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CHAPTER I 

INTRODUCTION 

Computer-aided design is now increasingly being accepted as 

a valuable tool whenever classical design techniques fail to achieve 

acceptable and realistic design criteria. This is especially true in 

electrical network analysis and synthesis where classical circuit theory 

restricts the network configuration and the degrees of freedom that may 

be demanded by the designer. Computer-aided network design has thus be­

come a state-of-art which tries to accommGdatetbedesign specifications 

and constraints in a meaningful way so that design objectives, which 

would have been considered difficult by classical designers have now 

not only become feasible but are regularly being implemented on the 

digital computer. Many optimization algorithms have now been tested on 

a number of circuit design problems with the aim of improving circuit 

performance and convergence towards anr·optimal solution. The algorithms 

differ both in the way they generate downhill directions (directions of 

decreasing objective function value} and_the computational effort involved. 

It is thus apparent that there are two steps which are rele-

vant to the circuit designer - the first one being that the design speci­

fications, constraints involving the model parameters, and the objective 

function, have to be explicitly specified in advance, and the other be­

ing that a reliable and efficient algorithm has to be chosen for the op­

timization of the design variables. The emphasis of this work has been 

to bring both the system modelling and optimization techniques into the 

1 



foreground so that the advantages and pitfalls encountered in the area 

of computer-aided design can be well appreciated. 

2 

This thesis concentrates mainly on minimax objectives, and 

Chapter II gives a brief review of existing minimax optimization me­

tho~s, such as those by Osborne and Watson (1969), Bandler and Macdonald 

(19i69b), and Bandler and Charalambous (1972d). 

A new algorithm called the grazor search method has been de­

veloped which is guaranteed to converge under certain conditions. See 

Bandler and Srinivasan (1971) and Bandler, Srinivasan and Charalambous 

(1972). The problem of function minimization subject to constraints 

can now be formulated as a minimax problem (Bandler and Charalambous 

1912a). This approach can be extended to tackle minimax optimization 

problems subject to constraints (Bandler and Srinivasan 1973a). Once 

a minimax solution has been achieved by the systems designer, it may be 

required to investigate the·solution for optimality, and suitable me­

thods are available for this investigation (Bandler and Srinivasan 1973c). 

Chapter III considers the above mentioned approaches to the minimax 

problem. 

Chapter IV deals with the area of computer-aided electrical 

c~rcuit design for minimax objectives. The problems considered include 

the design of lumped LC transformers and cascaded transmission-line 

networks acting as transformers or filters. A critical comparison has 

been made between the grazor search method and other optimization 

schemes for reliability and efficiency in convergence towards the optima. 

System modelling is an area which demands attention primarily 

because of the complexity and computational effort involved when 
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considering the original system, and the introduction of judiciously 

chosen models can not only reduce the complexity but also improve the 

computation time. It is now possible to model a high-order system and 

control this system on-line or off-line by dealing with the lower-order 

models directly. Chapter V deals with lower-or4er modelling of high­

order systems for a variety of objectives and design considerations. 

Minimax objectives subject to arbitrary transient and steady-state-con­

straints have been considered, and a method suggested by means of which 

the whole modelling procedure can be automated. See Bandler, Markettos 

and Srinivasan (1972, 1973), and Bandler and Srinivasan (1973b, 1973e). 

Discussions and conclusions on the proposed methods are in­

cluded in Chapter VI, while the Appendices A and B provide two computer 

program descriptions for minimax objectives (Bandler and Srinivasan 1972, 

1973d). 

The adjoint network method of evaluating the first-order de­

rivatives was used for network design problems (Director and Rohrer 

1969, Bandler and Seviora 1970). The CDC 6400 computer was used for the 

numerical experiments. 

The purpose of this work can be described as an attempt to fill 

some of the gaps existing in the areas of approximation,optimization and 

system modelling. 



CHAPTER II 

REVIEW OF MINIMAX METHODS 

2.1 Introduction 

Minimax optimization methods are assuming significance in the 

computer-aided system· design area and much effort has gone into the de-

velopment of suitable algorithms for minimax objectives. The methods 

have been used to optimize electrical networks where the objective is 

to minimize the maximum deviation of a network response from an ideal 

response specification. This chapter gives a brief review of minimax 

optimization techniques. 

2.2 Function Minimization 

The problem of unconstrained function minimization consists of 

minimizing with respect to ~ a real function· 
1'\J 

f ~ f(~) 

"" where 

(2 .1) 

(2.2) 

is a column vector consisting of k independent parameter elements, T 

denotes the matrix transpose and f is the objective function. 

The constrained version of the above problem, also known as the 

nonlinear programming problem, consists of minimizing f(~) subject to 

4 

"" i = 1,2, ... , m (2. 3) 



where the gi are, in general»-nonlinear functions of the parametersQ 

2.3 Least pth Approximation for Single Specified Function 

2.3.1 The Error Function 

where 

Define 

S(w) is a specified function (real or complex) 

F(~,w) is an approximating function (real or complex) 

w(~) is a positive weighting function 

e(~~~) is the weighted error or deviation between 

S (1/J) and F(cil,l/.1) 

"" is an independent variable (e.g., frequency or time) 

2.3.2 Continuous Approximation 

5 

where w1 and 1/Ju are lower and upper bounds, respectively» on the inter~ 

val of approximation. Minimization of I lei I is called least pth approxi= 
p 

mation. For p = 2, we have the well=known least squares approximation. 
--------------- --------------

Assume, for exampl~, that Je(~,wJI is continuous on a finite closed 

"' 
interval [1/.11,wul· The Chebyshev or uniform norm is_ given by 

{2.6) 
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The process of minimization of I\ e \ L"' is called minimax o·r 

Chebyshev approximation. 

It may be noted that 

(2.7) 

The larger the value of p, the more emphasis will be given to the 

maximum absolute error, and the optimal least pth solution should be 

closer to the optimal minimax solution. 

2.3.3 Discrete Approximation 

In practice the_various functions contained in (2.4) are usually 

evaluated at discrete values wi. It is thus appropriate to consider 

discrete approximatione 

where 

and 

Define the norm 

1\el\p ~ (I: \e.(~)jP)l/p 1 < p<oo 
. I 1 

~ 1E ~ 

e(~) t:. [e 1 (~) e 2 (~) 
~ ~ ~ ~ 

(2.8) 

(2. 9) 

(2.10) 

The process of minimization of I \elI is called discrete least 
~ p 

pth approximation. The discrete minimax norm may be defined as 

II e II co ~ rna x I e i ( ~) I 
~ iEI ~ 

(2.11) 



and minimization of I \elI~ is called discrete minimax approximation. 
'V 

As mentioned earlier, 

7 

II e \\(X) = (2.12) 
'\1 

and the same comments hold as in the continuous case. 

For a sufficiently large number of uniformly sampled values of 

llJ and with suitable weighting factors, the discrete approximation approach-

es the continuous approximation. 

2.4 The Minimax Problem 

Unless otherwise mentioned, the unconstrained discrete non-

linear minimax problem that is considered throughout this work con-

sists of minimizing 

U(<f>) ~ max y. (<f>) 
. I 1 'V 1E 'V 

(2 .13) 

where I,- as defined in (2.10), is an index set relating to discrete 

elements corresponding to the i, and the y. are, in general, nonlinear 
1 

v 
differentiable functions. It is desired to find a point <f> such that 

'V 

v v 
u ~ U(<f>) = min max yi(<f>) (2.14) 

'\1 <f> iEI 'V 

'V 

" where <f> is a local or global minimax optimum. 

"" 

2.5 Minimax Methods 

Many methods use the direct minimax formulation of (2.13) which, 
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in general 9 gives rise to discontinuous partial derivatives of the ob­

jective function with respect to the variable parameterso Otherwise 

efficient optimization methods may slow down or even fail to reach an 

optimum in such circumstances 9 particularly when the response hyper­

surface has a narrow curved valley along which the path of discontinuous 

derivatives lieso 

In direct search strategies 9 the minimax prqblem has been ex­

plored using pattern search and razor search (Bandler and Macdonald 

1969a» 1969b) o Of the gradient strategies 9 there are methods involving 

the penalty function approach (Fiacco and McCormick 1964a~ ~964b) 9 linear 

programming (Osborne and Watson 1969 9 Ishizaki and Watanabe 1968) 9 quad­

ratic programming (Heller 1969) 9 and a method proposed by Bandler and 

Le~=Chan (197l)o 

Whenever efficient methods of finding derivatives are not avail= 

able 9 direct search methods are usefulo For electrical networks 9 in 

particular~ it is now possible to evaluate the derivatives of network 

responses with respect to network parameters rather easily using the 

adjoint network approach (Director and Rohrer 1969~ Bandler and Seviora 

1970)~ and the gradient methods are thus more suited for such caseso 

The quadratic programming methods are usually more time=consuming than 

solution of linear programming problems 9 while penalty function methods 

rely on suitable function minimization algorithmso 

2"5"1 The Razor Search Method 

The razor search method of Bandler and Macdonald (1969b~ 1971) 



9 

essentially begins with a modified version of the pattern search (Hooke 

and Jeeves 1961) until this fails. A random point is selected auto­

matically in the neighbourhood and a second pattern search is initia-

ted until this one fails. Using the two points where pattern search 

fai,led, a new! pattern in the. direction of the optimum is established 

and! a patter~ search strategy resumed until it too fails. This pro­

ces:s is repe~ted until any of several possible terminating criteria is 

satisfied. Thus, the strategy tries to negotiate certain kinds of 

11razor sharp~' valleys in- multidimensional space. The method has been 

compared wit~ other direct search methods on some test problems, and 

has been fou~d to be reliable and computationally efficient in most of 

the cases. 

2.5.2 Sequential Unconstrained Minimization Technique 

The;nonlinear minimax optimization problem of section 2.4 may 

be transfo~ed into a nonlinear programming problem (Waren, Lasdon and 

Suchman 196~) of section 2.2 as follows 

Minimize cj>k+l (2.15) 

subject to 

cj>k 1: - y. (cj>) > 0 
+ 1 

ie:I (2.16) 
'V 

The· nonlinear programming problem may, in turn, be solved by 

well-establ:ished methods such as the Sequential Unconstrained Mini­

mization T~chnique (SUMT) due to Fiacco and McCormick (1964a, 1964b), 
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which is a development of the Created Response Surface Technique (CRST) 

suggested by Carroll (1961). The problem of (2.15) and (2.16) may be re-

formulated as follows. Minimize 

w. 
. 1 

= ~k+l + r i~I ~ y (~) k+l- i 
"' 

(2.17) 

whe:re 

~ is an independ.ent variable. and 'rk+l , 

ie:I (2 .18) 

P(~'~k+l'r) is an unconstrained objective where points close to the 

"' constraint boundaries are penalized. 

Define the interior of the region of feasible points as 

ie:I} (2.19) 

where the region of feasible points is 

ie:I} (2.20) 

Starting with a point ~~~k+l and a value of r, initially r 19 
0 "' such that ~~~k+le:R and r 1>0 the unconstrained function P(c!J,cj>k+l"rl) 

"' ~ 
is. \llinimized with respect to cp and cpk+l" The form of (2.17) leads one 

"' to' expect that a minimum will lie in R0 , since as any one of the 

cj>k+l- yi(~) approaches 0, P approaches m. The location of the minimum 
v v 

will depend on the value of r 1 and is denoted by 4>Cr1),cpk+l(r1). 

"' This procedure is repeated for a decreasing sequence of r values 

such that 

lim r. = 0 
j-¥0 J 

(2.21) 

(2.22) 
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each minimization being started at the previous minimumo For example~ 

the minimization of P(~~~k+l~r2 ) would be started at ;(r1) and ¢k~l (r1)o 
~ ~ . . . 

Every time r is reduced 9 the effect of the penalty is reduced~ so that 
v v 

one, would expect in the limit as j ~ oo and r. ~ 0 that cp (r.) + d) and 9 

J ~ J ~ 
"t:/ 

consequently» that <!>k+l(r.) ~ U(<!>) 9 the minimax optimumo 
J ~ . 

Conditions which guarantee convergence have been proved by 

Fiacco and McCormicko It is important that the initial value of r 

chosen is realistic 9 and r should be reduced systematically after 

each iterative cycle of minimization ·of Po 

2.5o3 Algorithm due to Osborne and Watson 

This minimax algorithm (Osborne and Watson 1969 9 Watson 1970) 

deals with minimax fomulations by following t~~o st.eps = a linear pro= 

gr~ing part that provides a given step in the par«1meter space~ follow-

ed by a linear search along the direction of the step. This algorithm 

is very similar to the one proposed by Ishizaki and Watanabe (1968) 

and works very well for many minimax problemso In cases where the 

linear approximation is not very good in the vicinity of the optimum» 

the method may fail to converge toward the optimum for successive it-

e~ations. 

Consider the problem of minimizing I le(<!>)l loo in (2oll)~ where e 
~ ~ ~ 

consists of real elements. Linearizing e.(<!>) at some point ~j the prob= 
l. . 

"" 'V 
lem may be stated as 

Minimize ;.. '¥k+l 



subject to 

tPk+l-ei(tPj) - V T e . ( tP j ) ~tP j 
1 . . . > 0 

'V 'V "' "' ie:I 

tPk 1+e.(tPj) + vTe. (tPj )~cf>j > 0 + 1 . . 1 . . 

"' "' "' 'V 

whe!"e 

a ]T 
dcf>k 

n > k 

V is the first partial derivative operator with respect to the 

parameter vector q,, 
'V 

6 denotes incremental changes, and 

n is the number of elements of I. 

12 

{2 ~ 23) 

(2.24) 

Noting that the variables for linear programming should all be 

nonnegati'!'e, and imposing a rather practical constraint that the ele= 

ments of tP should not change sign we have the linear p~ogramming prob-

lem in 

as follows. 

Step 1 

Minimize xk+l 

subject to (2.25) and 

±(ei(cf>j) + VTei(cf>j) cf>ljxl- tPlj) 
'V "' "' 

< xk +1 ie:I 

(2 0 26) 

(2 0 27) 

(2.28) 
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X > 0 
"\J '\.r 

(2.29} 

where 

1 ·= 1 J 2 J 0 0 0 J k 

The solution produces a direction given by ~~j. 
'\.r 

St~p 2 

"* Next we find yJ such that 

max\e. (~j + yj~'j)\ 
iei· 

1 
"' ~ 

is a minimum with respect to yj. Set 

and return to Step 1. 

(2. 30) 

(2.31) 

(2.32) 

The convergence of the method holds und~r certain conditions 

(Osborne and Watson 1969). This approach is directly applicable to lin-

ear functions such as polynomials, for which k+l equal extrema results at 

the optimum. 

2.5.4 Method due to Bandler and Lee-Chan 

The nonlinear minimax objective given by (2.13) is minimized 

here by exploiting the gradient information of the local discrete maxi-

rna of the functions yi(~) to get a downhill direction by solving a set 

"' of simultaneous equations. The method works very well, except that in 

the case of linear dependence of the equations, some problems may arise 

in the convergence toward the optimum. See Sandler and Lee-Chan (1971). 
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2.6 Near~Minimax Methods 

As is well-known to network designers~ least pth approxi-

mation for sufficiently large values of p can result in an optimal 

solution very close to the optimal minimax solution (Ternes and Zai 

1969» Ternes 1969 9 Bandler 1969a, Seviora 9 Sablatash and Sandler 1970). 

When appropriate error functions are raised to a power p given 

by 

f(~) = E le.(•Jip 
. I 1 

~ 1E ~ 

·and f($) is minimi~ed 9 ill=conditioning may result for nominal values 

of p (usually greater than or equal to about 10). The objective·func-

tion of the form (2.33) has been used by a number of authors (Ternes 

and Zai 1969 9 Ternes 1969 9 Bandler 1969aD Bandler and Seviora 1970). 

Bandler and Charalambous (1972c 9 1972d) have given a unified 

approach to the least pth approximation problems 9 as encountered in 

network and system design~ having upper and lower response specifi~ . 

cations eogo~ as in filter designo The ill=conditioning is removed 

by proper scaling 9 and least pth optimization has been carried out for 

extremely large values of p 9 typically 103 to 106
0 This approach has 

been used extensively in a variety of computer-aided network design 

problems (Bandler and Bardakjian 1973 9 Bandler and Charalambous 1972d» 

Bandler~ Charalambous and Tam 1972 9 Bandler and Jha 1972 9 Popovic 

1972» Charalambous 1973). 

The least pth approximation problem can effectively be tackled 

by efficient gradient minimization techniques such as the Fletcher -

PQwell method (1963), Jacobson- Oksman algorithm (1972) 9 and·a more 
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recent method due to Fletcher (1970). These methods have been com-

pared critically for near-minimax approximation problems in the area 

of lower-order modelling of high-order syst·ems (Sandler, Markettos 

and Srinivasan 1972, 1973). 

The discrete nonlinear minimax approximation problem of Section 

2.4 can be formulated as a least pth approximation problem (Handler 1972). 

Suppose at least one of the functions yi(Q>) is positive. Then, since 
'V 

U(~)- > o, 
'V 

where 

where 

u (cp) = 
'V 

lim U($){ 1: 

~ "' ie:I 

for y. < 0 
1 

[w.y. (<P) rr/p 1 1 "' 

U(<j>) 

"' 

Suppose all the functions yi are negative. 

U(cp) 
'V 

= 1 im U ( 4>) [ I: [w i y i Ct) ] p ll I p 
p+-oo ~ ie:I U(cp) 

'V 

w. = 1 for all y. < 0 
1 1 

Therefore, the minimization function is chosen as 

f(cp) 

I 
[
w.y. (cf>) l q = U(Q>) I: 1 1 "' 

"' ie:I U(4>) 

1/q 

'V 

(2.34) 

(2.35) 

Then, since U(Q>) < 0, 
'V 

(2.36) 

(2.37) 

(2.38) 



where 

U(cp) 

jU(cp) I 
q ~ "' p 

fl<p<oo for U>O 

l: ~p<oo for U<O 

(2. 39) 

A number of interesting features of f(cp) can be stated. For 

"" l<Jqj<oo, q having the appropriate sign, and for appropriate values of 

wi' in accordance with (2.35-) for U(cp) > 0 and (2.37) for U(<j>) < 0~ 

~ "" 
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we have a continuous.function f(cp) with continuous derivatives with re-
~ 

spect to <P so long as U(cp) F 0. When U(cp). > 0, f(cp) is like penalty term 
~ ~ ~ ~ 

including violated constraints, in this case only positive Y·~ which it 
1 

is desired to make feasible (or acceptable). If min f(cp) > 0~ the con-
. t ~ 

straints remain violated. In least pth approximation this indicates 

that the specifications have not been satisfied. When U(cp) < 0 the speci-

fi~ations are satisfied and f(cp) is like a penalty term designed to move 
~ 

a solution as far from the boundary of the feasible region as possible. 



CHAPTER III 

NEW APPROACHES TO THE MINIMAX PROBLEM 

3.1 Introduction 

In this chapter.a new gradient algorithm for minimax object­

ives called the grazor search (or gradient razor search) method is in­

troduced (Bandler and Srinivasan 1971, Bandler, Srinivasan and 

Charalambous 1972). As the name suggests, the method attempts to follow 

the path of discontinuous derivatives when encountering.razor-sharp 

valleys in multidimensional parameter space. The method is especially 

suitable for nonlinear minimax optimization of network and system re­

sp~nses. This algorithm uses the gradient information of one or more 

of the highest ripples in the error function to produce a downhill 

direction by solving a suitable linear programming problem. A linear 

search follows to find the minimum in that direction, and the proce­

dure is repeated. This type of descent process is repeated with as 

many ripples as necessary until a minimax solution is reached to some 

desired accuracy. Unlike the razor search method due to Bandler and 

Macdonald (1969b), the present method overcomes the problem of dis­

continuous derivatives characteristic of minimax objectives without 

using random moves. It can fully exploit the advantages of the adjoint 

network method of evaluating partial derivatives of the response func­

tion with respect to the variable parameters (Director and Rohrer 1969, 

Sandler and Seviora 1970). 

The problem of constrained minimax optimization is considered 

17 
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next. This problem has been reformulated as an unconstrained minimax 

problem by two methods, one extending a recently proposed method due to 

Bandler and Charalambous (1972a, 1973b) and the other using weighting 

functions. The reformulated problem can then be tackled by efficient 

unconstrained minimax algorithms. The method has a number of appli­

cations, including high-order system modelling and control system de­

signs, where constraints have to be imposed on the pole-zero locations 

of the models chosen. Appropriate constraints can also be imposed 

on the upper and lower bounds of the parameter values. See Bandler and 

Srinivasan (1973a, 1973e). 

Inve·stigation of optimality conditions of a proposed or a design 

solution is of great practical importance to the system designer wish-

ing to approximate a desired response by a system response. Conditions 

for optimality in the minimax sense in conventional synthesis problems 

involving polynomials and rational functions are fairly widely appre­

ciiited. However, with the ever-increasing need for network designs con­

taining elements not"conducive to the rational function approach, e.g., 

a mixture of lumped and distributed elements, and the application of 

automatic optimization methods involving least pth and minimax objectives~ 

sdme means of testing for convergence to an optimum for more arbitrary 

pFoblems is highly desirable. Depending on the optimization method em­

ployed, a satisfactory minimax solution may be obtained for a problem 

after a number of iterations of the algorithm on the computer. It may 

then be required to investigate the solution for minimax optimality 

(Bandler 1971) so as to verify whether the solution is optimal or not. 

Though the necessary optimality conditions may seem to be straightforward 
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to verify, they are both tedious and difficult to implement in practice. 

A practical way of implementing them is considered in detail. See Bandler 

and Srinivasan (1973c, 1973d). 

3.2 The Grazor Search Strategy 

3.2.1 Theoretical Considerations 

The grazor search algorithm is a generalization of the method 

due to Bandle* and Lee-Chan (1971), and is basically of the steepest 
I 

descent type. : The nonlinear minimax optimization problem is the one 

already stated in Section 2.4. 

where 

I 

Define a subset JC:I such that 

ie:I} 

~j denotes a feasible point at the beginning of the jth 

iteration, and 

e:j is the tolerance with respect to the current 

max y. (cllj) within ,which ~he y. for ie:J lie. 
. I l. 1 
1£ "" 

(3.1) 

(3.2) 

Linearizing y. at cllj, we can consider the first-order changes 
1 "" 

(3.3) 

A sufficient condition for ~'j to define a descent direction 

"" 



Consider 

. j 
I: a .J V y . ( <P ) 

ie::J 1 'V 1 'V 

L CLj = 1 
1 

a. j > 0 
1 

(3.4) may now be written as 

-VTyi(<Pj) _E a~ V yi(~j) < 0 
'V ~ 1EJ 'V 'V 

which suggests the linear program: 

Maximize 

subject to 

20 

(3.4) 

(3.5) 

(3. 6) 

(3.7) 

(3.8) 

(3.10) 

plus (3.6) and (3.7), where kr denotes the number of elements of 

J(<Pj ,e::j). Note that if 

for e::j = 0 

the necessary conditions for a minimax optimum are satisfied at ~j 
'V 
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(Bandler 1971). Observe that J is non-empty and that if J has only 

one element, we obtain the steepest descent direction for the corres-

ponding maximum of the yi(~). 
rv 

3.2.2 Proof of Convergence 

Before proving the convergence of the algorithm it may be worth 

restating the following lemma due to Farkas (Lasdon 1970). 

Let {po, pl, ... , pn} be an arbitrary set of vectors. There 

"' rv "' exist 

s. > 0 (3.11) 
1 

such that 
n 

Po = .I:l f3.p. (3.12) 
1= 11'\,1 rv 

if:and only if 

p T q > 
0 -rv rv 

0 (3.13) 

for all q satisfying 

"' 

p.T q > 0 i :;: 1, 2, ... ' n (3.14) 
rv1 "' 

It is, therefore, possible to find nonnegative values of ~-j in 
1 

the expression for (3.5) if and only if 

(-8~j)T(-8~j) > 0 (3.15) 

"' "' 



for all ~$j satisfying 
'V 
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(3 .16) 

where (3 .13) and (3.14) correspond to (3.15) and (3.16), respectively, 

and -6~j ll 'Vyi($j), -~~j take the place of p0, p., q. 
'V 'V 'V 'V 'V 'V1 'V 

Now (3.15) is always satisfied, though it may not be possible to 

satisfy (3.16) if Ej is too large. By suitably decreasing Ej, (3.16) 

may be forced to hold. 

3.2.3 Practical Implementation 

Fig. 3.1 illustrates how the different subroutines are called 

and their relative hierarchy. Flow charts of subroutines GRAZOR, SELEC 

and GOLDEN appear in Figs. 3.2 - 3.4. See Appendix A for further de­

tails and definitions. The objective function U($j) is calculated by 

subroutine LOCATE. 

As given by linear programming (see, for example, Subroutine 

·SIMPLE), 6$j is normalised to 

= (3.17) 

by subroutine NORM. Starting at ~j, a step aj6~ j is taken for aj =a j, . n o 
'V. 'V 

if no improvement in U results, aJ is reduced by factors of S until a 

better point is obtained or aj 

point from $j . 
'V 

Then 

v 
< a. "* Let aJ produce the first improved 

(3.18) 



Subroutine 

NORJ.\1 

Main Program 

Subroutine GRAZOR 

Subroutine 

GOLDEN 

1 I 

Subroutine 

LOCATE 

Subroutine ANAL 

'~ 
11 

Function Y 
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Subroutine 

SELEC 

Subroutine 

SH,fPLE 

Subroutine 

TGSORT 

Fig. 3.1 Block diagram summarizing the computer program structure 

and illustrating the relative hierarchy of the subprograms. 
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Fig. 3.2 Mathematical flow diagram of subroutine 



. kd. lillli' <)" 1 

0o! <)" 'IIi 

y@l!. ... yl 

Figo 3o3 Mathematical flow di&gram of subroutine 

25 



"t + n(l+t) 

y
8

,yl ... 0 

Yu + 1 

ua + Ute 

.tu .. t • Yu t.t 
~---+1 c~ 1J lDCATE <.tu, ~ i, 

k,n,llu) to get Uu 

no 

tl, + t0 
• Yb 6t 

Call lDCATE(,tb'ti'k' 

Yu+rb Yb+ra (\,+Ua 

Ya + Yt•<ru-Y.t.)/t2 

ta +to • Ya 6t 
>=--------l~Call LOCATE(ta•~t'k ,n, 

U
8

) to get U
8 

Fig. 3.4 Mathematical flow diagram of subroutine 

GOLDEN (y*,n,,,,0 ,a,0 ,~i'k,n,U,» u,J 
"'"' "' 

26 
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is defined. 

