MINIMAX SYSTEM MODELLING AND DESIGN

MINIMAX SYSTEM MODELLING AND DESIGN

by

Thandangorai V. Srinivasan, B. Tech. (Hons.), M.E.

A Thesis
Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Doctor of Philosophy

McMaster University
July 1973

AUTHOR	Thandangorai V. Srinivasan B. Tech. (Hons.) (Indian Institute of Technology, Kharagpur) M.E. (Birla Institute of Technology and Science, Pilani)
SUPERVISOR	J.W. Bandler B.Sc. (Eng.), Ph.D. (University of London) D.I.C. (Imperial College)
NUMBER OF PAGES:	x , 175
SCOPE AND CONTENT	NTS :

Computer-aided system modelling and design for minimax objectives have been considered in detail. A new algorithm for minimax approximation, called the grazor search method, has been proposed and successfully used on a number of network design problems to test the reliability and efficiency of the method. A critical comparison of the method with existing algorithms has shown the grazor search algorithm to be reliable in most of the problems considered. Practical ideas have been presented to deal with constrained minimax optimization problems and to investigate a solution for minimax optimality. Two user-oriented computer programs incorporating these ideas have been included as part of the thesis. Lower-order modelling of a high-order system has been considered for minimax objectives, and the suggested ideas make it feasible to design automated models for a variety of transient and steady-state constraint specifications.

ACKNOWLEDGEMENTS

The author is greatly indebted to Dr. J.W. Bandler for his expert guidance and supervision throughout the course of this work. The constant encouragement and inspiration the author derived from him are thankfully acknowledged.

The author wishes to acknowledge, in particular, Dr. N.K. Sinha for his advice and interest during the research effort. Special thanks are due to Dr. C.M. Crowe for his constructive criticisms and useful suggestions for the thesis.

Thanks are due to Dr. C. Charalambous for helping with the proof of convergence of the grazor search algorithm and many discussions the author had with him on a number of occasions. The author is very thankful to Dr. G. T. Bereznai for timely advice and helpful suggestions on various aspects of the research work.

The author wishes to acknowledge with thanks the useful discussions he had with his colleagues, in particular, B.L. Bardakjian, M. Beshai, J. Chen, V.K. Jha, A.G. Lee-Chan, P.C. Liu, N.D. Markettos, J.R. Popovic, J. Roitman and S.K. Tam.

The financial assistance provided by the National Research Council of Canada through grants A7239 and C154, and the Department of Electrical Engineering is gratefully acknowledged.

The competence and reliability of Mrs. Hazel Coxall, who typed this thesis, has been very much appreciated.

TABLE OF CONTENTS

Page
CHAPTER I - INTRODUCTION 1
CHAPTER II - REVIEW OF MINIMAX METHODS 4
2.1 - Introduction 4
2.2 - Function Minimization 4
2.3 - Least pth Approximation for Single Specified Function 5
2.3.1 - The Error Function 5
2.3.2 - Continuous Approximation 5
2.3.3 - Discrete Approximation 6
2.4 - The Minimax Problem 7
2.5 - Minimax Methods 7
2.5.1 - The Razor Search Method 8
2.5.2 - Sequential Unconstrained Minimization Technique 9
2.5.3 - Algorithm due to Osborne and Watson 11
2.5.4 - Method due to Bandler and Lee-Chan 13
2.6 Near-Minimax Methods 14
CHAPTER III - NEW APPROACHES TO THE MINIMAX PROBLEM 17
3.1 - Introduction 17
3.2 - The Grazor Search Strategy 19
3.2 .1 - Theoretical Considerations 19
3.2.2 - Proof of Convergence 21
3.2.3 - Practical Implementation 22
3.2.4 - Example 28
3.3 - Constrained Minimax Optimization 34
3.3.1 - Statement of the Problem 34
3.32 - Formulation 1 35
3.3.3 - Formulation 2 36
3.3.4 - Comments 37
3.4 - Practical Investigation of Minimax Optimality Conditions 38
3.4 .1 - Introduction 38
3.4.2 - Conditions for a Minimax Optimum 38
3.4.3 - Practical Implementation 39
3.4.4 - Method 1 40
3.4 .5 - Method 2 41
3.4 .6 - Comments 41
3.4.7 - Example 42
3.5 - Conclusions 45
CHAPTER IV - COMPUTER-AIDED CIRCUIT DESIGN 46
4.1 - Introduction 46
4.2 - Lumped LC Transformer 46
4.3 - Quarter-Wave Transmission-Line Transformer 48
4.4 - Cascaded Transmission-Line Filters 63
4.4.1 - Problem 1 63
4.4.2 - Problem 2 66
4.4.3 - Problem 3 73
4.5 - Conclusions 76
CHAPTER V - SYSTEM MODELLING 77
5.1 - Introduction 77
5.2 - Statement of the Problem 78
5.3 - Minimax System Modelling 78
5.4-Example 80
5.4.1 - Second-and Third-Order Models 81
5.4.2 - Optimality of Model Parameters 94
5.4.3 - Discussion 101
5.5 - New Approaches to Minimax System Modelling 102
5.5.1 - A Generalized Objective Function 103
5.5.2 - Automated Lower-Order Models 104
5.5.3 - Optimality Conditions 106
5.5.4 - Results 106
5.5.5 - Discussion 108
E. 6 - Conclusions 117
CHAPTER VI - DISCUSSION AND CONCLUSIONS 118
APPENDIX A - GRAZOR SEARCH PROGRAM FOR MINIMAX OPTIMIZATION 120
A. 1 Introduction 120
A. 2 Nomenclarure 120
A. 3 Program Description 122
A. 4 Subprograms 126
A. 5 Comments 126
A. 6 Discussion 127
A. 7 Grazor Search Fortran Program Listing 128
APPENDIX B - PROGRAM FOR INVESTIGATING MINIMAX OPTIMALITY CONDITIONS 145
B. 1 Introduction 145
B. 2 Program Description 145
B. 3 Required Subprograms 148
B. 4 Comments 148
B. 5 Fortran Listing for MINIMAX Program 150
REFERENCES 164
AUTHOR INDEX 173

LIST OF FIGURES

Figure Page
Fig. 3.1 Block diagram summarizing the computer 23 program structure and illustrating the relative hierarchy of the subprograms.

Fig. 3.2

Fig. 3.3

Fig. 3.4

Fig. 3.5

Fig. 3.6

Fig. 4.1

Fig. 4.2

Fig. 4.3

$$
\begin{aligned}
& \text { Mathematical flow diagram of subroutine } \\
& \text { GRAZOR }\left(\alpha_{0}, \alpha, \beta, \varepsilon, \varepsilon^{\prime}, \eta, \phi_{\sim}^{\bullet}, \psi_{i}, k, k_{r}, n, n_{r}, U_{\phi O}, T E R M\right) .
\end{aligned}
$$

Mathematical flow diagram of subroutine 25$\operatorname{SELEC}\left(\phi^{0}, \psi_{i}, \hat{\psi}_{m}, k, n, n_{r}, \hat{\gamma}_{m}\right)$.
Mathematical flow diagram of subroutine 26 GOLDEN ($\gamma^{*}, n, \phi, \phi_{\sim}^{0}, \Delta \phi^{0}, \psi_{i}, k, n, U_{\phi}, U_{\phi O}$).Example illustrating how the grazor search31strategy follows the narrow path of discontinuousderivatives.
2-section 10Ω to 1Ω quarter-wave transmission- 33line transformer.
3-section LC transformer problem. Optimum match- 47ing over a frequency range of 0.5-1.179 radians/sec occurs at the following parameter values:$\mathrm{L}_{1}=1.04088, \mathrm{C}_{2}=0.979035, \mathrm{~L}_{3}=2.34044, \mathrm{C}_{4}=0.780157$,$L_{5}=2.93714, C_{6}=0.346960$ and $\underset{i}{\mathrm{U}}=\underset{i}{\max }\left|\rho\left(\underset{\sim}{\phi}, \psi_{i}\right)\right|$$=0.075820$.
3-section LC transformer problem. Solid points 49distinguish the grazor search algorithm from thealgorithm based on the Osborne and Watson method.Starting point: $L_{1}=L_{3}=L_{5}=C_{2}=C_{4}=C_{6}=1$.
The m-section resistively terminated cascade of 51transmission lines. Optimum matching over 100 per-cent band centred at 1 GHz for $\mathrm{R}=10$ occurs for thefollowing parameter values.
2-section: $\ell_{1}=\ell_{2}=\ell_{q}, Z_{1}=2.23605, Z_{2}=4.4721$3-section: $\ell_{1}=\ell_{2}=\ell_{3}{ }^{7, \ell_{q}}, Z_{1}=1.63471, Z_{2}=3.16228$,$Z_{3}=6.11729$$\ell_{q}=7.49481 \mathrm{~cm}$ is the quarter-wavelength at centrefrequency.

Fig. $4.4(\mathrm{a}) \quad$ The 2-section transformer problem. Solid points distinguish the grazor search algorithm from the algorithm based on the Osborne and Watson method. ℓ_{1}, ℓ_{2} fixed at $\ell_{q_{2}}$ and impedances varied. Starting point $Z_{1}=1.0, \mathrm{q}_{2}=3.0$.

Fig. 4.4(b) The 2-section transformer problem. Solid points distinguish the grazor search algorithm from the algorithm based on the Osborne and Watson method. $\mathrm{Z}_{1}, \mathrm{Z}_{2}$ fixed at optimum values and lengths varied. Starting point $\ell_{1} / \ell_{\mathrm{q}}=0.8, \ell_{2} / \ell_{\mathrm{q}}=1.2$.
Fig. 4.4(c) The 2-section transformer problem. Solid points distinguish the grazor search algorithm from the algorithm based on the Osborne and Watson method. ℓ_{2}, Z_{2} fixed at optimum values and ℓ_{1}, Z_{1} varied. Starting point $\ell_{1} / \ell_{\mathrm{q}}=1.2, \mathrm{z}_{1}=3.5$.
Fig. 4.4(d) The 2-section transformer problem. Solid points distinguish the grazor search algorithm from the algorithm based on the Osborne and Watson method. All 4 parameters varied. Starting point $\ell_{1} / \ell_{q}=$ $1.2, \ell_{2} / \ell_{\mathrm{q}}=0.8, \mathrm{Z}_{1}=3.5, \mathrm{Z}_{2}=3.0$.

Fig. 4.5(a) The 3-section transformer problem. Solid points distinguish the grazor search algorithm from the algorithm based on the Osborne and Watson method. $\ell_{1}, \ell_{2}, \ell_{3}$ fixed at ℓ_{q} and impedances varied. starting point $Z_{1}=1.0, Z_{2}=3.16228, Z_{3}=10.0$.

Fig. 4.5(b) The 3-section transformer problem. Solid points distinguish the grazor search algorithm from the algorithm based on the Osborne and Watson method. All 6 parameters varied. Starting point $\ell_{1} / \ell_{\mathrm{q}}=0.8$, $\ell_{2} / \ell_{q}=1.2, \ell_{3} / \ell_{q}=0.8, Z_{1}=1.5, Z_{2}=3.0, Z_{3}=6.0 .9$
Fig. 4.5(c) The 3-section transformer problem. Solid points distinguish the grazor search algorithm from the algorithm based on the Osborne and Watson method. A11 6 parameters varied. Starting point $\ell_{1} / \ell_{q}=$ $\ell_{2} / \ell_{\mathrm{q}}=\ell_{3} / \ell_{\mathrm{q}}=1.0, \mathrm{Z}_{1}=1.0, \mathrm{z}_{2}=3.16228, \mathrm{Z}_{3}=10.0$.
Fig. 4.6
Problem 1. Cascaded transmission-line filter operating between $\left.R_{g}(\omega)=R_{L}(\omega)=377 / \sqrt{1-\left(f_{c} / f\right.}\right)$, where $f_{c}=2.077 \mathrm{GHz}$ and $\ell=1.5 \mathrm{~cm}$.

Figure		Page
Fig. 4.7	Responses of the network of Fig. 4.6. The response of Carlin and Gupta (1969) is the initial one. The least 10 th response was obtained by Bandler and Seviora (1970). The: minimax response was produced by the grazor search method.	65
Fig. 4.8	Response of the minimax design of the network of Fig. 4.6 with 0.4 dB passband insertion loss produced by the grazor search method.	68
Fig. 4.9	Optimal response for Problem 2 with lengths fixed a ℓ and impedances varied. Optimal parameters $\operatorname{are}^{q}: Z_{1}=2.528=Z_{5}, Z_{2}=0.254=Z_{4}, Z_{3}=4.842$.	70
Fig. 4.10	Responses for Problem 2 when impedances are fixed and lengths are allowed to vary. The parameter values at start and finish are shown in Table 4.5. The initial response corresponds to best results obtained by Brancher, Maffioli and Premoli (1970) and the optimized response corresponds to the optimal solution obtained by the grazor search method.	71
Fig. $5.1(\mathrm{a})$	Seventh-order system modelling example. 2parameter optimum response.	83
Fig. 5.1 (b)	Seventh-order system modelling example. 2parameter optimum error curve.	84
Fig. $5.2(\mathrm{a})$	Seventh-order system modelling example. 3parameter optimum response	87
Fig. $5.2(\mathrm{~b})$	Seventh-order system modelling example. 3parameter optimum error curve.	88
Fig. 5.3 (a)	Seventh-order system modelling example. 5parameter six-ripple optimum response.	91
Fig. $5.3(\mathrm{~b})$	Severth-order system modelling example. 5paraneter six-ripple optimum error curve.	92
Fig. $5.4(\mathrm{a})$	Seventh-order system modelling example. 5parameter five-ripple solution response.	95
Fig. 5.4(b)	Seven":-order system modelling example. 5parameter five-ripple solution error curve.	96

Figure		Page
Fig. $5.5(\mathrm{a})$	Seventh-order system modelling example. Optimal responses for a second-order model with no zeros.	110
Fig. 5.5 (b)	Seventh-order system modelling example. Optimal error curves for a second-order model with no zeros.	111
Fig. $5.6(\mathrm{a})$	Seventh-order system modelling example. Optimal responses for a second-order model with one zero.	112
Fig. 5.6(b)	Seventh-order system modelling example. Optimal error curves for a second-order model with one zero.	113
Fig. 5.7(a)	Seventh-order system modelling example. Optimal responses for a third-order model with two zeros.	114
Fig. 5.7(b)	Seventh-order system modelling example. Optimal error responses for a third-order model with two zeros.	115
Fig. A. 1	Typical main program and analysis program for the grazor search package.	124
Fig. A. 2	(a) Typical printout if IDATA is .TRUE. (b) Typical printout if IPRINT is .TRUE.	125
Fig. B.l	Typical printout of results for the problem given in the text.	149

CHAPTER I

INTRODUCTION

Computer-aided design is now increasingly being accepted as a valuable tool whenever classical design techniques fail to achieve acceptable and realistic design criteria. This is especially true in electrical network analysis and synthesis where classical circuit theory restricts the network configuration and the degrees of freedom that may be demanded by the designer. Computer-aided network design has thus become a state-of-art which tries to accomodate the design specifications and constraints in a meaningful way so that design objectives, which would have been considered difficult by classical designers have now not only become feasible but are regularly being implemented on the digital computer. Many optimization algorithms have now been tested on a number of circuit design problems with the aim of improving circuit performance and convergence towards an optimal solution. The algorithms differ both in the way they generate downhill directions (directions of decreasing objective function value) and the computational effort involved.

It is thus apparent that there are two steps which are relevant to the circuit designer - the first one being that the design specifications, constraints involving the model parameters, and the objective function, have to be explicitly specified in advance, and the other being that a reliable and efficient algorithm has to be chosen for the optimization of the design variables. The emphasis of this work has been to bring both the system modelling and optimization techniques into the
foreground so that the advantages and pitfalls encountered in the area of computer-aided design can be well appreciated.

This thesis concentrates mainly on minimax objectives, and Chapter II gives a brief review of existing minimax optimization methods, such as those by Osborne and Watson (1969), Bandler and Macdonald (1969b), and Bandler and Charalambous (1972d).

A new algorithm called the grazor search method has been developed which is guaranteed to converge under certain conditions. See Bandler and Srinivasan (1971) and Bandler, Srinivasan and Charalambous (1972). The problem of function minimization subject to constraints can now be formulated as a minimax problem (Bandler and Charalambous 1972a). This approach can be extended to tackle minimax optimization problems subject to constraints (Bandler and Srinivasan 1973a). Once a minimax solution has been achieved by the systems designer, it may be required to investigate the solution for optimality, and suitable methods are available for this investigation (Bandler and Srinivasan 1973c). Chapter III considers the above mentioned approaches to the minimax problem.

Chapter IV deals with the area of computer-aided electrical circuit design for minimax objectives. The problems considered include the design of lumped LC transformers and cascaded transmission-1ine networks acting as transformers or filters. A critical comparison has been made between the grazor search method and other optimization schemes for reliability and efficiency in convergence towards the optima.

System modelling is an area which demands attention primarily because of the complexity and computational effort involved when
considering the original system, and the introduction of judiciously chosen models can not only reduce the complexity but also improve the computation time. It is now possible to model a high-order system and control this system on-1ine or off-1ine by dealing with the lower-order models directly. Chapter V deals with lower-order modelling of highorder systems for a variety of objectives and design considerations. Minimax objectives subject to arbitrary transient and steady-state constraints have been considered, and a method suggested by means of which the whole modelling procedure can be automated. See Bandler, Markettos and Srinivasan (1972, 1973), and Bandler and Srinivasan (1973b, 1973e).

Discussions and conclusions on the proposed methods are included in Chapter VI, while the Appendices A and B provide two computer program descriptions for minimax objectives (Bandler and Srinivasan 1972, 1973d)。

The adjoint network method of evaluating the first-order derivatives was used for network design problems (Director and Rohrer 1969, Bandler and Seviora 1970). The CDC 6400 computer was used for the numerical experiments.

The purpose of this work can be described as an attempt to fill some of the gaps existing in the areas of approximation,optimization and system modelling.

CHAPTER II

REVIEW OF MINIMAX METHODS

2.1 Introduction

Minimax optimization methods are assuming significance in the computer-aided system design area and much effort has gone into the development of suitable algorithms for minimax objectives. The methods have been used to optimize electrical networks where the objective is to minimize the maximum deviation of a network response from an ideal response specification. This chapter gives a brief review of minimax optimization techniques.

2.2 Function Minimization

The problem of unconstrained function minimization consists of minimizing with respect to ϕ a real function

$$
\begin{equation*}
f \triangleq \underset{\sim}{f}(\phi) \tag{2.1}
\end{equation*}
$$

where

$$
\phi \underset{\sim}{\phi} \triangleq\left[\begin{array}{llll}
\phi_{1} & \phi_{2} & \cdots & \phi_{k} \tag{2.2}
\end{array}\right]^{\mathrm{T}}
$$

is a column vector consisting of k independent parameter elements, T denotes the matrix transpose and f is the objective function.

The constrained version of the above problem, also known as the nonlinear programming problem, consists of minimizing $f(\phi)$ subject to

$$
\begin{equation*}
\mathrm{g}_{\mathrm{i}}(\phi) \geq 0 \quad \mathrm{i}=1,2, \ldots, \mathrm{~m} \tag{2.3}
\end{equation*}
$$

where the g_{i} are, in general, nonlinear functions of the parameters.

2.3 Least pth Approximation for Single Specified Function

2.3.1 The Error Function

Define

$$
\begin{equation*}
\underset{\sim}{e}(\phi, \psi) \triangleq \underset{\sim}{\Delta} w(\psi)(F(\phi, \psi)-S(\psi)) \tag{2.4}
\end{equation*}
$$

where
$S(\psi)$ is a specified function (real or complex)
$F(\phi, \psi)$ is an approximating function (real or complex) ~
$w(\psi)$ is a positive weighting function
$e(\phi, \psi)$ is the weighted error or deviation between $S(\psi)$ and $F(\hat{\phi}, \psi)$
ψ is an independent variable (e.g., frequency or time)

2.3.2 Continuous Approximation

Define the norm

$$
\begin{equation*}
||e||_{\mathrm{g}} \triangleq\left(\int_{\psi_{\ell}}^{\psi_{u}}|e(\phi, \psi)|^{p} \mathrm{~d} \psi\right)^{1 / p} \quad 1 \leq p<\infty \tag{2.5}
\end{equation*}
$$

where ψ_{ℓ} and ψ_{u} are lower and upper bounds, respectively, on the inter val of approximation. Minimization of $\|e\|_{p}$ is called least pth approximation. For $p=2$, we have the well-known least squares approximation.

Assume, for example, that $|e(\phi, \psi)|$ is continuous on a finite closed interval $\left[\psi_{\ell}, \psi_{u}\right]$. The Chebyshev or uniform norm is given by

$$
\begin{equation*}
\|e\|_{\infty} \triangleq \max _{\left[\psi_{\ell}, \psi_{u}\right]}\left|e\left(\phi_{\sim}, \psi\right)\right| \tag{2.6}
\end{equation*}
$$

The process of minimization of $\|e\|_{\infty}$ is called minimax or Chebyshev approximation.

It may be noted that

$$
\begin{equation*}
\left||e|_{\infty}=\lim _{p \rightarrow \infty}\left(\left.\frac{1}{\psi_{u}-\psi_{\ell}} \int_{\psi_{\ell}}^{\psi_{u}} \underset{\sim}{\mid e(\phi, \psi)}\right|^{p} d \psi\right)^{1 / p}\right. \tag{2.7}
\end{equation*}
$$

The larger the value of p, the more emphasis will be given to the maximum absolute error, and the optimal least pth solution should be closer to the optimal minimax solution.

2.3.3 Discrete Approximation

In practice the various functions contained in (2.4) are usually evaluated at discrete values ψ_{i}. It is thus appropriate to consider discrete approximation.

Define the norm

$$
\begin{equation*}
\left\|\left\|_{\sim}\right\| \underset{i \varepsilon I}{ }\left|e_{i}(\phi)\right|_{\sim}^{p}\right)^{1 / p} \quad 1 \leq p<\infty \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.\underset{\sim}{e}(\phi) \triangleq \underset{\sim}{[} \underset{\sim}{\left[e_{1}(\phi)\right.} e_{2}(\phi) \ldots e_{n}(\phi)\right]^{T} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{I} \triangleq\{1,2, \ldots, \mathrm{n}\} \tag{2.10}
\end{equation*}
$$

The process of minimization of $\|e\|_{p}$ is called discrete least pth approximation. The discrete minimax norm may be defined as

$$
\begin{equation*}
\left|\left|\underset{\sim}{e} \|_{\infty} \triangleq \max _{i \varepsilon I}\right| e_{i}(\phi)\right| \tag{2.11}
\end{equation*}
$$

and minimization of $||e||_{\infty}$ is called discrete minimax approximation. As mentioned earlier,

$$
\begin{equation*}
\underset{\sim}{\| e}\left\|_{\infty}=\lim _{p \rightarrow \infty}| | e\right\|_{\sim} \tag{2.12}
\end{equation*}
$$

and the same comments hold as in the continuous case.
For a sufficiently large number of uniformly sampled values of ψ and with suitable weighting factors, the discrete approximation approaches the continuous approximation.

2.4 The Minimax Problem

Unless otherwise mentioned, the unconstrained discrete nonlinear minimax problem that is considered throughout this work consists of minimizing

$$
\begin{equation*}
\underset{\sim}{U(\phi)} \triangleq \max _{i \varepsilon I} y_{i}(\phi) \tag{2.13}
\end{equation*}
$$

where I, as defined in (2.10), is an index set relating to discrete elements corresponding to the i, and the y_{i} are, in general, nonlinear differentiable functions. It is desired to find a point $\underset{\sim}{\gamma}$ such that

$$
\begin{equation*}
\check{U} \triangleq U(\stackrel{Y}{\phi})=\min _{\sim}^{\phi} \max _{\sim} y_{i} y_{i}(\phi) \tag{2.14}
\end{equation*}
$$

where $\underset{\sim}{\check{\phi}}$ is a local or global minimax optimum.

2.5 Minimax Methods

Many methods use the direct minimax formulation of (2.13) which,
in general, gives rise to discontinuous partial derivatives of the objective function with respect to the variable parameters. Otherwise efficient optimization methods may slow down or even fail to reach an optimum in such circumstances, paxticulaxly when the response hypersurface has a narrow curved valley along which the pach of discontinuous derivatives lies.

In direct search strategies, che minimax problem has been explored using pattern search and razor search (Bandler and Macdonald 1969a, 1969b). Of che gradient strategies, chere are methods involving the penalty function approach (Fiacco and McCormick 1964a, 1964b), Iinear programing (Osborne and Watson 1969, Ishizaki and Watanabe 1968), quadratic programing (Heller 1969), and a method proposed by Bandler and Lee-Chan (1971).

Whenever efficient methods of finding dexivatives are not available, direct search methods are useful. For electrical networks, in particular, it is now possible to evaluate the derivatives of network responses with respect to network parameters rather easily using the adjoint network approach (Director and Rohrer 1969, Bandler and Seviora 1970), and the gradient methods are thus more suited for such cases. The quadratic programing methods are usually more time-consuming than solution of linear programming problems, while penalty function methods rely on suitable function minimization algorithms.

2.5.1 The Razor Search Method

The razor search method of Bandier and Macdonald (1969b, 1971)
essentially begins with a modified version of the pattern search (Hooke and Jeeves 1961) until this fails. A random point is selected automatically in the neighbourhood and a second pattern search is initiated until this one fails. Using the two points where pattern search failed, a new pattern in the direction of the optimum is established and a pattern search strategy resumed until it too fails. This process is repeated until any of several possible terminating criteria is satisfied. Thus, the strategy tries to negotiate certain kinds of "razor sharp!' valleys in multidimensional space. The method has been compared with other direct search methods on some test problems, and has been found to be reliable and computationally efficient in most of the cases.

2.5.2 Sequential Unconstrained Minimization Technique

The nonlinear minimax optimization problem of section 2.4 may be transformed into a nonlinear programming problem (Waren, Lasdon and Suchman 1967) of Section 2.2 as follows

$$
\begin{array}{ll}
\text { Minimize }^{2} & \phi_{k+1} \\
\text { subject to } \\
\phi_{k+1}-\mathrm{y}_{\mathrm{i}}(\phi) \geq 0 & i \in I \tag{2.16}
\end{array}
$$

The nonlinear programming problem may, in turn, be solved by well-established methods such as the Sequential Unconstrained Minimization Technique (SUMT) due to Fiacco and McCormick (1964a, 1964b),
which is a development of the Created Response Surface Technique (CRST) suggested by Carroll (1961). The problem of (2.15) and (2.16) may be reformulated as follows. Minimize

$$
\begin{equation*}
P\left(\phi_{\sim}, \phi_{k+1}, r\right)=\phi_{k+1}+r{ }_{i} \sum_{\varepsilon I} \frac{w_{i}}{\phi_{k+1}-y_{i}(\phi)} \tag{2.17}
\end{equation*}
$$

where

$$
\begin{align*}
& \phi_{\mathrm{k}+1} \text { is an independent variable, and } \\
& \mathrm{r}, \mathrm{w}_{\mathrm{i}}>0 \text { i }>\mathrm{I} \tag{2.18}
\end{align*}
$$

$\mathrm{P}\left(\phi_{\sim}, \phi_{k+1}, r\right)$ is an unconstrained objective where points close to the constraint boundaries are penalized.

Define the interior of the region of feasible points as

$$
\begin{equation*}
\left.\mathrm{R}^{0} \triangleq \underset{\sim}{\{\phi}, \phi_{\mathrm{k}+1} \mid \phi_{\mathrm{k}+1}-\mathrm{y}_{\mathrm{i}}(\phi)>0, \quad i \varepsilon \mathrm{I}\right\} \tag{2.19}
\end{equation*}
$$

where the region of feasible points is

$$
\begin{equation*}
\left.R \triangleq \underset{\sim}{\{ }, \phi_{k+1} \mid \phi_{k+1}-y_{i}(\phi) \geq 0, \quad i \varepsilon I\right\} \tag{2.20}
\end{equation*}
$$

Starting with a point $\underset{\sim}{\phi}, \phi_{k+1}$ and a value of r, initially r_{1}, such that $\underset{\sim}{\phi}, \phi_{k+1} \varepsilon R^{0}$ and $r_{1}>0$ the unconstrained function $P\left(\phi, \phi_{k+1}, r_{1}\right)$ is minimized with respect to ϕ_{\sim} and ϕ_{k+1}. The form of (2.17) leads one to expect that a minimum will lie in R^{0}, since as any one of the $\phi_{k+1}-y_{i}(\phi)$ approaches $0, P$ approaches ∞. The location of the minimum will depend on the value of r_{1} and is denoted by $\check{\phi}_{\sim}\left(r_{1}\right), \check{\phi}_{k+1}\left(r_{1}\right)$.

This procedure is repeated for a decreasing sequence of r values such that

$$
\begin{align*}
& \mathbf{r}_{1}>r_{2}>\ldots>r_{j}>0 \tag{2.21}\\
& \lim _{j \rightarrow \infty} r_{j}=0 \tag{2.22}
\end{align*}
$$

each minimization being started at the previous minimum. For example, the minimization of $P\left(\phi_{\sim}, \phi_{k+1}, r_{2}\right)$ would be starced $2 r \check{\phi}_{\sim}^{\left(r_{1}\right)}$ and $\varphi_{k+1}\left(x_{1}\right)$. Every time r is reduced, the effect of the penalty is reduced, so that one would expect in the limit as $j \rightarrow \infty$ and $r_{j} \rightarrow 0$ that $\underset{\sim}{\varphi}\left(x_{j}\right) \rightarrow \phi$ and, consequently, that $\phi_{k+1}\left(x_{j}\right) \rightarrow \underset{\sim}{U}(\underset{\sim}{\nu})$, the minimax optimum.

Conditions which guarantee convergence have been proved by Fiacco and McCormick. It is important that the initial value of r chosen is realistic, and r should be reduced systematically after each iterative cycle of minimization of P.

2.5.3 Algorithm due to Osborne and Watson

This minimax algorithm (Osborne and Watson 1969. Watson 1970) deals with minimax formulations by following two steps - 2 linear programing part that provides a given step in the parameter space. followed by a linear search along the direction of the step. This algorithm is very similar to the one proposed by Ishizaki and Watanabe (1968) and works very well for many minimax problems. In cases where the linear approximation is not very good in the vicinity of the optimum. the method may fail to converge coward the optimum for successive iteracions.

