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LAY ABSTRACT 

Obesity is a chronic disorder triggered by multiple genes, environmental factors and their 

interactions. Currently most of the common genetic alterations, called single nucleotide 

polymorphisms (SNPs), associated with adult body mass index (BMI) were identified in 

populations of European ancestry. This thesis aims to: 1) investigate whether these BMI-

associated SNPs are also associated with BMI in other ethnic groups; 2) explore the parental and 

child genetic contributions in children from birth to 5 years; 3) examine the maternal and child 

genetic contribution to maternal gestational weight gain (GWG) and postpartum weight 

retention. The major findings are: 1) BMI SNPs identified in Europeans are partially 

generalizable to other five ethnicities; 2) The collective SNPs contributing to adult BMI start to 

exert their effect at birth and in early childhood; and 3) There is a genetic link between pre-

pregnancy BMI and offspring birth weight and maternal postpartum weight retention.  
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ABSTRACT 

Obesity has more than doubled worldwide since 1980 and it has become the focus of public 

health due to a wide range of serious complications. It is believed to be a complex disorder 

triggered by multiple genes, environmental factors and their interactions. The total number of 

single nucleotide polymorphisms (SNPs) associated with adult body mass index (BMI) at 

genome-wide significance level (P<5×10
-8

) has recently increased to 136. However, these 

genome-wide association studies (GWAS) have been conducted primarily in populations of 

European ancestry. This thesis aims to: 1) investigate whether these BMI SNPs are also 

associated with BMI in other ethnicities (South Asian, East Asian, African, Latino American and 

Native American) using a multi-ethnic prospective EpiDREAM cohort study; 2) explore the 

parental and child genetic contributions to obesity-related traits in children from birth to 5 years 

in the FAMILY cohort; 3) examine the maternal and child genetic contribution of BMI SNPs to 

maternal gestational weight gain (GWG) and postpartum weight retention in the FAMILY 

cohort.  

 The major findings are: 1) most BMI susceptibility genes identified in Europeans are also 

associated with BMI in other five ethnicities. The effects of some SNPs and BMI genetic risk 

score (GRS) were modified by ethnicity; 2) SNPs contributing to adult BMI start to exert their 

effect at birth and in early childhood. Parent-of-origin effects may occur in a limited subset of 

obesity predisposing SNPs; and 3) there is no association between maternal and child GRS and 

GWG. But there is a genetic link between pre-pregnancy BMI variation and offspring birth 

weight and maternal postpartum weight retention. Taken together, these findings indicate that 

GWAS of specific ethnic group, children, birth weight and GWG are necessary to look for novel 

variants and alternative pathways influencing the development of obesity. 
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PREFACE AND OUTLINE 

This thesis represents an investigation into the genetics of human obesity in the post-

genome wide association study era. Currently, 136 single nucleotide polymorphisms (SNPs) 

have been identified to be associated with adult body mass index (BMI) or obesity at genome-

wide significance level (P<5×10
-8

). The first objective of the thesis is to examine whether these 

SNPs most discovered in European ancestry are also associated with adult BMI in other ethnic 

populations. The second objective is to determine whether these SNPs contribute to the variation 

of obesity related traits at birth and early childhood. The third objective is to determine whether 

these SNPs account for the variation of maternal gestational weight gain and postpartum weight 

retention. These individual studies will follow a version of sandwich thesis and comprise 

individual chapters. All these studies are written into manuscripts for publication. 

In addition, in order to expand my knowledge of genetic epidemiology at the beginning 

of my PhD study and under the supervision of Dr. Meyre, I completed an extensive review of 

literature and wrote a series of three articles that summarized the concepts of molecular genetics, 

genetic epidemiology and its applications which will be included in the supplementary as 

separate chapters. 

 

Chapter I: A literature review consisting of the following aspects: 

(1) Prevalence and health complications of obesity in children, adults and pregnant women. 

(2) Environmental risk factors including individual-level lifestyle factors (diet, physical 

activity, behaviors and other lifestyle components such as sleep deprivation, 

socioeconomic status, smoking, depression, marital status, employment situation and 
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parity), perinatal, early life and intergenerational factors (such as maternal obesity/ 

excessive gestational weight gain/gestational diabetes mellitus and birth weight). 

(3) Genetic risk factors including syndromic /non-syndromic obesity, oligogenic obesity and 

polygenic obesity. 

(4) Gene and environment interactions and obesity 

Chapter II will examine whether 23 SNPs (individually or collectively as a genetic risk score 

(GRS)) associated with adults BMI in Europeans are associated with adult BMI in other 

ethnicities using multi-ethnic prospective EpiDREAM cohort study (including South Asian, East 

Asian, African, Latino American and Native American) and test for interaction between 

SNPs/GRS and ethnicity.  

Chapter III will investigate the parental and child contribution of 83 SNPs to obesity-related 

traits in children from birth to 5 years old in the FAMILY cohort. The parent-of-origin effects of 

each SNP are also explored. This manuscript has been submitted to Obesity. 

Chapter IV will examine the associations between maternal prepregnancy BMI and 

gestational weight gain (GWG) and obesity-related traits in both mothers and offspring in the 

FAMILY birth cohort. The maternal and offspring genetic contributions of 83 BMI susceptibility 

variants to GWG and postpartum weight retention are further tested. This manuscript has been 

submitted to Obesity. 

Chapter V will summarize the major contributions of this thesis to the current knowledge in 

the relevant fields. Future direction of research will be addressed. 

Supplementary Chapter VI will focus on the fundamental concepts of molecular genetics. 

This manuscript has been published in Current Psychiatry Reviews 2014, 10(2):91-100 
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Supplementary Chapter VII will focus on the fundamental concepts and methods in genetic 

epidemiology including the classification of genetic disorders, study designs and their 

implementation, genetic marker selection, genotyping and sequencing technologies, gene 

identification strategies, data analyses and data interpretation. This manuscript has been 

published in Current Psychiatry Reviews 2014, 10(2):101-117 

Supplementary Chapter VIII will discuss the evolution of personalized medicine and 

illustrate the most recent success in the fields of Mendelian and complex human diseases. This 

manuscript has been published in Current Psychiatry Reviews 2014, 10(2):118-132 
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CHAPTER I: FUNDAMENTAL EPIDEMIOLOGICAL METHODOLOGY AND 

LITERATURE REVIEW ON OBESITY 

1. FUNDAMENTAL METHODOLOGY IN EPIDEMIOLOGICAL STUDIES 

My thesis focuses on the genetics of human obesity in the post genome-wide association 

study era, but the fundamental methodology in classic epidemiology studies apply to genetic 

epidemiology as well. Therefore, I would like to review the relevant knowledge in the study 

designs, measurements of association, source of biases and confounding factors.  

1.1.  Study designs 

To study genetic association, there are two types of distinctive data: data from unrelated 

individuals and family data. If unrelated individuals are recruited for the study, it resembles 

classical epidemiological studies. The choice of a study design depends on the particular research 

question, time and cost. If ethical consideration permits, in clinical epidemiology studies, the 

randomized controlled trial (RCT) is considered the gold standard to test the efficacy or 

effectiveness of an intervention as it minimizes known and unknown confounding via 

randomization. Compared to that, cross-sectional and case-control study designs are more 

commonly used in genetic association studies as genes are blindly allocated which avoid the 

selection bias of the predictor. In a cross-sectional study, outcome and predictive variables 

(including genotype data) are all measured on a single occasion or within a short period of time. 

In a case-control study, the outcomes (cases and controls) are chosen first and then the predictors 

(including genotype data) are collected from these two samples by recall. The strengths of these 

two approaches are cost and time efficiency. Another advantage of the case-control study is its 

efficiency for rare diseases. The major weakness of a cross-sectional study is the difficulty of 

establishing causal relationships. The biggest limitation of a case-control study is its 
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susceptibility to biases because the cases and controls come from two different samples and the 

retrospective measurements of predictor variables creates the potential for recall bias. In a 

prospective cohort study, the predictive variables are measured at the beginning and the 

outcomes are measured as they develop over follow-up. This is a powerful strategy to assess the 

causal relationship between the risk factors and the incidence of a disease or a quantitative trait. 

However, it is more expensive and less efficient for collecting a sufficient number of cases for a 

rare disease. As a solution, a nested case-control study in a prospective cohort is theoretically 

ideal for a genetic association study in which disease cases collected during the follow-up are 

matched to non-disease controls selected from a portion of the entire cohort subjects. This design 

minimizes the recall bias, selection bias and inadequate/unreliable records of the environmental 

exposure from a retrospective case-control study, particularly when gene × environment 

hypotheses are being tested. However, it sacrifices the statistical power due to loss of substantial 

sample size. Quantitative trait studies (e.g. BMI in GIANT) in large-scale population-based 

samples have proved to be an efficient approach to identify novel susceptibility loci.
1
 However, 

it requires a larger sample size than case-control studies to reach the same statistical power, and 

this limitation greatly impacts the cost if expensive technologies are used (e.g. genome-wide 

DNA arrays).
2
 Thus, a case-control study is considered the most powerful and cost-efficient 

method to perform genetic association studies, if the two study groups are recriuted properly. An 

enrichment sampling strategy can increase the power of a case-control study.
3
 Enrichment 

strategies may select patients who are more homogenous at baseline, who have a greater 

likelihood of having a disease-related endpoint event or who are more likely to response to the 

drug treatment. For example, obesity cases selected from familial forms of childhood and adult 

extreme obesity, or having an early age of onset have narrow range of BMI, thus decreasing 
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inter-patient variability. The decreased variability will increase study power.
4
 These individuals 

with more severe phenotype are likely to be enriched for genetic susceptibility in comparison 

with obese subjects randomly selected in the general population. Bezinous et al. use this strategy  

to discover novel genetic variants rs6232 and rs6234/rs6235 in PCSK1 associated with obesity.
5
  

Though the enrichment sampling strategy is advantageous to improve power in genetic 

association studies, it artificially inflates the relative risk (i.e. winner’s curse) and population 

attributable risk of the associated gene variants. Therefore, population-based follow-up cohort 

studies will be needed to obtain a reliable estimation of these parameters. The genetic variants 

rs6232 and rs6234/rs6235 in PCSK1 were later shown to be associated with obesity and BMI in 

the general population.
6
 This example illustrates that an enrichment sampling strategy is a cost-

effective and efficient approach to identify loci associated with a trait of interest. 

The family-based design is optimal in specific situations, such as the identification of 

disease-associated variants subjected to parental imprinting, or in haplotype studies (the 

reconstruction of the haplotype phase is improved by availability of parental genotypes). It is 

robust to population stratification bias,
7
 but this design requests 50% more participants compared 

to a case-control study assuming the same power and risk allele frequency.
8
  

1.2. Measurements of disease frequency and association 

1.2.1.  Disease frequency 

It is essential to quantify the occurrence of a disease for an epidemiologic investigation 

and to allow public health decision-makers to allocate the health care resources in a particular 

community. Prevalence and incidence are the two categories most frequently used for measures 

of disease frequency. Prevalence quantifies the proportion of individuals in a population who 
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have the disease or condition at a specific point in time and provides an estimate of the 

probability (risk) that an individual will be ill at that time point. The formula for calculating the 

prevalence is 

   

In contrast to prevalence, incidence quantifies the number of new events or cases of diseases that 

develop in a population of individuals at risk during a specified time interval and provides an 

estimate of the probability (risk) that an individual will develop a disease during a specified 

period of time. The formula for calculating the incidence is 

  

1.2.2. Measurements of disease association 

When the outcome is binary (dichotomous) in which every participant is one of the two 

possibilities, for example, with or without disease, the data are often presented in the form of a 

two-by-two table, also called contingency table. The most commonly used effect measures of 

association in clinical trials with dichotomous data include the relative risk (RR) (also called the 

relative risk, the odds ratio (OR), the risk difference (RD) (also called the absolute risk 

reduction) and the number needed to treat (NNT). 
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    Disease   
    YES NO Total 

Exposure 
YES a b a+b 
NO c d c+d 

  Total a+c b+d a+b+c+d 
                  Data in a contingency table from a case-control or cohort study 

In a cohort study, relative risk estimates the magnitude of an association between the 

exposure and disease and is the ratio of likelihood of developing the disease in the exposed group 

relative to that in the control group, also called relative ratio. The formula for calculating RR is: 

 

RR is easy to compute and interpret, but the disadvantage is that the same value of RR may 

represent very different clinical scenarios. For example, a RR of 0.75 could be a clinically 

important reduction in hypertension from 60% to 45% or a modest and less clinically important 

reduction in hypertension from 4% to 3%. Therefore, it is suggested to report RR for 

summarizing the evidence and absolute measures for an actual clinical or public health situation.
9
 

 In a case-control study in which the participants are selected on the basis of disease 

status, it is not possible to calculate the risk of developing the disease given the presence or 

absence of exposure. Therefore, the estimate of RR in a cohort cannot be applied to the rationale 

in a case-control study. However, odds ratio estimates the ratio of the odds of exposure among 

the cases to that among the controls. It also represents the ratio of the odds of an outcome will 

occur given a particular exposure to the odds of the outcome occurring in the absence of that 

exposure. The formula for calculating OR is:  

RR= 
a/(a+b) 

c/(c+d) 
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If a disease is rare, the OR provides a good estimate of RR.
10, 11

 The OR is not only 

commonly reported in case-control studies, it also reported in cohort studies, cross-sectional 

studies, or clinical trials.
12

  The OR is the only measure of association estimated from a logistic 

model, without special assumption and requirement of study design.
12

 

 As discussed above, the rationale for RR and OR is different. When events are common 

in studies, the RR and OR differ. Because OR is more difficult to understand and interpret, it is 

unfortunately common in the literature to misinterpret an OR as a RR. If the OR is 

misinterpreted as a RR, it may be misleading because OR always overestimates the effect 

compared to a RR.
13, 14

 When the OR is less than 1, it is smaller than the RR; and when it is 

greater than 1, it is greater than the RR.   

 Absolute risk reduction (ARR) estimates the absolute effect of the exposure or the excess 

risk of disease in those exposed compared to those not exposed. The formula for calculating 

ARR is:  

 

The advantage of using ARR is that it is easy to compute and interpret. But it is worth 

noting that the difference in risk of fixed size may have greater importance when the values are 

close to 0 or 1 than those near the middle of the range. For example, the difference between 0.01 

and 0.05 should get more attention than the difference between 0.45 and 0.49, when severe side 

effects are considered.
12

 The clinical importance of a ARR may depend on the underlying risk of 

events and the consequences of the events when interpreting.
15
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Number needed to treat (NTT) is defined mathematically as the reciprocal of the ARR. 