Next a method based on golden section search (Ternes 1969) is 

'* us~d to find yJ corresponding to the constrained minimum value of 

max y. (~j + yj6~j). The jth iteration ends by setting 
iEl 1 ~ ~ 

(3 .19) 

and 

.J.+l 
a. = 

0 
(3. 20) 

In Fig. 3.4, 

L = ~ (l+l"S) (3.21) 

is the factor associated with the golden section. Subscripts i and u 

. denote lower and ~pper limits, respectively, and a and b denote interior 

points of the interval of search. An attempt to bound the minimum is 

made. Then golden section search is used to locate the minimum to a de-

sired accuracy. The search is terminated when the resolution between 

two interior points falls below a factor~ of the initial interval. 

In Fig. 3.3 the maxima implied by the functions y., sampled in 
1 

a certa~n· order, are located and sorted out in decreasing magnitude 

(by, say, Subroutine TGSORT). 

Fig. 3.2 shows the grazor search strategy. Note that in setting 

up 

Ax= b (3. 22) 
~ ~ 

slack variables (xk +2,xk +3 , ..• , x2k +l) are introduced. We try to 
r · r r 

generate a descent direction based on the gradient of the maximum 



function (k = 1), proceed to the minimum of U in that direction, and 
r 

repeat the process. If, at any stage, this process or the linear pro-

28 

gram does not yield a direction of decreasing U, or does not provide an 

improvement greater than e:, the procedure is repeated after including· 

the function corresponding to the next largest of the current n dis­
r 

crete local rnaxima.(i.e., ripples) if one exists. When all local maxi­

rna have been included and U can still not. be reduced or improved satis-

factorily by a value greater than €, we repeat the procedure with k r 

functions corresponding·to the first kr largest of the candidates~ be­

ginning with k = 1, in another series of attempts to reduce U. The 
r 

algorithm terminates only when there are no more suitable functions left 

and when there are either no improvements or improvements less than e:' 

over one complete cycle of kr, starting.from 1 and ending with nro 

3.2.4 Example 

The design of a two-section lOQ to lQ quarter-wave transmission-

line transformer network over a 100 percent bandwidth centred at lGHz 

is considered (Matthaei, Young and Jones 1964) as an example for testing 

the grazor search strategy. This problem has already received atten-

tion from the optimization point of view (Bandler and Macdonald 1969a, 

1969b). The lengths 11,12 are fixed at 1q' the quarter-wavelength at 

centre frequency, and the impedances z1,z2 are varied. 

Table 3.1, in association with Fig. 3.5, illustrates how the 

grazer search strategy effectively follows the path of discontinuous 

derivatives to locate the optimum in the course of minimax optimization 
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TABLE 3.1 

SlNHARY OF IMPORTANT STEPS IN THE EXAMPLE 
ILLUSTRATING THE GRAZOR SEARCH STRATEGY 

v ~ t = (2.23605, 4.47210),U'(t) = 0.42857 

Iteration Points of Starting Point Values of Scale Factors 
Number Iteration of Iteration k 

Point Scale Factor r 

~1=(1.0, 3.0) 
"' t2 a*=laOO 

1 1-S U' (,1)=0. 70954 .4 r~l+-r 1 

"' "' 
•5=•2 y*:ll:1.000 

"' "' 
t5=(1.99996, 3.00893) 

. t6 a=1.00 

2 5-12 U' (;5)=0.63086 .7 a*.=O.lO l 

"' "' 
;12 Y*=2+T 
'\!1 

+12=(1.69865, 3.20921) 

"' ~13 

"' 
a=O.l(-r+2) 

U' Ct12)=0.48073 
tl4 a=O. Ol(-r+2) 

3 12-20 1 
.15 a*=O., 001 (T+2) 

'"' t20 y•=-r+l 
"' 

+20=(1.70806, 3.20821) 

"' .21 a=9a472xlo=3 
"' 

4 20-26 U' (•20)=0.47843 .22 a*=9 .. 472xlo-~ 1 

"' "' ;26 y*::laOOO 
""' 

+26=(1.70723, 3.20865) 

"' .30 a*=l.Oxlo-6 

s 26-35 U' (+26)=0.47794 "" "' .35 Y*=-r+l 
"' 

.35=(1.70723» 3.20866) 

"' .36 a*=9.472xlO"'It 
6 35-64 U' (+ 35)=0.47794 "" 2 

"' .64 y*=l. 096xl03 

"' 



1'ABLE 3.1 (continued) 30 

S~~y OF IMPORTANT.STEPS IN THE EXAMPLE 
ILLUSTRATING THE GRAz'OR SEARCH STRATEGY 

.; 
(2.23605, 4.47210), U' ($) = 0.42857 4> = 

"' "' 
Iteration Points of Starting Point Values of Scale Factors 
Nwnber Iteration of Iteration k 

Point Scale Factor r 

.6~=(2.05489, 4.18669). 
'\, 

7 64-72 U' (964)=0.44084 ~64 y*=T+2 · 
'\, "' 

•'2=(2.09028, 4.17411) 
'\, 

8 72-78 U' Ct72 )=0.43199 .78 

"' 
Y*=l.OOO 

.78=(2.09380, 4.17280) "' /' 

9 78-96 U I <t 78) :Q • 43146 .96 Y*=60.69 2 
"' 

.96=(2.18832, 4.38018) .98 a*=2.279x101-3 
10 96-103 "' "' 2 

U1 Ct96)=0.42929 .103 Y*=l. 000 
"' 

• 103=(2.19040, 4.37924) 
"' 

11 103-117 U' <t10 3)=0.42886 ct~117 . y*~30.03 2 
1\, 

• 117=(2.22029, 4.44082) 
"' 

12 117-126 u I ( •
11.7) :0 e 42864 t126 y*=10.47 

"' 
• 126=(2.23088, 4.46221) 

13 126-132 "' 
U' (+ 126)=0.42862 

"' 
tl33 = ,t126 

u 1 (t13 3) ~ u(t126J 
.134 a*=2.279xlo-·3 

13' 133-136 "' 2 
.136 y*=T+2 

"' 
• 169=(2.23595, 4.47237) 
"' 

18 169-176 U'(.169)=0.42861 tl76 y*=l .. OOO 

"' 
=tl6~ 
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C\J 
N 

4 

3 

.70 .65 

2 

max lp~ 
I 

.50 
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3 

Fig. 3.5 Example illustrating how the grazer search strategy follows the 

narrow path of discontinuous derivatives. 
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of the network (see Fig. 3.6). Let 

(3 0 23) 

·and define 

U'($) = m~x1PC$,wi)j (3 0 24) 
'V ]. 'V 

T where ~ = [Z1 z2] ~ and p is the reflection coefficient on 11 uniformly 
'V 

spaced frequencies w. in the band 0.5-1.5 GHz. 
l. 

The grazor search strategy starts at 

1 
~ = [1.0 
'V 

uv($1) = 0.70954 
'V 

and the values of the parameters used are a = 1 (at start)» 
0 

v 10-6 a = 10,!) n = o.s$ E = 10-4 and e~ 10-6 . a. = » -
The first iteration extends 1 s from <P to cp ; $2 is the new point 

'V "' 'V 
obtained when taking a unit step along the direction suggested by the 

negative gradient. Since ~ 2 is a satisfactory improvement 9 a golden 

"' section search is initiated» yielding q, 3 (y=l+-r) which is not an im= 
2 'V 4 

provement over q, o The interval of search is thus found o $ (y = -r) 
"' 'V 

is found to be no improvement over $2 The golden section search is 
'V 

now terminated, since the current resolution between two interior points 

of search falls below the minimum allowed value. <11
5 ~ $2 is thus the 

'V 'V 

best point attained at the end of iteration lo At the end of itera= 

tion 5» U($ 26)-U($ 35)<E, so kr is increased from 1 to 2 in the next 
'V 'V 



1 .11 ,Z 1 L2,Z2 10 

I .... , 

Fig. 3.6 2-section 100 to IQ quarter-wave transmission-line transformer. 

tN 
(.N 
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iteration. For a similar reason, kr is increased from 2 to 3 for itera­

tion 12, and reset to 1 from 3 for iteration 13. During iteration 18, 

the parameter values remain the same to 5 significant digits, and the 

improvement in U at the end is less thane'; all successive attempts 

to achieve a better point with an improvement greater than e.'Cby con-

sidering 1, 2 and 3 ripples) fail, and the procedure is terminated. 

3.3 Constrained Minimax Optimization 

3.3.1 Statement of the Problem 

The constrained minimax problem considered may be stated as 

follows. 

Minimize 

subject to 

where 

u (cp) 
'\1 

= max y. (cp) 
. I 1 1€ '\1 

I~ {1,2, .•• ,n} 

M ~ {1,2, ... ,m} 

(see Sections 2.2 and 2.4) 

(3 0 25) 

(3. 26) 

(3. 27) 

(3. 28) 

It will be assumed that the functions y. and g. are continuous 
1 J 

with continuous partial derivatives, and that the inequality constraints 

(3.26) are such that a Kuhn-Tucker solution exists (Lasdon 1970, Zangwill 

1969). 

"' Let y~(cp) for ieL be the largest local discrete maxima (ripples) 
'\1 



of yi(~) for iEI, in decreasing magnitude, where 
1'\.o 

3.3.2 Formulation 1 

35 

(3.29) 

The constrained minimax problem of (3.25) and (3.26) can be 

formulated as a non-linear p~ogramming problem as follows. 

Minimi·ze ~k+l 

subject to (3. 26.) and 

~k 1 - y. ($) > 0 
+ 1 -

1'\.o 

(3. 30) 

ie:I (3. 31) 

The above problem can then be reformulated as an unconstrained 

minimax problem as follows. 

where 

Minimize with respect to ~ and ~k+l 
1'\.o 

V ($ '~k+l ,.a.)= max 
"" , 'V ie:I 

a.. > 0 
J 

j e:M 

j = 1, 2, •.• , m+l 

(3. 32) 

(3.33) 

(3.34) 

For a large enough value of a one can obtain, in principle, the 
'V 
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exact optimal solution for the original problem by minimizing this re-

formulated objective function. 

When implementing this scheme one can, for the problem defined 

earlier, slightly modify the formulation in order to save on computation-

al effort, so that the minimization function chosen is 

V' (~,~k+l'a) =max ~k+l'~k+l- al(~k+l-yi(~_)),·l 
'V 'V !e::L -u 

je::M 

~k+l- aj+l gj(~~ 
(3. 35) 

3.3.3 Formulation 2 

In this formulation, weighting functions are used to convert 

the original problem into an unconstrained minimax problem as follows. 

whe:rte 

Minimize with respect to ~ 
'V 

W(~,w) = max 
rv rv ie::I 

W· > 0 
J 

je::M 

[y. (~) '-w. g. (~)] 
1 'V J J 'V 

je::M 

(3.36) 

(3. 37) 

(3.38) 

For purposes of practical implementation, as long as U(cp) > 0 

and one wishes to apply nonzero weights only to violated constraints of 

(3.26), the minimization function may be chosen as 

w·c~ .. w') 
'V'V 

=max [y1(cp),-wj gj(~)] 
te::L rv rv 
je::M 

(3. 39) 
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where 

' A [ ' ' w '] T w g wl wz • • • m 

"' 
(3. 40) 

w.' > 0 for gj (<I>) < 0 
J 

"' j e:M (3 .41) 

w.' = 0 for g. (<I>) > 0 
J J "' 

The advantage of this formulation is apparent when U > 0 implies 

that certain specifications are violated and U < 0 implies that they are 

satisfied. In this case, comparison with violated and satisfied con-

straints seems· appropriate. 

3.3.4 Comments 

By proper choice of the elements of a, w, or w', the reformulated 

"' "' "' functions V, V', W or W' can be minimized by a suitable minimax or near-

minimax algorithm. In case of parameter constraints, upper and lower 

specifications can be considered as follows. 

i = 1 2 k 
' ~ ' • 0 • ' 

(3 0 42) 
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j = 2k+l, 2k+2, ••. , m (3. 43) 

3.4 Practical Investigation of Minimax Optimality Conditions 

3.4.1 Introduction 

In recent paper (Bandler 1971), the conditions for a minimax 

optimum were derived for a general nonlinear minimax approximation prob-

lem from the Kuhn-Tucker (1950) conditions for a constrained optimum in 

nonlinear programming. See also Dem'yanov (1970), Medanic (1970). The 

minimax optimality conditions have also been derived from conditions for 

optimality in generalized least pth approximation problems fo~ p~ by 

Bandler and Charalambous (1971, 1972b, 1973a). 

3.4.2 Conditions for a Minimax Optimum 

The minimax problem considered is the unconstrained version of 

the problem stated in Section 3.3.1 (i.e., when (3.26) is ignored). 

The necessary (Theorem 1) and sufficient (Theorem 2) conditions for a 

minimax optimum are stated as follows. 

Theorem 1 

At an optimum point ~ 0 for the minimax approximation problem 

there exist 
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u > 0 
R. -

Jl, = 1, 2, . . . , kr (3.44) 

such that 

k 
r 

L UJl, = 1 
Jl,=l 

Theorem 2 

(3.45) 

(3. 46) 

, kr are the equal maxima. 

If the relations in Theorem 1 are satisfied at a point $0 and 

all the functions y. (') for iei are convex, then $0 is optimal. 
1 "' "' 

Theorems 1 and 2 have been proved by Bandler (1971), and the 

optimality conditions as derived by Curtis and Powell (1966) follow 

immediately from these theorems. 

3.4.3 Practical Implementation 

Once a proposed or a design solution is obtained for a minimax 

problem, it may be necessary to investigate the necessary optimality 

conditions. If the point $, corresponding to a solution, is to be tested 

"' 



for optimality, ari attempt is made to solve 

k 
r 

E utvyt(~) = 0 
t=l ~ ~ ~ 

40 

(3.47) 

plus (3.44) and (3.46) for kr = 1; 2, ••• until for a value of k* (<n ) , · r - r 

(3.44), (3.46) and (3.47) are satisfied. If this is not possible, the 

necessary conditions are not satisfied. 

A computer program has been d~veloped which can test a solution 

for the necessary conditions for a minimax optimum by two formulations. 

One uses a linear programming approach, and the other the solution of a 

set of linear independent equations. See Appendix B, Bandler and 

Srinivasan (1973c, 1973d). 

3.4.4 Method 1 

(3.44), (3.46) and (3.47) are solved here by minimizing 

'\ +1 ~ 0 
r 

such that (3.44), (3.46) are satisfied and 

i = 1, 2, .•. , k 

Linear programming ensures that 

t = 1' 2' .•• ' k +1 r 

(3.48) 

(3 .49) 

(3. SO) 
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3.4.5 Method 2 

Here, we solve a set of linearly independent equations 

ie:K' (3.51) 

and (3.46), where K'is a suitable subset of {1, 2, s •• , k}. 

There is no guarantee, however, that (3.44) will holdv When 

k -1 is greater than the number of elements of K' ,the system of equations 
r 

(3.46) and (3 .. 51) have more unknowns than equations, and we use Method 

1 to get the u 
1 

. 

3.4.6 Conunents 

Appendix B contains a program description incorporating the ideas 

of the previous two sections. The program package can be called from the 

user's main program and either of the two, or both the methods can be used 

to test the optimality conditions. The user can either specify the value 

of k or a tolerance~ relative to y1 within which some.of the y2, ... ,y 
r nr 

lie. The necessary conditions for optimality are satisfied when the 

norm II r II of the residual vector 
'U 

(3. 52) 

falls within a user-specified value e:, and (3.44), (3.46) hold, for a 

value of mr starting with 1. If the conditions are not satisfied for mr=lJ 

m is incremented by 1 and the procedure is repeated. The investigation 
r 

ends as soon as the conditions are satisfied for a value of mr ~ kr, or 
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the conditions are not satisfied form = 1, 2, ... k . The user-
r ' r 

specified definitions of I 1·1 I and the value of E should be realistic 

so that the program may give meaningful results. 

The importance of this investigation cannot be underestimated 

especially when there may be a number of solutions obtained by the same, 

or different optimization methods. for a given problem and one wishes 

to test these solutions for optimality so as. to be able to detect local 

optima, and to compare the methods for convergence towards the optima. 

This program may be used in such a way that it is possible to investi-

gate the solutions after a certain number of iterations of the algorithm, 

or when a certain convergence criterion is reached, so that one may de-

cide whether to carry on with further optimization, or to terminate 

altogether. 

The program also makes it possible to find the maxima which 

are active in the vicinity of the optimum, so that the user may gain 

insight into the various scaling factors associated with the problem. 

3.4.7 Example 

The problem chosen was the lower~order modelling of a ninth-

order nuclear reactor system when the operating reactor power level 

is in the 90-100 percent range of the full power (Bereznai 1971). A 

second-order model was chosen and the step-response of the system was 

approximated by that of the model for a minimax objective over a time-

interval of 0-10 seconds. A solution was obtained for this problem 

and the program described in Appendix B was used to test the solution 



for optimality. 

The relevant input parameters are: k = 

~ = 0.01, and the norm chosen is given by 

II r II = max I r i I 
'V l<i<k 

V 9 is given by 
'V 'V 

[ 

. 38711013 X 10_3. 

= , Vy2 

-.14208087 X 10-3 
'V 

[ 

.79840875 X 10-
3
] 

Vy = ,Vy4 
'V 

3 
.68487328 X 10-2 

'V 

and 9 is given by 
'V 

yl = .29234162 X 10-2 
y2 = 

A 

.23141899 X 10-2 A 

y3 = y4 = 

= [-.29632883 X 10~
1

] 
.10876118 X 10 l 

= [ .17968278 X 10~
2

] 
-.14014776 X 10 3 

.29234034 X 10-2 

,62431057 X 10-3 
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Corresponding to ~ = 0.01, the value of kr is equal to 2. Both the methods 

were used to test the solution for optimality, and the results obtained 

are shown below. 

(i) mr = 1 

Both the methods give the same result as there is only one func-

tion under consideration. 



r = [0.38711013 X 10-3 -.14208087 X l0-3]T 

I lrl I = 0.38711013 x 10-3 

'V 

(3.44) and (3.46) are satisfied, while I lrl I is not less than e. Thus 
'V 

the conditions are not satisfied form = 1. 

(ii) m = 2 
r 

Method 1 

u = 
'V 

r = 

r 

[0.98710491 0.12895086 X l0-1]T 

(-0.25789922 X 10-9 0.25789922 X 10-g]T 

I lrl I = 0.25789922 x 10-
9 

Method 2 

'V 

u = 
'V 

[0.98710492 0.12895077 x 10-l]T 

r = [0. -0.3525556.3 X l0-9]T 

I lrl I = 0.35255563 x 10-
9 

'V 

(3.44)and (3.46) are satisfied and I lrl j<E for both the methods. The 

"' necessary optimality conditions are thus satisfied for mr = 2. It is 

also observed that due to the type of formulation of the problem in 

Method 1, the elements of r have equal magnitude. 
'V 
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3.5 Conclusions 

A new minimax algorithm called grazer search has been pro-

posed. Conditions which guarantee the convergence of the algorithm 

have also been stated. The spectrum of problems that can be accomo-

dated has been extended to include constrained minimax objectives, and 

~ny efficient unconstrained minimax method can suitably be used for 

this purpose. The practical investigation of a solution for necessary 

optimality conditions has been implemented on the computer, so that it 
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is now possible to check solutions at any stage of the optimization 

process. The subject matter of this chapter makes it possible to tackle 

unconstrained and constrained minimax problems by a new gradient algorithm, 

and to test intermediate or final solutions for optimality, on line. 



CHAPTER IV 

COMPUTER-AIDED CIRCUIT DESIGN 

4.1 Introduction 

This chapter primarily concentrates on applying the ideas 

presented in Chapter III to computer-aided design of electrical net-

works. Minimax designs are of special interest to the designer 

mainly because they attempt to achieve an equiripple behaviour of the 

resp<?nse error function» which is useful in many cases. The prob-

lems considered include the design of LC transformers and cascaded 

transmission-line transformers and filters. Appropriate constraints 

have been incorporated whenever necessary.~~ and the grazor se~rch 

algorithm has been compared with the Osborne and Watson method and 

razor search strategy for reliability and efficiency (See Bandler» 

Srinivasan and Charalambous 1972~ Bandler and Srinivasan 1973a). Un-

less otherwise mentioned.~~ the objective function to be minimized is 

chosen as (2.13). 

4.2 Lumped LC Transformer 

The problem considered (Hatley 1967) is the design of a 3-

section lumped-element LC transformer to match a lQ load to a 3Q genera-

tor over the angular frequency range of 0.5 - 1.179 radians/sec. Figo 4.1 

shows the structure of the networks and the objective is to minimize 

U(<P) = max 
'V i 
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Fig. 4.1 3-section LC transformer problema Optimum matching over a frequency range 

of 0.5-1.179 radians/sec occurs at the following parameter values: L
1

=1.04088D 

v v I c 2 ~0.979035~ L3~2.34044s C4=0.780157 9 t5 =2.93714~ c6=0.346960 and U=m~xlp(~,$i) 
1 ~ 

=0.075820. 

~ 
-.....! 



48 

where p.(~) = P(~,$-) is the reflection coefficient over 21 uniformly 
1 1 
~ ~ 

sp~ced frequencies $i in the passband, and 

(4.2) 

The six parameters were optimized by the grazer search strategy 

and the Osborne and Watson method, and Fig. 4.2 shows a typical graph of 

objective function against function evaluations for the two methods for 

identical starting points. As can be seen from the graph, the Osborne 

and Watson method fails to reach the vicinity of the optimum, while the 

grazer search algorithm achieves an optimal solution. Table 4.1 shows 

the number of function evaluations needed to get within 0.01 percent of 

the optimum for different values of n, the factor of resolution between 

two interior points of the golden section for the grazer search, and it 

is clear that the value of n chosen need not be very small. 

4.3 Quarter-Wave Transmission-Line Transformer 

The problem considered is the design of 2-section and 3-section 

10~ to In transmission-line transformers over a 100 percent relative 

bandwidth centred at 1 GHz(Matthaei, Young and Jones 1964, Bandler and 

Macdonald 1969a, 1969b). The objective is to minimize maxiP (~,$-)I on 
. 1 
1 ~ 

11 frequencies $. in the band 0.5-1.5 GHz for the network shown in 
1 

Fig. 4.3, where pi is the reflection coefficient of the network at $i. 

The grazer search method and the Osborne and Watson algorithm 

were used for minimax optimization. For both the methods, the objective 
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Fig. 4.2 3-section LC transformer problem. Solid 

points distinguish the grazor search algorithm 

from the algorithm based on the Osborne and Watson 

method. Starting point: L1 = L3 = L5 = C2 = C4 

= c6 = 1. 
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TABLE 4.1 

COMPARISON OF THE NUMBER OF FUNCTION EVALUATIONS REQUIRED BY THE 

GRAZOR SEARCH METHOD TO REACH WITHIN 0.01 PERCENT OF THE OPTIMUM· 

FOR DIFFERENT VALUES OF n FOR IDENTICAL STARTING POINTS 

L = L = L = C = C = C = 1 1 3 5 2 4 6 

Function Evaluations n 

1316 0.01 

880 0.10 

561 0.50 

50 
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l1 ,l:~ l2,Z2 £m•~ R 

J' 0 0 g, = => = ==='(0 0 I] 

~1ft 

Fig. 4.3 The m=section resistively terminated cascade of transmission lines. Optimum 

matching over 100 percent band centred at 1 GHz for R=lO occurs for the follow-

ing parameter values. 

2-section: ~1 = i2 = ~q» zl = 2.23605» z2 ~ 4.4721 

3-section: ~1 ~ £2 = i3 = iq» zl = 1.634719 z2 ~ 3.16228» 

z3 = 6.11729 

£ ; 7.49481 em is the quarter-wavelength at centre frequency. q 

Ul 
I-' 
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function is given by (2.13) where 

(4. 3) 

In the 2-section examples, the 11 frequencies were uniformly spaced. In 

the 3-section examples, the frequencies were 0.5, 0.6, 0.7, 0.77, 0.9, 

1.0, 1.1, 1.23, 1.30, 1.40, and 1.50 GHz. The progress of the algorithms 

from identical starting points with respect to the number of function 

evaluations (one corresponding to 11 evaluations of p) is recorded in 

Figs. 4.4 and 4.5. The points shown mark the successful end of a linear 

search or the beginning of linear programming. 

A comparison was made between the grazor search, Osborne and 

Watson, and razor search methods, as shown in Tables 4.2 and 4.3. From 

Table 4.2, it is clear that the grazor search algorithm is, in general, 

faster than the razor search technique for the 2-section case when the 

lengths are kept fixed and the impedances are varied. From Table 4.3, 

it is clear that the grazor search algorithm is the best. The Osborne 

and Watson algori~hm, though fairly fast initially, may in some cases 

fail or slow down near the optimum. 

The grazor search method and the Osborne and Watson algorithm 

were further compared on the 3-section transformer problem when the 

lengths were fixed at quarter-wavelength values and the impedances were 

varied. For a starting point of z1 = 3.16228, z2 = 1.0 and z3 = 10.0, 

the former took 184 and 218 function evaluations, while the latter con-

sumed 151 and 219 function evaluations to reach within 0.01 and 0.001 

percent of the optimum value of the maximum reflection coefficient, 
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Fig. 4.4(a) The 2-section transformer problem. Solid points distinguish the grazor search 

algorithm from the algorithm based on the Osborne and Watson method. ~l' ~2 
fixed at ~q and impedances varied. Starting point:.Z1=1.0, z2=3.0. 
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Fig. 4.4(b) The 2-section transformer problem. Solid points distinguish the grazor search 

algorithm from the algorithm based on the Osborne and Watson method. z
1

, z2 

fixed at optimum values and lengths varied. Starting point 211 2q =0. 8, 221 Q.q =1. 2. 
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Fig. 4.4(c) The 2-section transformer problem. Solid points distinguish the grazor search 

algorithm from the algorithm based on the Osborne and Watson method. ~2 , z2 

fixed at optimum values and t 1, z1 varied. Starting point t 1/tq=l.2, z1=3.5. (J1 
(J1 
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Fig. 4.4(d) The 2-section transformer problem. Solid points distinguish the grazer search 

algorithm from the algorithm based on the Osborne and Watson method. All 4 

parameters varied" Starting point ~ 1 /~q=l.2~ t 2/~q=0.8~ z1=3.5» z
2
=3.0. 