Consider the problem of minimizing $\|e(\phi)\|_{\sim}$ in (2.11), where e consists of real elements. Lineaxizing $e_{i}(\phi)$ at some point ϕ_{\sim}^{j} the problem may be stated as

Minimize $\quad \phi_{k+1}$
subject to

$$
\begin{aligned}
& \phi_{k+1}-e_{i}\left(\phi^{j}\right)-\nabla^{\mathrm{T}} \mathrm{e}_{\mathrm{i}}\left(\phi^{\mathrm{j}}\right) \Delta \phi^{\mathrm{j}} \geq 0 \\
& \sim \\
& \phi_{\mathrm{k}+1}+\mathrm{e}{ }_{i}\left(\phi_{\sim}^{\mathrm{j}}\right)+\nabla^{\mathrm{T}} \mathrm{e}_{\mathrm{i}}\left(\phi_{\sim}^{\mathrm{j}}\right) \Delta \phi^{\mathrm{j}} \geq 0
\end{aligned}
$$

where

$$
\begin{align*}
& \nabla=\left[\begin{array}{llll}
\frac{\partial}{\partial \phi_{1}} & \frac{\partial}{\partial \phi_{2}} & \cdots & \frac{\partial}{\partial \phi_{k}}
\end{array}\right]^{\mathrm{T}} \tag{2.24}\\
& \mathrm{n}>\mathrm{k} \tag{2.25}
\end{align*}
$$

∇ is the first partial derivative operator with respect to the \sim parameter vector ϕ,
Δ denotes incremental changes, and
n is the number of elements of I.
Noting that the variables for linear programming should all be nonnegative, and imposing a rather practical constraint that the elements of ϕ should not change sign we have the linear programming problem in

$$
\underset{\sim}{x} \triangleq\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{k+1} \tag{2.26}
\end{array}\right]^{T}
$$

as follows.
Step 1

$$
\begin{equation*}
\operatorname{Minimize} x_{k+1} \tag{2.27}
\end{equation*}
$$

subject to (2.25) and

$$
\pm\left(e_{i}\left(\phi_{\sim}^{j}\right)+\nabla_{\sim}^{T} e_{i}{ }_{\sim}^{\left(\phi^{j}\right)}\left[\begin{array}{c}
\phi_{1}{ }^{j} \mathbf{x}_{1}-\phi_{1}^{j} \tag{2.28}\\
\phi_{2}^{j} \mathbf{x}_{2}-\phi_{2}^{j} \\
\vdots \\
\phi_{k}^{j} \dot{x}_{k}-\phi_{k}^{j}
\end{array}\right]\right) \quad \leq x_{k+1} \quad i \varepsilon I
$$

$$
\begin{equation*}
\underset{\sim}{x} \geq 0 \tag{2.29}
\end{equation*}
$$

where

$$
\begin{align*}
& x_{\ell} \triangleq \frac{\Delta \phi_{\ell}^{j}}{\phi_{\ell}^{j}}+1 \quad \ell=1,2, \ldots, k \tag{2.30}\\
& x_{k+1} \triangleq \phi_{k+1}
\end{align*}
$$

The solution produces a direction given by $\Delta \phi^{j}$.
Step 2
Next we find $\gamma^{j *}$ such that

$$
\begin{equation*}
\max _{i \in I}\left|\mathbf{e}_{i}\left(\phi_{\sim}^{j}+\underset{\sim}{\gamma^{j}} \underset{\Delta \phi^{j}}{ }\right)\right| \tag{2.31}
\end{equation*}
$$

is a minimum with respect to γ^{j}. Set

$$
\begin{equation*}
\phi_{\sim}^{j+1}=\phi_{\sim}^{j}+\gamma^{j *} \underset{\sim}{\Delta \phi^{j}} \tag{2.32}
\end{equation*}
$$

and return to Step 1.
The convergence of the method holds under certain conditions (Osborne and Watson 1969). This approach is directly applicable to linear functions such as polynomials, for which $k+1$ equal extrema results at the optimum.

2.5.4 Method due to Bandler and Lee-Chan

The nonlinear minimax objective given by (2.13) is minimized here by exploiting the gradient information of the local discrete maxima of the functions $y_{i}(\phi)$ to get a downhill direction by solving a set of simultaneous equations. The method works very well, except that in the case of linear dependence of the equations, some problems may arise in the convergence toward the optimum. See Bandler and Lee-Chan (1971).

2.6 Near-Minimax Methods

As is well-known to network designers, least pth approximation for sufficiently large values of p can result in an optimal solution very close to the optimal minimax solution (Temes and Zai 1969. Temes 1969, Bandler 1969a, Seviora, Sablatash and Bandler 1970). When appropriace error functions are raised to a power p given by

$$
\begin{equation*}
\underset{\sim}{f(\phi)}=\underset{i \in I}{\Sigma}\left|e_{i}(\phi)\right|^{p} \tag{2.33}
\end{equation*}
$$

and $f(\phi)$ is minimized, ill-conditioning may result for nominal values of p (usually greater than or equal to about 10). The objective function of the form (2.33) has been used by a number of authors (Temes and Zai 1969, Temes 1969, Bandler 1969a, Bandler and Seviora 1970). Bandler and Charalambous (1972c, 1972d) have given a unified approach to the least pth approximation problems, as encountered in network and system design, having upper and lower response specifications e.g., as in filter design. The ill-conditioning is removed by proper scaling, and least pth optimization has been carried out for extremely large values of po typically 10^{3} to 10^{6}. This approach has been used extensively in a variety of computer-aided network design problems (Bandler and Bardakjian 1973, Bandler and Charalambous 1972d, Bandler, Charalambous and Tan 1972, Bandler and Jha 1972, Popovic 1972. Charalambous 1973).

The least pth approximation problem can effectively be tackled by efficient gradient minimization techniques such as the Fletcher Powell method (1963), Jacobson - Oksman algorithm (1972), and a more
recent method due to Fletcher (1970). These methods have been compared critically for near-minimax approximation problems in the area of lower-order modelling of high-order systems (Bandler, Markettos and Srinivasan 1972 , 1973).

The discrete nonlinear minimax approximation problem of Section 2.4 can be formulated as a least pth approximation problem (Bandier 1972). Suppose at least one of the functions $y_{i}(\phi)$ is positive. Then, since $U(\phi)>0$,

$$
\begin{equation*}
\underset{\sim}{U(\phi)}=\lim _{p \rightarrow \infty}^{U(\phi)} \underset{\sim}{U}\left(\sum_{i \in I}\left(\frac{w_{i} y_{i}(\phi)}{\underset{\sim}{U})}\right)^{p}\right)^{1 / p} \tag{2.34}
\end{equation*}
$$

where

$$
w_{i}= \begin{cases}0 & \text { for } y_{i}<0 \tag{2.35}\\ 1 & \text { for } y_{i} \geq 0\end{cases}
$$

Suppose all the functions y_{i} are negative. Then, since $U(\phi)<0$,

$$
\begin{equation*}
\underset{\sim}{U(\phi)}=\lim _{p \rightarrow-\infty} \underset{\sim}{U(\phi)}\left(\underset{i \varepsilon I}{\Sigma}\left(\frac{w_{i} y_{i}(\phi)}{U(\phi)}\right)_{\sim}^{p}\right)^{1 / p} \tag{2.36}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{i}=1 \text { for all } y_{i}<0 \tag{2.37}
\end{equation*}
$$

Therefore, the minimization function is chosen as

$$
\begin{equation*}
\underset{\sim}{f(\phi)}=\underset{\sim}{U(\phi)}\left(\sum_{i \varepsilon I}\left(\frac{w_{i} y_{i}(\phi)}{U(\phi)}\right)_{\sim}^{q}\right)^{1 / q} \tag{2.38}
\end{equation*}
$$

where
$q \triangleq \frac{U(\phi)}{|U(\phi)|} p \quad\left\{\begin{array}{l}1<p<\infty \text { for } U>0 \\ 1 \leq p<\infty \text { for } U<0\end{array}\right.$
A number of interesting features of $f(\phi)$ can be stated. For $\mathrm{l}<|\mathrm{q}|<\infty, q$ having the appropriate $s i g n$, and for appropriate values of w_{i}, in accordance with (2.35) for $U(\phi)>0$ and (2.37) for $U(\phi)<0$, we have a continuous function $f(\phi)$ with continuous derivatives with respect to $\underset{\sim}{\phi}$ so long as $\underset{\sim}{\mathrm{U}} \underset{\sim}{\phi}) \neq 0$. When $\underset{\sim}{\mathrm{U}}(\phi)>0, \underset{\sim}{\mathrm{f}} \underset{\sim}{\mathrm{f}}$ is like penalty term including violated constraints, in this case only positive y_{i}, which it is desired to make feasible (or acceptable). If $\min _{\phi} \underset{\sim}{f}(\phi)>0$, the constraints remain violated. In least pth approximation this indicates that the specifications have not been satisfied. When $U(\phi)<0$ the specifications are satisfied and $f(\phi)$ is like a penalty term designed to move a solution as far from the boundary of the feasible region as possible.

CHAPTER III

NEW APPROACHES TO THE MINIMAX PROBLEM

3.1 Introduction

In this chapter a new gradient algorithm for minimax objectives called the grazor search (or gradient razor search) method is introduced (Bandler and Srinivasan 1971, Bandler, Srinivasan and Charalambous 1972). As the name suggests, the method attempts to follow the path of discontinuous derivatives when encountering razor-sharp valleys in multidimensional parameter space. The method is especially suitable for nonlinear minimax optimization of network and system responses. This algorithm uses the gradient information of one or more of the highest ripples in the error function to produce a downhill direction by solving a suitable linear programming problem. A linear search follows to find the minimum in that direction, and the procedure is repeated. This type of descent process is repeated with as many ripples as necessary until a minimax solution is reached to some desired accuracy. Unlike the razor search method due to Bandler and Macdonald (1969b), the present method overcomes the problem of discontinuous derivatives characteristic of minimax objectives without using random moves. It can fully exploit the advantages of the adjoint network method of evaluating partial derivatives of the response function with respect to the variable parameters (Director and Rohrer 1969, Bandler and Seviora 1970).

The problem of constrained minimax optimization is considered
next. This problem has been reformulated as an unconstrained minimax problem by two methods, one extending a recently proposed method due to Bandler and Charalambous (1972a, 1973b) and the other using weighting functions. The reformulated problem can then be tackled by efficient unconstrained minimax algorithms. The method has a number of applications, including high-order system modelling and control system designs, where constraints have to be imposed on the pole-zero locations of the models chosen. Appropriate constraints can also be imposed on the upper and lower bounds of the parameter values. See Bandler and Srinivasan (1973a, 1973e).

Investigation of optimality conditions of a proposed or a design solution is of great practical importance to the system designer wishing to approximate a desired response by a system response. Conditions for optimality in the minimax sense in conventional synthesis problems involving polynomials and rational functions are fairly widely appreciated. However, with the ever-increasing need for network designs containing elements not conducive to the rational function approach, e.g., a mixture of lumped and distributed elements, and the application of automatic optimization methods involving least pth and minimax objectives, some means of testing for convergence to an optimum for more arbitrary problems is highly desirable. Depending on the optimization method employed, a satisfactory minimax solution may be obtained for a problem after a number of iterations of the algorithm on the computer. It may then be required to investigate the solution for minimax optimality (Bandler 1971) so as to verify whether the solution is optimal or not. Though the necessary optimality conditions may seem to be straightforward
to verify, they are both tedious and difficult to implement in practice. A practical way of implementing them is considered in detail. See Bandler and Srinivasan (1973c, 1973d).

3.2 The Grazor Search Strategy

3.2.1 Theoretical Considerations

The grazor search algorithm is a generalization of the method due to Bandler and Lee-Chan (1971), and is basically of the steepest descent type. The nonlinear minimax optimization problem is the one already stated in Section 2.4.

Define a subset JCI such that

$$
\begin{align*}
& J\left(\phi_{\sim}^{j}, \varepsilon^{j}\right) \triangleq\left\{i \mid U\left(\phi_{\sim}^{j}\right)-y_{i}\left(\phi_{\sim}^{j}\right) \leq \varepsilon^{j}, \quad i \varepsilon I\right\} \tag{3.1}\\
& \varepsilon^{j} \geq 0 \tag{3.2}
\end{align*}
$$

where
ϕ^{j} denotes a feasible point at the beginning of the j th
\sim iteration, and
ε^{j} is the tolerance with respect to the current $\max _{i \varepsilon I} y_{i}\left(\phi_{\sim}^{j}\right)$ within which the y_{i} for iعJ lie.

Linearizing y_{i} at ϕ_{\sim}^{j}, we can consider the first-order changes

$$
\begin{equation*}
\delta y_{i}\left(\phi_{\sim}^{j}\right)=\nabla_{\sim}^{\mathrm{T}} \mathrm{y}_{\mathbf{i}}\left(\phi_{\sim}^{\mathrm{j}}\right) \Delta \phi_{\sim}^{\mathrm{j}} \quad \quad i \varepsilon J\left(\phi_{\sim}^{\mathrm{j}}, \varepsilon^{\mathbf{j}}\right) \tag{3.3}
\end{equation*}
$$

A sufficient condition for $\underset{\sim}{\Delta \phi^{j}}$ to define a descent direction
for $U\left(\phi_{\sim}^{j}\right)$ is

$$
\begin{equation*}
\nabla_{\sim}^{\mathrm{T}} \mathrm{y}_{\mathrm{i}}(\underbrace{\mathrm{j}}_{\sim}) \Delta \phi_{\sim}^{\mathrm{j}}<0 \quad i \varepsilon J\left(\phi_{\sim}^{j}, \varepsilon^{j}\right) \tag{3.4}
\end{equation*}
$$

Consider

$$
\begin{align*}
& \underset{\sim}{\Delta \phi^{j}}=-\sum_{i \varepsilon J}^{\Sigma} \alpha_{i}^{j} \underset{\sim}{\nabla} y_{i}\left(\phi_{\sim}^{j}\right) \tag{3.5}\\
& \sum_{i \varepsilon J}^{\sum} \alpha_{i}^{j}=1 \tag{3.6}\\
& \alpha_{i}^{j} \geq 0 \tag{3.7}
\end{align*}
$$

(3.4) may now be written as

$$
\begin{equation*}
-\nabla_{\sim}^{T} y_{i}\left(\phi_{\sim}^{j}\right) \underset{i \varepsilon J}{\sum_{i}} \alpha_{i}^{j} \nabla \underset{\sim}{j} y_{i}\left(\phi_{\sim}^{j}\right)<0 \quad i \varepsilon J\left(\phi_{\sim}^{j}, \varepsilon^{j}\right) \tag{3,8}
\end{equation*}
$$

which suggests the linear program:

> Maximize

$$
\begin{equation*}
\alpha_{k_{r}+1}^{\mathbf{j}}\left(\phi_{\sim}^{\mathbf{j}}, \varepsilon^{\mathbf{j}}\right) \geq 0 . \tag{3.9}
\end{equation*}
$$

subject to
plus (3.6) and (3.7), where k_{r} denotes the number of elements of $J\left(\phi_{\sim}^{j}, \varepsilon^{j}\right)$. Note that if

$$
\underset{\sim}{\Delta \phi^{j}}={\underset{\sim}{n}}^{0} \quad \text { for } \varepsilon^{j}=0
$$

the necessary conditions for a minimax optimum are satisfied at ϕ_{\sim}^{j}
(Bandler 1971). Observe that J is non-empty and that if J has only one element, we obtain the steepest descent direction for the corresponding maximum of the $y_{i}(\phi)$ 。

3.2.2 Proof of Convergence

Before proving the convergence of the algorithm it may be worth restating the following lemma due to Farkas (Lasdon 1970).

Let $\left\{p_{0},{\underset{\sim}{1}}_{1}, \ldots,{\underset{\sim}{n}}\right\}$ be an arbitrary set of vectors. There exist

$$
\begin{equation*}
\beta_{i} \geq 0 \tag{3.11}
\end{equation*}
$$

such that

$$
\begin{equation*}
{\underset{\sim}{p}}_{0}={ }_{i=1}^{n} \beta_{i} p_{i} \tag{3.12}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
{\underset{\sim}{p}}_{0}^{T} \underset{\sim}{\mathrm{q}} \geq 0 \tag{3.13}
\end{equation*}
$$

for all $\underset{\sim}{q}$ satisfying

$$
\begin{equation*}
{\underset{\sim}{p}}_{\mathrm{i}}^{\mathrm{T}} \underset{\sim}{ } \geq 0 \tag{3.14}
\end{equation*}
$$

$$
i=1,2, \ldots, n
$$

It is, therefore, possible to find nonnegative values of $\alpha_{i}{ }^{j}$ in the expression for (3.5) if and only if

$$
\begin{equation*}
\left(-\Delta \phi_{\sim}^{\mathrm{j}}\right)^{\mathrm{T}}\left(-\Delta \phi_{\sim}^{\mathrm{j}}\right) \geq 0 \tag{3.15}
\end{equation*}
$$

for all $\underset{\sim}{\Delta \phi^{j}}$ satisfying

$$
\begin{equation*}
\nabla_{\sim}^{T} y_{i}\left(\phi_{\sim}^{j}\right)\left(-\Delta \phi_{\sim}^{j}\right) \geq 0 \quad i \varepsilon J\left(\phi_{\sim}^{j}, \varepsilon^{j}\right) \tag{3.16}
\end{equation*}
$$

where (3.13) and (3.14) correspond to (3.15) and (3.16), respectively,

Now (3.15) is always satisfied, though it may not be possible to satisfy (3.16) if ε^{j} is too large. By suitably decreasing ε^{j}, (3.16) may be forced to hold.

3.2.3 Practical Implementation

Fig. 3.1 illustrates how the different subroutines are called and their relative hierarchy. Flow charts of subroutines GRAZOR, SELEC and GOLDEN appear in Figs. 3.2-3.4. See Appendix A for further details and definitions. The objective function $U\left(\phi_{\sim}^{j}\right)$ is calculated by subroutine LOCATE.

As given by linear programming (see, for example, Subroutine SIMPLE), $\underset{\sim}{\Delta \phi^{j}}$ is normalised to

$$
\begin{equation*}
\underset{\sim}{\Delta \phi_{n}^{j}}=\frac{\Delta \phi^{j}}{\left\|\Delta \phi_{\sim}^{j}\right\|} \tag{3.17}
\end{equation*}
$$

by subroutine NORM. Starting at ϕ_{n}^{j}, a step $\alpha^{j}{\underset{\sim}{n}}_{n}^{j}$ is taken for $\alpha^{j}=\alpha_{0}^{j}$; if no improvement in U results, α^{\sim} j is reduced ${ }^{\sim}$ by factors of β until a better point is obtained or $\alpha^{j}<\stackrel{\vee}{\alpha}$. Let $\alpha^{j}{ }^{*}$ produce the first improved point from $\underset{\sim}{\phi}{ }^{j}$. Then

$$
\begin{equation*}
\underset{\sim}{\Delta \phi^{0}}=\alpha^{j *} \underset{\sim}{\Delta \phi_{n}} \tag{3.18}
\end{equation*}
$$

Fig. 3.1 Block diagram summarizing the computer program structure and illustrating the relative hierarchy of the subprograms.

Fig. 3.2 Mathematical flow diagram of subroutine $\operatorname{GRAZOR}\left(\alpha_{0}, X, \beta, \varepsilon, \varepsilon^{\prime}, \eta, \phi_{\sim}^{0}, \psi_{i}, k, k_{r}, n, n_{r}, U_{\phi 0^{\prime}}\right.$, TERM $)$

Fig. 3.3 Mathemarical flow diagram of subrourine $\operatorname{secec}\left(\dot{\sim}_{\sim}^{0}, \psi_{\mathbf{i}}, \hat{\psi}_{m}, k, n, n_{r}, \hat{y}_{m}\right)$

Fig. 3.4 Mathematical flow diagram of subroutine $\operatorname{GOLDEN}\left(\gamma^{*}, n, \phi,{\underset{\sim}{~}}^{0}, \Delta \phi_{\sim}^{0}, \psi_{i}, k, n, U_{\phi}, U_{\phi O}\right)$
is defined.
Next a method based on golden section search (Temes 1969) is used to find $\gamma^{j}{ }^{\text {* }}$ corresponding to the constrained minimum value of $\left.\max _{i \varepsilon I} y_{i}{\underset{\sim}{\phi}}^{j}+\gamma_{\sim}^{j} \Delta \phi^{j}\right)$. The j th iteration ends by setting

$$
\begin{equation*}
\underset{\sim}{\phi^{j+1}}=\underset{\sim}{\phi^{j}}+\gamma^{j}{ }_{\Delta \phi^{*}}^{0} \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{o}^{j+1}=\alpha^{j *} \gamma^{j *} \tag{3.20}
\end{equation*}
$$

In Fig. 3.4,

$$
\begin{equation*}
\tau=\frac{1}{2}(1+\sqrt{5}) \tag{3.21}
\end{equation*}
$$

is the factor associated with the golden section. Subscripts ℓ and u denote lower and upper limits, respectively, and a and b denote interior points of the interval of search. An attempt to bound the minimum is made. Then golden section search is used to locate the minimum to a desired accuracy. The search is terminated when the resolution between two interior points falls below a factor η of the initial interval.

In Fig. 3.3 the maxima implied by the functions y_{i}, sampled in a certain order, are located and sorted out in decreasing magnitude (by, say, Subroutine TGSORT).

Fig. 3.2 shows the grazor search strategy. Note that in setting up

$$
\begin{equation*}
\underset{\sim}{\mathrm{Ax}}=\underset{\sim}{\mathrm{b}} \tag{3.22}
\end{equation*}
$$

slack variables ($\mathrm{x}_{\mathrm{k}_{\mathrm{r}}+2}, \mathrm{x}_{\mathrm{k}_{\mathrm{r}}+3}, \ldots, \mathrm{x}_{2 \mathrm{k}_{\mathrm{r}}+1}$) are introduced. We try to generate a descent direction based on the gradient of the maximum
function $\left(k_{r}=1\right)$, proceed to the minimum of U in that direction, and repeat the process. If, at any stage, this process or the linear program does not yield a direction of decreasing U, or does not provide an improvement greater than ε, the procedure is repeated after including the function corresponding to the next largest of the current n_{r} discrete local maxima (i.e., ripples) if one exists. When all local maxima have been included and U can still not be reduced or improved satisfactorily by a value greater than ε, we repeat the procedure with k_{r} functions corresponding to the first k_{r} largest of the candidates, beginning with $k_{r}=1$, in another series of attempts to reduce U. The algorithm terminates only when there are no more suitable functions left and when there are either no improvements or improvements less than ε^{\prime} over one complete cycle of k_{r}, starting from 1 and ending with n_{r}.

3.2.4 Example

The design of a two-section 10Ω to 1Ω quarter-wave transmissionline transformer network over a 100 percent bandwidth centred at 1 GHz is considered (Matthaei, Young and Jones 1964) as an example for testing the grazor search strategy. This problem has already received attention from the optimization point of view (Bandler and Macdonald 1969a, 1969b). The lengths ℓ_{1}, ℓ_{2} are fixed at ℓ_{q}, the quarter-wavelength at centre frequency, and the impedances Z_{1}, Z_{2} are varied.

Table 3.1, in association with Fig. 3.5, illustrates how the grazor search strategy effectively follows the path of discontinuous derivatives to locate the optimum in the course of minimax optimization

TABLE 3.1
SUMMARY OF IMPORTANT STEPS IN THE EXAMPLE ILLLSTRATING THE GRAZOR SEARCH STRATEGY

$$
\underset{\sim}{\dot{\phi}}=(2.23605,4.47210), U^{\prime}(\underset{\sim}{\check{\nu}})=0.42857
$$

Iteration Number	Points of Iteration	Starting Point of Iteration	Values Point	Scale Factors Scale Factor	$k^{\text {r }}$
1	1-5	$\dot{\phi}^{1}=(1.0,3.0)$			1
		$U^{\prime}\left(\phi_{\sim}^{1}\right)=0.70954$	$中^{2}$	$\alpha^{*}=1.00$	
			ϕ^{4}	$\gamma=1+\tau$	
			$\phi_{\sim}^{5}=\phi^{2}$	$\gamma^{*}=1.000$	
2	5-12	$\phi^{5}=(1.99996,3.0089$			
		$U^{\prime}\left(\phi_{\sim}^{5}\right)=0.63086$	ϕ^{6}	$\alpha=1.00$	
			$中^{7}$	$\alpha^{*}=0.10$	1
			ϕ^{12}	$\gamma^{*}=2+\pi$	

SUMMARY OF IMPORTANT．STEPS IN THE EXAMPLE ILLUSTRATING THE GRAZOR SEARCH STRATEGY

		$\underset{\sim}{\check{\phi}}=(2.23605,4.47210), U^{\prime}(\underset{\sim}{\underset{\phi}{\check{V}}})=0.42857$			
Iteration Number	Points of Iteration	Starting Point of Iteration	Value Point	Scale Factors Scale Factor	${ }^{k}$
7	64－72	$\begin{aligned} & \dot{\sim}^{64}=(2.05489,4.18669) \\ & U^{\prime}\left(\phi_{\sim}^{64}\right)=0.44084 \end{aligned}$	$中^{64}$	$\gamma^{*}=\tau+2$	2
8	72－78	$\begin{aligned} & \dot{q}^{72}=(2.09028,4.17411) \\ & U^{\prime}\left(中^{72}\right)=0.43199 \end{aligned}$	$中^{78}$	$\gamma^{*}=1.000$	2
9	78－96	$\begin{aligned} & \dot{\sim}^{78}=(2.09380,4.17280) \\ & U^{\prime}\left(中^{78}\right)=0.43146 \end{aligned}$	$\dot{\sim}^{96}$	$\gamma^{*}=60.69$	2
10	96－103	$\begin{aligned} & \phi^{96}=(2.18832,4.38018) \\ & U^{\prime}\left(中^{96}\right)=0.42929 \end{aligned}$	$\begin{aligned} & \phi^{98} \\ & \phi^{103} \end{aligned}$	$\begin{aligned} & \alpha^{*}=2.279 \times 10^{-3} \\ & \gamma^{*}=1.000 \end{aligned}$	2
11	103－117	$\begin{aligned} & \dot{\sim}^{103}=(2.19040,4.37924) \\ & U^{\prime}\left(\phi^{103}\right)=0.42886 \end{aligned}$	$\phi^{117} .$	$\gamma^{*}=30.03$	2
12	117－126	$\begin{aligned} & \dot{\sim}^{117}=(2.22029,4.44082) \\ & U^{\prime}\left(\phi^{117}\right)=0.42864 \end{aligned}$	ϕ^{126}	$\gamma^{*}=10.47$	\％
13	126－132	$\begin{aligned} & \phi_{\sim}^{126}=(2.23088,4.46221) \\ & U^{\prime}\left(\phi_{\sim}^{126}\right)=0.42862 \end{aligned}$			8
13	133－136	$\begin{aligned} & \phi^{133}=\phi^{126} \\ & U^{\prime}\left(\phi^{133}\right)=U^{\prime}\left(\phi^{126}\right) \end{aligned}$	$\begin{aligned} & \phi^{134} \\ & \phi^{136} \end{aligned}$	$\begin{aligned} & \alpha^{*}=2.279 \times 10^{-3} \\ & \gamma^{*}=\tau+2 \end{aligned}$	2
18	169－176	$\begin{aligned} & {\underset{\sim}{\phi}}^{169}=(2.23595,4.47237) \\ & U^{\prime}\left({\underset{\sim}{~}}^{169}\right)=0.42861 \end{aligned}$	$\begin{aligned} & \phi^{176} \\ = & \phi^{169} \end{aligned}$	$r^{*}=1.000$	3

Fig. 3.5 Example illustrating how the grazor search strategy follows the narrow path of discontinuous derivatives.
of the network（see Fig．3．6）．Let

$$
\begin{equation*}
y_{i}(\phi)=\frac{1}{2}\left|\rho\left({\underset{\sim}{x}}^{\phi}, \psi_{i}\right)\right|^{2} \tag{3.23}
\end{equation*}
$$

and define

$$
\begin{equation*}
U^{\prime}(\phi)=\max _{i}\left|\rho\left(\phi, \psi_{i}\right)\right| \tag{3.24}
\end{equation*}
$$

where $\underset{\sim}{\phi}=\left[\begin{array}{ll}Z_{1} & Z_{2}\end{array}\right]^{T}$ ，and ρ is the reflection coefficient on 11 uniformly spaced frequencies ψ_{i} in the band $0.5-1.5 \mathrm{GHz}$ 。

The grazor search strategy starts at

$$
\begin{aligned}
& \phi_{\sim}^{1}=\left[\begin{array}{ll}
1.0 & 3.0
\end{array}\right]^{\mathrm{T}} \\
& {\underset{\sim}{U}}^{(1)}\left(\phi^{1}\right)=0.70954
\end{aligned}
$$

and the values of the parameters used are $\alpha_{0}=1$（at start）， $\check{\alpha}=10^{-6}, \beta=10, \eta=0.5, \varepsilon=10^{-4}$ and $\varepsilon^{\ell}=10^{-6}$ 。

The first iteration extends from ϕ_{\sim}^{1} to $\phi_{\sim}^{5} ; \dot{\sim}^{2}$ is the new point obtained when taking a unit step along the direction suggested by the negative gradient．Since ϕ_{\sim}^{2} is a satisfactory improvement，a golden section search is initiated，yielding $\phi_{n}^{3}(\gamma=1+\tau)$ which is not an im－ provement over ϕ_{\sim}^{2} ．The interval of search is thus found．${\underset{\sim}{\phi}}^{4}(\gamma=\tau)$ is found to be no improvement over ϕ_{n}^{2} ．The golden section search is now terminated，since the current resolution between two interior points of search falls below the minimum allowed value。 $\phi_{\sim}^{5}=\phi_{\sim}^{2}$ is chus the best point attained at the end of iteration 1 ．At the end of itera－ tion $5, \underset{\sim}{U}\left(\phi^{26}\right)-\underset{\sim}{U}\left(\phi^{35}\right)<\varepsilon$ ，so k_{r} is increased from 1 to 2 in the next

Fig. 3.62 -section 10Ω to 1Ω quarter-wave transmission-1ine transformer.
iteration. For a similar reason, k_{r} is increased from 2 to 3 for iteration 12, and reset to 1 from 3 for iteration 13. During iteration 18, the parameter values remain the same to 5 significant digits, and the improvement in U at the end is less than ε^{\prime}; all successive attempts to achieve a better point with an improvement greater than ε^{\prime} (by considering l, 2 and 3 ripples) fail, and the procedure is terminated.

3.3 Constrained Minimax Optimization

3.3.1 Statement of the Problem

The constrained minimax problem considered may be stated as follows.

Minimize

$$
\begin{equation*}
\underset{\sim}{U(\phi)}=\max _{i \in I} y_{i}(\phi) \tag{3.25}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\mathrm{g}_{\mathrm{j}}(\phi) \geq 0 \quad \mathrm{j} \varepsilon M \tag{3.26}
\end{equation*}
$$

where

$$
\begin{align*}
& I \triangleq\{1,2, \ldots, n\} \tag{3.27}\\
& M \triangleq\{1,2, \ldots, m\} \tag{3.28}
\end{align*}
$$

(see Sections 2.2 and 2.4)
It will be assumed that the functions y_{i} and g_{j} are continuous with continuous partial derivatives, and that the inequality constraints (3.26) are such that a Kuhn-Tucker solution exists (Lasdon 1970, Zangwill 1969) .

Let $\hat{y}_{\ell}(\phi)$ for $\ell \in L$ be the largest local discrete maxima (ripples)
of $\mathrm{y}_{\mathrm{i}}{ }_{\sim}(\phi)$ for $\mathrm{i} \varepsilon \mathrm{I}$, in decreasing magnitude, where

$$
\begin{equation*}
\mathrm{L} \triangleq\left\{1,2, \ldots, \mathrm{n}_{\mathrm{r}}\right\} \tag{3.29}
\end{equation*}
$$

3.3.2 Formulation 1

The constrained minimax problem of (3.25) and (3.26) can be formulated as a non-linear programming problem as follows.

Minimize

$$
\begin{equation*}
\phi_{\mathrm{k}+1} \tag{3.30}
\end{equation*}
$$

subject to (3.26) and

$$
\begin{equation*}
\phi_{k+1}-y_{i}(\phi) \geq 0 \quad i \varepsilon I \tag{3.31}
\end{equation*}
$$

The above problem can then be reformulated as an unconstrained minimax problem as follows.

Minimize with respect to ϕ_{\sim} and ϕ_{k+1}

$$
V \underset{\sim}{\left(\phi_{N}, \phi_{k+I}, \alpha\right)}=\max _{\sim}^{i \varepsilon I} \underset{j \in M}{ }\left[\begin{array}{l}
\phi_{k+1}, \phi_{k+1}{ }^{-\alpha_{1}\left(\phi_{k+1}-y_{i}(\phi)\right),} \tag{3.32}\\
\phi_{k+1}-\alpha_{j+1} g_{j}(\phi)
\end{array}\right]
$$

where

$$
\begin{align*}
& \alpha \triangleq\left[\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{m+1}
\end{array}\right]^{\mathrm{T}} \tag{3.33}\\
& \alpha_{j}>0 \quad j=1,2, \ldots, m+1 \tag{3.34}
\end{align*}
$$

For a large enough value of α one can obtain, in principle, the
exact optimal solution for the original problem by minimizing this reformulated objective function.

