tend to have nearly zero real parts which may make
the model oscillatory. Using appropriate parameter constraints (as in-

dicated in an earlier section) satisfactory results can be obtained which

would guarantee a minimum damping of the model for a step input.
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TABLE 5.8

RESULTS FOR NUCLEAR REACTOR SYSTEM MODELLING

v
Case Model 1000 U 1000 max[—ezm,eum]
H02 2.9234 0
c: fixed
. le . 2.7018 0
at Co
H23 2.4040 0
cz varied
H23 1.2167 1.2166
L =1
S, =8 =cS
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Fig. 5.5(a) Seventh-order system modelling example. Optimal responses for a second-

order model with no zeros.
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Fig. 5.5(b) Seventh-order systém modelling example. Optimal
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Fig. 5.6(a) Seventh-order system modelling example. Optimal responses for a

second-order model with one zero.

AN



error x 103

~~_ B 20
time (sec)

steady-state fixed

Fig. 5.6(b) Seventh-order system modelling example.. Optimal error curves

for a second-order model with one zero.
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Fig. 5.7(a) Seventh-order system modelling example. Optimal responses for

a third-order model with two zeros.
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Fig. 5.7(b) Seventh-order system modelling example. Optimal error curves

for a third-order model with two zeros.
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RESULTS FOR SEVENTH-ORDER SYSTEM MODELLING

TABLE 5.9
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v
Case Model 1000 U 1000 max Fig.
[-ekm’euw .
Hy, 3.7635 5.5
¢, fixed at  H, 2.4872 5.6
s -
¢y for ti-T H23
(6 ripple) 1.0207 5.7
(5 ripple) 1.2140 -
c® varied H 4.1656 4.1656 5.5
w 02
w_ =1 Hy, 4.1582 4.1582 5.6
- =S
S gou=S y=C.. Hys 1.0201 0.91785 5.7
¢® varied H 7.7657 7.6945 -
© 02 -6
6 x 10
W, =§1o Hy, 7.8624 0. -
S 4,=0-11061
H, s 1.0201 9.8483 -
x 10-7

S, =0.11161
uoe
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5.6 Conclusions

The lower-order modelling of high-order systems for minimax
objectives has been considered in detail, and the grazor search method has
been critically compared with efficient minimization methods for least pih
objectives. The grazor search method is very reliable, and the Fletcher
method has been observed to be both reliable and efficient. The ideas
proposed in this chapter make it possible to automate the modelling
procedure, and with the availability of efficient optimization techni-
ques, on-line system modelling and control is entirely feasible. The
suggested procedures can be effectively used to get desired optimal models
in the minimax sense within user-specified computing times and error

allowances.



CHAPTER VI

DISCUSSION AND CONCLUSIONS

The thesis covers the areas of minimax approximation methods as
applied to electrical network design and system modelling in great de-
tail. A reliable algorithm has been proposed and applied to a variety
ofipractical minimax design problems. The method has been critically com-
pa;ed with existing methods for efficiency and reliability, and works
very well on most of the problems considered. The philosophy of system
modelling is discussed at length, including various techniques involved
in implementing the models. Automated modelling and design of high-
oraer systems is shown to be feasible, and the present state of minimax
circuit design is considered in detail.

| The new ideas presented in the thesis have been verified and
uskd in computer-aided design of a variety of electrical networks sub-
ject to different objectives and various constraint specifications.
Filters can now easily be designed to meet upper and lower response
specifications at predetermined frequencies, within reasonable computing
time and desired accuracy. The choice of a circuit model and objective
fqnction are as important as the choice of a reliable and efficient
oﬁtimization technique to give optimal model parameters. If suitable
-optimization techniques or modelling procedures do not exist for a parti-
cular system, the designer is confronted with the task of improving the
modelling technique and developing an efficient algorithm to evolve a

realistic design. This involves a great deal of system experience and

118
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expertise in the state of the art methods of computer-aided design.

The contributions of this work may be listed as follows.

(1) A new method called the grazor search algorithm has been
proposed for minimax objectives. This method has been tested extensively
on a number of problems including electrical network design and system
modelling.

(2) A practical way of accommodating constraints in the minimax
optimization problem has been proposed and applied to some problems.

(3) Methods for investigating a solution for minimax optimality
have been proposed and used to test the optimality conditions on a variety
of design problems.

(4) The grazor search method has been critically compared on lower-
order minimax modelling of a high-order system with three efficient methods.

(5) Some ideas have been presented for automated system modelling,
by means of which the order of the models- can be increased in an auto-
mated fashion whenever certain criteria are satisfied, ﬁnd optimality
conditions can be directly implemented on the computer. Suitable transient
and steady-state constraints can also be: taken into account. The pro-
posed approach makes it feasiblej@o automate on-line modelling.

(6) The grazor search method and the method for investigating
minimax optimality conditions have been programmed on a digital computer
and user-oriented computer program packages have been developed.

It is felt that replacing the present linear search by a more efficient
search technique will improve the efficiency of the grazor search algorithm.
Further, the concept of automated modelling could be extended to include auto-

mated control so that it may be applicable to on-line system modelling and

control.



APPENDIX A

GRAZOR SEARCH PROGRAM FOR MINIMAX OPTIMIZATION
A.1 Introduction

The grazor search program is a package of subroutines that
optimizes the designable parameters of networks or systems to meet
minimax objectives. Full details of the method, including mathe-
matical flow charts and a discussion of computational experience,
have already been covered in Chapters III, IV and V. A computer pro-
gram written in Fortran (Version 2.3 and Scopé Version 3.3 for the

CDC 6400 computer) is listed at the end of this Appendix.

A.2 Nomenclature

The following is a list of some of the arguments and important
variables of the grazor search package as indicated in the flow charts
of Figs. 3.2-3.4.

a scale factor for determining the magnitude of the parameter
step to be taken at the end of linear program
o initial specified value of a, previous value of a which gave a

satisfactory improvement

& minimum allowable o
B reduction factor for a
*
Y factor of the step A¢° which gives the best new point, when

LY
starting from ¢°
N
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number of discrete maxima under consideration, kr’ is increased
by one (if kr < nr-l) or set equal to one (if kr = nr) if the
improvement of the objective function at the new best point as
compared to the value at the previous point is less than this
quantity

main program is eventually terminated if the improvement of
objective function at the new best point as compared to the value
at the previous point is repeatedly less than this quantity
specified factor of the initial interval of linear search which
determines the final-resolution bétween two internal points of
the search

current point

starting point, current best point

increment from ¢° which gives the first improved point obtained
in each iteratigh on entering the linear search

ith sample point

sample points corresponding to the ;i

sample points corresponding to the Yoi

logical variable; if .TRUE. the Zyi are calculated, otherwise
they are not calculated

identifies the ith highest of the yoj

dimensionality of parameter space

number of local discrete maxima ;i under consideration

number of sample points L2}

available number of discrete local maxima Y

value of the objective function at ¢
4y
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value of the objective function at ¢°
n

function value at wi for a given ¢

ith highest discrete local maximu;

gradient of Y3 with respect to 2

discrete local maxima implied by the Y

logical variable, initially set to .FALSE., is reset to .TRUE,
only if there are failures or improvements in objective func-

tion value less than e' after considering values of kr from

1 to n in one complete cycle.

A.3 Program Description

The user may call the package from his own program as follows.

CALL GRAZOR (ALPHAO,ALPMIN,BETA,EPS,EPS1,ETA,PHO,PSI,K,KR,N,

NR,UPHO, TERM)

The variables in the argument list are:

FORTRAN Name Variable
ALPHAO %
ALPMIN &
BETA B
EPS €
EPS1 e
ETA n
PHO $°

"
PSI vy
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K k
KR k

T
N n
NR ' n

T
UPHO . U¢°
TERM TERM

The input variables are o, % B, s €' 1> ¢°, $;» k, k. and n while the
’ "

ouﬁput variables are gy ¢°, k., n_, and TERM.

4 " T ‘r U¢o
It was convenient to place the following user-specified variables
in
COMMON/GRZR/NCOUNT, IPRINT, UNIT, IOPT, IDATA
NCdUNT number of function evaluations at any stage of the iterative
: cycle of grazor, is initially set to zero by the user.
IP@INT logical variable which, if .TRUE., enablés all intermediate
| and final results to be printed out, and no print-outs other-
wise.

UNIT integer variable specifying the data set reference number of
the output unit.

IOPT integer variable denoting the number of times grazor search
package was called by the user, is set to zero initially by
the user.

IDATA logical variable which, if .TRUE., enables the input data to
be printed out; otherwise not.

Fig. A.1 shows a typical main program for calling the package
and the form of a typical analysis program while Fig. A.2 shows typical

print-outs of the package.
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...................O....................’..............0...

A TYPICAL MAIN PROGRAM FOR TAt GRAZOR SEARCH ALGORITAM
FOLLOWS==~==—=

DIMENSION PHO(15)4PSI(11)

LOGICAL TERM,IPRINTsIDATA

INTEGER UNIT
COMMON/GRZR/NCOUNTs IPRINT sUNIT» IOPT s IDATA
TYPICAL INPUT VALUES FOLLOW

ALPHAO=1.

ALPMIN=1+0E-06

BETA=10.

ETA=0.01

KR=1

NCOUNT=0

IOPT=0

INPUT VALUES FOR THE SPECIFIC PROBLEM FOLLOW
IPRINT=eTRUE
IDATA=«TRUE»

UNIT=6

EPS=1.0E-03
EPS1=10E-06

K=2

N=11

PHO({1)=1le

PHO(2)=3.
PSI(1)=0e5

DO 1 I=2sN
PSI(I)=PSI(1-1)+0.1

MINIMAX OPTIMIZATION STARTS

DO 2 I=1,100
CALL GRAZOR(ALPHAOsALPMINSBETASEPSIEPSL1sETASPHUSPSI sK KK

1NsNR sUPHO s TERM!

.........‘...........'.....'......‘....l.............O.....

IF(TERM) GO TO 3
CONTINUE

STOP

END

A TYPICAL ANALYSIS PROGRAM FOR GRAZOR SEARCH ALGURITRHM
FOLLOWS==~=—==——

SUBROUTINE ANAL (PHOsFsDERIVsKsYsGRADY!

DIMENSION PHO(1) sGRADY (1)

LOGICAL DERIV

THE VALUE OF Y AT A SINGLE SAMPLE POINT F IS CALCULATED
HERE

IF(+NOTeDERIV? RETURN

THE DERIVATIVES GRADY(1/sGRADY(2/) seeesGRADY(K) OF THE
FUNCTION Y WITH RESPECT TO PARAMETERS PHO(1/sPHO(2)seee>
PHO(K) ARE CALCULATED HERE

RETURN

END

Fig. A.l1 Typical main program and analysis program
for the grazor search package



THE FOLLOWING IS A LLIST OF. INPUT DATA

ALPHAD = 1.0000000CE+0D

ALPMIN = 1,0000CUDOE=~d6

BETA = 1.0000C00CE+D1

EPS = 1,00000000E~03

EPS1 = 1,0000000CE~06

ETA = 1,0900000C€-02

K = I

KR = 1

N = 11

TERM s F

PHO( 1) = 1.0)0GOUNLE+UD

PHO( 2) = 32.3J00000CE+00
PSI({ 1)= &,00300000:-01 PSI( 2)= 6,00000000E-01 PSI{ $)= 7.00000000E=01 PSI( 4)= B8,00000000E-01
p31{ B5)= 82J0000000E-01 PSI{ 6)= 1.00000000E+00 PRI( 7)= 1,10000000E+00 PSI( 8)= 1,20000000E+00
PSIC @)= 1,30000000E+00 PSI( 10)= 1,40000000E+0N PSI( 11)= 1,500000C0E+00 PSI(

(a)

NUMBER OF GRAZOR CalLS$

TWF ARAZ09 SFARCH STRATFGY Fna MewtMax NRJECTIVES

NUMBER AF FUNCTION FValLUATIANS

MENFMaX OBJECTIVE FUNCYYAN

VaRTAHLE PARAMETER VE2THR
.

10PT NCouNnT HPHN Pup

1 v 2.517241233E-01 sanooooouos.nn
«000N00V0Esnn
\ 12 1,23403651€=01 1043929472E+19
3¢00571067€+An

2 1,22711473E=0 »3695734
% -2 ! §ih0a9Rd35EMA
2 4 9,85893184HE-02 2eN3206966F¢n9
4,1622A197E¢0n
3 56 9.522510555-0, 2.081025%4E+9n
4¢14559374Fenn
L] 72 9,22517321€E=09 2018323396E+nq
4e37175240E+90
L] 8) 9.2160K71NE0> 2e21712712E¢0
4044191859E+9n
N 97 9.18506526E<0> 2422026503404
4e46040279E4nn
“ 115 9,18493562E=02 2422027815E00p
6e44039643EenA
4 132 9,18409273E02 2¢23079473E+9
Ge4616434TEsnn
4 152 9,18381164E-02 2¢230R2342E¢ 00
4:46156292BEenn

TERM=4 TRUE « » IMPROVEMENT IN OBJECTIVE FUNCTION (FSS T4an EPS1=  1.00000000F=As

(b)

Fig. A.2 (a) Typical printout if IDATA is .TRUE. (b) Typical printout

if IPRINT is .TRUE.