V1 
(J'\ 



max IPI 
.4 

.2 .. 19729 

.I o:l---:;o~::n--~--=---:-:-:~--L---L---L-____J 
20 40 60 80 100 120 140 160 180 

function evaluations 

Fig. 4.5(a) The 3-section transformer problem. Solid points distinguish the grazor search 

algorithm from the algorithm based on the Osborne and Watson method. 1 1 ,~ 2 ,1 3 
fixed at iq and impedances v.aried. Starting point z1=1.0, z2=3.16228, Z3=10.0. 
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Fig. 4.5(b) The 3~section transformer problemo Solid points distinguish the grazor search 

algorithm from the algorithm based on the Osborne and Watson method. All 6 para-

meters varied. 
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Fig. 4.5(c) The 3-section transformer problem. Solid points distinguish the grazer search 

algorithm from the algorithm based on the Osborne and Watson method. All 6 para­

meters varied. Starting point ~ 1/~q = 1 2/iq = 13;·~q = 1.0~ Z 1 =1.0~ z2=3.16228 9 
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TABLE 4.2 

OPTIMIZATION OF A 2-SECTION !On TO ln 

TRANSMISSION-LINE TRANSFORMER OVER 100 PERCENT RELATIVE BANDWIDTH 

Starting Point Function Evaluationst 

.Razor Search Grazer Search 

1.0 3.0 157 126 

207 

1.0 6.0 34 83 

152 

3.5 6.0 223 52 

100 

3.5 3.0 210 29 

163 

t Number of function evaluations required to bring the reflection 

coefficient within 0.01 percent of its optimum value. 

60 



TABLE 4.3 

OPTIMIZATION OF A 3-SECTION 10n TO 1n TRANSMISSION-LINE 

TRAN-SFORME-R 0¥-B-R 100 -P-H-RCE-NT RELATIVE BANDWIDTH 

Fixed Lengths Variable Lengths and Impedances 

-
Maximum. Maximum Maximum 
Reflection Reflection Reflection 

Parameters Coefficient Starting Coefficient Starting Coefficient 
Q>. 

l. 
Starting Point at Start Point at Start Point at Start 

il/R.q 1.0 1.0 0.8 

zl 1.0 '1.0 . 1.5 

tz!R.q 1.0 1.0 1.2 

z2 3.16228 0.70930 3.16228 0.70930 3.0 0.38865 

R.3/R.q 1.0 1.0 0.8 

z3 10.0 10.0 6.0 

Final Maximum 
Reflection 0.19729 0.19733 0.19731 

Razor Coefficient 
Search 
Algorithm Number of 

Function 
Evaluations 406 1300 1250 

Final Maximum 
Reflection 0.19729 0.19729 0.19729 

Grazor Coefficient (]\ 

Search 
1-' 

Algorithm Number of 
Function 219 696 498 
Evaluations 



Algorithm 
due to Osborne 
and Watson 

(1969) 

TABLE 4.3 (continued) 

OPTIMIZATION OF A 3-SECTION lOQ TO lQ TRANSMISSION-LINE 

TRANSFO~ffiR OVER 100 PERCENT RELATIVE BANDWIDTH 

Fixed Lengths Variable Lengths and I~pedances 

Final Maximum 
Reflection 0.19729 . 0 0 20831 . 0.19788 
Coefficient 

Number of 
Function 199 860 237 
Evaluations 

Q'\ 
N 
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resp~ctively. This case illustrates how the two algorithms compare when 

both methods work efficiently: 

4.4 Cascaded Transmission-Line Filters 

In this section, the grazer search algorithm is used to achieve 

the minimax design of cascaded transmission-line filters with. desired 

attenuation characteristics. Three examples are chosen, and the ideas 

presented in Chapter III are applied to the problems. 

4.4.1 Problem 1 

The design of a 7-section cascaded transmission-line filter with 

frequency-dependent terminations is considered here (see Fig. 4.6). This 

problem has been considered by Carlin and Gupta (1969)g The frequency 

variation of the terminations is like that of rectangular waveguides 

operating in the H10 mode with cutoff frequency 2.077 GHz. All section 

lengths were kept fixed at l.Scm so that the maximum stopband insertion 

loss would occur at about 5 GHz. The passband 2.16 to 3 GHz was selected~ 

for which a maximum passband insertion loss of 0.4dB was specified. 

Fig. 4.7 shows the response of Carlin and Gupta which was used 

as an initial design. The other responses in Fig. 4.7 ·are a least lOth 

optimum obtained by Sandler and Seviora (1970) and a minimax optimum ob­

tained by the grazor search strategy. In both cases only the passband 

was optimized. The minimax response has a maximum passband insertion 
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Fig. 4.6 

zl . z2 z3 z4 z5 Zs z7 .RL {w) 

Problem 1. Cascaded transmission-line filter operating between R (w) 
g 

= RL(w)=377//l-(f /f) 2, where f =2.077 GHz and ~=1.5 em. 
c c 

0\ 
~ 



Fig. 4.7 Responsei of the network of Fig. 4.6. The response of 

Carlin and Gupta (1§6-9) is the initial one. The least 

lOth response was obtained by Bandler and Seviora (1970). 

The minimax response was produced by the grazer search 

method. 
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loss of 0.086 dB. Table 4o4 gives the appropriate parameter valuesQ 

Fig. 4.8 shows the results of applying the grazor search method 

to optimize the sections in a filtering sensea Thus, it was desired to 

meet the 0.4 dB passband insertion loss while maximizing the stopband 

insertion loss at a single frequency (SGHz)a Let 

1 12 2 zCIP. (~) =r ) 
1 "" 

in the passband 

(4.4) 

~(1-jpi(cp)j2) 
"" 

in the stopband 

where 

(4.5) 

and r is the reflection coefficient magnitude corresponding to an in= 

sertion loss of 0.4 dB. Here 22 uniformly-spaced points were selected 

from the passband. Table 4.4 gives the resulting parameter values. A 

similar response was attained by the grazor search technique when the 

section impedances were assumed symmetrical i.eo, Z,5=z3 , z6=z 2.9 z7=z 1• 

4.4.2 Problem 2 

The problem chosen consists of a 5-section cascaded transmission-

line low-pass filter design and has been previously considered by Brancher» 

Maffioli and Premoli (1970). The filter structure is the s2llle·a.s· in Fig. 4.3 

for R=l. The terminating impedances are real and normalised to be lOa 

It is required to have a passband insertion loss of less than 0.01 dB 

from 0 to 1 GHz and as high a stopband insertion loss as possible at 

5 GHz. Twenty-one uniformly sp~ced points were chosen in the passband 

and one point in the stopband (5 GHz). The length of each section is 



TABLE 4.4 

COMPARISON OF PARAMETER VALUES FOR THE 7-SECTION FILTER (PROBLEM 1) 

Characteristic 
Impedances 

(Normalized) 

zl 

zz 

z3 

z4 

zs 

z6 

z7 

Carlin 
and 

Gupta (1969) 

1476o5 

733.6 

1963.6 

46lo8 

1963.6 

733.6 

1476.5 

Minimax 
Design 

{Fig. 4o 7) 

1305.2 

607o8 

1323o3 

362.7 

1323.2 

607.9 

1305.2 

Minimax 
Design 

{Figo 4o8) 

3069o4 

2856o4 

2587102 

10573.3 

25874.0 

2856.7 

3069.8 
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Fig. 4"8 Response of the minimax design of the network of Fig. 4.6 with 0.4 dB passband 

insertion loss produced by the grazor search method. 
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normalized with respect to 9.. = 1.49896 em~ the quarter-wavelength at q 

5 GHz. 
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They.(~) are given by (4.4) where r is the reflection coeffi-
1 "-' 

cient magnitude corresponding to an insertion loss of O.OldB 9 and 

9.. • ~ 9.../1 
Til. l. q 

The lengths were initially fixed at 9.. » and the impedances q 

(4.7) 

varied. Levy (1965) has derived an optimal solution to this problem 

analytically. The grazor search method was used on this problem for 

minimax optimization» and the result obtained was identical to the one 

derived by Levy and Fig. 4.9 shows the optimal response obtained. 

Brancher, Maffioli and Premoli (1970) have achieved some re-

sults for the problem» and an observation of their responses leads one 

to suspect that the results are not optimal. The grazor search method 

was used to test whether an improvement on the results of Brancher» 

Maffioli and Premoli was possible, and improved results were obtained. 

Fig. 4.10 and Table 4.5 show the results for the problem where 

the impedances are fixed at some practical values and only the lengths 

are allowed to vary. As the final values obtained by the grazor search 

method indicate» the response at finish represents a good improvement 

over the response at start 2 both from passband and stopband considerations, 
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Fig. 4.10 Responses for Probl~m 2 when impedances are fixed and lengths are allowed to 
vary. The parameter values at start and finish are shown in Table 4.5. The 
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TABLE 4 .. 5 

5-SECTION FILTER DESIGN (PROBLEM 2) 

IMPEDANCES FIXED AT z1 = z3 = z5 = 0.2, z2 = z4 = 5, AND LENGTHS VARIED 

Parameter Start Finish 

.Q.,nl 0.389 0.480 

0.788 0.814 

0.924 o. ggo· 

.Q.n4 0.806 0.814 

0.448 0.480 
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4.4.3 Problem 3 

The design of a 5-section cascaded transmission-line filter 

subject to parameter constraints is considered here» and the ideas 

presented in Section 3o3 are used to tackle this problem. The filter 

structure is the same as the one considered in Section 4.4.2. The 

problem has been previously considered by Carlin (1971) for fixed 

lengths at a quarter-wavelength of 1 = 2o5 em corresponding to-3 GHz, 
q 

and for a required attenuation of 0.4 dB in the passband (0-1 GHz}. 

Optimal values have been derived for characteristic impedance values 

.when a stopband frequency of 3 GHz was chosen (Levy 1965). The ob-

jective function to be minimized was chosen as (2.13) where 

Jp.($)1-r ~.£ 0-1 GHz 
1 "' 1 

yi($) = (4.8) 

"' 
1- IP.($)) w

1
. = 3 GHz 

1 "" 

$ cor~esponds to (4.6) and r corresponds to an attenuation of 0.4 dB. 

"' Twent)'-one uniformly-spaced points were chosen ~n the passband. 

Initially the lengths were fix~d at 1q and the impedances Zi 

were variede The impedance constraints imposed were 

0.5 <Z. < 2.0 
1 -

i = 1,2, ..• , 5 (4o 9) 

and the minimization function was chosen as W'($,w') of (3.39) where 

w• is given by (3.40) 9 n = 22, m= 10, and 

"' 

~ ... 

= -(Z. - 2.0) > 0 
1 

(4 .. 10) 
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1000 for gj(') < 0 

W· 
J 

= 
'U 

j = 1, 2, ... ,m (4.11) 

The result of optimizing the impedances using the grazer search 

method is shown in Table 4.6 where U corresponds to max y. (') ,- and y
1
. 

. 1 
1 'U 

is given by (4.8). It is observed that some of the impedances of the 

constrained solution lie on constraint boundaries. Moreover, there are 

two distinct solutions, for which the impedances are reciprocals of each 

other. 

As a further step, it was desired to investigate the possibility 

of improving the unconstrained optimal solution (for length fixed at 2 ) 
q 

of Table 4.6, by allowing both the lengths and impedances to vary, and 

imposing the following constraints: 

0 < .fl. . < 2 
n1 -

0.4416 < z. < 4.419 
1 -

5 
0 < I: 

j=l 
2 . < 5 
nJ -

i = 1,2, ..• ,5 ( 4 .12) 

i = 1,2, ... ,5 ( 4 .13) 

( 4 .14) 

where the 2 . correspond to (4.7) and the upper and lower bounds of 2
1
. 

Til 

in (4.13) correspond to upper and lower values of the unconstrained op-

tim~l values of Table 4.6. 



TABLE 4.6 

5-SECTION TRANSMISSION-LINE LOWPASS FILTER DESIGN (PROBLEM 3) 

Parameters 

zl 

z2 

z3 

z4 

zs 

u 

FOR LENGTHS FIXED AT 1 q 

Unconstrained Constrained Solution 
Optimal Solution 

3.151 

0.4416 

4.419 

0.4416 

3.151 

3.951x10 -5 

3 2.419x10 

(i) 

0.5683 

2.000 

0.5000 

2.000 

0.5683 

3.255x10 -3 

-3 3.255xl0 

(ii) 

1.760 

0.5000 

2.000 

0.5000 

1.760 

3.255xl0 -3 

-3 3.255xl0 

75 
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The function to be minimized was chosen as V(~,~k+l a) in (3.32) 

"' '"' 
where~ is given by (3.33) and (3.34), n = 22D m = 22 9 

"' 

ll. = 10 
J 

j = 1,2, ... ,m+l (4.15) 

. and g.(~)» j = 1»2 9 ••• Dm correspond to the constraints (4.12)-(4.14) 
J "' 

It was observed that no improvement could be achieved from the starting 

value (corresponding to the unconstrained optimal solution of Table 4.6) and 

that the starting point satisfies the necessary conditions for a minimax 

optimum» as verified by the method described in Section 3.4 and Appendix B, 

4.5 Conclusions 

The results indicate that the grazor search algorithm is generally 

moie reliable in reaching an optimal minimax solution than the Osborne 

and Watson algorithm» and is faster than the razor search technique. Ty-

pi¢ally 1 min is sufficient time to optimize a six-parameter designD and 

2 to 3 min are sufficient to optimize a ten-parameter problemD depending 

on how far from the optimum one starts and how close one wishes to get~ 

on a CDC 6400 computero The grazor search algorithm is capable of hand-

ling~ without any difficultyD filter design problems with upper and lower 

specifications over many frequency bandso The method should be very use-

ful in design problems for which exact methods are not available. 



5.1 Introduction 

CHAPTER V 

SYSTEM MODELLING 

Lower-order modelling of complex high-order systems is now 

widely being used in the area of systems design and control both on-

line and off-line. The modelling can be performed for a variety of per­

formance criteria and objectives, using different model derivation tech­

niques. Some of the techniques obtain a model by neglecting modes of the 

original system which contribute little to the overall response of the 

system (Davison 1966, Chidambara 1969, Mitra 1969, Marshall 1966). 

Other methods search for optimal coefficients of a set of differen-

ti8il or difference equations of a given order, the response of which is 

approximated as closely as possible to that of the system, when both are 

driven by the same inputs (Anderson 1967, Sinha and Pille 1971, Sinha 

and Bereznai 1971, Markettos 1972). The search of these coefficients 

has been, in the past, carried out using both direct search and gradient 

methods of optimization for a least-squares or quadratic cost function, 

but for this work, the investigation is mainly on near-minimax and mini­

ma~ objectives, and the input-output data of the system is assumed to be 

knowno See also Chen and Shieh (1968) and Kokotovic and Sannuti (1968) . 

77 
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5.2 Statement of the Problem 

It is required to find a transfer function of a model of a 

given order, the response of which is the best approximation to the 

response of the actual system to a particular input for a specified 

error criterion. 

In general the transfer function of a given order n may be 

written as 

H (s) m,n 

m m-i 
(5.1) 

I: b .s 
i=O m-l. 

= ----n~· ---------
n , n-i s +I: a .s 

i=l n-l. 

where m < n for physical systems. For this work the input is a unit step 

and the criterion chosen is to directly or indirectly minimize an error 

function over a specified time interval [O,T]. The problem, therefore, 

is the determination of the parameters ~~ given by 

"" T 
$ = [a0 a1 ... an-l b0 b1 ... bm] (5.2) 
"" 

such that an error function is minimized. Optimization of model para-

metersforaleast-squares error criterion has already received attention 

(Sandler, Markettos and Sinha 1973, Markettos 1972). 

5.3 Minimax System Modelling 

The error criterion chosen is to minimize the maximum error 
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bet:ween the system and model responses over [0, T], where <1> is given 

by (5.2). The following notation is introduced. 

t. is an i th time instant in [O,T] 
]. 

I is an index set of i such that t.E[O,T] 
1 

s is the of the system at t. c. response 
]. 1 

m is the of the approximating c. (ell) response 
]. 

'V 

model at t. 
]. 

m s is the error between the system and the model e. (cf!)=c. (cfl)-c. 
]. ]. ]. 

'V 'V 

responses at t. 
1 

s is the steady-state value of the system c 
00 

m is the steady-state value of the model c 
00 

In Section 5.4, the approximation problem considered assumes 

m s s that c is fixed at a convenient value (usually c or c. at t.=T), so 
00 00 ]. ]. 

that the objective is to minimize 

U(<l>) = 
"" 

max y i (<P) 
t.£[0,T] rv 

]. 

(5.3) 

where 

y.(cp) = je.(cp)j 
1 ]. 

(5.4) 
'V 'V 

This problem can now be solved by an efficient minimax or near= 

minimax optimization method as suggested in Sections 2.5 and 2.6. 
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5.4 Example 

The problem considered is the modelling of a seventh-order 

system representing the control system for the pitch rate of a super-

sonic transport aircraft (Dorf 1967, Bandler, Markettos and Sinha 1973). 

The transfer function of the system is given by 

G(s) =[ 7 375~00(s+OS08333) 4 3 l 
s +83.64s +4097s +70342s +853703s + 

281427ls2+3310875s+281250 

(5.5) 

with a steady-state value of 0.11111 for a unit step. 

' Minimax optimization of the model parameters as performed by the 

grazor search method consists of minimizing (5.3), while near-minimax 

op~imization minimizes 

(5.6) 

for large values of p (Bandler and Charalambous1972d). Let JC:I be an 

index set relating only to the extrema of the error functions y.(~) 
1 
~ 

given by (5.4). If I is replaced by J in (5.6), considerable economy 

in computing time results at a slight risk of creating false optima. 

The larger the value of p, the closer the solution gets to the minimax 

result, but the central processor time increases considerably. For this 

work, a value of p=lOOO was considered suitable for optimization purposes. 

For least p th optimization, three gradient methods due to Fletcher and 

Powell (1963), Jacobson-Oksman(l972) and Fletcher (1970) have been used 

for the modelling problem. 
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5.4.1 Second- and Third-Order Models 

The time-interval over which the approximation was made was 

0-8 seconds (T=8 sec). 101 uniformly-spaced sample points were chosen 

over the interval. The steady state value of the model for a unit step 

m (E=c®), was set at 0.11706, corresponding to the response of the system 

at the final sample point (c~ for t.=T). See Bandler, Markettos and 
~ l. 

Srinivasan (1972, 1973). 

Two second-order and one third-order models were considered for 

minimax approximation of the system. The transfer functions of the chosen 

models were 

H02 (s) 
Ea0 

= 2 (5. 7) 
s +a1s+a0 

Hl2 (s) 
b1s+Ea0 = 2 (5.8) 
s +a1s+a0 

2 

H23(s) 
b2s +b1s+Ea0 = 3 2 s +a2s +a1 s+a

0 

(5.9) 

2 x5s +x4s+Ex1x3 = 2 (s+x3)(s +x2s+x1) 
(5 .10) 

where 

E ~ 
m c 
00 

(5.11) 

For this work, the response of the models in the time domain were 

obtained by using standard Laplace Transform Tables to invert from the 

s to the t domain. 

(a) 2-Parameter Problem 

The model transfer function chosen is (5.7) and the parameter 
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vector is given by 

(5.12) 

The optimum parameters using the grazor search method were 

ao = 3.06472, al = 2.38338 

resuiting in a four-ripple error curve with a maximum error value 

U = 3.76347xl0-3 

The response and error curves are shown in Figs. S.l(a) and S.l(b) re-

spectively. 

The optimum parameters using least pth approximation for p=lOOO were 

ao = 3.06549, al=2.38414 

resulting in a similar four-ripple curve with a maximum error value 

-3 U = 3.76510xl0 

Table 5.1 shows the number of function evaluations required for 

each ,of the methods to reach a maximum error value of 3.76619xl0-3 . For 

this problem the Fletcher method and Jacobson-Oksman method appeared to 

be the most efficient. 

(b) 3-Parameter Problem 

By allowing the model to have a zero, as indicated by (5.8) a 

3-variable problem results, where 

(5.13) 



0.12 

O.i 0 

0.08 

0.04 

0.02 

system response 
- -
model response 

2 . 3 4 5 6 7 

time (seconds) 

Fig. S.l(a) Seventh-order system modelling example. 2-parameter optimum response. 

8 

00 
(J;! 



4 5 6 

time (seconds) 

Fig. S.l(b) Seventh-order system modelling example. 2-parameter optimum 

error curve. 

8 

00 
~ 



85 

TABLE 5.1 

SEVENTH-ORDER SYSTEM MODELLING EXAMPLE 
N~fBER OF FUNCTION EVALUATIONS REQUIRED TO REACH U = 3.76619xl0-3 

FOR THE 2-PARAMETER MODEL 

Minimization of f(') 

"" 
Star~ing point Minimization Jacobson = Oksman 

' of U(~) Fletcher Fletcher-
"" "' Powell 

Grazor 

3.0 1:07 42 59 

~.0 

l.O 130 78 334 

1.0 165 96 718 

4.0 129 64 false 

1.0 optimum 

* 

Quadratic 
Step 

Prediction 

36 

91 

834 

41 

· Indicates an ARGUMENT TOO LARGE message was given by the computer& 

Homogeneous 
Step 

Prediction 

36 

127 

45 
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The optimum parameters using the grazor search method were 

a0 = 3.83255, a1 = 3.00365J b
1 

= -.0176390 

giving a maximum error value 

U = 2.48724xl0-3 

The response and error curves are shown in Figs. 5.2(a) and 5.2(b) re-

spectively. 

For p=lOOO the optimum parameters obtained were 

ao = 3.83592, al = 3.00605, bl = -.0177277 

giv~ng similar response and error curves as in Figs. 5.2(a) and 5.2(b) 

and 

U = 2.48794xl0-3 

The number of function evaluations needed for the three para­

-3 meter problem to reach the value U = 2.48794x10 are shown in Table 5.2. 

The, grazor search technique and the Fletcher method required a smaller 

number of function evaluations. 

(c) 5-Parameter Problem 

The third-order model of (5.9) is considered next. For computional 

efficiency, the transfer function of the form (5.10) is chosen. The model 

has five parameters given by 

(5.14) 

The optimum parameters obtained using the grazor search method 
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TABLE 5.2 

SEVENTH-ORDER SYSTEM MODELLING EXAMPLE 

N~1BER OF FUNCTION EVALUATIONS REQUIRED TO REACH U = 2.48794xl0-3 

FOR THE 3-PARAMETER MODEL 

Minimization of f(t) 

Starting Minimization Jacobson - Oksman 
I of point Quadratic Step 

~ U(4>) Fletcher Fletcher- Prediction Homogeneous 
"' "' Grazor Powell 

1 p = 0.5 Step 
p = 

Prediction 

2:5 1~9 339 ·5oo 279 * 3'39 
2.0 

-2.0 

1.0 
1.0 368 362 + 104 276 137 

-1.0 

4.0 
3.0 165 242 184 142 97 260 
0~01 

... 

3.5 
1.·5 358 280 342 217 151 * 

-1,.0 

s.o 
1 .• 0 325 193 + * 205 * 

-1.0 

5.0 
1.0 406 245 + 159 119 * 
3.0 

+Indicates time limit of 64 seconds was reached. 

* Indicates an ARGUMENT TOO LARGE message was given by the computer. 



were 

x1 = 4.34547, x2 = 3.36809, x3 = .108248 

x4 = .514475, x5 = -.0356180 

res~lting in a six-ripple error curve with a maximum error value 

U = 1.02062xlo-3 

The response and error curves are shown in Figs. 5.3(a) and 5.3(b) re­

spettively. 

The optimum parameters using p=lOOO were 

x1 = 4.34682, x2 = 3.36738, x3 - .0996086 

x4 = .514728, x5 ~ -.0356154 

90 

giving response and error curves similar to those ofFigs. 5.3(a) and 5.3(b) 

and' a maximum error 

-3 U = 1.02063xl0 

Some runs with the Fletcher-Powell method, on the five-parameter 

problem, indicated that the method was the slowest and since this was al­

ready established in the previous models, as indicated in Tables 5~1 and 

5.2, further runs with Fletcher-Powell method were considered unnecessary. 

The results of optimization by the other three methods. are shown in 

Table 5.3. 

The Fletcher method reached a unique six-ripple solution in all 

the cases tried, although there was a large variation in the number of 

function evaluations required. The grazer search technique reached the 
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TABLE 5.3 

SEVENTH-ORDER SYSTEM MODELLING EXAMPLE 
NUMBER OF FUNCTION EVALUATIONS REQUIRED,TO REACH TifE INDICATED 

VALUE OF 1000 U FOR THE 5-PARAMETER MODEL 

Minimization 
of 

U(cf>) 

"' Grazor 

437 

1.2139 

782 

1 .. 2473 

489 

1.0206 

634 

1.1720 

817 

1.0337 

537 

1.2472 

time limit of 128 

Fletcher 

530 

1.0207 

768 

1.0207 

177 

1.0207 

862 

1.0207 

484 

1.0207 

799 

1.0206 

Minimization of f(t) 

Jacobson-Oksman Quadratic Step 
Prediction 

- p = 1 p = 0.5 

886 778 

1.0206 1.0206 

931 325* 

1.0206 45.086 

114* 108 

1 .. 5061 1.0206 

248 350 

1.0206 1.0207 

17* 582 

19.660 1.0207 

263* 1208++ 

1.8954 1.0283 

seconds was reached. 

an ARGUMENT TOO LARGE message was given by the computer. 
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six~ripple solution in one of the cases shown, while in some of the 

other cases it terminated in a five-ripple solution. 

In some instances, the real pole of the model had the tendency 

to move to the right-hand side of the s-plane and since this would pro-

duce an unstable model, the last parameters giving stable results were 

taken as the final values. In all cases, however, the real pole seems to 

lie very close to the axis and any constraint, although easily imple-

mented in the form of a square transformation, would have made· the pole 

go to zero. 

It was further noted that when the Fletcher method, used with 

p=lOOO, was started from oneof.the five-ripple solutions where the grazor 

search technique terminated, a direction was found which decreased f(~) 

while temporarily increasing U(~) and the method converged towards the 

six-ripple minimax solution, though slowly. When the same procedure 

was repeated with p=l06, the algorithm failed to move from that point. 

Figs. 5.4(a) and 5.4(b) show the response and error curves for a five-

ripple solution obtained by the grazor search method. 