When implementing this scheme one can, for the problem defined earlier, slightly modify the formulation in order to save on computational effort, so that the minimization function chosen is

$$
V_{\sim}^{\prime}\left(\phi, \phi_{k+1}, \alpha\right)=\max _{\ell \varepsilon L}^{j \varepsilon M}\left[\begin{array}{l}
\phi_{k+1}, \phi_{k+1}-\alpha_{1}\left(\phi_{k+1}-\hat{y}_{\ell}(\phi)\right), \tag{3.35}\\
\phi_{\mathrm{k}+1}-\alpha_{j+1} \mathrm{~g}_{\mathrm{j}}(\underset{\sim}{(\phi)}
\end{array}\right]
$$

3.3.3 Formulation 2

In this formulation, weighting functions are used to convert the original problem into an unconstrained minimax problem as follows.

Minimize with respect to ϕ

$$
\begin{equation*}
\underset{\sim}{W}(\phi, w)=\max _{\underset{\sim}{i \varepsilon I}}^{j \in M}\left[y_{i}(\phi),-w_{j} g_{j}(\phi)\right] \tag{3.36}
\end{equation*}
$$

where

$$
\begin{align*}
& w_{\sim}^{w} \triangleq\left[\begin{array}{llll}
w_{1} & w_{2} & \cdots & w_{m}
\end{array}\right]^{T} \tag{3.37}\\
& w_{j}>0 \tag{3.38}
\end{align*}
$$

For purposes of practical implementation, as long as $U(\phi)>0$ and one wishes to apply nonzero weights only to violated constraints of (3.26), the minimization function may be chosen as

$$
\begin{equation*}
W_{\sim}^{\prime}\left(\phi, w^{\prime}\right)=\max _{\ell \varepsilon L}\left[\hat{y}_{\ell \in M}^{(\phi)} \underset{\sim}{ },-w_{j}^{\prime} g_{j}(\phi)\right] \tag{3.39}
\end{equation*}
$$

where

$$
\begin{align*}
& w^{\prime} \triangleq\left[w_{1}^{\prime} w_{2}^{\prime} \ldots w_{m}^{\prime}\right]^{T} \tag{3.40}\\
& w_{j}^{\prime}>0 \text { for } g_{j}(\phi)<0 \tag{3.41}\\
& w_{\sim}^{\prime}=0 \text { for } g_{j} \underset{\sim}{(\phi)} \geq 0
\end{align*}
$$

The advantage of this formulation is apparent when $U>0$ implies that certain specifications are violated and $U<0$ implies that they are satisfied. In this case, comparison with violated and satisfied constraints seems appropriate.

3.3.4 Comments

By proper choice of the elements of α, w, or w^{\prime}, the reformulated functions V, V^{\prime}, W or W^{\prime} can be minimized by a suitable minimax or nearminimax algorithm. In case of parameter constraints, upper and lower specifications can be considered as follows.

$$
\begin{align*}
& g_{2 i-1}(\phi)=\phi_{i}-\phi_{i \ell} \geq 0 \\
& g_{2 i}(\phi)=-\left(\phi_{i}-\phi_{i u}\right) \geq 0 \tag{3.42}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{g}_{\mathrm{j}}(\phi) \geq 0 \quad \mathrm{j}=2 \mathrm{k}+1,2 \mathrm{k}+2, \ldots, \mathrm{~m} \tag{3.43}
\end{equation*}
$$

3.4 Practical Investigation of Minimax Optimality Conditions

3.4.1 Introduction

In recent paper (Bandler 1971), the conditions for a minimax optimum were derived for a general nonlinear minimax approximation problem from the Kuhn-Tucker (1950) conditions for a constrained optimum in nonlinear programming. See also Dem'yanov (1970), Medanic (1970). The minimax optimality conditions have also been derived from conditions for optimality in generalized least pth approximation problems for $\mathrm{p} \rightarrow \infty$ by Bandler and Charalambous (1971, 1972b, 1973a).

3.4.2 Conditions for a Minimax Optimum

The minimax problem considered is the unconstrained version of the problem stated in Section 3.3 .1 (i.e., when (3.26) is ignored). The necessary (Theorem 1) and sufficient (Theorem 2) conditions for a minimax optimum are stated as follows.

Theorem 1
At an optimum point ϕ_{\sim}^{0} for the minimax approximation problem there exist

$$
\mathrm{u}_{\ell} \geq 0 \quad \ell=1,2, \ldots, \mathrm{k}_{\mathrm{r}}
$$

such that

$$
\begin{align*}
& \sum_{\ell=1}^{\mathrm{k}_{\mathrm{r}}} \mathrm{u}_{\ell} \underset{\sim}{\nabla} \hat{y}_{\ell}\left(\phi_{\sim}^{0}\right)=0 \tag{3.45}\\
& \mathrm{k}_{r} \\
& \sum_{\ell=1} u_{\ell} \quad=1 \tag{3.46}
\end{align*}
$$

where $\hat{y}_{\ell}\left(\phi_{\sim}^{0}\right)$ for $\ell=1,2, \ldots, k_{r}$ are the equal maxima.

Theorem 2

If the relations in Theorem 1 are satisfied at a point ϕ_{\sim}^{0} and all the functions $y_{i}(\phi)$ for $i \in I$ are convex, then ${\underset{\sim}{~}}^{0}$ is optimal.

Theorems 1 and 2 have been proved by Bandler (1971), and the optimality conditions as derived by Curtis and Powell (1966) follow immediately from these theorems.

3.4.3 Practical Implementation

Once a proposed or a design solution is obtained for a minimax problem, it may be necessary to investigate the necessary optimality conditions. If the point $\underset{\sim}{\phi}$, corresponding to a solution, is to be tested
for optimality, an attempt is made to solve

$$
\begin{align*}
& \sum_{\ell=1}^{k_{r}} u_{\ell} \nabla \hat{y}_{\ell}(\phi)=0 \\
& \sim \tag{3.47}
\end{align*}
$$

plus (3.44) and (3.46) for $k_{r}=1,2, \ldots$ until for a value of $k_{r}^{*}\left(\leq n_{r}\right)$, (3.44), (3.46) and (3.47) are satisfied. If this is not possible, the necessary conditions are not satisfied.

A computer program has been developed which can test a solution for the necessary conditions for a minimax optimum by two formulations. One uses a linear programming approach, and the other the solution of a set of linear independent equations. See Appendix B, Bandler and Srinivasan (1973c, 1973d).

3.4.4 Method 1

(3.44), (3.46) and (3.47) are solved here by minimizing

$$
\begin{equation*}
\mathrm{u}_{\mathrm{k}_{\mathrm{r}}+1} \geq 0 \tag{3.48}
\end{equation*}
$$

such that (3.44), (3.46) are satisfied and

$$
\begin{equation*}
\left|\sum_{\ell=1}^{k_{r}} u_{\ell} \frac{\partial \hat{y}_{\ell}}{\partial \phi_{i}}\right| \leq{ }^{u_{k_{r}+1}} \quad i=1,2, \ldots, k \tag{3.49}
\end{equation*}
$$

Linear programming ensures that

$$
\begin{equation*}
u_{\ell} \geq 0 \quad \ell=1,2, \ldots, k_{r}+1 \tag{3.50}
\end{equation*}
$$

3.4.5 Method 2

Here, we solve a set of linearly independent equations

$$
\begin{equation*}
\sum_{\ell=1}^{k_{\ell} u_{\ell} \frac{\partial \hat{y}_{\ell}}{\partial \phi_{i}}=0 \quad i \varepsilon K^{\prime}, \quad i \quad i n} \tag{3.51}
\end{equation*}
$$

and (3.46), where K 'is a suitable subset of $\{1,2, \ldots, k\}$.
There is no guarantee, however, that (3.44) will hold. When $\mathrm{k}_{\mathrm{r}}-1$ is greater than the number of elements of K^{\prime}, the system of equations (3.46) and (3.51) have more unknowns than equations, and we use Method 1 to get the u_{ℓ}.

3.4.6 Comments

Appendix B contains a program description incorporating the ideas of the previous two sections. The program package can be called from the user's main program and either of the two, or both the methods can be used to test the optimality conditions. The user can either specify the value of k_{r} or a tolerance ξ relative to \hat{y}_{1} within which some of the $\hat{y}_{2}, \ldots, \hat{y}_{n_{r}}$ lie. The necessary conditions for optimality are satisfied when the norm $||r||$ of the residual vector

$$
\begin{equation*}
\underset{\sim}{r} \triangleq \sum_{\ell=1}^{m} u_{\ell}^{r} \nabla \hat{y}_{\ell} \tag{3.52}
\end{equation*}
$$

falls within a user-specified value ε, and (3.44), (3.46) hold, for a value of m_{r} starting with 1 . If the conditions are not satisfied for $m_{r}=1$, m_{r} is incremented by 1 and the procedure is repeated. The investigation ends as soon as the conditions are satisfied for a value of $m_{r} \leq k_{r}$, or
the conditions are not satisfied for $m_{r}=1,2, \ldots, k_{r}$. The userspecified definitions of $\|\cdot\|$ and the value of ε should be realistic so that the program may give meaningful results.

The importance of this investigation cannot be underestimated especially when there may be a number of solutions obtained by the same, or different optimization methods for a given problem and one wishes to test these solutions for optimality so as to be able to detect local optima, and to compare the methods for convergence towards the optima. This program may be used in such a way that it is possible to investigate the solutions after a certain number of iterations of the algorithm, or when a certain convergence criterion is reached, so that one may decide whether to carry on with further optimization, or to terminate altogether.

The program also makes it possible to find the maxima which are active in the vicinity of the optimum, so that the user may gain insight into the various scaling factors associated with the problem.

3.4.7 Example

The problem chosen was the lower-order modelling of a ninthorder nuclear reactor system when the operating reactor power level is in the 90-100 percent range of the full power (Bereznai 1971), A second-order model was chosen and the step-response of the system was approximated by that of the model for a minimax objective over a timeinterval of $0-10$ seconds. A solution was obtained for this problem and the program described in Appendix B was used to test the solution
for optimality.
The relevant input parameters are: $k=2, n_{r}=4, \varepsilon=10^{-6}$, $\xi=0.01$, and the norm chosen is given by :

$$
||r||=\max _{1 \leq i \leq k}\left|r_{i}\right|
$$

$\nabla \hat{y}$ is given by $\sim n$

$$
\begin{aligned}
& \stackrel{\nabla}{\sim} \hat{y}_{1}=\left[\begin{array}{c}
.38711013 \times 10^{-3} \\
-.14208087 \times 10^{-3}
\end{array}\right], \underset{\sim}{\nabla} \hat{y}_{2}=\left[\begin{array}{l}
-.29632883 \times 10^{-1} \\
.10876118 \times 10^{-1}
\end{array}\right] \\
& \sim_{\sim}^{\nabla \hat{y}_{3}}=\left[\begin{array}{l}
.79840875 \times 10^{-3} \\
.68487328 \times 10^{-2}
\end{array}\right], \underset{\sim}{\nabla} \hat{y}_{4}=\left[\begin{array}{l}
.17968278 \times 10^{-2} \\
-.14014776 \times 10^{-3}
\end{array}\right]
\end{aligned}
$$

and $\hat{\sim} \hat{y}$ is given by

$$
\begin{aligned}
& \hat{y}_{1}=.29234162 \times 10^{-2}, \quad \hat{y}_{2}=.29234034 \times 10^{-2} \\
& \hat{y}_{3}=.23141899 \times 10^{-2}, \quad \hat{y}_{4}=.62431057 \times 10^{-3}
\end{aligned}
$$

Corresponding to $\xi=0.01$, the value of k_{r} is equal to 2. Both the methods were used to test the solution for optimality, and the results obtained are shown below.
(i) $m_{r}=1$

Both the methods give the same result as there is only one function under consideration.

$$
\begin{aligned}
& u_{1}=1 \\
& \underset{\sim}{r}=\left[0.38711013 \times 10^{-3}-.14208087 \times 10^{-3}\right]^{\mathrm{T}} \\
& \|\underset{\sim}{\|}\|^{\sim}=0.38711013 \times 10^{-3}
\end{aligned}
$$

(3.44) and (3.46) are satisfied, while $\|r\|$ is not less than ε. Thus the conditions are not satisfied for $m_{r}=1$.
(ii) $m_{r}=2$

Method 1

$$
\begin{aligned}
& \underset{\sim}{u}=\left[\begin{array}{ll}
0.98710491 & 0.12895086 \times 10^{-1}
\end{array}\right] \\
& \underset{\sim}{\mathrm{T}}=\left[-0.25789922 \times 10^{-9} 0.25789922 \times 10^{-9}\right]^{\mathrm{T}} \\
& \left||\underset{\sim}{\mid r}|=0.25789922 \times 10^{-9}\right.
\end{aligned}
$$

Method 2

$$
\begin{aligned}
& \underset{\sim}{u}=\left[\begin{array}{ll}
0.98710492 & \left.0.12895077 \times 10^{-1}\right]^{\mathrm{T}} \\
\underset{\sim}{r}=[0 . & -0.35255563 \times 10^{-9}
\end{array}\right]^{\mathrm{T}} \\
& \mid \underset{\sim}{\mid r} \|^{2}=0.35255563 \times 10^{-9}
\end{aligned}
$$

(3.44) and (3.46) are satisfied and $||r||<\varepsilon$ for both the methods. The necessary optimality conditions are thus satisfied for $m_{r}=2$. It is also observed that due to the type of formulation of the problem in Method 1 , the elements of $\underset{\sim}{r}$ have equal magnitude.

3.5 Conclusions

A new minimax algorithm called grazor search has been proposed. Conditions which guarantee the convergence of the algorithm have also been stated. The spectrum of problems that can be accomodated has been extended to include constrained minimax objectives, and ạy efficient unconstrained minimax method can suitably be used for this purpose. The practical investigation of a solution for necessary optimality conditions has been implemented on the computer, so that it is now possible to check solutions at any stage of the optimization process. The subject matter of this chapter makes it possible to tackle unconstrained and constrained minimax problems by a new gradient algorithm, and to test intermediate or final solutions for optimality, on line.

CHAPTER IV

COMPUTER-AIDED CIRCUIT DESIGN

4.1 Introduction

This chapter primarily concentrates on applying the ideas presented in Chapter III to compurer-aided design of electrical networks. Minimax designs are of special interest to the designer mainly because they attempt to achieve an equiripple behaviour of the response error function, which is useful in many cases. The problems considered include the design of LC transformers and cascaded transmission-line transformers and filters. Appropriate constraints have been incorporated whenever necessary, and the grazor search algorithm has been compared with the Osborne and Watson method and razor search strategy for reliability and efficiency (See Bandler, Srinivasan and Charalambous 1972, Bandler and Srinivasan 1973a)。 Unless otherwise mentioned, the objective function to be minimized is chosen as (2.13).

4.2 Lumped LC Transformer

The problem considered (Hatley 1967) is the design of a 3 -
section lumped-element LC transformer to match a 1Ω load to a 3Ω generator over the angular frequency range of $0.5-1.179$ radians/sec. Fig. 4.1 shows the structure of the network, and the objective is to minimize

$$
\begin{equation*}
U(\phi)=\max _{i}\left|\rho_{i}(\phi)\right| \tag{4.1}
\end{equation*}
$$

Fig. 4.1 3-section LC transformer problem. Optimum matching over a frequency range of $0.5-1.179$ radians $/ \mathrm{sec}$ occurs at the following parameter values: $L_{1}=1.04088$, $C_{2}=0.979035, L_{3}=2.34044, C_{4}=0.780157, L_{5}=2.93714, C_{6}=0.346960$ and $\tilde{U}^{U}=\max \left|\rho\left(\hat{\phi}, \psi_{i}\right)\right|$ $=0.075820$ 。
where $\left.\rho_{i}(\underset{\sim}{\phi})=\underset{\sim}{\rho} \underset{\sim}{\phi}, \psi_{i}\right)$ is the reflection coefficient over 21 uniformly spaced frequencies ψ_{i} in the passband, and

$$
\underset{\sim}{\phi}=\left[\begin{array}{lllllllll}
L_{1} & C_{2} & L_{3} & C_{4} & L_{5} & C_{6} \tag{4.2}
\end{array}\right]^{T}
$$

The six parameters were optimized by the grazor search strategy and the Osborne and Watson method, and Fig. 4.2 shows a typical graph of objective function against function evaluations for the two methods for identical starting points. As can be seen from the graph, the Osborne and Watson method fails to reach the vicinity of the optimum, while the grazor search algorithm achieves an optimal solution. Table 4.1 shows the number of function evaluations needed to get within 0.01 percent of the optimum for different values of η, the factor of resolution between two interior points of the golden section for the grazor search, and it is clear that the value of n chosen need not be very small.

4.3 Quarter-Wave Transmission-Line Transformer

The problem considered is the design of 2-section and 3-section 10Ω to 1Ω transmission-1ine transformers over a 100 percent relative bandwidth centred at 1 GHz (Matthaei, Young and Jones 1964, Bandler and Macdonald 1969a, 1969b). The objective is to minimize $\max _{i}\left|\rho\left({\underset{\sim}{~}}, \psi_{i}\right)\right|$ on 11 frequencies ψ_{i} in the band $0.5-1.5 \mathrm{GHz}$ for the network shown in Fig. 4.3, where ρ_{i} is the reflection coefficient of the network at ψ_{i}.

The grazor search method and the Osborne and Watson algorithm were used for minimax optimization. For both the methods, the objective

TABLE 4.1

COMPARISON OF THE NUMBER OF FUNCTION EVALUATIONS REQUIRED BY THE GRAZOR SEARCH METHOD TO REACH WITHIN 0.01 PERCENT OF THE OPTIMUM FOR DIFFERENT VALUES OF η FOR IDENTICAL STARTING POINTS

$$
L_{1}=L_{3}=L_{5}=C_{2}=C_{4}=C_{6}=1
$$

Function Evaluations

η
$1316 \quad 0.01$

880
0.10

561
0.50

Fig. 4.3 The m-section resistively terminated cascade of transmission lines. Optimum matching over 100 percent band centred at 1 GHz for $\mathrm{R}=10$ occurs for the following parameter values.
2-section: $\ell_{1}=\ell_{2}=\ell_{q}, Z_{1}=2.23605, z_{2}=4.4721$
3-section: $l_{1}=\ell_{2}=l_{3}=\ell_{q}, Z_{1}=1.63471, Z_{2}=3.16228$, $z_{3}=6.11729$
$\ell_{q}=7.49481 \mathrm{~cm}$ is the quarter-wavelength at centre frequency.
function is given by (2.13) where

$$
\begin{equation*}
y_{i}(\phi)=\frac{1}{2}\left|e_{i}(\phi)\right|^{2} \tag{4.3}
\end{equation*}
$$

In the 2-section examples, the 11 frequencies were uniformly spaced. In the 3 -section examples, the frequencies were $0.5,0.6,0.7,0.77,0.9$, $1.0,1.1,1.23,1.30,1.40$, and 1.50 GHz . The progress of the algorithms from identical starting points with respect to the number of function evaluations (one corresponding to 11 evaluations of ρ) is recorded in Figs. 4.4 and 4.5. The points shown mark the successful end of a linear search or the beginning of linear programming.

A comparison was made between the grazor search, Osborne and Watson, and razor search methods, as shown in Tables 4.2 and 4.3. From Table 4.2, it is clear that the grazor search algorithm is, in general, faster than the razor search technique for the 2 -section case when the lengths are kept fixed and the impedances are varied. From Table 4.3, it is clear that the grazor search algorithm is the best. The Osborne and Watson algorithm, though fairly fast initially, may in some cases fail or slow down near the optimum.

The grazor search method and the Osborne and Watson algorithm were further compared on the 3-section transformer problem when the lengths were fixed at quarter-wavelength values and the impedances were varied. For a starting point of $Z_{1}=3.16228, Z_{2}=1.0$ and $Z_{3}=10.0$, the former took 184 and 218 function evaluations, while the latter consumed 151 and 219 function evaluations to reach within 0.01 and 0.001 percent of the optimum value of the maximum reflection coefficient,
$\max |p|$

Fig. 4.4(a) The 2-section transformer problem. Solid points distinguish the grazor search algorithm from the algorithm based on the Osborne and Watson method. ℓ_{1}, ℓ_{2} fixed at ℓ_{q} and impedances varied. Starting point $Z_{1}=1.0, Z_{2}=3.0$.

Fig. 4.4(b) The 2-section transformer problem. Solid points distinguish the grazor search algorithm from the algorithm based on the Osborne and Watson method. Z_{1}, Z_{2} fixed at optimum values and lengths varied. Starting point $\ell_{1} / \ell_{q}=0.8, \ell_{2} / \ell_{\mathrm{q}}=1.2$.

Fig. 4.4(c) The 2-section transformer problem. Solid points distinguish the grazor search algorithm from the algorithm based on the Osborne and Watson method. ℓ_{2}, Z_{2} fixed at optimum values and ℓ_{1}, Z_{1} varied. Starting point $\ell_{1} / \ell_{q}=1.2, Z_{1}=3.5$. 隹

Fig. 4.4(d) The 2-section transformer problem. Solid points distinguish the grazor search algorithm from the algorithm based on the Osborne and Watson method. All 4 parameters varied. Starting point $\ell_{1} / \ell_{q}=1.2, \ell_{2} / \ell_{q}=0.8, Z_{1}=3.5, Z_{2}=3.0$.

Fig. 4.5(a) The 3-section transformer problem. Solid points distinguish the grazor search algorithm from the algorithm based on the Osborne and Watson method. $\ell_{1}, \ell_{2}, \ell_{3}$ fixed at ℓ_{q} and impedances varied. Starting point $Z_{1}=1.0, Z_{2}=3.16228, Z_{3}=10.0$.

Fig. 4.5(b) The 3-section transformer problem. Solid points distinguish the grazor search algorithm from the algorithm based on the Osborne and Watson method. All 6 parameters varied. Staring point $q_{1} / \ell_{q}=0.8, \ell_{2} / \ell_{q}=1.2_{,} \ell_{3} / \ell_{q}=0.8, Z_{1}=1.5, Z_{2}=3.0$, $Z_{3}=6.0$ 。

Fig. 4.5(c) The 3-section transformer problem. Solid points distinguish the grazor search algorithm from the algorithm based on the Osborne and Watson method. All 6 parameters varied. Starting point $\ell_{1} / \ell_{q}=\ell_{2} / \ell_{q}=\ell_{3} / \ell_{q}=1.0, Z_{1}=1.0, z_{2}=3.16228$, $Z_{3}=10.0$ 。

TABLE 4.2
OPTIMIZATION OF A 2 -SECTION 10Ω TO 1Ω
TRANSMISSION-LINE TRANSFORMER OVER 100 PERCENT RELATIVE BANDWIDTH

Starting Point	Function Evaluations ${ }^{\dagger}$		
Z_{1}	Z_{2}	Razor Search	Grazor Search
1.0	3.0	157	126
1.0	6.0	207	83
3.5	6.0	152	52
		223	29

\dagger Number of function evaluations required to bring the reflection coefficient within 0.01 percent of its optimum value.

TABLE 4.3

OPTIMIZATION OF A 3-SECTION 10Ω TO 1Ω TRANSMISSION-LINE

TRANSFORMER OVER 100 PERCENT RELATIVE BANDWIDTH

Fixed Lengths				Variable Lengths and Impedances		
$\begin{gathered} \text { Parameters } \\ \phi_{i} \end{gathered}$	Starting Point	Maximum Reflection Coefficient at Start	Starting Point	Maximum Reflection Coefficient at Start	Starting Point	Maximum Reflection Coefficient at Start
ℓ_{1} / l_{q}	1.0		1.0		0.8	
Z_{1}	1.0		1.0		1.5	
ℓ_{2} / ℓ_{q}	1.0		1.0		1.2	
Z_{2}	3.16228	0.70930	3.16228	0.70930	3.0	0.38865
ℓ_{3} / l_{9}	1.0		1.0		0.8	
Z_{3}	10.0		10.0		6.0	
Razor	Final Maximum Reflection Coefficient	0.19729		0.19733		0.19731
Algorithm	Number of Function Evaluations	406		1300		1250
	Final Maximum Reflection	0.19729		0.19729		0.19729
Grazor Search	Coefficient					
Algorithm	Number of Function Evaluations	219		696		498

TABLE 4.3 (continued)

OPTIMIZATION OF A 3-SECTION 10Ω TO 1Ω TRANSMISSION-LINE
TRANSFORMER OVER 100 PERCENT RELATIVE BANDWIDTH

	Fixed Lengths	Variable Lengths and Impedances	
Final Maximum Reflection Coefficient due to Osborne and Watson (1969)	Number of Function Evaluations	199	0.19729

respectively. This case illustrates how the two algorithms compare when both methods work efficiently.

4.4 Cascaded Transmission-Line Filters

In this section, the grazor search algorithm is used to achieve the minimax design of cascaded transmission-line filters with desired attenuation characteristics. Three examples are chosen, and the ideas presented in Chapter III are applied to the problems.

4.4.1 Problem 1

The design of a 7-section cascaded transmission-1ine filter with frequency-dependent terminations is considered here (see Fig. 4.6). This problem has been considered by Carlin and Gupta (1969). The frequency variation of the terminations is like that of rectangular waveguides operating in the H_{10} mode with cutoff frequency 2.077 GHz . All section lengths were kept fixed at 1.5 cm so that the maximum stopband insertion loss would occur at about 5 GHz . The passband 2.16 to 3 GHz was selected, for which a maximum passband insertion loss of 0.4 dB was specified.

Fig. 4.7 shows the response of Carlin and Gupta which was used as an initial design. The other responses in Fig. 4.7 are a least 10 th optimum obtained by Bandler and Seviora (1970) and a minimax optimum obtained by the grazor search strategy. In both cases only the passband was optimized. The minimax response has a maximum passband insertion

Fig. 4.6 Problem 1. Cascaded transmission-line filter operating between $\mathrm{R}_{\mathrm{g}}(\omega)$
$=R_{L}(\omega)=377 / \sqrt{1-\left(f_{c} / f\right)^{2}}$, where $f_{c}=2.077 \mathrm{GHz}$ and $\ell=1.5 \mathrm{~cm}$.

Fig. 4.7 Responses of the network of Fig. 4.6. The response of Carlin and Gupta (1969) is the initial one. The least 10th response was obtained by Bandler and Seviora (1970). The minimax response was produced by the grazor search method.

loss of 0.086 dB ．Table 4.4 gives the appropriate parameter values．
Fig． 4.8 shows the results of applying the grazor search method to optimize the sections in a filtering sense．Thus，it was desired to meet the 0.4 dB passband insertion loss while maximizing the stopband insertion loss at a single frequency（ 5 GHz ）。 Let

$$
\underset{\sim}{y_{i}(\phi)}=\left\{\begin{array}{cc}
\frac{1}{2}\left(\left|\rho_{i}(\phi)\right|_{\sim}^{2}-r^{2}\right) & \text { in the passband } \tag{4.4}\\
\frac{1}{2}\left(1-\left|\rho_{i}(\phi)\right|_{\sim}^{2}\right) & \text { in the stopband }
\end{array}\right.
$$

where

$$
\underset{\sim}{\phi}=\left[\begin{array}{llll}
z_{1} & z_{2} & \cdots & z_{\eta} \tag{4.5}
\end{array}\right]^{T}
$$

and r is the reflection coefficient magnitude corresponding to an in－ sertion loss of 0.4 dB ．Here 22 uniformly－spaced points were selected from the passband．Table 4.4 gives the resulting parameter values．A similar response was atcained by the grazor search technique when the section impedances were assumed symmetrical i．e．，$Z_{5}=Z_{3}, Z_{6}=Z_{2}, Z_{7}=Z_{1}$ 。

4．4．2 Problem 2

The problem chosen consists of a 5－section cascaded cransmission－ line low－pass filter design and has been previously considered by Brancher， Maffioli and Premoli（1970）．The filter structure is the same as in Fig．4．3 for $R=1$ ．The terminating impedances are real and normalised to be $\mathbb{1}$ 。 It is required to have a passband insertion loss of less than 0.01 dB from 0 to 1 GHz and as high a stopband insertion loss as possible at 5 GHz ．Twenty－one uniformly spaced points were chosen in the passband and one point in the sropband（ 5 GHz ）．The length of each section is

TABLE 4.4
COMPARISON OF PARAMETER VALUES FOR THE 7-SECTION FILTER (PROBLEM 1)

Characteristic	Carlin	Minimax	Minimax
Impedances	and	Design	Design
(Normalized)	Gupta (1969)	(Fig.4.7)	(Fig.4.8)

Z_{1}	1476.5	1305.2	3069.4
Z_{2}	733.6	607.8	2856.4
Z_{3}	1963.6	1323.3	25871.2
Z_{4}	461.8	362.7	10573.3
Z_{5}	1963.6	1323.2	25874.0
Z_{6}	733.6	607.9	2856.7
Z_{7}	1476.5	1305.2	3069.8

Fig. 4.8 Response of the minimax design of the network of Fig. 4.6 with 0.4 dB passband insertion loss produced by the grazor search method.
normalized with respect to $\ell_{q}=1.49896 \mathrm{~cm}$, the quarter-wavelength at 5 GHz .

The $y_{i}(\phi)$ are given by (4.4) where r is the reflection coefficient magnitude corresponding to an insertion loss of 0.01 dB , and

$$
\begin{align*}
& \phi=\left[\ell_{n 1} Z_{1} \ell_{n 2} Z_{2} \ell_{n 3} Z_{3} \ell_{n 4} Z_{4} \ell_{n 5} Z_{5}\right]^{T} \tag{4,6}\\
& \ell_{n i}=\ell_{i} / \ell_{q} \tag{4.7}
\end{align*} \quad i=1,2, \ldots 55
$$

The lengths were initially fixed at ℓ_{q}, and the impedances varied. Levy (1965) has derived an optimal solution to this problem analytically. The grazor search method was used on this problem for minimax optimization, and the result obtained was identical to the one derived by levy and Fig. 4.9 shows the optimal response obtained.

Brancher, Maffioli and Premoli (1970) have achieved some results for the problem, and an observation of their responses leads one to suspect that the results are not optimal. The grazor search method was used to cest whether an improvement on the results of Brancher, Maffioli and Premoli was possible, and improved results were obrained.

Fig. 4.10 and Table 4.5 show the results for the problem where the impedances are fixed at some practical values and only the lengths are allowed to vary. As the final values obtained by the grazor search method indicate, the response at finish represents a good improvement over the response at start, both from passband and stopband considerations.

Fig. 4.9 Optimal response for Problem 2 with lengths fixed at ℓ_{q} and impedances varied. Optimal parameters are: $Z_{1}=2.528=Z_{5}, Z_{2}=0.254=Z_{4}, Z_{3}=4.842$.

Fig. 4.10 Responses for Problem 2 when impedances are fixed and lengths are allowed to vary. The parameter values at start and finish are shown in Table 4.5. The

TABLE 4.5

5-SECTION FILTER DESIGN (PROBLEM 2)

IMPEDANCES FIXED AT $Z_{1}=Z_{3}=Z_{5}=0.2, Z_{2}=Z_{4}=5$, AND LENGTHS VARIED

Finish
$\ell_{n 1}$
0.389
0.480
$\ell_{\mathrm{n} 2}$
0.788
0.814
$\ell_{n 3}$
0.924
0.990
$\ell_{n 4}$
0.806
0.814
$\ell_{n 5}$
0.448
0.480

4.4.3 Problem 3

The design of a 5-section cascaded transmission-line filter subject to parameter constraints is considered here, and the ideas presented in Section 3.3 are used to tackle this problem. The filter structure is the same as the one considered in Section 4.4.2. The problem has been previously considered by Carlin (1971) for fixed lengths at a quarter-wavelength of $\ell_{q}=2.5 \mathrm{~cm}$ corresponding to 3 GHz , and for a required attenuation of 0.4 dB in the passband ($0-1 \mathrm{GHz}$). Optimal values have been derived for characteristic impedance values when a stopband frequency of 3 GHz was chosen (Levy 1965). The objective function to be minimized was chosen as (2.13) where

$$
y_{i}(\phi)= \begin{cases}\left|\rho_{i}(\phi)\right|-r & \psi_{i} \varepsilon 0-1 \mathrm{GHz} \tag{4.8}\\ 1-\left|\rho_{i}(\phi)\right| & \psi_{i}=3 \mathrm{GHz}\end{cases}
$$

ϕ corresponds to (4.6) and r corresponds to an attenuation of 0.4 dB . \sim Twenty-one uniformly-spaced points were chosen in the passband.