SZ1
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A.4 Subprograms

The subroutine ANAL(¢, wi, DERIV, k, Yis v yi) is a user-supplied
N N
analysis program to evaluate Y3 and/or V Y5 at a given point ¢. If DERIV

N 2"
is .TRUE., the Vyi are calculated, otherwise they are not calculated.

The folTowing subtoutine need not be written by the user, but is
part of the grazor search package. The function subprogram Y(¢,¢i,k)
calculates the Yy cofrespohding to the point ¢ by calling ANAL? The
subroutine LOCATE (i,wi,k,n,u¢) evaluates themobjective function U¢ by
ca;ling Y(¢,¢i,k) for i = 1,2,...,n. The grazor search package also
usés a lin:ar program solving routine called SIMPLE (see Subroutine
SIMPLE), which is a modified version of a program documented with the

SHARE Distribution Agency, and written by R.J. Clasen (Reference No.

SDA 3384). Section A.7 includes a listing of this subroutine.

A.5 Comments

As it stands the package has been programmed to handle up to 15
variable parameters and 15 ripples. The choice of input parameters
inaluding scale factors may be critical to efficiency of the algorithm,
and the grazor search strategy should be well-understood before the
user attempts to use this program.

This program was run and tested on a CDC 6400 computer. The
Fortran deck consists of 901 cards which includes detailed comments at

appropriate places. The package requires roughly 20,000 octal units of

computer memory.
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A.6 Discussion

The grazor search algorithm has been programmed in such a way
that it allows a certain amount of flexibility to the user. Thus, when
GRAZOR is called once, one complete iterative step of the algorithm
results, and by introducing GRAZOR in a DO loop, the user has the com-
plete freedom to make his own decision about termination subject to his
own convergence criteria, or printing out intermediate results accord-
ing to a preferred format, or branching out to another optimization
package if desired. Appropriate diagnostic messages are provided in the
program wherever necessary.

As this is a gradient strategy, it is important that the grad-

ients as evaluated by the analysis program are correct.
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A.7 Grazor Search Fortran Program Listing
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GKAZOR SEARCH PROGRAM FUR MINIMAX OBJECTIVES

e - ————— - ————— - — ——

AUTHORS JeWeBANDLER AND TeVeSRINIVASAN s COMMUNICATIONS RESEARCH
LABORATORY AND DEPARTMENT OF ELECTRICAL ENGINEERINGS
MCMASTER UNIVERSITY»sHAMILTONsONTARIOsCANADA

THE GRAZOR SEARCH ALGORITHM HAS TO BE PLACED IN A LO LOOP pY THE
USER SO THAT THE ALGORITHM MAY BE CALLEU AS MANY TIMES AS IS
NECESSARY TO GET SATISFACTORY IMPRUVEMENTS IN THE OBJECTIVE
FUNCTION

@O0 0SSP OO I ORONORS RSB RNROOS RSN NBRPOONENEEN BRI NNBORNRNEPEEND
A TYPICAL MAIN PRUGRAM FOR GRAZOR SEARCH ALGORITAM FOLLOWS====<==-
DIMENSION PHO(15)sPSI(11}

LOGICAL TERMsIPRINTsIDATA

INTEGER UNIT

COMMON/GRZR/NCOUNT s IPRINT yUNITsIOPT s IDATA

TYPICAL INPUT VALUES FOLLOW

ALPHAC=1.

ALPMIN=1e0E-06

BETA=10.

ETA=0.,01

KR=1

NCOUNT=0

ICPT=0

INPUT VALUES FOR THE SPECIFIC PROBLEM FOLLOW
IPRINT=¢ TRUE«
IDATA=eTRUE»
UNIT=6
EPS=140E~03
EPS1=1.0E=~06
K=2
N=11
PHO(1)=1.
PHO(2)=3.
PSI(1)=0.5
DO 1 I=2»N

1 PSI(1)=PSI(I-1)+0.1

MINIMAX OPTIMIZATION STARTS

DO 2 T=19100

CALL GRAZOR(ALPHAOSALPMINSBETASEPS+EPSL1sETAsPHOSPSIsKesKReNsNRsUPHO

1sTERM)

IF{TERM}) GO TO 3
2 CONTINUE
3 STOP

END

[ RN RN NN ENNE NN RN NN NN LN NS NN N NN NN R NN NN RENNNENRENNNYNNNNNENNENYREN]
A TYPICAL ANALYSIS PROGRAM FOR GRAZUR SEARCH ALGORITHM FOLLOWS==--
SUBROUTINE ANAL (PHOsFsDERIVsKsY»GRADY)

DIMENSTON PHU(1)9GRADY (1)

LOGICAL DERIV
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THE VALUE OF Y AT A GIVEN SAMPLE POINT F IS CALCULATED HERE
IF{«NOT«DERIV) RETURN

THE DERIVATIVES GRADY(1)sGRADY(2)seeeesGRADY (K} OF THE FUNCTION Y
WITH RESPECT TO PARAMETERS PHO(1)sPHO(2)seeee sPHO(K) ARE
CALCULATED HERE

RETURN

END

PP B C L0V E00CLOEPRPLOITCIROOROPPNRRIOEtPEP0RONOEREOPERSOGIOIPNEROLIIEDBOITIS
SUBROUTINE GRAZOR (ALPHAGALPMINSBETASEPS»EPSLsETAsPHOIPSI sKsKR N
1NRsUPHOs TERM)

THE USER HAS TO SPECIFY VALUES FOR ALPHAOSALPMINsBETASEPSstPSLeLTA
sPHOSPSI sKsKRsN

STARTING VALUES ==——=—===

ALPHAO=1,

BETA=10.

KR=1

SUGGESTED STARTING VALUES~=~==——= .

ALPMIN=]1e0E-06

ETA=0.01

EPS1sTHE MINIMUM IMPROVEMENT IN THE OBJECTIVE FUNCTION BETWEEN
SUCCESSIVE ITERATIONSsMUST BE SPECIFIED BY THE USER
EPS=EPS1%1000.

THE FOLLOWING COMMON STATEMENT IS TO BE SPECIFIEv BY THE USER
COMMON/GRZR/NCOUNT s IPRINTsUNIT s IOPT » IDATA

NCOUNT=NUMBER OF FUNCTION EVALUATIONS AT ANY STAGE OF THE
ITERATIVE CYCLE OF GRAZOR

NCOUNT IS INITIALLY SET TO ZERO BY THE USER

I0PT CORRESPONDS TO AN ITERATIVE CYCLE OF THE GRAZOR SEARCH ALGORI
THMsAND IS THE NUMBER OF TIMES OPTIMIZATION PACKAGE GKAZOR HAS
BEEN CALLEDL.IOPT IS INITIALLY SET TU ZERO BY THE USER

IF IPRINT IS oTRUEe ALL INTZRMEDIAT: AND FINAL RESULTS ARE TU BE
PRINTED OUT»OTHERWISE THERE ARE NO PRINT-0UTS '
UNIT IS AN INTEGER VARIABLE SPECIFYING THE DATA SET REFERENCE
NUMBER OF THE OUTPUT UNIT

IF IDATA IS «TRUE« THE INPUT DATA IS PRINTED OUTsOTHERWISE NOT
THE USER HAS TO SPECIFY VALUES FOrR IPRINTsUNITsIDATA

THE VARIABLES PSI AND PHO HAVE TO BE DIMENSIONED IN THE CALLING PR

OGRAM CORRESPONDING TO MAXIMUM VALUES OF NsAND K(=15),RESPECTIVELY
THE USER HAS TO INDICATE IN HIS MAIN PROGRAM THAT TERMeIPRINT»
IDATA ARE LOGICAL VARIABLES AND THAT UNIT IS AN INTEGER VARIABLE
IF TERM IS «TRUE«. AT THE END OF AN ITERATIVE CYCLE OF GRAZOR»

THE USER HAS TO DECREASE THE VALUES OF ALPMIN AND ETA BEFORE
GRAZGR CAN BE CALLED AGAIN IN THE MAIN PROGRAM

THE USER HAS TO FURNISH SUBROUTINE ANAL FOR IMPLEMENTING THE
GRAZOR SEARCH STRATEGY

130

PPrrrPrrP>rPrPrrrrPrrrPr rprPrrrrrrrPrrer2>rrPr2rP2rP>re>rPP>EPP>PrE>>2P2ERPRPE>P>>>

1lo
111
112
113
14
115
116



ANNANAONNANNANADAANNNANNDNAOANAAAANANANAAANNNOAN A —

THE FOLLOWING IS A BRIEF SUMMARY OF THE VARIABLES IN GRAZOK-—====
PHO= THE PARAMETER VECTOR.IT 1S EITHER THE STARTING POINT OR THE
CURRENT BEST POINT

PHI= CURRENT PARAMETER VECTOR

K=NUMBER OF PARAMETERS PHO

PSI= VECTOR OF SAMPLE POINTS

N= NUMBER OF SAMPLE POINTS PSI

UPHO= OBJECTIVE FUNCTION AT PHO

UPHI= OBJECTIVE FUNCTION AT PHI

YMAX = VECTOR CONSISTING OF THE LOCAL DISCRETE MAXIMA IMPLIED BY
THE FUNCTIONS Y sARRANGED IN UECREASING MAGNITUUEsOVER N SAMPLE
POINTS PSI

PSIMAX= VECTOR OF SAMPLE POINTS CUKRESPONDING TU THE VECTOR YMAX
NR= NUMBER OF DISCRETE LOCAL MAXIMA YMAX

KR= NUMBER OF DISCRETE LOCAL MAXIMA YMAX UNDER CONSIDERATIONKR IS
LESS THAN OR EQUAL TO NR

GRAD = MATRIX OF FIRST DERIVATIVES OF VECTOR YMAX WITH RESPECT

TO THE PARAMETERS PHO

TERM= LOGICAL VARIABLE WHICHsIF TRUEsINDICATES THE CUNVERGENCE OF
THE GRAZOR SEARCH ALGORITHM

THE DIMENSION OF SUBSCRIPTED VARIABLES IN GRAZOR CORRESPOND TO
MAXIMUM VALUES OF K=15 AND NR=15

THE SUBSCRIPTED VARIABLES DUMMY sPH1 sDELPHI «DELPHNSDELP ARE
DIMENSIONED CORRESPONDING TO A MAXIMUM VALUE OF K=15

THE SUBSCRIPTED VARIABLES YMAXsPSIMAX ARE DIMENSIONED
CORRESPONDING TO A MAXIMUM VALUE OF NR=15

MATRIX GRAD IS DIMENSIONED CORRESPUNDING TO MAXIMUM VALUES UF
NR=15 AND K=15

THE USER HAS TO SUPPLY AN ANALYSIS PROGRAM AND THE FOLLOWING 1S A
BRIEF DESCRIPTION OF ITS ARGUMENTS

SUBROUTINE ANAL (PHOsFsDERIVsKsYsGRADY} CALCULATES THe VALUE UF
FUNCTION Y AND ITS FIRST PARTIAL WERIVATIVES GRADY(1)sGRADY(2)ssese
e sGRADY(Ki WITH RESPECT TO THE PARAMETERS PHU(1)sPHU{2!se0esses0se
essPHO(K) FOR A GIVEN SAMPLE POINT F

PHO AND GRADY ARE TO BE VARTABLE-DIMENSIONED IN ANALLOR
DIMENSTONED CORRESPONDING TO THE MAXIMUM VALUE FOR K(=15)
DERIV=LOGICAL VARIABLE WHICHsIF TRUE,ALLOWS THE GRADLY TO BE
EVALUATEDs OTHERWISE GRADY ARE NOT EVALUATED

DIMENSION PHO(1)s PSI(1)s DUMMY{L157y PHI{15}s YMAX(Ll5}s PSIMAX(L5)
1s GRAD(15915)s DELPHI(15)s DELPHN(15)s DELP(15)s X(31}y A(1l6s311)»
2B{16)s C(31}y KO(B)s PS{16)s JH(16)s XX(16)y YY(16)s PE(16)s E(16>
116)

LOGICAL TERMsIPRINTs1DATA

INTEGER UNIT

COMMON /GRZR/ NCOUNTsIPRINTSUNIT»IOPTsIDATA

IOPT=10PT+1

IF {(NCOUNT<EQeO) TERM=eFALSL

IF (TZRM) GO TO 32

ALPHA=ALPHAOQO

ALPHAT=ALPHAO

1CLOCK=0
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1STOP=0

CALL SELEC {(PHOsPSIsPSIMAXsKsNsNRsYMAX!
UPHO=YMAX (1)

MCOUNT=NCOUNT+1

IF (NCOUNT«GE«2}) GO TO 2

IF (IDATA) WRITE (UNIT#38) ALPHAO»ALPMINSBETASEPS»EPSLIETAIK KRN,
1TERMs {TsPHO(I) sI=14K)

IF (IDATA) WRITE (UNIT#39) (1aPSI(I)sI=1sN!}
IF (IPRINT) WRITE (UNIT»34) IOPTyNCOUNTsUPHOs (PHO(I)1=1,K)
IF (ICLOCKeGTel) GO TO 3

IF (KReNEel) GO TO 4

KR=1

DO 6 L=1sKR

CALL ANAL (PHOsPSIMAX(L)»«TRUEe sKs YMAX (L) sDUMMY !}
DO 5 I=1sK

GRAD(L s1)=DUMMY (]}

CONTINUE

CONTINUE

IF {KR+EQsl) GO TO 22

KRI=KR+1

KRZ=KR+2

KR3=KR1+KR

DO 9 I=1sKR

DO 8 J=1sKR

IF (1.GTeJ! GO TO 8

AllsJ}=0.