5.4.2 Optimality of Model Parameters 

The conditions for minimax optimality, as mentioned in Section 

3.4.,2, were applied to the final parameter values arrived at through 

optimization of the grazor search method (the corresponding responses 

are shown in Figs. 5.1-5.4), and the results are indicated in Tables 

5.4-5.7. The necessary conditions are satisfied in all the cases, as 

observed from the tables. The y1 (~) for 1 = 1,2 ... ,nr are the local 

"' 
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TABLE 5.4 

VERIFICATION OF CONDITIONS FOR MINIMAX OPTIMALITY 

2-PARAMETER SOLUTION CORRESPONDING TO FIG. 5.1 

Time Instant 

0.24 

0.88 

2.16 

4.40 

r = 

"" 

* k 

* n = 4 k = 3 r ' r 

Error Maximum 
(lOOOy R) 

3.76347 

3.76347 

3.76347 

2.55235 

r "' 
E u1VyR. = [0.0 

R.=1 "" 

* k 
r 1.0 I: UR, = 

R.=l 

Multiplier 
(u

1
) 

O.O]T 

0.75047 

0.16519 

-2 8.4342 X 10 

97 
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TABLE 5.5 

VERIFICATION OF CONDITIONS FOR MINIMAX OPTIMALITY 

3-PARAMETER SOLUTION CORRESPONDING TO FIG. 5.2 

Time Instant 

4.0 

0.24 

0.96 

2.00 

r = 

"' 

* n = 4 k = 3 r , r 

Error Maximum 
(lOOOy 

1
) 

2.48724 

2.48724 

2.48724 

2.00700 X 10-l 

Multiplier 
(uR.) 

0.90758 

-2 4.2744 X 10 

-2 4.9680 X 10 

[0.0 
· -5 T 

0. 0 l.lxlO ] 

* k 
r 

I: UR. = 1. 0 
1=1 

98 
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TABLE 5.6 

VERIFICATION OF CONDITIONS FOR MINIMAX OPTIMALITY 

5-PARAMETER, 6-RIPPLE SOLUTION CORRESPONDING TO FIG. 5.3 

Time Instant 

1.84 

0.72 

0.08 

3.76 

0.24 

8.00 

* n = 6, k = 6 r r 

Error Maximum 
(lOOOy ) 

t 

1.020616 

1.020616 

1.020616 

1.020616 

1.020616 

1.016870 

[0.0 0.0 0.0 

Multiplier 
(uR.) 

3.6510 X 10-2 

-2 8.4333 X 10 

0.51806 

-2 2.7915 X 10 

0. 32227 

-2 1.0910 X 10 

0.0 

99 
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TABLE 5.7 

VERIFICATION OF CONDITIONS FOR MINIMAX OPTIMALITY 

5-PARAMETER, 5-RIPPLE SOLUTION CORRESPONDING TO FIG. 5.4 

Time Instant 

r = 
'V 

0.32 

5.12 

0.08 

0.96 

0.32 

* k ,.. 
r 

I: uR.Vy1 = 
1=1 'V 

* n = 5, k = 5 r r 

Error Maximum 
(lOOOy R) 

1.213988 

1.213988 

1.213988 

1.213986 

1.212651 

Multiplier 
(uR.) 

0.23428 

0.19815 

0.39281 

0.10217 

-2 7.2598 X 10 

-5 ]T [- 1.5 X 10 0.0 0.0 0.0 0.0 

* k 
r 

1: UR, = 1.0 
!1,=1 

100 



disc~ete maxima of y. (~), iei as mentioned in Section 3.3.1, and 
1 

'V 

101 

Meth]od 2 described in Section 3.4.5 is used for verifying the optimality 
I 

conditions. 

* For the cases corresponding to Tables 5.5 and 5.7, k is equal to 
r 

* * k and there are kr+l equations and kr unknowns for the solution of (3"46) 

and (3.51). The non-zero values of the components of r for these cases 

corr1espond to the residuals of the dependent equations (refer to Sections 

3.4.'5, 3.4.6 and Appendix B). 

In interpreting these results one may associate the results cor-

responding to Tables 5.4 and 5.6 in saying that the main criterion is how 

close to equal the ripples are and the results of Tables 5.5 and 5.7 

in hbw small the size of the linear combination is in comparison with the 

sizes of the individual gradient vectors. In the first case we are 

satilsfied with the criterion from a practical point of view, in the second 

the ilinear combination is about 2 to 4 orders of magnitude smaller than 

the gradient vectors. 

5.4.3 Discussion 

The grazor search algorithm is found to be more efficient than 

the Fletcher-Powell method on the problems chosen. The method proposed 

by Fletcher appears to be the most efficient of the methods used for near-

minimax results in efficiency and consistency in reaching the vicinity of 

the optimum. The Jai:obson-Oksman method, although giving good results, 



app~ared to be sensitive to scaling. 

It has to be mentioned that the Fletcher-Powell package, as 

available in the IBM Scientific Subroutine Package, has a programming 

error. Appropriate corrections have been made and the Fletcher-Powell 

method has been applied to a number of test problems. The results have 

indicated that very little improvement is obtained for the corrected 
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version. The Fletcher-Powell results, as shown in Tables 5.1-5.2, corres-

pond to the uncorrected version, and it is expected that the corrected 

version might improve the function evaluations slightly. 

5.5 New Approaches to Minimax System Modelling 

In this section, some new ideas are presented so as to satisfy 

stringent design requirements (Bandler and Srinivasan 1973b, 1973e). In 

Section 5.4, c: was assumed fixed. It may,however, be unacceptable to 

fix em at a certain value, in which case a realistic trade-off between 
00 

transient and steady-state errors can be achieved. The design require-

mept may be such that arbitrary transient and steady-state response 

sp~cifications need be imposed on the model for a desired performance 

c~iterion. It would also be realistic to expect the modelling procedure 

to be automated in such a way that it is possible to move from lower-

onder models to high-order ones whenever, say, the solutions satisfy the 

necessary optimality conditions. 
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', 

5.5,.1 A Generalized Objective Function 

It is possible to extend the ideas of constrained minimax op-

timization (discussed in Section 3.3) to system modelling so that a 

generalized objective function can be defined to take into account both 

the;transient and steady-state response errors. The following additional 

notation is introduced. 

S is the upper bound of the system specifications at uoo 

steady-state 

stoo is the lower bound of the system specifications at 

steady-state 

.~...m e =~ -S 
UC:O I 00. UOO 

is the error between upper steady-state specifications 

and model steady-state value 

m e =¢ -S too :oo too is the error between lower steady-state specifications 

and model steady-state value 

The problem may now be formulated into two forms as follows. The 

first one minimizes with respect to ~ and ~k+l 
'U 

~ -a e ~ +a e ] o/k+l teo fco'o/k+l uco U00 

where a, a
100

, auc:o are positive. 

(5.15) 

If em is fixed such that en and -e 
00 ;vOO UOO 

are positive, the objective function (5.15) reduces essentially to U(~) 

in (5,3). The second one minimizes with respect to~ 
'U 

W(+,w1 ,w ) =max . £1e.(•ll-wn en ,w e ] 
'V oo Uco t.e:(O,T] 1"' ' .Jt.oo .Jt.co uc:o uco 

1 

(5.16) 



104 

where 

0 for -e 
t~ 

< 0 

wi~ l : (5.17) 

0 for -e1~ 

for e 
U® 

for e 
U® 

> 0 -

< 0 

(5.18) 

> 0 

If c: is fixed within satisfied specifications the above objective 

furtction reduces to U($) in (So3)o 
~ 

In cases where suitable constraints - including parameter con-

straints = are imposeds the above procedure may be used to incorporate 

th~m in the objective function. In many cases, it is convenient to 

s 
= c 

® 

5.5.2 Automated Lower-order Models 

One of the major problems that is encountered in modelling is to 

d~cide whether a certain lower-order model is acceptable or not. If the 

model is too simple so that computing time for optimizing model parameters 

is small$ the approximation to the original system may be very bad 9 while 

if the model is complex 9 then the very need for system modelling is lost. 

If one were to strike a reasonable compromise between the speed with 

which the model is optimized 9 and the accuracy of the approximation~ it 

would not be unreasonable to devise a scheme whereby one could increase 



lOS 

the lcomplexi ty of the model in an automated fashion after a certain 

num~er of iterations or computer time. It is, however, important to 

keep in mind the desirability of making this increase in complexity as 

smooth as possible, so that the objective function value is not degraded. 

Thus, either the number of parameters could be increased for a model with 

a c¢rtain order, or the order of the model itself can be increased" 

* Let H denote an optimized model of the form (5.1). Three m,n 

pos~ibilities occur as follows. 

(i) Increase in parameters only 

* H {s) + H (s) m,n m+p,n 

Here bm+p' bm+p-1, ... ,bm+l are initially assumed to be zero so that 

* H i = H in the first iteration. mtp,n m,n 

{ii) Increase in order 

* H (s) + H (s) m,n m+q,n+q 

Here q poles of H (s) are assumed to cancel with q zeros m+q,n+q 
* initially, so that H =H in the first iteration. In this case, m+q,n+q m,n 

imitial guesses for q poles (or zeros) are necessary. 

(iii) Increase in order and parameters 

* 
Hm,n(s) + Hm+p+q,n+q(s) 

Here b , ... ,b 1 are assumed to be zero initially and that there is m+q+p m+q+ 

a cancellation of q zeros and q poles at start, so that 
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* H ! = H in the first iteration. 
m+~+q~n+q m,n 

A careful choice of initial parameters can make the increase in 

model complexity smooth so that the whole modelling procedure can be 

aut~mated on a small digital computer on-line. 

5. 5'. 3 Optimality Conditions 

When a certain low-order model is being· optimized, it may be use-

ful to investigate intermediate or final solutions after a certain number 

of iterations of the modelling algorithm, or after a certain convergence 

criterion is reached, so that one may decide whether to carry on with 

futther optimization, to increase the order of the model, or to terminate 

altogether. For minimax objectives, it is possible to test the optimality 

by; the pr·ocedure out 1 ined in Sect ion 3. 4 . 

5 .~s. 4 Results 
I 

Two examples were considered, and two second-order models and a 

third-order model were chosen as follows. 

B1s+B
0 

2 s +A1 s+A0 
2 x

6
s +x

5
s+x4 

H23 (s) = ---2~--­
(s+x3)(s +x2s+x1) 

(5 .19) 

(5. 20) 

(5.21) 
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The transition between the models can be made smooth by making 

thel following substitutions·at the start of the new model. 

* * * * H02 + H12 Ao = ao, Al = al' so = bo, Bl = 0 

* * * * 
H02 + H23 xl = ao, x2 = al' x3 = positive value, x4 = x3bO, 

positive value, x4 

* * * xs = Bl x3 + Bo, x6 = Bl 

Two cases were considered for both examples. 

In:the first case, em is fixed, and 
00 

w = w = 0 
Jl,oo uoo 

U(<!>) = max I ei (<I>) I 
~ t.E[O,T] ~ 

1. 

In the second case, em is varied, and 
00 

WJl,oo = w = w uoo 00 

U ( <1>) = max [( I e . ( <1>) I , -w e 11 , w e )] 
1. 00 ~00 00 uoo 

~ t.E[O,T] ~ 
1. 

A 9th-order nuclear reactor system was chosen for one example, 

where a step input is considered so that the power level of the reactor 

system changes from 90 to· 100 percent of the full power (See Bereznai 1971 
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and ISection 3 . .4.7). Twas equal to 10 seconds. 

The results, shown in Table 5.8, indicate that the increase 

" in order of the model did not produce any large improvement in U, the 

minimum value of U, and in this case a model increase is quite waste-

ful from the computing viewpoint. On the other hand, an improvement 

in the transient error at a slight expense on the steady-state error 

is obtained. 

Another system considered was the 7th-order control system prob-

lem mentioned in Section 5.4. Twas equal to 8 seconds though the re-

spQnses shown in Figs. 5.5-5.7 were taken up to 20 seconds. 
! 

to '0.11111. The results are summarized in Table 5.9. 

I 

5.$.5 Discussion 

cs was equal 
00 

The results indicate that when em is fixed increasing the order 
00 

of; the model does improve the transient errors, and it has been shown in 
I 

I 

Se~tion 5.4.2 that for the third-order model both the 5-ripple and 6-

ripple solutions satisfy the necessary minimax optimality conditions. 

I~ is interesting to note that in all the cases considered, the third-

o~der model gives the best result corresponding to the same transient 

e~ror and three different steady-state errors. Some of the optimal para­

meters when em is fixed tend to have nearly zero real parts which may make 
' 00 

the model oscillatory. Using appropriate parameter constraints (as in-

dicated in an earlier section) satisfactory results can be obtained which 

would guarantee a minimum damping of the model for a step input. 



Case 

m c fixed 
00 

at s c 
00 

m . d c var1e 
00 

w = 1 
00 

s 
S =S =c ioo uoo oo 
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TABLE 5.8 

RESULTS FOR NUCLEAR REACTOR SYSTEM MODELLING 

"' 1000 max[-e1 ,e ] Model 1000 u 
00 uoo 

H02 2.9234 o· 

H12 2.7018 0 

H23 2.4040 0 

1.2167 1.2166 
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TABLE 5.9 

RESULTS FOR SEVENTH-ORDER SYSTEM MODELLING 

\1 
Case Model 1000 u 1000 max Fig. 

[-e
1 

,e ] 
<XI uoo . 

H02 3.7635 5.5 

em fixed at H12 2.4872 5.6 
co 

s for t.=T H23 c. 
l. l. 

(6 ripple) 1.0207 5.7 
(5 ripple) 1.2140 

m varied Ho2 4.1656 4.1656 5.5 c 
co 

w = 1 H12 4.1582 4.1582 5.6 
co 

s 
H23 1.0201 0.91785 5.7 S =~s =c 

R,oo uoo oo 

m ' 
H02 7.7657 7.6945 c varied 

00 Io-6 
6 

X 

w = 1

• 10 Hl2 7.8624 0. 
00 

SR-00=~.11061 
H23 1.0201 9.8483 

x Io-7 s =(JL 11161 uoo 
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5.6 Conclusions 

The lower-order modelling of high-order systems for minimax 

objectives has been considered in detail, and the grazor search method has 

been critically compared with efficient minimization methods for least pth 

objectives. The grazor search method is very reliable, and the Fletcher 

method has been observed to be both reliable and efficient. The ideas 

proposed in this chapter make it possible to automate the modelling 

prQcedure, and with the availability of efficient optimization techni­

ques, on-line system modelling and control is entirely feasible. The 

su$gested procedures can be effectively used to get desired optimal models 

in the minimax sense within user-specified computing times and error 

allowances. 



CHAPTER VI 

DISCUSSION AND CONCLUSIONS 

The thesis covers the areas of minimax approximation methods as 

ap~lied to electrical network design and system modelling in great de-

ta~l. A reliable algorithm has been proposed and applied to a variety 
I 

of;practical minimax design problems. The method has been critically com-

pa1fed with existing methods for efficiency and reliability, and works 

very well on most of the problems considered. The philosophy of system 

mo~elling is discussed at length, including various techniques involved 

in! implementing the models. Automated modelling and design of high-

or~er systems is shown to be feasible, and the present state of minimax 

circuit design is considered in detail. 

The new ideas presented in the thesis have been verified and 
I 

us!ed in computer-aided design of a variety of electrical networks sub-

j~ct to different objectives and various constraint specifications. 

F~lters can now easily be designed to meet upper and lower response 

specifications at predetermined frequencies, within reasonable computing 

t~me and desired accuracy. The choice of a circuit model and objective 

f~nction are as important as the choice of a reliable and efficient 

optimization technique to give optimal model parameters. If suitable 

optimization techniques or modelling procedures do not exist for a parti-

cular system, the designer is confronted with the task of improving th~ 

modelling technique and developing an efficient algorithm to evolve a 

realistic design. This involves a great deal of system experience and 

118 



119 

expertise in the state of the art methods of computer-aided design. 

The contributions of this work may be listed as follows. 

(1) A new method called the grazor search algorithm has been 

proposed for minimax objectives. This method has been tested extensively 

on a number of problems including electrical network design and system 

modelling. 

(2) A practical way of accommodating constraints in the minimax 

optimization problem has been proposed and applied to some problems. 

(3) Methods for investigating a solution for minimax optimality 

have been proposed and used to test the optimality conditions on a variety 

of design problems. 

(4) The grazor search method has been critically compared on lower­

order minimax modelling of a high-order system with three efficient methods. 

(5) Some ideas have been· ·presented for automated system modelling, 

by means of which the order of the models·.ean be increased in an auto­

mated fashion whenever certain criteria are satisfied, and optimality 

conditions can be directly implemented on the computer. Suitable transient 

and steady-state constraints can also b& taken into account. The pro­

posed approach makes it feasible.fto automate on-line modelling. 

(6) The grazer search method and the method for investigating 

minimax optimality conditions have been programmed on a digital computer 

and user-oriented computer program packages have been developed. 

It is felt that replaci.ng the present linear search by a more efficient 

search technique will improve the efficiency of the grazor search algorithm. 

Further, the concept of automated modelling could be extended to include auto­

mated control so that it may be applicable to on-line system modelling and 

control. 



APPENDIX A 

GRAZOR SEARCH PROGRAM FOR MINIMAX OPTIMIZATION 

A.l Introduction 

The grazer search program is a package of subroutines that 

optimizes the designable parameters of networks or systems to meet 

min~max objectives. Full details of the method, including mathe-· 

matical flow charts and a discussion of computational experience, 

have already been covered in Chapters III, IV and V. A computer pro-

gram: written in Fortran (Version 2.3 and Scope Version 3.3 for the 

CDC 16400 computer) is listed at the end of this Appendix. 

A.2 Nomenclature 

The following is a list of some of the arguments and important 

variables of the grazer search package as indicated in the flow charts 

of Figs. 3.2-3.4. 

0'. 
0 

" 0'. 

y * 

scale factor for determining the magnitude of the parameter 

step to be taken at the end of linear program 

initial specified value of a, previous value of a which gave a 

satisfactory improvement 

minimum allowable a 

reduction factor for a 

factor of the step ~,o which gives the best new point, when· 

starting from ,o 
'U 
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e: 

e:' 

n 

liJ. 
1 

A 

$. 
1 

$oi 

DERIV 

j. 
1 

k 

k 
r 

n 

n 
r 
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number of discrete maxima under consideration, k , is increased 
r 

by one (if k < n -1) or set equal to one (if k = n ) if the r - r r r 

improvement of the objective function at the new best point as 

compared to the value at the previous point is less than this 

quantity 

main program is eventually terminated if the improvement of 

objective function at the new ·best point as compared to the value 

at the previous point is repeatedly less than this quantity 

specified factor of the initial interval of linear search which 

determines the final resolution between two internal points of 

the search 

current point 

starting point, current best point 

increment from ~0 which gives the first improved point obtained 
'\.,. 

in each iteration on entering the linear search 

ith sample point 
A 

sample points corresponding to the y. 
1 

sample points corresponding to the y . 
01 

logical variable; if .TRUE. the Vy. are calculated, otherwise 
'\.,. 1 

they are not calculated 

identifies the ith highest of the y . 
OJ 

dimensionality of parameter space 
A 

number of local discrete maxima y. under consideration 
1 

number of sample points W· 
1 

A 

available number of discrete local maxima y. 
1 

value of the objective function at ~ 
'\.,. 



y. 
1 

Vy. 
1 

'V 

yoj 

TERM 

value of the objective function at ~ 0 

function value at 1/J. for a given ~ 
1 

'V 

ith highest discrete local maximum 

gradient of y. with respect to ~ 
1 

'V 

discrete local maxima implied by the y. 
1 
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logical variable, initially set to .FALSE., is reset to .TRUE~ 

only if there are failures or improvements in objective func-

tion value less than E' after considering values of k from 
r 

1 to nr in one complete cycle. 

A.3 Program Description 

The user may call the package from his own program as follows. 

CALL GRAZOR (ALPHAO,ALPMIN,BETA,EPS,EPSl,ETA,PHO,PSI,K,KR,N, 

NR,U~HO,TERM) 

The variables in the argument list are: 

FORTRAN Name Variable 

ALPHAO ao 

ALPMIN v a 

BETA a 
EPS E 

EPSl E ' 

ETA n 

PHO 4>0 

"" PSI 1/J· 1 
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K k 

KR k r 

N n 

NR n r 

UPHO u~o 
TERM TERM 

The input variables are a , d a, g, 
0 ' 

0 
E', ~~ ~ , •

1
., k, k 

"' r 
and n while the 

ou~put variables are a , ~0 , k , n , 
o "' r r 

U~0 and TERM. 

It was convenient to place the following user-specified variables 

in 

COMMON/GRZR/NCOUNT, !PRINT, UNIT, !OPT, !DATA 

NCdUNT 
I 

number of function evaluations at any stage of the iterative 

cycle of grazor, is initially set to zero by the user. 

IPRfiNT logical variable which, if .TRUE., enables all intermediate 

and final results to be printed out, and no print-outs other-

wise. 

UNI!T integer variable specifying the data set reference number of 

the output unit. 

IO~T integer variable denoting the number of times grazor search 

package was called by the user, is set to zero initially by 

the user. 

IDA!TA logical variable which, if .TRUE., enables the input data to 

be printed out; otherwise not. 

Fig. A.l shows a typical main program for calling the package 

and the form of a typical analysis program while Fig. A.2 shows typical 

print-outs of the package. 
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c ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C A TYPICAL MAIN PROGRAM FOR Trlt 6RAZO~ StA~CH AL~0~1TrlM 
C FOLLOWS-------

DIMENSION PH0(15)tPSI(ll> 
LOGICAL TERM,IPRINTtlDATA 
INTEGER UNIT 
COMMON/GRZR/NCOUNTtiPRINTtUNlTtiOPJ,IUATA 

C TYPICAL INPUT VALUES FOLLOW 
ALPHAO=l. 
ALPMIN=leOE-06 
BETA=lO. 
ETA=O.Ol 
KR=l 
NCOUNT=O 
IOPT=O 

c 
C INPUT VALUES FOR THE SPECIFIC PR08LtM FOLLOW 

IPRINT=.TRUE. 
IDATA==eTRUE. 
UNIT=6 
EPS=leOE-03 
EPSl=leOE-06 
K=2 
N=ll 
PHO(l)=l. 
PH0(2)=3• 
PSI(l)=0.5 
DO 1 1=2tN 

1 PSI(I)=PSICI-Il+O.l 
c 
C MINIMAX OPTIMIZATION STARTS 

DO 2 I=ltlOO 
CALL GRAZOR(ALPHAOtALPMINtBETAtEPStEPSltETAtPHOtPSltKtKKt 

lN,NRtUPHOtTERMl 
c ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

IFCTERM) GO TO 3 
2 CONTINUE 
3 STOP 

c 
c 

END 

C A TYPICAL ANALYSIS PROGRAM FOR GRAZON SEAkCH ALGUHlThM 
C FOLLOWS-------

SUBROUTINE ANAL (PHOtFtDERIVtKtYtGRADYi 
DIMENSION PHO(ll,GRADY(l) 
LOGICAL DERIV 

C THE VALUE OF Y AT A SINGLE SAMPLE POINT F IS CALCULATEU 
C HERE 

IF(.NOT.DERIVi RETURN 
C THE DERIVATIVES GRAOYClJtGRADYC2J, ••• ,GRADYCK) OF THE 
C FUNCTION Y WITH RESPECT TO PARAMETERS PHOClltPHOC2), ••• , 
C PHOCKJ ARE CALCULATED HERE 

RETURN 
END 

Fig. A~l Typical main program and analysis program 

for the grazor search package 



PSI I 
PSII 
PSI C 

1)= 
5): 
g): 

§: ~ gg ggg gg~:st 
1.30000000E+OO 

NU~&ER OF GAAZOA CALLS 

tUPT 

2 

2 

3 

4 

4 

• 
4 

PSIC e!): 
PSI( &): 
PSIC 10)= 

THE FOLLOWING IS A LlST OF INPUT DATA 
-----------------·-------~------------~ - - -- -- --------- -- - - - ----- ---------- ---

ALPHAO 
ALPMIN 
BETA 
EPS 
EPS1 
ETA 
K 
KR 
N 
TERM 
PHO ( 1J = 
PHOC 21 

bo OOOODOOOE-01 
t.ODODOODOE+OO 
1e4DOOOODDE+Dn 

(a) 

1. 0 0 0 D 0 0 0 DE+ 0 0 
leOOOOCOOOE•.l& 
1. 0 0 0 0 C 0 0 tiE+ 0 1 
1. 0 0 0 0 0 0 U DE:- 0 3 
l.DOOODOOCE•O& 
leO•JOOOOOI!E-02 

~ 
1 

11 
F 

lo 0 .J 0 [, 0 0 fl liE+ lJ 0 
3 .• :l.)OOOIJOCE+OO 

PSIC ~l= 7.DOOOOOOOE•01 
~Ir 7>= 1o1000DOODE+OO 
PSI( 11l= l.SPDOODCOE+OO 

T~r A~AZO~ SrA~t~ SiRATFGY FnA ~i~iMAX ORJECTivE~ 

·---··---··--------~.-----------------------------NUMUE~ nF F't.IIII(:TJO•t FVAL.IIATinNS 

I CnLJIIIT 

"'JNi .. ,x o~.JEcTJIIE FIII\IChn'll 

IJPHO 

z.si7Z41J~E-ot 

12 1.23.0Jb51E'-01 

16 I.Z27lttt73E·01 

•o '~.8589~8411E-0' 

56 9.3225705FIE•O, 

72 9.zZ517321E•O ~ 

84 o,~.2160,7lnE-0;> 

97 9.leso,.S26E-O? 

us li.1849:\562E-02 

i 32 9.1840427J[oo0l) 

4 152 li.lal81164E•O' 
TE~M•oTKUEo,JNPROVEHENT IN O~JECYIVE FUNCTIO~ ~FSS T~l~ EPSl• l•OOOUOOOOF'·~~ 

00 

Fig, A.2 (a) Typical printout if IDATA is .TRUE. 

if IPRINT is .TRUE. 

PSI< 
PSI( 
PSI c 

4): 8,DOOOODOOE-01 
81= 1o20000000E+OO 

Va~fAHLE PA~AM~T~~ :E:T,~ 

P~o 

~-=~gggg~~g~:~~ 

1•'»3929472£•'11 
]•005710&7£•,,. 

1:~~~~~n~~:~~ 

l!•OlZ0""1&6E•'l~ 
4.16~2111 •ne: •• ,., 

~·OitJn25!:14E•'ln 
4o)4<;5937it(l'lll 

?•183233~4£•1\'J 
h371752itOE•'ln 

2•21712712£+ HI 
4o44lliliJ59E•I\Il 

?.o'?Z02(,'51l3[+1Jil 
ltoit404027Q[+rlf1 

2o22o27815[.rl6 
4oit40]9&43£oll'l 

2o2l07947it[+'l1 
4e4bl64347[1'l'l 

2o2lnFIZJlt2E•·lll 
4olt6t,Z928£•'11l 

(b) Typical printout 

~ 

N 
tn 



126 

A.~ Subprograms 

The subroutine ANAL(~~$., DERIV, k, y., V y.) is a user-supplied 
~ 1 1 ~ 1 

analysis program to evaluate y. and/or V y. at a given point ~. If DERIV 
1 ~ 1 ~ 

is .TRUE., the Vy. are calculated, otherwise they are not calculated. 
~ 1 

The following subroutine need not be written by the user, but is 

part of the grazor search package. The function subprogram Y(~,~.,k) 
~ 1 

calculates the yi corresponding to the point ~ by calling ANAL. The 
~ 

subroutine LOCATE (~,~i'k,n,U~) evaluates the objective function U~ by 

ca~ling Y(~'~i'k) fori= 1,2, ... ,n. The grazer search package also 
~ 

~s¢s a linear program solving routine called SIMPLE (see Subroutine 

SIMPLE), which is a modified version of a program documented with the 

S~RE Distribution Agency, and written by R.J. Clasen (Reference No. 