The interpretation of NTT is dependent on whether the exposure-disease relationship is causal. If 

the causal-effect relationship exists, the NNT means the number of patients needed to be treated 

to prevent one case. Because it is an important measurement addressing both statistical and 

clinical significance and easy to interpret, NTT is often used to summarize the results of clinical 

trials.
16

 The value of NTT is a function of the disease, the exposure and the outcome, and 

therefore, it is only appropriate to compare NNTs directly when the same disease with the same 

severity and the same outcome are compared.
17

 

Another related measure, based on the ARR, is the population attributable risk (PAR). 

The formula for calculating PAR is:  

                                              PAR= (ARR)(Pe)            

                Pe is the proportion of exposure individuals in the population  

It estimates the proportion of cases that are attributable to the exposure. In other words, it 

indicates the number (or proportion) of cases that would not occur in a population if the exposure 

were removed.  

Overall, the choice of measurement depends on the types of study design. In retrospective 

and cross-sectional studies, in which the aim is to look at the association rather than differences, 

the OR is suggested. OR is also used in case-control studies in which the RR cannot be 

estimated. RR is recommended in cohort studies because it is clinically meaningful and easy to 

interpret.    

1.2.3. Measurements of association with quantitative traits 

Since the qualitative characteristics of disorders (with or without a disorder) are appeal to 

clinicians and patients, many genome-wide association studies (GWAS) are cases-control studies 
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that focus on binary traits and typically compare allele frequencies for cases and controls.
1
 But 

GWAS indicate that many genes with small effects affect these disorders, indicating that 

common diseases are quantitative traits and their genetic liability is distributed quantitatively 

rather than qualitatively.
18

 Identifying the genetic associations with quantitative traits that are 

related to a disease is important to understand the quantitative mechanisms underlying the 

disease. For example, a wave of GWAS have focused on quantitative traits related to obesity, 

including body mass index (BMI),
1
 waist circumference,

19
 waist-to-hip ratio (WHR) 

20
 and fat 

mass.
21

 

Linear regression models are generally used to test the association between the predictors 

(including genotype data) and quantitative traits. The derived coefficients indicate the increase 

(positive association) or decrease (negative association) on the level of quantitative traits for 

every unit increase of the predictor or each additional risk allele.       

1.3. Biases in case-control studies 

Biases can occur at different stages of a research study: specification and selection of the 

study sample, execution of the protocol, data analysis, interpretation of the results and 

publication.
22

 Since case-control studies are commonly used in observational and genetic 

association studies and the biggest weakness of case-control studies is their susceptibility to a 

variety of biases, we will address the sources of biases and how to control them below in 

epidemiological and genetic association studies.      

1.3.1. Selection bias 

This error is introduced when the study population does not represent the target 

population. It may arise with inclusion and exclusion criteria of the eligible population at design 

stage and non-random sample recruitment process. In practice, the cases are usually selected by 
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the investigators from the accessible sources of subjects. The sample of cases may not represent 

the target population. The general goal to control such a sampling bias is to select controls from a 

population having similar risk for the disease to the selected cases.
23

 One approach is to sample 

the cases and controls from the same population, for example from hospital- or clinic-based 

population. The second is to match the controls with the selected cases for potential risk factors 

such as age, sex, and other additional variables (e.g. level of physical activity for obesity study). 

Because ethnicity is an obvious risk factor for a spurious genetic association, ideally subjects in 

two groups should be matched for ethnic and even geographical origin. “Super control” subjects 

can also be selected (normal-weight subjects with no familial background of obesity or 

extremely lean phenotypes). The third strategy is to use two or more control groups to 

corroborate a real association.
24

 For example, if the cases are recruited from an emergency room, 

and different controls are used (emergency room controls the same as the cases, inpatient 

controls in the same hospital, and community control from the same city), the consistently strong 

associations derived from different controls support a true association in the population. The 

fourth way is to choose population-based cases and controls to manage the sample selection bias 

as disease registries are becoming increasingly available. 

  Population stratification refers to one type of sampling biases in genetic association 

studies. The risk allele frequency of a genetic variant may vary among different ethnic 

backgrounds or even the geographical location. When cases and controls come from multiple 

ethnic or geographic groups, the risk allele frequency may be associated with the disease, thus 

leading to false-positive associations.
25

 For example, some obesity predisposing variants show 

highly varying levels of inter-ethnic or inter-geographic allele frequency variation, possibly due 

to positive diversifying selection (e.g. ENPP1 rs1044498, FTO rs9939609 or LCT rs4988235).
26-
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28
 In addition, the prevalence of obesity varies across ethnic backgrounds in a country.

29
 

Genome-wide association studies (GWAS) for obesity-related traits have reported modest but 

real evidence of population stratification.
30, 31

  

1.3.2. Differential measurement bias 

Differential measurement bias in case-control studies is due to measurement error caused 

by the retrospective approach to measure the dependent and predictor variables. It also refers to 

information bias and misclassification.
32

 When the measurement tool used to detect the outcome 

or to measure the exposures is not perfect, the exposed or diseased individuals can be 

misclassified as non-exposed/non-diseased and vice versa.
33

 In addition to measurement tool, 

observer/interviewer bias, recall bias and reporting bias (e.g. social desirability) commonly 

produce misclassification.
32

 There are two types of misclassification: non-differential 

misclassification and differential misclassification.  

Differential misclassification bias: The different error rates or probability of being 

classified in case and control groups will lead to differential misclassification. For example, 

Individuals with obesity are more likely to report lower weight and individuals with underweight 

are more likely to report higher weight. The estimates of such misclassification may be biased in 

either direction, underestimate or overestimate the true value.
33

 

Non-differential misclassification bias: It is when all the variables (exposure, outcome, or 

covariate) have the same error rate or probability of being misclassified in case and control 

groups. For binary outcome, the estimation is biased to underestimate the true value.
33

 

Some strategies have been used to control biased measurements including standardizing 

the measurement methods, training the observer, refining the instrument, automating the 

instrument, calibrating the instrument. In addition to these, blinding is a good strategy to reduce 
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observer/interviewer bias, recall bias and reporting bias. In observational study, it is hard to blind 

the participants and the observer the intervention they receive or give, but they are more 

frequently blind to the main hypothesis.  

Genotype misclassification refers to a particular measurement error in genetic association 

studies. It is frequent in genetic association studies, leading to non-differential genotype 

misclassifications (same probability of being misclassified for all study subjects) or differential 

genotype misclassifications (varying probability of being misclassified according to the study 

groups).
34

 A 1% increase in genotyping errors will require a sample size increase of 2-8% to 

keep the same type I and II errors.
35

 Genotyping errors from batch to batch, laboratory to 

laboratory or preferential rejection of particular genotypes (usually heterozygotes) can result in 

differential genotype misclassifications and significant differences between case and control 

groups, leading to false-positive associations. A recent large-scale family-based study using 

TaqMan technology excluded a role of VNTR INS polymorphism in childhood obesity despite 

previous positive association using PCR-based restriction fragment length polymorphism 

(RFLP).
36, 37

 As the reproducibility of RFLP genotyping data has been questioned, this method 

being highly subjective, the authors suggested that the lack of replication may be a result of 

previous genotype misclassification from the RFLP method.  

In summary, a nested case-control study can increase the accuracy of the measurements 

from the study design stage to execution of the protocols and to the data collection, thus leading 

to a more reliable association.    

1.4 Confounding  

Confounding occurs in a situation in which a measure of association between exposure 

and outcome is distorted by the presence of another variable. This extraneous variable is a 
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confounding factor and can results in an inaccurate association. A confounding factor meets 

three criteria: 1) it is associated with the disease, independent of the exposure; 2) it is associated 

with the exposure; 3) It is not in the causal pathway between exposure and disease. Because it 

can positively and negatively influence an association between exposure and disease, 

confounding factors need to be taken into account and adjusted in the analytic model. As 

mentioned above, any inaccurate measurement of confounding factors will also lead to 

misclassification, thus any strategies used to reduce biases in exposure and outcome variables 

apply to measure confounding factors as well.     

Unlike classic epidemiology studies, genotype-phenotype association studies are less 

likely to be confounded by other covariates because these factors usually do not alter genotype. 

If a covariate is associated with the phenotype independently of the genetic variant, adjustment 

of this covariate may increase the precision of the association.
38

 For example, GWAS of height 

adjusted BMI identified a functional variate in ADCY3 in children.
39

 If a covariate is associated 

with both the genetic variant and the phenotype, adjustment for this covariate will remove 

confounding resulting from this covariate.
38

 For example, rs9939609 in FTO was associated with 

type 2 diabetes. This association was abolished by adjustment for BMI, which indicated that the 

association was mediated through BMI.
40

    

2. PREVALENCE AND COMPLICATIONS OF OBESITY 

 

Obesity is a chronic disease that is defined as the condition of excess body fat and is 

associated with impaired health according to the World Health Organization (WHO).
41

 Several 

methods are routinely used to measure body fat, from basic body measurements to high-tech 

instrument scan, including body mass index (BMI), waist circumference (WC), waist-to-hip ratio 

(WHR), skinfold thickness, bioelectric impedance analysis (BIA), dual energy X-ray 
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absorptiometry (DEXA) and computerized tomography (CT) and magnetic resonance imaging 

(MRI).
42

 For practical purpose, BMI (weight in kilograms divided by height in meters squared) is 

commonly used to classify overweight and obesity in adults and children because it is closely 

correlated with body fat and obesity-related consequences.
41, 43

 The WHO currently uses BMI 

cutoffs of 25 and 30 kg/m
2
 to classify overweight and obesity in adults, respectively.

41
 Given that 

the risk of adverse health effects increases with higher levels of BMI, obesity is further divided 

into three categories (class I-moderately obese: BMI of 30.0–34.9 kg/m
2
; class II-severely obese: 

BMI of 35.0–39.9 kg/m
2
; and class III-morbidly obese: BMI of 40.0 kg/m

2
 or greater). BMI in 

childhood changes substantially with age and the criteria of overweight and obesity in children 

and adolescents differ across epidemiological studies.
44, 45

 WHO defines obesity as BMI greater 

than 3 standard deviations above the WHO child growth standard median and overweight as 

BMI greater than 2 standard deviations above the median in children from birth to age 5.
46

 In 

children from age 5 to 19, obesity is defined as BMI greater than 2 standard deviations above 

WHO reference 2007 growth standard median and overweight is defined as BMI greater than 1 

standard deviation.
47

 The Centers for Disease Control and Prevention recommends the age- and 

gender-specific BMI 85
th

 and 95
th

 percentiles as cut-offs for overweight and obesity for children 

aged 2-19 years, using Centers for Disease Control and Prevention Growth charts in 2000 as the 

reference.
48, 49

 In children from birth to age 2, the CDC uses a modified version of the WHO 

criteria.
50

 The 97
th

 percentile of BMI is used for the definition of childhood obesity published in 

1995 by the European Childhood Obesity Group (ECOG).
45

 Obesity has more than doubled 

worldwide since 1980 and it has become the focus of public health due to a wide range of serious 

complications.
29

   

2.1. Obesity in children 
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Obesity has been affecting vulnerable populations of children and adolescents at an alarming 

rate, faster than adult obesity.
51

 The prevalence of overweight and obesity for children aged 5 to 

17 years in Canada was 31% in 2012-2013 (19% for overweight and 12% for obesity).
52

 The 

situation in the US was worse in which 31.8% children aged 2 to 19 years were overweight and 

16.9% were obese in 2011-2012.
53

 Recent studies suggest that the prevalence of childhood 

obesity is stabilizing in some geographic and ethnic groups;
54-57

 however, the children with 

severe obesity have seen a continuing increase in the last decade.
53

 Differentiated prevalence of 

obesity in different ethnic groups was also observed in children and adolescents in the US,  with 

highest prevalence observed in Hispanic (22.4%) and lowest in Non-Hispanic Asian (8.6%).
57

  

Childhood obesity is linked to early puberty, type 1 and type 2 diabetes (T2D), 

hypertension,
58, 59

 obstructive sleep apnea, asthma,
60, 61

 poor mental and physical health during 

childhood,
62-66

 as well as adult obesity and the associated comorbidities.
67-69

 A population-based 

survey among grade 5 children in the Canadian province of Nova Scotia with a 3-year follow-up 

period showed that the total health costs were 21% higher in obese children than normal weight 

counterparts.
70

 It is estimated that the direct incremental lifetime medical cost of an obese child 

at the age of 10 is $19,000 compared to a child of a normal weight, which corresponds to a total 

direct medical cost of approximately $14 billion for this age alone in the US.
71

  

2.2 Obesity in adults 

In 2014, 20.2% of Canadians aged 18 and older were obese (self-reported data from the 

Canadian Community Health Survey (CCHS), http://www.statcan.gc.ca/eng/help/bb-

/info/obesity). The prevalence of adult obesity reached 34.9% in the US in 2011-2012 according 

to the National Health and Nutrition Examination Survey (NHANES).
29

 The differences by sex 

and age were significant.
29

 The trend seems to have leveled off over the past decade, but there 

http://www.statcan.gc.ca/eng/help/bb-/info/obesity
http://www.statcan.gc.ca/eng/help/bb-/info/obesity
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was an increase in prevalence in women aged 60 years and older.
29

 The prevalence of extreme 

obesity (BMI>35) is still on the rise in both Canada and the US.
29, 72, 73

 Furthermore, obesity, 

long held to be a health problem that is restricted to the developed countries, has expanded into 

low- and middle-income countries with their adaption of Westernized diet and continued 

decrease in physical activity.
74-76

 In 2014, more than 1.9 billion adults were overweight and of 

these over 600 million were obese worldwide (http://www.who.int/mediacentre-

/factsheets/fs311/en/). Although obesity is pandemic, its prevalence varies across countries, 

ethnicities and even regions within the same country.
57, 77, 78

 Some ethnic groups are more prone 

to obesity than others. In the US, the age-adjusted prevalence of obesity in adults were 47.8% in 

non-Hispanic Black, 42.0% in Hispanic, 33.4% non-Hispanic White and 10.9%  in non-Hispanic 

Asian in 2011-2012. Non-Hispanic Black had the highest proportion of severe obesity (BMI≥35) 

of 23.4%.
29

  

Excessive weight carries detrimental risks to a wide range of conditions including T2D, 

cardiovascular diseases, stroke, hypertension, nonalcoholic fatty liver disease, osteoarthritis, 

gallstones, sleep apnea, asthma, infertility and certain types of cancers (e.g. leukemia, breast, 

prostate, colon).
79, 80

 Obesity is also associated with social and emotional consequences, 

including loss of self-esteem, depression, psychological disorders, and lower quality of life.
81