DO 7 MM=14K
AlleJ)=A(TsJ)=GRAD (I sMMI*GRAD (JsMM/
CONT INUE

AlJsl)=At1sJ)

CONT INUE

CONTINUE

DO 10 I=1sKR

A(IsKR1)=1.0

CONT INUE

DO 12 I=1sKR

DO 11 J=KR2sKR3

All19J)=0e0

IF (JeFQe{I+KR1)} AllsJl=1a0
CONTINUE

CONT INUE

DO 13 J=1sKR

A(KRl1sJ)=160

CONTINUE

DO 14 J=KR1,sKR3

A(KR1sJ}=0.0

CONT INUE

DO 15 I=1»KR

B{I)=0.0

CONT INUE

BIKR1)=140

DO 16 I=1sKR3

C{1)=0a0

1F (T4FQaKR1)} C(I)==1e0

CONT INUE
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21

22

SUBROUTINE SIMPLE IS5 NOW GOING TO Bkt CALLELeANY ALTERNATIVE
CHOICE TO THIS SUBROUTINE 15 ALLOWABLE FOR THE USER AS LONG AS IT
PERFORMS THE FOLLOWING OPERATION—==—=~

SUBROUTINE SIMPLE SOLVES A LINEAR PROGRAMMING PROBLEM OF
MINIMIZING C*¥X SUBJECT TO A*X=BsWHERE XsCsB ARE VECTORS OF LENGTH
KR3sKR3sKR1 RESPECTIVELYsAND A IS A MATRIX OF SIZE KR1¥KR3

SUBROUTINE SIMPLE ATTACHED TU THIS PACKAGE IS A MODIFIED VERSION
OF A PROGRAM AVAILABLL WITH SHARE ULISTRIBUTION AGENCYsREFERENCE
NUMBER SDA 3384 AND WRITTEN BY RasJeCLASEN .

THE MODIFIED VERSION IS IN THE MCMASTER UNIVERSITY UATA PROCESSING
AND COMPUTING CENTRE LIBRARYsINFORMATION SHEET MILIS 543130

NA AND IFLAG ARE TO BE SPECIFIED BEFORE CALLING SIMPLE

IFLAG IS SET EQUAL TO ZERO

NA IS THE FIRST UIMENSION UF THt ARRAY A AND I5 SET EQUAL Tu THE
MAXIMUM VALUE OF NR+1(=161

X IS THE VECTOR OF DIMENSION 2Z#NA-1

THE FOLLOWING SUBSCRIPTED VARIABLES ARE PART OF THE ARGUMENT LIST
OF SIMPLE AND ARE TEMPORARY STORAGE SPACES TO BE DIMENSIONED IN
THE CALLING PROGRAM (GRAZOR)

PSsJHsXXsYY AND PE, ARE TEMPORARY STORAGE VECTORS OF DIMENSION NA
E IS A TEMPORARY STORAGE MATRIX OF DIMENSION.. (NAsNA#2-1)

KO IS A VECTOR OF LENGTH 6eUPON COMPLETIUN OF THE EXECUTION OF
SIMPLEs KO(1)=0 IF THE LINEAR PROGRAMMING PROBLEM WAS FEASIBLEe
THE SOLUTION LIES IN X(J}sJ=19KR3

IFLAG=0
NA=16

CALL SIMPLE (IFLAGIKR1sKR3sAsBsCsKOsXsPSsJHsXXsYYsPESEWNA)

DO 18 J=1sK

DELPHI(J)=0.0

DO 17 I=1sKR
DFLPHI(J)=DELPHI(J)=X(1)*GRAD(IsJ)}
CONTINUE

CONT INUE

THE INCREMENTAL PARAMETER STEP DELPHI IS NORMALIZED TO UNIT
LENGTH BY SUBROUTINE NORM

CALL NORM (KsDELPHIsDELPHN)

THE LINEAR SEARCH BEGINS

ALPHA IS A SCALE FACTOR FOR DETERMINING THE MAGNITUDE OF THE
NORMALIZED STEP DELPHN TO BE TAKEN FOR THE LINEAR SEARCH

ALPHAO IS THE INITIALLY SPECIFIED VALUE OUF ALPHA OR THE PRcVIULUS
VALUE OF ALPHA WHICH GAVE A SATISFACTURY IMPROVEMENT

ALPMIN IS THE MINIMUM ALLOWABLE ALPHA

IF (ALPHALT.ALPMIN) ALPHA=ALPMIN

DO 21 I=1sK

PHI(I)=PHO(I)+ALPHA%DELPHN{T)

CONT INUE

GO TO 24

A STEP TAKEN IN THE NEGATIVE GRADIENT DIRKECTION OF HIGHEST RIPPLE
DO 23 I=1,K

DELPHI(I}=-GRAD(1ls])
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29

30

CONT INUE

GO TO 19

CALL LOCATE (PHIsPSIsKsNsUPHI)
NCOUNT=NCOUNT+1

IF (UPHIe«LTsUPHO} GO TO 25

IF (ALPHALEWGeALPMIN) GO TO 30

ALPHA REDUCED BY FACTORS OF BETA

ALPHA=ALPHA/BFTA

IF (ALPHALLE<ALPMIN} ALPHA=ALPMIN
GO TO 20 '

PO 26 I=1sK
DELP(1)=ALPHA®DELPHN(I)

CONTINUE

DELP= INCREMENT FROM PHO WHICH GIVES THE FIRST IMPROVED POINT
OBTAINED ON ENTERING THE LINEAR SEARCH

ETA IS THE SPECIFIED FACTOR OF THE INITIAL INTERVAL OF LINEAR
SEARCH WHICH DETERMINES THE FINAL RESOLUTION BETWEEN TWO INTERNAL
POINTS OF THE SEARCH

FINT=ETA .
CALL GOLDEN {(GAMAs»FINTsPHIsPHOSDELPsPSI sKsNsUPHI sUPHU)

TERM IS SET TO «TRUEe AND GRAZOR RETURNS TO THE CALLING PROGRAM IF
UPHO-UPHI IS REPEATEDLY LESS THAN EPS1

IF ({UPHO-UPHI)LTW#EPS1) GO TO 30

ISTOP=0

DO. 27 I=1,K

PHO(I)=PHI(I)

CONT INUE

IF (IPRINT! WRITE {(UNITs37) IOPTsNCOUNTsUPHI s (PHO(I)»I=1sK!

IF THE OBJECTIVE FUNCTION UPHI AT A NEW POINT PHI Is LESS THAN THE
VALUE UPHO AT THE PREVIQUS PUINT PHU BY A VALUE GREATER THAN UR
EQUAL TO EPSeTH: NEW POINT IS CONSIUVEREL A SATISFACTORY
IMPROVEMENT o IF NOTsKR IS INCREMENTED BY 1 (FOR.KR LESS THAN OR
EQUAL TO NR-1) OR SET EQUAL TO 1 (FUR KR=NR)

IF {(UPHO=~UPHI)«LT<EPS) GO TO 31
UPHO=UPHI
ALPHAO=ALPHA*GAMA

GO TO 33

ICLOCK=1CLOCK+1

IF (ISTOP.EQ0) GO TO 1
IF {ISTOP.LE«NR) GO TO 3
TERM=-TRUE.

WRITE (UNIT»35) EPS1

GO TO 33

IF (KR.EQeNR) GO TO 28
KR=KR+1

1CLOCK=1

IF (ISTOP.EQ.0) GO TO 1
GO TO 4

ALPHA=ALPHAT
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I1STOP=1STOP+1
GO TO 29
UPHO=UPHI
ALPHA=ALPHAT
GO TO 29

WRITE {(UNIT.36)
RETURN

FORMAT (%1 #/43Xs* THE GRAZOR SEARCH STRATEGY FUR MINIMAX ObJECTIV
1FS #/83X g ¥ e e e e e e e —%//6X
2*NUMBER OF GRAZOR CALLS#*sB8Xp*NUMBEK OF FUNCTION EVALUATIONS#*s 7K+ %M
JINIMAX OUBJECTIVE FUNCTION*s10Xs*VARIABLE PARAMETER VECTOR®//15Xs*1
H4OPT#530X e #NCOUNT# 930X » ¥UPHO# 932X s ¥PHO®/// /14X 15930X515523X5E16480
518XsE16+8/1111XsE1648)) :

FORMAT (% TERM=eTRUE.s IMPROVEMENT IN OBJECTIVE FUNCTIUN LESS THAN
1EPS1=%3E1648) N

FORMAT (% THE GRAZOR SEARCH RUUTIAE CANNUT RESTART AS TERM 1S EWUA
IL TO «TRUEe FROM THE PREVIUUS ITEKATIONs ANU CONVLRGENCE CRITERIUN
2 HAS BEEN*/% REACHED FOR A SPECIFIED EPSLeTHE UNLY WAY TU RESTART
31S TO DECREASE THE VALUES OF ALPMIN. AND ETAe #/

FORMAT (//14Xs15930Xs15323X9E16e8918X9EL6e8/(111XsEL6eB))

FORMAT (49Xs* THE FOLLOWING IS A LIST OF INPUT DATA*/49Xs*=wmc—mm=

L e *//55X s ¥ALPHAO  =%3E1648/55X s ¥ALPM
2IN  =%,E1648/55Xs ¥BETA S*,E16e8/55X *EPS =%yE16e8/55K s *E
3PS =%,E1648/55X s *LTA =%y 16e8/55Xs *¥K =#s[5/55X s %K
4R =ty [5/55X 9 ®N =¥y lb/ 00X s ¥TERM =kel o/ /(DHX s *PHO (¥

59139%) =%,E1668))

FURMAT (/7 (8Xo#PSI (#9133 9%)=%yb]l6e8sbXa*PSI(*s]39k)zHetlbabisbXs*PSI(
1#9 3% )X 3160895 X9*¥PS1 (%9134 %)=%yLibe8))

END

B 08B0 0 RECRREIN PR R 0000300000000 000000 00000000 RRCERRPRISRIIESIOGECTST

SUBROUTINE SELEC (PHIsPSIsPSIMAXsKsntsNReYMAX)

IN THIS SUBROUTINE THE RIPPLES OF Trkt FUNCTIUNS Y AT A PUINT PHI
OVER N SAMPLE POINTS PSI ARE LOCATED AND SORTED GUT InN DECREASING
MAGNITUDE

ITAGsPMAXsMAX ARE DIMENSIONED CORRESPUONDING TU A MAXLMUM VALULL

OF NR=15

MAX = DISCRETE LOCAL MAXIMA IMPLIEV BY THE FUNCTIONS Y AT A PUINT
PHI AS SAMPLING PROCEEDS FROUM PSI(1) TO PSI(N)

PMAX= SAMPIE POINTS CORRESPONDING TO MAX

DIMENSION PSI(1)s PHI(L?s YMAX(L1)s FSIMAX(L’y ITAGLLOS)s PMAX(L1D]
1IMAX (1Y)

REAL MAX

NR=1

PMAX{1)=PS1(1)

MAX (1))=Y (PHI »PSI(1),sK)

YZ=MAX(1)
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KD=1

DO 4 I=2sN
YX=Y(PHI +PSI(1)sK)
IF (YX=YZ) 1912
KD=~1

GO TO 13

YMAXT=YX

LT=1I

IF (KDeEQe=1) NR=NR+1
KD=1

PMAX (NR)=PSI(LT)
MAX (NR)=YMAXT
YZ=YX

CONTINUE

CALL TGSORT (MAXsITAGsNKs1l!
DO 5 J=1sNR

LD=I1TAG(J)

YMAX (J}=MAX(LD)
PSIMAX(J}=PMAX(LD)

CONT INUE

RETURN

END

2 00000 0000000000000 NEterrttloIREeelacntnNsaiatitnnssItsessiioe

SUBROUTINE GOLDEN (GAMASETAsPHI sPHOSDELP sPSI 9K eNpUPHI s UPHO)

THIS SUBRUUTINE USES THE GULDEN SeCTION SEARCH Tu Fliau The GAMA
CURRESPONDING TO THE MINIMUM OF Thnt OBJECTIVE FUNCTION AT THE
POINT PHO+GAMA#DELP

PHIASPHIBsPHIU ARE DIMENSIONED CORRESPUNDING TO A MAXIMUM VALUE
OF K=15

COMMON /GRZR/ NCOUNTsIPRINTsUNIT»IOPTsIDATA
LOGICAL IPRINTsIDATA

INTEGER UNIT

DIMENSION PHO(1)se PHI(1)s DELP(1)s PHIA(L15}s PHIB(LY), PHIU(LD)}s P
1sI1(1)

TAU=0e5%(1e0+(5e0) %#%0e5)

TAUSQ=TAU*TAU

ETASETA*{TAU+1.)