SDA 3384). Section A.7 includes a listing of this subroutine. 

A.S Comments 

As it stands the package has been programmed to handle up to 15 

va~iable parameters and 15 ripples. The choice of input parameters 

inoluding scale factors may be critical to efficiency of the algorithm, 

and the grazer search strategy should be well-understood before the 

user attempts to use this program. 

This program was run and tested on a CDC 6400 computer. The 

Fortran deck consists of 901 cards which includes detailed comments at 

appropriate places. The package requires roughly 20,000 octal units of 

computer memory. 
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A.~ Discussion 

The grazor search algorithm has been programmed in such a way 

that it allows a certain amount of flexibility to the user. Thus, when 

GRAZOR is called once, one complete iterative step of the algorithm 

results, and by introducing GRAZOR in a DO loop, the user has the com­

plete freedom to make his own decision about termination subject to his 

own convergence criteria, or printing out intermediate results accor4-

ing to a preferred format, or branching out to another optimization 

pa¢kage if desired. Appropriate diagnostic messages are provided in the 

prqgram wherever necessary. 

As this is a gradient strategy, it is important that the grad­

ients as evaluated by the analysis program are correct. 
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A.7 Grazor Search Fortran Program Listing 
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GHAZOR SEARCH PROGRAM FUR MINIMAX OtiJECTIVE~ 

AUTHORS J.W.BANDLER AND T.V.SRINIVASANtCOMMUNlCATIUNS KES~ARCH 
LABORATORY AND DePARTMENT OF ELECTRICAL EN~lNE~RINGt 
MCMASTER UNIVERSITYtHAMILTONtONTARIOtCANADA 

THE.GRAZOR SEARCH ALGORITHM HAS TO~~ PLALED IN A uO LOOP bY THt 
USER SO THAT THE ALGOR! THfV1 MAY 1::)£ C.ALL~I.J AS I"'ANY T 1 MI:.S AS l S 
NECESSARY TO GET SATISFACTORY IMPHuVEMlNTS IN TrlE O~JECT!VE 
FUNCTION 

a • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
A TYPICAL MAIN PROGRAM FUR GRAZOR SEARCH ALGORITHM FOLLOWS-------­
DIMENSION PH0(15)tPSIIll) 
LOGICAL TERMtiPRINTtiDATA 
INTEGER UNIT 
COMMON/GRZR/NCOUNTtiPRINT,UNITtlOPT,IDATA 
TYPICAL INPUT VALUES FOLLOW 
ALPHAO=l. 
ALPMIN=l.OE-06 
RETA=lO. 
ETA=O.Ol 
KR=l 
NCOUNT=O 
IOPT=O 

INPUT VALUES FOR THE SPECIFIC PROBL~M FOLLOW 
IPRINT=.TRUE. 
IDATA=.TRUE. 
UNIT=6 
EPS=l.OE-03 
EPSl=l.UE-06 
K=2 
N=ll 
PHO(l)=l• 
PHOf2l=3• 
PSIIU=0.5 
DO 1 I =2, N 

1 PSIIIl=PSI(I-ll+O.l 

MINIMAX OPTIMIZATION STARTS 
DO 2 J = 1, l 00 
CALL GRAZOR(ALPHAOtALPMINtBETAtEPStEPSl,ETAtPHOtPSitKtKRtNtNRtUPHO 

ltTF.RMJ 
I F fT E R M l GO T 0 3 

2 CONTINUE 
3 STOP 

END 

••••••••• 0 •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

A TYPICAL ANALYSIS PROGRAM FOR GRAZlJR SEARCH ALGORITHM FOLLOWs---­
SUBROUTINE ANAL CPHQ,F,DERIVtKtYtGRADYJ 
UIMENSION PHU(1l,GRADYC1l 
LOGICAL DERIV 
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10 
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12 
13 
14 
15 
16 
17 
18 
19 
~0 
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27 
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34 
3!> 
36 
37 
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40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
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56 
57 
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c: 
c 
c 
C; 
c 
c 
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c 
c 
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c 
c 
c 
c 
c 
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c 
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c 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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THE VALUE OF Y AT A GIVEN SAMPLE PUINT F IS CALCULATED HERE 
IF(.NOT.DERIV) RETURN 
THE DERIVATIVES GRADY(ll,GRADY(2lt••••tGRADY(Kl OF THE FUNCTION Y 
WITH RESPECT TO PARAMETERS PHO(ll,PH0(2lt••••tPHO(Kl ARE 
CALCULATED HERE 
RETURN 
END 

.................................................................. 
SUBROUTINE GRAZOR IALPHAO,ALPMINtBcTAtEPStEPSltETA,PHOtPSltKtKRtNt 

lNRtUPHOtTERM) 

THE USER HAS TO SPECIFY VALUES FO~ ALPHAO,ALPMINtBETAtEPStlPS1tlTA 
,PHO,PSitKtKRtN 

STARTING VALUES --------­
ALPHAO=l• 
BETA=lO. 
KR=l 
SUGGESTED STARTING VALUES-------­
ALPMIN::l.OE-06 
ETA=O.Ol 
EPSltTHE MINIMUM IMPROVEMENT IN THE OBJECTIVE FUNCTION BETWEEN 
SUCCESSIVE ITERATIONStMUST BE SPECIFIED BY THE USER 
EPS=EPSl*lOOO. 

THE FOLLOWING COMMON STATEMENT IS TO BE SPtCIFI~u bY THE U~tH 
COMMON/GRZR/NCOUNT,IPHINTtUNITtiOPT,IOATA 
NCOUNT=NUMBER OF FUNCTION EVALUATIONS AT ANY STAGE OF THE 
ITERATIVE CYCLE OF GRAZOR 
NCOUNT IS INITIALLY SET TO ZERO ~y THE USER 
!OPT CORRESPONDS TO A~ ITEHATIVE CYCLE OF THE GRAZOR SEARCH ALGOR! 
THMtAND IS THE NUMBER OF TIMES OPTIMIZATION PACKAGE GkAZOR HAS 
HEtN CALLEU.IOPT IS INITIALLY ~ET TU ZERO BY THE UStR 
IF !PRINT IS .TRUt. ALL INT~RM~UIAT~ ANU FINAL ~ESULT& ARE TU tit 
PRINTED OUTtOTHERWISE TH~Rt AR~ NO ~RINT-OUTS 
UNIT IS AN INTEGER VARIABLE SPECIFYING THE DATA SET REFERENCE 
NUMAER OF THE OUTPUT UNIT 
IF !DATA IS .TRUE· THE INPUT DATA IS PRINTED OUTtOTHERWISE NOT 
THE USER HAS TO SPECIFY VALUES FOK JPRINT,UNITtiDATA 

THE VARIABLES PSI AND PHO HAVE TO B~ DIMENSIONED IN THE CALLING PR 
OGRAM CORRESPONDING TO MAXIMUM VALUES OF NtAND K(=l5JtRESPECTIVELY 
THE USER HAS TO INDICATE IN HIS MAIN PROGRAM THAT TER~,IPRINT, 
IDATA ARE LOGICAL VARIA~LES AND THAT UNIT IS AN INTEGER VARIA~LE 
IF TERM IS .TRUE. AT THE END OF AN ITERATIVE CYCLE OF GRAlORt 
THE USER HAS TO DECREASE THE VALUES OF ALPMIN AND ETA BEFORE 
GRAZOR CAN eE CALLED AGAIN IN THE MAIN PROGRAM 
THE USER HAS TO FURNISH SU~ROUTINE ANAL FOR IMPLEMENTING THE 
GRAZOR SEARCH STRATEGY 
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A 61 
A 62 
A 63 
A 64 
A 65 
A 66 
A 67 
A 68 
A 69 
A 70 
A 71 
A 72 
A 73 
A 74 
A 75 
A 76 
A 77 
A 78 
A 79 
A ao 
A 81 
A 82 
A 83 
A 84 
A 85 
A 86 
A 87 
A 88 
A 8~ 

A ~0 

A 91 
A 92 
A 93 
A ~4 

A 95 
A 96 
A <.J7 
A ~~ 

A ~9 

A 100 
A 101 
A 102 
A 103 
A 104 
A 105 
A 106 
A 107 
A 108 
A lO'i 
A llO 
A lll 
A l12 
A 113 
A 114 
A 115 
A 116 
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c 
c 
c 
(I 

c c 
.C 
c 
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THE FOLLOWING IS A H~IEF SUMMARY Of THE VARIA~LES IN GRAZOk-----­
PHO= THE PARAMETER VECTOR.IT IS EITHER THE STARTING POINT OR THE 
CURRENT BEST POINT 
PHI= CURRENT PARAMETER VECTOR 
K=NUMBER OF PARAMETERS PHO 
PSI= VECTOR OF SAMPLE POINTS 
N= NUMBER OF SAMPLE POINTS PSI 
UPHO= OBJFCTIVE FUNCTION AT PHO 
UPHI= OB~ECTIVE FUNCTION AT PHI 
YMAX = VECTOR CONSISTING OF THE LOCAL DISCRETE MAXIMA IMPLIED HY 
TH£ FUNCTIONS Y tARRAN~tu iN UcCRc~SlNu MAGNITUJttOViR N 5AMPLE 
POINTS PSI 
PSIMAX= VECTOR OF SAMPLE POINTS CORRESPONDING TO THe VECTOR YMAX 
NR= NUMBER OF DISCRETE LOCAL MAXIMA YMAX 
KR= NUMBER OF DISCRETE LOCAL MAXIMA YMAX UNDER CONSIUERATIONeKR IS 
LESS THAN OR EQUAL TO NR 
GRAD = MATRIX OF FIRST DERIVATIVES OF VECTOR YMAX WITH RESPECT 
TO THE PARAMETERS PHO 
TERM= LOGICAL VARIAHLt WHlCH,lF TRU~tlNDICATtS THE LUNVEHGtNC~ OF 
THE GRAZOR SEARCH ALGORITHM 

THE DIMENSION OF SUBSCRIPTED VARIABLES IN GRAZOR CORRESPOND TO 
MAXIMUM VALUES OF K=l5 AND NR=15 
THE SUHSCRIPTED VARIABLES DUMMYtPHltDELPHltD~LPHNtDELP AkE 
DIMENSIONED CORRESPONDING TO A MAXIMUM VALUE OF K=15 
THE SUBSCRIPTED VARIAbLES YMAXtPSIMAX ARE DIMENSIONEU 
CORRESPONDING TO A MAXIMUM VALUE OF NR=15 
MATRIX GRAD IS DIMENSIONED CORRESPU~UING TO MAXIMUM VALUES UF 
NR=l5 AND K=15 

THE USER HAS TO SUPPLY AN ANALYSIS PROGRAM AND THE FULLOWING IS A 
BRIEF DESCRIPTION OF ITS ARGUMENTS 
SUBROUTINE ANAL CPHOtFtDERIVtKtYt~RADY~ CALCULAT~S TH~ VALUe OF 
FUNCTION Y AND ITS FIRST PARTIAL U~RIVATIV~S GRAUY(11tGRAUYC2lt••• 
••tGRADYCKl WITH RESPECT TO THE PARAMETERS PHOCl!tPHU(2lt••••••••• 
•• ,PHO!Kl FOR A GIVEN SAMPLE POINT F 
PHO AND GRADY ARE TO BE VARIABLE-DIMENSIONED IN ANALtOR 
DIMENSIONED CORRESPONDING TO THE MAXIMUM VALUE FOR Kl=l5l 
DERIV=LOGICAL VARIABLE WHICHtiF TKUEtALLOWS THE GRAUY TO bE 
EVALUATED, OTHERWISE GRAUY ARE NOT EVALUATED 

DIMENSION PH0(1lt PSICllt DUMMYC151t PHIC1~!, YMAXC1~1, PSIMAXC15l 
lt GRADC15tl5l, DELPHIC15l, DELPHNC15l, DELPllSl, XC31l, AC16t3ll, 
2AC16), CC31lt K0(6), PSC16l, JHC16l, XXC16lt YYC16), PEC16l, EC16, 
':1]6) 

LOGICAL TERMtiPRINTtlDATA 
INTEGER UNIT 
COMMON /GRZR/ NCOUNTtlPkiNT,UNITt!OPTtiUATA 
IOPT=IOPT+l 
IF CNCOUNT.EW.Ol TERM=.FALS~. 

IF <T=RMl GO TO 32 
ALPHA=ALPHAO 
ALPHAT=ALPHAO 
ICLOCK=O 

131 

A 117 
A 118 
A 119 
A lLO 
A 121 
A 122 
A 123 
A 124 
A 125 
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A .LL7 
A 128 
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A 130 
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A 135 
A 136 
A 137 
A 138 
A 139 
A 140 
A 141 
A 142 
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A 14~ 
A 146 
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A 148 
A 149 
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A 1~2 
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A 1~6 
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A 16.! 
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A 168 
A 169 
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1 

2 

3 
4 

5 
6 

7 

8 
9 

10 

11 
12 

13 

14 

15 

16 
c 
c 

ISTOP=O 
CALL SELEC <PHOtPSitPSIMAXtKtNtNRtYMAX) 
UPHO=YMAX(ll 
NCOUNT=NCOUNT+l 
IF CNCOUNT.GE.2) GO TO 2 
IF llDATAI WRITE CUNIT,38l ALPHAOtALPMIN,BETAtEPStEPSltETAtK,KRtNe 

1TERMtCitPHO!IItl=1tKl 
IF fiDATAJ WRITE CUNITt39J CltPSICIJ,I=ltNJ 
IF tiPRINTJ WRITE IUN1Tt34J lOPT,N~OUNT,UPHO,(PHO(IJ,I=ltKJ 
IF (ICLOCK.GT.ll GO TO 3 
IF fKR.NEelJ GO TO 4 
KR=l 
DO 6 L=ltKR 
CALL ANAL (PHO,PSIMAXIL>t.TRUE.tKtYMAXCLl,DUMMYl 
DO 5 I =1 tK 
GRADCLtii=DUMMYCll 
CONTINUE 
CONTINUE 
IF CKR.EOell GO TO 22 
KRl=KR+l 
KR2=KR+2 
K.R3==KR1+KR 
DO 9 I=ltKR 
DO 8 J=ltKR 
If (I.GT.JJ GO TO 8 
AlltJI=O. 
DO 1 MM=ltK 
ACitJI=ACltJl-GRAOCltMMJ*GRADCJtMM' 
CONTINUE 
ACJtll=AfitJI 
CONTINUE 
CONTINUE 
DO 10 I= 1 ,KR 
ACltKRll=l .. O 
CONTINUE 
DO 12 I=ltKR 
00 11 J=KR2tKR3 
A(ltJI=O.O 
IF CJ.FQ.(J+KRl>l A(ltJJ=l.O 
CONTINUE 
CONTINUE 
DO 13 J=ltKR 
ACKR1tJI=leO 
CONTINUE 
DO 14 J=KR l tKR~ 
ACKRltJI=O.O 
CONTINUE 
DO 15 I=ltKR 
13(1)=0.0 
CONTINUE 
ACKRU=1.0 
DO 1 6 I = 1 , K R 3 
Cfl)=O.O 
T F ( J • FQ. K R 1 I C I I I =-1. 0 
CONTINUE 
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c 
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21 

c 
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SUBROUTINE SIMPLE IS NOW GUIN~ TO ~t CALLEU.ANY ALTt~NATIVl 
CHOICE TO THIS SUBROUTINE IS ALLOWABLE FOR THE USER AS LONG AS IT 
PERFORMS THE FOLLOWING OPERATION------
SUBROUTINE SIMPLE SOLVES A LINEAR ~ROGRAMMING PROBLt~ OF 
MINIMIZING C*X SUdJECT TO A*X=B•WHERE x,c,~ ARE VECTORS OF LENGTH 
KR3tKR3tKRl RESPECTIVELYtAND A IS A MATRIX OF SIZE KRl*KK3 

SUBROUTINE SIMPLE ATTACHED Tu THIS PACKAuE IS A MOUlFl~O VER~lON 
OF A PROGRAM AVAILABLE WITH SHARE UlSTRIHUTION AGENlYtREFERENCE 
NUMBER SDA 3384 AND WRITTEN BY R.J.CLASEN. 
THE MODIFIED VERSION IS IN THE MCMASTER UNIVERSITY UATA PROCESSING 
AND COMPUTING CENTRE LIBRARYtiNFORMATION SHEET MILlS 5.3.130 

NA AND JFLAG ARE TO RE SPECIFIED BEFORE CALLING SIMPLE 
!FLAG IS SET EQUAL TO ZERO 
NA IS THE FIR5T UIMENSION UF THt ARKAY A ANU I~ ~tT tYUAL TU TH£ 
MAXIMUM VALUE OF NR+1C=l6) 
X IS THE V~CTOR Of DIMENSION 2*NA-l 
THE FOLLOWING SUBSCRIPTED VARIABLES ARE PART OF THE ARGUMENT LIST 
OF SIMPLE AND ARE TEM~ORARY STORAGE SPACES TO ~E DIMENSIONED IN 
THE CALLING PROGRAM (GRAZORl 
PS,JHtXXtYY AND PE. ARE T~MPORARY STORAGE VECTORS OF DIMENSION NA 
E IS A TEMPORARY STORAGE MATKIX OF UIMENSIO~.(NAtNA*Z-1) 
KO IS A VECTOR OF LENGTH 6.U~ON COMPLETION OF THE EXECUTION OF 
SIMPLE, KOCl)=O IF THE LINEAR PROGK~MMING PROBLEM WAS FEASIBLE• 
THE SOLUTION LIES IN X(Jl,J=ltKR3 

IFLAG=O 
NA=l6 
CA~L SIMPLE CIFLAGtKR1tKR3tA•BtCt~O,x,Ps,JH,XXtYYtPE,E,NAl 

DO 1B J=1tK 
DELPHI(J)=O.O 
DO 17 I=1,KR 
DFLPHI<Jl=DELPHI(JJ-X(IJ*GRAD<I•J> 
CONTI NllE 
CONTINUE 

THE INCREMENTAL PARAMeTER STEP DELPHI IS NORMALIZED TU UNIT 
LENGTH HY SUBROUTINE NORM 

CALL NORM (K,DELPHI,DELPHNl 

THE LINEAR SEARCH BEGINS 
ALPHA IS A SCALE FACTOR FOR DETERMINING THE MAGNITUDE OF THE 
NORMALIZED STEP DELPHN TO BE TAKEN FOR THE LINEAR SEARCH 
ALPHAU IS THE INITIALLY SPECIFIED VALUE UF ALPHA OR THE PH~VlUUS 
VALUt OF ALPHA WHICH GAVt A SATlS~A~TORY IMPROVEMENT 
ALPMIN IS THE MINIMUM ALLOWABLe ALPHA 
IF (ALPHA.LT.ALPMINl ALPHA=ALPMIN 
DO ? 1 I= 1, K 
PHICIJ=PHOCil+ALPHA*DELPHNCil 
CONTINUE 
GO TO 24 
A STEP TAKtN IN THE N~GATlVE ~HADltNT UlkECTIUN UF HIGrlEST RIP~Lt 
DO 2 3 I= 1 ,K 
DELPHICil=-GRADC1tll 
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?9 

CONTINUE 
r;n Tn 19 
CALL LOCATE IPHitPSitKtNtUPHil 
NCOUNT=NCOUNT+1 
IF IUPHI.LTeUPHOl GO TO 25 
IF IALPHA.EQ.ALPMINJ GO TO 30 

ALPHA REDUCED RY FACTORS OF BETA 

ALPHA=ALPHA/AF.TA 
IF IALPHA.LE.ALPMIN) ALPHA=ALPMIN 
GO TO 20 
DO ?.6 I= 1 tK 
DELPII)=ALPHA*DELPHN(Il 
CONTINUE 

DELP= INCREMENT FROM PHO WHICH GIVES THE FIRST IMPROVED POINT 
OBTAINED ON ENTERING THE LINEAR SEARCH 
ETA IS THE SPECIFIED FACTOR OF THE INITIAL INTERVAL OF LINEAR 
SEARCH WHICH DETERMINES THE FINAL RESOLUTION BETWEEN TWO INTERNAL 
POINTS OF THE SEARCH 

FINT=ETA 
CALL GOLDEN IGAMAtFINTtPHitPHO,OELPtPSitKtNtUPHitUPHUl 

TERM IS SET TO .TRUE. AND GRAZOR RETURNS TO THE CALLING PROGRAM IF 
UPHO-UPHl IS REPEATEDLY LESS THAN EPSl 

IF IIUPHO-UPHIJ.LT.EPS1) GO TO 30 
ISTOP=O 
DO ?. 7 I= 1, K 
P HO ( I ) =PH I I I ) 
CONTINUE 
IF IIPRINTI WRITE CUNITt37l IOPTtNCOUNTtUPHit(PHO(IJ,I=1tK 1 

IF TH£ O~JECTIVE FUNCTION UPHI AT A NEW POINT PHI IS LESS THAN TH~ 
VALUE UPHO AT THE PREVIOUS PUINT PHU ~y A VALUE GREAT~R THAN UR 
lWUAL TO ~PStTH~ NEW POINT IS CUNS1U~R~U A SATISfACTORY 
IMPROVEMENT.IF NOTtKR IS INCREMENTED BY 1 (FOR.KR LESS THAN OR 
EQUAL TO NR-1) OR SET EQUAL TO 1 (FUR KR=NRl 

IF IIUPHO-UPHil.LT.EPSl GO TO 31 
UPHO=UPHI 
ALPHAO=ALPHA*GAMA 
GO TO 33 
ICLOCK=ICLOCK+l 
IF IISTOP.EQ.Ol GO TO 1 
IF IISTOP.LEeNR> GO TO 3 
TERM=. TRUE. 
WRITE CUNITt35) EPS1 
GO TO 33 
IF CKR.EQ.NRl GO TO 28 
KR=KR+l 
ICLOCK=l 
IF CISTOP.EQ.O) GO TO 1 
GO TO 4 
ALPHA=ALPHAT 
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A 288 
A 289 
A 290 
A 291 
A l.Y2 
A 2.9:::1 
A 294 
A 295 
A 296 
A 297 
A 298 
A 299 
A 300 
A 301 
A 302 
A 303 
A 304 
A 305 
A 306 
A 307 
A 30~ 
A 309 
A 310 
A 311 
A 312 
A 313 
A 314 
A 315 
A 316 
A 311 
A 318 
A 31') 
A 320 
A 321 
A 322 
A 323 
A 32.4 
A .:>£5 
A 3£6 
A 327 
A 328 
A 329 
A 330 
A 331 
A 332 
A 333 
A 334 
A 335 
A 336 
A 337 
A 338 
A 339 
A 340 
A 341 
A 342 
A 343 
A 344 



31 

32 
~~ 

c 
c 
c 
34 

35 

36 

37 
38 

39 

( 

c 
c 
c 
c 

c 
c 

ISTOI-'=JSTOP+1 
GO TO ?9 
UPHO=UPHI 
ALPHA=ALPHAT 
GO TO 29 
WRITE I UNIT t36) 
RETURI\I 

FORMAT 1*1 */43Xt* THE GHAZUK SEANCH STKATE~Y FUR MINIMAX ObJ~CTIV 
lFS */43Xt*--------------------------------------------------*//6Xt 
2*NUM~ER OF GRAZOR CALLS*t8Xt*NUM~~K OF FUNCTION tVAL0ATlUN&*t7Xt*M 
3INIMAX OtiJ~CTIVE FUNCTlON*tlOXt*VAklAtilt PARAM~TtR VECTOK*//l~Xt*l 
40Pl*•30Xt*NCOUNT*t30Xt*UPHO*t32Xt*PHO*////l4X,I5t30X,I5,23XtE16•8e 
~18XtE16.8/Ill1XtE16.A)) 

FORMAT I* TERM=.TRUEetlMPROVEMENT lN OBJECTIVE FUNCTiON LESS THAN 
lEPSl=*tE16·81 

FORMAl I* THE GRAZOR S~ARCH KUUTl~E· CANNUT RESTART AS TEKM IS EYUA 
lL TO eTRUEe FROM THE PREVlUUS lTtKATIONt ANU CONVLRbtNtt LRiTLkiUN 
2 HAS UEEN*/* REACHEU ~OR A SPttifitu EPSleTH~ U~LY WAY TU RESTAkT 
315 TO DECREASE THE VALUES OF ALPMI~ AND ETA. *J 

FORMAT I//14Xtl5t30Xtl5t23XtE16e8t1~X,El6•81~111XtE16.8)) 
FORMAT 149Xt* THE FOLLOWING IS A LIST OF INPUT DATA*/49Xt*--------

1-------------------------------*//55Xt*ALPHAO =*•El6.8/5~X,*ALPM 

21N =*•E16.8/55Xt*BETA =*tEl6eti/~5Xt*EPS =*tEl6e8/~5Xt*E 
3PS1 =*tEl6eB/55Xt*ETA =*•E16.8/55Xt*K =*tl~/,~X,~K 
4R =*tl5/5~Xt*N =*tl~/~~Xt*TERM =*tl~//(~~Xt*PHU(* 
5tl3t*) =*tE16.811 

FURMAT (/I~Xt*PSII*tl3t*l=*tElbe8t~Xt*PSll*tl3t*l=*ttl6etit~Xt*PSl( 
l*tl3t*l=*tE16.8t5Xt*PSII*tl3t*l=*tll6e8l! 

END 

••••••••••••••••••••••••••••••••••• ~ •••••••••••••••••••••••••••• Ill. 