 

The life years lost associated with obesity is 8-13 in whites aged 20-30 years with severe form of 

obesity (BMI>45)
82

 and the life years lost associated with obesity-related diseases is 4.7-5.23 

years in non-smoking whites aged 40-49 years when BMI is greater than 40.
83

 It is estimated that 

the direct healthcare costs associated with obesity in Canada are approximately 2-12% of total 

health expenditures while indirect costs associated with obesity-related co-morbidities account 

for 37-55%.
84

 It was estimated that the medical cost of obesity was $190 billion in the US in 
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2012.
85

 A systematic review showed that 0.7-2.8% of a country’s total health care expenditure 

was spent on obesity-related medical costs worldwide and the medical costs for people who are 

obese were 30% higher than those of normal weight.
86

    

2.3. Obesity in pregnancy 

Obesity in pregnancy is usually assessed by a recent prepregnancy BMI (self-reported or 

measured by research staff) using the same definition as that used in the general population.
87

 

More than one-third of women at reproductive age (aged 20-44 years) in the US are obese, more 

than one half of them are overweight or obese, and 8% are extremely obese.
29, 88

 Although 

limited documents about the prevalence of obesity in pregnant women are available, cohort 

studies in the UK have shown that the rise in obesity among pregnant women has occurred in 

parallel with the upward trend of obesity in the general population.
89, 90

 Data from the Pregnancy 

Risk Assessment Monitoring System (PRAMS) in nine states in the US during 1993-2003 

showed an increase of 70% in obesity at the beginning of pregnancy.
91

  

The epidemic obesity in adults seems to be preceded by the increased prevalence of 

obesity in children, indicating the importance of the fetal period in the development of obesity in 

offspring.
92

 A growing body of evidence supports the fetal origins of obesity.
93, 94

 Our study 

(Chapter III) also adds evidence to this field showing that the obesity susceptibility genetic 

variants collectively start to act in the fetus with an increase of birth weight. Obesity in 

pregnancy, in part reflecting maternal and intrauterine nutrition conditions during fetal 

development, has been linked to maternal and offspring health complications. Women who are 

obese during pregnancy may experience a variety of short- and long-term health impairments 

including gestational hypertension, gestational diabetes, preeclampsia, postpartum hemorrhage, 

cesarean delivery, post-partum weight retention and subsequent obesity.
95, 96

 Higher BMI during 
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pregnancy is also associated with macrosomia, stillbirth, congenital abnormality, childhood and 

adulthood obesity, as well as related metabolic diseases in offspring.
95-99

 Although a specific cost 

of these conditions has not been estimated, the adverse maternal and offspring health outcomes, 

and economic implications of obesity during pregnancy, have been recognized as an important 

burden in healthcare settings.
100, 101

    

Gestational weight gain (GWG) is another important characteristic during pregnancy. 

Excessive gestation weight gain can confer the same health risks in both mothers and children as 

obesity in pregnancy.
96-98, 102-108

 Generally, the associations of GWG with maternal and offspring 

outcomes are weaker than those of maternal pre-pregnancy BMI.
96, 109

 In contrast, inadequate 

GWG is also a risk factor for infant mortality, but the risk weakens with increasing pre-

pregnancy BMI.
110

 Based on this well-established clinical epidemiologic evidence and the 

dramatic changes in the population of women having babies between 1999-2009, the Institute of 

Medicine (IOM) reexamined the guidelines for weight gain during pregnancy and set new 

optimal ranges of GWG in 2009 for underweight women of 12.5-18 kg (28-40 lbs), normal 

weight women of 11.5-16 kg (25-35 lbs), overweight women of 7-11.5 kg (15-25 lbs) and obese 

women of 5-9 kg (11-20 lbs).
111

 In 2002-2003, the Pregnancy Risk Assessment Monitoring 

System (PRAMS) data showed that underweight and normal women had higher mean GWG than 

overweight and obese women had. Sixty-three percent of overweight women and 46.3% of obese 

women had weight gains greater than the recommended ranges. In contrast, 19.5% of 

underweight women and 38.4% of normal weight women gained excessive weight.
111

 Overall, 

among women in all BMI categories, less than 50% of women gained weight within the 

recommended ranges.
111

   

3.    ENVIRONMENTAL RISK FACTORS  
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The escalation of obesity among people at all the ages and the limited success of prevention 

and treatment strategies call for an urgent need to understand the determinants of excess body 

weight in order to manage the burden of childhood obesity and prevent adult obesity more 

efficiently. It is believed that obesity is a multi-factorial disorder caused by environmental and 

genetic factors and the interplay between these determinants.  

3.1.Childhood obesity risk factors 

Studies of overweight and obesity in childhood are of particular importance because 

overweight and obese children are more likely to become obese adults.
112-115

 The odds ratios of 

childhood obesity associated with obesity in adulthood increase with age, ranging from 1.3 at 1 

or 2 years of age to 17.5 at 15-17 years of age after adjustment of parental obesity.
115

 Children 

whose weights are at the upper end of normal weight ranges are also at increased risk of being 

overweight adults.
116

 Strategies to prevent adult obesity emphasize the significance of 

understanding the early life determinants of childhood obesity.  

The regulation of body weight is under extraordinarily precise control in the 

physiological conditions during child growth. Any factors that tip the energy balance in favor of 

weight gain will contribute to obesity development in the long-term. For example, an excess of 

positive energy intake of only 120 kcal (about one serving of a sugar-sweetened soft drink per 

day) theoretically would produce a 50-kg increase in body mass in 10 years.
117

 In addition to 

sugar-sweetened beverages, other risk factors include dietary fat, diet energy-density, physical 

inactivity, sedentary behaviors and short sleep durations.
51

 Among those risk factors, sugar-

sweetened beverages have been consistently shown to be robustly associated with obesity in 

school-aged children and adolescents.
118, 119

 Some new risk factors such as chronic inflammation, 

anxiety, depression and behavioral problems warrant further investigation in this age group.
119
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Determinants of diet and physical activity will be discussed in the next session. In addition to the 

individual-level lifestyle factors, other prenatal, perinatal, early life and intergenerational factors 

are linked to childhood obesity and will be addressed below.    

3.1.1. Maternal obesity and birth weight 

Birth weight is positively associated with obesity in childhood and adulthood.
120-123

 

Furthermore, obese pregnant women are more likely to have newborns with increased birth 

weight,
124, 125

 especially those either greater than the 90
th

 centile for gestational age (large for 

gestational age) or macrosomia (birth weight >4 kg).
95, 96, 126

 Maternal obesity is also associated 

with offspring obesity.
126

 Such intergenerational associations may be accounted by genetic 

transmission, intrauterine environment, shared postnatal environment and lifestyle or epigenetics. 

It is very difficult to disentangle these factors in human studies.
94

 Experimental and animal 

studies have provided some support for the “fetal overnutrition hypothesis,”
94, 127

 which suggests 

that the intrauterine environment plays an important role in the development of obesity in the 

offspring.
128, 129

 According to this hypothesis, hypernutrition (glucose, free fatty acid and amino 

acids) in the plasma of obese pregnant women enters the fetus through the placenta, and results 

in permanent changes in the fetus including increased insulin secretion, appetite control, 

neuroendocrine functioning and energy metabolism, thus leading to an increased risk of obesity 

in later life. Some epidemiological evidence has also supported this hypothesis. Paternal BMI 

has generally not been associated with birth weight, and the paternal-offspring BMI associations 

tend to emerge later.
124, 130, 131

 Several large cohort studies demonstrated that the magnitudes of 

the maternal-offspring BMI associations were stronger compared to those of the paternal-

offspring BMI associations, especially in the early postnatal period.
124, 131, 132

 Indirect evidence 

comes from studies of pre-pregnancy bariatric surgery.
133-135

 Kral et al. compared the prevalence 
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of obesity in 172 children who were aged 2 to 18 years and born to 113 obese mother (mean 

BMI=31±9 kg/m
2
) after bariatric surgery with 45 same-age siblings who were born before 

bariatric surgery (mean BMI=48±8 kg/m
2
). They found that after the surgery, the prevalence of 

obesity in children decreased by 52% and severe obesity by 45.1%, with no risk of 

underweight.
134

  

3.1.2. Maternal excessive gestational weight gain and birth weight 

Excessive weight gain during pregnancy has been associated with increased birth weight 

and the offspring’s risk of obesity later in life.
96, 97, 103, 105, 136

 These studies were unable to 

distinguish between the effects of genetic risk factors and shared environments. Ludwig et al. 

examined the association between GWG and birth weight by comparing several pregnancies in 

the same mother using a large within-family data (513,501 mothers and their 1,164,750 

offspring).
104

 They found that higher GWG increased birth weight after minimizing the 

confounding factors, supporting the “fetal overnutrition hypothesis”. 

3.1.3. Gestational diabetes mellitus and birth weight 

Gestational diabetes, which is a characteristic of new onset hyperglycemia during 

pregnancy, will alter the intrauterine environment through excessive fetal insulin production. 

Thus, the offspring of mothers with gestational diabetes mellitus have a higher birth weight and a 

higher percentage of macrosomia.
137

 A large cohort study showed that children born to mothers 

with gestational diabetes had increased birth weight, and also had increased risk of being obese 

during adolescence. However, this association was not significant after controlling for birth 

weight, indicating this association in adolescents was mediated by birth weight.
138

     

3.1.4. Low birth weight and rapid weight gain 
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Barker et al. have proposed the “thrifty phenotype hypothesis” that intrauterine malnutrition, 

marked by low birth weight, predisposes individuals to T2D, hypertension, dyslipidemia, and 

cardiovascular diseases in adult life.
139

 A new dimension added to the Barker hypothesis is that 

low birth weight and rapid weight gain in infancy and early childhood play a more important role 

in increasing the risk of cardiovascular diseases and their risk factors than low birth weight 

alone.
140

 Maternal malnutrition at important stages of fetal development can disturb central 

endocrine regulatory systems established in gestation that result in obesity, a result supported by 

an analysis of Dutch famine cohort.
141

 In historical cohorts, several studies showed that low birth 

weight and rapid weight gain in childhood were consistently associated with an increased risk of 

childhood and adult obesity and cardiovascular diseases.
120, 121, 142-146

 These observations are 

explained by the mismatch between the intrauterine and subsequent postnatal environments, and 

epigenetic reprogramming.
147-149

 For example, the individuals who experienced periconceptional 

exposure to the Dutch famine had a lower methylation of the imprinted insulin like growth factor 

2 (IGF2) sixty years later compared to their unexposed, same-sex siblings, reinforcing that very 

early development period is important for establishing and maintaining epigenetic marks.
149

   

3.1.5. Maternal smoking and low birth weight 

Infants born to smoking mothers are more likely to be smaller for gestational age or to 

have lower birth weight compared to those born to non-smoking mothers.
150-152

 A prospective 

birth cohort in Australia with 3,253 population-based children demonstrated a positive 

association between maternal smoking during pregnancy and childhood obesity at 14 years of 

age after adjustment of potential confounding factors (odds ratio=1.4 (95% CI: 1.01-1.94).
153

 

Rapid postnatal weight gain and epigenetic modification in the gene expression in utero might 

explain the observed association.
154
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3.2. Adult obesity risk factors 

3.2.1. Diet 

Overweight and obesity result from a long-term energy imbalance. An energy imbalance 

occurs when the calories intake is greater than the energy requirements of the body. In the past 

few decades, the size of food portions has increased dramatically in commercial settings such as 

restaurants and in homes. Not surprisingly, these portion increases have been accompanied by 

increased consumption.
155

 In 2002, Yang and Nestle reported that the increases in the portion 

sizes of restaurant foods, grocery products and recipes in cookbooks were paralleled with the rise 

in the prevalence of obesity in the US.
155

 Several studies demonstrated that larger portion of food 

increases energy intake during an isolated meal. Rolls et al. reported that adults were offered 

four portion sizes of a macaroni and cheese entrees, and energy intake of the largest portion of 

1000 g was 30% more than of the smallest portion of 500 g.
156

 Interestingly, when unware of the 

amount of food served in the restaurant setting, the customers who were served 50% more of a 

pasta dish ate 43% more than those served a standard portion.
157

 Further evidence shows that 

accumulative energy intake is associated with large portions of food over a number of days. An 

11-day study showed that increasing portions of all food and beverages by 50% resulted in a 

mean increase in daily energy intake by 423 calories.
158

 Randomized controlled trials (RCTs) 

further demonstrated that portion-controlled entrees or prepared meal plan could efficiently 

control weight loss.
159-161

 These findings explain the epidemic of obesity in an obesogenic setting 

where large energy dense food portions are readily available.     

Because of the high energy density of fat (9 kcal/g) and the more favorable palatability of 

high-fat food, increased intake of dietary fat is believed to contribute to obesity. Cross-sectional 
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studies generally show a positive association between dietary fat and body fatness.
162

 However, 

prospective studies of fat intake in relation to weight gain have produced controversial results.
162

 

A recent meta-analysis of 33 RCTs suggested that diets lower in total fat are associated with 

lower body weight.
163

 But, this study was criticized based on an important methodological flaw 

such as inappropriate exclusion criteria. A meta-analysis of 28 mainly short-term trials 

demonstrated that a 10% reduction in total energy from fat could reduce body weight.
164

 Longer-

term trials, however, have not corroborated these findings.
165, 166

  

Severely restricting carbohydrates has been shown to be an alternative strategy for weight 

loss. A meta-analysis of five RCTs showed that low-carbohydrate diets were more effective in 

weight loss than low-fat diets after 6 months. However, the difference disappeared after 12 

months.
167

 Similar results were observed in the most recent meta-analysis of 53 RCTs.
165

 In 

addition to fat intake and carbohydrates, many other dietary factors including protein, whole 

grains, fiber, fruits and vegetables, nuts, caffeine, sugar-sweetened beverages, and alcohol have 

been studied for their associations with obesity.
42

 Individual dietary factors may exert moderate 

effect in weight control, and their effects may accumulate to be significant over time. Current 

studies have shown that the relative influence of single nutrition factor on body fatness is 

unclear. Therefore, studies on dietary pattern emerged as a complementary approach to single 

nutrient analysis. Schulze et al. compared weight changes in women aged 26 to 46 years between 

a Western pattern (high intakes of red and processed meats, refined grains, sweets and desserts, 

and potatoes) and a Prudent pattern (high intakes of fruits, vegetables, whole grains, fish, 

poultry, and salad dressing) with a follow-up of 8 years.
168

 They found that the prudent pattern 

effectively prevented weight gain. However, the results from many other studies are 

inconclusive.
42
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Inconsistent findings from epidemiologic studies are influenced by measurement errors in 

dietary assessment as well residual confounding. Most clinical trials also have serious 

limitations, such as short duration, small sample size, and sub-optimal adherence to dietary 

interventions. In summary, current evidence from meta-analysis provides no convincing 

recommendation that one nutrition factor or one dietary pattern prevents obesity in the general 

population. 