GAMAL=0.

GAMAU=140

GAMAA=0.0

UPHIA=UPHO

DO 2 I=1sK

PHIU{1)=PHO(1)+GAMAU*DELP (1)

CONTINUE

CALL LOCATE (PHIUsPSIsKsNyUPHIU)
NCOUNT=NCOUNT+1

IF (UPHIUGLESUPHIA} GO TO 4
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GAMAR=GAMAL+ { GAMAU~GAMAL ) /TAU
DO 3 I=1sK
PHIA(I}=PHO(I)+DELP (1) *GAMAA
CONT INUE

GO 10 7

GAMAL=GAMAA

UPHIA=UPHIU

GAMAA=GAMAU
GAMAU=1 e +GAMAUXTAU

GO TO 1

DO 6 I=1sK
PHIA(I}=PHO(I)+DELP (I} *GAMAA
CONT INUE

CALL LOCATE (PHIAsPSIsKyNsUPHIA)
NCOUNT=NCOUNT+1

GO TO 9

DO 8 I=19K
PHIR(T1)=PHO(I1)}+DELP (1) *GAMAB
CONT INUE

CALL LOCATE (PHIBsPSIsKsNsUPHIB!
NCOUNT=NCOUNT+1

IF ((GAMAB=GAMAA) «LT.ETA! GO TO 11
IF (UPHIASGE«UPHIB) GO TO 10
GAMAU=GAMAB

GAMAR=GAMAA

UPHIB=UPHIA

GAMAA=GAMAL+ (GAMAU-GAMAL } /TAUSQ
GO TO 5 :

GAMAL =GAMAA

GAMAA=GAMAR

UPHIA=UPHIB

GAMAB=GAMAL+ (GAMAU—GAMAL ) /TAU
GO TO 7

IF (UPHIALLTWUPHIB) GO TO 12
GAMA=GAMAR

UPHI=UPHIB

GO TO 13

GAMA=GAMAA

UPHI=UPHIA

DO 14 I=14K
PHI(I}=PHO(I)+GAMA*DELP (1)
CONT INUE

THIS VALUE OF GAMA IS THE FACTOR OF THE STEP DELP WHICH GIVES THE
BEST NEW POINTsWHEN STARTING FROM PHU

RETURN
END

@0 0 00 00N C P 0B 00000000000 000000 BRlERRICORNNRRERERECRRON0BINPEIGOEBIOS

SUBROUTINE LOCATE (PHlsPSlsKsNsUPHI!

LOCATE CALCULATES THE MINIMAX ugdJeCTIVE FUNCTION OF THE Y AT A

(vl ol ol el X v W oW e R e N e R aNatatataaRalaRaNaNatatataNakakakakataRatataXakakakakatakaXeXaNaXa¥aaRaRakataka
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POINT PHI OVER A GIVEN SET OF SAMPLE POINTS PSI

DIMENSION PHI(1)s PSI(1)
DO 1 I=1sN
YT=Y(PHIsPSI(I)sK)}

IF (1+EQel) UPHI=YT

IF (YTeGTeUPHI) UPHI=YT
CONT INUE

RETURN

FND

00080 00NN ER00000C00P 0000000000000 0000RASOISIRNRRNOARCCEOINOIROEEOETcES

FUNCTION Y (PHIsFsK)

HERE THE FUNCTION VALUE Y AT A POINT PHI CORRESPONDING TO A SAMPLE
POINT F IS CALCULATED

DUMMY HAS BEEN DIMENSIONED CURRESPUNUING TU A MAXIMUM VALUE OF
K=15

DIMENSION PHI(1)s DUMMY(15)

CALL ANAL (PHIsFseFALSEe3KsY1sDUMMY)
y=Y1

RETURN

END

.l...l..'...‘.......l.IO.IlI..l....p.l...ll.!...l..l....'.‘.l-....
SUBROUTINE NORM (KsWsWN!
DIMENSION W(1)s WNI(1)
SUM=0.,

DO 1 I=1sK
SUM=SUM+W (T %W (]}

CONT INUE

SUMRT=SQRT (SUM)

DO 2 I=1sK
WN(I)=W(I}/SUMRT

CONT INUE

RETURN

END

9 80000000 000000000000 000000000 C000CIORNANOAISEEIEELIIOINERIIOIQERRSOINGGSROIOORPObGOTDT

SURBROUTINF TGSORT (AsIsNsM)

SUBROUTINE TGSORT (MAXsITAGsNR»MM? FURMS A VECTOR OF TAGS 1TAG SV
THAT ITAG(1)sITAG(2)seveaes I TAGINR) ARE URDERED SUBSCRIPTS OF
VECTOR MAX SUCH THAT MAX({ITAG(1/)sMAX(ITAG(2//seeeesMAX{ITAG(NR?)
ARF IN ALGEBRAIC ORDER
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MM IS POSITIVE FOR A HIGH TO LOW ORDERING AND NEGATIVE FUR LOW TU
HIGH ORDERING

THIS SUBROUTINE LISTING WAS OBTAINED FRUM THE VDATA PRUCESSING ANV
COMPUTING CENTREsLIBRARY INFORMATIUN SHEET MILIS be3¢34,MCMASTER
UNIVERSITY

DIMENSION A(1)s I(1)
LOGICAL HILOsTIME1
HILO=MeLTe0

N1=N+1

N2=N1/2

DO 1 J=1sN

I(J)=~1

CONT INUE

DO 6 K=1sN2

TIMEl=e TRUE

DO 4 J=1sN

IF (I(J}eGTe«0) GO TO 4
IF («NOTeTIMEL) GO TO 2
TIMEl=oFALSE.
SMALL=BIG=A(J)

JS=JR=J

GO TO 4

IF (A(J)eGTeSMALL) GO TO 3
SMALL=A(J)

Js=J

IF (A{J)eLTeBIG) GO TO 4
BIG=A(J)

JB=J

CONT INUFE

L=N1-K
1(JB)=1ABS{1(JB))
1(JS)=TABRS(I(JUS))

IF (HILO) GO TO 5
I(LI=SISIGN(JS»I(L))
I(K)=ISIGN{JUB»I1(K))

GO TO 6
T(L}=ISIGN(JUBsI(L))
I(K)=ISIGN(JSsI(K))
CONT INUE

RETURN

END

...I.....I'......I..-....l.......-.!....'....‘...l....‘.....l..DGO
SUBROUTINE SIMPLE (INFLAGsMXsNNsAsBsCsKOsKBsPsJHIXsY sPESEINA)

CDC 6400 1172 OCTAL WORDS ARE REWUIRED
IBFTC SIMPLE REF
AUTOMATIC SIMPLEX
REAL A(NAs136)
REAL B{1)sCl1)sP(1)sX(1)sY(1)sPE(L)sE(]L)
INTEGER INFLAGMXsNNsKO(6) sKB(1}sJH( 1)
EQUIVALENCE (XXsLL) )
THE FOLLOWING DIMENSION SHOULD BE THE SAME HERE AS IT IS IN

REDUNDANT EGUATIUNS CAUSE INFEASIoILITY
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CALLER.

REAL AA»AIJT sBB»COST LT sRCUST s TEXP s TPIVTY s XOLD 9 XX 9 KAY Y s YMAX
INTEGER T 9IASINVCrIRsITERsJsJITaKsRBIsL sl L yMypii2 stivigN

INTEGER NCUT oNPIVsNUMVRSNVER

LOGICAL FEASsVERSNEG»TRIGsKQsABSC,

SET INITIAL VALUES»s SET CONSTANT VALUES

ITER=O
NUMVR=0
NUMPV=0
M=MX
N=NN
TEXP=e5%%16
NCUT=4%M+]10
NVER=M/2+5
M2=M**2
FEAS=eFALSE.
IF (INFLAGeNE«Q) GO TU 3
INEW? START PHASE ONE WITH SINGLETON BASIS
DO 2 J=1sN
KB{J)=0
KQ=oFALSEs
DO 1 I=1leM
IF (A{I»J) eEQeDe0) GO TO 1
IF ‘KQ.OR.A(I'J)OLT'OOO, GO TO 2
KQ=e TRUE»
CONT INUE
KB(J)=1
CONT INUE
DO 4 I=1sM
JH{T)==1
CONTINUE
'VER! CREATE INVERSE FROM 1KB' AND VJH! (STEP 71}
VER=e TRUE «
INVC=0
NUMVR=NUMVR+1
TRIG=eFALSE.
DO 6 I=1sM2
E(I1)=0,0
CONT INUE
MM=1
DO 7 I=1sM
E(MM)=1.0
PE{I1}=0.0
XtI)y=B(I)
IF (JUH(I)eNEaO) JUH(I)==1
MM=MM+M+1
CONT INUE

FORM INVERSE
DO 14 JT=1eN
IF (KB(JT)4EQe0) GO TO 14
GO TO 30 :
30 CALL JUMY

CHOOSE PIVOT

TY=060
KQ@=eFALSEe
DO 13 I=1sM
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10
11
12
13

17
Cx

18

19

20

21

22

23

IF (JH(I)eNEe—1e0ReABS(Y(I})aLEeTPIVI GU TO 13

IF (KQ) GO TO 10

IF (X(I)eEQeOs) GO TO 9
IF (ABS(Y{I}/X{I)})eLE.TY}
TY=ABSIY{I)/XUIN)

GO TO 12

KQ=e TRUE

GO 70O 11

IF (X{I)eNEeDeeOReABS(Y(I}) LELTY)

TY=ABS(Y(I))
IR=1
CONTINUE
KB{JT)=0

TEST PIVOT

IF {TYsLEeOs) GO TO 14
PIVOT

GO TO 43

43 CALL PIV

CONT INUE

RESET ARTIFICIALS

DO 15 I=1sM
IF (JH(I)eEQe=1) JH(I!?=0

IF (JH{1)+EQe0) FEAS=+FALSE,

CONT INUE
VER=+FALSE.

XK PERFURM ONE ITERATION
*XCK ! DETERMINE FEASIBILITY

NEG=oFALSE«

IF (FEAS) GO TO 18

FEAS=4 TRUE

DO 17 I=1sM

IF (X{1)eLTe0.0}) GO TO 20

IF (JUH({I)eEQeO) FEAS=sFALSES

CONT INUE

'GET! GET APPLICABLE PRICES

IF («NOT.FEAS) GO TO 21
DO 19 I=1sM

P{I)=PEL(I)

IF (X{I)elLTeOu«} X(I)=0e
CONTINUE

ABSC=.FALSE.

GO TO 27

FEAS=.FALSE.

NEG=sTRUE»

DO 22 J=1sM

PtJY=0.

CONT INUE

ABSC=+TRUE

DO 26 I=1sM

MM=1

IF (X(1)eGEe0e0) GO TO 24
ABSC=+FALSE.

DO 23 J=1sM
P(J)=P(J)+E(MM]

MM=MM+M

CONT INUE

GO TO 26
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24

25
26
C#
27

28

c*
30

31

32

33
34

35

IF (JH(I)eNE.O) GO TO 26
IF (X(1)eNEeQOse!} ABSC=+FALSE.
DO 25 J=1sM
P{J)I=P(J)-E(MM)
MM=MM+M
CONT INUE
CONT INUE
*MIN? FIND MINIMUM REDUCED COST (STEP 3}
JT=0
BB=0eU
DO 29 J=1sN
IF {(KB(J).NE.Q} GO TO 29
DT=0e0
DO 28 I=1sM
DT=DT+P(1}1*A({14J)
CONT INUE
IF (FEAS) DT=DT+C(J)
IF (ABSC) DT=~ABS(DT!
IF {(DT.GE«BB) GO TO 29
BB=DT
JT=J
CONTINUE
TEST FOR NO PIVOT COLUMN
IF (JTeLE«O) GO TO 50
TEST FOR ITERATION LIMIT EXCEEDED
IF (ITER«GE«NCUT} GO TO 49
ITER=ITER+1
1 UMY Y MULTIPLY INVERSE TIMES AlesJT) (STEP &)
DO 31 I=1sM
Y(I1=0.0
CONT INUE
LL=0
CosT=C(JT)
DO 34 I=1eM
ATUT=A(T+JT)
IF (AlJTeEQeOs} GO TO 33
COST=COST+ATJT#PE(1])
DO 32 J=1sM
LL=LL+1
Y(I =Y {JI+ATJTHE(LL)
CONT INVE
GO TO 34
LL=LL+M
CONT INUE
COMPUTE PIVOT TOLERANCE
YMAX=0.0
DO 35 I=1sM
YMAX=AMAX1 (ABS(Y (I}}sYMAX)
CONT INUE
TPIV=YMAX#*#TEXP
RETURN TO INVERSION ROUTINEs IF INVERTING

IF (VER) GC TO 8

COST TOLERANCE CONTROL
RCOST=YMAX/BB
IF (TRIGeANDsBBeGE«-TPIVI GO TGO 50
TRIG=«FALSE.
IF (BBeGEe~TPIV) TRIG=e«TRUE.
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126
127
128
129
130
131
132
133
134
135
136
137
1386
139
140
141
142
143
144
145
146
147
144
Lag
150
151
152
153
154
155
L1586
157
is58
159
l60
lel
162
163
le4
165
leé
167
168
l69
170
171
172
173
174
175
176
177
170
179
180
181
182
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36
37
38

39

40

[aNala

41

C*

43

44

tROW? SELECT PIVOT ROW (STEP 5)

AMONG EQSe WITH X=0s FIND MAXIMUM Y AMUNG ARTIFICIALSs URs IF
NONE »

GET MAX POSITIVE Y(I) AMONG REALS.