Initially the lengths were fixed at ℓ_{q} and the impedances Z_{i} were varied. The impedance constraints imposed were

$$
\begin{equation*}
0.5 \leq Z_{i} \leq 2.0 \quad i=1,2, \ldots, 5 \tag{4.9}
\end{equation*}
$$

and the minimization function was chosen as $W^{\prime}\left(\phi, w^{\prime}\right)$ of (3.39) where w^{\prime} is given by $(3.40), n=22, m=10$, and n

$$
\begin{align*}
& g_{2 i-1}(\phi)=z_{i}-0.5 \geq 0 \\
& \quad i=1,2, \ldots, 5 \tag{4.10}
\end{align*}
$$

$g_{2 i}{ }_{\sim}^{(\phi)}=-\left(Z_{i}-2.0\right) \geq 0$

$$
w_{j}^{\prime}=\left\{\begin{array}{rl}
1000 \text { for } g_{j}(\phi) & <0 \tag{4.11}\\
0 & \text { for } g_{j}(\phi)
\end{array} \quad j=0 \quad j=1,2, \ldots, m\right.
$$

The result of optimizing the impedances using the grazor search method is shown in Table 4.6 where U corresponds to $\max _{i} y_{i}(\phi)$, and y_{i} is given by (4.8). It is observed that some of the impedances of the constrained solution lie on constraint boundaries. Moreover, there are two distinct solutions, for which the impedances are reciprocals of each other.

As a further step, it was desired to investigate the possibility of improving the unconstrained optimal solution (for length fixed at ℓ_{q}) of Table 4.6 , by allowing both the lengths and impedances to vary, and imposing the following constraints:

$$
\begin{array}{rl}
0 \leq \ell_{n i} \leq 2 & i=1,2, \ldots, 5 \\
0.4416 \leq Z_{i} \leq 4.419 & i=1,2, \ldots, 5 \\
0 \leq \sum_{j=1}^{5} \ell_{n j} \leq 5 &
\end{array}
$$

where the $\ell_{n i}$ correspond to (4.7) and the upper and lower bounds of z_{i} in (4.13) correspond to upper and lower values of the unconstrained optimal values of Table 4.6.

TABLE 4.6

5-SECTION TRANSMISSION-LINE LOWPASS FILTER DESIGN (PROBLEM 3) FOR LENGTHS FIXED AT ℓ_{q}

Parameters	Unconstrained Optimal Solution	Constrained Solution (i)	
Z_{1}	3.151	0.5683	1.760
Z_{2}	0.4416	2.000	0.5000
Z_{3}	4.419	0.5000	2.000
Z_{4}	0.4416	0.5683	0.5000
Z_{5}	3.151	3.255×10^{-3}	3.255×10^{-3}
U	3.951×10^{-5}	3.255×10^{-3}	3.255×10^{-3}

The function to be minimized was chosen as $V\left(\phi_{\sim} \phi_{k+1}, \alpha\right)$ in (3.32) where α is given by (3.33) and $(3.34), n=22, m=22$,
\sim

$$
\begin{equation*}
\alpha_{j}=10 \quad j=1,2, \ldots, m+1 \tag{4.15}
\end{equation*}
$$

and $\mathrm{g}_{\mathrm{j}}(\phi), \mathrm{j}=1,2, \ldots, \mathrm{~m}$ correspond to the constraints (4.12)-(4.14) It was observed that no improvement could be achieved from the starting value (corresponding to the unconstrained optimal solution of Table 4.6) and that the starting point satisfies the necessary conditions for a minimax optimum, as verified by the method described in Section 3.4 and Appendix B.

4.5 Conclusions

The resules indicate that the grazor search algorithm is generally more reliable in reaching an optimal minimax solution than the Osborne and Watson algorithm, and is faster than the razor search technique. Typically 1 min is sufficient time to optimize a six-parameter design, and 2 to 3 min are sufficient to optimize a ten-parameter problem, depending on how far from the optimum one starts and how close one wishes to get, on a CDC 6400 compurer. The grazor search algorithm is capable of handling, without any difficulty, filter design problems with upper and lower specifications over many frequency bands. The method should be very useful in design problems for which exact methods are not available.

CHAPTER V

SYSTEM MODELLING

5.1 Introduction

Lower-order modelling of complex high-order systems is now widely being used in the area of systems design and control both online and off-line. The modelling can be performed for a variety of performance criteria and objectives, using different model derivation techniques. Some of the techniques obtain a model by neglecting modes of the original system which contribute little to the overall response of the system (Davison 1966, Chidambara 1969, Mitra 1969, Marshall 1966). Other methods search for optimal coefficients of a set of differential or difference equations of a given order, the response of which is approximated as closely as possible to that of the system, when both are driven by the same inputs (Anderson 1967, Sinha and Pille 1971, Sinha and Bereznai 1971, Markettos 1972). The search of these coefficients has been, in the past, carried out using both direct search and gradient methods of optimization for a least-squares or quadratic cost function, but for this work, the investigation is mainly on near-minimax and mini\max objectives, and the input-output data of the system is assumed to be known. See also Chen and Shieh (1968) and Kokotović and Sannuti (1968).

5.2 Statement of the Problem

It is required to find a transfer function of model of a given order, the response of which is the best approximation to the response of the actual system to a particular input for a specified error criterion.

In general the transfer function of a given order n may be written as

$$
\begin{align*}
H_{m, n}(s) & =\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\ldots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}} \\
& =\frac{\sum_{i=0}^{m} b_{m-i} s^{m-i}}{s^{n}+\sum_{i=1}^{n} a_{n-i} s^{n-i}} \tag{5.1}
\end{align*}
$$

where m < n for physical systems. For this work the input is a unit step and the criterion chosen is to directly or indirectly minimize an error function over a specified time interval $[0, T]$. The problem, therefore, is the determination of the parameters ϕ, given by

$$
\underset{\sim}{\phi}=\left[\begin{array}{lllllll}
a_{0} & a_{1} & \cdots & a_{n-1} & b_{0} & b_{1} & \cdots \tag{5.2}
\end{array} b_{m}\right]^{T}
$$

such that an error function is minimized. Optimization of model parameters for a least-squares error criterion has already received attention (Bandler, Markettos and Sinha 1973, Markettos 1972).

5.3 Minimax System Modelling

The error criterion chosen is to minimize the maximum error
between the system and model responses over [$0, \mathrm{~T}]$, where ϕ is given by (5.2). The following notation is introduced.

t_{i}	is an i th time instant in [0, T$]$
I	is an index set of i such that $t_{i} \varepsilon[0, T]$
c_{i}^{s}	is the response of the system at t_{i}
$c_{i}^{m}(\phi)$	is the response of the approximating model at t_{i}
$e_{i}\left(\underline{\sim}{ }_{\sim}\right)=c_{i}^{m} \underbrace{(\phi)}_{\sim}-c_{i}^{s}$	is the error between the system and the model responses at t_{i}
c_{∞}^{s}	is the steady-state value of the system
c_{∞}^{m}	is the steady-state value of the model

In Section 5.4, the approximation problem considered assumes that c_{∞}^{m} is fixed at a convenient value (usually c_{∞}^{s} or c_{i}^{s} at $t_{i}=T$), so that the objective is to minimize

$$
\begin{equation*}
\underset{\sim}{U(\phi)}=\max _{\mathrm{t}_{\mathrm{i}} \varepsilon[0, \mathrm{~T}]} \mathrm{y}_{\mathrm{i}}{\underset{\sim}{(\phi)}}_{(\phi)} \tag{5,3}
\end{equation*}
$$

where

$$
\begin{equation*}
y_{i}(\phi)=\left|e_{i}(\phi)\right| \tag{5.4}
\end{equation*}
$$

This problem can now be solved by an efficient minimax or nearminimax optimization method as suggested in Sections 2.5 and 2.6.

5.4 Example

The problem considered is the modelling of a seventh-order system representing the control system for the pitch rate of a supersonic transport aircraft (Dorf 1967, Bandler, Markettos and Sinha 1973). The transfer function of the system is given by

$$
\left.G(s)=\frac{375000(s+0.08333)}{s^{7}+83.64 s^{6}+4097 s^{5}+70342 s^{4}+853703 s^{3}+} \begin{array}{r}
2814271 s^{2}+3310875 s+281250 \tag{5.5}
\end{array}\right)
$$

with a steady-state value of 0.11111 for a unit step.
Minimax optimization of the model parameters as performed by the grazor search method consists of minimizing (5.3), while near-minimax optimization minimizes
for large values of p (Bandler and Charalambous 1972d). Let JCI be an index set relating only to the extrema of the error functions $y_{i}{ }_{\sim}^{(\phi)}$ given by (5.4). If I is replaced by J in (5.6), considerable economy in computing time results at a slight risk of creating false optima. The larger the value of p, the closer the solution gets to the minimax result, but the central processor time increases considerably. For this work, a value of $\mathrm{p}=1000$ was considered suitable for optimization purposes. For least p th optimization, three gradient methods due to Fletcher and Powell (1963), Jacobson-Oksman (1972) and Fletcher (1970) have been used for the modelling problem.

5.4.1 Second- and Third-Order Models

The time-interval over which the approximation was made was $0-8$ seconds ($\mathrm{T}=8 \mathrm{sec}$). 101 uniformaly-spaced sample points were chosen over the interval. The steady state value of the model for a unit step $\left(E=c_{\infty}^{m}\right)$, was set at 0.11706 , corresponding to the response of the system at the final sample point $\left(c_{i}^{s}\right.$ for $\left.t_{i}=T\right)$. See Bandler, Markettos and Srinivasan (1972, 1973).

Two second-order and one third-order models were considered for minimax approximation of the system. The transfer functions of the chosen models were

$$
\begin{align*}
\mathrm{H}_{02}(s) & =\frac{E a_{0}}{s^{2}+a_{1} s+a_{0}} \tag{5.7}\\
H_{12}(s) & =\frac{b_{1} s+E a_{0}}{s^{2}+a_{1} s+a_{0}} \tag{5.8}\\
H_{23}(s) & =\frac{b_{2} s^{2}+b_{1} s+E a_{0}}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}} \tag{5.9}\\
& =\frac{x_{5} s^{2}+x_{4} s+E x_{1} x_{3}}{\left(s+x_{3}\right)\left(s^{2}+x_{2} s+x_{1}\right)} \tag{5.10}
\end{align*}
$$

where

$$
\begin{equation*}
E \triangleq c_{\infty}^{m} \tag{5.11}
\end{equation*}
$$

For this work, the response of the models in the time domain were obtained by using standard Laplace Transform Tables to invert from the s to the t domain.
(a) 2-Parameter Problem

The model transfer function chosen is (5.7) and the parameter
vector is given by

$$
\underset{\sim}{\phi}=\left[\begin{array}{ll}
a_{0} & a_{1} \tag{5.12}
\end{array}\right]^{T}
$$

The optimum parameters using the grazor search method were

$$
a_{0}=3.06472, a_{1}=2.38338
$$

resulting in a four-ripple error curve with a maximum error value

$$
U=3.76347 \times 10^{-3}
$$

The response and error curves are shown in Figs. $5.1(\mathrm{a})$ and 5.1 (b) respectively.

The optimum parameters using least p th approximation for $\mathrm{p}=1000$ were $a_{0}=3.06549, a_{1}=2.38414$
resulting in a similar four-ripple curve with a maximum error value

$$
U=3.76510 \times 10^{-3}
$$

Table 5.1 shows the number of function evaluations required for each of the methods to reach a maximum error value of 3.76619×10^{-3}. For this problem the Fletcher method and Jacobson-Oksman method appeared to be the most efficient.
(b) 3-Parameter Problem

By allowing the model to have a zero, as indicated by (5.8) a 3-variable problem results, where

$$
\underset{\sim}{\phi}=\left[\begin{array}{lll}
a_{0} & a_{1} & b_{1} \tag{5.13}
\end{array}\right]^{T}
$$

Fig. 5.1(a) Seventh-order system modelling example. 2-parameter optimum response.

Fig. 5.1(b) Seventh-order system modelling example. 2-parameter optimum error curve.

TABLE 5.1
SEVENTH-ORDER SYSTEM MODELLING EXAMPLE NUMBER OF FUNCTION EVALUATIONS REQUIRED TO REACH $U=3.76619 \times 10^{-3}$ FOR THE 2-PARAMETER MODEL

Starting point Minimization $\underset{\sim}{\phi}$ of $U(\phi)$ \sim Grazor		Minimization of $f(\phi)$				
		Fletcher	FletcherPowell	Jacobson - Oksman		
		Quadratic Step Prediction		Homogeneous Step Prediction		
3.0	107		42	59	36	36
2.0						
1.0	130	78	334	91	127	
1.0						
1.0	165	96	718	834	*	
4.0		$\dot{\circ}$				
4.0	129	64	false	41	45	
1.0			optimum			

[^0]The optimum parameters using the grazor search method were

$$
a_{0}=3.83255, a_{1}=3.00365, b_{1}=-.0176390
$$

giving a maximum error value

$$
\mathrm{U}=2.48724 \times 10^{-3}
$$

The response and error curves are shown in Figs. $5.2(\mathrm{a})$ and $5.2(\mathrm{~b}) \mathrm{re-}$ spectively.

For $\mathrm{p}=1000$ the optimum parameters obtained were

$$
a_{0}=3.83592, a_{1}=3.00605, b_{1}=-.0177277
$$

giving similar response and error curves as in Figs. 5.2(a) and 5.2(b) and

$$
\mathrm{U}=2.48794 \times 10^{-3}
$$

The number of function evaluations needed for the three parameter problem to reach the value $U=2.48794 \times 10^{-3}$ are shown in Table 5.2. The grazor search technique and the Fletcher method required a smaller number of function evaluations.
(c) 5-Parameter Problem

The third-order model of (5.9) is considered next. For computional efficiency, the transfer function of the form (5.10) is chosen. The model has five parameters given by

$$
\underset{\sim}{\phi=\left[\begin{array}{lllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \tag{5.14}
\end{array}\right]^{T}, ~}
$$

The optimum parameters obtained using the grazor search method

Fig. 5.2(a) Seventh-order system modelling example. 3-parameter optimum response.

Fig. 5.2(b) Seventh-order system modelling example. 3-parameter optimum error curve.

TABLE 5.2
SEVENTH-ORDER SYSTEM MODELLING EXAMPLE
NUMBER OF FUNCTION EVALUATIONS REQUIRED TO REACH $U=2.48794 \times 10^{-3}$ FOR THE 3-PARAMETER MODEL

${ }^{+}$Indicates time limit of 64 seconds was reached.
*Indicates an ARGUMENT TOO LARGE message was given by the computer.
were

$$
\begin{aligned}
& x_{1}=4.34547, x_{2}=3.36809, x_{3}=.108248 \\
& x_{4}=.514475, x_{5}=-.0356180
\end{aligned}
$$

resulting in a six-ripple error curve with a maximum error value

$$
\mathrm{U}=1.02062 \times 10^{-3}
$$

The response and error curves are shown in Figs. 5.3(a) and $5.3(\mathrm{~b}) \mathrm{re}-$ spectively.

The optimum parameters using $\mathrm{p}=1000$ were
$x_{1}=4.34682, x_{2}=3.36738, x_{3}=.0996086$
$x_{4}=.514728, x_{5}=-.0356154$
giving response and error curves similar to those of Figs. 5.3 (a) and 5.3 (b) and a maximum error

$$
U=1.02063 \times 10^{-3}
$$

Some runs with the F1etcher-Powell method, on the five-parameter problem, indicated that the method was the slowest and since this was already established in the previous models, as indicated in Tables 5.1 and 5.2, further runs with Fletcher-Powell method were considered unnecessary. The results of optimization by the other three methods are shown in Table 5.3.

The Fletcher method reached a unique six-ripple solution in all the cases tried, although there was a large variation in the number of function evaluations required. The grazor search technique reached the

Fig. 5.3(a) Seventh-order system modelling example. 5-parameter six-ripple optimum response.

Fig. 5.3(b) Seventh-order system modelling example. 5-parameter six-ripple optimum error curve.

TABLE 5.3
SEVENTH-ORDER SYSTEM MODELLING EXAMPLE
NUMBER OF FUNCTION EVALUATIONS REQUIRED TO REACH THE INDICATED VALUE OF 1000 U FOR THE 5-PARAMETER MODEL

3.0				
3.0	437	530	886	778
1.5				
0.5	1.2139	1.0207	1.0206	1.0206
-0.1				
1.5				
3.0	782	768	931	325*
2.5				
1.0	1.2473	1.0207	1.0206	45.086
0.1				
4.0				
3.0	489	177	114*	108
0.1				
0.5	1.0206	1.0207	1.5061	1.0206
-0.03				

[^1]six-ripple solution in one of the cases shown, while in some of the other cases it terminated in a five-ripple solution.

In some instances, the real pole of the model had the tendency to move to the right-hand side of the s-plane and since this would produce an unstable model, the last parameters giving stable results were taken as the final values. In all cases, however, the real pole seems to lie very close to the axis and any constraint, although easily implemented in the form of asquare transformation, would have made the pole go to zero.

It was further noted that when the Fletcher method, used with $p=1000$, was started from one of the five-ripple solutions where the grazor search technique terminated, a direction was found which decreased $f(\phi)$ while temporarily increasing $U(\phi)$ and the method converged towards the six-ripple minimax solution, though slowly. When the same procedure was repeated with $p=10^{6}$, the algorithm failed to move from that point. Figs. 5.4(a) and 5.4(b) show the response and error curves for a fiveripple solution obtained by the grazor search method.

5.4.2 Optimality of Model Parameters

The conditions for minimax optimality, as mentioned in Section 3.4.2, were applied to the final parameter values arrived at through optimization of the grazor search method (the corresponding responses are shown in Figs. 5.1-5.4), and the results are indicated in Tables 5.4-5.7. The necessary conditions are satisfied in all the cases, as observed from the tables. The $\hat{y}_{\ell}(\phi)$ for $\ell=1,2 \ldots, n_{r}$ are the local

Fig. 5.4(a) Seventh-order system modelling example. 5-parameter five-ripple solution response.

Fig. 5.4(b) Seventh-order system modelling example. 5-parameter five-ripple solution error curve.

TABLE 5.4
VERIFICATION OF CONDITIONS FOR MINIMAX OPTIMALITY
2-PARAMETER SOLUTION CORRESPONDING TO FIG. 5.1

$$
\mathrm{n}_{\mathrm{r}}=4, \quad \mathrm{k}_{\mathrm{r}}^{*}=3
$$

ℓ	Time Instant	Error Maximum $\left(1000 \hat{y}_{\ell}\right)$	Multiplier $\left(u_{\ell}\right)$
1	0.24	3.76347	0.75047
2	0.88	3.76347	0.16519
3	2.16	3.76347	8.4342×10^{-2}
4	4.40	2.55235	

$$
\begin{aligned}
& \underset{\sim}{\mathbf{r}}=\sum_{\ell=1}^{\mathrm{k}_{\mathrm{r}}^{*}}{ }_{\ell} \nabla \hat{\mathrm{y}}_{\ell}=\left[\begin{array}{ll}
0.0 & 0.0
\end{array}\right]^{\mathrm{T}} \\
& \sum_{\ell=1}^{k^{*}} u_{\ell}=1.0
\end{aligned}
$$

TABLE 5.5
VERIFICATION OF CONDITIONS FOR MINIMAX OPTIMALITY
3-PARAMETER SOLUTION CORRESPONDING TO FIG. 5.2

$$
n_{r}=4, \quad k_{r}^{*}=3
$$

Time Instant	Error Maximum $\left(1000 \hat{y}_{\ell}\right)$	Multiplier $\left(u_{\ell}\right)$	
1	4.0	2.48724	0.90758
2	0.24	2.48724	4.2744×10^{-2}
3	0.96	2.48724	4.9680×10^{-2}
4	2.00	2.00700×10^{-1}	

$$
\begin{gathered}
\underset{\sim}{r}=\sum_{\ell=1}^{\mathrm{k}^{*}} \mathrm{u}_{\ell} \nabla \hat{\mathrm{y}}_{\ell}=\left[\begin{array}{lll}
0.0 & 0.0 & 1.1 \times 10^{-5}
\end{array}\right] \\
\sum_{\ell=1}^{\mathrm{k}} \mathrm{r} \mathrm{u}_{\ell}=1.0
\end{gathered}
$$

TABLE 5.6
VERIFICATION OF CONDITIONS FOR MINIMA OPTIMALITY
5-PARAMETER, 6-RIPPLE SOLUTION CORRESPONDING TO FIG 5.3

$$
\mathrm{n}_{\mathrm{r}}=6, \mathrm{k}_{\mathrm{r}}^{*}=6
$$

ℓ	Time Instant	Error Maximum $\left(1000 \hat{y}_{\ell}\right)$	Multiplier $\left(u_{\ell}\right)$
1	1.84	1.020616	3.6510×10^{-2}
2	0.72	1.020616	8.4333×10^{-2}
3	0.08	1.020616	0.51806
4	3.76	1.020616	2.7915×10^{-2}
5	0.24	1.016870	1.0910×10^{-2}

$$
\begin{array}{r}
\underset{\sim}{r}=\sum_{\ell=1}^{\sum_{\ell}^{*} u_{\ell} \nabla \hat{y}_{\ell}=} \underset{\sum_{\ell=1}^{0.0}}{\sum_{\ell}^{k}} \quad 0.0 \\
\mathrm{k}_{\ell}^{*}=1.0
\end{array}
$$

TABLE 5.7
VERIFICATION OF CONDITIONS FOR MINIMAX OPTIMALITY
5-PARAMETER, 5-RIPPLE SOLUTION CORRESPONDING TO FIG. 5.4

$$
n_{r}=5, \quad k_{r}^{*}=5
$$

ℓ	Time Instant	Error Maximum $\left(1000 \hat{y}_{\ell}\right)$	Multiplier $\left(u_{\ell}\right)$
1	0.32	1.213988	0.23428
2	5.12	1.213988	0.19815
3	0.08	1.213988	0.39281
4	0.96	1.213986	0.10217
5			

$\underset{\sim}{r}=\sum_{\ell=1}^{k_{\mathrm{r}}^{*}} \mathrm{u}_{\ell} \nabla \hat{\mathrm{y}}_{\ell}=\left[\begin{array}{llllll}-1.5 \times 10^{-5} & 0.0 & 0.0 & 0.0 & 0.0\end{array}\right]^{\mathrm{T}}$

$$
\sum_{\ell=1}^{\mathrm{k}_{\mathrm{r}}^{*}} \mathrm{u}_{\ell}=1.0
$$

discrete maxima of $y_{i}(\phi)$, $i \varepsilon I$ as mentioned in Section 3.3.1, and Method 2 described in Section 3.4 .5 is used for verifying the optimality conditions.

For the cases corresponding to Tables 5.5 and $5.7, \mathrm{k}_{\mathrm{r}}^{*}$ is equal to k and there are $k_{r}^{*}+1$ equations and k_{r}^{*} unknowns for the solution of (3.46) and (3.51). The non-zero values of the components of r for these cases correspond to the residuals of the dependent equations (refer to Sections 3.4.5, 3.4.6 and Appendix B).

In interpreting these results one may associate the results corresponding to Tables 5.4 and 5.6 in saying that the main criterion is how close to equal the ripples are and the results of Tables 5.5 and 5.7 in how small the size of the linear combination is in comparison with the sizes of the individual gradient vectors. In the first case we are satisfied with the criterion from a practical point of view, in the second the linear combination is about 2 to 4 orders of magnitude smaller than the gradient vectors.

5.4.3 Discussion

The grazor search algorithm is found to be more efficient than the Fletcher-Powell method on the problems chosen. The method proposed by Fletcher appears to be the most efficient of the methods used for nearminimax results in efficiency and consistency in reaching the vicinity of the optimum. The Jacobson-Oksman method, although giving good results,
appeared to be sensitive to scaling.
It has to be mentioned that the Fletcher-Powell package, as available in the IBM Scientific Subroutine Package, has a programming error. Appropriate corrections have been made and the Fletcher-Powell method has been applied to a number of test problems. The results have indicated that very little improvement is obtained for the corrected version. The Fletcher-Powell results, as shown in Tables 5.1-5.2, correspond to the uncorrected version, and it is expected that the corrected version might improve the function evaluations slightly.

5.5 New Approaches to Minimax System Modelling

In this section, some new ideas are presented so as to satisfy stringent design requirements (Bandler and Srinivasan 1973b, 1973e). In Section 5.4, $\mathrm{c}_{\infty}^{\mathrm{m}}$ was assumed fixed. It may, however, be unacceptable to fix c_{∞}^{m} at a certain value, in which case a realistic trade-off between transient and steady-state errors can be achieved. The design requirement may be such that arbitrary transient and steady-state response specifications need be imposed on the model for a desired performance criterion. It would also be realistic to expect the modelling procedure to be automated in such a way that it is possible to move from lowerorder models to high-order ones whenever, say, the solutions satisfy the necessary optimality conditions.

5.5.1 A Generalized Objective Function

It is possible to extend the ideas of constrained minimax optimization (discussed in Section 3.3) to system modelling so that a generalized objective function can be defined to take into account both the transient and steady-state response errors. The following additional notation is introduced.
$S_{u^{\infty}} \quad$ is the upper bound of the system specifications at steady-state
$\mathrm{S}_{\ell \infty} \quad$ is the lower bound of the system specifications at steady-state
$e_{u^{\infty}}=c_{\infty}^{m}-S_{U^{\infty}} \quad$ is the error between upper steady-state specifications and model steady-state value
$e_{\ell \infty}=c_{\infty}^{m}-S_{\ell \infty} \quad$ is the error between lower steady-state specifications and model steady-state value

The problem may now be formulated into two forms as follows. The first one minimizes with respect to ϕ_{\sim} and ϕ_{k+1}

$$
\begin{array}{r}
V\left(\phi_{\sim}, \phi_{k+1}, \alpha, \alpha_{\ell \infty}, \alpha_{u}\right)=\max _{t_{i} \in[0, T]}\left[\phi_{k+1}, \phi_{k+1}-\alpha\left(\phi_{k+1}-\left|e_{i}(\phi)\right|\right),\right. \\
 \tag{5.15}\\
\left.\phi_{k^{\prime}+1^{-\alpha}}{ }_{\ell \infty} e_{\ell \infty}, \phi_{k+1}+\alpha_{u_{\infty}} e_{u_{\infty}}\right]
\end{array}
$$

where $\alpha, \alpha_{\ell_{\infty}}, \alpha_{u^{\infty}}$ are positive. If c_{∞}^{m} is fixed such that $e_{\ell \infty}$ and $-e_{u^{\infty}}$ are positive, the objective function (5.15) reduces essentially to $U(\phi)$ in (5.3). The second one minimizes with respect to ϕ

$$
\begin{equation*}
\underset{\sim}{W}\left(\phi, w_{l \infty}, w_{u \infty}\right)=\max _{t_{i} \in[0, T]}\left[\left|e_{i}(\phi)\right|-w_{\ell \infty} e_{\ell \infty}, w_{u_{\infty}} e_{u_{\infty}}\right] \tag{5.16}
\end{equation*}
$$

where

$$
\begin{align*}
& w_{l \infty}\left\{\begin{array}{l}
=0 \text { for }-e_{l \infty}<0 \\
>0 \\
\text { for }-e_{l \infty} \geq 0
\end{array}\right. \tag{5,17}\\
& w_{u_{\infty}}\left\{\begin{array}{l}
=0 \text { for } e_{u_{\infty}}<0 \\
>0 \text { for } e_{u_{\infty}} \geq 0
\end{array}\right. \tag{5,18}
\end{align*}
$$

If c_{∞}^{m} is fixed within satisfied specifications the above objective function reduces to $U(\phi)$ in $(5,3)$.

In cases where suitable constraints - including parameter constraints - are imposed, the above procedure may be used to incorporate them in the objective function. In many cases, it is convenient to choose $S_{\ell \infty}=S_{u_{\infty}}=c_{\infty}^{S}$.

5.5.2 Automated Lower-order Models

One of the major problems that is encountered in modelling is to decide whether a certain lower-order model is acceptable or not. If the model is too simple so that computing time for optimizing model parameters is small, the approximation to the original system may be very bad, while if the model is complex, then the very need for system modelling is lost. If one were to strike a reasonable compromise between the speed with which the model is optimized, and the accuracy of the approximation, it would not be unreasonable to devise a scheme whereby one could increase
the complexity of the model in an automated fashion after a certain number of iterations or computer time. It is, however, important to keep in mind the desirability of making this increase in complexity as smooth as possible, so that the objective function value is not degraded. Thus, either the number of parameters could be increased for a model with a certain order, or the order of the model itself can be increased.

Let $H_{m, n}^{*}$ denote an optimized model of the form (5.1). Three possibilities occur as follows.
(i) Increase in parameters only

$$
H_{m, n}^{*}(s) \rightarrow H_{m+p, n}(s)
$$

Here $b_{m+p}, b_{m+p-1}, \ldots, b_{m+1}$ are initially assumed to be zero so that $H_{m+p, n}=H_{m, n}^{*}$ in the first iteration.
(ii) Increase in order

$$
\mathrm{H}_{\mathrm{m}, \mathrm{n}}^{*}(\mathrm{~s}) \rightarrow \mathrm{H}_{\mathrm{m}+\mathrm{q}, \mathrm{n}+\mathrm{q}}(\mathrm{~s})
$$

Here q poles of $H_{m+q, n+q}(s)$ are assumed to cancel with q zeros initially, so that $H_{m+q, n+q}=H_{m, n}^{*}$ in the first iteration. In this case, initial guesses for q poles (or zeros) are necessary.
(iii) Increase in order and parameters

$$
H_{m, n}^{*}(s) \rightarrow H_{m+p+q, n+q}(s)
$$

Here $b_{m+q+p}, \ldots, b_{m+q+1}$ are assumed to be zero initially and that there is a cancellation of q zeros and q poles at start, so that
$H_{m+p+q, n+q}=H_{m, n}^{*}$ in the first iteration.
A careful choice of initial parameters can make the increase in model complexity smooth so that the whole modelling procedure can be automated on a small digital computer on-1ine.