3.2.2. Physical activity 

An energy imbalance also occurs when the calorie intake is not expended by physical 

activity. In the past several decades, numerous studies have been performed to explore the 

relationships between physical activity and weight loss or weight maintenance in overweight and 

obese persons, and the relationship between physical activity and the prevention of weight gain 

in the general population. In cross-sectional studies, negative associations between physical 

activity and obesity are consistently reported. In general, high-intensity physical activity was 

more negatively associated with obesity than moderate- and low-intensity activity.
169-171

 For 

example, Bernstein et al. demonstrated a clear dose-response relationship between high-intensity 

activities and lower risk of being obese among population-based adults, but not in moderate-

intensity activities.
169

 These cross-sectional studies could not determine the causal relationship 

between physical activity and obesity.
42, 172

 The nature of this relationship may also be bi-

directional; that is, being less physically active may be the consequence of carrying too much 

weight and less physically fit. The effect of physical activity on obesity is usually substantially 

stronger in cross-sectional studies than prospective studies due to lack of controlling for 

confounding factors (such as diet). Wareham et al. conducted a systematic review of 14 

prospective cohort studies and found that more physically active persons had less weight gain in 
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follow-up periods that ranged from 3-10 years.
172

  This association was also seen in different 

race, sex and age subgroups.
173-176

  Many RCTs have also been used to examine the effect of 

physical activity on the weight loss in overweight and obese persons. Wing conducted a narrative 

review of RCTs and found that six out ten studies showed significantly greater weight loss in 

exercise-alone group compared to control. But the effect was moderate which averaged 1-2 

kg.
177

  Jakicic et al. completed an 18-month RCT study to compare the effects of different 

amount of exercise on long-term weight loss and maintenance in overweight adult women.
178

 A 

dose-response relationship between amount of exercise and long-term weight loss was 

significant and the average weight loss in individuals who exercised more than 200 min/week, 

150-200 min/week, and less than 150 min/week was 13.1±8.0, 8.5±5.8, 3.5±6.5 kg, respectively. 

Recently, a meta-analysis of RCTs showed that physical activity alone exerted a significant post-

partum weight loss at 12 months of delivery.
179

  

Epidemiological studies of physical activity and obesity also face the same 

methodological challenges as the investigations of diet. People who are physically active usually 

tend to have a healthier lifestyle; therefore the effect of physical activity on the weight loss may 

be exaggerated without control for diet patterns and additional lifestyle factors.  

In addition to diet and physical activity, other lifestyle components influence the 

development of obesity, including sleep deprivation, excessive sleep, socioeconomic status, 

smoking, depression, marital status, employment situation, social network and parity.
42, 97, 180, 181

  

3.2.3. Combined effect of diet, physical activity and lifestyle 

Currently, although there is no consensus in the literatures about the primary cause of the 

adult obesity, combined physical activity and diet have been accepted as the most likely 

culprits.
182

 Two seminal RCTs have demonstrated that lifestyle intervention (reduced energy 
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intake and increased physical activity and behavioral modification) can lead to effective long-

term weight loss.
183-185

 In the Diabetes Prevention Program (DPP), 3,234 prediabetic adults with 

a mean BMI of 34 kg/m
2
 were randomly assigned to a medication of metformin, a lifestyle-

modification program (including diet modification (1,200-1,800 kcal/day) and physical activity 

(>175 min/week) or placebo.
183

 The lifestyle intervention aimed to loss ≥7% of their initial body 

weight and to maintain that weight loss. After 24 weeks, fifty percent of intervention participants 

met the 7% weight reduction goal. After 2.8 years, participants in the lifestyle intervention group 

had shown a greater increase in physical activity and greater weight loss (−5.6 kg) than those on 

metformin (−2.1 kg) or placebo (−0.1 kg).
183

 In the second ongoing study Look AHEAD (Action 

for Health in Diabetes), 5,145 adults with type 2 diabetes who were overweight or obese were 

randomly assigned to either usual care or one-to-one intensive lifestyle intervention, which was 

adapted from the DPP and also targeted a weight loss of ≥7% of initial weight.
184

 The 

intervention group, compared to control group, had lost a greater percentage of their initial 

weight by year 1 (-8.6% vs -0.7%), by year 4 (-6.15% vs -0.88%) and by year 8 (-4.7% vs -

2.1%).
185, 186

 This intervention did not yield significant reduction in cardiovascular morbidity and 

mortality but did improve some cardiovascular disease risk factors over a mean follow-up of 9.6 

years.
185, 186

 These studies indicate that the potential determinants of adult obesity function in 

concert to create the “obesogenic” environment that is expanding across the world.     

4. GENETIC RISK FACTORS 

Not everyone exposed to the “obesogenic” environment experiences the same risk of 

developing obesity. This difference could be due to genetic risk factors that influence individual 

differences in obesity development and response to weight loss interventions.  

4.1. Heritability of obesity 
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A child with two obese parents is 10 times more likely to be obese compared to a child 

whose parents are of normal weight.
120

 This familial aggregation may be the result of shared 

environment and genetic components. Heritability measures the proportion of total phenotypic 

variability explained by genetic variance in a particular population at a specific time. Twin and 

adoption studies are ideal experimental designs to estimate heritability because of their natural 

separation of genetic and environmental components.
187

 Numerous studies involving twins, 

adoption and families have reported heritability estimates ranging from 25 to 90% for BMI.
188-191

 

The significant variability in the heritability of BMI can be explained by difference in population 

and settings (ethnicity, age, specific environment), study designs (twin, adoption, family) and 

methodology (self-reported vs measured BMI, self-reported vs DNA-based determination of 

zygosity, different analytic models).
192

 The genetic contribution to BMI varies with age. It 

increases with age before young adulthood and then decreases with age in adult life.
192, 193

 Cross-

sectional studies reported that heritability was low for birthweight (40%), moderate at age 4 

(60%), high at age 10 (77%) and highest in adolescents (70-90%).
194-197

 A longitudinal study 

with repeated measurements of BMI in twins corroborated this trend.
193

 High heritability 

estimates have also been reported in other obesity-related traits with 65% to 75% for fat mass 

and percentage of body fat, 46% to 90% for waist circumference, and 48% to 69% for 

skinfolds.
198, 199

 The heritability estimates from previous family-based studies may be inflated 

due to shared environmental exposures.
192

 More recently, Yang et al. developed a method 

(GREML-LDMS) to estimate heritability for BMI in general population using whole-genome 

sequencing data.
200

 They reported that heritability is likely to be 30-40% for BMI. Taken 

together, obesity and related traits are highly heritable, thus driving intensive efforts to identify 

obesity susceptibility genes in the past two decades.   
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4.2. Genetics of monogenic obesity 

Monogenic obesity (also named Mendelian obesity) refers to severe forms of obesity 

caused by a single gene mutation and follows a Mendelian pattern of inheritance, typically 

beginning in childhood.
190

  There are syndromic and non-syndromic varieties of monogenic 

obesity.  

4.2.1. Syndromic monogenic obesity 

Syndromic obesity is rare and co-occurs in the clinical context with other characteristics 

of mental retardation, dysmorphic features and organ-specific abnormalities.
201

 Over 30 

syndromic forms of obesity have been identified.
202

 The genetic basis underlying some of these 

syndromes have been elucidated and provided insights into the pathogenesis of the derangements 

of energy homeostasis. Severe or morbid obesity developed in Prader Willi syndrome (PWS) is 

the most common syndromic form of obesity. PWS is the consequence of loss of expression of 

paternal genes on the imprinted region of 15q11-13 (65-75% of the cases), or maternal 

uniparental disomy 15 (20-30%), or an imprinting defect (1-3).
203, 204

 Bardet-Biedl syndrome 

(BBS) is the first reported obesity syndrome but is rare.
205

 To date, 19 BBS genes that cause 

BBS have been identified. The severity and age of onset of disease depend on the number of 

mutant alleles. Although genetic mutations in many of the syndromic obesity are waiting to be 

discovered, the known forms of syndromic obesity seem to have specific effects on food intake.   

4.2.2. Non-syndromic monogenic obesity 

Leptin deficiency was the first cause of monogenic obesity to be demonstrated in a 

human patient.
206

 In 1997, two severely, intractably obese Pakistani children of a highly 

consanguineous family were identified to have a frame-shift mutation in the gene LEP encoding 
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leptin by candidate gene approach. Four parents were heterozygotes and, of the four siblings, one 

was a heterozygote and three were wild-type homozygotes. The phenotype and genotype from 

this family indicated that this disorder complied with an autosomal recessive inheritance pattern. 

Currently, eight mutations in leptin gene have been confirmed to cause extreme obesity in 

infancy.
207

 Homozygous / heterozygous compound loss of function mutations in other four genes 

(leptin receptor (LEPR), proopiomelanocortin (POMC), prohormone convertase 1 (PCSK1), 

melanocortin 4 receptor (MC4R)) have been reported.
208-211

 Complete mutations of these genes 

are fully penetrant and very rare, and follow recessive inheritance pattern in their families. The 

patients with complete mutations of these genes present early onset morbid obesity, hyperphagia 

and reduced energy expenditure, and also have additional clinical features specific to their 

mutation. The studies of these recessive forms of monogenic obesity in human and in animals 

have demonstrated that the leptin-melanocortin pathway plays a critical role in the regulation of 

body weight.
212

 

In several other severely obese children, heterozygous carriers of mutations in brain-

derived neurotrophic factor (BDNF), or its receptor neurotrophic tyrosine kinase receptor type 2 

(NTRK2) (encoding TrkB), or SIM1 also present early-onset hyperphagic obesity.
213-215

 Because 

complete deficiency in BDNF or SIM1 is lethal and complete deficiency in TrkB dramatically 

reduces life span based on studies in mice, there are no human cases reported with complete 

deficiency in these proteins.
213-215

 BDNF and TrkB participate in proliferation, survival, and 

differentiation of neurons during fetus development and post-natal synaptic plasticity in the 

central nervous system, especially in hypothalamic neurons. SIM plays a major role in neuronal 

differentiation in the hypothalamus, along the leptin-melanocortin pathway to control food 

intake.  
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In a large cohort study of 300 patients with severe early-onset obesity and 500 controls, 

five probands were identified with either a frameshift or a missense mutation in Src homology 2 

B adapter protein 1 (SH2B1).
216

 Loss-of-function mutations in SH2B1 were associated with 

early-onset obesity, insulin resistance, reduced final height and a range of behavioral 

abnormalities. SH2B1 modulates signaling by a variety of ligands that bind to receptor tyrosine 

kinases or JAK-associated cytokine receptors, including leptin, insulin, growth hormone (GH), 

and nerve growth factor (NGF).
216

 All of these mutations were associated with loss of function in 

the GH/NGF-mediated signaling. Intriguingly, only the frameshift mutation impaired leptin 

signaling. These findings provided insights into the alternative pathways that influence the 

weight control.  

Recently, whole-exome sequencing technology has helped to identify novel mutations 

associated with monogenic obesity. A homozygous frameshift mutation in Tubby bipartite 

transcription factor (TUB) occurred in an eleven years old boy from a consanguineous UK family 

and resulted in retinal dystrophy and early-onset obesity.
217

 Recessively inherited mutations in 

TUB in mice were demonstrated to cause retinal degeneration, obesity and insulin resistance.
218

  

This study provided evidence that TUB was important in energy homeostasis in humans. 

Another study identified several rare mutations in kinase suppressor of Ras 2 (KSR2) in 2,101 

severe early-onset obesity and 1,536 controls.
219

 KSR2 acts as a positive regulator of the Ras-

Raf-MEK signaling pathway by acting as scaffolding proteins and plays a role in energy 

homeostasis.
220

 Loss-of-function mutations in KSR2 lead to hyperphagia in childhood, low heart 

rate, reduced basal metabolic rate and severe insulin resistance.
219

  This study suggests that Ras-

Raf-MEK signaling pathway may be a novel therapeutic target for obesity and type 2 diabetes.   



                         Ph.D Thesis – A. Li; McMaster University - Health Research Methodology 

 

31 
 

 The advent of a new generation of genotyping technology extends the single nucleotide 

polymorphisms (SNPs) to copy number variants (CNVs) or structural variants in the genotype 

platforms. Rare deletions in the region 16p11.2 have been reported in about 0.5-0.7% of 

individuals with severe obesity in two independent studies.
221, 222

 The examination of rare CNVs 

offers a new avenue to explore the susceptibility variants of obesity. 

4.3. Genetics of oligogenic obesity 

Some individuals carrying heterozygous deleterious coding mutations present less 

extreme or incompletely penetrant forms of obesity. This phenomenon explains a substantial 

number of severe obesity cases in human.
212

  Heterozygous loss-of-function mutations have been 

observed in some monogenic genes such as MC4R, POMC, LEP, LEPR and PCSK1.
211, 223-226

 

Heterozygous carriers of MC4R loss-of-function mutations are reported to consume three-times 

more food than their unaffected siblings and prefer high-fat food.
211, 227

 Partial deficiency of 

MC4R or POMC is associated with an incomplete penetrant form of Mendelian obesity, whereas 

partial LEP or LEPR deficiency is associated with higher body fat mass. However, heterozygous 

carriers of p.Arg80* mutations show a dominant form of Mendelian obesity in a large French 

pedigree.
228

  

4.4. Genetics of polygenic obesity 

Linkage analyses and candidate gene studies are hypothesis-driven approaches and have 

been widely used in genetic association studies before the advent of genome-wide association 

study (GWAS). Linkage analysis aims to map the location of a disease-causing locus
229

 and 

candidate gene approach tests selected genes based on preceding knowledge of their potential 

role on the trait of interest from in vivo, in vitro or in silico studies in animals or humans.
230-232
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Using linkage analysis, K121Q in ENPP1 was identified to be associated with childhood and 

adult obesity in European populations,
233, 234

 and R125W in TBC1D1 was associated with severe 

obesity in females in US and French populations.
235, 236

  After the region was found to be linked 

to obesity through linkage analysis, PCSK1 was later confirmed to be associated with severe 

obesity and was also associated with BMI and obesity in general population.
5, 6, 237

 Candidate 

gene approach has been successful in the discoveries of the Val66Met polymorphism in BDNF 

and a non-synonymous variant p.R270H in GPR120, which were later replicated and confirmed 

to be associated with BMI.
238, 239

 The biological function of GPR120 suggests that lactose 

consumption is significantly associated with obesity.
240

    

Hypothesis-free genome wide association studies (GWAS) exhaustively test the 

genotype-phenotype associations across up to several million genetic markers and currently 

represent the most efficient way to identify common variants (minor allele frequency (MAF)> 

1%) associated with complex diseases.
241

 Along with the increase in the number of novel genetic 

variants validated by the 1000 Genomes Project and advanced high-throughput technology, rare 

variants and CNVs in addition to more common variants are available in a single genotyping 

array.
242

 This ensures an enhanced capability to detect a novel genotype-phenotype association. 