IR=0

AA=0.0

KQ=+FALSE.

DO 39 I=1sM
IF (X{I)eNEeOeOsOReY(1)sLE«TPIV) GO TO 39
IF (JH(I)eEQ.0) GO TO 37
IF (KQ) GO TO 39
IF (Y{IleLEsAA} GO TO 39
GO TO 38
IF (KQ) GO TO 36
KQ=4 TRUE
AA=Y (1)
IR=1
CONT INUE
IF (IRsNE«O) GO TO 42
AA=1.0FE+20

FIND MINe PIVOT AMONG PUSITIVE EQUATIONS
DO 40 I=1sM
IF, (Y(I)eLEeTPIVeOReX(I)eLE«QesOeORaY(I)#AAJLESX(I)) GO TO 40
AA=X(1)/Y(I)
IR=1I
CONTINUE
IF {«NOTeNEG) GO TO 42
FIND PIVOT AMONG NEGATIVE EQUATIONSs IN wHICH X/Y IS LESS THAN TH:
MINIMUM X/Y IN THE POSITIVE EWUATIONSs THAT HAS THE LARGEST
ABSF(Y)
BB==TPIV
DO 41 I=1sM
IF (X{I)eGEeOseORaY(I)eGE«BBeOReY(I/*AA«GTaX(I?! GO TO 41
BB=Y(I)
IR=1
CONT INUE
TEST FOR NO PIVOT ROW
IF (IR.LE«C) GO TO 48
tPIV! PIVOT ON (IRsJT) (STEP 6}
TASJH(IR)
IF (IA.GT.0) KB(IA)=0
NUMPV=NUMPV+1
JHUIR)=JUT
KB(JT)=IR
YI==Y(IR)
Y(IR)==140
LL=0

TRANSFORM INVERSE

DO 46 J=1sM
L=LL+IR
IF (E(L)eNE«Us0O} GO TO 44
LL=LL+M :
GO TO 46
XY=E(L}/YI
PE(J)=PE(J)+COST*XY
E(L)=0,0
DO 45 I=1sM
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183
184
i85
lyé
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
10
211
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213
214
215
216
217
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219
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45
46

47

52

LL=LL+]
E(LL)=E(LL)I+XY*Y (1)
CONTINUVE
CONT INUE

TRANSFORM X

XY=X{(IR)/YI

DO 47 I=1M
XOLD=X(I)
X(1}=XOLD+XY*Y (I}

IF {eNOTeVEReANDeX{IieLToeOseANLeXOLLsGEeOe} X(1)=00

CONTINUE
Y({IR)==YI
X(IR)==XY

IF (VER) GO TO 14
IF (NUMPV.LE«M) GO TO 16

TEST FOR INVERSION ON THIS ITERATION

INVC=INVC+]
IF (INVC.EQeNVER} GO TO 5
GO TO 16

END OF ALGORITHMs SET EXIT VALUES
IF {«NOToFEASeOR«RCOSTeLE«—1000s) GO TO 50

INFINITE SOLUTION
k=2
GO TO 51
PROBLEM IS CYCLING
K=4
GO TO 51

FEASIBLE OR INFEASIBLE SOLUTION

K=0

IF («NOTeFEAS) K=K+1
DO 52 J=1sN

XX=040

KBJ=KB(J)

IF (KBJeNE SO} XX=X(KBJ!
KB(J)=LL

CONTINUE

KO(1})=K

KO(2)=ITER
KO(3)=INVC

KO (4)=NUMVR
KO(5)=NUMPV

KO(6)=JT

RETURN

END

cD 70T

0901
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258
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APPENDIX B

PROGRAM FOR INVESTIGATING MINIMAX OPTIMALITY CONDITIONS
B.1 Introduction

This program is a package of subprograms which investigates
the optimality of a design or a proposed solution to an approximation
problem in the minimax sense. The program is designed to test a solu-
tion for the necessary conditions for a minimax optimum by two differ-
ent formulations. As indicated in Section 3.4, one uses linear pro-
gramming, and the other the solution of a set of linear independent
equations. A computer program written in Fortran (Version 2.3 and
Scope Version 3.4 for the CDC 6400 computer) is listed at the end of

the Appendix.

B.2 Program Description

The user may call the package from his main program as follows:

CALL MINIMAX (K, KR, NR, YMAX, GRAD, NRMAX, DELTA, EPS, ICRIT, IDATA,
IPRINT, MET, NORM, RELTOL, UNIT, K1, K3, MR3, MR1l, MR2, X1, X2, X1SUM,
X2SuM, R1l, R2, RINORM, R2NORM, OPTIM1, OPTIM2, A, B, C, X, PS, JH, XX,
YY, PE, E, D, H, Q, IROW, ICOL, LL, MM).

The variables in the argument list of the above subroutine are
ordered as input, output and storage variables respectively, and are

listed below in that order.
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The input variables are k, kr’ n

ICRIT

IDATA

IPRINT

MET

NORM

RELTOL

. Vyn ]T), followed by

146

IS ~ A T
3 y([YI e Yn] ),
LY r

T

v r

maximum possible number of the ;2'
numerical approximation to zero.
a user-specified factor; if ||r,[| or ||r2||< e and the
: v
multiplier vector u, or u, > 0 the conditions are satis-
4" N Y

fied for Method 1 or 2; otherwise not.

for ICRIT

1, the user specifies the value of RELTOL and

considers Y for which (l-yz/yl) < RELTOL for 2=2,...,nr,
to be active while when ICRIT = 2, the user specifies the

value of k_(< n).
r'- 'r

logical variable which, if .TRUE., enables the input data
to be printed out; otherwise not.

logical variable which if .TRUE., enables all intermediate
and final results to be printed out, and no print-outs
otherwise,

when MET=1,2, or 3, the package uses Method 1, Method 2

or both the methods, respectively.

NORM=1 corresponds to the Euclidean vector norm and
NORM=2 corresponds to the maximum absolute value of the
elements of the vector.

tolerance relative to Y1 within which some of the

~ ~

Yoseoasy. lie.
2 n,



UNIT

integer variable specifying the data set refer-

ence number of the output unit.

This is followed by k1(=k+1), k3(=2k+1) and mr3(=2k+1+nr)

For the output variables that follow, subscripts 1 and 2 correspond to

methods 1 and 2, respectively, as shown below.

mrl’er

R
LYY

[z 11, 1z, |

OPTIM1,0PTIM2

number of yz(for 2=1,...,nr) considered when

optimal conditions are reached.

vector of multipliers [u,,...u ]T,
11 im
T rl
[u21...u2m 1
T2
M1 ~ M2 ~
residual vectors I Uy Vyz s I Usg Vyl
2=1 ~ =1 N
norm of vectors Tis Ty
n N

logical variables; indicate that the necessary
conditions for minimax optimum are satisfied if

.TRUE., and not satisfied otherwise.
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The above output variable list is followed by storage variables,

which form the rest of the argument list.

and vectors is determined by n., k

1 k3 and m .

as specified by the user are crucial for the verification of the op-

timality conditions, and should be carefully chosen. For further de-

tails, see Sections 5.4.4-5.4.6.

The size of the storage arrays

The values of € and ¢
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B.3 Required Subprograms

The user has to have a subprogram by which the discrete values
of the n, functions ;2 (arranged in descending magnitude) and their
derivatives (V ; T)T with respect to the parameters ¢1, ¢2""¢k are
explicitly av:i;able. The package uses the following subroutines, the
listings of which are available as indicated in the References (see Sub-
routine ARRAY, Subroutine MINV, Subroutine MFGR, Subroutine SIMPLE,
Subroutine SOLVE).

ARRAY converts data arrays from single to double dimension or
vice versa while MINV inverts a matrix and calculates its determinant.
MFGR determines the rank and linearly independent rows and columns of
a given matrix. SIMPLE is a linear-program solving subroutine (listing
available in Section A.7) and SOLVE solves a set of linear simultaneous

equations.

B.4 Comments

The program was used to test a solution on the problem of lower-
order modelling of a ninth-order nuclear reactor system as treated in
Section 3.4.7. Fig. B.1 shows a typical printout of the package for this
problem.

This program was run and tested on a CDC 6400 computer. The
package requires roughly 40,000 octal units of memory for k=15 and

nr=15. A Fortran listing consisting of 721 cards (including comments)

is included in Section B.5.



NUMBER OF
HIGHEST
MAXIMA

CONSIDERED

(MR)

i

NUMBER OF
HIGHEST
MAXIMA

CONSIDERED

(MR)

VECTOR
OF
MULTIPLIERS

(x1)
.10000000E+01

.98710491E+00
+12895086E-01

VECTOR
OF
MULTIPLI1ERS

(x2)

.10000000E+01

.98710492E+00
.12895077E-01

Fig. B.1 Typical printout of results for the problem given in the text.

SUM
OF
MULTIPLIERS

(X1SuM)

.10000000E+01

.10000000E+01

METHOD 1

VECTOR
OF -
RESIDUALS

(R1)

.38711013E-03
-.14208087E-03

-.25789922E-09
.25789922E-09

. METHOD 2

SUM
OF
MULTIPLIERS

(X2SuM)

.10000000E+01

-10000000E+01

0

VECTOR
OF
RESIDUALS

(R2)

.38711013E=-03
.14208087E-03

- . 3525556 3E-09

NORM
OF
RESIDUAL
VECTOR
(R1INORM)

.38711013E-03

+25789922E-09

NORM
OF
RESIDUAL
VECTOR

(R2NORM)

.38711013E-03

. 35255563E-09

ARE NECESSARY CONDITIONS
FOR A MINIMAX OPTIMUM
SATISFIED FOR A USER-
SPECIFIED VALUE OF KR
OR RELTOL

(YES/NO)

" NO

YES

ARE NECESSARY CONDITIONS
FOR A MINIMAX OPTIMUM
SATISFIED FOR A USER-
SPECIFIED VALUE OF KR
OR RELTOL

(YES/NO)

NO

YES

6V1
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B.5 Fortran Listing for MINIMAX Program



[aNa¥aNaNaNaNaValaNaNaNaNaNataNaNaNalalaNaNalelaNa¥aRaNa¥a¥alalaRalaXaRalalakaaXaRataYa Wal

aNa¥aNaNaNaNalalaNal

PROGRAM FOR INVESTIGATING MINIMAX OPTIMALITY CONDITIONS

AUTHORS JeWeBANDLER AND ToVeSRINIVASANSOEPARTMENT OF ELECTRICAL
ENGINEERINGsMCMASTER UNIVERSITY sHAMILTONSONTARIO s CANADA

THIS PROGRAM IS A PACKAGE OF SUBPROGRAMS WHICH INVESTIGATES THE
OPTIMALITY OF A DESIGN OR A PROPOSEL SOLUTION TO AN APPRUXIMATION
PROBLEM IN THE MINIMAX SENSE

IR N NN NN NN NN N NN NN NNNENENNENNNXNYNRE NN NN NN NN NN NN NN NN N NN NN NN NNNNNNN)

A TYPICAL MAIN PROGRAM FOR MINIMAX SOLUTION CHECK FOLLOWS—-———=—===-—

DIMENSTON YMAX(15)'GRAD(15’10)}X1(15)9X2(15)1R1(10)’R2(10)

DIMENSION A(21536)98(21)sCl36)sX(36)yPS{21)sXX{21)sYY(21)sPE(21)»

1 E(21s21)

DIMENSION D(15910) 9H(11s11)5W{(11) s IROW(15)sICOLI10) oL L(15)sMM(15)

LUGICAL IDATASIPRINT»OPTIMLOPTIM2Z

INTEGER UNIT

K=2

NRMAX=15

NR=4

DELTA=,01

EPS=1.0E-04

ICRIT=2

KR=NR

IDATA=eTe

IPRINT=eTe

MET=3

NORM=1

UNIT=6

K1=K+1

K3=2#K+1

MR3=2%K+1+NRMAX

READ(541) (YMAX(I)sI=1sNR)

READ(532) ((GRAD(IsJ)sJ=1sK!sI=1sNR)

1 FORMATI(5E16.8)

2 FORMAT(2E1648)

CALL MINIMAX(KsKRsNRsYMAX9GRAD 9y NRMAX sDELTASEPS»ICRITsIDATASIPRINT
1IMET s NORMsRELTOLSUNIT oK1 sK3sMR3sMRLsMR29X19X29X1SUMIX2SUMsRLIRZIR1IN
2NORMsR2ZNORMsOPTIML sOPTIM2 9As8sC s XosPSsJHsXXsYYsPEsEsD»iH»Qs IROW I.COL
3elLoMM)

STOP

END

[ E NN ENNNENNENNENNNENNNNENNNENRNNNRNN NN NNNENNNNNN NN NN NN NN NN NN NN NN NN NN
SUBROUTINE MIMIMAX (KsKRsNRsYMAXIGRADsNRMAXsDELTASEPS»ICRITH»IDATAS
TIPRINT sMET s NORMsRELTOL sUNITsK19K39MR3sMR1sMR29sX1 X2 X1SUMSX2S5S MR
23R29RINORMRZNORM»OPTIML sOPTIMZ sA»B9C X sPSsJHs XX s YY sPLsEslsHsWs [RO
AW ICOL 4LL sMM)

THE MINIMAX SOLUTION TESTING IS DONE BY TWO METHODS-METL AND MET2
MET1I CONSIDERS A LINEAR PROGRAMMING FORMULATION

MET2 CONSIDERS A FORMULATION CONSISTING OF A SET OF LINEAR
EQUATIONS

INPUT~OUTPUT INFORMATION=====—=-
THE USER HAS TO SPECIFY VALUES FOR KsKR (OR RELTUL) »NRMAXsNR»

PP PP EPrPrrrPPrerrrP »rrrPr>rrlP>PPrlBPIPrPERRP2E2ED>bDPrR>PPPEBPP P
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aNaNa¥aNaNaNaNaNaNaNaNaNaNaNa¥aNaNalaNalaNaNaRaNaNaNaNaNalalalaNaNa¥aNaNaNaNa¥aNaNalala¥alekaRataRaalaRaRalakaa!