5.5.3 Optimality Conditions

When a certain low-order model is being optimized, it may be useful to investigate intermediate or final solutions after a certain number of iterations of the modelling algorithm, or after a certain convergence criterion is reached, so that one may decide whether to carry on with further optimization, to increase the order of the model, or to terminate altogether. For minimax objectives, it is possible to test the optimality by the procedure outlined in Section 3.4.
5.5.4 Results

Two examples were considered, and two second-order models and a third-order model were chosen as follows.

$$
\begin{align*}
& \mathrm{H}_{02}(\mathrm{~s})=\frac{\mathrm{b}_{0}}{\mathrm{~s}^{2}+\mathrm{a}_{1} \mathrm{~s}+\mathrm{a}_{0}} \tag{5.19}\\
& \mathrm{H}_{12}(\mathrm{~s})=\frac{\mathrm{B}_{1} \mathrm{~s}+\mathrm{B}_{0}}{\mathrm{~s}^{2}+\mathrm{A}_{1} \mathrm{~s}+\mathrm{A}_{0}} \tag{5.20}\\
& \mathrm{H}_{23}(\mathrm{~s})=\frac{\mathrm{x}_{6} \mathrm{~s}^{2}+\mathrm{x}_{5} \mathrm{~s}+\mathrm{x}_{4}}{\left(\mathrm{s+x}_{3}\right)\left(\mathrm{s}^{2}+\mathrm{x}_{2} \mathrm{~s}+\mathrm{x}_{1}\right)} \tag{5.21}
\end{align*}
$$

The transition between the models can be made smooth by making the following substitutions at the start of the new model.

$$
\begin{aligned}
& H_{02}^{*} \rightarrow H_{12}: A_{0}= a_{0}^{*}, A_{1}=a_{1}^{*}, B_{0}=b_{0}^{*}, B_{1}=0 \\
& H_{02}^{*} \rightarrow H_{23}: x_{1}= a_{0}^{*}, x_{2}=a_{1}^{*}, x_{3}=\text { positive value, } x_{4}=x_{3} b_{0}^{*}, \\
& x_{5}=b_{0}^{*}, x_{6}=0 \\
& H_{12}^{*} \rightarrow H_{23}: x_{1}=A_{0}^{*}, x_{2}=A_{1}^{*}, x_{3}=\text { positive value, } x_{4}=B_{0}^{*} x_{3}, \\
& x_{5}=B_{1}^{*} x_{3}+B_{0}^{*}, x_{6}=B_{1}^{*}
\end{aligned}
$$

Two cases were considered for both examples.
In the first case, c_{∞}^{m} is fixed, and

$$
\begin{aligned}
& {\underset{l}{l \infty}}=w_{u_{\infty}}=0 \\
& U(\phi)=\max _{\sim} t_{i} \varepsilon[0, T] \quad\left|e_{i}(\phi)\right|
\end{aligned}
$$

In the second case, c_{∞}^{m} is varied, and

$$
\begin{aligned}
& \mathrm{w}_{\ell \infty}=\mathrm{w}_{\mathrm{u}_{\infty}}=\mathrm{w}_{\infty} \\
& \underset{\sim}{U(\phi)}=\max _{\mathrm{t}_{i} \varepsilon[0, T]}\left[\left(\left|e_{i}(\phi)\right|,-\mathrm{w}_{\infty} e_{\ell \infty}, \mathrm{w}_{\infty} e_{u_{\infty}}\right]\right]
\end{aligned}
$$

A 9th-order nuclear reactor system was chosen for one example, where a step input is considered so that the power level of the reactor system changes from 90 to 100 percent of the full power (See Bereznai 1971
and Section 3.4.7). T was equal to 10 seconds.
The results, shown in Table 5.8, indicate that the increase in order of the model did not produce any large improvement in $\stackrel{\rightharpoonup}{\mathrm{U}}$, the minimum value of U, and in this case a model increase is quite wasteful from the computing viewpoint. On the other hand, an improvement in the transient error at a slight expense on the steady-state error is obtained.

Another system considered was the 7 th-order control system problem mentioned in Section 5.4. T was equal to 8 seconds though the responses shown in Figs. 5.5-5.7 were taken up to 20 seconds. c_{∞}^{s} was equal to 0.11111 . The results are summarized in Table 5.9.
5.5.5 Discussion

The results indicate that when c_{∞}^{m} is fixed increasing the order of the model does improve the transient errors, and it has been shown in Section 5.4.2 that for the third-order model both the 5-ripple and 6ripple solutions satisfy the necessary minimax optimality conditions. It is interesting to note that in all the cases considered, the thirdorder model gives the best result corresponding to the same transient error and three different steady-state errors. Some of the optimal parameters when c_{∞}^{m} is fixed tend to have nearly zero real parts which may make the model oscillatory. Using appropriate parameter constraints (as indicated in an earlier section) satisfactory results can be obtained which would guarantee a minimum damping of the model for a step input.

TABLE 5.8
RESULTS FOR NUCLEAR REACTOR SYSTEM MODELLING

Fig. 5.5(a) Seventh-order system modelling example. Optimal responses for a second- 苂 order model with no zeros.

Fig. 5.5(b) Seventh-order system modelling example. Opeimal error curves for 2 second-order model with no zeros.

Fig. 5.6(a) Seventh-order system modelling example. Optimal responses for a

Fig. 5.6(b) Seventh-order system modelling example. Optimal error curves for a second-order model with one zero.

Fig. 5.7(a) Seventh-order system modelling example. Optimal responses for a third-order model with two zeros.

Fig. 5.7(b) Seventh-order system modelling example. Optimal error curves for a third-order model with two zeros.

TABLE 5.9
RESULTS FOR SEVENTH-ORDER SYSTEM MODELLING

Case	Mode1	1000 U	$\begin{aligned} & 1000 \max \\ & {\left[-e_{\ell \infty}, e_{u_{\infty}}\right]} \end{aligned}$	Fig.
	H_{02}	3.7635		5.5
c_{∞}^{m} fixed at	H_{12}	2.4872		5.6
$c_{i}^{s} \text { for } t_{i}=T$	$\begin{gathered} \mathrm{H}_{23} \\ (6 \quad \text { ripple) } \\ (5 \text { ripple) } \end{gathered}$	$\begin{aligned} & 1.0207 \\ & 1.2140 \end{aligned}$		5.7
c_{∞}^{m} varied	H_{02}	4.1656	4.1656	5.5
$\mathrm{w}_{\infty}=1$	H_{12}	4.1582	4.1582	5.6
$\mathrm{S}_{\ell \infty}=\mathrm{S}_{\mathrm{u} \infty}=\mathrm{C}_{\infty}^{\mathrm{S}}$	H_{23}	1.0201	0.91785	5.7
$\begin{aligned} & c_{\infty}^{m} \text { varied } \\ & w_{\infty}=10^{6} \end{aligned}$	H_{02} H_{12}	7.7657 7.8624	$\begin{aligned} & 7.6945 \\ & \times 10^{-6} \\ & 0 . \end{aligned}$	-
$\begin{aligned} & S_{\ell \infty}=0.11061 \\ & S_{U_{0}}=0.11161 \end{aligned}$	H_{23}	1.0201	$\begin{gathered} 9.8483 \\ \times 10^{-7} \end{gathered}$	-

5.6 Conclusions

The lower-order modelling of high-order systems for minimax objectives has been considered in detail, and the grazor search method has been critically compared with efficient minimization methods for least pth objectives. The grazor search method is very reliable, and the Fletcher method has been observed to be both reliable and efficient. The ideas proposed in this chapter make it possible to automate the modelling procedure, and with the availability of efficient optimization techniques, on-line system modelling and control is entirely feasible. The suggested procedures can be effectively used to get desired optimal models in the minimax sense within user-specified computing times and error allowances.

CHAPTER VI

DISCUSSION AND CONCLUSIONS

The thesis covers the areas of minimax approximation methods as applied to electrical network design and system modelling in great detail. A reliable algorithm has been proposed and applied to a variety of practical minimax design problems. The method has been critically compared with existing methods for efficiency and reliability, and works very well on most of the problems considered. The philosophy of system modelling is discussed at length, including various techniques involved in implementing the models. Automated modelling and design of highorder systems is shown to be feasible, and the present state of minimax circuit design is considered in detail.

The new ideas presented in the thesis have been verified and used in computer-aided design of a variety of electrical networks subject to different objectives and various constraint specifications. Filters can now easily be designed to meet upper and lower response specifications at predetermined frequencies, within reasonable computing time and desired accuracy. The choice of a circuit model and objective function are as important as the choice of a reliable and efficient optimization technique to give optimal model parameters. If suitable optimization techniques or modelling procedures do not exist for a particular system, the designer is confronted with the task of improving the modelling technique and developing an efficient algorithm to evolve a realistic design. This involves a great deal of system experience and
expertise in the state of the art methods of computer-aided design. The contributions of this work may be listed as follows.
(1) A new method called the grazor search algorithm has been proposed for minimax objectives. This method has been tested extensively on a number of problems including electrical network design and system modelling.
(2) A practical way of accommodating constraints in the minimax optimization problem has been proposed and applied to some problems.
(3) Methods for investigating a solution for minimax optimality have been proposed and used to test the optimality conditions on a variety of design problems.
(4) The grazor search method has been critically compared on lowerorder minimax modelling of a high-order system with three efficient methods.
(5) Some ideas have been presented for automated system modelling, by means of which the order of the models can be increased in an automated fashion whenever certain criteria are satisfied, and optimality conditions can be directly implemented on the computer. Suitable transient and steady-state constraints can also be taken into account. The proposed approach makes it feasible to automate on-1ine modelling.
(6) The grazor search method and the method for investigating minimax optimality conditions have been programmed on a digital computer and user-oriented computer program packages have been developed.

It is felt that replacing the present linear search by a more efficient search technique will improve the efficiency of the grazor search algorithm. Further, the concept of automated modelling could be extended to include automated control so that it may be applicable to on-line system modelling and control.

APPENDIX A
 GRAZOR SEARCH PROGRAM FOR MINIMAX OPTIMIZATION

A. 1 Introduction

The grazor search program is a package of subroutines that optimizes the designable parameters of networks or systems to meet minimax objectives. Full details of the method, including mathematical flow charts and a discussion of computational experience, have already been covered in Chapters III, IV and V. A computer program written in Fortran (Version 2.3 and Scope Version 3.3 for the CDC 6400 computer) is listed at the end of this Appendix.

A. 2 Nomenclature

The following is a list of some of the arguments and important variables of the grazor search package as indicated in the flow charts of Figs. 3.2-3.4.
$\alpha \quad$ scale factor for determining the magnitude of the parameter step to be taken at the end of linear program
initial specified value of α, previous value of α which gave a satisfactory improvement
minimum allowable α
β reduction factor for α
γ^{*} factor of the step $\Delta \phi_{\sim}^{0}$ which gives the best new point, when starting from ${\underset{\sim}{0}}^{0}$
number of discrete maxima under consideration, k_{r}, is increased by one (if $k_{r} \leq n_{r}-1$) or set equal to one (if $k_{r}=n_{r}$) if the improvement of the objective function at the new best point as compared to the value at the previous point is less than this quantity
main program is eventually terminated if the improvement of objective function at the new best point as compared to the value at the previous point is repeatedly less than this quantity specified factor of the initial interval of linear search which determines the final resolution between two internal points of the search
current point
starting point, current best point
increment from ${\underset{\sim}{~}}^{0}$ which gives the first improved point obtained in each iteration on entering the linear search
ith sample point sample points corresponding to the \hat{y}_{i} sample points corresponding to the $y_{o i}$ logical variable; if .TRUE. the $\underset{\sim}{\nabla} y_{i}$ are calculated, otherwise they are not calculated identifies the ith highest of the $y_{o j}$ dimensionality of parameter space number of local discrete maxima \hat{y}_{i} under consideration number of sample points ψ_{i} available number of discrete local maxima \hat{y}_{i} value of the objective function at $\underset{\sim}{\phi}$
$\mathrm{U}_{\phi 0}$
y_{i}
${ }^{\wedge}$
y_{i}
\sim_{i}
$y_{o j}$
TERM
value of the objective function at ϕ_{\sim}^{0} function value at ψ_{i} for a given ${ }_{\sim}$ ith highest discrete local maximum gradient of y_{i} with respect to $\underset{\sim}{\phi}$ discrete local maxima implied by the y_{i} logical variable, initially set to .FALSE., is reset to. TRUE, only if there are failures or improvements in objective function value less than ε^{\prime} after considering values of k_{r} from 1 to n_{r} in one complete cycle.
A. 3 Program Description

The user may call the package from his own program as follows. CALL GRAZOR (ALPHAO,ALPMIN,BETA,EPS,EPS1,ETA,PHO,PSI,K,KR,N, NR,UPHO,TERM)

The variables in the argument list are:
FORTRAN Name Variable

ALPHAO	α_{0}
ALPMIN	$\stackrel{\alpha}{2}$
BETA	β
EPS	ε
EPS1	ε^{\prime}
ETA	η
PHO	ϕ^{0}
PSI	ψ_{i}

K	k
KR	k_{r}
N	n
NR	$\mathrm{n}_{\mathbf{r}}$
UPHO	$\mathrm{U}_{\phi \mathrm{O}}$
TERM	TERM

The input variables are $\alpha_{0}, \check{\alpha}, \beta, \varepsilon, \varepsilon^{\prime}, \eta,{\underset{\sim}{~}}^{o}, \psi_{i}, k, k_{r}$ and n while the output variables are $\alpha_{0},{\underset{\sim}{~}}^{0}, k_{r}, n_{r}, U_{\phi 0}$ and TERM.

It was convenient to place the following user-specified variables in

COMMON/GRZR/NCOUNT, IPRINT, UNIT, IOPT, IDATA
NCOUNT number of function evaluations at any stage of the iterative cycle of grazor, is initially set to zero by the user.

IPRINT logical variable which, if .TRUE., enables all intermediate and final results to be printed out, and no print-outs otherwise.

UNIT integer variable specifying the data set reference number of the output unit.

IOPT integer variable denoting the number of times grazor search package was called by the user, is set to zero initially by the user.

IDATA logical variable which, if .TRUE., enables the input data to be printed out; otherwise not.

Fig. A.l shows a typical main program for calling the package and the form of a typical analysis program while Fig. A. 2 shows typical print-outs of the package.

```
A TYPICAL MAIN PROGRAM FOR THE GRAZOR SLARCH ALGORITHM
    FOLLOWS-------
    DIMENSION PHO(15),PSI(11)
    LOGICAL TERM,IPRINT,IDATA
    INTEGER UNIT
    COMMON/GRZR/NCOUNT,IPRINT,UNIT,IOPT,IUATA
    TYPICAL INPUT VALUES FOLLOW
    ALPHAO=1.
    ALPMIN=1.0E-06
    BETA=10.
    ETA=0.01
    KR=1
    NCOUNT =0
    IOPT=0
```

INPUT VALUES FOR THE SPECIFIC PROBLEM FOLLOW
IPRINT=.TRUE.
IDATA=•TRUE.
UNIT $=6$
$E P S=1 \cdot 0 E-03$
$E P S 1=1 \cdot 0 E-06$
$K=2$
$\mathrm{N}=11$
PHO(1)=1.
PHO (2) $=3$.
PSI $(1)=0.5$
DO $11=2, N$
$\operatorname{PSI}(I)=\operatorname{PSI}(I-1)+0.1$
MINIMAX OPTIMIZATION STARTS
DO 2 I=1,100
CALL GRAZOR(ALPHAO,ALPMIN,BETA,EPS,EPSI,ETA,PHU,PSI,K,KK,
1N,NR,UPHO,TERM)
IF(TERM) GO TO 3
CONTINUE
STOPEND

A TYPICAL ANALYSIS PROGRAM FOR GRAZOR SEARCH ALGURITHM
FOLLOWS-------
SUBROUTINE ANAL (PHO,F,DERIV,K,Y,GRADY)
DIMENSION PHO(I),GRADY(1)
LOGICAL DERIV
the value of y at a single sample point f is calculated HERE
IF (.NOT.DERIV) RETURN
THE DERIVATIVES GRADY(1),GRADY(2),...,GRADY(K) OF THE FUNCTION Y WITH RESPECT TO PARAMETERS PHO(1', PHO (2),...,
PHO(K) ARE CALCULATED HERE
RETURN
END

Fig. A: 1 Typical main program and analysis program for the grazor search package

A. 4 Subprograms

The subroutine $\operatorname{ANAL}\left(\underset{\sim}{\phi}, \psi_{i}, \operatorname{DERIV}, k, y_{i}, \underset{\sim}{\nabla} y_{i}\right)$ is a user-supplied analysis program to evaluate y_{i} and/or $\underset{\sim}{\nabla} y_{i}$ at a given point $\underset{\sim}{\phi}$. If DERIV is .TRUE., the $\underset{\sim}{\nabla y_{i}}$ are calculated, otherwise they are not calculated.

The following subroutine need not be written by the user, but is part of the grazor search package. The function subprogram $\underset{\sim}{Y}\left(\phi_{i}, \psi_{i}, k\right)$ calculates the y_{i} corresponding to the point ϕ_{\sim} by calling ANAL. The subroutine LOCATE $\left(\underset{\sim}{(}, \psi_{i}, k, n, U_{\phi}\right)$ evaluates the objective function U_{ϕ} by calling $\left.\underset{\sim}{\mathrm{Y}} \underset{\sim}{\phi}, \psi_{i}, k\right)$ for $i=1,2, \ldots, n$. The grazor search package also uses a linear program solving routine called SIMPLE (see Subroutine SIMPLE), which is a modified version of a program documented with the SHARE Distribution Agency, and written by R.J. Clasen (Reference No. SDA 3384). Section A. 7 includes a listing of this subroutine.

A. 5 Comments

As it stands the package has been programmed to handle up to 15 variable parameters and 15 ripples. The choice of input parameters including scale factors may be critical to efficiency of the algorithm, and the grazor search strategy should be well-understood before the user attempts to use this program.

This program was run and tested on a CDC 6400 computer. The Fortran deck consists of 901 cards which includes detailed comments at appropriate places. The package requires roughly 20,000 octal units of computer memory.

A. 6 Discussion

The grazor search algorithm has been programmed in such a way that it allows a certain amount of flexibility to the user. Thus, when GRAZOR is called once, one complete iterative step of the algorithm results, and by introducing GRAZOR in a DO loop, the user has the complete freedom to make his own decision about termination subject to his own convergence criteria, or printing out intermediate results according to a preferred format, or branching out to another optimization package if desired. Appropriate diagnostic messages are provided in the program wherever necessary.

As this is a gradient strategy, it is important that the gradients as evaluated by the analysis program are correct.

A. 7 Grazor Search Fortran Program Listing

the value of y at a given sample puint f is calculated here 60
IF(.NOT.DERIV) RETURN 61
THE DERIVATIVES GRADY(1),GRADY(2),.....gRADY(K) OF THE FUNCTION Y 62
WITH RESPECT TO PARAMETERS PHO(1),PHO(2),.....,PHO(K) ARE 63
CALCULATED HERE 64
RETURN 65
END 66A 67
6869 70
SUBROUTINE GRAZOR
SUBROUTINE GRAZOR SUBROUTINE GRAZOR IALPHAO,ALPMIN,BETA,EPS,EPSI,ETA,PHO,PSI,K,KR,N, A 71
INR,UPHO,TERM) 72
A 73
THE USER HAS TO SPECIFY VALUES FOK ALPHAU,ALPMIN,BETA,EPS,EPSI,ETA 74 75
, PHO,PSI,K,KR,N 76
STARTING VALUES ---------- 7877
ALPHAO=1.
BETA $=10$. 79
80
$K R=1$ 81
SUGG SUGGESTED STARTING VALUES 82
ALPMIN=1.0E-06 83
ETA=0.0184
EPSI, THE MINIMUM IMPROVEMENT IN THE OBJECTIVE FUNCTION BETWEEN 85
SUCCESSIVE ITERATIONS MUST BE SPECIFIED BY THE USER SUCCESSIVE ITERATIONS,MUST BE SPECIFIED BY THE USER 86
EPS=EPSI*1000. 8788
THE FOLLOWING COMMON STATEMENT IS TO BE SPECIFIED BY THE USER 89 90
COMMON/GRZR/NCOUNT, IPRINT, UNIT, IOPT, IDATA 91
NCOUNT=NUMBER OF FUNCTION EVALUATIONS AT ANY STAGE OF THE 42
ITERATIVE CYCLE OF GRAZOR 93
NCOUNT IS INITIALLY SET TO ZERO BY THE USER 94
IOPT CORRESPONDS TO AN ITERATIVE CYCLE OF THE GRAZOR SEARCH ALGORI 95
THM, AND IS THE NUMBER OF TIMES OPTIMIZATION PACKAGE GKAZOR HAS 96
BEEN CALLEU.IOPT IS INITIALLY SET TU ZERO BY THE USER 47
IF IPRINT IS •TRUE. ALL INTERMEDIATE ANU FINAL KESULTS ARE TU BE 98
PRINTED OUT,OTHERWISE THERE ARE NO URINT-OUTS 99
UNit is an integer variable specifying the data set reference 100
NUMBER OF THE OUTPUT UNIT A 101
IF IDATA IS . TRUE. THE INPUT DATA IS PRINTED OUT,OTHERWISE NUT A 102
THE USER HAS TO SPECIFY VALUES FOK IPRINT,UNIT,IDATA A 103
A 104
A 105
the variables psi and pho have to be dimensioned in the calling prA 106
OGRAM CORRESPONDING TO MAXIMUM VALUES OF N,AND K($=15$), RESPECTIVELY A 107THE USER HAS TO INDICATE IN HIS MAIN PROGRAM THAT TERM,IPRINT,idata are logical variables and that unit is an integer variableIF TERM IS . TRUE. AT THE END OF AN ITERATIVE CYCLE OF GRAZOR,A 108A 109the user has to decrease the values of alpmin and eta beforeA 110A 111
GRAZOR CAN BE CALLED AGAIN IN THE MAIN PROGRAM Grazor can be called again in the main programA 112
THE USER HAS TO FURNISH SUBROUTINE ANAL FOR IMPLEMENTING THE A 113GRAZOR SEARCH STRATEGYA 114
A 115

c	THE FOLLOWING IS A BRIEF SUMMARY OF THE VARIABLES IN GRAZOK-	A 117
c	PHO = THE PARAMETER VECTOR.It is elther the starting point or the	A 118
c	CURRENT BEST POINT	A 119
c	PHI = CURRENT PARAMETER VECTOR	A $1<0$
c	$K=$ NUMBER OF PARAMETERS PHO	A 121
c	PSI = VECTOR OF SAMPLE POINTS	A 122
c	$N=$ NUMBER OF SAMPLE POINTS PSI	A 123
c	UPHO = OBJFCTIVE FUNCTION AT PHO	A 124
c	UPHI = OBJECTIVE FUNCTION AT PHI	A 125
C	YMAX $=$ VECTOR CONSISTING OF THE LOCAL DISCRETE MAXIMA IMPLIED BY	A 126
c	THE FUNCTIONS Y, ARRANGEL IN UECREASING MAGNITULE, OVER N SAMPLE	A 127
c	POINTS PSI	A 128
c	PSIMAX = VECTOR OF SAMPLE POINTS COKRESPONDING TO THE VECTOR YMAX	A 129
C	NR = NUMBER OF DISCRETE LOCAL MAXIMA YMAX	A 130
c	KR = NUMBER OF DISCRETE LOCAL MAXIMA YMAX UNDER CONSIUERATION.KR IS	A 131
C	LESS THAN OR EQUAL TO NR	A 132
c	GRAD = MATRIX OF FIRST DERIVATIVES OF VECTOR YMAX WITH RESPECT	A 133
c	to the parameters Pho	A 134
c	TERM = LOGICAL VARIABLE WHICH, IF TRUL, INDICATES THE CUNVERGEINCE OF	A 135
C	THE GRAZOR SEARCH ALGORITHM	A 136
c		A 137
c		A 138
c	THE DIMENSION OF SUBSCRIPTED VARIABLES IN GRAZOR CORKESPOND TU	A 139
C	MAXIMUM VALUES OF K=15 AND NR $=15$	A 140
C	THE SUBSCRIPTED VARIABLES UUMMY,PHI, DELPHI, DELPHN, DELP ARE	A 141
C	DIMENSIONED CORRESPONDING TO A MAXIMUM VALUE OF $K=15$	A 142
C	THE SUBSCRIPTED VARIABLES YMAX, PSIMAX ARE DIMENSIONED	A 143
c	CORRESPONDING TO A MAXIMUM VALUE OF NR=15	A 144
c	MATRIX GRAD IS DIMENSIONED CORRESPUIVDING TO MAXIMUM VALUES UF	A 145
C	$N R=15$ AND $K=15$	A 146
C		A 147
c		A 148
c	THE USER HAS TO SUPPLY AN ANALYSIS PRUGRAM AND THE FULLUWING IS A	A 149
C	BRIEF DESCRIPTION OF ITS ARGUMENTS	A 150
c	SUBROUTINE ANAL (PHO,F,DERIV,K,Y,GRADY) CALCULATES THL VALUL UF	A 151
C	FUNCTION Y AND ITS FIRST PARTIAL UERIVATIVES GRAUY(1), GRAUY(2),...	A 152
c	..,GRADY(K. WITH RESPECT TO THE PARAMETERS PHO(1),PHO(2,...........	A 153
c	..,PHO(K) FOR A GIVEN SAMPLE POINT F	A 154
c	PHO AND GRADY ARE TO BE VARIABLE-DIMENSIONED IN ANAL,OR	A 155
c	DIMENSIONED CORRESPONDING TO THE MAXIMUM VALUE FOR K ($=15$)	A 156
c	DERIV = LOGICAL VARIABLE WHICH, IF TRUE, ALLOWS THE GRADY TO BE	A 157
c	EVALUATED, OTHERWISE GRADY ARE NOT EVALUATED	A 158
c		A 159
C		A 160
	DIMENSION PHO(1), PSI(1), DUMMY(15), PHI(15), YMAX(15), PSIMAX(15)	A 161
	1, GRAD (15,15), DELPHI(15), DELPHN(15), DELP(15), X(31), A(16,31),	A 162
	2R(16), C(31), KO(6), PS(16), JH(16), XX(16), YY(16), PE(16), E(16,	A 163
	2161	A 164
	LOGICAL TERM,IPRINT,IDATA	A 165
	INTEGER UNIT	A 166
	COMMON /GRZR/ NCOUNT,IPKINT,UNIT,IOPT,IDATA	A 167
	$I O P T=I O P T+1$	A 168
	IF (NCOUNT.EQ.O) TERM=.FALSE.	A 169
	IF (T İRM) GO TO 32	A 170
	ALPHA $=$ ALPHAO	A 171
	ALPHAT = ALPHAO	A 172
	$1 \mathrm{CLOCK}=0$	A 173

 ISTOP \(=0 \quad\) A 174
 1 CALL SELEC (PHO,PSI,PSIMAX,K,N,NR,YMAX)
A 175
UPHO = YMAX (1)
NCOUNT = NCOUNT +1
A 176
A 177
IF (NCOUNT.GE.2) GO TO 2
A 178
IF (IDATA) WRITE (UNIT,38) ALPHAO,ALPMIN,BETA,EPS,EPSI,ETA,K,KR,N*
1 TERM, $(I, P H O(I), I=1, K)$
A 179
A 180
IF (IDATA) WRITE (UNIT, 39) ($1, P S I(I), I=1, N$)
IF (IPRINT) WRITE (UNIT, 34) 1 OPT,NCOUNT,UPHO, (PHO(I),I=1,K)
IF (ICLOCK.GT.1) GO TO 3
IF (KR.NE. 1) GO TO 4
$K R=1$
DO. $6 \mathrm{~L}=1, \mathrm{KR}$
CALL ANAL (PHO,PSIMAX(L), ©TRUE., K,YMAX(L),DUMMY)
DO $5 \quad I=1, K$
GRAD (L, I) = DUMMY(I)
CONTINUE
CONTINUE
IF (KR.EQ.1) GO TO 22
$K R 1=K R+1$
$K R 2=K R+2$
$K R 3=K R 1+K R$
DO $9 I=1, K R$
DO $8 \mathrm{~J}=1, K R$
IF (I.GT.J) GO TO 8
A(I, J) $=0$ 。
DO $7 M M=1, K$
$A(I, J)=A(I, J)-G R A D(I, M M) * G R A D(J, M M)$
CONT INUE
$A(J, I)=A(I, J)$
CONT INUE
CONT INUE
DO $10 \quad 1=19$ KR
$A(I, K R 1)=1.0$
10 CONTINUE
DO $12 \quad I=1$, KR
DO $11 J=K R 2$, KR 3
$A(I, J)=0$. 0
IF (J.FQ•(I+KRI)) $A(I, J)=1.0$
CONTINUE
CONT INUE
DO $13 \mathrm{~J}=1, \mathrm{KR}$
$A(K R 1, J)=100$
CONTINUE
DO $14 J=K R 1, K R 2$
$A(K R I, J)=0.0$
CONTINUE
DO $15 \quad \mathrm{I}=1, \mathrm{KR}$
$B(I)=0.0$
CONTINUE
$B(K R 1)=1.0$
DO $16 \mathrm{I}=1, \mathrm{KR} 3$
$C(I)=0.0$
IF (I.FQ.KR1) C(I) $=-1.0$
CONT INUE
16
$\stackrel{c}{c}$

A 231
CHOICE TO THIS SUBROUTINE IS ALLOWABLE FOR THE USER AS LONG AS IT PERFORMS THE FOLLOWING OPERATION~-ー---
SUBROUTINE SIMPLE SOLVES A LINEAR PROGRAMMING PROBLEM OF
MINIMIZING C*X SUßJECT TO A*X $=B$, WHERE X, C, B ARE VECTORS OF LENGTH KR3,KR3,KR1 RESPECTIVELY,AND A IS A MATRIX OF SIZE KRI*KR3

SUBROUTINE SIMPLE ATTACHED TU THIS PACKAGE IS A MOUIFIED VERSION OF A PROGRAM AVAILAGLE WITH SHARE UISTRIBUTION AGENCYOREFERENCE NUMBER SDA 3384 AND WRITTEN BY R.J.CLASEN
THE MODIFIED VERSION IS IN THE MCMASTER UNIVERSITY LATA PROCESSING
AND COMPUTING CENTRE LIBRARY, INFORMATION SHEET MILIS 5.3 .130
NA AND IFLAG ARE TO BE SPECIFIED BEFORE CALLING SIMPLE IFLAG IS SET EQUAL TO ZLRO
NA IS THE FIRST DIMENSION UF THE ARKAY A AND IS ذET EGUAL TU THE MAXIMUM VALUE OF $N R+1(=16)$
X IS THE VECTOR OF DIMENSION $2 * N A-1$
THE FOLLOWING SUBSCRIPTED VARIABLES ARE PART OF THE ARGUMENT LIST OF SIMPLE AND ARE TEMPORARY STORAGE SPACES TO BE DIMENSIONED IN THE CALLING PROGRAM (GRAZOR)
PS, JH, $X X$, YY AND PE. ARE TEMPORARY STORAGE VECTORS OF DIMENSION NA E IS A TEMPORARY STORAGE MATKIX OF UIMENSION. (NA,NA*2-I) KO IS A VECTOR OF LENGTH G•UPON COMPLETIUN OF THE EXECUTION OF SIMPLE, KO(I)=0 IF THE LINEAR PROGRAMMING PROBLEM WAS FEASIBLE. THE SOLUTION LIES [N $\times(J), J=1, K R 3$

IFLAG=0
$N A=16$
CALL SIMPLE (IFLAG,KRI,KR3,A,B,C,KO,X,PS,JH,XX,YY,PE,E,NA)

DO $13 \mathrm{~J}=1, \mathrm{~K}$
DELPHI $(J)=0.0$
DO 17 I = 1 , KR
DFLPHI (J) =DFLPHI (J)-X(I)*GRAD(I,J)
CONT INUF
CONTINUE
THE INCREMENTAL PARAMETER STEP DELHHI IS NORMALIZED TO UNIT
LENGTH BY SUBROUTINE NOKM
(ALL NORM (K,DELPHI,DELPHN)
THE LINEAR SEARCH BEGINS
ALPHA IS A SCALE FACTOR FOR DETERMINING THE MAGNITUDE OF THE
NORMALIZED STEP DELPHN TO BE TAKEN FOR THE LINEAR SEARCH
ALPHAO IS THE INITIALLY SPLCIFIED VALUE UF ALPHA UR THE PKEVIUUS
VALUE OF ALPHA WHICH GAVE A SATISHACTURY IMPROVEMENT
ALPMIN IS THE MINIMUM ALLOWABLE ALPHA
IF (ALPHA.LT.ALPMIN) ALPHA=ALPMIN
DO $21 \mathrm{I}=1$, K
PHI (I) $=$ PHO (I) +ALPHA*DELPHN(I)
CONT INUE
GO TO 24
22

A 232
A 233
A 234
A 235
A 236
A 237
A 236
A 239
A 240
A 241
A 242
A 243
A 244
A 245
A <46
A 247
A 248
A 249
A 250
A 251
A 252
A <53
A <54
A 255
A 256
A 257
A 258
A 259
A 260
A 261
A 262
A 263
A 264
A 265
A 266
A 267
A 268
A 269
A 270
A 271
A 272
A 273
A 274
A 275
A 276
A 277
A <76
A 279
A 280
A 281
A 282
A 283
A 284
A 285
A 286
A 287