Until recently, a total of 136 SNPs are associated with BMI or binary obesity at a genome-wide 

significance level (P<5×10
-8

). The first BMI locus rs9939609 in the fat mass and obesity-

associated gene (FTO) was discovered in 2007.
40

 Several other common variants that have the 

strongest associations with BMI or obesity lie in introns 1 and 2 of FTO, within a highly linkage 

disequilibrium block with rs9939609 in Europeans.
243-245

 FTO has now unequivocally been 

replicated in other populations and ethnicities, and in both adults and children.
246

 Following the 

discovery of FTO, MC4R was identified in 2008, loci in or near TMEM18, SH2B1, KCTD15, 
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MTCH2, NEGR1, BDNF, SEC16B, GNPDA2 and ETV5 in 2009 and additional 18 loci in 2010.
1
 

The most recent meta-analysis of GWAS and Metabochip studies in 339,226 individuals 

(majority Europeans) has detected 56 novel genetic loci associated with adult BMI.
247

 

Furthermore, the genetic variants in almost all the genes associated with monogenic obesity have 

been identified by GWAS with contributions to common forms of obesity as well.  

Several genes are expressed in the hypothalamus and genetically driven hyperphagic 

behavior plays an important role in appetite regulation and energy homeostasis, as demonstrated 

in monogenic obesity.
1, 247

 Locke et al.’s study applied novel bioinformatics tools to explore the 

potential biological pathways involved in BMI regulations. Their findings provided strong 

support for the role of the central nervous system in obesity susceptibility and also indicated new 

pathways including synaptic function, glutamate signaling, insulin secretion, energy metabolism, 

lipid biology and adipogenesis.
247

 In addition to the brain, other organs, including the liver, 

pancreas, adipose tissue, skeletal muscle, and intestine, take part in the pathogenesis of obesity. 

Evidence of genetic associations, in combination of animal and human studies, has proved that 

the liver plays a crucial role in the development of obesity. For example, several variants are 

associated with hepatic lipid and cholesterol metabolism (NPC1, HMGCR, NR1H3, 

CYP27A1),
248-251

 lipoprotein transport (APOC1, APOE),
252

 or glycogen storage (GBE1).
253

 Other 

genetic variants have been reported to be associated with dysfunction in β-cells and insulin 

secretion (GIPR, CDKAL1, TCF7L2)
1, 254

, fat distribution (FTO),
255

 and skeletal muscle 

(TBC1D1).
256

 However, the exact molecular mechanisms responsible for these potential 

pathways remain largely unknown since many of the associated loci are not causal and are not 

located in protein coding regions, which indicate that numerous gene regulatory studies are 

needed. For example, although some progress has been achieved in the identification of a 
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mechanistic basis for the association between the FTO locus and obesity in humans, the relevant 

cell types and target genes remain unresolved, and the causal variant remains uncharacterized.
247, 

255, 257
 

 From GWAS to multiple-stage GWAS to GWAS meta-analysis, all the loci currently 

identified account for 2.7% of the variation in BMI.
247

 Excitingly, Yang et al.’s recent study 

suggests that as much as 27% of BMI variation in 44,126 unrelated individuals can be explained 

by common genetic variation using ~17 million imputed variants.
200

 GWAS use a stringent 

threshold of P<5×10
-8

 to accept a genotype-phenotype association, which may exclude many 

potential obesity susceptibility variants. To fill in the gap between higher heritability of BMI and 

small portion of BMI variation explained by identified SNPs, strategies to search for this missing 

heritability include rare variant association, structure variants, CNVs, ethnic-specific variants,  

gene-environment and gene-gene interactions, and methodological innovations.
258

     

4.5. Generalizability of identified adult SNPs across different ethnicities 

GWAS have been conducted primarily in populations of Northern European ancestry. 

More recently, GWAS for BMI have been conducted in East Asian and African populations.
259-

262
 The BMI-associated loci identified by GWAS display a large overlap in European, East Asian 

or African populations. However, these studies also identified several novel loci (GALNT10 in 

African ancestry; KLF9, CDKAL1 and GP2 in East Asian ancestry) missed previously by GWAS 

of European ancestry.
259-262

 Whereas SNPs in / near GALNT10, CDKAL1 and GP2 genes showed 

nominal evidence of associations with BMI in European populations from the GIANT 

consortium, the KLF9 signal was not replicated.
260-262

 In addition, independent SNPs at the 

PCSK1 locus are associated with obesity-related traits in European and East Asian populations.
5, 

260
 These data suggest some ethnic heterogeneity in the genetic variants of obesity.

263 
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Numerous studies have reported the effect of European-derived GWAS obesity signals in 

other ethnic backgrounds and the results always show at least partial overlap of association with 

obesity.
263

 Only one study to date assessed the generalizability of European-derived obesity 

signals in a multi-ethnic population. Fesinmeyer et al. studied 8-13 BMI SNPs derived from 

European populations in 69,775 individuals from 6 ethnic groups (East Asians, African 

Americans, Latino Americans, Pacific Islanders, Native Americans, N between 604 and 15,415), 

suggesting a limited overlap in genetic variants for obesity across diverse ethnic groups.
264

 

However, this pioneer study displayed two major limitations. First, the authors analyzed the 

separate contribution of 8-13 SNPs to obesity, but their collective effect on BMI variation as 

measured by a genetic risk score was not assessed. In addition, the South Asian ethnic group, 

which represents one-quarter of the worldwide population, was not included in this study.  

My first thesis project (Chapter II) aimed to investigate the generalizability of 23 obesity 

SNPs, analyzed separately or collectively as a genetic risk score, across six ethnic groups 

(European, South Asian, East Asian, African, Latino American and Native American; Ntotal 

=17,423) using EpiDREAM cohort study.   

4.6. Generalizability of identified adult SNPs across different ages 

GWAS have identified 39 and 20 SNPs associated with adult and child binary obesity, 

respectively, and 12 of them overlap.
31, 244, 265, 266

 Current known BMI susceptibility variants 

were originally derived from adult population, and the total number of SNPs associated with 

adult BMI at genome-wide significance level (P<5×10
-8

) has recently increased to 116.
247

 A 

meta-analysis of GWAS in European adolescents and young adults (aged 16-25 years) found 

seven loci associated with BMI level
267

. All seven loci were previously identified in European 

adults, but four of them displayed larger effects and one locus had smaller effect compared with 
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older adults. A large-scale genome-wide interaction study identified 15 loci of which the effect 

on BMI was different between younger and older adults, 11 of the 15 age-dependent BMI loci 

having stronger effects in the younger.
268

 Recently, two meta-analyses of GWAS of childhood 

BMI identified 12 loci previously associated with adult BMI or childhood obesity (ADCY3, 

GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B, 

OLFM4) and four novel loci (FAM120AOS, ELP3, RAB27B, ADAM23).
269, 270

 Evidence from 

post-GWAS indicates that some of the adult BMI loci also affect BMI level at specific ages in 

children.
1, 30, 40, 271, 272

 De Hoed et al. compared the effect sizes of 17 BMI SNPs in adults and 

children and reported that TMEM18, SEC16B, and KCTD15 had stronger effects in children and 

adolescents compared to adults, while BDNF, SH2B1 and MTCH2 had weaker effects.
273

 

Because children grow rapidly and obesity typically develops over a period of time, longitudinal 

analyses of repeated measures of weight and BMI are considered to be an optimal approach to 

look for specific developmental windows during which the genetic variants are associated with 

BMI. In the prospective 1946 British Birth Cohort, variants in FTO and MC4R demonstrated 

significant associations with growth up to adulthood. The associations peaked at 20 years old and 

then weakened with age in adults.
274

 Belsky et al. reported that the genetic risk score by 

summing the number of risk alleles of 32 BMI loci predicted faster growth in childhood (ages 3 

through 13 years).
275

 These findings indicate that most adult BMI variants start to influence BMI 

in early childhood. However, in combination, the BMI variants have little influence on birth 

weight but promote accelerated weight gain.
272

  

Birthweight is heritable with 40% of its variation accounted by genetic components.
194

 

Previous association studies of the effects of genetic risk scores and birth weight and obesity-

related traits in childhood are limited by the small group of SNPs analyzed (at most 32 SNPs 
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which were identified until 2010), and many adult BMI risk variants recently identified have not 

been investigated. My second thesis project (Chapter III) aimed to investigate the effects of 

genetic risk score summing the risk alleles of 83 robustly associated adult BMI SNPs on birth 

weight, weight gain and growth trajectory from birth to 5 years of age in the children using the 

FAMILY birth cohort. We further examined whether parental risk alleles in specific genes 

contributed to child’s weight and BMI variation in early life.  

5. GENE AND ENVIRONMENT INTERACTIONS AND OBESITY 

The prevalence of obesity has doubled in adults and tripled in children in the last three 

decades which indicates the changes in affluent food supply and sedentary lifestyle have driven 

this epidemic. Some individuals are more likely to be obese when exposed to an obesogenic 

environment because of different genetic background. For example, when people from 

developing countries with a low prevalence of obesity migrate to the western countries, the risk 

of obesity increases substantially in some of them compared to those stay in their country. In 

those people who become obese may have genetic susceptibility to common forms of obesity and 

its modest effects are amplified in the presence of environmental factors such as Westernized 

food and lifestyle. As another example, some individuals fail to lose weight and even gain 

weight in response to lifestyle intervention, even though they actively involved in the program. 

One can only assume that the combination of genetic and environmental determinants is 

responsible for gaining weight or losing weight more readily for some people. Thus, a better 

understanding of the etiology of obesity requires a careful investigation of gene-environment 

interactions. 

5.1. Obesity susceptibility variants interact with diet 
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While the FTO variant rs99309609 confers a predisposition to obesity in children, it is 

associated with food intake and food choice independent of body weight, but not energy 

expenditure.
276

 Many studies have demonstrated that FTO variants mediated the impact of diet 

patterns on obesity.
277-280

 Moleres et al.’s cross-sectional study showed that children and 

adolescents carrying risk allele(s) of rs9939609 in FTO with higher consume in total energy and 

high saturated fat had an increased obesity risk compared to those with no risk allele.
281

 The 

Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial randomized 

participants into one of the four weight-loss diets of varying macronutrient composition (the 

same total energy with different percentages of fat, protein and carbohydrate) and followed for 2 

years.
278

 The results demonstrated that carriers of the risk allele of FTO rs1558902 more 

successfully reduced weight, body composition and fat distribution in response to high-protein 

diet than a low-protein diet. Using a nested case-control study, Qi et al. found an association 

between the genetic risk score based on 32 BMI variants and adiposity appeared to be more 

pronounced in people who took more sugar-sweetened beverages or consumed more fried 

food.
277, 280

 However, a recent meta-analysis from 177,330 adults did not detect an interaction 

between the FTO genetic variants and total energy or macronutrients on the risk of obesity.
279

 As 

pinpointed by the authors, different study designs and inevitable measurement errors in self-

reported data on BMI and dietary intakes may substantially influence the pooled estimations.  

Peroxisome proliferator-activated receptor-γ 2 (PPARG2) Pro12Ala (P12A) is another 

obesity genetic variant widely studied for its modification effect for the diets on the risk of 

obesity. Several studies have reported significant interactions between dietary fat/total 

energy/carbohydrate/ratio of polyunsaturated fat to saturated fat and the PPARG2 gene on 

adiposity/BMI.
282-285

 For example, Robitaille et al. examined the interaction between dietary fat 



                         Ph.D Thesis – A. Li; McMaster University - Health Research Methodology 

 

39 
 

and the PPARG2 P12A polymorphism on the level of BMI and waist circumference in a cohort 

of 720 adults participating in the Quebec Family Study.
283

 Intake of total fat and saturated fat 

were significantly associated with BMI and waist circumference in P homozygotes, but not 

among carriers of the A allele, indicating significant interactions between total fat and saturated 

fat intake and PPARG2 genotype.        

5.2. Obesity susceptibility variants interact with physical activity and sedentary lifestyle 

Numerous studies have shown that physical activity attenuates the risk of some obesity 

susceptibility variants on obesity. These genetic variants locate in/near genes UCP3, ADRB3, 

ADRB2, PPARGC1A and FTO.
42

 Specifically, the interaction between FTO and physical 

activity, particularly moderate to vigorous physical activity, is well documented. The effects of 

interactions between the FTO variants and physical activity on BMI level/obesity/fat mass/fat 

distribution/waist circumference have been reported in children, adolescents and adults and 

different ethnic groups.
286-293

  In Andreasen et al.’s study with 17,162 middle-aged Danes, a 

significant difference in BMI between the risk allele homozygotes and non-risk allele 

homozygotes was observed only among physically inactive subjects, but not among those who 

were physically active. These results suggested that higher physical activity might attenuate the 

adverse effects of the FTO variant on obesity. In addition to numerous independent studies 

showing significant associations between the FTO variants and physical activity on BMI 

variation in children, adolescents and adults, a recent meta-analysis of 218,166 adults has 

corroborated that the association of rs9939609 in FTO with BMI and obesity was attenuated by 

physical activity.
294

 However, no such interaction was found in 19,268 children and 

adolescents.
294

 In this meta-analysis, physical activity was measured differently in each 

individual study but was categorized into a dichotomous variable in the pooled analysis, which 
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may decrease the statistical power. In addition, BMI Z-score for children and adolescent may be 

calculated using different criteria. As highlighted by the authors, a greater consistency and 

statistical power could ultimately be reached only through the establishment of large single or 

multicenter studies using standardized methods and precise measurement of physical activity and 

obesity-related traits. 

In addition to single genetic variants, accumulated effect of multiple genetic variants (as 

measured by genetic risk score) on the BMI variation has also been reported to be accentuated in 

the people with less physical activity.
295-297

 In a large prospective cohort study, the association of 

genetic risk score with BMI was reduced with increased level of physical activity and 

strengthened with increased hours of TV watching.
297

 These findings suggested that sedentary 

lifestyle might boost the effect of genetic association and increased physical activity might lessen 

the susceptibility to obesity of the genetic variants.           