YMAXsGRADsDELTASEPSs ICRITsIDATASIPRINTsMETsNORMsUNIT sK19K3 AND MR3
THE OUTPUT VARIABLES ARE MR1sR1sRINORMsX1sX1SUMsOPTIMLyMR2yR2s
R2NORMs X2 X25UM AND OPTIM2

THE VARIABLES AsBoeCsXsPSsJHsXXsYYsPEsLsDsHsWs IROWs ICOL sLL MM ARE
TEMPORARY STORAGE SPACES CORRESPONUDING TO K ANU NRMAX (TO BE
DIMENSIONED BY THE USER!

APPENDIX OF VARIABLES—=-==-—

K =NUMBER OF VARIABLE PARAMETERS

NRMAX =MAXIMUM NUMBER OF FUNCTIONS YMAX THAT MAY BE ENCOUNTERED BY
THE USEReFOR THE SAKE OF SAVING MEMORY SPACEsNRMAX CAN BE
PUT EQUAL TO NR IF NR IS5 KNOWN BEFOREHAND

NR =NUMBER OF HIGHEST FUNCTIONS YMAX(1l}sYMAX(2)seees WHICH ARE
AVAILABLE FOR CHECKING A SULUTION FOR THE NECESSARY
CONDITIONS FOR A MINIMAX OPTIMUMe NR SHOULD NEVER BE
GREATER THAN NRMAX

KR =NUMBER OF HIGHEST YMAX(1)reeesYMAX(NR) THAT MAY BE
CONSIDERED ACTIVE BY THE USER FOR CHECKING OPTIMALITY
CONDITIONSe KR IS LESS THAN OR EQUAL TO NRe THc VALUE OF KR
HAS TO BE SUPPLIED BY THE USER IF ICRIT=2

YMAX =VECTOR OF FUNCTIONS YMAX(1)jseeasYMAX{NR) ARRANGED IN
DECREASING MAGNITUDE. THESE FUNCTIONS ,ARE TO BE TESTED FOR
THE NECESSARY CONDITIONS FOR A MINIMAX OPTIMUMe YMAX(I! IS
GREATER THAN OR EQUAL TO YMAX(I+1l) FOR I=lsssssNR-1

GRAD =MATRIX OF FIRST DERIVATIVES OF VECTOR YMAX WITH RESPECT TO
THE K PARAMETERSe THE ROWS UF GRAU CORRESPUND TO THE
GRADIENTS OF YMAX(1)sYMAX(2)9seee s YMAX(NR!' RESPECTIVELY.
GRAD IS OF SIZE (NRMAXsK!

DELTA =TEST FACTOR FOR ZEROUSAFFECTLED BY ROUNDOFF NOISte THE VALUE
OF DELTA DEPENDS UPON THE MAONITUDE OF ELEMENTS OF GRAD

EPS =SCALE FACTOR. WHEN CONSIDERING METHOL 1 IF THE MULTIPLIERS
X1{1)seeesX1({MR1)} ARE NON-NEGATIVE AFTER COUNSIDERING MRL
HIGHEST FUNCTIONS YMAX(1)seees YMAX{MRL) »THE NORM OF THE
RESIDUAL VECTOR R1 IS COMPARED WITH EPSe IF RINORM IS LESS
THAN OR EQUAL TO EPS THE NECESSARY CONDITIONS FOR A MINIMAX
OPTIMUM ARE SATISFIED BY YMAX(1)seessYMAX(MRL)e A SIMILAR
SITUATION HOLDS FUR METHOD 2 wHEN MRZ HIGHEST FUNCTIUNS ARt
CONSIDFREDe

ICRIT =THERE ARE TWO CRITERIA AVAILABLE FOR CHECKING THt NECESSARY
CONDITIONS FOR A MINIMAX OPTIMUMe FOR ICRIT=1sTHE USER HAS
TO SPECIFY THE VALUE OF RELTOL AND FOR ICRIT=2sTHE USER HAS
TQO SPECIFY THE VALUE OF KRe [F THE USER HAS NO 1DEA OF HOW
MANY OF THE HIGHEST FUNCTIUNS TQ CHOUSE OUT OF YMAX(l)jseeoy
YMAX (NR) sHE COULD SPECIFY A VALUE OF KR EWUAL TO NRe IFsUN
THE OTHER HANDsTHE USER WISHES TO SPECIFY A TOLERANCE BAND
BELOW YMAX(1) WITHIN wHICH HE CONSIDERS THt FUNCTIONS TO BE
ACTIVEsHE COULD SPECIFY THE VALUE OF RELTOL

IDATA =LOGICAL VARIABLEsWHICH IF «TRUEe« ENABLES INPUT DATA TO BE
PRINTED OUTe«sOTHERWISE NOTe

IPRINT=LOGICAL VARIABLESWHICH IF «TRUEe ENABLES ALL INTERMEDIATE
AND FINAL RESULTS Tu BE PRINTED OUTSAND NO PRINTOUTS
OTHERWISE»

MET =INTEGER VARIABLE WHICH ENABLES TAdk USER TO CHECK THE
NECESSARY CONDITIONS FOR A MINIMAX OPTIMUM BY METHOULUS 1 OR
2 OR BOTH FOR MET=1 OR 2 OR 3

NORM =VARIABLE WHICH ALLOWS TWO NORMS TO BE AVAILABLE FOR VETTORS

Prrr>r>2>PPrPrrrrrrrrr>2>»rP>rrrPprcrrP>rPPrrrPFrprprrrre2>»r>2»rrr»rr>rrrr>rrsr >
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R1 AND R2. IF NORM=1THE EUCLIDEAN NORM OF A VECTOR IS5
CALCULATED« IF NORM=2oTHE VECTOR NORM IS EWUAL TO THE
MAXIMUM ABSOLUTE VALUL OF THE VECTOR ELEMENTS

RELTOL=TOLERANCE RELATIVE TO YMAX(1l) WITHIN WHICH YMAX{2)reees
YMAX(NR) LIE<THIS FACTOR HAS TO BE SPECIFIED BY THE USER IF
ICRIT=2»,WHEN THE USER CONSIDERS THOSE FUNCTIONS FOR WHICH
(le=YMAX(L}I/YMAX (1)) 9L =1929eeasNRsy 1S LESS THAN RELTOLsTO
BE ACTIVE FOR OPTIMALITY CONDITIONS

UNIT =INTEGER VARIABLE SPECIFYING THtE DATA SET REFERENCE NUMBER
OF THE OUTPUT UNITe ’

IN THE FOLLOWING SECTION SUBSCRIPTS 1 AND 2 DENOTE METHODS 1 ANv ¢

RESPECTIVELY. .

MR1 sMR2 =NUMBER OF HIGHEST FUNGTIONS YMAX(1)seeesYMAXINR!
WHICH SATISFY THE THE NECESSARY CONDITIUNS FOR A
MINIMAX OPTIMUM AS VERIFIED BY METHODS 1 AND 2
RESPECTIVELY

X1lsX2 =VECTOR OF MULTIPLIERS OF LENGTH Mkl ANV MRZ

RESPECTIVELYsWHEN THE NECESSARY CONDITIUNS FUR A
MINIMAX OPTIMUM ARE SATISFIED AS VERIFIED BY METHOLS
1 AND 2. AT AN OPTIMUM»THE ELEMENTS OF THE
MULTIPLIERS ARE ALL NON-NEGATIVE

X1SUMsX2SUM =SUM OF ELEMENTS OF VECTURS X1 AND X2 RESPECTIVELY.
AT THE OPTIMUMsTHE ELEMENTS OF THE VECTORS ARE ALL
NON-NEGATIVE AND ADv UP TO UNITY

R1 =RESIDUAL VECTOR OF LENGTH K GENERATED BY LINEAR
COMBINATION OF THE GRADIENTS OF YMAX(1)sYMAX{(2)seees
YMAX (MR1) BY THE MULTIPLIERS X1(1)sX1{(2)sesesXliMkl)
GOT FROM METHOD le THUS R1 IS A PRODUCT OF THE ROW=
VECTOR X1 POST-MULTIPLIED BY THE MR1 ROWS OF GRAD

R2 =RESIDUAL VECTOR OF LENGTH K GENERATED BY LINEAR
COMBINATION OF THE GRADIENTS OF YMAX{1}sYMAX(2)seees
YMAX (MR2) BY THE MULTIPLIERS X2(1}sX2(2)seeesX2(MR2)
GOT FROM METHOD 2+ THUS R2 IS A PRODUCT OF THE ROW-
VECTOR X2 PUST-MULTIPLIED BY THE MR2 ROWS OF GRAD

RINORM sR2NORM=NORMS OF VECTORS Rl AND R2

OPTIM1OPTIM2=LOGICAL VARIABLESeIF «TRUEe INDICATE THAT NECESSARY
CONDITIONS ARE MET FOR A USER-~SPECIFIED VALUE OF EPS
AS VERIFIED BY METHODS 1 AND 2 RESPECTIVELYs IF THEY
ARE oFALSEe THE NECESSARY CONDITIONS ARE NOT

SATISFIED -
K1l =K+1
K3 =2%K+1
MR3 =2%K+1+NRMAX

K1sK3sMR3 ARE INTEGERS WHICH ARE NECESSARY FOR EFFICIENT USE OF
COMPUTER CORE MEMORY FOR SOME TEMPORARY STORAGE VECTORS AND ARRAYS

DIMENSIONING INFORMATION ====-=-

THE USER HAS TO DIMENSION IN HIS MAIN PROGRAM THE FOLLOWING
ARRAYS AND VECTORSe . )

YMAX =VECTOR OF DIMENSION NRMAX

GRAD =ARRAY OF DIMENSION (NRMAXsK)

X19X2=VECTORS OF LENGTH NRMAX

R1sR2=VECTORS OF LENGTH K

A =ARRAY OF SIZE (K3sMR3)

PEPEPEPPrEPE>PrE2>2PErPrPr2>PrPrPPr2rrrPPrPrrrE2>2Pr>Prr>r>P>rrrrrr
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150
151
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BsPSsJHs XX»YYsPE=VECTORS OF LENGTH K3
CsX =VECTORS OF DIMENSION MR3

E =ARRAY OF SIZE (K3,K3)

D =ARRAY OF DIMENSION (MRMAXsK)
D =ARRAY OF DIMENSION (NRMAXsK)
H =SQUARE MATRIX OF SIZE (K1lsK1l!
Q =VECTOR OF LENGTH K1

IROW =VECTOR OF LENGTH NRMAX
ICOL =VECTOR OF LENGTH K
LLyMM=VECTORS OF LENGTH NRMAX

TYPE DECLARATION =—==—=-

THE USER HAS TO DECLARE THE TYPE OF SOME OF THE VARIABLES AS
FOLLOWS.

INTEGER UNIT

LOGICAL IDATA»IPRINTSOPTIM1 »OPTIMZ2

SUBROUTINE INFORMATION —=—w—-=-

THE USER HAS TO SUPPLY THE FOLLOWING SUBROUTINES WITH THIS PACKAGE
OR ENSURE THAT THESE SUBROUTINES ARE IN THE PERMANENT LIBRARY OF
THE COMPUTER HE IS USING .