23	CONTINUE	A 288
	GOTO 19	A 289
24	CALL LOCATE (PHI,PSI,K,N,UPHI)	A 290
	NCOUNT = NCOUNT+1	A 291
	IF (UPHI.LT•UPHO) GO TO 25	A 292
	IF (ALPHA.EQ.ALPMIN) GO TO 30	A 293
C		A 294
C	ALPHA REDUCED BY FACTORS OF BETA	A 295
C		A 296
	$A L P H A=A L P H A / B F T A$	A 297
	IF (ALPHA.LE•ALPMIN) ALPHA=ALPMIN	A 298
	GO TO 20	A 299
25	$\begin{aligned} & \text { DO } 26 \text { I }=1, K \\ & \text { DELP }(I)=A L P H A * D E L P H N(I) \end{aligned}$	$\begin{array}{ll} A & 300 \\ A & 301 \end{array}$
26	CONTINUE	A 302
C		A 303
C	DELP = INCREMENT FROM PHO WHICH GIVES THE FIRST IMPROVED POINT	A 304
C	OBTAINED ON ENTERING THE LINEAR SEARCH	A 305
C	ETA IS THE SPECIFIED FACTOR OF THE INITIAL INTEKVAL OF LINEAR	A 306
C	SEARCH WHICH DETERMINES THE FINAL RESOLUTION BETWEEN TWO INTERNAL	A 307
C	POINTS OF THE SEARCH	A 308
C		A 309
	FINT = ETA	A 310
	CALL GOLDEN (GAMA,FINT,PHI,PHO,DELP,PSI,K,N,UPHI, UPHU)	A 311
C		A 312
C	TERM IS SET TO - TRUE. AND GRAZOR RETURNS TO THE CALLING PROGRAM IF	A 313
C	UPHO-UPHI IS REPEATEDLY LESS THAN EPSI	A 314
C		A 315
	IF ((UPHO-UPHI).LT.EPSI) GO TO 30	A 316
	ISTOP $=0$	A 317
	DO. $27 \mathrm{I}=1, \mathrm{~K}$	A 318
	PHO(I) $=$ PHI(I)	A 319
27	CONT INUE	A 320
	IF (IPRINT) WRITE (UNIT, 37) IOPT,NCOUNT, UPHI, (PHO(I), I=I,K)	A 321
C		A 322
C	IF THE OBJECTIVE FUNCTION UPHI AT A NEW POINT PHI IS LESS THAN THE	A 323
C	VALUE UPHO AT THE PREVIOUS PUINT PHU BY A VALUE GREATLR THAN UR	A 324
C	EQUAL TO EPS, THE NEW POINT IS CONSIUEREU A SATISFACTORY	A $3<5$
C	IMPROVEMENT. IF NOT,KR IS INCREMENTED BY 1 IFOR.KR LESS THAN OR	A 326
C	EQUAL TO NR-1) OR SET EQUAL TO 1 (FUR KR=NR)	A 327
C		A 328
	IF ((UPHO-UPHI).LT.EPS) GO TO 31	A 329
	UPHO = UPHI	A 330
	$A L P H A O=A L P H A * G A M A$	A 331
	GO TO 33	A 332
28	$1 C L O C K=1 C L O C K+1$	A 333
	IF (ISTOP.EQ.0) GO TO 1	A 334
	IF (ISTOP.LE.NR) GO TO 3	A 335
	TERM=.TRUE.	A 336
	WRITE (UNIT,35) EPSI	A 337
	GO TO 33	A 338
29	IF (KR.EQ.NR) GO TO 28	A 339
	$K R=K R+1$	A 340
	$1 \mathrm{CLOCK}=1$	A 341
	IF (ISTOP.EQ.O) GO TO 1	A 342
	GO TO 4	A 343
30	ALPHA = ALPHAT	A 344

```
        15TOP=15TOP+1
        GO TO }2
    UPHO=UPHI
    UPHO=UPHI 
    GO TO }2
    WRITE (UNIT,36)
    RETURN
FURMAT（＊1＊／43X，＊THE GRAZOK SEAKCH STRATEGY FUR MINIMAX OUJECTIV
        1FS */43X,*-----------------------------------------------
        2*NUMBER OF GRAZOR CALLS*,BX,*NUMBEK OF FUNCTIUN EVALUATIUNS*,7X;*M
        3INIMAX UBJLCTIVE FUNCTION*,1OX,*VAKIABLE PARAMETER VECTUK*//1bX,*I
        4OPT*,30X,*NCOUNT*,30X,*UPHO#,32X,*PHO*////14X,I5,30X,I5,23X,E16.8.
    518X,E16.8/(111X,E16.8))
    FORMAT (* TERM=.TRUE.,IMPROVEMENT IN UBJECTIVE FUNCTIUN LESS THAN A 361
        1EPS1=*,E16.8)
    RETIRN
    FORMAT (*1 */43X,* THE GKAZOK SEAKCH STKATEGY FUR MINIMAX OEJLCTIV A 355
    FORMAI (* THE GRAZOR SEARCH RUUTIINE CANNUT KESTART AS TEKM IS EGUA
        1L TO.TRUE. FRUM THE PREVIUUS ITEIRATION, ANU COINVLRUENCE CKITEKIUNN A }26
        2 HAS UEEN*/* REACHED FOR A SPECIFIEU EPSI.THE UNLY WAY TU RESTAKI A 36G
        3IS TO DECREASE THE VALUES OF ALPMIN. AND ETA. *I
    FORMAT (//14X,I5,30X,I5,23X,E16.8,18X,El6.8/(111XX,El6.8))
    FORMAT (49x,* THE FOLLOWING IS A LIST OF INPUT DATA*/49X,**--..----
    1-------*/155X,*ALPHAO =*,E16.8/55X,*ALPM
    2IN =*,E16.8/55X,*BETA =*,E16.8/55XX*EHSS =*,E16.8/55X,*K =*,E16.8/55X,*EE
    \IN =*,E16.8/55X,*BETA =*,E16.8/55XX*EPS =*,E16.8/55X,*K =*,E16.8/55X,*E
```



```
    5,13,*) =*,E16.81)
    FURMAT (/(8X,*PSI(*,I3,*)=*,El6.8,bx,*PSI(*,I3,*)=*,t16.*,bx,*PSI(
    1*,I3,*)=*,E16.8,5X,*PSI(*,I3,*)=*,t16.8)।
    FND
        =*,lb/bうX0*TERM =*,Lっ//(b)X&*PHU(*
```

 A 345
 A 346
 c
C
A 347
A 348
A 349
A 350
A 351
A 352
A 353
A 354
A 356
A 357
A 358
A 359
A 375
376
A 377
A 378
A 379-

SUBROUTINE SELEC (PHI,PSI,PSIMAX,K,N,NK, YMAX)
In this subroutine the ripples uf trit runctiuns y at a puint rhi
OVER N SAMPLE POINTS PSI ARE LUCATE
MAGN I TUDE
ITAG, PMAX, MAAX ARE DIMENSIONED CUKKESPONDING TU A MAXImUM VALUL
OF $N R=15$
MAX = DISCRETE LOCAL MAXIMA IMPLIEU BY THE FUNCTIUNS Y AT A FUINT
PHI AS SAMPLING PROCEEUS FRUM PSIII' TO PSIIN)
PMAX $=$ SAMPIE POINTS CORRESPONDING TO MAX
DIMENSION PSI(1), PHI(11, YMAX(1), HSIMAX(1), ITAG(1り), PMAX(1り),
IMAX(1)
REAL MAX
$N R=1$
PMAX(1)=PSI(1)
$\operatorname{MAX}(1)=Y(P H I, P S I(1), K)$
$Y Z=\operatorname{MAX}(1)$
1
$<$
A 360
A 361
A 366
A 367

	15 TOP $=15$ TOP +1	A	345
	GO TO 79	A	346
31	UPHO＝UPHI	A	347
	$A L P H A=A L P H A T$	A	348
	GO TO 29	A	349
32	WRITE（UNIT，36）	A	350
33	RETURN	A	351
C		A	352
C		A	353
C		A	354
34	FURMAT（＊1＊／43x，＊THE GRAZOK SEAKCH STKATEGY FUK MINIMAX OUJLCTIV	A	355
	 2＊NUMBER OF GRAZOR CALLS＊，BX，＊NUMBEK OF FUNCTIUN EVALUATIUNS＊，7X；＊M	A	$\begin{aligned} & 356 \\ & 357 \end{aligned}$
	3INIMAX UBJLCTIVE FUNCTION＊， 10 X ，＊VAKIABLE PARAMETER VECTUK＊／／15X，＊I	A	358
		A	359
	518X，E16．8／（111X，E16．8））	A	360
35	FORMAT（＊TERM＝．TRUE．，IMPRUVEMENT IN UBJECTIVE FUNCTIUN LESS THAN	A	361
	1EPSI $=$＊，E16．8）	A	362
36	FORMAI（＊THE GRAZOR SEARCH RUUTIINE CANNUT KESTART AS TEKM IS EUUA	A	363
	1L TO－TRUE．FRUM THE PREVIUUS ITEKATION，ANU CONVERUENCE LKITEKIUIV	A	364
	2 HAS UEEN＊／＊REACHED FOR A SPECIFIEU EPSI．THE UIVLY WAY TU RESTAKI	A	365
	3IS TO DECREASE THE VALUES OF ALPMIN．AND ETA．＊1	A	366
37	FORMAT（／114X，I5，30X，I5，23X，E16．8，18X，E16．8／（111X，E16．8））	A	367
38		A	368
	1－－－－－－－－－－－－＊／155X，＊ALPHAO $=*, E 16.8 / 55 \mathrm{X}$ ，＊ALPM	A	364
		A	370
		A	371
		A	372
	5，13，＊）$=*, E 16.81)$	A	373
39	FURMAT（／18X，＊PSI（＊，13，＊）＝＊，E16．8，bx，＊PSI（＊，I3，＊）＝＊，	A	374
	1＊，I3，＊）＝＊，E16．8，5X，＊PS1（＊，13，＊）＝＊，（16．8）	A	375
	FND	A	376
\bigcirc		A	377
c		A	378
C		A	$379-$
c		B	1
c		B	$<$
	SUBROUTINE SELEC（PHI，PSI，PSIMAX，K，N，NR，YMAX）	B	3
c		8	4
C		B	b
c$C$$C$	In this subroutine the riprles uf the runctiuns y at a puint rhi	\square	6
	OVER N SAMPLE POINTS PSI ARE LUCATE ${ }^{\text {P }}$ AND SORTEU CUT IN DECREASING	b	7
	MAGN ITUDE	B	\bigcirc
c	ITAG，PMAX，max are dimensioned cukkesponding tu a maximum valul	－	y
C	OF $N R=15$	B	10
c	MAX＝DISCRETE LOCAL MAXIMA IMPLIEU BY THE FUNCTIUNS Y AT A ruint	B	11
C	PHI AS SAMPLING PROCEEUS FRUM PSI（1）TO PSI（N）	B	$1<$
	PMAX $=$ SAMPIE POINTS CORRESPONDING TO MAX	B	13
c		B	14
C		B	15
	DIMENSION PSI（1），PHI（1），YMAX（1），HSIMAX（1），ITAG（1），PMAX（1）${ }^{\text {（1）}}$	B	10
	1 MAX（l）	b	17
	REAL MAX	B	18
	NR＝1	B	19
	PMAX（1）＝PSI（1）	B	20
	$\operatorname{MAX}(1)=Y(P H I, P S I(1), K)$	B	21
	$Y \mathrm{Z}=\mathrm{MAX}(1)$	B	22

```
        KD=1 B 23
        DO 4 I=2,N
        B 24
        YX=Y(PHI,PSI(I),K) 25
        IF (YX-YZ) 1,1,2 B 26
        KD=-1 B 27
        GO TO 3 B 28
        YMAXT=YX 29
        LT=I
        IF.(KD.EQ.-1) NR=NR+1
        KD=1
        KDE1 (NR) =PSI (T) )
        PMAX(NR)
        MMAX(NR)=PSI(LT)
        MAX(NR)=YMAXT
        YZ=YX 隹 35
        CONTINUE B 36
```



```
        4
        C
        CALL TGSORT (MAX,ITAG,NK,1)
        DO 5 J=1,NK
        LD=ITAG(J)
        YMAX(J)=MAX(LD)
        PSIMAX(J)=PMAX(LD)
        CONT INUE
        RETURN B 45
        END 8 46
        END 8 46
        c
        C
        C
        C
    SUBROUTINE GOLDEN (GAMA,ETA,PHI,PHO,DELP,PSI,K,N,UPHI,UPHO)
    THIS SUBRUUTINE USES THE GULUEN SECTIUN SEAKCH TU FliNU THE GAMAA
        CORRESPONDING TO THE MINIMUN OF THE OBJECTIVE FUNCTION AT THE
        POINT PHO+GAMA*DELP
        PHIA,PHIB,PHIU ARE DIMENSIUNED COKRESPONDING TO A MAXIMUMI VALUE
        OF K}=1
        COMMON /GRZR/ NCOUNT,IPRINT,UNIT,IUPT,IDATA
        LOGICAL IPRINT,IDATA
        INTEGER UNIT
        INTEGER UNIT 
        1SI(1)
        TAU=0.5*(1.0+(5.0)**0.5)
        C 18
        TAUSQ=TAU*TAU C 19
        ETA=ETA*(TAU+1.)
        C 20
        C 21
    GAMAL=O.
    GAMAU=1.0
    GAMAA =0.0
    UPHIA = UPHO
    DO 2 I=I,K
    PHIU(I)=PHO(I)+GAMAU*DELP(I)
    CONTINUE
    CALL LOCATE (PHIU,PSI,K,N,UPHIU)
    NCOUNT =NCOUNT+1
    IF (UPHIU.LE&UPHIA) GO TO 4
        <2
        C <3
        1
2
```



```
    GAMAH=GAMAL+(GAMAU-GAMAL )/TAU C 31
    DO 3 I=1,K C C 32
    PHIA(I)=PHO(I)+DLLP(I)*GAMAA C O C O
    CONT INUE C C 34
    GO TO 7 C 35
    GAMAL=GAMAA C C 36
    UPHIA = UPHIU C 37
    GAMAA =GAMAU C C 38
    GAMAU=1\bullet+GAMAU*TAU S SY
    GO TO 1 C 40
    DO 6 I=1,K C 41
    PHIA(I)=PHO(I)+DELP(I)*GAMAA C 42
    CONTINUF C C 43
    CALL LOCATE (PHIA,PSI,K,N,UPHIA)
    NCOUNT =NCOUNT+1
    GO TO 9
    DO 8 I =1,K
    PHIR(I)=PHO(I)+DELP(I)*GAMAB
    CONTINUE C C 49
    CALL LOCATE (PHIB,PSI,K,N,UPHIB)
    NCOUNT=NCOUNT+1
    IF ((GAMAB-GAMAA).LT.ETA) GO TO 11
    IF (UPHIA.GE•UPHIE) GO TO 10 . . C 53
    GAMAU =GAMAB
    GAMAR =GAMAA
    UPHIB=UPHIA
    GAMAA =GAMAL+(GAMAU-GAMAL)/TAUSQ C 57
    GO TO 5 C C 58
    GAMAL=GAMAA C 59
    GAMAA=GAMAB C C 60
    UPHIA=UPHIB C C C 
    GAMAB =GAMAL + (GAMAU-GAMAL //TAU C C C 
    GO TO }
    IF (UPHIA.LT.UPHIB) GO TO 12
    GAMA = GAMAK
    UPHI =UPHIB
    GO TO 13
    GAMA = GAMAA
    UPHI = UPHIA
    DO 14 I=1,K
    PHI(I)=PHO(I)+GAMA*UELP(I)
    CONT INUE
    THIS VALUE OF GAMA IS THE FACTOR OF THE STEP DELP WHICH GIVES THE
    BEST NEW POINT,WHEN STARTING FROM PHU
    RETURN
    END
C
C
SUBROUTINE LOCATE (PHI,PSI,K,N,UPHI)
LUCATE CALCULATES THE MINIMAX UXJECTIVE FUNCTION OF THE Y AT A
```

C 31

LUCATE CALCULATES THE MINIMAX UBJECTIVE FUNCTION OF THE Y AT A

C	POINT PHI UVER A GIVEN SET OF SAMPLE POINTS PSI	D	7
C		D	8
C		D	9
	DIMENSION PHI(1), PSI(1)	D	10
	DO $1 \mathrm{I}=1, \mathrm{~N}$	D	11
	$Y T=Y(P H I, P S I(I), K)$	D	12
	IF (I.EQ.I) UPHI =YT	D	13
	IF (YT.GT•UPHI) UPHI=YT	D	14
1	CONTINUE	D	15
	RETURN	D	16
	FND	D	17
C		D	18
C		D	19
C		\cup	CO-
C		E	1
C	-	E	2
	FUNCTION Y (PHI,F,K)	E	3
C		E	4
C	HERE THE FUNCTION VALUE Y AT A POINT PHI CORRESPONDING TO A SAMPLE	E	5
c	POINT F IS CALCULATED	E	6
C	DUMMY HAS BEEN DIMENSIONED CURRESPUNLING TO A MAXIMUM VALUE OF	E	7
C	$K=15$	E	8
C		E	9
	DIMENSION PHI (1), DUMMY (15)	E	10
	CALL ANAL (PHI, F, -FALSE., $K, Y 1, D U M M Y$)	E	11
	$Y=Y$ I	E	12
	RETURN	E	13
	END	E	14
C		E	15
C		E	16
C		E	17-
C		F	1
C		F	2
	SUBROUTINE NORM (K,W,WN) DIMENSION W(1), WN(1)	F	3
	SUM $=0$.	F	5
	DO $1 \quad \mathrm{I}=1, \mathrm{~K}$	F	6
	SUM $=$ SUM + W (I)*W(I)	F	7
1	CONT INUE	F	8
	SUMRT = SQRT (SUM)	F	9
	DO $2 \mathrm{I}=1, \mathrm{~K}$	F	10
	WN(I)=W(I)/SUMRT	F	11
2	CONTINUE	F	12
	RETURN	F	13
	END	F	14
C		F	15
C		F	16
C		F	17-
C		G	1
C	-*..	G	2
	SURROUTINF TGSORT (A, I, N, M)	G	3
C		G	4
C		G	5
C	SUBRUUTINE TGSOKT (MAX, ITAG, NR, NIM) FUKMS A VECTOR OF TAGS 1TAG SU	G	6
C	THAT ITAG(1).ITAG(2),.....ITAG(NR) AKE URUEKED SUBSCKIPTS UF	G	7
C	VECTOR MAX SUCH THAT MAX (ITAG(1), MAX(ITAG(2)',....MAX(ITAG(NR')	G	-
c	ARE IN ALGEBRAIC ORDER	G	9

C	MM IS POSITIVE FOR A HIGH TO LOW ORDERING AND NEGATIVE FUR LUW TU	G	10
C	HIGH ORDERING	G	11
C	THIS SUBROUTINE LISTING WAS OBTAINED FKUM tht lata pkuctssling and	G	12
C	COMPUTING CENTRE゙, LIBRARY INFORMATIUN SHEET MILIS 5.3 .34 MMCMASTER	G	13
C	UNIVERSITY	G	14
C		G	15
C		G	16
	DIMENSION $\mathrm{A}(1), \mathrm{I}(1)$	G	17
	LOGICAL HILO.TIMEI	G	18
	HILO=M.LT.O	G	19
	$\mathrm{Nl}=\mathrm{N}+1$	G	20
	N2 $=$ N1/2	G	21
	DO $1 \mathrm{~J}=1, \mathrm{~N}$	G	22
	$1(J)=-1$	G	23
1	CONT INUE	G	24
	DO $6 \mathrm{~K}=1, \mathrm{~N} 2$	G	25
	TIMEI = - TRUE.	G	26
	DO $4 \mathrm{~J}=1, \mathrm{~N}$	G	27
	IF (I (J).GT.0) GO TO 4	G	20
	IF (.NOT.TIMEI) GO TO 2	G	29
	TIMEI = . FALSE.	G	30
	SMALL=BIG=A(J)	G	31
	$J S=J R=J$	G	32
	GO TO 4	G	33
2	IF (AlJ).GT.SMALL) GO TO 3	G	34
	SMALL=A(J)	G	35
	$J S=J$	G	36
3	IF (A(J).LT.BIG) GOTO 4	G	37
	$B I G=A(J)$	G	38
	$J B=J$	G	39
4	CONTINUE	G	40
	$L=N 1-K$	G	41
	$I(J B)=I \operatorname{ABS}(I(J B))$	G	42
	$I(J S)=I A B S(I(J S))$	G	43
	IF (HILO) GO TO 5	G	44
	$I(L)=I S I G N(J S, I(L))$	G	45
	$I(K)=\operatorname{ISIGN}(J B, I(K))$	G	46
	GO TO 6	G	47
5	$I(L)=I S I G N(J B, I(L))$	G	48
	$I(K)=I S I G N(J S, I(K))$	G	49
6	CONTINUE	G	50
	RETURN	G	51
	END	G	52
C		G	33
c		G	54
C		G	5b-
C		H	1
C		H	2
		H	3
C	CDC 64001172 GCTAL WORDS ARE REUUIRED	H	4
\$	IBFTC SIMPLE REF	H	5
C	AUTOMATIC SIMPLEX REDUNDANT EGUATIUNS CAUSE INFEASIUILITY	H	6
	REAL A(NA, 136$)$	H	7
	REAL $\mathrm{B}(1), \mathrm{C}(1), P(1), X(1), Y(1), P E(1), E(1)$	H	8
	INTEGER INFLAG, MX, NN, KO(6), KB $(1), \mathrm{JH}(1)$	H	9
C	EQUIVALENCE (XX,LL) THE FULLOWING DIMENSION SHOULD BE THE SAME HERE AS IT IS IN	H H	10 11

C CALLER. 12
REAL AA,AIJT,BB,COST, DT, KCUST,TEXH,TPIV,TY,XOLD,XX,XY,YI,YMAX 13
INTEGER I, IA,INVC,IR,ITEK,J,JT,K,KBJ,L,LL,M,M2, Mivi,N 14INTEGER NCUT, NPIV, NUMVR,NVER15
LOGICAL FEAS,VER,NEG,TRIG,KQ,ABSC 16
$\stackrel{C}{C}$
SET INITIAL VALUES, SET CONSTANT VALUES 1817C
ITER=0 19
NUMVR=0 20
NUMPV $=0$ 21
$M=M X$ 22
$N=N N$ 23
TEXP $=.5 * * 16$ 24
NCUT $=4 * M+10$ 25
NVER $=M / 2+5$ 26
M2 = M* * 227
$F E A S=. F A L S E$. <0
IF (INFLAG.NE•O) GO TU 3 $\angle 9$
C* INEW' START PHASE ONE WITH SINGLETON BASIS 30
DO $2 \mathrm{~J}=1, \mathrm{~N}$ 31
$K B(J)=0$ 32
$K Q=F A L S E$. 33
DO $1 \quad I=1, M$ 34
IF $(A(I, J), E Q . O . O)$ GO TO 1 35
IF (KQ.OR.A(I,J).LT.O.O) GO TO 2 36
$K Q=$-TRUE. 37
CONTINUE 38
$K B(J)=1$ 39
CONTINUE 40
DO 4 I $=1, M$ 41
$J H(I)=-1$ 42
4 CONTINUE 43
C* 'VER' CREATE INVERSE FKOM 'KB' AND 'JH' (STEP 7) 44
VER = - TRUE 45
INVC=0 46
NUMVR=NUMVR+1 47
TRIG = FALSE. 48
DO $6 \mathrm{I}=1, \mathrm{M} 2$ 49
$E(I)=0.0$ 50
CONT INUE 51
$M M=1$ b 2
DO $7 \quad \mathrm{I}=1, \mathrm{M}$ 53
$E(M M)=1.0$ 54
$\operatorname{PE}(I)=0.0$ 55
$X(I)=B(I)$ 56
IF (JH(I),NE,O) JH(I)=-1 57
$M M=M M+M+1$ 58
CONTINUE 59
7 60
DO $14 \mathrm{JT}=1, \mathrm{~N}$ 61
IF (KB(JT),EQ.O) GO TO 14 62
GO TO 30 63
30 CALL JMY 64
C CHOOSE PIVOT 65
$T Y=0.0$
$K Q=. F A L S E$ 。
DO $13 \mathrm{I}=1$, M
66

67
60
2 3

```
```

```
    IF (JH(I).NE.-I.OR.ABS(YII).LE.TPIV) GU TO 13 H 69
```

```
    IF (JH(I).NE.-I.OR.ABS(YII).LE.TPIV) GU TO 13 H 69
    IF (KQ) GO TO 10
    IF (KQ) GO TO 10
    IF (X(I).EQ.O.) GO To g
    IF (X(I).EQ.O.) GO To g
IF (ABS(Y(I)/X(I)).LE.TY) GO TO 13
IF (ABS(Y(I)/X(I)).LE.TY) GO TO 13
TY=ABS(Y(I)/X(I))
TY=ABS(Y(I)/X(I))
    GO TO l2
    GO TO l2
    KQ=.TRUE.
    KQ=.TRUE.
    GO TO 11
    GO TO 11
    IF (X(I).NE.O..OR.ABS(Y(I)).LE.TY) GO TO 13
    IF (X(I).NE.O..OR.ABS(Y(I)).LE.TY) GO TO 13
    TY=ABS(Y(I))
    TY=ABS(Y(I))
    IR=I
    IR=I
    CONTINUE
    CONTINUE
    KB(JT)=0
    KB(JT)=0
                            TEST PIVOUT
                            TEST PIVOUT
    IF (TY.LE.O.) GO TO 14
    IF (TY.LE.O.) GO TO 14
    GO TO 43
    GO TO 43
    continue
    continue
    DO 15 I=1,M
    DO 15 I=1,M
    IF (JH(I).EQ.-1) JH(I)=0
    IF (JH(I).EQ.-1) JH(I)=0
    IF (JH(I).EQ.0) FEAS=.FALSE.
    IF (JH(I).EQ.0) FEAS=.FALSE.
    CONTINUE
    CONTINUE
    VER=.FALSE.
    VER=.FALSE.
                            *** PERFURM ONE ITERATION
                            *** PERFURM ONE ITERATION
        'XCK' DETERMINE FEASIBILITY (STEP I)
        'XCK' DETERMINE FEASIBILITY (STEP I)
    NEG=.FALSE.
    NEG=.FALSE.
        IF (FEAS) GO TO 18
        IF (FEAS) GO TO 18
        FEAS=.TRUE.
        FEAS=.TRUE.
        DO 17 I=1,M
        DO 17 I=1,M
        IF (X(I).LT.0.0) GO TO 20
        IF (X(I).LT.0.0) GO TO 20
        IF (JH(I).EQ.0) FEAS=.FALSE.
        IF (JH(I).EQ.0) FEAS=.FALSE.
        CONTINUE
        CONTINUE
    'GET' GET APPLICABLE PRICES
    'GET' GET APPLICABLE PRICES
        IF (.NOT.FEAS) GO TO 2l
        IF (.NOT.FEAS) GO TO 2l
        DO 19 I=1,M
        DO 19 I=1,M
(STEP 2)
(STEP 2)
    P(I)=PE(I)
    P(I)=PE(I)
    IF (X(I).LT.0.) X(I)=0.
    IF (X(I).LT.0.) X(I)=0.
    CONTINUE
    CONTINUE
    ABSC=.FALSE.
    ABSC=.FALSE.
    GO TO 27
    GO TO 27
    FEAS=.FALSE.
    FEAS=.FALSE.
    NEG=.TRUE.
    NEG=.TRUE.
    DO 22 J=1,M
    DO 22 J=1,M
    P(J)=0.
    P(J)=0.
    CONTINUE
    CONTINUE
    ABSC=.TRUE.
    ABSC=.TRUE.
    DO 26 I=1,M
    DO 26 I=1,M
        MM=I
        MM=I
        IF (X(I).GE.0.0) GO TO 24
        IF (X(I).GE.0.0) GO TO 24
        ABSC=.FALSE.
        ABSC=.FALSE.
        DO 23 J=1,M
        DO 23 J=1,M
        P(J)=P(J)+E(MM)
        P(J)=P(J)+E(MM)
        MM=MM+M
        MM=MM+M
        cONTINUE
        cONTINUE
        GO TO 26
        GO TO 26
```

H 70

```
H 70
    RESET ARTIFICIALS
```

 RESET ARTIFICIALS
    ```

IF (JH(I).NE.O) GO TO 26
IF \(\{X(I), N E . O .1 \quad A B S C=. F A L S E\).
H 127
DO \(25 \mathrm{~J}=1, \mathrm{M}\)
\(P(J)=P(J)-E(M M)\)
H 128
\(M M=M M+M\)
CONTINUE
CONT INUE
MIN' FIND MINIMUM REDUCED COST
H 129
H 130
H 131
H 132
\(J T=0\)
\(B B=0.0\)
DO \(29 \mathrm{~J}=1, \mathrm{~N}\)
IF (KB(J).NE.O) GO TO 29
\(D T=0.0\)
H 133

DO \(28 \quad \mathrm{I}=1, \mathrm{M}\)
\(D T=D T+P(I) * A(1, J)\)
H 134
H 135
H 136
H 137
H 138
H 139
CONTINUE
IF (FEAS) \(D T=D T+C(J)\)
IF (ABSC) \(D T=-A B S(D T)\)
IF (DT.GE.BB) GO TO 29
\(B B=D T\)
\(J T=J\)
CONT INUE
C TEST FOR NO PIVOT COLUMN
IF (JT.LE.O) GO TO 50
C TEST FOR ITERATION LIMIT EXCEEDED
IF (ITER.GE.NCUT) GO TO 49
ITER = ITER + I
'JMY' MULTIPLY INVERSE TIMES A(0.JT)
(STEP 4)
30 DO \(31 \quad \mathrm{I}=1 \mathrm{M}\)
\(Y(1)=0.0\)
CONTINUE
\(L L=0\)
\(\operatorname{COST}=\mathrm{C}(\mathrm{JT})\)
H 140
28

DO \(34 \quad I=1, M\)
\(A I J T=A(I, J T)\)
IF (AIJT.EQ.O.) GO TO 33
\(\operatorname{COST}=\operatorname{COST}+A I J T * P E(I)\)
DO \(32 \mathrm{~J}=1 \mathrm{~m}\)
\(L L=L L+1\)
\(Y(J)=Y(J)+A I J T * E(L L)\)
CONTINUE
GO TO 34
\(L L=L L+M\)
H 141
H 142
H 143
H 144
H 145
H 146
H 147
H 148
H \(14 y\)
H 150
\(H 150\)
\(H \quad 151\)
H 252
H 153
H 154
H 155
H 156
H 157
\(\begin{array}{ll}H \\ H & 158\end{array}\)
\(\begin{array}{ll}H & 158 \\ H & 159\end{array}\)
H 160
H 161
H 162
H 163
H 164
H 165
H 166