5.3 Obesity susceptibility variants interact with pregnancy and in utero factors 

We discussed previously that maternal pre-pregnancy BMI and GWG, which in part 

reflect maternal and intrauterine nutrition conditions during fetal development, have been linked 

to subsequent overweight and obesity in mothers and children. As expected, BMI susceptibility 

variants are associated with maternal pre-pregnancy BMI (Chapter IV). Whether obesity 

susceptibility variants or genetic variants from other pathway contribute to GWG is still 

unknown. Recently, Andersson et al. estimated that genetic factors explained 43% of the 

variation in GWG in the first pregnancy and 26% in the second pregnancy using twin mother-

pairs.
298

 Given that a considerable fraction of GWG is attributable to the fat in both fetus and 

mother,
111

 fetal and maternal genetic variants associated with BMI are anticipated to contribute 
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to GWG. Stube et al first examined 8 obesity-associated genetic loci and none of them were 

associated with GWG.
299

 Using repeated measures of GWG during pregnancy (a median of 8 

weight measurements), Lawlor et al reported that 4 BMI loci (FTO, MC4R, TMEM18 and 

GNPDA2), individually or collectively as a genetic risk score from fetus or mother, were not 

associated with GWG either.
300

  

However, the contribution of many recent identified BMI risk variants to the variation of 

GWG has not been examined. Furthermore, no such a study has been done in Canada where the 

environment is believed to be more obesogenic than Europe and Asian. The third project of my 

thesis aimed to investigate the associations between the genetic risk score (GRS) summing the 

risk alleles of 83 BMI SNPs of both mother and fetus with GWG (Chapter IV).   

5.4 Challenges in gene-environment interaction studies 

Theoretically, more gene-environment interactions with larger effect sizes are expected to 

be found to explain the variation in obesity-related traits. The major obstacles include the 

inadequate sample size and lack of accurate measurement of tested variables. The sample size 

needed to test departure from a multiplicative gene-environment interaction is at least four times 

that required to evaluate the main genetic or environmental associations.
301

 To compensate for 

the measurement errors in environment factors, even larger sample sizes are needed.
302

 The 

identified gene-environment associations above are based on candidate genes. If the whole-

genome hypothesis-free approach or Genome-Wide Interaction Study (GEWIS) is applied, it 

amplifies the problems of multiple-testing and sample size.
303

 Currently no study has reported 

the GEWIS for obesity. To overcome these challenges, some novel approaches have been 

proposed, including gene- or pathway-based approaches, a module-based cocktail approach, a 
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joint test of marginal associations and gene-environment interaction, variance prioritization 

approach, and a set-based gene-environment interaction test.
304

  

6. SUMMARY 

Considerable progress in understanding of both environmental and genetic risk factors 

associated with the development of obesity has been achieved. Research findings indicate that 

increases in physical activity and healthy lifestyle interventions can not only substantially reduce 

the risk of obesity but also can attenuate the risk of genetic variants on the development of 

obesity. This has essential implications to clinical and public health. However, there are still 

many challenges. The future progress will depend on the development of methodology in study 

designs, analytic methods, accurate measurements of environment variables, and accruing large 

sample sizes.       
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ABSTRACT 

Genome-wide association studies have identified 136 loci associated with body mass index 

(BMI) or obesity and these studies have been conducted primarily in the populations of Northern 

European ancestry. We hypothesize that genome-wide associated single nucleotide 

polymorphisms (SNPs) may have differentiated effect sizes across different ethnic groups.  

Twenty-three obesity-susceptibility SNPs were genotyped in six ethnic groups (Europeans, East 

Asians, South Asians, Africans, Latinos and Native Americans) in the EpiDREAM cohort study 

(N=17,423). Linear mixed models were used to examine the genetic associations between SNP 

and genetic risk score (GRS) with BMI in each ethnicity and overall. The results showed that 19 

out of 22 selected SNPs and the GRS had associations directionally consistent with previous 

reports and six of them reached at least nominal statistical significance. Two SNPs (rs1805081 in 

NPC1 and rs611203 in USP37) and the GRS had significantly different effect sizes across six 

ethnicities (I
2
=57%, 72%, 60%, and Phet=0.04, 0.003, 0.03, respectively). Therefore their 

generalizability across different ethnic groups is partial.  
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INTRODUCTION 

 

The prevalence of obesity in adults (defined as a body mass index (BMI) greater than 30) 

has risen tremendously since 1980s, and reached 34.9% in the United States in 2012.
1
 Obesity is 

a risk factor for type 2 diabetes (T2D), cardiovascular diseases, stroke, hypertension, 

nonalcoholic fatty liver diseases and certain specific cancers. It ultimately leads to an 8-13 years 

shorter life expectancy in its more severe forms.
2-4

 Economic burden is also an important 

consequence of this epidemic that was estimated to be $147 billion in the United States in 2008, 

corresponding to 9.1% of the total annual health care expenditures.
5
  

Although obesity is pandemic worldwide, its prevalence varies across and within 

countries.
1, 3, 6, 7

 Some ethnic groups are more prone to be obese than others. In 2011-2012, the 

age-adjusted prevalence of obesity in adults from the United States was 47.8%, 42.5%, 32.6%, 

and 10.8% in non-Hispanic Blacks, Hispanics, non-Hispanic White Americans and non-Hispanic 

Asians, respectively.
1
 These disparities may be due to differences in lifestyle, diets, 

socioeconomic status, or access to health care across the different ethnic groups. However, these 

differences may also reflect differences in genetic susceptibility to obesity.
8
 Admixture studies 

for obesity also argue for genuine genetic differences across various ethnic groups.
9
 

Obesity is a multi-factorial disorder in which genetic and environmental factors act in 

concert.
10

 Environmental risk exposures for obesity include sedentary lifestyle, excessive energy 

intake and sleep debt, among many others.
11

 However, the fact that only a subset of people 

exposed to an obesity-prone environment develop obesity is mainly explained by inherited 

components.
12

 Heritability estimations (which measures the fraction of phenotype variance in a 

population attributed by genetic components) of 47-90% for BMI from twin studies have been 

reported in literature.
13

 Rare mutations or structural variations have been implicated in 
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monogenic forms of obesity with or without syndromic features.
14, 15

 Genome-wide association 

studies (GWAS) and Metabochip meta-analyses have identified and validated 136 loci associated 

with BMI or obesity.
14, 16

 These GWAS have been conducted primarily in the populations of 

Northern European ancestry. More recently, GWAS for BMI have been conducted in East Asian 

and African populations.
17-19

 The BMI-associated loci identified by GWAS display a large 

overlap in European, East Asian or African populations. However, these studies also identified 

several novel loci (GALNT10 in African ancestry; KLF9, CDKAL1 and GP2 in East Asian 

ancestry) missed in GWAS of European ancestry.
17-19

 In addition, independent SNPs at the 

PCSK1 locus have been associated with obesity-related traits in European and East Asian 

populations.
17, 20

 These data suggest some ethnic heterogeneity in the genetic architecture of 

obesity and question the generalizability of GWAS signals across different ethnic groups.
21

  

Numerous studies have reported the effect of European-derived GWAS obesity signals in 

other ethnic backgrounds and the results always showed at least partial overlap of association 

with obesity.
21

 Surprisingly, only one study to date assessed the generalizability of European-

derived obesity signals in a multi-ethnic population.
22

 However, this pioneer study displayed two 

major limitations. First, the authors analyzed the separate contribution of 8-13 SNPs to obesity, 

but their cumulative effect on BMI variation as measured by a genetic risk score was not 

assessed. In addition, the South Asian ethnic group, which represents one-quarter of the 

worldwide population, was not included in this study.   

This study aimed to investigate the generalizability of 23 obesity SNPs, analyzed 

separately or collectively as a genetic risk score, across six ethnic groups (European, South 

Asian, East Asian, African, Latino American and Native American; Ntotal =17,423) using a multi-

ethnic prospective EpiDREAM cohort study.  
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PARTICIPANTS AND METHODS 

Study population 

The individuals were at risk for dysglycemia and originally collected through a 

prospective cohort, as described in detail elsewhere.
23, 24

 Briefly, EpiDREAM enrolled a total of 

24,872 individuals across 191 centers in 21 countries that were screened to enter the DREAM 

clinical trial.
23

 Individuals who were considered as at risk for dysglycemia based on family 

history, ethnicity, abdominal adiposity and gestational diabetes which was screened using a 75-

gram oral glucose tolerance test (OGTT) after an overnight fasting. All participants were 

between the age of 18 and 85 years and were recruited between July 2001 and August 2003. Our 

study used cross-sectional data from the baseline screening visit for the EpiDREAM and 

DREAM studies. Self-reported ethnicity has been confirmed by a principal component analysis 

using the EIGENSOFT software.
25

 Samples that failed to cluster with individuals of the same 

self-reported ethnicity were removed. Individuals who lacked relevant clinical data, were sex 

discordant with genotyping information, or did not pass the genotyping quality control 

(genotyping call rates <97%) were removed. Consequently, 17,423 subjects who were finally 

analyzed were from six ethnic groups mentioned above and had both required phenotypic 

measurements at baseline and genotyping data (Supplementary Figure 1). The EpiDREAM and 

DREAM studies have been approved by local research ethics board and informed consent was 

obtained from each subject in accordance with the Declaration of Helsinki.   

Genotyping 

DNA extracted from buffy coats was genotyped using the Illumina cardiovascular gene-

centric bead chip microarray ITMAT Broad Care which captures genetic variants in great depth 

of coverage in the genes for cardiovascular, metabolic and inflammatory diseases.
26

 Genotyping 
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was conducted at McGill University and Genome Quebec Innovation Centre using the Illumina 

Bead Studio genotyping module version 3.2. Within each ethnicity, SNPs were further examined 

for minor allele frequency (MAF), risk allele frequency and deviation from Hardy-Weinberg 

equilibrium (HWE). SNPs were excluded if MAF<1% or P values <1×10
-6

 in HWE tests. A list 

of 23 SNPs (lead SNP or its proxy, detailed information in Supplementary Table 1) was selected 

based on two criteria of: 1) being associated with BMI and/or binary obesity status at a genome-

wide significance level (P<5×10
-8

), and 2) being available in the cardiovascular gene-centric 50K 

SNP array. We used the following criteria to select proxy SNPs: 1) SNPs were included in the 

Illumina cardiovascular gene-centric array; 2) r
2
 >0.90 in a population of similar ancestry in 

which the lead SNP was identified from the 1000 Genomes Project; 3) Pairwise linkage 

disequilibrium in the European population of all the SNPs was also examined and r
2
<0.1 was 

ensured to avoid any overlap in the final SNP list. We used the Broad Institute website tool 

SNAP (SNP Annotation and Proxy Search) and identified seven proxy SNPs (Supplementary 

Table 1). The 23 SNPs passed the genotype quality control and the call rates for each of the 23 

SNPs were between 99.72 and 100 % (Supplementary Table 1). 

Phenotypes 

At baseline visit, participants completed a questionnaire collecting demographic data, 

medical history, physical activity behaviors and diet patterns. Anthropometric measurements 

including height and weight were performed using standardized protocols.
23

 Weight in kilograms 

(kg) and height in meters (m) were measured by trained medical staff. Standing height was 

measured to the nearest 0.1 cm and weight was measured to the nearest 0.1 kg in light clothing. 

BMI was calculated as weight divided by height squared.  
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Statistical analysis 

The comparisons of risk allele frequencies and BMI at baseline among ethnic groups 

were conducted using Chi-square and ANOVA tests. The obesity risk alleles for each of the 23 

SNPs were chosen based on what were originally identified in literature (Supplementary Table 1, 

2). An additive mode of inheritance was applied in all relevant analyses and genotypes were 

coded as 0, 1 and 2 designating the number of copies of the risk allele. A genetic risk score 

(GRS) was calculated by adding up the risk alleles of 23 SNPs and therefore the theoretical 

scores ranged from 0 to 46. We used an unweighted GRS as recommended by Janssens et al.
27

 

The scores for the missing genotypes were imputed with arithmetic average of the coded 

genotypes from individuals who were successfully genotyped within each ethnicity.  

In each ethnic population, the associations between each SNP or GRS and BMI were 

analyzed using linear mixed effect model in which age, sex and SNP/GRS were the variables for 

the fixed effects and identified relatedness as a random effect.  In pooled analyses, the same 

linear mixed effect model was used with an additional variable of ethnicity for the fixed effect. 

Interaction term of SNP/GRS by ethnicity was also added to the model to examine the 

modification effect of SNP/GRS on BMI by ethnicity. The overall β coefficients across 6 

ethnicities of each SNP/GRS were furthermore calculated using the fixed-effects meta-analysis. 

When heterogeneity existed, the random-effects meta-analysis was applied. P-values <0.00026 

(0.05/(24×8)) were considered as statistically significant after Bonferroni correction and P-values 

between 0.00026 and 0.05 were regarded as nominally significant.  

Within each ethnic group of South Asians, East Asians, Africans, Latinos and Native 

Americans, the risk allele frequencies of each SNP was compared with those in Europeans and 

the counts of increases and decreased were recorded. Whether the increased or decreased counts 
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were significant was examined using a binomial test (two-sided). Similarly, whether the 

associations of SNPs or GRS with BMI were directionally consistent with previous reports was 

also examined by binomial tests (one-sided). All the binomial tests used a null expected ratio of 

0.5. All the statistical analyses were performed using PLINK (version 1.07) and R (version 

2.15.2.).
28, 29

 

RESULTS 

Baseline characteristics of participants 

The descriptive baseline characteristics of participants in each ethnic group and overall 

population are presented in Table 1. Their average age was 52.7 years and 61% were women. 

BMI was lowest in East Asians (mean±SD, 26.1±4.3 kg/m
2
) and South Asians (26.4±4.4 kg/m

2
), 

highest in Africans (32.4±7.0 kg/m
2
) and Native Americans (32.5±6.4 kg/m

2
) and intermediate in 

Europeans (30.6±6.1 kg/m
2
) and Latinos (30.1±6.2 kg/m

2
). The distribution pattern of the BMI 

in 6 ethnicities was Native Americans>Africans>Latinos>Europeans>South Asians>East Asians. 

The difference of BMI was statistically significant among ethnicities (P=0).  