SUBROUTINE ARRAY -REFERENCE (2)

SUBROUTINE MINV -REFERENCE (3)

SUBROUTINE MFGR ~REFERENCE (4)

SUBROUTINE SIMPLE —-REFERENCES (5)s(6}

IT IS IMPORTANT . TO POINT OUT THAT THE VALUES OF EPS AND DELTA AS
SPECIFIED BY THE USER ARE CRITICAL FOR TESTING A SOLUTION FOR THE
NECESSARY CONDITIONS FOR A MINIMAX OPTIMUMsAND A GREAT LEAL OF
CARE HAS TO BE EXCERCISED WHEN SPECIFYING VALUES FOR THEM.

IN ADDITIONSIT HAS TO BE POINTED OUT THAT *eee* IN A FORMAT
STATEMENT IS LIKE A HOLLERITH PARAMETER INCLUDING WHATEVER IS
WITHIN THE TWO * SYMBOLS IN THE HOLLERITH FIELDe

LOGICAL IPRINTsIDATASOPTIMLSOPTIM2,I5P

INTEGER UNIT

DIMENSION YMAX(1)s X1(1}s X2(1)s R1{1)s R2{1)s GRAD(NRMAXs1)
DIMENSION A(K3s1)s B(l)s C(l)s X(L)s PS(1l)s JH(L)s XX(1)s YY(L)s P
1E(1)y E(K3sl}s H{Klolle G(Ll)y IROW(1)s ICOL({1)y LL(1)s MM(L)y D(NR
2MAX s 1)

IF (NR.LE«NRMAX) GO TO 1

WRITFE (UNITs20)

RETURN

CONT INUE

ISP=uFe

OPTIMl=eFe

OPTIMZ=eF e

GO TO (2+6)s ICRIT

KR=1

IF (NR«.EQel) GO TO &

DO 3 I=2sNR

IF ({YMAX{1)-YMAX{I))aLEe{RELTOL*YMAX(1))) KR=KR+1

CONTINUE

IF {«NOT.IDATA) GO TO 8

WRITE (UNITs21) KsKRsNRMAXINRSDELTASEPSsICRIT»IDATA» [PRINT sMETsNOR
IMsRELTOLSUNIToK1 oK39MK3» (I sYMAX(T oIzl oNR)

Pr2r2rPrrrPrrPrPPrrrPrerrPPrPrPrrrPrPrrrrrPrrrrerrerrrrrrrerrerererrrerrrir
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DO 5 I=1sNR
WREITE (UNIT»22) ((14JsGRAD(IsJ) ) sJ=1,4K)

5 CONT INUE
GO TO 8
6 CONT INUE

RELTOL=1e¢=YMAX(KR)/YMAX (1)}
IF («NOTW.IDATA) GO TO 8
WRITE (UNIT923) KsKRyNRMAXsNKSDELTA»PSsICRITSIVATA IPRINT oMET o NUR
IMIRELTOLSUNIT9K19K39MR3s (IsYMAX(I)sI=1sNR)
DO 7 I=1sNR
WRITE (UNITs22) ((19JsGRAD(IsJ))su=1sK)
CONTINUFE
GO TO (991499)s MET
CONT INUE
IF {«NOTLIPRINT) GO TO 10
WRITE (UNITs24)
WRITE (UNITs25)
WRITE (UNITs26)
10 CONT INUE
MR=1
X1(1l})=1e
X1SUM=1le
DO 11 J=1sK .
R1{J)=GRAD(1+J) -
11 CONTINUE
CALL SOLCHK (KsMRsMRLsICRIToIPRINT sNORMsUNIT»X19X1SUMsR1+RINORMIEP
155s0PTIM1)
IF (OPTIM1) GO TO 13
IF (KReFQel) GO TO 13
DO 12 11I=2sKR
MR=11
CALL MET1 (KsK3sMRaNRIMK3 9 YMAXsGRAD X1 9X1SUMsR19AsBsCsKOXsPSsJHIX
1XsYYsPEsEsNRMAX)
CALL SOLCHK (KsMRoMR1sICRITSIPRINTINORMsUNIToXLsX1SUMsR1IsR1INORMSEP
1Ss0PTIMI1)
If (OPTIM1} GO TO 13
12 CONT INUE
13 CONT INUE
IF. (METeNE«3)} RETURN
14 CONT INUE
IF («NOT.IPRINT) GO TO 15
WRITE (UNIT,27)
WRITE (UNITs25)
WRITE (UNITs28)
15 CONT INUE
MR=1
X2(1)=1e
X2SUM=1.
DO 16 J=14K
R2{J)=GRAD(1sJ)
16 CONT INUE
CALL SOLCHK (KsMRIMRZ2sICRITSIPRINTo+NUORMsUNITsX23X2SUMsR29RZNORMSEP
15s0PTIM2)
IF (OPTIM2!) GO TO 19
IF (KReEQel) GO TO 19
DO 18 1I1=2,KR
MR=11

[Vl RN
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17

18
19

NAAN

0

22

23

24
25

26

27
28

CALL MET2 (KsK1sMRyNRsYMAXsGRADDELTASIPRINTSISPUNIT#X29X25UMsR2
1DsHsQs IROWs ICOL sLL sMMaNRMAX )
IF («NOTeISP) GO TO 17

WHEN ISP IS5 «TRUEesEITHER THE NUMBER OF UNKNOWN MULTIPLIERS IS
GREATER THAN THE NUMBER OF INDEPENDENT EQUATIONS OR THE VALUE OF
DELTA IS TOO SMALL SO THAT WE SWITCH FROM METHOD 2 TO METHOD 1 FOUR
THE CURRENT VALUE OF MR

CALL MET1 (KsK3sMRINRsMR39sYMAXSGRAD$X29X2S5UMIR2sAsBeCsKO»XsPSsJHX
1XsYYsPEsEsNRMAX)

ISP=eFs

CONTINUE

CALL SOLCHK (KsMRsMR2»ICRIT9IPRINT osNURMIUNITsX29X25UMRZ29RZNORM P
15+0PTIM2)

IF (OPTIM2) GO TO 19

CONT INUE :

CONT INUE

RETURN

FORMAT (1H1/% NR IS GREATER THAN NRMAX HEREs AND THIS CALLS FOR AN
1 INCREASE IN NRMAX TO A VALUE GREATER THAN OR EQUAL TO NR¥*)

FORMAT (1H1/60Xe%*INPUT DATA LISTH#/61Xs#* *®///66X yRK=¥*
1915/65Xs%¥KR=%915 % (CORRESPONDING TOU RELTOLI®/62X 9 *NRMAX=%915/65X 9%
ZNR=% 9 [5/62X s ¥DELTA=#sE16e8/04X s ¥EPS=%L160e8/62Xs¥ICRIT=%#915/62Xe*IL
BATA=%#3L5/61X s ¥ IPRINT=#*4L5/64Xs*MET=%43[5/63Xs¥NORM=#415/61X e *RELTOL
4% 9E160e8/63X s ¥UNIT=%9[5/65X9HKL=%y [5/65X s %¥K3=%9[5/64Xs#MRI=H*415/( 4
SXoRYMAX (#3129 ) 2% sE1608sIXa¥YMAX (¥ 129 %)= yE 16089 IXs¥YMAX(F912,%)=
6 sE16eB89IX s ¥YMAX (¥ 924 )=%43E168))

FORMAT (3% GRAD(*9[25%sts]29%)=#3E16eBs6Xs¥GRAD( %3129 % 9%, [2%)=%,E]
16e89s6X o HGRAD (#9129t g9 [293%)=9E160896Xs*¥GRAD (¥ 9 2 9% %y [29%i=%,E160
28)

FORMAT (1H1/60Xs*INPUT DATA LIST#/61X+% #// /66X 9XK=%
1915/65Xs%KR=%#15/62X s XNRMAX=#3I5/65X s #NR=%915/62X s #DELTAS*3EL0e8/6
24X o #EPS=#E16eB/62X s * ICRIT=#415/62X 9% IUATA=X3L5/61X s *IPRINT=%,15/64
AXs*MET=%315/63 X9 #NORM=%315/61X s #¥RELTOL=%9E16¢8 »* { CORRESPONDING TO
GKRY* /63X s ¥UNIT=%915/65X oK K1z*9[5/65Xs%¥K3=%915/64X s ¥MRI=*g 5/ (4&X9itY
SMAX (% oI29% ) =R gE 108X s RYMAX(¥9gl293) k9B 16eBoOXsRYMAX(H9I29%)=%4E]
66eBsTXa¥YMAX (#9129 %)=#9E1l6e8))

FORMAT (1H1/64Xs*¥METHOD 1%/64Xs¥——mam—mux *//7)

FORMAT (66X s #NUMBER OF#5 L4 X 9% VECTOR¥ 9 18X o ¥ SUM* 9 LBX s ¥VECTOR® 917 X9 #*NO
1RM#* 99X 9 #ARE NECESSARY CONDITIONS*//TXe*HIGHEST*s 17X e ¥OF%920X s XOF ¥
221X *OF# 920X 9 #OF #9 10X s *¥FOR A MINIMAX OPTIMUMR//TX s ¥MAXIMA% e 14X s *#MU
BLTIPLIERS* 11X o *MULTIPLIERS# 912X o *RESIDUALS* 914X s #RESIVDUAL* 37 X9#5A
4TISFIED FOR A USER=#//6Xe*CONSIDERED* 980X o %¥VECTOR* 98X o #SPECIFIEL V
SALUE OF KR#*¥//110Xs*0OR RELTOL*/)

FORMAT (OXs*¥ {MR)I*¥91TX o (X1) %91 7Xe*(X1SUMI*¥916X ¥ (i) *e 18X e* (RLINURM
1) %912Xs*(YES/NOI*//)

FORMAT (1H1/64Xs*METHOD 2%#/64Xs¥~—=mmua *y/7)

FORMAT (GXo#*(MR)# 917X ¥ (X2) %9 1T7X9* (X25UM) %9 10X9* (R2) %9 18X 9% (R2ZNURM
1} %312Xe*¥{YES/NO)Y*//)

END

PPrrPrr>P»IrIrPrrrPrrXrrr22rPrrPPPrerrrr»rrr»>rrerrrr>2rerrrr>rrr»rr>rrrrrrrr»rhr
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P00 000000 CRER00 8080000000 0000080000000000000000800000CReR0ePRERROCR

SUBROUTINE SOLCHK (KsMRsMMRsICRITs IPRINTsNURMsUNIT s XsXSUMsRsRNORM
1EPS4OPTIM)

THIS SUBROUTINE CHECKS THE SOLUTION FOR NECESSARY CONDITIONS FOR
A MINIMAX OPTIMUM BY FIRST TESTINu WHETHER THE MULTIPLIERS X(1ll,
X(2)seessX{MR) ARE NON-NEGATIVEsANU THEN FINLING OUT IF THE NORM
RNORM OF THE RESIDUAL VECTOR R IS LESS THAN OR EQUAL TOU EPS

DIMENSION X(1)s R(1)

INTEGER UNIT

LOGICAL IPRINTSOPTIM

MR1=MR+1

Kl=K+1

GO TO (1s2}s NORM
RNORM=ANORMY (K sR)

GO TO 3

RNORM=ANORM2 (K sR)

CONTINUE

IF (RNORMJGT.EPS) GO TO &
WTM=J-

MMR =MR

CONT INUE

DO 5 J=1sMR

IF (X(J)eGEeQOe) GO TO 5
OPTIM=.F.

GO TO 6

CONTINUE

CONT INUE

IF («NOTCIPRINT) RETURN

IF (OPTIM) GO TO 7

WRITE (UNIT¢15) MRoeX{1)sXSUMsR(1)sRNOKM
GO TO 8

WRITE (UNIT»16) MReX(1)sXSUMsR(1)sRNORM
IF (MReEQel) GO TO 13

IF (K=MR) 949,511

DO 10 I=2+K

WRITE (UNITs17) X{E)sR(I)

CONT INUE

IF (KeEQeMR) RETURN

WRITE (UNITs18) (X(I)sI=KLlsMR!
GO TO 14

DO 12 I=2»MR

WRITE {(UNITs17? X(I}sR(I)

CONT INUE

IF (KeEQeMR) RETURN ‘
WRITE (UNITs19) (R{I}sI=MR14K!
RETURN

FORMAT (//1UX912911XsE16e896XsE16e896XsE16e896XsE16Bs11X»*NO*)
FORMAT (//10X912911X9E16e8s6X9EL6e836XsE16e89s6XsE16eBs11Xs*YESH)
FORMAT (/23XsFE168928XsE1648)

FORMAT (/23XsE1648)

FORMAT (/67XsE1648)

END
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2900 0000 00
SUBROUTINE
1S9 JHsXXs YY)
DIMENSION Y
DIMENSION A
1E(1)s E(K3,

MR1=MR+1
MR2=MR+2
MR3=MR1+2#K
-K2=2%K
K3=K2+1

DU 2 I=1sMR
DO 1 J=1sK
AlJse I )=GRAD
AlJ+Ks I 1==A
CONT INUE
CONT INUE

DO 3 J=1sK2
A{JsMR]) ==1
CONT INUE

DO 5 J=1sK2
DO 4 [=MR2»s
AlJe1)=0,
IF (JeEQe (I
CONT INUFE
CONTINUE

DO 6 I=1+MR
A(K3sI)=1a
CONT INUE

DO 7 I=MR1»
A(K3s1)=0e
CONTINUE

DO 8 I=1sK2
BlI)=0.
CONT INUE
B(K3)=1.