SUBROUTINE SELEC (PHitPSltPSlMAX,~,~,NKtYMAXJ 

C IN THIS SUBROUTiNE THl HlPPLtS UF Trll ~UNLTlUNS Y AT M PUINT PHI 
C OVER N SAMPLE POINTS 1-'Sl AkE LOCATEU ANU SORTEU OUT 1~ UEtKtASIN~ 
C MAGNiTUDE . 
C ITAGtPMAXtf"'IAX ARt DIMENSlONEU CUkklSPOI~l>iNu TU A f"'IAXl•'IUM VAllJL 
C OF NR=l5 
C MAX = DISCRETE LOCAL MAXIMA IMPLlt~ BY THE FUNCTIONS Y AT A ~UINT 
C PHI AS SAMPLING P~OC~tl>S FRUM PSJ(lJ TO PSI(Nl 
C PMAX= SAMPI E POINTS CORRESPONDING TO MAX 
c 
c 

DIMENSiON PSIIllt PHl(llt YMAXIllt HSIMAX(llt lTAGl!?lt PMAX(L'l' 
lMAXll~) 

REAL MAX 
NR=l 
P MAX { 1 l = P S I ( 1 l 
MAXI 1 l=Y(PHI tPSI ( 1 l ,Kl 
YZ=MAXll) 
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A 345 
A 346 
A '34'1 
A '34ti 
A 349 
A ~'O 
A 351 
A 352 
A 353 
A 354 
A 355 
A 356 
A '3,7 
A j,t,i 
A 359 
A 360 
A 361 
A 362 
A j6j 
A .:>b4 

A jb, 

A 366 
A 367 
A 368 
A 3611 
A 370 
A j]l 

A :ru. 
A 373 
A 374 
A j75 
A 376 
A 377 
A 37/J 
A 379-
B 1 
b L 

ti 3 
B 4 
B , 
lj b 

b 7 
~ 1:::1 

t) ':1 

B 10 
B· ll 

B 1L 
B 13 
B 14 
B 15 
b .lb 
t:::i J. -, 

B 18 
B 19 
B 20 
8 21 
B 22 



KD=l 
DO 4 1=2tN 
YX=YCPHI tPSI (I) ,K) 
IF CYX-YZI 1,1,2 

1 KD=-1 
GO TO '3 

? YMAXT=YX 
LT=I 
IF CKD.EU.-1) NR=NR+1 
KD=l 
PMAXCNRJ=PSICLTJ 
MAXCNRJ=YMAXT 

~ YZ=YX 
4 CONTINUE 
c 
c 

CALL TGSORT CMAXtlTAG,NKtl1 
DO 5 J=ltNR 
LD=ITAG(Jl 
YMAX(.JI=MAX<LDl 
PSIMAX(.JJ=PMAXCLDJ 

15 CONTINUE 

c 
c 
c 
c 

RETURN 
END 

c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

c 
c 

SUBROUTINE GOLDEN CGAMAtETA,PHI,PrlO~DELP,PSitKtNtUPHitUPHOl 

C THIS SUBRUUT INE USE.S THt:. llULUt:.N St:.C. T lUN !lt:.AklH TU F h·JLJ Tht. i.JI-IIviA 

C CORRESPONDING TO THE MINIMU~ OF THt·u~.J~CTIVt:. FUNCTION AT THt:. 
C POINT PHO+GAMA*DELP 
C PHIAtPHIBtPHIU ARE DlMENSIUNtD CU~R~SPUNDING TO A MAXIMUM VALUE 
C OF K=l5 
c 
c 

COMMON /GRZR/ NCOUNTtiPRlNTtUNITtlUPTtlDATA 
LOGICAL IPRINTtlDATA 
INTEGER UNIT 
DIMENSION PH0(1), PH1(1), UELP(ll, PHIAC15J, PHl~(l~l, PhlUil?), P 

lSICll 
TAU=0.5*(1e0+(5.0>**0e5l 
TAUSQ=TAU*TAU 
ETA=ETA*ITAU+1.) 
GAMAL=O. 
GAMAU=l.O 
GAMAA=O·O 
UPHIA=UPHO 
DO 2 I= 1 tK 
PHIU(Il=PHO(I)+GAMAU*DELP(IJ 

2 CONTINUE 
CALL LOCATE CPHIUtPSitKtNtUPHIUl 
NCOUNT=NCOUNT+l 
IF CUPHlUeLEeUPHIA) uO TO 4 
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B 23 
B 2.4 
~ 25 
13 26 
B 27 
B 28 
B 29 
B 30 
~ 31 
B ~2 

1:) 33 
1:) 34 
B 35 
B 36 
B 37 
8 38 
tj ::s~ 

1;5 40 
13 41 
B 42 
8 43 
B 44 
B 4~ 

B 46 
B 47 
1;5 4~ 

B 49-
c 1 
c 2 
c 3 
c 4 
c 5 
(. b 
c I 
c i::S 

c 'i 
c 10 
c 11 
c 12 
( 13 
c 14 
c 1:, 
c .Lb 

c 17 
c 18 
c 19 
c 20 
c 21 
c 2.2 
c L3 
c 24 
c L!) 

c 26 
c 27 
c Ll:S 
c 2'i 
c 30 



GAMAH=GAMAL+CGAMAU-C:.AMALJ/TAU 
DO ? I= 1 'K 
PHlACIJ=~HO(I)+UtLP(li*GAMAA 

'3 CONTINUE 
GO TO 7 

4 GAMAL=GAMAA 
UPHIA=UPHIU 
GAMAA=GAMAU 
GAMAU=1.+GAMAU*TAU 
GO TO 1 

5 DO 6 1=1tK 
PHIACII=PHOCII+DELP(Il*GAMAA 

6 CONTINUE 
CALL LOCATE (PHIA,PSJ,K,NtUPHIAI 
NCOUNT=NCOUNT+1 
GO TO 9 

1 DO 8 I =1 'K 
PHIRIII=PHOCI)+DELPCil*GAMAH 

8 CONTINUE 
CALL LOCATE (PHIBtPSitKtNtUPHIBl 
NCOUNT=NCOUNT+1 

9 IF CCGAMAA-GAMAAieLTeETAI GO TO 11 
lF (U~HIA.~~·UPHibl ~0 TO lO 
GAMAU=GAMAe 
GAMAR=GAMAA 
UPHIB=UPHIA 
GAMAA=GAMAL+CGAMAU-GAMALl/TAUSQ 
GO TO '5 

10 GAMAL=GAMAA 
GAMAA=GAMA~ 

UPHIA=U~HII3 

GAMAH=GAMAL+CGAMAU-GAMALJ/TAU 
GO TO 7 

11 IF CUPHIA.LT.UPHIBI GO TO 12 
GAMA=GAMA8 
UPHI=UPHIB 
GO TO 13 

12 GAMA=GAMAA 
UPHI=UPHIA 

13 DO 14 I=ltK 
PHICI>=PHOCII+GAMA*UELP(ll 

14 CONTINUE 
c 
C THIS VALUE OF GAMA IS THE FACTOR OF THE STEP DELP WHICH GIVE~ THE 
C BEST NEW POINTtWHEN STARTING FROM PHO 
c 

c 
c 
( 

c 

RETURN 
END 

( •••••••••••••••••••••••••••••••••••••••••••u•••••eae•••••••••••••• 

c 
c 

SUBROUTINE LOCATE CPHl,PSltKtNtUPHll 

C LOCAl~ CALCULATtS THE MINIMAX UoJ~CTlVE FUNCTION OF THE Y AT A 
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c ::H 
c 32 
c :n 
c 34 
c 35 
.( 36 
c 37 
c 38 
c ,j~ 

c 40 
c 41 
c 42 
c 43 
c 44 
c 45 
c 46 
c 4-, 
c 4~ 

c 49 
c !)Q 

c 51 
c 52 
c 5::S 
c 54 
c 55 
c 56 
c 57 
c 58 
c 59 
c 60 
c 61 
c 62 
c 63 
c 64 
c 65 
c 66 
c 67 
c 6b 
c 69 
c 70 
c 71 
c 72 
c 73 
c /4 
c 1':; 

c 76 
c 77 
c 78 
c 79 
c 80 
c 81-
D 1 
D 2 
D 3 
u 4 
I) ::;. 
!) 6 



c 
c 
c 

1 

c 
c 
c 
c 
c 

c 
c 
( 

c 
c 
c 

c 
c 
c 
c 
c 

1 

2 

c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 

POINT PHI OVER A GIV~N S~T OF SAMPLE POINTS PSI 

DIMENSION PHI(!), PSICll 
DO 1 I =1 'N 
YT=YlPHitPSIClltKl 
IF CI.EQ.ll UPHI=YT 
IF CYT.GT.UPHJ) UPHI=YT 
CONTINUE 
RETURN 
FND 

.....•..•....•.......................•.....•..•....•...•.....••... 
FUNCTION Y CPHitFtKl 

HERE THE FUNCTION VALUE Y AT A POINT PHI CORRESPONDING TO A SAMPLE 
POINT F 15 CALCULATED 
DUMMY HAS ~EEN DIMENSIONED CURRtSPONUlN~ TU A MAXIMUM VALUE OF 
K=l5 

DIMENSION PHI(lJ, DUMMYC15J 
CALL ANAL CPHI,Ft.FALSE.,K,Y1tDUMMYl 
Y=Yl 
RETURN 
tND 

.......................••....•.............•.•....•....••......... 
SUBROUTINE NORM CKtW,WNJ 
DIMENSION WClJ, WNil) 
SUM=O. 
DO 1 I= 1 'K 
SUM=SUM+W(Il*WCil 
CONTINUE 
SUMRT=SURTCSUMJ 
DO 2 I= 1, K 
WN ( I l = W ( I )f SUMR T 
CONTINUE 
RETURN 
E'ND 

...................•.....•.•...••..•........•....•.............•.. 
SUAROllTINF TGSORT fAtltNtMl 

SUBROUTINE TGSORT CMAX,ITAG,NR,MMJ fORMS A V~CTUR OF TAGS 1TAG SU 
THAT ITAG(lJtiTAG(2)t•••••ti~AGCNKJ ARE URUEHED SUBSC~IPTS UF 
VECTOR MAX SUCH THAi MAX(ITAb(1Jl,MAX(ITAG(21 1 , •••• ,MAXCITAG(NRJJ 
ARf IN ALGEBRAIC ORDER 
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D 
D 
D 
D 
D 
D 
0 
D 
D 
D 
D 
D 
D 
u 
E 
E 
E 
E 
E 
E 
1:. 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
G 
G 
G 
G 
G 
G 
G 
G 
G 

7 
a 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
£0-

1 
2 
3 
4 
5 
6 
7 
!:I 
9 

10 
11 
12 
13 
14 
15 
lo 
17-

1 
2 
3 
4 
5 
6 
7 
8 
<) 

10 
11 
12 
13 
14 
15 
l6 
17-

l 
2 
3 
4 
:;, 
6 
7 
d 
9 



c 
c 
c 
c 
c 
c 
c 

2 

3 

4 

5 

6 

c 
c 
c 
c 
c 

c 
$ 

c 

c 

MM IS POSITIVE FOR A HIGH TO LOW OHOEHING ANU NE~AT!Vt FUR LUW TU 
HIGH ORDERING 
THIS SUBROUTINE LISTING WAS U~TAIN~U F~UM THt UATA PkUCtSSlN~ ANU 
COMPUTING CENTREtLIHRARY INFORMATIUN SHttT MILlS ~.j.34,MCMASTtR 
UNIVERSITY 

DIMENSION AC11t 1(11 
LOGICAL HILOtTIMEl 
HILO=M.LT.O 
N1=N+l 
N2=Nl/2 
DO 1 J=1tN 
l(J)=-1 
CONTINUE 
DO 6 K=ltN2 
T Ir-1E 1 = • TRUE. 
DO 4 J=ltN 
IF II(JieGTeOI GO TO 4 
IF leNOT.TIMElJ GO TO 2 
TIMEl=.FALSE. 
SMALL=BIG=ACJI 
JS=JA=J 
GO TO 4 
IF CAIJieGTeSMALLI GO TO 3 
SMALL=AIJ) 
JS=J 
iF IAIJI.LT.BIGI ~0 TO 4 
BIG=AIJI 
JB=J 
CONTINUF. 
L=N1-K 
ICJBI=JABSCIIJH)I 
JIJSI=IABSCIIJS)I 
IF CHILO) GO TO 5 
IILl=ISIGNCJStiCLI I 
I I K I= IS I GN I JB' I I K I l 
GO TO 6 
I I L I = IS I GN C JB t I I L ) I 
ICKI=ISIGNCJStlCKI I 
CONTINUE 
RETURN 
END 

•••••••••••••••••••••••••••••••••••~••••••••••••••••••••••••••eeee 

SUBROUTINE SIMPLE CINFLAG,MXtNNtAtBtCtKOt~H,PtJH,XtYtPEtEtNAI 
CDC 6400 1172 GCTAL WORDS AHt REUUlHtU 

IHFTC SIMPLE REF 
AUTO~ATIC SIMPLEX REDUNDANT E~UATIUNS CAUSt lNftASiuiLITY 
REAL ACNAtl361 
REAL eC11tCClltPClltXClJ,y(1J,PECli,EC11 
INTEGER INFLAGtMXtNNtK0(61tK~ClJ,JHCl) 

EQUIVALENCE CXXtLL) 
THE FOLLOWING DIMENSION SHOULO BE T~E SAME HERE AS IT IS IN 
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(., 10 
G 11 
~ 1~ 

G 13 
G 14 
(., 1~ 

G 16 
G 17 
(J 18 
G lY 
G 20 
(., 21 
G 22 
G ~3 

G 24 
G 25 
G 26 
G 27 
G 2t> 
G 2.9 
G 30 
G 31 
G 32 
G 33 
G 34 
G 35 
G 36 
G 37 
G 3ti 
G 39 
G 40 
G 41 
G 42 
G 43 
G 44 
G 45 
G 46 
G 47 
G 48 
G 49 
G 50 
G 51 
(J 5~ 

G :,:, 
G 54 
G 55-
H l 
H 2 
H 3 
H 4 
H 5 
H 6 
H 7 
H 8 
H 9 
H 10 
H 11 



c 

c 
c 

1 

2 
3 

4 
C* 
5 

6 

7 
c 

c 
c 
8 

CALLER. 
RtAL AAtAIJTtBBtCOSTtDTtKCUSTtTtX~tTPIVtTYtXOLOtXXtXYtYltYMAX 
INTEGER It I A, I NVC, I R t I Tl:.K ,J ,JT ,K ,Kb.J ,L ,LL tj\il ••'•2 tl"u"• ,N 
INTEGER NCUTtNPIVtNUMVRtNVER 
LOGICAL FEAStVERtNEG,TRIGtKOtABSC 

SET INITIAL VALUES, SET CONSTANT VALUES 
ITER=O 
NUMVR=O 
NUMPV=O 
M=MX 
N=NN 
TEXP=e5**16 
NCUT=4*M+l0 
NVER=M/2+5 
M2=M**2 
FEAS=.FALSE. 
IF CINFLAG.NEeO) GO TU 3 
•NEW' START PHASE ONE WITH SINuLcTON ~ASIS 
DO 2 J=ltN 
KB(JJ=O 
KQ=.FALSEe 
DO 1 I= 1 tM 
IF CACJ,Jl.EQ.O.Ol GO TO 1 
IF CKU.OR.ACitJJeLT.O·O) GO TO 2 
KQ=.TRUE• 
CONTINUE 
KBCJl=l 
CONTINUE 
DO 4 I=ltM 
JHCI>=-1 
CONTINUE 
•VER 1 CREATE INVERSE fkOM 1 KH• AND •JH• 
VER=eTRUEe 
INVC=U 
NUMVR=NUMVR+l 
TRIG=eFALSE. 
DO 6 I= 1 tM2 
ECIJ=O.O 
CONTINUE 
MM=1 
DO 7 I=ltM 
ECMMJ=1•0 
PECIJ=O.O 
Xfi)=BCIJ 
IF CJH(IleNE.Ol JHCJJ=-1 
MM=MM+M+1 
CONTINUE 

FORM INVERSE 
DO 14 JT= 1 tN 
IF CKBCJT).EQ.Ol GO TO 14 
GO TO 30 
30 CALL JMY 

TY=OeO 
KQ=.FALSEe 
DO 13 I=1tM 

CHOOSE PIVOT 

CSTEP J) 
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H 12 
H 13 
H 14 
H 15 
H 16 
H 17 
H 18 
H 19 
H 20 
H 21 
H 22 
H 23 
H 24 
H 25 
H 26 
H 27 
H ~ts 

H ~'J 

H 30 
H 31 
H 32 
H 33 
H 34 
H 35 
H 36 
H 37 
H 38 
H 39 
H 40 
H 41 
H 42 
H 43 
H 44 
H 45 
H 46 
H 47 
H 48 
H 4'J 
H 50 
H 51 
H 52 
H ~3 

H 54 
H 55 
H 56 
H 57 
H 58 
H 59 
H 60 
H 6l 
H 62 
H 63 
H 64 
H 65 
H 66 
H 6l 
H 6t; 



9 

10 
11 
12 
13 

c 

c 

c 
14 
c 

15 
16 
c 
C* 

17 
C* 

18 

19 

7.0 

21 

22 

23 

IF IJHilleNEe-1eOR.A~S(Y(llJ.LEeTPlVl Gu TO l3 
IF I KQ) GO TO 10 
IF IXIIl.EQ.O.l GO TO 9 
IF IABSIYI I ltX( Ill eLEeTYl GO TO 13 
TY=AAS (VI I l IX (I l l 
GO TO 12 
KO=eTRUE. 
GO TO 11 
IF IXIIl.NE.O •• OR.ABSIYIIll.LE.TYl GO TO 13 
TY=ABSCYI Ill 
JR=I 
CONTINUE 
KBCJTJ=O 

TEST PIVOT 
IF ITY.LE.O.l GO TO 14 

PIVOT 
GO TO 43 
43 CALL PIV 
CONTINUE 

RESET ARTIFICIAL$ 
DO 15 I= 1 tM 
IF (JHII).EQ.-1l JHCI)=O 
IF (JH(Il.EQ.Ol FEAS=.FALSE. 
CONTINUE 
VER=.FALSE. 

*** PERFORM ONE ITERATION *** 
1 XCK' DETERMINE FEASIBILITY ISTEP ll 
NEG=. FALSE. 
IF !FEASJ GO TO 18 
FEAS=.TRUE. 
DO 17 I= 1 tM 
IF CXIIleLT.O.O) GO TO 20 
IF IJHCIJ.EQ.Ol FEAS=eFALSE. 
CONTINUE 
•GET' GET APPLICABLE PRICES ISTEP 2l 
IF I.NOT.FEASJ GO TO 21 
DO 19 I= 1, M 
PII )=PEl I) 
IF IXII>eLT·O·l Xlll=O• 
CONTINUE 
ABSC=.FALSE. 
GO TO 27 
FEAS=.FALSE. 
NEG=. TRUE. 
DO 22 J=ltM 
PIJl=O. 
CONTINUE 
ABSC=.TRUE. 
DO '26 I=ltM 
MM=I 
IF IX<Il.GE.O.Ol GO TO 24 
ABSC=.FALSE. 
DO 23 J=1tM 
PI J l =PC J) +E ( Mt-1l 
MM=MM+M 
CONTINUE 
GO TO 7.6 
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H 6Y 
H 70 
H 71 
H 72 
H 73 
H 74 
H 75 
H 76 
H 77 
H 78 
H 79 
H 80 
H 81 
H 82 
H 83 
H 84 
H 85 
H 86 
H 87 
H 88 
H 89 
H 90 
H ':11 
H ~l. 

H 93 
H 94 
H 95 
H 96 
H 97 
H 98 
H 99 
H 100 
H 101 
H 102 
H 103 
H 104 
H 105 
H 106 
H 107 
H 108 
H 1017 
H 110 
H .111 
H 112 
H 113 
H 114 
H 11:> 
H 116 
H 117 
H 11S 
H 1117 
H 120 
H 121 
H 122 
H 123 
H 124 
H 125 



24 

25 
26 
C* 
27 

28 

29 
c 

c 

C* 
30 

31 

32 

33 
34 
c 

35 

c 

( 

IF (JH(I).NE.O> GO TO 26 
IF (X(Il.NE.O.) ABSC=.FALSE. 
DO 25 J=l,M 
P(Jl=PCJ)-E(MMl 
MM=Mtvi+M 
CONTINUE 
CONTINUE 
•MIN 1 FIND MINIMUM REDUCED COST 
JT=O 
BB=O.u 
DO 29 J= 1 ,N 
IF <KBlJleNE.Ol GO TO 29 
DT=O.O 
DO 28 I=l,M 
DT=DT+PCil*A(l,J) 
CONTINUE 
IF (FEAS) DT=DT+C(J) 
IF (ABSC) DT=-ABSCDT} 
IF CDT.GE.BA> GO TO 29 
RB=DT 
JT=J 
CONTINUE 
T~ST FOR NO PIVOT COLUMN 
IF CJT.LE.O) GO TO 50 
TEST FOR ITERATION LIMIT EXCEEDED 
IF (lTER.GE.NCUTl GO TO 49 
ITER=ITER+l 
•JMY' MULTIPLY INVERSE TIMES A(.,JT) 
DO 31 I= 1 ,M 
Y<Il=O.O 
CONTINUE 
LL=O 
COST=CIJTJ 
DO 34 I=l,M 
AIJT=A(I,JT) 
IF IAIJTaEO.o.> GO TO 33 
COST=COST+AIJT*PEtll 
DO 32 J=l,M 
ll=LL+l 
Y(Jl=Y<Jl+AIJT*E(LLJ 
CONTINUE 
GO TO 34 
LL=LL+M 
CONTINUE 

COMPUTE PIVOT TOLEKANCE 
YMAX=O.O 
DO 35 I= 1 ,r-1 
YMAX=AMAXlCABS(YCIJl,YMAX) 
CONTINUE 
TPIV=YMAX*TEXP 

<STEP 3l 

RETURN TO INVE~SION ROUTlNt, 1F INVERTIN~ 

IF (VER) GO TO 8 
COST TOLtRANCt LONTROL 

RCOST=YMAX/BB 
IF <TRIG.AND.BB.GE.-TPIVl GO TO 50 
TRIG=.FALSE. 
IF CBH.GE.-TPIV) TRIG=.TRUE. 
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H 126 
H 127 
H 128 
H 129 
H 130 
H 1:Jl 
H 132 
H 133 
H 134 
H 135 
H 136 
H 137 
H 13b 
H 139 
H 140 
H 141 
H 142 
H 143 
H 144 
H 145 
H 146 
H 147 
H l4tl 
H 14':1 
H 150 
H 1~1 
H 1.52 
H .1.53 
H 154 
H 155 
H 156 
H 157 
H 158 
H 159 
H 160 
H 161 
H 162 
H 163 
H 164 
H 165 
H 166 
H 167 
H 161:1 
H 16':1 
H 170 
H 171 
H 172 
H 173 
H 174 
H 175 
H 176 
H 177 
H .J..7ti 
H 179 
H 11:10 
H 181 
H 182 



C* 
c 
c 
c 

36 

37 

38 

39 

c 

40 

( 

c 
c 

41 
c 
42 
C* 

43 

c 

44 

1 ROW 1 SELECT PIVOT ROW CSTEP 51 
AMONG EQS. WITH X=O, FIND MAXIMUM Y AMUNG ARTIFICIALSt UR, If 
NONEt 
GET MAX POSITIVE YCIJ AMONG REALS• 
IR=O 
AA=O.O 
KO=.FALSE. 
DO 39 I=ltM 
IF CXCI>.NE.o.o.OR.YCil.LE.TPIVJ GO TO 39 
IF CJHCIJ.EQ.O) GO TO 37 
IF CKCJJ GO TO 39 
If CYCII.LE.AAJ GO TO 39 
GO TO 38 
IF CKQ) GO TO 36 
KQ=.TRUE. 
AA=Y C I J 
IR=I 
CONTINUE 
IF CIR.NE.OJ GO TO 42 
AA=l.OE+20 

FIND MIN. PIVOT AMONG PUSITIVE EQUATIONS 
DO 40 I=l•M 
IF. CYCI)eLE.TPIV.OR.XCIJ.LE.o.o.oR.YCI)*AA.l..E.XCIJ) GO TO 40 
AA=XCIJ/YCIJ 
IR=I 
CONTINUE 
IF (.NOT.NEGJ GO TO 42 
FIND PIVOT AMONG Nl~ATIVt EYUATlON&t I~ WHICH XIV 15 LES~ THAN THt 
MINIMUM X/Y IN THE PO~lTIV~ EWUATlUNS, THAT HAS THE LARGeST 
ABSFCYJ 
AB=-TPIV 
DO 41 I =ltM 
IF CXCil.GE.O •• OReYCII.GE~BB.OR.YCII*AAeGTeXCJJI GO TO 41 
BB=YC I) 
IR=I 
CONTINUE 
TEST FOR NO PIVOT ROW 
IF CIR.LE.ol GO TO 48 
•PIV' PIVOT ON CIRtJTJ (STEP 61 
JA=JHC IRJ 
IF CIA.GT.OJ KBCIAJ=O 
NUMPV=NUMPV+l 
JHCIRJ=JT 
KI:HJTJ=IR 
YI=-Y<IR) 
Y<IRJ=-1.0 
LL=O 

DO 46 J=l•M 
L=LL+IR 

TRANSFORM I~VERSE 

IF CECLleNE.O.OJ GO TO 44 
LL=LL+M 
GO TO 46 
XY=ECLJ/YI 
PECJJ=PECJJ+COST*XY 
ECLJ=O.O 
DO 45 J=ltM 
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H 183 
H 184 
H 185 
H 1<i6 
H 187 
H 188 
H 189 
H 190 
H 191 
H 192 
H 193 
H 194 
H 195 
H 196 
H 197 
H 198 
H 199 
H 200 
H 201 
H 202 
H 203 
H 204 
H 205 
H 206 
H 207 
H 208 
H 209 
H £.10 
H 211 
H 212 
H 213 
H 214 
H 21~ 
H 216 
H 217 
H 218 
H 219 
H 220 
H 221 
H 222 
H .223 
H 224 
H 225 
H :iib 
H 227 
H 228 
H 229 
H 230 
H 231 
H 232 
H i33 
H 234 

.H 235 
H 236 
H 231 
H 238 
H 239 



45 
46 
c: 

47 

c 

C:* 
48 
c 

c 
49 

c 
50 
51 

52 

LL=LL+l 
EfLLI=EfLLl+XY*Yfl) 
CONTINUE 
CONTINUE 

TRANSFORM X 
XY=X ( I R J /Y I 
DO 47 I=l•M 
XOLD=X(I) 
Xfll=XOLD+XY*YCI) 
IF (eNOT.VER.ANU.X(IJ·LT•O•·ANU•XOLueuEeOeJ Xfl)=O• 
CONTINUE 
Y(JR)=-YI 
X(IRJ=-XY 
IF (VERl GO TO 14 
IF (NUMPV.LE.MJ GO TO 16 
TEST FOR INVERSION ON THIS ITERATION 
INVC=INVC+l 
IF IINVCeEQ.NVERJ GO TO 5 
GO TO 16 
END OF ALGORITHM, SET EXIT VALUES *** 
IF (.NOT.FEAS.OR.RCOSTeLE.-1000.) ~0 TO 50 

INFINITE SOLUTION 
I(=? 
GO TO 51 

PROBLEM IS CYCLING 
K=4 
GO TO 51 

FEASIBLE OR INFEASIBLE SOLUTIO~ 
K=O 
IF leNOT.FEAS) K=K+l 
DO r;? J=l•N 
XX=O.O 
KBJ=KB(Jl 
IF fKBJ.NEeOl XX=XCKBJl 
KB(JJ=LL 
CONTINUE 
KO(lJ=K 
K0(2J=ITER 
K·O l 3 ) = I NV C 
K0l41=NUMVR 
K0(5l=NUMPV 
KOI61=JT 
RETURN 
END 

CD TOT !)901 
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H 240 
H 241 
H 242 
H 243 
H 244 
H 245 
H 246 
H 247 
H 248 
H L.4~ 

H 250 
H 251 
H 252 
H 253 
H 254 
H 255 
H 256 
H 2f;;J7 
H 258 
H 259 
H 260 
H 261 
H 262 
H 263 
H L.64 
H 265 
H 266 
H 267 
H 268 
H 269 
H 270 
H 271 
H 272 
H 2.73 
H 274 
H 275 
H 276 
H 277 
H 278 
H 279 
H L.BO 
H 281 
H 282 
H 283-



APPENDIX 8 

PROGRAM FOR INVESTIGATING MINIMAX OPTIMALITY CONDITIONS 

B.l Introduction 

This program is a package of subprograms which investigates 

the optimality of a design or a proposed solution to an approximation 

problem in the minimax sense. The program is designed to test a solu­

tion for the necessary conditions for a minimax optimum by two differ­

ent formulations. As indicated in Section 3.4, one uses linear pro­

gramming, and the other the solution of a set of linear independent 

equations. A computer program written in Fortran (Version 2.3 and 

Scope Version 3.4 for the CDC 6400 computer) is listed at the end of 

the Appendix. 