Frequencies of risk alleles across 6 ethnicities 

The risk allele frequencies of the 23 tested SNPs in each ethnic group were shown in 

Table 2. The allele frequencies of the 19 out of 23 SNPs were significantly different across 

ethnicities. To further understand the extent of difference, we counted the number of risk alleles 

which had higher or lower frequencies in South Asian, East Asian, African, Latino and Native 

American compared to those in Europeans. None of them achieved statistical significance at 

binominal tests in any ethnicity, meaning that there was no any evidence for a specific 

enrichment or reduction of obesity risk alleles among the ethnic groups (Supplementary Table 3). 
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Meanwhile, the GRSs were significantly different across the 6 ethnic groups (P=3.51 × 10
-270

). 

The order of the GRS values among 6 populations was Africans (27.1±2.9)>Europeans 

(25.8±3.1)>Latinos (24.7±2.9)>Native Americans (24.5±2.9)>South Asians (24.5±2.9)>East 

Asian (22.3±2.8). Although both BMI and GRS were statistically different among the 6 

ethnicities, their patterns were not the same.  

Effects of SNPs and GRS on BMI levels across 6 ethnicities 

The minor allele A of the SNP rs761 in ALDH2 was very rare (< 0.7%) in all ethnic 

groups and the β coefficients calculated for this SNP had wide-range confidence intervals which 

we considered as unreliable. Therefore we decided not to report the associations between rs671 

and BMI in 6 ethnicities, but the number of risk alleles G of rs671 still contributed to GRS. We 

first examined whether the direction of effects of the 22 SNP risk alleles on BMI was consistent 

with previous reports (β coefficients> 0) in each ethnic group. We observed that 19 out of 22 

SNPs showed directional consistency in Europeans (binomial probability, P=0.004), 17/22 in 

both East Asians and Latinos (P=0.01), 15/22 in South Asians (P=0.07), 14/22 in Native 

Americans (P=0.14), and 11/22 in Africans (P=0.58) (Table 3). The number of associations that 

reached nominal significance (P<0.05) were 0 in East Asians and Native Americans, 1 in 

Africans, 2 in South Asians, 3 in Latinos, and 6 in Europeans (Table 3).   

We next examined the overall effects of each SNP using both linear mixed regressions 

and meta-analyses across the 6 ethnic groups. Nineteen of twenty-two SNPs showed associations 

directionally consistent with previous reports and six of them reached at least a nominal  

significance: rs1514176 in TNNI3K, rs2206734 in CDKAL1, rs9939609 in FTO, rs11671664 in 

GIPR, rs2984618 in TAL1, and rs7903146 in TCF7L2 (Table 3). No significant interactions 

between SNP and ethnicity on BMI levels were detected except the interactions between 
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rs2206734 (CDKAL1), rs9939609 (FTO), rs1805081 (NPC1), rs749767 (KAT8) and African 

ancestry (P=0.04, 0.04, 0.002, and 0.007, respectively), and the interactions between rs1211166 

(NTRK2) rs2075650 (TOMM40-APOE-APOC1) and Latino ancestry (P=0.01 and 0.02, 

respectively), which did not depart from random associations after Bonferroni correction for this 

specific experiment (Table 4). The meta-analyses of the effect sizes of each SNP across 6 

ethnicities showed that similar β coefficients to those obtained from linear mixed regression 

analyses (adjusted for age, sex and ethnicity) (Table 3). Two out of the 22 risk variants 

demonstrated evidence of heterogeneity in the effect size across ethnic groups (rs1805081 in 

NPC1, I
2
=57%, Phet=0.04; rs611203 in USP37, I

2
=72%, Phet=0.003) (Table 3). The heterogeneity 

of rs611203 in USP37 was statistically significant after Bonferroni correction, but not rs1805081 

in NPC1 (P<0.004 (0.1/24)).  

Regarding the GRS, each additional risk allele resulted in an average increase of 0.15 

units (95% CI: 0.11-0.194) in BMI in Europeans. The same directional effects were observed in 

all the other ethnic groups except in Africans (Table 3). The associations between GRS and BMI 

were statistically significant in Europeans (P=2.86×10
-12

) and nominally significant in both 

South Asians (P=0.04) and Latinos (P=0.002), but not significant in the other ethnic groups (P > 

0.14). The effect sizes of the GRS on BMI in six ethnic groups varied from -0.02 to 0.16. 

Europeans and East Asians had the largest and similar increase in BMI per risk allele, whereas 

Africans and South Asians had least increase in BMI per risk allele, and Latinos and Native 

Americans were intermediate (Table 3). The analysis of the GRS × ethnicity interaction showed 

that the effect sizes of GRS significantly decreased in South Asians and Africans compared to 

that in Europeans (Table 4). We further combined β coefficients of GRS on BMI derived from 

linear mixed regression across 6 ethnic populations using meta-analysis. The result showed that 
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the overall effect size was 0.10 units increase in BMI per risk allele and this finding was not 

consistent across 6 ethnicities (I
2
=60%, Phet=0.03), summarizing what we observed for the SNPs 

analyzed separately. Overall, these data suggest that the SNPs may display to some extent 

differences in effects of genetic variants on BMI across six ethnic groups. 

DISSCUSSION 

In this large multi-ethnic study of 17,423 participants at high risk of obesity / 

dysglycemia, we observed that the mean of BMI was significantly different across ethnicities. 

The pattern of BMI was: Native American>African>Latino>European>South Asian> East Asian 

(Table 1), which is consistent with what has been described in general populations.
1, 30

 Even 

though the studied individuals were selected to be more obese, an ethnic-dependent adiposity 

pattern was still observed. This supports the observation that certain ethnic groups are not only 

more likely to be obese but display higher severe / morbid obesity rates.
1
 

Despite the BMI was significantly different across the six populations in our study, no 

ethnic group harbored significant enrichment or deprivation of obesity risk alleles when 

compared to participants of European ancestry (Supplementary Table 3). This result is in line 

with a previous report by Chen et al.
31

 They did not observe any consistent pattern of risk allele 

frequencies for 12 obesity SNPs across 11 HapMap populations.
31

 Even though most SNPs have 

been originally discovered in Europeans, only 4 out of 23 risk alleles displayed highest 

frequencies in this specific ethnic group in EpiDREAM. Thirteen out of 23 obesity risk alleles 

had lowest frequencies in East Asians. The low GRS value in East Asians 

(African>European>Latino>Native American>South Asian>East Asian) is consistent with a low 

propensity to obesity. On the contrary, Native Americans had the intermediate level of GRS 

despite the highest risk of obesity. This may suggest that additional susceptibility loci missed by 
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European GWAS should be more specific to highly differentiated Native American 

populations.
32

 Therefore, the ethnic differences in risk allele frequencies call for GWAS in 

diverse ancestries to uncover the genetic architecture underlying obesity, as recently illustrated in 

East Asian and African populations.
17-19

   

Overall, associations between BMI and 19 SNPs and GRS were in a consistent direction 

of effect with previous literature. Only did six individual SNPs and the GRS reach at least a 

nominal evidence of association (P < 0.05). Our study illustrates the difficulty to replicate 

association signals with small effect size issued from large GWAS meta-analyses (e.g. 

GIANT).
33

 The results of our study support a partial generalizability of SNPs identified in 

European populations to other ethnic groups, in line with previous observations.
21, 22, 34, 35

 For 

instance, Lu and Loos recently reported that 50% of BMI-associated SNPs were shared by 

European and East Asian ancestries.
21

 Fesinmeyer et al. studied 8-13 BMI SNPs derived from 

European populations in 69,775 individuals from 6 ethnic groups.
22

 Whereas 10 out of 13 SNPs 

were associated with BMI in European Americans, only 0-3 out of 8-13 SNPs showed nominal 

associations with BMI in the other ethnic groups (East Asians, African Americans, Latino 

Americans, Pacific Islanders, Native Americans, N between 604 and 15,415), suggesting a 

limited overlap in genetic architecture for obesity across diverse ethnic groups.
22

 Heterogeneity 

analysis found that the effect sizes varied significantly in two SNPs (rs1805081 in NPC1 and 

rs611203 in USP37) and GRS across ethnicities. For example, the effect sizes of GRS varied 

from a 0.016 BMI unit (kg/m
2
) decrease per additional risk allele in Africans to 0.158 units 

increase in East Asians (Table 3). This suggests that SNPs tagging the associations with obesity 

traits in Europeans might not be the best proxies of causal variants in other ethnic groups (e.g. 

Africans and Native Americans). In addition to different risk allele frequencies and ethnic-
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specific associations, allelic heterogeneity, different linkage disequilibrium patterns, or gene × 

gene, gene × environment interactions may explain the incomplete generalizability of all known 

associations across ethnicities.
36

 The heterogeneity across ethnicities of NPC1 may deserve 

further investigation. We studied only one polymorphism (rs1805081) in EpiDREAM but three 

non-synonymous SNPs (rs1805081, rs1805082, rs1788799) are in the same LD block in 

Europeans, their minor allele frequencies differing dramatically in different ethnic groups. It is 

tempting to speculate that these three coding SNPs may have accumulatively detrimental effect 

on NPC1 function, meaning that haplotype rather than single SNP analyses may better capture 

the association.
37, 38

 The generalizability of the 23 studied SNPs is partial and our data argue for 

the completion of large-scale GWAS meta-analyses with dense SNP arrays in multi-ethnic 

designs to capture the universal proxies for associations and eventually identify the causal 

variants.
39-41

 

Some studies showed that BMI, waist circumference (WC) and waist-to-hip ratio (WHR) 

were similarly strong predictors of T2D,
42, 43

 however, other studies demonstrated that WC and 

WHR were more associated with increased risk of T2D and cardiovascular diseases than BMI.
44, 

45
 Recent meta-analyses have identified 33 new loci associated with WHR and 19 additional loci 

associated with waist and hip circumferences in European ancestry individuals.
46

 These loci are 

mostly expressed in adipose tissue, which are different from those loci associated with BMI.
16, 46

 

Furthermore, the prevalence of T2D and cardiovascular diseases is significantly different across 

different ethnic populations.
47, 48

 This evidence indicates that it is important to investigate 

whether the WC or WHR susceptibility variants identified in Europeans are also associated with 

WC or WHR in other populations in future studies.   
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 Our study has several strengths. First, it is a large prospective cohort consisting of 

multiple ethnicities. Second, it enriches with obese participants and has reasonable sample sizes 

in each ethnic population except East Asia (N=225) and Native America (N=500). However, our 

study also presents some limitations including an incomplete list of BMI genetic variants used to 

examine the generalizability of associations from Europeans to other ethnic populations and 

limited statistical power to replicate a GWAS association. Compared to original discovery 

studies, the statistical power of our study is modest. Except rs9939609 in FTO had a power of greater 

than 80% to detect a significant association, the rest had limited power as shown in Supplementary Figure 

2.   

Taken together, our results have shown that 19 out of the 22 selected SNPs and GRS are 

overall directionally associated with BMI. The effect sizes of rs1805081 in NPC1, rs611203 in 

USP37 and GRS are not consistent across six ethnic populations. Therefore their generalizability 

across different ethnic groups is partial. 
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 Table 1. Baseline characteristics by ethnic group in EpiDREAM study. 

  European South Asian East Asian    African  Latino  
Native 

American 
Overall P value 

N 9395 2762 225 1249 3292 500 17423 
 

Age, years 

(SD) 
55.0 (10.8) 44.9 (9.4) 53.1 (11.2) 54.1 (11.0) 52.6 (11.7) 48.9 (10.9) 52.7 (11.4) 0 

Female (%) 5707 (60.8) 1335 (48.4) 129 (57.3) 897 (71.8) 2197 (66.8) 348 (69.6) 10613 (60.9) 7.17×10
-65

 

BMI Mean 

(SD) 
30.1 (6.1) 26.4 (4.4) 26.1 (4.3) 32.4 (7.0) 31.1 (6.2) 32.5 (6.4) 30.2 (6.2) 0 

 

SD: standard deviation 
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  Table 2. Risk allele frequencies by ethnic group and comparison across ethnicities. 

SNP Gene Risk Allele 
Major 

Allele 

Minor 

Allele 
European South Asian East Asian African Latino 

Native 

American 
p value* 

rs1514176 TNNI3K G A G 0.416 0.545 0.678 0.669 0.520 0.555 1.75E-188 

rs6235 PCSK1 G C G 0.266 0.295 0.296 0.155 0.207 0.234 1.85E-53 

rs6232 PCSK1 G A G 0.049 0.061 0.002 0.008 0.029 0.029 1.36E-39 

rs2206734 CDKAL1 C C T 0.801 0.767 0.664 0.759 0.800 0.774 3.22E-20 

rs2272903 TFAP2B G G A 0.893 0.781 0.789 0.709 0.857 0.892 1.94E-195 

rs1211166 NTRK2 A A G 0.807 0.722 0.808 0.671 0.800 0.866 6.28E-89 

rs6265 BDNF G G A 0.814 0.775 0.526 0.966 0.841 0.849 7.75E-154 

rs1401635 BDNF C G C 0.290 0.382 0.081 0.253 0.216 0.224 3.41E-111 

rs997295 MAP2K5 T T G 0.589 0.458 0.197 0.545 0.453 0.440 2.10E-167 

rs7203521 FTO A A G 0.610 0.429 0.261 0.633 0.472 0.390 1.97E-234 

rs9939609 FTO A T A 0.417 0.329 0.178 0.489 0.336 0.236 4.42E-110 

rs1805081 NPC1 A A G 0.611 0.767 0.756 0.930 0.690 0.682 1.98E-286 

rs2075650 
TOMM40-

APOE-APOC1 
A A G 0.860 0.869 0.872 0.884 0.886 0.900 3.40E-07 

rs11671664 GIPR G G A 0.893 0.891 0.626 0.884 0.909 0.889 7.16E-78 

rs2984618 TAL1 T G T 0.477 0.487 0.412 0.462 0.476 0.489 3.79E-13 

rs1011527 LEPR A G A 0.096 0.136 0.121 0.108 0.127 0.141 1.32E-19 

rs7605927 POMC G C G 0.298 0.370 0.301 0.316 0.372 0.326 4.36E-34 

rs611203 USP37 G A G 0.397 0.390 0.372 0.393 0.380 0.382 0.28 

rs2535633 ITIH4 G C G 0.446 0.443 0.438 0.426 0.449 0.442 0.58 

rs3824755 NT5C2 C G C 0.128 0.179 0.126 0.137 0.168 0.140 2.28E-23 

rs7903146 TCF7L2 C C T 0.697 0.705 0.711 0.708 0.706 0.707 0.68 

rs671 ALDH2 G G A 0.998 0.997 0.993 0.997 0.997 0.999 0.09 

rs749767 KAT8 A A G 0.632 0.653 0.611 0.619 0.634 0.649 0.04 

  P-values for Chi-squared tests of risk allele frequencies across 6 ethnicities  
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Table 3.  Associations between 23 SNPs / GRS and BMI overall and by ethnicity 