DO 9 I=1+MR
CiI)=0¢

IF (IeEQeMR
CONTINUE

SUBROUTINE
CHOICE TO T
PERFORMS TH
SUBROUTINE
MINIMIZING
MR3sMR34K3
SUBROUTINE
WITH SHARE
WRITTEN BY
A COPY OF T
NUMBER (61}e

[ EY EENRNEETRRRE XN NN NE NN EN N NN N NN RN NN NN NN RN NN N
MET1 (KsK3sMRsNRsKR3»YMAX sGRAD X1 9X1SUMsR19AsEBsCokUsXsP
PE s E s NRMAX !

MAX(1)s GRAUD(NRMAXsl)s X1(1l}s R1{(1)

(K3s1)s B{12s Cl12s X{Ll)s PS(1)s JHI1)s XX(L)s YY{LIs P
1)

(IesJd)
(Jel)

MR3

~MR1}) A{Jsll=1,

MR3

3

1) CtI)=1.

SIMPLE . IS NOW GOING TO BE CALLEDeANY ALTERNATIVE

HIS SUBROUTINE IS ALLOWABLE FUR THE USER AS LUNG AS 1T
E FOLLOWING OPERATIONe

SIMPLE SOLVES A LINEAR PROLKAMMING PRUBLEM OF

C#X SUBJECT TO A*X=BswHERE XsCsb ARE VECTORS OF LENGTH
RESPECTIVELYsAND A [S A MATRIX OF SIZE (K3sMR3)

SIMPLE IS A MOULIFIED VERSION OF A PROGRAM AVAILABLLE
DISTRIBUTING AGENCYsREFERENCE NUMBER SDA 3384 AND
ReJeCLASEN (REFERENCE NUMBER (5/)

HE LISTING 1S AVAILALLE AS- INDICATED IN REFERENCE

[aNala¥aXakaNaRaRalaRakalaNa¥a¥a¥aka¥a¥alaNakalaka¥akaNaXakaRakaRakaka¥akaNaNaNaNaNaNakaRaRaRaNaNaRa RN AN AN AN =t e
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NA AND IFLAG ARE TO BE SPECIFIED BEFORE CALLING SIMPLE

IFLAG IS SET EQUAL TO ZERO

NA IS THE FIRST DIMENSION OF ARRAY A AND IS SET EQUAL TO K3

X IS A VECTOR OF DIMENSION MR3

THE FOLLOWING SUBSCRIPTED VARIABLES ARE PART OF THE ARGUMENT LIST
OF SIMPLE ANL ARE TEMPURARY STURAGE SPACES TO vt oIMEnSIONEL IN
THE CALLING PROGRAM (MINIMAX)?

PSsJHsXXsYY AND PE ARE TEMPOURARY STORAGE VECTORS OF DIMENSION NA
E IS A TEMPORARY STORAGE MATRIX OF DIMENSION {(NA#NA)

KO IS A VECTOR OF LENGTH 6+UPON CUMPLETION OF THE EXECUTION OF
SIMPLEs KO(1)=0 IF THE LINEAR PROGRAMMING PROBLEM WAS FEASIBLE.
THE SOLUTION LIES IN X(J})sJ=19sMR3

IFLAG=0 .

NA=K3 :
CALL SIMPLE (IFLAGsK3sMR39sAsBsCrKUSXsPSeJHIXXsYY sPLIESNA)
DO 10 JU=1sMR

X1{H)=X(J)

CONT INUE

DO 12 I=1sK

R1{I)=0.

DO 11 J=1sMR .
RI(II=RI(II+A(TI»J)%¥X1(J)

CONTINUE

CONT INUE

X15UM=0.

DO 13 U=1sMR

X1SUM=X1SUM+X1(J)

CONT INUE

RETURN

END

S PO OGP SO OO PO OOT PSP OPR GNP OEOE DO EPP RGOSR OIONERNESININOPOREOSIEPOEIEPRESRNTPOPCED
SUBROUTINE MET2 (KsKI1sMRINRsYMAXsORADDELTAs IPRINT 9 ISPsUNITsX29X2S
1UMSR2 sDsHsQ 9y IROW o I COL s LL oMM g NRMAX }

DIMENSION YMAX(1)s GRADINRMAXslls X2(1)s R2(1)

LOGICAL IPRINTsISP

INTEGER UNIT

DIMENSION D(NRMAXs1)s H(K1lslls G(1l)s IROW(Ll)s ICOL(L’s LL{L)s MMI(1
1)

MR1=MR+1

DO 2 I=1sMR

D0 1 J=1+K

D(I1sJ)=GRAD(1sJ)

CONT INUE

CONT INUE

SUBROUTINE ARRAY CONVERTS DATA FROM SINGLE TO LOUBLE DIMENSION OR
VICE VERSASIT ENABLES VARIABLE wIMENSIUNING OF VATA MATRICES N
THE CALLING PROGRAMeREFERENCE NUMBER (2}

CALL ARRAY (29MRsK sNRMAX 9K sDsD!?

\vAvi viwislulvivivivielWiviviviviviviviwlvivialNataNaNaNaNalalal aNaN oW alaNalalaNaN ol aNaNalaNaNa¥aNal o alf sl aNal ol ol s
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HERE D IS CONVERTED FROM AN ARRAY OF SIZE (NRMAXsKJ) TO AN ARRAY OF
SIZE (MRsK)

SUBROUTINE MFGR DETERMINES RANK AND LINEARLY INDEPENDENT ROWS ANU
COLUMNS OF A GIVEN MATRIX D UF SIZE {(MRsK)eREFERENCE (4)e

DELTA IS A TEST VALUE FOR ZERO AFFECTED BY ROUNDUFF NOISE

IRANK IS THE RESULTANT RANK OF D

IROW IS AN INTEGER VECTOR OF LENGTA MR CONTAINING THE SUBSCRIPTS
OF BASIC ROWS IN IROW(1}seees ROW(IRANK)

ICOL IS AN INTEGER VECTOR OF LENGTH K CONTAINING THE SUBSCRIPTS OF
BASIC COLUMNS IN ICOL(1) UPTO ICOL{IRANK)

CALL MFGR (DsMRsKsDELTAs IRANKs IROWs ICCL)

CALL ARRAY (1sMRsKsNRMAXsKsDsD)
HERE D IS RECONVERTED FROM AN ARRAY OF SIZE (NRsKJ) TO AN ARRAY OF
SIZE (NRMAXsK)

IF (IRANKeNEeMR) GO TO 6

DO 4 I=1sMR

DO 3 J=1sMR
D{Js1}=GRAD(IROW(I)sICOL(J))}
CONTINUE

CONTINUE

CALL ARRAY (2sMRsMRINRMAX Koo ¢
HERE D IS CONVERTED FROM AN ARRAY OF SIZE (NRMAXsK) TO AN ARRAY OF
SIZE (MR»sK)

SUBROUTINEVMINV INVERTS SQUARE MATRIX D OF SIZE (MRsMR! AND STORES
THE RESULT IN De DET 1S THE DETERMINANT OF THE ORIGINAL MATRIX Do
WHILE LL AND MM ARE WORK VECTORS OF SIZE MRe REFERENCL NUMGBER (3)

CALL MINV (DsMRsDETsLLsMM)

CALL ARRAY (1sMRsMRsNRMAXsKsDsD)
HERE D IS RECONVERTED FROM AN ARRAY OF SIZE (NRsK!) TO AN ARRAY OF
SIZE (NRMAXsK)

ISP=eTe .

IF (ABS(DET)eLE«le0QE-10} GO TO 5
RETURN

CONTINUE

IF (IPRINT) WRITE (UNITs16) MR
RETURN

CONTINUE

IRANK1=1RANK+1

IF (IRANK1eGE«MR) GO TO 7
ISP=eT,

RETURN

CONT INUE

DO 9 I=1sIRANK1

DO 8 J=1sIRANK

lvAviivivivivivivivielvivivivivivivivivi v el vlulviwlvivivi- v v vEvi vl vl v alwivivi el vl vl vil vl vl wil vl o vl @i Oif G ¢ O3 @ V)
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JJ=1CoL(J)
H({JsI)=GRAD(IsJJ)}
CONT INUE
CONTINUE

DO 10 J=1s1RANK1
H(IRANK1sJ) =10
CONTINUE

DO 11 J=1sIRANK
Q(J)=0.

CONTINUE
Q(IRANK1}=1.

SUBROUTINE SOLVE SOLVES A SET OF LINEAR SIMULTANEOUS EQUATIONSe

H IS A MATRIX OF ROW SIZE IRANK1l IN AN ARRAY ROW DIMENSION Kl

A SQUARE SUBMATRIX OF H OF SIZE (IRANK1sIRANK1! IS PART OF THEt

THE MATRIX EWUATIUN ON THE LEFTHAND SIDE »WRILE W IS INITIALLY THE
VECTOR ON THE RIGHTHAND SIiDEeW IS FINALLY THE SOLUTION VECTORe
IDET IS DEFINED BY 2%#%]D oLTe ABSIVET! olLTe 2%%{ID+1)sWHERE DET IS
THE DETERMINANT OF THE SUBMATRIXe

REFERENCE NUMBER (7)

A LISTING OF THIS SUBROUTINE IS ATTACHED TO THE PACKAGE

CALL SOLVE (HsQsIDETsIRANKI1sK1)
DO 12 J=19IRANK1
X2(J)=Q(J)

CONT INUE

DO 14 J=1sK

JI=T1COL (I

Q(J)=0.

DO 13 I=1eMR
QUI)=QLJ)+X2(T)*GRAD(IJ0J)
R2(JJ)y=Q(J)

CONT INUE

CONT INUE

X2SUM=0e

DO 15 I=1sMR
X2S5UM=X2SUM+X2 (1)

CONT INUE

RETURN

FORMAT (10XsI12598Xs#USER IS ADVISEDL TO®*/110Xs#INCREASE VALUE OF vt

ILTA®//)

END

P9 OGP0 O OO I VIO OROEOPOD S PO PNV POENORNRENDODOVOONEO0COOBOOOORDO0 DS O
FUNCTION ANCRM1 (Ksbl! ]

THE EUCLIDEAN NORM OF VECTOR Bl IS CALCULATED HERE

DIMENSION B1(1)

ANORM1=0,

DO 1 I=1sK

ANORM1=ANORM1+R1(1)*B1(1)

CONT INUE

ANORM1=SQRT (ANORML )
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~No

RETURN
END

CP P PPN ENNNE S0 N0SE00R00 000 0S000000AG0000P0ERER0006000000¢00008080

FUNCTION ANORM2 (KsB1!

* MAX(ABS(BL(1))sABS(B1(2))seassABSIBL(KI I} [S CALCULATED HERE

DIMENSION B1(1)

ANORM2=ABS(B1(1)}

IF (KeLTe2}) GO TO 2

DO 1 I=2sK

ABSB1=ABS(B1(1))

IF. (ABSB1l«GT«ANORM2) ANORMZ2=ABSB1
CONT INUE

RETURN

END

P 00O NP RNRIE0CEP 20000000000 ERER0R0R000CRLElROlOROEsRBERSOSIGARSL
SUBROUTINE SOLVE (AsXsIDsNsNA!
DIMENSION A{NAsl)s X(1)
D=0.

DATA DIV/.693147181/
DO 6 I=1sN

AA=0.

DO 1 J=1sN
AB=ABS(A(Js]I))

1IF (AB.LE.AA) GO TO 1
K=J

AA=AB

CONT INUE

D=D+ALOG(AA)

IF (I+EQsN) GO TO 7

IF (KeEQeI!) GO TO 3

DO 2 J=I»N

AB=A{TI+J)

Allsd}=A(KsJ)

AlKsJ)=AB

CONT INUE

AB=X(1)

X{1)=X{(K)

X{(K)=AB

I1=1+1

DO 5 J=11sN
AA==A(Js 1) /A(I.1)
AlJsI)=0.

DO 4 K=I1lsN
AlCJoK)I=A{JsKI+AARA (T 4K)
CONTINUE
X(J)=X(J)+AA#X(])

CONT INUE

CONT INUE

ID=D/DIV
X(NI=X(N)/A{NoN)

DO 9 11I=235N

[aNaR AN ANl AR AN N ANaNaN ol AN AN N AN AN NN AN AN ANAR AN N AR AN N AN AN AN AN AN AT I Al 2 B s Bt Bt Bt Hn B Bt M Mt B et L R B AR ALT L3N 0 ) L0 1}
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I=N+1-11
11=1+1
AA=0,

DO 8 J=11sN

AA=AA+A( T o) %X (J)

CONT INUE

XUII={X(I)=AA)/ALLs])

. CONTINUE

RETURN
END
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