CONTINUE
COMPUTE PIVOT TOLEKANCE
\(Y M A X=0.0\)
DO \(35 \quad \mathrm{I}=1, \mathrm{M}\)
H 267
\(Y M A X=A M A X I(A B S(Y(I)), Y M A X)\)
CONT INUE
H 271
H 172
TPIV = YMAX*TEXP
    H 173
            RETURN TO INVERSION ROUTINE, IF INVERTING
    IF (VER) GO TO 8
        COST TOLERANCE CONTROL
    \(R C O S T=Y M A X / B B\)
    IF (TRIG•AND.BB•GE•-TPIV) GO TO 50
    \(T R I G=. F A L S E\).
    IF (BB.GE.-TPIV) TRIG=.TRUE.
    H 174
H 175
H. 276
H 177
H 170
\(\begin{array}{ll}\mathrm{H} & 170 \\ \mathrm{H} & 179\end{array}\)
H 180
H 181
\(\begin{array}{ll}H & 181 \\ H & 182\end{array}\)
```

C* 'ROW' SELECT PIVOT ROW MAXIMUM Y AMUNG ARTIFICIALS, UR, IF (STEP 5) H 18, H
C AMONG EQS. WITH X=0, FIND MAXIMUM Y AMUNG ARTIFICIALS, UR, IF
NONE,
C GET MAX POSITIVE YIII AMONG REALS.
IR=0
AA=0.0
KQ=. FALSE.
DO 39 I=1,M
IF (X(I).NE.O.O.OR.Y(I).LE.TPIV) GO TO 39
IF (JH(I).EQ.O) GO TO 37
IF (KQ) GO TO 39
IF (Y(I'.LE.AA) GO TO 39
GO TO 38
IF (KQ) GO TO 36
KQ=.TRUE.
AA=Y(I)
IR=I
39 CONTINUE
IF (IR.NE.O) GO TO 42
C AA=1.OE+2O
FIND MIN. PIVOT AMONG PUSITIVE EQUATIONS
DO 40 I= 1,M
IF. (Y(I).LE.TPIV.OR.X(I).LE.O.O.OR.Y(I)*AA.LE.XII)) GO TO 40
AA=X(I)/Y(I)
IR=I
CONTINUE
IF (.NOT.NEG) GO TO 42
C FINU PIVOT AMONG NEGATIVE EQUATIONS, IN WHICH X/Y IS LESS THAN THE
C ABSF(Y)
BB=-TPIV
DO 41 I=1,M
IF (XII).GE.O..OR.Y(I).GE.BB.OR.Y(I)*AA.GT.X(I)) GO TO 4l
BB=Y(I)
IR=I
41 CONTINUE
C TEST FOR NO PIVOT ROW
42 IF IIR.LE.O) GO TO 48
C* IPIV' PIVOT ON (IR,JT)
IA=JH(IR)
IF (IA.GT.O) KB(IA)=0
43 NUMPV=NUMPV+1
JH(IR)=JT
KB(JT)=IR
YI=-Y(IR)
Y(IR)=-1.0
LL=0
TRANSFORM INVERSE
DO 46 J=1,M
L=LL+IR
IF (E(L).NE.0.0) GO TO 44
LL=LL+M
GO TO 46
XY=E(L)/YI
PE(J)=PE(J)+COST*XY
E(L)=0.0
DO 45 I=1,M
(STEP 6)
H 184
C
H 185
H 186
H 187
H 188
H
H 190
H 191
H }19
IFICIALS, UR, I
H193
H194
H }19
H }19
H H197
3
39
H 198
H 199
H }20

```

```

 H 200
 H201
H }20
H 203

```

        H }20
        H }20
        H 206
        H 207
C MINImUM X/Y IN THE POSITIVE EGUATIUNS, THAT HAS THE LARGEST
H 208
H }20
H<10
H 211
H212
H }21
    DO 41 I=1,M H 214
H21b
H }21
    CONTINUE 
H217
H }21
H 219
    H 220
H221
H222
H
H224
H225
H
H227
H 228
    00 46 J=1, M
H }22
H 230
C
H H21
H232
                            CRANSFORM INVERSE
H<33
H 234
H }23
4
```


APPENDIX B

PROGRAM FOR INVESTIGATING MINIMAX OPTIMALITY CONDITIONS

B. 1 Introduction

This program is a package of subprograms which investigates the optimality of a design or a proposed solution to an approximation problem in the minimax sense. The program is designed to test a solution for the necessary conditions for a minimax optimum by two different formulations. As indicated in Section 3.4, one uses linear programming, and the other the solution of a set of linear independent equations. A computer program written in Fortran (Version 2.3 and Scope Version 3.4 for the CDC 6400 computer) is listed at the end of the Appendix.

B. 2 Program Description

The user may call the package from his main program as follows: CALL MINIMAX (K, KR, NR, YMAX, GRAD, NRMAX, DELTA, EPS, ICRIT, IDATA, IPRINT, MET, NORM, RELTOL, UNIT, K1, K3, MR3, MR1, MR2, X1, X2, X1SUM, X2SUM, R1, R2, R1NORM, R2NORM, OPTIM1, OPTIM2, A, B, C, X, PS, JH, XX, YY, PE, E, D, H, Q, IROW, ICOL, LL, MM).

The variables in the argument list of the above subroutine are ordered as input, output and storage variables respectively, and are listed below in that order.

The input variables are $k, k_{r}, n_{r}, \underset{\sim}{y}\left(\left[\hat{y}_{1} \ldots \hat{y}_{n_{r}}\right]^{T}\right)$, $\left.\left(\underset{\sim}{\nabla} \hat{y}^{\mathrm{T}}\right)^{\mathrm{T}}\left(\underset{\sim}{\nabla} \hat{\mathrm{y}}_{1} \cdots \hat{\sim}^{\nabla} \hat{\mathrm{y}}_{\mathrm{n}}\right]^{\mathrm{T}}\right)$, followed by
$\hat{n}_{r} \quad$ maximum possible number of the \hat{y}_{ℓ}.
δ numerical approximation to zero.
ε
a user-specified factor; if $\left\|{\underset{\sim}{r}}_{1}\right\|$ or $\left\|r_{2}\right\|<\varepsilon$ and the multiplier vector $\underset{\sim}{u}{ }_{\sim}^{1}$ or $\underset{\sim}{u_{2}} \geq 0$ the conditions are satisfied for Method 1 or 2 ; otherwise not.

ICRIT for ICRIT $=1$, the user specifies the value of RELTOL and considers \hat{y}_{ℓ} for which $\left(1-\hat{y}_{\ell} / \hat{y}_{1}\right) \leq$ RELTOL for $\ell=2, \ldots, n_{r}$, to be active while when ICRIT $=2$, the user specifies the value of $\mathrm{k}_{\mathrm{r}}\left(\leq \mathrm{n}_{\mathrm{r}}\right)$.

IDATA logical variable which, if .TRUE., enables the input data to be printed out; otherwise not.

IPRINT logical variable which if .TRUE., enables all intermediate and final results to be printed out, and no print-outs otherwise.

MET when MET=1,2, or 3, the package uses Method 1 , Method 2 or both the methods, respectively.

NORM NORM=1 corresponds to the Euclidean vector norm and NORM $=2$ corresponds to the maximum absolute value of the elements of the vector.
RELTOL tolerance relative to \hat{y}_{1} within which some of the $\hat{y}_{2}, \ldots, \hat{y}_{n_{r}}$ iie.

UNIT
integer variable specifying the data set reference number of the output unit.

This is followed by $k_{1}(=k+1), k_{3}(=2 k+1)$ and $m_{r 3}\left(=2 k+1+n_{r}\right)$ For the output variables that follow, subscripts 1 and 2 correspond to methods 1 and 2, respectively, as shown below.

$$
\begin{aligned}
& m_{r 1}, m_{r 2} \quad \text { number of } \hat{y}_{\ell}\left(\text { for } \ell=1, \ldots, n_{r}\right. \text {) considered when } \\
& \text { optimal conditions are reached. } \\
& {\underset{\sim}{u}}_{1}, u_{2} \\
& \text { vector of multipliers }\left[u_{11} \ldots u_{1_{r 1}}\right]^{T} \text {, } \\
& \left.\left[u_{21} \ldots u_{2 m}\right]_{r 2}\right]^{T}
\end{aligned}
$$

$$
\begin{aligned}
& \left\|{\underset{\sim}{r}}_{1}\right\|,\left\|r_{\sim}\right\| \text { norm of vectors } r_{\sim}^{r}, r_{\sim} \\
& \text { OPTIM1,OPTIM2 logical variables; indicate that the necessary } \\
& \text { conditions for minimax optimum are satisfied if } \\
& \text {.TRUE., and not satisfied otherwise. }
\end{aligned}
$$

The above output variable list is followed by storage variables, which form the rest of the argument list. The size of the storage arrays and vectors is determined by $\hat{n}_{r}, k_{1}, k_{3}$ and $m_{r 3}$. The values of ε and δ as specified by the user are crucial for the verification of the optimality conditions, and should be carefully chosen. For further details, see Sections 5.4.4-5.4.6.

B. 3 Required Subprograms

The user has to have a subprogram by which the discrete values of the n_{r} functions \hat{y}_{ℓ} (arranged in descending magnitude) and their derivatives $\left(\underset{\sim}{\nabla} \hat{y}^{\mathrm{T}}\right)^{\mathrm{T}}$ T with respect to the parameters $\phi_{1}, \phi_{2}, \ldots \phi_{k}$ are explicitly available. The package uses the following subroutines, the listings of which are available as indicated in the References (see Subroutine ARRAY, Subroutine MINV, Subroutine MFGR, Subroutine SIMPLE, Subroutine SOLVE).

ARRAY converts data arrays from single to double dimension or vice versa while MINV inverts a matrix and calculates its determinant. MFGR determines the rank and linearly independent rows and columns of a given matrix. SIMPLE is a linear-program solving subroutine (listing available in Section A.7) and SOLVE solves a set of linear simultaneous equations.

B. 4 Comments

The program was used to test a solution on the problem of lowerorder modelling of a ninth-order nuclear reactor system as treated in Section 3.4.7. Fig. B.l shows a typical printout of the package for this problem.

This program was run and tested on a CDC 6400 computer. The package requires roughly 40,000 octal units of memory for $k=15$ and $\hat{\mathrm{n}}_{\mathrm{r}}=15$. A Fortran listing consisting of 721 cards (including comments) is included in Section B.5.

METHOD 1

| NUMBER OF | VECTOR | SUM | VECTOR | NORM | ARE NECESSARY CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HIGHEST | OF | OF | OF | OF | FOR A MINIMAX OPTIMUM |
| MAXIMA | MULTIPLIERS | MULTIPLIERS | RESIDUALS | RESIDUAL | SATISFIED FOR A USER- |
| CONSIDERED | | | | VECTOR | SPECIFIED VALUE OF KR OR RELTOL |
| (MR) | (XI) | (XISUM) | (R1) | (R1NORM) | (YES/NO) |
| 1 | . $10000000 \mathrm{E}+01$ | . $10000000 \mathrm{E}+01$ | $\begin{array}{r} .38711013 E-03 \\ -.14208087 E-03 \end{array}$ | . $38711013 \mathrm{E}-03$ | No |
| 2 | $\begin{array}{r} .98710491 \mathrm{E}+00 \\ .12895086 \mathrm{E}-01 \end{array}$ | . $10000000 \mathrm{E}+01$ | $\begin{array}{r} -.25789922 \mathrm{E}-09 \\ .25789922 \mathrm{E}-09 \end{array}$ | .25789922E-09 | YES |

METHOD 2
NUMBER OF
HIGHEST
MAXIMA

CONSIDERED

| (MR) | (X 2) | (X2SUM) | (R2) | (R2NORM) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | . $10000000 \mathrm{E}+01$ | . $10000000 \mathrm{E}+01$ | $\begin{array}{r} .38711013 \mathrm{E}-03 \\ -.14208087 \mathrm{E}-03 \end{array}$ | . $38711013 \mathrm{E}-03$ |
| 2 | $\begin{array}{r} .98710492 \mathrm{E}+00 \\ .12895077 \mathrm{E}-01 \end{array}$ | . $10000000 \mathrm{E}+01$ | 0 。 -. 35255563E-09 | . $35255563 \mathrm{E}-09$ |

ARE NECESSARY CONDITIONS FOR A MINIMAX OPTIMUM SATISFIED FOR A USERSPECIFIED VALUE OF KR OR RELTOL
(YES/NO)
NO

YES

Fig. B. 1 Typical printout of results for the problem given in the text.

B. 5 Fortran Listing for MINIMAX Program

PROGRAM FOR INVESTIGATING MINIMAX OPTIMALITY CUNDITIUNS1

AUTHORS J.W.BANDLER AND T.V.SRINIVASAN.DEPARTMENT OF ELECTKICAL ENGINEERING,MCMASTER UNIVERSITY,HAMILTON,ONTARIO, CANADA

THIS PROGRAM IS A PACKAGE OF SUBPROGRAMS WHICH INVESTIGATES THE
OPTIMALITY OF A DESIGN OR A PROPOSEV SOLUTION TO AN APPRUXIMATION
problem in the minimax sense
AUTHORS J.W.BANDLER AND T.V.SRINIVASAN, DEPARTMENT OF ELECTRICAL
ENGINEERING,MCMASTER UNIVERSITY,HAMILTON,ONTARIO,CANADA
THIS PROGRAM IS A PACKAGE OF
OPTIMALITY OF A DESIGN OR A PR
PROBLEM IN THE MINIMAX SENSEDIMENSION $\operatorname{YMAX}(15), \operatorname{GRAD}(15,10), X 1(15), X 2(15), R 1(10), R 2(10)3\begin{array}{ll}\text { A } & 4 \\ \text { A } & 5\end{array}$6
DIMENSION $A(21,36), B(21), C(36), X(36), P S(21), X X(21), Y Y(21), P E(21)$,7

1. $\mathrm{E}(21,71)$
DIMENSION D(15,10),H(11,11),Q(11),IKOW(15),ICOL(10),LL(15),MM(15) A 15
LOGICAL IDATA,IPRINT,OPTIMI,OPTIMZ A 16
INTEGER UNIT 17
$K=2$ A 18
NRMAX $=15$ 19
NR=4 A 20DELTA $=.01$$E P S=1.0 E-04$
I CRIT $=2$$K R=N R$
IDATA $=. T$.
IPRINT = . T.
MET $=3$A 21
A 222324
NORM=1 2826
UNIT $=6$
$K 1=K+1$ 29
$K 3=2 * K+1$ 30
MR3 $=2 * K+1+$ NRMAX 32
$\operatorname{READ}(5,1)(\operatorname{MmAX}(I), I=1, N R)$ 33
$\operatorname{READ}(5,2)((G R A D(I, J), J=1, K), I=1, N R)$ 34
1 FORMAT(5E16.8) 35
2 FORMAT(2E16.8) 36
CALL MINIMAXIK,KR,NR,YMAX,GRAD,NRMAX,DELTA,EPS,ICRIT,IDATA,IPRINT, 371MET,NORM,RELTOL,UNIT,K1,K3,MK3,MR1,MR2,X1,X2,X1SUM, X2SUM,R1,R2,R1N2NORM,R2NORM,OPTIM1,OPTIM2,A,B,C,X,PS,JH,XX,YY,PE,E,D,H,Q,IROW,ICOL3.LL.MM)38
STOP
END 4241
43
44
45
SUBROUTINE MINIMAX (K,KR,NR,YMAX,GRAD,NRMAX,DELTA,EPS,ICRIT,IUATA,1IPRINT,MET,NORM,RELTOL,UNIT,K1,K3,MR3,MR1,MR2,X1,X2,X1SUM,X2SJM,R12,R2,RINORM,R2NORM,OPTIM1,OPTIM2,A, B, C,X,PS,JH,XX,YY,PL,E,U,H, C, IKO3W,ICOL,LL,MM)47
48
49
5051
THE MINIMAX SOLUTION TESTING IS DONE BY TWO METHODS-METI AND METZ 52
METI CONSIDERS A LINEAR PROGRAMMING FURMULATION 53
MET2 CONSIDERS A FORMULATION CONSISTING OF A SET OF LINEAR 54
EQUATIONS 55
5657
INPUT-OUTPUT INFORMATION-------58
THE USER HAS TO SPECIFY VALUES FOR K,KR (OR RELTUL), ,NRMAX,NR, 59YMAX，GRAD，DELTA，EPS，ICRIT，IDATA，IPRINT，MET，NORM，UNIT，KI，KK3 ANDHE OUTPUT VARIABLES ARE MRI，R1，RINORM，XI，XISUM，OPTIMI，MR2，R2，R2NORM，$\times 2, \times 2$ SUM AND OPTIM2THE VARIABLES A，B，C，X，PS，JH，XX，YY，PE，E，D，H，W，IROW，ICOL，LL，MM ARETEMPORARY STORAGE SPACES CORKESPONUING TO K ANU NRMAX ITO BEDIMENSIONED BY THE USERI
APPENDIX OF VARIABLESーーーーーーー 8

A 68K＝NUMBER OF VARIABLE PARAMETERSNRMAX $=$ MAXIMUM NUMBER OF FUNCTIONS YMAX THAT MAY BE ENCOUNTERED BY A 70MAXIMUM NUMBER OF FUNCTIONS YMAX THAT MAY BE ENCOUNTERED BYTHE USER．FOR THE SAKE OF SAVING MLMORY SPACE，NKMAX CAN BEPUT EQUAL TO NR IF NR IS KNOWN BEFOREHANU
NR＝NUMBER OF HIGHEST FUNCTIONS YMAX（1），YMAX（2），．．．WHICH ARE AVAILABLE FOR CHECKING A SOLUTION FOR THE NECESSARY CONDITIONS FOR A MINIMAX OPTIMUM．NR SHOULD NEVER BE GREATER THAN NRMAX
$K R \quad=N U M B E R$ OF HIGHEST YMAX（1），$\ldots, Y M A X(N R)$ THAT MAY BE CONSIDERED ACTIVE BY THE USER FOR CHECKING OPTIMALITY CONDITIONS．KR IS LESS THAN OR EGUAL TO NR．THL VALUE OF KR HAS TO BE SUPPLIED BY THE USER IF ICRIT＝2
YMAX $=V E C T O R$ OF FUNCTIONS YMAX（1），．．．YMAX（NR）ARRANGED IN DECREASING MAGNITUDE．THESE FUNCTIONS ARE TO BE TESTED FOR THE NECESSARY CONDITIONS FUR A MINIMAX OPTIMUM．YMAX（I）IS GREATER THAN OR EQUAL TO YMAX（I＋1）FOR I $\pm 1, \ldots, N R-1$
GRAD＝MATRIX OF FIRST DERIVATIVES OF VECTOR YMAX WITH RESPECT TO THE K PARAMETERS．THE ROWS UF GKAU CORRESPOND TO THE GRADIENTS OF YMAX（1），YMAX（2），．．．，YMAX（NR）KESPECTIVELY． GRAD IS OF SIZE（NRMAX，K）
DELTA＝TEST FACTOR FOR ZERO，AFFECTED BY ROUNDOFF NOISE．THE VALUE OF DELTA DEPENDS UPON THE MAGNITUDE OF ELEMENTS OF GRAU
EPS＝SCALE FACTOR．WHEN CONSIDEKING METHOD 1 IF THE MULTIPLIERS X1（1），．．．XI（MRI）ARE NON－NEGATIVE AFTER CUNSILERING MRI HIGHEST FUNCTIONS YMAX（1），．．．，YMAX（MRI），THE NORM OF THE RESIDUAL VECTOR KI IS COMPARED WITH EPS．IF RINORM IS LESS THAN OR EQUAL TO EPS THE NECESSARY CONDITIONS FOR A MINIMAX OPTIMUM ARE SATISFIED BY YIVIAX（I！，．．．．YMAX（MRI）．A SIMILAR SITUATION HOLUS FOR METHUD 2 WHEN MRZ HIUHLST FUNCTIUNS ARL CONSIDFRED．
ICRIT＝THERE ARE TWO CRITERIA AVAILABLE FOR CHECKING THE NECESSARY CONDITIONS FOR A MINIMAX OPTIMUM．FOR ICRIT＝1，THE USER HAS TO SPECIFY THE VALUE OF RELTOL AND FOR ICRIT $=2$ ，THE USER HAS TO SPECIFY THE VALUE OF KRe IF THE USEK HAS NO IDEA OF HOW MANY OF THE HIGHEST FUNCTIUNS TO CHOUSE OUT OF YMAX $1, \ldots$, YMAX（NR），HE COULD SPECIFY A VALUE OF KR EUUAL TU NR．IF OUN THE OTHER HAND，THE USER WISHES TO SPECIFY A TOLERANCE BANU BELOW YMAX（1）WITHIN WHICH HE CONSIDERS THE FUNCTIONS TO BE ACTIVE，HE COULD SPECIFY THE VALUE OF RELTOL
IDATA $=$ LOGICAL VARIABLE，WHICH IF •TRUE．ENABLES INPUT DATA TO BE PRINTED OUT．，OTHERWISE NOT．
IPRINT＝LOGICAL VARIABLE，WHICH IF •TRUE ENABLES ALL INTERMEUIATE AND FINAL RESULTS TU BE PRINTED OUT，AND NO PKINTOUTS OTHERWISE．
MET＝INTEGER VARIABLE WHICH ENABLES THE USER TO CHECK THE
NECESSARY CONDITIONS FOR A MINIMAX OPTIMUNI BY METHOUS 1 UR 2 OR BOTH FOR MET＝ 1 OR 2 OR 3
NORM＝VARIABLE WHICH ALLOWS TWO NORMS TO BE AVAILABLE FOR VETTORS
NRMAX＝MAXIMUM NUMBER OF FUNCTIONS YMAX THAT MAY BE ENCOUNTEREDA 71

60
A 61
A 62
A 63
A 64
A 65
A 66
A 67

A 7
A 73
A 74
A 75
A 76
A 77
A 78
A 79
A 80
A 81
A 82
A 83
A 84

A 86
A 87
A 86
A 89
A 90
A 91
A 92
A 93
A 94
A 95
A 96
A 97
A 98
A 99
A 100
A 101
A $10<$
A 103
A 104
A 105
A 106
A 107
A 108
A 109
A 110
A 111
A 112

A 113
A 114
A 115
A 116

| c | B,PS, JH, $\mathrm{XX,YY}$, PE=VECTORS OF LENGTH K3 | A 174 |
| :---: | :---: | :---: |
| C | | A 175 |
| C | $E \quad=A R R A Y$ OF SIZE (K3,K3) | A 176 |
| c | D =ARRAY OF DIMENSION (MRMAX,K) | A 177 |
| C | D =ARRAY OF DIMENSION (NRMAX,K) | A 178 |
| C | H = SQUARE MATRIX OF SIZE (KloKl) | A 179 |
| C | Q =VECTOR OF LENGTH KI | A 180 |
| C | IROW = VECTOR OF LENGTH NRMAX | A 181 |
| C | ICOL = VECTOR OF LENGTH K | A 182 |
| C | LL, MM = VECTORS OF LENGTH NRMAX | A 183 |
| c | | A 184 |
| c | | A 185 |
| c | TYPE DECLARATION | A 186 |
| C | THE USER HAS TO DECLARE THE TYPE OF SOME OF THE VARIABLES AS | A 187 |
| c | FOLLOWS. | A 188 |
| c | INTEGER UNIT | A 189 |
| C | LOGICAL IDATA,IPRINT,OPTIMI,OPTIM2 | A 190 |
| C | | A 191 |
| c | | A 192 |
| c | SUBROUTINE INFORMATION -------- | A 193 |
| c | THE USER HAS TO SUPPLY THE FOLLOWING SUBROUTINES WITH THIS PACKAGE | A 194 |
| C | OR ENSURE THAT these subroutines are in the permanent library of | A 195 |
| C | THE COMPUTER HE IS USING | A 196 |
| C | SUBROUTINE ARRAY -REFERENCE (2) | A 197 |
| C | SUBROUTINE MINV -REFERENCE (3) | A 198 |
| c | SUBROUTINE MFGR -REFERENCE (4) | A 199 |
| c | SUBROUTINE SIMPLE -REFERENCES (5),(6) | A 200 |
| c | | A 201 |
| C | IT IS IMPORTANT TO POINT OUT THAT THE VALUES OF EPS AND DELTA AS | A 202 |
| c | SPECIFIED BY THE USER ARE CRITICAL FOR TESTING A SOLUTION FOR THE | A 203 |
| C | NECESSARY CONDITIONS FOR A MINIMAX OPTIMUM, AND A GREAT DEAL OF | A <04 |
| C | CARE HAS TO BE EXCERCISEO WHEN SPECIFYING VALUES FOR THEM. | A 205 |
| C | IN ADUITION,IT HAS TO BE POINTED OUT THAT *....* IN A FORMAT | A 206 |
| C | Statement is like a hollerith parameter including whatever is | A 207 |
| C | WITHIN THE TWO * SYMBOLS IN THE HOLLERITH FIELD. | A 208 |
| | LOGICAL IPRINT, IDATA, OPTIM1,OPTIM2,ISP | A 209 |
| | INTEGER UNIT | A 210 |
| | DIMENSION YMAX(1), X1(1), X2(1), R111), R2(1), GRAD(NRMAX, ${ }^{(1)}$ | A 211 |
| | DIMENSION $A(K 3,1), \mathrm{B}(1), \mathrm{C}(1), \mathrm{X}(1), \mathrm{PS}(1), \mathrm{JH}(1), X X(1), Y Y(1), P$ | A 212 |
| | IE(1), E(K3,1), H(K1, 1), Q(1), IROW(1), ICUL(1), LL(1), MM(1), U(INR | A 213 |
| | 2MAX, 1) | A 214 |
| | IF (NR.LE.NRMAX) GO TO 1 | A <15 |
| | WRITF (UNIT,20) | A 216 |
| | RETURN | A 217 |
| 1 | CONTINUE | A 218 |
| | $1 S P=. F$. | A 219 |
| | OPTIMI = . F 。 | A 220 |
| | OPTIMZ $=. F$. | A 221 |
| | GO TO (2,6), ICRIT | A 222 |
| 7 | $K R=1$ | A 223 |
| | IF (NR.EQ.1) GO TO 4 | A 224 |
| | DO $3 \mathrm{I}=2, \mathrm{NR}$ | A 225 |
| | | A 226 |
| 3 | CONTINUE | A 227 |
| 4 | IF (.NOT.IDATA) GO TO 8 | A 228 |
| | WRITE (UNIT,2I) K,KR,NRMAX,NR,DELTA,EPS,ICRIT,IDATA,IPRINT,MET,NOK | A 229 |
| | | A 230 |

```
    DO 5 I=1,NR A 231
    WRITE (UNIT,22) ((I,J,GRAD(I,J)),J=I,K) A 232
    CONTINUE A 233
    GO TO 8
A 234
A 235
    CONTINUE
    RELTOL=1.-YMAX(KR)/YMAX(1)
A 236
    IF (.NOT.IDATA) GO TO 8 A 237
    WRITE (UNIT,23) K,KR,NRMAX,NK,OLLTA,EPS,ILKIT,ILATA,IPKINT,MET,NUK
    1M,RELTOL,UNIT,K1,K3,MR3,(I,YMAX(I),I=1,NR)
    DO }7\textrm{I}=1,N
    A <36
    WRITE (UNIT,22) ((I,J,GRAD(I,J)),J=1,K) A 241
    CONTINUF
    GO TO (9,14,9), MET
    CONTINUE
    IF (.NOT.IPRINT) GO TO 10
    WRITE (UNIT,24)
    WRITE (UNIT,25)
    WRITE (UNIT,26)
    CONT I NUE
    MR=1
    X1(1)=1.
    X1SUM=1.
    DO 11 J=1,K
    R1(J)=GRAD (1,J)
    CONTINUE
    CALL SOLCHK (K,MR,MRI,ICRIT,IPRINT,NORM,UNIT,XI,XISUM,RI,RINORM,EP
    1S,OPTIM1)
    IF (OPTIMI) GO To 13
    IF (KR.EQ.1) GO TO 13
    DO 12 II=2,KR
    MR=II
    CALL MET1 (K,K3,MR,NR,MK3,YMAX,GRAU,X1,X1SUM,R1,A,B,C,KO,X,PS,JH,X
    IX,YY,PE,E,NRMAX)
        CALL SOLCHK (K,MR,MRI,ICRIT,IPRINT,NORM,UNIT,XI,XISUM,RI,RINORM,EP
    1S,OPTIMI)
        IF (OPTIM1) GO TO 13
    CONTINUE
    CONT INUE
    IF. (IMET.NE.3) RETURN
    CONTINUE
    IF (.NOT.IPRINT) GO TO 15
    WRITE (UNIT,27)
    WRITE (UNIT,25)
    WRITE (UNIT,28)
    CONTINUE
    MR=1
    x2(1)=1.
    X2SUM=1.
    DO 16 J=l,K
    R2(J)=GRAD(1,J) A 280
    CONTINUE A 281
    CALL SOLCHK (K,MR,MR2,ICRIT,IPRINT,NURM,UNIT,X2,X2SUM,R2,R2NORM,EP
    15,OPTIM2)
    IF (OPTIM2' GO TO 19
    IF (KR.EQ.1) GO TO 19
    DO 18 II=2,KR
    MR=I I
```

A 233

A 236
A 236

A 240
A 241
A 242
A 243
A 244
A 245
A 246
A 247
A 248

A 231

A 232
WRITE (UNIT,22) (II,J,GRAD(I,J)),J=1,K)3

A 234

A 235
CONTINUE36
IF (. NOT.IDATA) GO TO 8

A 239 6
M, RELTOL, UNIT,KI,K3, MR3, (I, YMAX(I), I = 1 , NR)40

```
A 249
    A 250
    A 251
    A }25
    RI\J)=GRAD(l,J). (
    A }25
A 254
A 255
A 256
A 257
A 258
A 259
A 259
A 260
A 261
A 262
A }26
A 264
A 265
A 266
A 267
A 268
A 
A 269
A 270
A 271
A 272
A }27
A 274
A 275
A 276
A 277
A 278
A 279
A 282
    IF (OPTIM2) GO TO 19 (a)
    IF (KR.EQ\bullet1) GO TO 19 A 285
A 286
    MR=I I A 287
```

CALL MET2 $(K, K 1, M R, N R, Y M A X, G K A D, D E L T A, I P R I N T, I S P, U N I T, X 2, X 2 S U M, R 2$, 1D,H,Q,IROW,ICOL,LL,MM,NRMAX)
IF (.NOT.ISP) GO TO 17
WHEN ISP IS •TRUE , EITHER THE NUMBER OF UNKNOWN MULTIPLIERS IS GREATER THAN THE NUMBER OF INDEPENDENT EQUATIONS OR THE VALUE OF DELTA IS TOO SMALL,SO THAT WE SWITCH FROM METHOD 2 TO METHOD 1 FUR THE CURRENT VALUE OF MR
CALL MET1 (K,K3,MR,NR,MR3,YMAX,GRAD,X2,X2SUM,R2,A,B,C,KO,X,PS,JH,X $1 X, Y Y, P E, E, N R M A X)$
$I S P=. F$.
CONTINUE
CALL SOLCHK (K,MR,MR2,ICRIT,IPRINT,NURM,UNIT,X2,X2SUM,R2,RZNORM,EP 1S,OPTIM2)
IF (OPTIM2) GO TO 19
CONT INUE
CONTINIJE
RETURN
FORMAT $11 H 1 / *$ NR IS GREATER THAN NRMAX HERE, AND THIS CALLS FOR AN 1 INCREASE IN NRMAX TO A VALUE GREATER THAN OR EQUAL TO NR*)
 1, I5/65x,*KR=*, I5, * (CORKESPUNDING TU RELTOL) */62X,*NKMAX=*, $15 / 65 X$, *
 3ATA $=*, L 5 / 61 X, * I P R I N T=*, L 5 / 64 X, * M E T=*, I 5 / 63 X, * N O R N_{1}=*, 15 / 61 X, * R E L T O L$ $4=*, E 16.8 / 63 X, * U N I T=*, I 5 / 65 X, * K l=*, I 5 / 65 X, * K 3=*, I 5 / 64 X, * M R 3=*, I 5 /(4$ $5 \mathrm{X}, * \mathrm{YMAX}(*, I 2, *)=*, E 16 \cdot 8,9 X, * Y \operatorname{MAX}(*, I 2, *)=*, E 16.8,9 X, * Y \operatorname{MAX}(*, I 2, *)=$

 $16.8,6 \mathrm{X}, * \mathrm{GRAD}(*, \mathrm{I} 2, *, *, I 2, *)=*, E 16.8,6 \mathrm{X}, * \mathrm{GRAD}(*, \mathrm{I} 2, *, *, I 2, *)=*, E 16$. 28)

 $3 X, * M E T=*, 15 / 63 X, * N O R M=*, I 5 / 61 X, * R E L T O L=*, E 16.8 * *(C O R R E S P O N D I N G T O$
 $5 \operatorname{MAX}(*, I 2, *)=*, E 16.8,9 X, * Y \operatorname{MAX}(*, I 2, *)=*, E 16.8,9 X, * Y M A X(*, 12, *)=*, E 1$ $66.8,9 X, * Y M A X(*, I 2, *)=*, E 16.811$
FORMAT (1H1/64X,*METHOD 1*/64X,*-ー-ー----*///)
FORMAT (6 X , *NUMBER OF*, 14 X , *VECTUR*, 18 X , *SUM*, 18 X , *VECTOK*, 17 X , *iNO
 $221 X, * O F *, 20 X, * O F *, 10 X, * F O R$ A MINIMAX UPTIMUM*//7X,*MAXIMA*, $14 X, * M U$
 4TISFIED FOR A USER-*//6X,*CONSIDEKED*,8OX,*VECTOK*,8X,*SPLCIFIEU V 5ALUE OF $K R * / / 110 X, * O R$ RELTOL*/)
 1)*, 12 X * $*(\mathrm{YES} / \mathrm{NO}) * / /)$
FORMAT (1H1/64X,*METHOD 2*/64X,*---------*///)
FURMAT (9X,*(MR)*, $17 \mathrm{X}, *(\mathrm{X} 2) *, 17 \mathrm{X}, *(\mathrm{X} 2$ SUM $) *, 16 \mathrm{X}, *(\mathrm{R} 2) *, 18 \mathrm{X}, *(\mathrm{~K} 2 \mathrm{NURM}$ 1)*, 12X**(YES/NO)*//)
END

A 288
A 289
A 290
A 291
A 292
A 293
A 294
A 295
A 296
A 297
A 298
A 298
A 300
A 101
A 302
A 303
A 304
A 305
A 306
A 307
A 308
A 309
A 310
A 311
A 312
A 313
A 314
A 315
A 316
A 317
A 318
A 319
A 320
A 321
A 322
A 323
A 324
A 325
A 326
A 327
A 328
A 329
A 330
A 331
A 332
A 333
A 334
A 336
A 336
A 337
A 330
A 339
A 340
A 341
A 342
A 343
A 344SUBROUTINE SOLCHK (K,MR,MMR,ICRIT,IPRINT,NURM,UNIT,X,XSUM,R,RNORM,1EPS,OPT (M)THIS SUBROUTINE CHECKS THE SOLUTION FOR NECESSARY CONDITIONS FORA MINIMAX OPTIMUM BY FIRST TESTING WHETHER THE MULTIPLIERS X(I),$X(2), \ldots, x(M R)$ ARE NON-NEGATIVE,ANU THEN FINDING OUT IF THE NORMRNORM OF THE RESIDUAL VECTOR R IS LESS THAN OR EQUAL TU EPS
DIMENSION X(1), R(1)
INTFGER UNIT
LOGICAL IPRINT,OPTIM
MR1 $=M R+1$
$K 1=K+1$
GO TO (1.2), NORM
RNORM = ANORMI (K, R)
GO TO 3
RNORM $=$ ANORM2 (K, R)
CONT INUE
IF (RNORM.GT.EPS) GO TO 4
OPTIM=.T.
$M M R=M R$
CONT INUE
DO $5 \mathrm{~J}=1$, MR
IF (X(J).GE.O.) GO TO 5
OPTIM=。F。
GO TO 6
CONT INUE
CONT INUE
IF (. NOT.IPRINT) RETURN
IF (OPTIM) GO TO 7
WRITE (UNIT,15) MR,X(1),XSUM,R(1),RNOKNi
GO TO 8
WRITE (UNIT,16) MR,X(1),XSUM,R(1),RNORM
IF (MR.EQ.I) GO TO 13
IF $(K-M R) 9,9,11$
DO $10 \mathrm{I}=2, \mathrm{~K}$
WRITE (UNIT,17) X(I),R(I)
CONT INUE
IF (K•EQ•MR) RETURN
WRITE (UNIT,18) (X(I),I=KI,MR)
GO TO 14
DO $12 \mathrm{I}=2, \mathrm{MR}$
WRITE (UNIT,17) X(I),R(I)
CONT INUE
IF (K.EQ.MR) RETURN
WRITE (UNIT,19) (R(I), I=MRI oK)
RETURN
FORMAT (//10X, $12,11 \mathrm{X}, \mathrm{E} 16.8,6 \mathrm{X}, \mathrm{E} 16.8,6 \mathrm{X}, \mathrm{E} 16.8,6 \mathrm{X}, \mathrm{E} 16,8,11 \mathrm{X}, * \mathrm{NO}_{\mathrm{H}}$)
FORMAT (//10X, I2,11X,E16.8,6X,E16.8,6X,E16.8,6X,E16.8, 11X,*YES*)
FORMAT $(/ 73 X, F 16.8,28 X, E 16.8)$
FORMAT (/23x,E16.8)
FORMAT (/67X,E16.8)
END