8.2 Program Description 

The user may call the package from his main program as follows: 

CALL MINIMAX (K, KR, NR, YMAX, GRAD, NRMAX, DELTA, EPS, ICRIT, !DATA, 

!PRINT, MET, NORM, RELTOL, UNIT, Kl, K3, MR3, MRl, MR2, Xl, X2, XlSUM, 

X2SUM, Rl, R2, RlNORM, R2NORM, OPTIMl, OPTIM2, A, 8, C, X, PS, JH, XX, 

YY, PE, E, D, H, Q, !ROW, !COL, LL, MM). 

The variables in the argument list of the above subroutine are 

ordered as input, output and storage variables respectively, and are 

listed below in that order. 
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"' 
The input variables are k, kr' nr' y([y

1 
"'T T "' 

(Vy ) ( [Vy l. 
'\IV "" 

'V 

v;n ]T), followed by 
rv r 

nr maximum possible number of the y
1

. 

o numerical approximation to zero. 

£ a user-specified factor; if I lr11 I or I lr21 I< £and the 
'V 'V 

multiplier vector u1 or u2 ~ 0 the conditions are satis-
rv "" "' 

fied for Method 1 or 2; otherwise not. 

ICRIT for ICRIT = 1, the user specifies the value of RELTOL and 

!DATA 

considers y1 for which (l-y
1
;y1) ~ RELTOL for 1=2, ... ,nr, 

to be active while when ICRIT = 2, the user specifies the 

value of k (< n ). 
r - r 

logical variable which, if .TRUE., enables the input data 

to be printed out; otherwise not. 

!PRINT logical variable which if .TRUE., enables all intermediate 

and final results to be printed out, and no print-outs 

otherwise. 

MET when MET=l,2, or 3, the package uses Method 1, Method 2 

or both the methods, respectively. 

NORM NORM=l corresponds to the Euclidean vector norm and 

NORM=2 corresponds to the maximum absolute value of the 

elements of the vector. 

RELTOL tolerance relative to y
1 

within which some of the 

y 
2

, ••• ,y lie. 
nr 



UNIT integer variable specifying the data set refer-

ence number of the output unit. 

This is followed by k1(=k+l), k3 (=2k+l) and mr3 (=2k+l+nr) 

For the output variables that follow, subscripts 1 and 2 correspond to 

methods 1 and 2, respectively, as shown below. 

OPTIMl,OPTIM2 

number of y
1

(for t=l, ... ,nr) considered when 

optimal conditions are reached. 

residual vectors 

norm of vectors r
1

, r 2 
~ ~ 

logical variables; indicate that the necessary 

conditions for minimax optimum are satisfied if 

.TRUE., and not satisfied otherwise. 

147 

The above output variable list is followed by storage variables, 

which form the rest of the argument list. The size of the storage arrays 

and vectors is determined by nr' k1, k3 and mr3 . The values of E and o 

as specified by the user are crucial for the verification of the op-

timality conditions, and should be carefully chosen. For further de-

tails, see Sections 5.4u4-5.4.6. 



8.3 Required Subprograms 

The user has to have a subprogram by which the discrete values 

of the nr functions y1 (arranged in descending magnitude) and their 

derivatives (V; T)T with respect to the parameters ~ 1 , ~ 2 , ••• ~k are 
~~ 
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explicitly available. The package uses the following subroutines, the 

listings of which are available as indicated in the References (see Sub-

routine ARRAY, Subroutine MITNV, Subroutine MFGR, Subroutine SIMPLE, 

Subroutine SOLVE). 

ARRAY converts data arrays from single to double dimension or 

vice versa while MINV inverts a matrix and calculates its determinant. 

MFGR determines the rank and linearly independent rows and columns of 

a given matrix. SIMPLE is a linear-program solving subroutine (listing 

available in Section A.7) and SOLVE solves a set of linear simultaneous 

equations. 

8.4 Comments 

The program was used to test a solution on the problem of lower-

order modelling of a ninth-order nuclear reactor system as treated in 

Section 3.4.7. Fig. B.l shows a typical printout of the package for this 

problem. 

This program was run and tested on a CDC 6400 computer. The 

package requires roughly 40,000 octal units of memory for k=lS and 

n =15. A Fortran listing consisting of 721 cards (including comments) 
r 

is included in Section B.S. 



NUMBER OF 
HIGHEST 
MAXIMA 

CONSIDERED 

(MR) 

1 

2 

NUMBER OF 
HIGHEST 
MAXIMA 

CONSIDERED 

(MR) 

1 

2 

VECTOR 
OF 

MULTIPLIERS 

(Xl) 

.lOOOOOOOE+Ol 

.98710491E+OO 
Ql2895086E-Ol 

VECTOR 
OF 

MULTIPLIERS 

(X2) 

.lOOOOOOOE+Ol 

.98710492E+OO 
ol2895077E-Ol 

SUM 
OF 

MULTIPLIERS 

(XI SUM) 

.lOOOOOOOE+Ol 

.lOOOOOOOE+Ol 

SUM 
OF 

MULTIPLIERS 

(X2SUM) 

.lOOOOOOOE+Ol 

olOOOOOOOE+Ol 

METHOD 1 

VECTOR 
OF-

RESIDUALS 

(Rl) 

.38711013E-03 
- .14208087E-03 

-.25789922E-09 
.25789922E-09 

METHOD 2 

VECTOR 
OF 

RESIDUALS 

(R2) 

.38711013E•03 
-el42Q8Q87E-Q3 

0., 
-.35255563E=09 

NORM 
OF 

RESIDUAL 
VECTOR 

(RlNORM) 

.38711013E-03 

.25789922E-09 

NORM 
OF 

RESIDUAL 
VECTOR 

(R2NORM) 

.38711013E-03 

• 35 255563E-09 

Fig, B,l Typical printout of results for the problem given in the text. 

ARE NECESSARY CONDITIONS 
FOR A MINIMAX OPTIMUM 
SATISFIED FOR A USER-
SPECIFIED VALUE OF KR 
OR RELTOL 

(YES/NO) 

NO 

YES 

ARE NECESSARY CONDITIONS 
FOR A MINI~~X OPTIMUM 
SATISFIED FOR A USER­
SPECIFIED VALUE OF KR 
OR RELTOL 

(YES/NO) 

NO 

YES 

....... 

.J::>. 
t.O 



150 

BeS Fortran Listing for MINIMAX Program 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

PROGRAM FOR INVtSTlbATlNb MlN!MAX OPTiMALITY lUNUlTlUN~ 

AUTHORS JeWetiANOLER ANU T.VeSRINlVASANtU~PARTMENT Of tL~lTRlCAL 

ENGINEERING,MCMASTER UNIVERSlTYtHAMI~TON,ONTARIOtCANADA 

THIS PROGRAM IS A PACKAGE OF SUBPROGRAMS WHICH INVESTIGATES TrlE 
OPTIMALITY OF A DESIGN OR A PROPOStU SOLUTION TO AN APPROXIMATION 
PROBLEM IN THE MINIMAX SENSE •......................•.••.•...•.....•...•••........•...•.....•.. 
A TYPICAL MAIN PROGRAM FOR MINIMAX SOLUTION CHECK FOLLOWS--------­
DIMENSION YMAXC15ltGRADC15tlOJ,XlC15l,X2Cl5l,RlC10ltR2ClOl 
DIMENSION A ( 21,36) , fH 21 l , C l 36 )· tX l 36 l ,ps l 21 J , XX l 21) , Y Y ( 21 J , PE C 21 l ' 

l EC?lt?U 
DIMENSION Dll5tlOltHllltlll,UC1lltlROWll5l,ICOLllO),LL(l5l,MM!l5l 
LOGICAL IDATAtlPRINTtOPTlMltOPTlM~ 

INTEGER UNIT 
K=2 
NRMAX=l5 
NR=4 
DELTA=.Ol 
EPS=l.OE-04 
ICRIT=2 
KR=NR 
IDATA=.T• 
IPRINT=.T• 
~ET=3 

NORM=! 
UNIT=6 
Kl=K+l 
K3=2*K+l 
MR3=2*K+1+NRMAX 
READC5tU CYMAXC]) ti=ltNRJ 
READC5t21 CCGRADCitJitJ=ltKitl=ltNRl 
1 FORMATl5E16e8l 
2 FORMATC2El6e8l 
CALL MINIMAXCKtKRtNRtYMAXtGRADtNRMAXtDELTAtEPStiCRITtiDATAtiPRINT, 
lMETtNORMtRELTOLtUNITtKltK3tMR3tMRltM~2tXltX2tXlSUMtX2SUMtRltR~tRlN 
2NORMtR2NORMtOPTIM1tOPTIM2tAtbtCtXtPS,JH,XXtYYtP~tttUtH,Q,IROWtl~OL 
.3tLLtMM) 

STOP 
END 

·····················································&··········Q· SUBROUTINE MINIMAX CKtKRtNRtYMAXt~RADtNRMAXtDELTAtEPStiCRlTtiUATAt 
1I PRINT, MET ,NORM, REL TOL tUN IT ,K1 tK3 tMR 3 ,MR 1 tMR2 tX 1 ,xz t X1SUMtX2S'JM ,R 1 
2tR2tR1NORM,R2NORMtOPTIMltOPTlM2tAttitCtXtPStJHtXXtYYtPttttUtHtUt!RO 
3WtiCOL,LLtMMl 

THE MINIMAX SOLUTION TESTING IS DONE ~y TWO METHODS-MtTl AND MET2 
METl CONSIDERS A LINEAR PROGRAMMING FORMULATION 
MET2 CONSIDERS A FORMULATION CONSISTING OF A SET OF LINEAR 
EQUATIONS 

INPUT-OUTPUT INFORMATION-------
THE USER HAS TO SPECIFY VALUES FOR KtKR COR RELTuL) ,tNRMAXtNR, 

A 

A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 

A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
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1 
2 
3 
4 
5 
6 
7 
6 
9 

10 
11 
12 
13 
14 
15 
.l6 
17 
18 
19 
20 
21 
22 
23 
~4 

25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
46 
49 
50 
51 
52 
53 
54 
55 
56 
57 
56 
59 
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C YMAXtGRADtDELTAtEPS,ICRITtiDATAtiPRINTtMETtNORMtUNITtKl,~3 ANU MR3 A 60 
C THE OUTPUT VARIABLES ARE MRltRltRlNORMtX1tXlSUMtOPT1MltMR2,R2t A 61 
C R2NORM,X2tX2SUM AND OPTIM2 A 62 
C THE VARIABLES AtBtC,X,PSt~H,XXtYYtPE,[tDtHtWtiROWtiCOLtLLtMM ARE A 6~ 

C TEMPORARY STORAGE SPACES CORW~SPONUlN~ TO K ANU NRMAX CTO bE A 64 
C DIMENSIONED BY THE USERJ A 65 
C A 66 
C A 67 
C APPENDIX OF VARIABLES------- A 68 
C K =NUMBER OF VARIABLE PARAMETERS A 69 
C NRMAX =MAXIMUM NUMBER OF FUNCTIONS YMAX THAT MAY BE ENCOUNTERED BY A 70 
C THE USER.FOR THE SAKE OF SAVING MtMORY SPAC~tNkMAX LAN bE A 71 
C PUT EQUAL TO NR IF NR IS KNOWN btFORtHANU A 7L 
C NR =NUMbER OF HIGHEST FUNCTIONS YMAXl1),YMAX(2J••••• WHICH AR~ A 73 
C AVAILABLE FOR CHEC~ING A SOLUTION FOR THE NECESSARY A 74 
C CONDITIONS FOR A MINIMAX OPTIMUM. NR SHOULD NEVER bE A 7~ 

C GREATER THAN NRMAX A 76 
C KR =NUMBER OF HIGHEST YMAX(l}••••tYMAXlNR} THAT MAY BE A 77 
C CONSIDERED ACTIVE bY THE US~~ FOR CHECKINu OPTIMALITY A 7H 
C CONDITIONS• KR IS LtSS THAN OR EQUAL TO NK• TH~ VALUE Of KR A 79 
C HAS TO BE SUPPLIED BY THE USER IF ICRIT=2 A 80 
C YMAX =VECTOR OF FUNCTIONS YMAX(l}••••tYMAXCNR) ARRANGED IN A 81 
C DECREASING MAGNITUDE. THESE FUNCTIONS ARE TO BE TESTED FOR A 62 
C THE NECESSARY CONDITIONS FOR A MINIMAX OPTIMUM. YMAX(il IS A 83 
C GREATER THAN OR EUUAL TO YMAX(l+lj FOR I=1••••tNR-l A 84 
C GRAD =MATRIX OF FIRST DERIVATIVES OF VECTOR YMAX WITH RESPECT TO A 85 
C THE ~ PARAMETERS. THE ROWS UF bKAU CORRt~PUND TO TH~ A d6 
C GRADIENTS OF YMAX(l),YMAX(2lt•••tYMAX(NR' KESPtCTlVELYe A H7 
C GRAD IS OF SIZE lNRMAXtKJ A Hd 
C DELTA =TEST FACTOR FOR ZERO,AFFECTtD tlY ROUNUOFF NOISE. THE VALU~ A 89 
C OF DELTA DEPENDS UPON THE MAGNITUDE Of ELEMENT~ OF GRAU A ~0 
C EPS =SCALE FACTOR. WHEN CONSIUEKING METHOD 1 IF THE MULTIPLIERS A 91 
C XlCl)t••••Xl(MHl) ARE NON-•~tGATIVE AFTER CUNSlvERINu MRl A 92 
C HIGHEST FUNCTIONS YMAX(l)••••~YMAXCMRll,THE NORM OF THE A 93 
C RESIDUAL VECTOk Hl IS CUMPAHEU WITH EPS. IF RlNORM IS LESS A 94 
C THAN OR EQUAL TO EPS THE Nt~ESSARY CONDITIONS FOR A MINIMAX A 9~ 
C OPTIMUM ARE SATISFIED BY YMAXll)•••••YMAX(MRll. A SIMILAR A 96 
C SITUATION HOLUS FUR METHOD 2 WH~N MR2 HluHtST FUNCTIONS ARt A Y7 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

CONSIDFREDe 
ICRIT =THERE ARE TWO CRITERIA AVAILABLE FOR CHECKING THt NECESSA~Y 

CONDITIONS FOR A MINIMAX OPTIMUM. FOR ICRIT=ltTHE USER HAS 
TO SPECIFY THE VALUE OF RELTOL AND FOR ICRIT=2,THE USER HAS 
TO SPECIFY THE VALUt OF KR• lf TH~ USER HAS NO lOEA OF HOW 
MANY OF THE HIGHEST FUNCTIUNS TO CHOUSE OUT OF YMAXCll, ••• , 
YMAX<NRltHE COULD SPECIFY A VALUE OF KR EYUAL TO Nk• IftUN 
THE OTHER HAND•THE USER WISHE~ TO SPECIFY A TOLERANCE HANU 
BELOW YMAX(l) WITHIN WHICH HE CONSIUERS THE FUNCTIONS TO HE 
ACTIVE,HE COULD SP~CifY THE VALUE OF RELTOL 

IDATA =LOGICAL VARIABLEtWHICH IF eTRUEe ENABLES INPUT DATA TO BE 
PRINTED OUTetOTHERWISE NOT• 

IPRINT=LOGICAL VARIAHLE,WHICH IF eTRUE• ENAbLES ALL INTERM£UlATE 
AND FINAL R~SULT~ TU BE PRINTEU OUTtAND NO Pkl~TOUTS 

OTHERWISE• 
MET =INTEGER VARIABLE WHICH ENAbLES Trl~ US~R TO CHECK THt 

NECESSARY CbNDITIONS FOR A MINIMAX OPTIMUM dY METHOUS 1 UR 
2 OR BOTH FOR MET=l OR 2 OR 3 

NORM =VARIABLE WHICH ALLOWS TWO NORMS TO BE AVAILABLl FOR VE:TORS 

A 98 
A 99 
A 100 
A 101 
A lO~ 
A 10~ 
A 104 
A l05 
A 106 
A 107 
A lOH 
A lOY 
A llO 
A 111 
A 112 
A 113 
A 114 
A 115 
A 116 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Rl AND R2. IF NO~M=ltTHE EUCLIDEAN NORM OF A V~CTOH IS 
CALCULATEDeiF NORM=2,THE VECTO~ NU~M IS E~UAL TO THE 
MAXIMUM ABSOLUTE VALUt OF THE VtCTOR fLEMlNTS 

RELTOL=TOLERANCE kELATIVl TO YMAXCli WITHIN WHICH YMAX(2j••••• 
YMAX<NR> LIE.THIS FACTOR HAS TO BE SPECIFIED HY THE UStR IF 
ICRIT=2tWHEN THE USER CONSIDeRS THOSE FUNCTIONS FOR WHICH 
ll.-YMAX(L)/YMAX(lJ),L=1•2•••••NRt IS LESS THAN RELTOLtTO 
AE ACTIVE FOR OPTIMALITY CONDITIONS 

UNIT =INTEGER VARIABLE SPECIFYING THE DATA SET R~FtRENCE NUMtiER 
OF THE OUTPUT UNITe 

IN TH~ FOLLOWING SECTION SUBSCRIPTS 1 AND 2 UENOT~ METHODS 1 ANU ~ 

RESPECTIVELY. 
MR1tMR2 =NUMBER OF HIGHEST FUN~TIONS YMAX(ll•••••YMAXlNRJ 

WHICH SATISFY THE THE 'NECESSARY CONDITIONS FOR A 
MINIMAX OPTIMUM AS VERIFIED BY METHODS 1 AND 2 
RESPECTIVELY 

X1tX£ =VECTOR OF MULT!PLIEK~ ~F LENGTH Mkl ANU MR' 
RESPECTIVELYtWHEN THE NECESSARY CONOITIUNS FOR A 
MINIMAX OPTIMUM ARE SA~ISFIED AS VE~IFltD BY METHOUS 
1 AND 2. AT AN OPTIMUM;THE ELEMENTS OF THE 
MULTIPLIERS ARE ALL NON-NEGATIVE 

XlSUMtX2SUM =SUM OF ELEMENTS OF VECTORS Xl AND X2 RESPECTIVELY• 
AT THE OPTIMUMtTHE ELEMENTS OF THE VECTORS ARE ALL 
NUN-NEGATIVE ANO ADU UP TO UNITY 

R1 =RESIDUAL VECTOR OF LENGTH K GENERATED ~y LINEAR 
COMBINATION OF THE GRADIENTS OF YMAX(1JtYMAX<2), ••• , 
YMAXCMRlJ BY THE MULTIPLIERS XlC1J,X1(2J, ••• ,xlCMkl) 
GOT FROM METHOD l• THUS R1 IS A PRODUCT OF THE ROW­
VECTOR Xl POST-MULTIPLIED BY THE MRl ROWS OF GR\D 

R2 =RESIDUAL VECTOR OF LENGTH K GENERATED BY LINEAR 
COMBINATION OF THE G~ADIENTS OF YMAXClltYMAXC2J, ••• , 
YMAXCMR2) BY THE MULTIPLIERS X2C1itX2(2J, ••• ,x2<MR2J 
GOT FROM METHOD 2• THUS R2 IS A PRODUCT OF THE ROW­
VECTOR X2 PUST-MULTlPLllD BY THE MR2 ROWS OF GRAD 

RlNORMtR2NORM~NORMS OF VECTORS Rl AND R2 
OPT1Ml,OPTIM2=LOGICAL VARIABLESeiF •TRUE. INDICATE THAT NECESSARY 

CONDITIONS ARE MET FOR A USER-SPECIFIED VALUE OF EPS 
AS VERIFIED BY METHODS 1 AND 2 RESPECTIVELY. IF THEY 
ARE .FALSE• THE NECESSARY CONDITIONS ARE NOT 
SATISFIED 

Kl =K+l 
K3 =2*K+l 
MR3 =2*K+l+NRMAX 
KltK3tMR3 ARE INTEGERS WHICH ARE NEC~SSARY FOR EFFICIENT USE OF 
COMPUTER CORE MEMORY FOR SOME TEMPORARY STORAGE VECTORS AND ARRAYS 

DIMENSIONING INFORMATION -------
TH~ U~ER HAS TO DIMENSION IN HIS MAl~ PROGRAM THE FOLLOWIN6 
ARRAYS AND VECTORS• 
YMAX =VECTOR OF DIMENSION NRMAX 
GRAD =ARRAY OF DIMENSION (NRMAXtKJ 
XltX2=VECTORS OF LENGTH NRMAX 
RltR2=VECTORS OF LENGTH K 
A =ARRAY OF SIZE (K3tMR3J 
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A !~ti 
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A 1~4 
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A ljo 
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A 143 
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A 151 
A 152 
A 153 
A 154 
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A 164 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

'? 