```
56
57
5%-
&
SUBROUTINE METI IK,K3,MR,NR,KR3,YMAX,GRAD,XI,XISUM,R1,A,B,C,KU,X,P
IS,JH,XX,YY,PE,E,NRMAX,
    DIMENSION YMAX(1), GRAU(NRMAX,1), X1(1), R1(1)
    DIMENSION A(K3,1), B(1), C(I), X(1), PS(1), JH(1), XX(1), YY(1), P
    1E(1): E(K3,1)
    MR1=MR+1
    MR2 =MR +2
    MR3=MR1+2*K
    K?=2*K
    K3=k2+1
    DO 2 I =1,MR
    DO 1 J=1,K
    A(J,I)=GRAD(I,J)
    A(J+K,I)=-A(J,I)
    CONTINUE
    CONTINUE
    DO 3 J=1,K2
    A(J,MR1)=-1.
    CONTINUE
    DO 5 J=1,K2
    DO 4 I=MR2,MR3
    A(J,I)=0.
    IF (J.EQ.(I-MRI)) A(J,I)=1.
    CONTINUF
    continuE
    DO 6 I= I,MR
    A(K3,I)=1.
    CONTINUE
    DO }7\textrm{I}=MR1,MR
    A(K3,I)=0.
    CONTINUE
    DO B I=1,K2
    B(I)=0.
    CONTINUE
    B(K3)=1.
    DO 9 I=1,MR3
    C(I)=0.
    IF (I.EQ.MRI) C(I)=1.
    CONT INUE
    SUBROUTINE SIMPLE IS NOW GOING TO BE CALLED.ANY ALTERNATIVE
    CHOICE TO THIS SUBROUTINE IS ALLOWABLE FUR THE USEK AS LONG AS IT
    PERFORMS THE FOLLOWING OPERATION.
    SUBROUTINE SIMPLE SOLVES A LINEAR PROUKAMMING PRUBLEM UF
    MINIMIZING C*X SUBJECT TO A*X=B,WHEKE X,C,口 ARE VECTORS OF LENGTH
    MR3,MR3,K3 RESPECTIVELY,AND A IS A MATRIX OH SIZE (K3,MR3)
    SUBROUTINE SIMPLE IS A MOUIFIED VERSION OF A PROGRAM AVAILAGLE
    WITH SHARE DISTRIBUTING AGENCY,REFEKENCE NUMBER SDA 3384 ANO
    WRITTEN BY R.J.CLASEN (REFERENCE NUMBER (5)
    A COPY OF THE LISTING IS AVAILABLE AS'INDICATED IN REFERENCE
    NUMBER (6).
```


| | $J J=I C O L(J)$ | D | 80 |
| :---: | :---: | :---: | :---: |
| | H（J．I）＝GRAD（I，JJ） | D | 81 |
| 8 | CONTINUE | U | 82 |
| 9 | CONTINUE | U | 83 |
| | DO $10 \mathrm{~J}=1$ ，IRANK 1 | ט | 84 |
| | H（IRANK1，J）$=1$ 。 | ט | 85 |
| 10 | CONTINUF | D | 86 |
| | DO $11 \mathrm{~J}=1$ ，IRANK | ν | 87 |
| | $Q(J)=0$ 。 | ט | 88 |
| 11 | CONT INUE | 0 | 89 |
| | Q（IRANKI）$=1$. | 0 | 90 |
| C | | U | 91 |
| C | | D | 92 |
| C | SUBROUTINE SOLVE SOLVES A SET OF LINEAR SIMULTANEOUS EQUATIONS． | U | 93 |
| C | H IS A MATRIX OF ROW SIZE IRANKI IN AF ARRAY ROW DIMENSION KI． | L | 94 |
| C | A SQUARE SUBMATRIX OF H OF SIZE（IRANKI，IRANKI）IS PART OF THE | D | 95 |
| C | THE MATRIX EUUATIUN ON THE LEFTHANU SIUE，WHILE G IS INITIALLY THE | U | 46 |
| C | VECTOK ON THE RIGHTHAND SIDE•U IS FINALLY THE SULUTION VECTOR． | U | 97 |
| C | IDET IS UEFINED BY $2 * * I D$－LT．ABS（UET）oLT $2 * *(I U+1)$ WHERE DET IS | D | 98 |
| C | THE DETERMINANT OF THE SUBMATRIX． | D | 99 |
| C | REFFRENCE NUMBER（7） | D | 100 |
| C | A LISTING OF THIS SUBROUTINE IS ATTACHED TO THE PACKAGE | D | 101 |
| C | A LSTING ． | D | 102 |
| C | | D | 103 |
| | CALL SOLVE（H，Q，IDET，IRANKI，K1） | D | 104 |
| | DO $12 \mathrm{~J}=1 \mathrm{I}$ IRANK1 | L | 105 |
| | X 2 （J）$=\mathrm{Q}(\mathrm{J})$ | D | 106 |
| 12 | CONT INUE | D | 107 |
| | DO $14 \mathrm{~J}=1$ ，K | D | 108 |
| | $J J=I C O L(J)$ | D | 109 |
| | $Q(J)=0$ 。 | D | 110 |
| | DO $13 \mathrm{I}=1, \mathrm{MR}$ | D | 111 |
| | $Q(J)=Q(J)+X 2(I) * G R A D(I, J J)$ | D | 112 |
| | R2（JJ）＝Q（J） | D | 113 |
| 13 | CONTINUE | D | 114 |
| 14 | CONTINUE | D | 115 |
| | $\mathrm{X} 2 \mathrm{SUM}=0$ ． | D | 116 |
| | DO $15 \mathrm{I}=1, \mathrm{MR}$ | D | 117 |
| | $\times 2 \mathrm{SUM}=\times 2.5 \cup \mathrm{M}+\times 2$（1） | D | 118 |
| 15 | CONTINUE | D | 119 |
| | RETURN | D | 120 |
| C | | D | 121 |
| 16 | FORMAT（10X，I2998X9＊USER IS ADVISEU TU＊／110X9＊INCREASE VALUE OF Ut | ט | 122 |
| | 1LTA＊／／） | D | 123 |
| | END | D | 124 |
| C | | D | 125 |
| c | | D | 126 |
| C | | D | $127=$ |
| C | | E | 1 |
| | FUNCTION ANORMI（ $K, B 1$ ） | E | 2 |
| C | THE EUCLIDEAN NORM OF VECTOR BI IS CALCULATED HERE | E | 3 |
| | DIMENSION BI（1） | E | 4 |
| | ANORMI $=0$ 。 | E | 5 |
| | DO 1 I $=1$ ，K | E | 6 |
| | ANORMI＝ANORM + ＋ 11 （I）\＃B1（I） | E | 7 |
| 1 | CONT INUE | E | 8 |
| | ANORM $=$ SQRT（ANORML） | E | 9 |

 RETURN E 10
 END
c
C
c
C
C
FUNCTION ANORM2 (K,BI)
C $\cdot \operatorname{MAX}(A B S(B 1(1)), A B S(B 1(2)), \ldots, A B S(B 1(x)))$ IS CALCULATED HERE
DIMENSION BI(1)
ANORM2=ABS(B1(1))
IF (K.LT.2) GO TO 2
DO $1 I=2, K$
$A B S B 1=A B S(B 1(1))$
IF. (ABSB1•GT•ANORM2) ANORM2=ABSB1 F 9
CONT INUE
END
SUBROUTINE SOLVE $(A, X, I D, N, N A)$
DIMENSION $A(N A, 1), X(1)$
$D=0$.
DATA DIV/.693147181/
DO $6 \mathrm{I}=1, \mathrm{~N}$
$A A=0$.
DO $1 J=I, N$
$A B=A B S(A(J, I))$
IF (AB.LE.AA) GO TO 1
$K=J$
$A A=A B$
CONT INUE
$D=D+A L O G(A A)$
IF (I•EQ.N) GO TO 7
IF (K.EQ.I) GO TO 3
DO $2 \mathrm{~J}=\mathrm{I}, \mathrm{N}$
$A B=A(I, J)$
$A(I, J)=A(K, J)$
$A(K, J)=A B$
CONTINUE
$A B=X(I)$
$X(I)=X(K)$
$X(K)=A B$
I $1=I+1$
DO $5 \mathrm{~J}=I 1, N$
$A A=-A(J, I) / A(I, I)$
$A(J, I)=0$.
DO $4 K=I I$, N
$A(J, K)=A(J, K)+A A * A(I, K)-\quad$.
$A(J, K)=A(J, K)+A A * A(I, K)$
CONTINUE
X(J) = X(J) +AA*X(I)
CONTINUE
CONTINUE
ID=D/DIV
$X(N)=X(N) / A(N, N)$
DO 9 II $=29 \mathrm{~N}$

RETURN
 RETURN

END
13

$\rightarrow 2$
$14-$
1
1
2
2
3
F
4
5
5
6
6
7
7
8
10
11
12
12
13
14
14
$15-$
1

1
2
3
4
5
6
7

ND
路
\qquad

| | $\mathrm{I}=\mathrm{N}+1-1 \mathrm{I}$ | | G | 38 |
| :---: | :---: | :---: | :---: | :---: |
| | I $1=1+1$ | | G | 39 |
| | $A A=0$ 。 | | G | 40 |
| | $\begin{aligned} & D O 8 J=I 1, N \\ & A A=A A+A(I ; J) * X(J) \end{aligned}$ | | G | 41 |
| | | | G | 42 |
| 8 | CONT INUE | | G | 43 |
| | $X(I)=(X(I)-A A) / A(I) I)$ | | G | 44 |
| 9 | CONTINUE | | G | 45 |
| | RETURN | | G | 46 |
| | END | | G | 47 |
| c | | | G | 48 |
| c | | | G | 49 |
| C | | | G | $50=$ |
| C | REFERENCES | （1）JOW．BANDLER，＇CONDITIONS FOR A MINIMAX UPTIWUM＇。 | H | 1 |
| c | | IEEE TRANS CIKCUIT THEURY（CORRESP。），VUL。（T－180 | H | 2 |
| C | | PP 476－479，JULY 1971 | H | 3 |
| C | | （2）SUBROUTINE ARRAY，P98，SYSTEM／360 SCIENTIFIC | H | 4 |
| C | | SUBROUTINE PACKAGE，VERSION 3，IBMっPRUGRAM NUMBEK | H | 5 |
| C | | 360A－CM－03X | H | 6 |
| c | | （3）SUBROUTINE MINV，P118，SYSTEM／360 SCIENTIF\＆C | H | 7 |
| c | | SUBROUTINE PACKAGE，VEKSION 3，IGM，PRUGKAM NUMBEK | H | 8 |
| c | | 360A－CM－03X | H | 9 |
| c | | （4）SUBROUTINE MFGR，P127，SYSTEM／360 SCIENTIFIC | H | 10 |
| C | | SUBROUTINE PACKAGEgVERSIUN 3，IBM，PROGKAM NUMBER | H | 11 |
| C | | 360A－CM－03X | H | 12 |
| C | | （5）SUBROUT INE SIMPLE，DATA PROCESSING ANU COMPUTING | H | 13 |
| c | | CENTRE，LIBRARY INFORMATION SHEET MILIS 15002．01。 | H | 14 |
| C | | P130，MCMASTER UNIVERSITY，HAMILTUN，ONTARIO：CANADA | H | 15 |
| c | | （6）JoW．BANLLER AND ToV．SRINIVASAN：＇THE GKAZOR SEARCH | H | 16 |
| c | | PROGRAM FOR MINIMAX UBJECTIVES＇，IEEE TRANS | H | 17 |
| C | | MICROWAVE THEURY TECH．（PRUGRAM UESCRIPTIOW） | H | do |
| c | | VOL．MTT－20，PP 784－785，NOVEMBLR 1972 | H | 19 |
| C | | （7）SUBROUTINE SOLVE，DATA PROCESSING AND COMPUTI＇VG | H | 20 |
| c | | CENTRE，LIBKARY INFORMATION SHEET MILLIS 450040160 | H | 21 |
| | | P 27，MCMASTEK UNIVERSITY，HAMILTONOONTARIO。CANADA | H | 22－ |

REFERENCES

J. H. Anderson (1967), "Geometrical approach to reduction of dynamic systems". Proc. IEE, vol. 114, pp.1014-1018.
J. W. Bandler (1969a), "Optimization methods for computer-aided design". IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp.533-552.
J. W. Bandler (1969b), "Computer optimization of inhomogeneous waveguide transformers ${ }^{\text {ip }}$, IEEE Trans. Microwave Theory Tech. vol. MTT-17, pp.563-571.
J.W. Bandler (1971), "Conditions for a minimax optimum", IEEE Trans. Circuit Theory, vol. CT-18, pp.476-479.
J. W. Bandler (1972), "Optimization methods and microwave circuit design ${ }^{7 \prime}$. Proc. 6th Princeton Conf. Information Sciences and Systems (Princeton, N.J.). pp.10-14.
J.W. Bandler and B. L. Bardakjian (1973), "Least pth optimization of recursive digital filters", IEEE Int. Symp. Circuit Theory (Toronto, Canada), pp.377-380.
J.w. Bandler and C. Charalambous (1971), "On conditions for optimality in least pth approximation with $p \rightarrow \infty$ " Proc. 9th Allerton Conf. Circuit and System Theory (Urbana, I11.), pp.404-413.
J. W. Bandler and C. Charalambous (1972a), "A new approach to nonlinear programming", Proc. 5th Hawaii Int. Conf. System Sciences (Honolulu, Hawaii), pp.127-129.
J. W. Bandler and C. Charalambous (1972b), "Conditions for minimax approximation obtained from the ℓ_{p} norm $^{\prime \prime}$. IEEE Trans. Auromatic Control, vo1. AC-17, pp.257-258.
J. W. Bandler and C. Charalambous (1972c), "Theory of generalized least pth approximation", IEEE Trans. Circuit Theory, vol. CT19, pp.287-289.
J. W. Bandler and C. Charalambous (1972d), "Practical least pth optimization of networks", IEEE Trans. Microwave Theory Tech. . vol. MTT-20, pp.834-840.
J. W. Bandler and C. Charalambous (1973a), "On conditions for optimality in least pth approximation with $p \rightarrow \infty$ " J。Optimization Theory and Applications, vol. 11.
J. W. Bandler and C. Charalambous (1973b), "Nonlinear programming using minimax techniques", J. Optimization Theory and Applications, accepted for publication.
J. W. Bandler, C. Charalambous and S. K. Tam (1972), "Computer-aided equal ripple design of lumped-distributed-active filters", Int. Filter Symp. (Santa Monica, Calif.), pp.79-80.
J. W. Bandler and V. K. Jha (1972), "Network optimization computer program package", CRL Internal Report Series No. CRL-5, Communications Research Laboratory, Department of Electrical Engineering, McMaster Univ., Hamilton, Canada.
J. W. Bandler and A. G. Lee-Chan (1971), "Gradient razor search method for optimization ", IEEE Int. Microwave Symp. Dig. (Washington, D.C.), pp.118-119.
J. W. Bandler and P. A. Macdonald (1969a), "Cascaded noncommensurate transmission-line networks as optimization problems", IEEE Trans. Circuit Theory, vol. CT-16, pp.391-394.
J. W. Bandler and P. A. Macdonald (1969b), "Optimization of microwave networks by razor search", IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp.522-562.
J. W. Bandler and P. A. Macdonald (1971), "The razor search program", IEEE Trans. Microwave Theory Tech. (Comput. Program Descr.), vol. MTT-19, p. 667.
J. W. Bandler, N. D. Markettos and N. K. Sinha (1973), "Optimum system modelling using recent gradient methods", Int. J. Systems Science, vo1. 4, pp.33-44.
J. W. Bandler, N. D. Markettos and T. V. Srinivasan (1972), "A comparison of recent minimax techniques on optimum system modelling", Proc. 6th Princeton Conf. Information Sciences and Systems (Princeton, N.J.), pp.540-544.
J. W. Bandler, N. D. Markettos and T. V. Srinivasan (1973), "Gradient minimax techniques for system modelling ${ }^{19}$. Int. J. Systems Science, vol. 4, pp.317-331.
J. W. Bandler and R. E. Seviora (1970), "Current trends in network optimization', IEEE Trans. Microwave Theory Tech., vol. MTT-18, pp.1159-1170.
J. W. Bandler and T. V. Srinivasan (1971), "A new gradient algorithm for minimax optimization of networks and systems", Proc. 14th Midwest Symp. Circuit Theory (Denver, Colo.), pp.16.5.116.5.11。
J. W. Bandler and T. V. Srinivasan (1972), "The grazor search program for minimax objectives", IEEE Trans. Microwave Theory Tech., vo1. MTT-20, pp.784-785.
J. W. Bandler and T. V. Srinivasan (1973a), "Constrained minimax optimization by grazor search", Proc. 6th Hawaii Int. Conf. System Sciences (Honolulu, Hawaii), pp.125-128.
J. W. Bandler and T. V. Srinivasan (1973b), "On realistic minimax modelling of high-order systems", Proc. 7th Princeton Conf. Information Sciences and Systems (Princeton, NoJ.).
J. W. Bandler and T. V. Srinivasan (1973c), "Practical investigation of conditions for minimax optimality", Proc. 16th Midwest Symp. Circuit Theory (Waterloo, Canada), pp.xX.4.1-xX.4.10.
J. W. Bandler and T. V. Srinivasan (1973d), "Program for investigating minimax optimality conditions", IEEE Trans. Microwave Theory Tech., vo1. MTT-21, p. 433.
J. W. Bandler and T. V. Srinivasan (1973e), "Computer-aided system modelling and design", Proc. Int. Conf. Systems and Control (Coimbatore, India).
J. W. Bandler, T. V. Srinivasan and C. Charalambous (1972), 'Minimax optimization of networks by grazor search", IEEE Trans. Microwave Theory Tech. . vo 1. MTT-20, pp.596-604.
G. T. Bereznai (1971), "Adaptive nuclear control based on optimal loworder linear models", Ph.D. Dissertation, McMaster Univ., Hamilton, Canada.
C. Brancher, F. Maffioli and A. Premoli (1970), "Computer optimisation of cascaded noncommensurable-line lowpass filters'", Electronics Letters, vol. 6, pp.513-515.
H. J. Carlin (1971), "Distributed circuit design with transmission line elements', Proc. IEEE, vol. 59, pp.1059-1081.
H. J. Carlin and O. P. Gupta (1969), "Computer design of filters with lumped-distributed elements or frequency variable terminations", IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp.598-604.
C. W. Carroll (1961), "The created response surface technique for optimizing nonlinear, restrained systems", Operations Research, vo1. 9, pp.169-185.
C. Charalambous (1973), "Nonlinear least pth approximation with applications", Ph.D. Dissertation, McMaster Univ., Hamilton, Canada.
C. F. Chen and L. S. Shieh (1968), "A novel approach to linear model simplifications", Proc. JACC (Ann Arbor, Mich.), pp.454-460.
M. R. Chidambara (1969), "Two simple techniques for the simplification of large dynamic systems", Proc. JACC, pp.669-674.
A. R. Curtis and M. J. D. Powell (1966), "Necessary conditions for a minimax approximation', Computer J., vol. 8, pp.358-361.
E. J. Davison (1966), "A method for simplifying linear dynamic systems", IEEE Trans. Automatic Control, vo1. AC-11, pp.93-101.
V. F. Dem'yanov (1970), "Sufficient conditions for minimax problems", Zh. Uychisl. Mat. Fiz., vol. 10, pp.1107-1115.
S. W. Director and R. A. Rohrer (1969), "The generalized adjoint network and network sensitivities", IEEE Trans. Circuit Theory, vol. CT-16, pp.318-323.
R. C. Dorf (1967), Modern Control Systems. Reading, Mass. : AddisonWesley, pp.167-168.
A. V. Fiacco and G. P. McCormick (1964a), "The sequential unconstrained minimization technique for nonlinear programming, a primal-dual method", Management Science,vol. 10, pp.360-366.
A. V. Fiacco and G. P. McCormick (1964b), "Computational algorithm for the sequential unconstrained minimization technique for nonlinear programming", Management Science, vol. 10, pp.601-617.
R. Fletcher (1970), "A new approach to variable metric algorithms", Computer J., vo1. 13, pp.317-322.
R. Fletcher and M. J. D. Powell (1963), "A rapidly convergent descent method for minimization", Computer J., vol. 6, pp.163-168.
W. T. Hatley, Jr. (1967), "Computer synthesis of wide-band impedancematching networks", Tech. Rept. 6657-2, Stanford Electronics Laboratories, Stanford Univ., Stanford, Calif.
J. E. Heller (1969), "A gradient algorithm for minimax design", Report R-406, Coordinated Science Lab., Univ. of I1linois, Urbana.
R. Hooke and T. A. Jeeves (1961), " Direct search' solution of numerical and statistical problems", J. Ass. Comput. Mach., vol. 8, pp.212-229.
Y. Ishizaki and H. Watanabe (1968), "An iterative Chebyshev approximation method for network design", IEEE Trans. Circuit Theory, vol. CT-15, pp.326-336
D. H. Jacobson and W. Oksman (1972), "An algorithm that minimizes homogeneous functions of N variables in $\mathrm{N}+2$ iterations and rapidly minimizes general functions', J. Math. Anal. Applics., vol. 38, pp.535-552.
P. Kokotović and P. Sannuti (1968), "Single perturbation method for reducing the model order in optimal design", Proc. JACC (Ann Arbor, Mich.), pp.468-476.
H. W. Kuhn and A. W. Tucker (1951), "Nonlinear programming", Proc. 2nd Berkeley Symp. Mathematical Statistics and Probability (Berkeley, Calif.), pp.481-492.
L. S. Lasdon (1970), Optimization Theory for Large Systems. New York : Macmillan.
R. Levy (1965), "Tables of element values for the distributed lowpass prototype filter", IEEE Trans. Microwave Theory Tech. . vol. MTT-13, pp.514-536.
N. D. Markettos (1972), "Optimum system modelling using recent gradient methods", M. Eng. Dissertation, McMaster Univ., Hamilton, Canada.
S. A. Marshall (1966), "An approximate method for reducing the order of linear systems", Control, vol. 10, pp.642-643.
G. L. Matthaei, L. Young and E. M. T. Jones (1964), Microwave Filters, Impedance Matching Networks and Coupling Structures. New York : McGraw-Hill.
J. Medanic (1970), "Solution of the convex minimax problem by the NewtonRaphson method", Proc. 8th Allerton Conf. Circuit and System Theory (Urbana, I11.), pp.13-22.
D. Mitra (1969), 'The reduction of complexity of linear time-invariant dynamic systems", Proc. 4th IFAC Congress (Warsaw, Poland), pp.19-33.
M. R. Osborne and G. A. Watson (1969), "An algorithm for minimax approximation in the non-linear case", Computer J., vol.12, pp.63-68.
J. R. Popović (1972), "General programs for least pth and near minimax approximation", M. Eng. Dissertation, McMaster Univ., Hamilton, Canada.
R.E.Seviora, M.Sablatash and J. W. Bandler (1970), "Least pth and minimax objectives for automated network design", Electronics Letters, vo1. 6, pp.14-15.
N. K. Sinha and G. T. Bereznai (1971), "Optimum approximation of highorder systems by low-order models", Int. J. Control, vol. 14, pp.951-959.
N. K. Sinha and W. Pille (1971), "A new method for reduction of dynamic systems", Int. J. Control, vo1. 14, pp.111-118.

Subroutine ARRAY, System/360 Scientific Subroutine Package, Version III, IBM Programmer's Manual Number 360A-CM-03x, p.98.

Subroutine MFGR, System/360 Scientific Subroutine Package, Version III, IBM Programmer's Manual Number 360A-CM-03x, p.127.

Subroutine MINV, System/360 Scientific Subroutine Package, Version III, IBM Programmer's Manual Number 360A-CM-03x, p.118.

Subroutine SIMPLE, Data Processing and Computing Centre, Library Information Sheet MILIS 15.02.01, McMaster Univ., Hamilton, Canada, p.130.

Subroutine SOLVE, Data Processing and Computing Centre, Library Information Sheet MILIS 45.04.16, McMaster Univ., Hamilton, Canada, p. 27.

Subroutine TGSORT, Data Processing and Computing Centre, Library Information Sheet MILIS 5.3.34, McMaster Univ., Hamilton, Canada.
G. C. Temes (1969), "Optimization methods in circuit design", in Computer Oriented Circuit Design, F. F. Kuo and W. G. Magnuson Jr., Eds. Eng1ewood Cliffs, N.J. : Prentice Hall.
G. C. Temes and D. Y. F. Zai (1969), "Least pth approximation", IEEE Trans. Circuit Theory, vol. CT-16, pp.235-237.
A. D. Waren, L. S. Lasdon and D. F. Suchman (1967), "Optimization in engineering design", Proc. IEEE, vol. 55, pp.1885-1897.
G. A. Watson (1970), "On an algorithm for nonlinear minimax approximation', Commun. Ass. Comput. Mach., vol. 13, pp.160-162.
W. I. Zangwill (1969), Nonlinear Programming : A Unified Approach. Englewood Cliffs, N.J., : Prentice Hall.

AUTHOR INDEX
J. H. Anderson
J. W. Bandler
B. L. Bardakjian
G. T. Bereznai
C. Brancher
H. J. Car1in
C. W. Carroll
C. Charalambous
C. F. Chen
M. R. Chidambara
A. R. Curtis
E. J. Davison
V. F. Dem'yanov
S. W. Director
R. C. Dorf
A. V. Fiacco
R. Fletcher
0. P. Gupta
W. T. Hatley, Jr.
J. E. Heller
R. Hooke
Y. Ishizaki
D. H. Jacobson
$14,15,80,82,85,86,89,90,93,94,101,102,117,169$
77,164
$2,3,8,13,14,15,17,18,19,21,28,38,39,40,46,48$, $63,65,78,80,81,102,164-167,171$

14,164
$42,77,107,167,171$
$66,69,71,167$
$63,65,67,73,167,168$
10,168
$2,14,17,18,38,46,80,164,165,167,168$
77,168
77,168
39,168
77,168
38,168
3,8,17,168
80,168
8,9,11,168,169
$63,65,67,168$
46,169
8,169
9,169
$8,11,169$
$14,80,82,85,89,93,101,169$
T. A. Jeeves

9,169
V. K. Jha

14,165
E. M. T. Jones
$28,48,170$
P. KokotoviE

77,169
H. W. Kuhn

34,38,170
L. S. Lasdon

9,21,34,170,172
A. G. Lee-Chan
$8,13,19,165$
R. Levy

69,73,170
P. A. Macdonald
$2,8,17,28,48,165,166$
F. Maffioli
$66,69,71,167$
N. D. Markettos
$3,15,77,78,80,81,166,170$
S. A. Marshall

77,170
G. L. Matthaei
$28,48,170$
G. P. McCormick

8,9,11,168,169
J. Medanic

38,170
D. Mitra

77,170
W. Oksman
$14,80,82,85,89,93,101,169$
M. R. Osborne
$2,8,11,13,46,48,49,52-59,62,76,170$
w. Pille

77,171
J. R. Popovie

14,171
M. J. D. Powell
$14,39,80,85,89,90,101,102,168,169$
A. Premoli

66,69,71,167
R. A. Rohrer
M. Sablatash

3,8,17,168
P. Sannuti

77,169
R. E. Seviora
$3,8,14,17,63,65,166,171$
L. S. Shieh
N. K. Sinha
T. V. Srinivasan
D. F. Suchman
S. K. Tam
G. C. Temes
A. W. Tucker
A. D. Waren
H. Watanabe
G. A. Watson
L. Young
D. Y. F. Zai
W. I. Zangwill

77,168
$77,78,80,166,171$
$2,3,15,17,18,19,40,46,81,102,166,167$
9,172
14,165
$14,27,172$
34,38,170
9,172
8,11,169
$2,8,11,13,46,48,49,52-59,62,76,170,172$
$28,48,170$
14,172
34,172

[^0]: . - Indicates an ARGUMENT TOO LARGE message was given by the computer.

[^1]: ${ }^{++}$Indicates time limit of 128 seconds was reached.
 *Indicates an ARGUMENT TOO LARGE message was given by the computer.