3 
4 

B tPS' JH, XX, YY, PE=VECTORS OF U:.NGTH K3 
CtX =VECTORS OF DIMENSION MR3 
E =ARRAY OF SIZE tK3,K3) 
D =ARRAY OF DIMENSION CMRMAXtK) 
D =ARRAY OF DIMENSION CNRMAXtK) 
H =SQUARE MATRIX OF SIZE CKltK1! 
Q =VECTOR OF LENGTH Kl 
IROW =VECTOR OF LENGTH NRMAX 
ICOL =VECTOR OF LENGTH K 
LLtMM=VECTORS OF LENGTH NRMAX 

TYPE DECLARATION -------
THE USER HAS TO DECLARE THE TYPE OF SOME OF THE VARIABLES AS 
FOLLOWS. 
INTEGER UNIT 
LOGICAL IDATAtlPRlNTtOPTlMl,OPTIM2 

SUBROUTINE INFORMATION -------
THE USER HAS TO SUPPLY THE FOLLOWING SUBROUTINES WITH THIS PACKAGE 
OR ENSURE THAT THESE SUBROUTINES ARE IN THE PERMANENT LIBRARY OF 
THE COMPUTER HE IS USING 
SUBROUTINE ARRAY -REFERENCE t2J 
SUBROUTINE MINV -REFERENCE (3J 
SUBROUTINE MFGR -REFERENCE (4J 
SUBROUTINE SIMPLE -REFERENCES (5Jt(6J 

IT IS IMPORTANT _TO POINT OUT THAT THE VALUES OF EPS ANU UELTA AS 
SPECIFIED HY THE USER ARE CRITICAL FOR TESTING A SOLUTION FOR THE 
NECESSARY CONDITIONS FOR A MINIMAX OPTIMUMtAND A GREAT OtAL OF 
CARE HAS TO BE EXCERCISED WHEN SPECIFYING VALUES FOR THEM• 
IN ADDITIONtiT HAS TO eE POINTED OUT THAT *•••* IN A FORMAT 
STATEMENT IS LIKE A HOLLERITH PARAMtTEM INCLUUlNG WHAT~VtR IS 
WITHIN THE TWO * SYMBOLS IN THE HOLLERITH FIELD• 
LOGICAL IPRINTtiDATAtOPTIM1,0PTIM2,ISP 
INTEGER UNIT 
DIMFNSJON YMAXCl), Xl(lJ, X2(1J, RlClJ, R2(1J, GRADCNRMAXtl) 
DIMENSION ACK3tl), till), C(lJ, XCl!~ PSCl), JH(!J, XXlllt YY(lJ, P 

lE(l), E(K3tUt HCKl,lJ, <.i(U, lROW(l), lCUL(lJ, LL(1J, MM(ll, U(NK 
2MAX, 1) 

IF CNR.LEeNRMAX) GO TO 1 
WRITF CUN1Tt20) 
RETURN 
CONTINUE 
ISP=.F. 
OPTIMl=.Fe 
OPTIM2=.Fe 
GO TO (2,61, ICRJT 
KR=l 
IF (NR.EQ.l) GO TO 4 
DO 3 I=2tNR 
IF C<YMAX(ll-YMAXCI)leLE·<RtLTOL*YMAXCl)!) KR=KR+1 
CONTINUE 
IF (eNOTeiDATA) GO TO 8 
WRITE CUNITt2ll K•KRtNRMAXtNRtDELTAtEPS,ICRIT,IDATAtlPKINTtM~T,NOK 

1MtRELTOLtUNIT,KltK3wMk3,(l,YMAXCil,I=ltNRl 
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A 214 
A ~l5 
A 216 
A 217 
A 218 
A 219 
A 220 
A 221 
A 222 
A 223 
A 224 
A 225 
A 226 
A 227 
A 228 
A 22i.i 
A 230 



6 

7 
8 
9 

10 

11 

12 
13 

14 

15 

16 

DO 5 1=1tNR 
WRITE <UNITt22l ((J,J,GRAD(I,Jll,J=1tKl 
CONTINUE 
GO TO 8 
CONTINUE 
RELTOL=le-YMAX(KR)/YMAX(ll 
IF (eNOT.IDATAl GO TO 8 
WHITt (UN1Tt23l KtKKtNRMAXtNHt~~LTAtLPStl~KlTtlUATAtlPNlNTtM~TtNUH 

1MtRELTOLtUNITtKltK3tMR3tCitYMAXIIJ,I=ltNRl 
DO 7 I=ltNR 
WRITE IUNITt22l ((ltJtGRADlltJll,J=ltKl 
CONTII\IUF 
GO TO l9tl4t9lt MET 
CONTINUE 
IF <.NOTelPRINT) GO TO 10 
WRITE lUNITt24l 
WRITE (UNITt25) 
WRITE <UNITt26l 
CONTINUE 
t-'IR=l 
Xl<U=l• 
XlSUM=l• 
DO 11 J=ltK 
Rl(J)=GRAD(I,J) 
CONTINUE 
CALL SOLCHK lKtMRtMRltiCRIT,IPRINTtNpRMtUNlTtXltXISUMtRltRlNORMtEP 

lStOPTIMl) 
IF (OPTIMll GO TO 13 
IF (KR.EQ.l> GO TO 13 
DO 12 11=2tKR 
MR=II 
CALL MET! <KtK3tMRtNRtMk3tYMAXtGRADtXltXlSUMtRltAtBtCtKOtXtP~tJHtX 

lXtYYtPEtEtNRMAXl 
CALL SOLCHK (KtMRtMRltiCRIT,IPRINTtNORMtUNlTtXltXlSUMtRltHlNORM,EP 

1StOPTIMll 
IF COPTIMl> GO TO 13 
CONTINUE 
CONTINUE 
If. CMET.NEe3l RETURN 
CONTINUE 
IF (.NOT.IPRINT) GO TO 15 
WRITE fUNITt27l 
WRITE (UNIT • 2 5 l 
WRITE (UNIT t28) 
CONTINUE 
MR=l 
X2(1)=1• 
X2SUI-1= 1• 
00 16 J=ltK 
R2(Jl=GRADCltJl 
CONTINUE 
CALL SOLCHK (KtMRtMR2tiCRITtlPRINTtNURMtUNITtX2tX2SUMtR2tR2NORMt~P 

1StOPTIM2l 
IF (0PTIM2l GO TO 19 
IF (KR.EOel> GO TO 19 
DO 18 II=2tKR 
MR=II 
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c 
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c 
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17 

18 
19 

c 
c 
c 
c 
c 
20 

21 

22 

23 

24 
25 

26 

27 
28 

c 

CALL MET2 IKtK1tMR,NRtYMAXtGRADtDELTAtlPRINTtlSPtUN1TtX2tX2SUM,R2t 
1DtHtOtiROWtlCOLtLLtMMtNRMAXl 

IF (eNOT.ISPl GO TO 17 

WHEN ISP IS .TRUEetEITHER THE NUMBER OF UNKNOWN MULTIPLIERS IS 
GREATER THAN THE NUMBER OF INDEPENDENT EQUATIONS OR THE VALUE OF 
DELTA IS TOO SMALL,SO THAT WE SWITCH FROM METHOD 2 TO METHOD 1 FOR 
THE CURRENT VALUE OF MR 

CALL MET1 IKtK3tMRtNRtMR3tYMAXtGRADtX2tX2SUMtR2tAt~tCtKOtXtPS;JHtX 

lXtYYtPEtEtNRMAXl 
ISP=.F. 
CONTINUE 
CALL SOLCHK CKtMRtMR2tiCRlT,lPRlNTtNURMtUNITtX2tX2SUMtH2tR2NORMttP 

1StOPTIM2l 
IF (0PTIM2l GO TO 19 
CONTINUE 
CONTINUE 
RETURN 

FORMAT (1H1/* NR IS GREATER THAN NRMAX HERE, AND THIS CALLS FOR AN 
1 INCREASE IN NRMAX TO A VALUE GREATER THAN OR EUUAL TO NR*l 

FORMAT 11Hl/60Xt*INPUT DATA LIST*/61X,*---------------*///66Xt*K=* 
ltl5/65Xt*KR=*•l5t*CCORRESPONUIN~ Tu RELTOLl*/62Xt*NHMAX=*•!~/65Xt* 
2NR=*ti5/62Xt*OELTA=*•t16e8/64Xt*EP5=*tl6e8/62Xt*lLRIT=*tl~/62Xt*Iu 
3ATA=*•L5/61Xt*IPRINT=*tL5/64Xt*MET=*ti5/63Xt*NORM=*tl5/61Xt*R~LTOL 
4=*tE16.8/63Xt*UNIT=*ti5/65Xt*K1=*•15/65Xt*K3=*•15/64Xt*MR3=*tl5/(4 
5Xt*YMAXI*tl2t*l=*•El6•8t9Xt*YMAX(*tl2t*l=*tEl6e8t9Xt*YMAXt*,I2t*l= 
6*tE16.8t9Xt*YMAX(*,I2t*l=*tE16e8)) 

FORMAT C* GRADC*tl2t*t*tl2t*l=*tE16e8t6Xt*GRADl*tl2t*t*tl2t*l=*•El 
l6e8t6Xt*GRADI*tl2t*t*tl2t*l=*tEl6e8t6Xt*GRADl*tl2,*t*tl2t*)=*•E16• 
28) 

FORMAT 11Hl/60Xt*INPUT DATA LIST*/61Xt*---------------*///66Xt*~=* 
ltl5/65Xt*KR=*ti5/62Xt*NRMAX=*•I5/65Xt*NR=*•l5/62Xt*DELTA=*•Elb•8/~ 
24Xt*EPS=*El6.8/62Xt*ICRIT=*•l5/62Xt*luATA=*tL5/61Xt*lPRI~T=*•L5/64 
3Xt*MET=*•I5/63Xt*NORM=*•l5/6lX•*RELTOL=*tEl6e8t*CCORR~SPONUING TO 
4KRl*/63Xt*UNIT=*ti5/65Xt*Kl=*•I5/65Xt*K3=*•15/64Xt*MR3=*tl5/t4Xt*Y 
5MAXC*tl2t*l=*tE16•8t9Xt*YMAXC*tl2t*l=*tEl6e8t9Xt*Y~AXC*tl2t*l=*•El 
66e8t9Xt*YMAX(*tl2t*l=*tE16.81~ 

FORMAT 11Hl/64X,*METHOD l*/64Xt*--------*///l 
FORMAT 16Xt*NUMBER OF*t14Xt*V~lTUK*tl8Xt*~UM*tl8Xt*VtLTOH*tl7X,*NO 

1RM*t9Xt*ARE NECESSARY CONDITIONS*//7Xt*HIGHtST*t17Xt*UF*t20Xt*OF*~ 
221Xt*OF*t20X,*OF*tl0Xt*FOR A MINIMAX uPTlMUM*//7Xt*MAXIMA*,14Xt*MU 
3LTIPLIERS*tllXt*MULTlPLIEHS*tl2X,*RtSl0UALS*tl4X,*RESlUUAL*t7Xt*SA 
4TISFIED FOR A USER-*//6Xt*CONSIOEK~O*t80Xt*VECTOk*t8Xt*SPtCIF1Eu V 
5ALUE OF KR*//llOXt*OR RELTOL*/) 

FORMAT (9Xt*CMRl*tl7Xt*(Xl)*,l7X,*CX1SUMl*tl6Xt*CKll*tl8Xt*CRlNUKM 
ll*tl2Xt*CYES/NOl*//l 

FORMAT (1Hl/64Xt*METHOD 2*/64Xt*--------*///l 
FORMAT (9Xt*CMRl*tl7Xt*(X2)*,17Xt*IX2SUMl*tl6Xt*CR2)*,18Xt*Ck2NUKM 

ll*tl2Xt*CYES/NOI*i/) 
END 
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···························································~8~~00~ SUBROUTINE SOLCHK CKtMRtMMR,lCRlTtlPRINTtNURM,UNlTtXtXSUMtWtHNORM, 
lEPS,OPTIMt 

THIS SUBROUTINE CHECKS THE SOLUTION FUR NECESSARY CONDITIONS FOR 
A MINIMAX OPTIMUM BY FIRST TESTIN~ WHETHER THE MULTIPLIERS XCl), 
Xl2lt•••tXlMR) ARE NON-NEGATlVE,ANU THlN FINUlNG OUT IF TH~ NURM 
RNORM OF THE RESIDUAL VECTOR R IS LESS THAN OR EQUAL TO EPS 

DIMENSION Xll), R(l) 
INTFGER UNIT 
LOGICAL IPRINTtOPTIM 
MR1=MR+1 
Kl=K+l 
GO TO llt2), NORM 
RNORM=ANORMl(K,R) 
GO TO 3 
RNORM=ANORM21KtR) 
CONTINUE 
IF CRNORM.GT.EPS) GO TO 4 
OPTIM=eT• 
MMR=MR 
CONTINUE 
DO 5 J=ltMR 
IF IX(JleGEeOel GO TO 5 
OPTIM=.F. 
GO TO 6 
CONTINUE 
CONTINUE 
IF (.NOTelPRINT) RETURN 
IF COPT I M l GO TO 7 
WRITE (UNITtl5l MRtX(lltXSUMtRlll,~NOkM 
GO TO 8 
WRITE (UNIT,161 MNtXClltXSUMtRlllt~NORM 
IF CMR.EQ.ll GO TO 13 
IF I K -MR > 9, 9, 11 
DO 10 I=2tK 
WRITE IUNITtl7l XllltRlil 
CONTINUE 
IF (K.EQ.MRl RETURN 
WRITE IUNITtl8l IXCil,I=KltMRJ 
GO TO 14 
DO 12 I=2tMR 
WRITE (UNITtl7l XllltRCil 
CONTINUE 
IF IK.EQ.MRl RETURN 
WRITE CUNITtl9> lRCilti=MRltKi 
RETURN 

FORMAT (//luXtl2tllXtEl6e8t6XtE16.~t6XtE16.8t6XtElb.8t11Xt*NO*l 
FORMAT (//lOXtl2tllXtE16e8t6XtE16e8t6XtEl6e8t6XtEl6•8t11Xt*YES*l 
FORMAT I/?~XtEI6.8t28XtE16eA) 
FORMAT l/23XtEl6e8l 
FORMAT C/67X,El6e8) 
END 
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···•···•·····•··············•·•·•··••·•··•····•·•················· SUBROUTINE METl IKtK3tMRtNR,KR3tYMAXtGRADtXltX1SUMtRltAt8tCtKUtXtP 
lStJHtXXtYY,PEtEtNRMAXl 

DIMENSION YMAX(l), GRAuiNRMAXtlJ, Xllll, Rl(ll 
DIMENSION AIK3tll, B(ll, C(ll, X(lJ, PSCllt JHill, XXIllt YY(!lt P 

lECl)' ECK3tl) 
MRl=MR+l 
MR2=MR+2 
MR3=MR1+2*K 

·K?=2*K 
K'1=K2+1 
DO 2 I= 1 tMR 
DO 1 J=ltK 
ACJtl I=GRAlHitJI 
AIJ+Ktil=-ACJtl) 
CONTINUE 
CONTINUE 
DO 3 J=1tK2 
ACJtMRll=-1• 
CONTINUE 
DO 5 J=ltK2 
DO 4 I=MR2tMR3 
ACJtii=O• 
IF ( J. EQ • ( I -MR 1 I l A I J' I ) = 1 • 
CONTINlJF 
CONTINUE 
DO 6 I=ltMR 
ACK3tll=l• 
CONTINUE 
DO 7 I=MRltMR3 
ACK3tl l=O• 
CONTINUE 
DO 8 l=ltK2 
BIII=O• 
CONTINUE 
BIK31=1• 
DO 9 I=ltMR3 
Clll=O. 
IF CI.EQ.MR1) Clll=1• 
CONTINUE 

SUBROUTINE SIMPLE IS NOW GOING TO BE CALLEDeANY ALTER~ATIVE 
CHOICE TO THIS SUBROUTINE IS ALLOWABLE FUR THI:. USI:.k AS LUNb AS IT 
PERFORMS THE FOLLOWING OPERATION. 
SUBROUTINE SIMPLE SOLVES A LlNI:.AR P~O~KAM~INb PKUbLtM UF 
MINIM! ZING C*X SUt:iJt.CT TO A*X=I:hWHI:.RE X,(. ttl ARt:. VECTORS OF Lb'luTH 
MR3,MR3tK3 RESPECTIVELYtAND A IS A MATRIX Or SIZE IK3tMR3l 
SUBROUTINE SIMPLE IS A MOUIFlED VERSION OF A PR00RAM AVAILAbLE 
WITH SHARE DISTRIBUTING AGENCYtREFlRE~CE NUMBER SDA 3384 AND 
WRITTEN BY R.J.CLASEN !REFERENCE NUMBER (5Ji 
A COPY OF THE LISTING IS AVAlLA~Lt A&· lNDlCATEU IN REFERENCE 
NUMBER (6le 
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C NA AND IFLAG ARE TO BE SPECIFIED ~EFORE CALLING SIMPLE C ~~ 
C JFLAG IS SET EQUAL TO ZERO C 56 
C NA IS THE FIRST DIMENSION OF ARRAY A AND IS SET EQUAL TO K3 C ~1 
C X IS A VECTOR OF DIMENSION MR3 C 58 
C THE FOLLOWING SUBSCRIPTED VARIABLES AHE PART OF THE AkGUMENT LIST C 59 
C OF SIMPLE ANU A~E TEMPUHAHY STUKAbt S~Al~S TU U~ ~~M~NSIUNtU lN L bO 
C THE CALLING PROGRAM (MlNlMAXJ l 61 
C PSt~HtXXtYY AND PE ARE TEMPORARY STORAGE VECTORS OF UlMtNSIUN NA l 6£ 
C E IS A TEMPORARY STORAGE MATRIX OF DIMENSION CNAiNAl C 63 
C KO IS A VECTOR OF LENGTH 6.UPON COMPLETION OF THE EXECUTION Of C 64 
C SIMPLE, KOIIJ=O IF THE LINEAR PROGRAMMING PROBLEM WAS FEASIHLE. C 65 
C THE SOLUTION LIES IN Xf~),~=1tMR3 C 66 
c c 67 
c ( 66 

IFLAG=O C 69 
NA=K3 C 70 
CALL SIMPLE CIFLAG,K3tMR3tAtbtC,KU,X,PSt~H,XX,YYtPt,E,NAJ C 7! 
DO 10 J=1tMR C 72 
X1(J)=X(J) C 73 

10 CONTINUE C 74 
DO 1 2 I = 1 t K C 7 5 
R1(IJ=O. C 76 
DO 11 J=1tMR C 77 
Rll I )=RU IJ+A( ltJl*XlCJ) C 78 

11 CONTINUE C 79 
12 CONTINUE C 80 

Xl5UM=O. C 81 
DO 13 J= 1 tMR C 82 
X1SUM=XlSUM+Xl(J) ( 63 

13 CONTINUE C 84 
RETURN C 85 
END C 86 

( c 87 
c c 88 
c c 89-
c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• D 1 

SUBROUTINE MET2 JKtKltMHtNHtYMAXtbRAOtDELTAtiPHlNTtlSPtUNITtX~,X~S U 2 
lUMtR2tD•H,Q,IROWtiCOLtLLtMMthRMAXI 0 j 

DIMENSION YMAXCllt GRAUINNMAXtlJ, X2Cllt R211J U 4 
LOGICAL IPRINTtiSP D ~ 

INTEGER UNIT D 6 
DIMENSION DCNRMAXt1), HCKltll, Q(lJ, IROWC1l, ICOL!ll, LL(l), MM!l D 7 

1) D 8 
MR1 =MR+l D 9 
DO 2 I = 1 , MR D 1 0 
DO 1 J = 1 , K u l ! 
D(ltJl=GRADCit~l D 12 

1 CONTINUE I) 13 
2 CONTINUE I) 14 
( D 15 
c o r6 
C SUBROUTINE ARRAY CONVERTS DATA FROM SINGLE TO UOUtiLE DIMENSION OR P 17 
C VICE VERSAeiT ENAtiLES VARIAbLE UIMENSJUNlNG 0~ UATA MATRICES 1N U lb 
C THE CALLING PRObRAMeRlFl~ENCl NUMb~R .(21• D l~ 
C I) iO 
c u 21 

CALL ARRAY 12tMRtKtNRMAXtKtDtDJ D 22 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c· 

( 

c 
c 
c 

3 
4 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 
c 
c 

6 

7 

HERE D IS CONVERTED FROM AN ARRAY OF SIZE lNRMAXtKl TO AN ARRAY OF 
SIZE C MR tK l 

SUBROUTINE MFGR DETERMI~ES RANK ANU LIN~ARLY INU~PENU~NT ROWS ANU 
COLUMNS OF A GIVEN MATRIX D UF SIZ~ CMk,KJ.REF~R~NCE (4le 
DELTA IS A TEST VALUE FOR ZERO AFFECTED BY ROUNDOFF NOISE 
IRANK IS THE RESULTANT RANK OF D 
IROW IS AN lNT~GER VECTOK OF LtNulrl MR CUNTAlNINu TH~ SU~SCRlPTS 
OF BASIC ROWS IN IROWill, ••• ,IROWCIRANKl 
ICOL IS AN INTEGER VECTOR OF LENuTH K CONTAINING THE SU~SCkiPTS OF 
BASIC COLUMNS IN lCOLCll UPTU lCULClRA~Kl 

CALL MFGR CDtMRtKtDELTA,lRANKtlROW,ICOLl 

CALL ARRAY CltMRtKtNRMAXtKtDtDl 
HERE D IS RECONVERTED FROM AN ARRAY OF SIZE CNRtKl TO AN ARRAY UF 
SIZE' CNRMAXtKl 

IF CIRANKeNE.MRl GO TO 6 
DO 4 I=ltMR 
DO 3 J=ltMR 
D ( J • I l =GRAD I I ROW ( I I , I COL ( J l l 
CONTINUE 
CONTINUE 

CALL ARRAY 12tMHtMRtNRMAXtKtUtUI 
HERE D IS CONVERTED FROM AN ARRAY OF SlZ~ CNRMAX,Kl TO AN ARRAY UF 
SIZE I MR 'K I 

SUBROUTINE MINV INVERTS SQUARE MATRIX D OF SIZE CMR,MRj AND STORES 
THE RESULT IN De DET IS THE DETERMINANT OF THE ORIGINAL MATRIX DP 
WHILE LL AND MM ARE WOR~ VECTORS OF SIZE MR. REFERENCL NUMtiER C3l 

CALL MINV CDtMR,DET,LLtMMl 

CALL ARRAY lltMRtMRtNRMAXtKtDtDl 
HERE D IS RECONVERTED FROM AN ARRAY OF SIZE CNRtKl TO AN ARRAY UF 
SIZF (1\lRMAXtK) 

ISP=.T. 
IF CABS(DETl.LEaleOE-10) GO TO 5 
RETURN 
CONTINUE" 
IF ClPRINTl WRITE (UNIT,l6) MR 
RETURN 
CONTINUE 
IRANKl=IRANK+l 
IF (IRANKl.GE.MR> GO TO 7 
ISP=eT. 
RETURN 
CONTINUE 
DO 9 l=l•IRANKl 
DO 8 J=l•IRANK 
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l) 23 
D 24 
L> 25 
D 26 
i..J L7 
I; Ltl 

D 29 
D 30 
I) . .:H 
1,) 32 
IJ 33 
IJ :;4 
D 35 
u 36 
D 37 
D 38 
l> 39 
D 40 
D 41 
[) 42 
u 43 
() 44 
u 45 
D 46 
D 47 
D 41j 
D 49 
!.J !::10 
Ll . !:> l 
D 52 
D 53 
D 54 
[) 55 
D !:>6 
I.J !:>7 
D 58 
u 59 
[) 60 
D 61 
D 62 
D 63 
D 64 
D 65 
D 66 
D 67 
1.) 6t:l 
D 69 
D 70 
D 71 
D 12 
D 73 
D 74 
D 75 
D 76 
D 77 
D 78 
D 79 



JJ=ICOL(Jl 
HJJtll=GRADIItJJl 

8 CONTINUE 
9 CONTINUE 

DO 10 J=l,IRANKl 
H(lRANKl,Jl=le 

10 CONTINlJF 
DO 11 J=ltlRANK 
Q(J)=O. 

11 CONTINUE 

c 
c 

QCIRANKll=l. 

C SUBROUTINE SOLVE SOLVES A SET OF LINEAR SIMULTANEOUS EUUATlONSe 
C H IS A MATRIX OF ROW SIZE IRANKl IN AN ARRAY ROW DIMENSION Kl• 
C A SQUARE SUBMATRIX OF H OF SIZE CIRANKltiRANKll IS PART OF THe 
C THE MATRIX EWUATiuN ON THE LEFTHANU SlUE tWHlL~ ~ IS INITIALLY THE 
C VECTOR ON THE RIGHTHAN~ SlOE.u IS fiNALLY THE SOLUTION VECTOR• 
C IDET IS UEFINED ~y 2**1U .LT. ABS(UETJ oLTe 2**(lU+lJ~WHERE UET IS 
C THE DETERMINANT OF THE SUBMATRIX. 
C REFERENCE NUMBER (71 
C A LISTING OF THIS SUBROUTINE IS ATTACHED TO THE PACKAGE 
c 
c 

CALL SOLVE IHt0tiDETtiRANK1tKll 
DO 12 J=l•IRANKl 
X2(J)=Q(Jl 

12 CONTINUE 
DO 14 J=ltK 
JJ=ICOL(J) 
QIJl=O. 
DO 13 I=1,MR 
QIJ):Q(Jl+X21Il*GRADIItJJJ 
R21JJJ=Q(Jl 

13 CONTINUE 
14 CONTINUE 

X2SUM=O. 
DO 15 I=1tMR 
X2.SUM=X?SUM+X21Il 

15 CONTINUE 
RETURN 

( 

16 FORMAT !10Xtl2998X9*USER !S ADVl~EU TO*/llOXe*lNCREASE VALUE Of uE 

c 
( 

c 

lLTA*//l 
END 

( •••••4Peeeetaae••••••••••••••••o••••••••••eeo~aiiOo•ooceoCJttfleeemi'JoG0CPse 

FUNCTION ANORM1 lKtblJ 
C THE EUCLIDEAN NORM OF VECTOR Bl IS CALCULATED HERE 

DIMENSIOi\1 tH(ll 
ANORM1=0,. 
DO 1 I= 1 , K 
ANORMl=ANORMl+R1(1 l*Bl!Il 
CONTINUF 
ANORMl=~QRT(ANORMl) 
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D 80 
[) 81 
[) 52 
LJ 83 
[) 8£} 

[) 85 
D 66 
LJ 87 
[) 88 
L> I:S9 
[) 90 
!.) 91 
D 92 
Ll <::13 
lJ 94 
D 95 
Ll 'ib 

u 'i7 
[) 91:1 
D 99 
D 100 
D 101 
D 102 
D 103 
D 104 
LJ 105 
D 106 
I) 107 
D 108 
D 109 
D 110 
D lll 
D 112 
D 113 
D 114 
D 115 
D 116 
D 117 
D 118 
D 119 
D 120 
D 121 
u l2L 
[) 123 
D 124 
D 12;:, 
D 126 
D 127= 
E 1 
t, 2 
E 3 
L:. 4 
E 5 
E 6 
E 7 
£ 8 
E 9 



c 
( 

c 
c 

c 

1 
2 

c 
c 
c 
c 

1 

2 

3 

4 

5 
6 
7 

RETURN 
END 

.•...•..........................................••...••..••..•.... 
FUNCTION ANORM2 IKtB11 
MAXCABSCb1(llltABSCB1<21l, ••• ,ABSCbl(~lll lS CALCULAT~D HERE 
DIMENSION 61(11 
ANORM2=ABSCBl(lll 
IF CKeLT.zl GO TO 2 
DO 1 1=2tK 
ABSBl=AASHH (I) I 
IF CABSBleGT.ANORM2l ANORM2=ABSB1 
CONTINUE 
RETURN 
END 

..................................•..•......•..•.••...•......•.••. 
SUBROUTINE SOLVE IAtXtlDtNtNAl 
DIMENSION AINAtllt X(ll 
D=O. 
DATA DIV/.693147181/ 
DO 6 1=1tN 
AA=O• 
DO 1 .J=ltN 
AB=ABSCAC.Jtlll 
IF CAB.LE.AAI GO TO 1 
K=.J 
AA=AB 
CONTINUE 
D=D+ALOGCAAl 
IF CI.EQ.Nl GO TO 7 
IF (K.EQ.Il GO TO 3 
DO 2 .J=ltN 
AB=A (I tJ l 
At I t.Jl=ACKt.JI 
ACKtJI=AI::l 
CONTINUE 
AB=XIIl 
XII)=XIKI 
X(Kl=AB 
11=1+1 
DO 5 J=l1tN 
AA=-A (.J, I l /A I I, I J 
ACJtii=O. 
DO 4 K=l1tN 
AC.JtKI=ACJ,KI+AA*AIItKl 
CONTINUE 
XIJI=XIJI+AA*XCII 
CONTINUE 
CONTINUE 
ID=D/DIV 
XINl=XCNl/AINtNI 
DO 9 I I =2 'N 
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E 10 
E 11 
E 12 
E 13 
E. 14-
F J. 
F 2 
F 3 
F 4 
F 5 
F 6 
F 7 
F B 
F 9 
F 10 
F 11 
F 12 
F 13 
F 14 
F 15-
G 1 
6 2 
G 3 
G 4 
G 5 
G 6 
G 7 
G 8 
G 9 
G 10 
G ll 
G 12 
G !3 
G 14 
G 15 
G lo 
G 17 
G 18 
G 19 
G 20 
G 21 
G 22 
G 23 
G 24 
G 25 
G 26 
G 27 
G 28 
G 29 
G 30 
G 31 
G 32 
G 33 
G 34 
(3 3::> 
G 3& 
G 37 



8 

9 

c 
c 
c 
c 
c 
c 
( 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
( 

( 

c 
c 
c 
c 
c 

I=N+l-II 
Il=I+l 
AA=Oe 
DO 8 J=IltN 
AA=AA+AlltJl*X(J) 
CONTINUE 
X (I I= (X ( I l -AA I I A I I 1d l 
CONTINUE 
RETURN 
END 
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G 38 
G 39 
G 40 
G 41 
(;! 42 
G 43 
G 44 
(;! 45 
G 46 
G · 47 
G ·48 
G 49 
G 50= 
h .!.. 
h L 
H 3 
H 4 
H :; 
H 6 
H 1 
H tl 
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H 11 
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H 14 
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