 

SNP Gene 

β ± SE   (P value) meta-anlysis (fixed-effect) 

European * South Asian* East Asian* African* Latinos* 
Native 

American* 
Overall** 

β ± SE                 
(P value) 

heterogeneity I2    
(P value) 

rs1514176 TNNI3K 
0.21 ± 0.09                  

(0.02) 

0.10 ± 0.12                       

(0.39) 

0.42 ± 0.39                          

(0.30) 

0.43 ± 0.29                          

(0.15) 

0.16 ± 0.15                               

(0.28) 

0.09 ± 0.41                            

(0.83) 

0.18 ± 0.06                         

(5×10-3) 

0.18 ± 0.06                         

(3.0×10-3) 

0%                     

(0.88) 

rs6235 PCSK1 
0.05 ± 0.10                           

(0.64) 
0.11 ± 0.13                        

(0.40) 
-0.74 ± 0.44                        

(0.13) 
-0.44 ± 0.38                        

(0.26) 
-0.05  ± 0.19                            

(0.775) 
-0.13 ± 0.48                        

(0.79) 
0.002 ± 0.07                          

(0.97) 
0.03 ± 0.07                          

(0.62) 
12%                    

(0.34) 

rs6232 PCSK1 
0.17± 0.21                         

(0.43) 
0.19 ± 0.24                           

(0.42) 
0.18 ± 3.06                         

(0.95) 
-0.64 ± 1.62                        

(0.70) 
-0.26 ± 0.45                           

(0.57) 
-0.33 ± 1.25                        

(0.79) 
0.09 ± 0.16                          

(0.55) 
0.12 ± 0.15                          

(0.42) 
0%                   

(0.95) 

rs2206734 CDKAL1 
0.36 ± 0.11                       

(1.0×10-3) 

0.18 ± 0.14                         
(0.19) 

-0.27 ±0.41                        
(0.52) 

-0.34 ± 0.32                         
(0.30) 

0.18  ± 0.19                             
(0.35) 

0.30 ±  0.51                          
(0.56) 

0.24 ± 0.08                           

(2.0×10-3) 

0.22 ± 0.08                           

(3.0×10-3) 

20%                 
(0.28) 

rs2272903 TFAP2B 
0.11 ± 0.14                        

(0.43) 
0.10 ± 0.14                          

(0.49) 
0.25 ± 0.51                         

(0.63) 
0.05 ± 0.29                         

(0.87) 
0.32  ± 0.22                              

(0.14) 
1.07 ± 0.66                         

(0.11) 
0.15 ± 0.09                            

(0.09) 
0.15 ± 0.08                            

(0.07) 
0%                       

(0.71) 

rs1211166 NTRK2 
-0.12 ± 0.11                         

(0.27) 

0.14 ± 0.13                             

(0.28) 

0.54 ± 0.49                          

(0.30) 

0.06 ± 0.29                         

(0.83) 

0.40 ± 0.19                             

(0.03) 

-0.46 ± 0.60                        

(0.44) 

0.04 ± 0.08                           

(0.59) 

0.06 ± 0.07                           

(0.39) 

39%                     

(0.15) 

rs6265 BDNF 
0.16 ± 0.11                        

(0.15) 

0.04 ± 0.14                          

(0.76) 

0.53 ± 0.42                         

(0.24) 

-0.29 ± 0.74                         

(0.70) 

0.35 ± 0.21                       

(0.09) 

-0.65 ± 0.55                         

(0.24)  

0.14 ± 0.08                           

(0.09) 

0.15 ± 0.08                           

(0.05) 

0%                  

(0.48) 

rs1401635 BDNF 
0.21 ± 0.10                      

(0.03) 

0.02 ± 0.12                         

(0.86) 

0.18 ± 0.71                         

(0.81) 

0.11 ± 0.32                           

(0.73) 

-0.08 ± 0.19                              

(0.67) 

-0.21 ± 0.48                       

(0.67) 

0.10 ± 0.07                          

(0.59) 

0.10 ± 0.07                          

(0.14) 

0%                         

(0.69) 

rs997295 MAP2K5 
0.06 ± 0.09                          

(0.52) 

0.06 ± 0.12                        

(0.83) 

0.42 ± 0.49                           

(0.42) 

-0.15 ± 0.27                         

(0.58) 

0.08  ± 0.15                           

(0.24) 

-0.15 ± 0.40                        

(0.72) 

0.04 ± 0.06                          

(0.49) 

0.04 ± 0.06                          

(0.50) 

0%                         

(0.92) 

rs7203521 FTO 
0.12 ± 0.09                         

(0.20) 

-0.10 ± 0.12                      

(0.39) 

0.95 ± 0.45                         

(0.07) 

0.03 ± 0.28                          

(0.92) 

-0.18 ± 0.15                         

(0.24) 

0.29 ± 0.40                           

(0.47) 

0.04 ± 0.06                          

(0.57) 

0.02 ± 0.06                          

(0.71) 

42%                      

(0.12) 

rs9939609 FTO 
0.63 ± 0.09                        

(5.30×10-12) 

0.37 ± 0.12                          

(2.0×10-3) 

-0.23 ± 0.55                       

(0.69) 

0.11 ± 0.28                          

(0.70) 

0.31 ± 0.16                             

(0.06) 

0.15 ±0.48                       

(0.75)  

0.48 ± 0.07                          

(2.63×10-13) 

0.46 ± 0.06                          

(7.34×10-14) 

43%                   

(0.12) 

rs1805081 NPC1 
0.16 ± 0.09                          

(0.08) 

-0.07 ± 0.14                     

(0.60) 

0.74 ± 0.46                          

(0.14) 

-1.36 ± 0.54                         

(0.02) 

0.01 ± 0.16                           

(0.94) 

-0.28 ± 0.45                        

(0.54)  

0.07 ± 0.07                           

(0.35) 

-0.01 ± 0.13                           

(0.97) 

57%                  

(0.04) 

rs2075650 
TOMM40-

APOE-APOC1 

-0.05 ± 0.13                       

(0.69) 

-0.23 ± 0.17                       

(0.18) 

0.003 ± 0.60                       

(0.99) 

0.43 ± 0.43                          

(0.32) 

0.51 ± 0.24                             

(0.04) 

0.67 ± 0.66                           

(0.31) 

0.06 ± 0.09                          

(0.52) 

0.02 ± 0.09                         

(0.87) 

 41%                  

(0.13) 

rs11671664 GIPR 
0.24 ± 0.14                         

(0.10) 
0.23 ± 0.19                         

(0.23) 
0.16 ± 0.38                         

(0.68) 
0.85 ± 0.43                         

(0.06) 
0.05 ± 0.27                             

(0.86) 
0.90 ± 0.66                          

(0.18) 
0.26 ± 0.10                          

(0.01) 
0.25 ± 0.10                          

(0.01) 
0%                        

(0.62) 
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SE: standard error     

NA: not analyzed 

* adjustment for age, sex 

**adjustment for age, sex and ethnicity  

 

 

 

 

rs2984618 TAL1 
0.29 ± 0.90           

(1.0×10-3) 

0.08 ± 0.12        
(0.49) 

1.24 ± 0.81          
(0.13) 

0.33 ± 0.31            
(0.30) 

0.41 ± 0.15             

(6.0×10-3) 

0.51 ± 0.40              
(0.21) 

0.30 ± 0.06            
(4.06×10-6) 

0.24 ±  0.09          

(2.0×10-3) 

4%                   
(0.39) 

rs1011527 LEPR 
0.04 ± 0.17         

(0.81) 
-0.003 ± 0.13       

(0.98) 
0.07 ± 0.72          

(0.93) 
-0.42 ± 0.40         

(0.30) 
0.39 ± 0.30             

(0.20) 
1.39 ± 0.93               

(0.14) 
-0.06 ± 0.10            

(0.56) 
0.04 ± 0.09            

(0.67) 
0%                   

(0.42) 

rs7605927 POMC 
0.06 ± 0.10         

(0.56) 
-0.12 ± 0.12       

(0.32) 
-0.39 ± 0.41        

(0.37) 
-0.12 ± 0.27            

(0.66) 
0.02 ± 0.16               

(0.88) 
0.08 ± 0.41            

(0.84) 
-0.01 ± 0.07             

(0.85) 
-0.02 ± 0.07           

(0.75) 
0%                   

(0.82) 

rs611203 USP37 
0.08 ±0.09          

(0.37) 
-0.11 ± 0.12       

(0.37) 
-0.51 ± 0.48       

(0.32) 
-0.11 ± 0.29           

(0.71) 
-0.10 ± 0.16           

(0.52) 
0.64 ± 0.42             

(0.13) 
0.02 ± 0.07             

(0.81) 
0.06 ± 0.13                     

(0.67) 
72%                        

(0.003) 

rs2535633 ITIH4 
-0.08 ± 0.09       

(0.38) 

-0.01 ± 0.12       

(0.93) 

0.37 ± 0.43          

(0.42) 

-0.21 ± 0.29            

(0.48) 

0.17 ± 0.15             

(0.27) 

-0.19 ± 0.40           

(0.64) 

-0.03 ± 0.06            

(0.61) 

-0.02 ±  0.06          

(0.76) 

0%                   

(0.64) 

rs3824755 NT5C2 
0.19 ± 0.15       

(0.19) 

0.05 ± 0.13         

(0.72) 

0.04 ± 0.46          

(0.93) 

0.20 ± 0.35              

(0.57) 

0.35 ± 0.20            

(0.08) 

0.19 ± 0.60              

(0.76) 

0.17 ± 0.09              

(0.06) 

0.16 ± 0.08                

(0.06) 

0%                              

(0.89) 

rs7903146 TCF7L2 
0.38 ± 0.10         

(6.23×10-5) 

0.35 ± 0.13         

(6.0×10-3) 

0.59 ± 0.81          

(0.49) 

0.31 ± 0.30             

(0.300) 

0.12 ± 0.17              

(0.49) 

0.665 ± 0.57              

(0.25) 

0.32 ± 0.07             

(3.14×10-6) 

0.33 ± 0.06                          

(2.87×10-7) 

0%                   

(0.79) 

rs671 ALDH2 NA NA NA NA NA NA NA NA NA 

rs749767 KAT8 
0.15 ± 0.09         

(0.10) 

0.13 ± 0.17         

(0.47) 

0.21 ± 0.50          

(0.69) 

-0.59 ± 0.30         

(0.05) 

0.07 ± 0.15           

(0.65) 

0.28 ± 0.39              

(0.47) 

0.09 ± 0.07             

(0.19) 

0.10 ± 0.066                     

(0.15) 

17%                       

(0.30) 

  GRS 
0.15 ± 0.02                         

(2.86×10-12) 

0.05 ± 0.03                       

(0.04) 

0.16 ± 0.10                          

(0.14) 

-0.02 ± 0.07                         

(0.82) 

0.12 ± 0.04                             

(2.0×10-3) 

0.15 ± 0.10                          

(0.14) 

0.12 ± 0.02                          

(3.93×10-14) 

0.10 ± 0.03                          

(1.72×10-4) 

60%                  

(0.03) 
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          Table 4. Interactions between SNP/GRS and ethnicity 

SNP 
Main effect of SNP/GRS β (P value) of interactions between SNP/GRS and ethnicity* 

β coefficient SE P value South  Asian East Asian African Latino Native American 

rs1514176 0.21 0.09 0.02 -0.13 (0.45) 0.13 (0.81) 0.18 (0.49) -0.05 (0.75) -0.19 (0.62) 

rs6235 0.05 0.10 0.64 0.05 (0.74) -0.83 (0.16) -0.43 (0.21) -0.10 (0.630) -0.20 (0.66) 

rs6232 0.17 0.20 040 0.02 (0.97) -0.39 (0.93) -0.99 (0.48) -0.46 (0.34) -0.43 (0.71) 

rs2206734 0.36 0.11 1.0×10-3 -0.14 (0.51) -0.63 (0.28) -0.61 (0.04) -0.19 (0.38) 0.14 (0.77) 

rs2272903 0.11 0.14 0.44 -0.03 (0.92) 0.11 (0.88) -0.04 (0.89) 0.20 (0.42) 0.83 (0.18) 

rs1211166 -0.12 0.11 0.28 0.28 (0.18) 0.68 (0.33) 0.08 (0.78) 0.54 (0.01) -0.38 (0.50) 

rs6265 0.16 0.11 0.15 -0.08(0.71) 0.30 (0.62) -0.66 (0.31) 0.16 (0.47) -0.83 (0.11) 

rs1401635 0.21 0.09 0.026 -0.18 (0.33) -0.01 (0.99) -0.14 (0.62) -0.30 (0.13) -0.53 (0.23) 

rs997295 0.06 0.09 0.53 0.001 (0.99) 0.33 (0.64) -0.18 (0.48) 0.01 (0.94) -0.13 (0.73) 

rs7203521 0.12 0.09 0.17 -0.25 (0.18) 092 (0.15) -0.13 (0.61) -0.27 (0.11) 0.27 (0.47) 

rs9939609 0.63 0.09 3.94×10
-13

 -0.27 (0.15) -0.93 (0.22) -0.52 (0.04) -0.33 (0.06) -0.39 (0.38) 

rs1805081 0.17 0.09 0.06 -0.25 (0.22) 0.73 (0.26) -1.51 (2.0×10-3) -0.16 (0.38) -0.55 (0.19) 

rs2075650 -0.05 0.13 0.70 -0.21 (0.44) 0.05 (0.96) 0.44 (0.26) 0.59 (0.03) 0.57 (0.36) 

rs11671664 0.22 0.14 0.12 0.03 (0.93) 0.03 (0.95) 0.54 (0.18) 0.19 (0.51) 0.89 (0.15) 

rs2984618 0.30 0.09 1.0×10-3 -0.19 (0.29) 0.69 (0.54) 0.05 (0.86) 0.09 (0.58) 0.16 (0.67) 

rs1011527 0.04 0.16 0.83  -0.05 (0.83) 0.17 (0.86) -0.46 (0.22) -0.45 (0.18) 1.42 (0.10) 

rs7605927 0.05 0.10 0.59 -0.21 (0.27) -0.45 (0.44)  -0.17 (0.51) -0.05(0.78) 0.09 (0.81) 

rs611203 0.07 0.09 0.41 -0.17 (0.37) -0.50 (0.47) -0.17 (0.52) -0.17 (0.33) 0.60 (0.13) 

rs2535633 -0.08 0.09 0.34 0.07 (0.69) 0.38 (0.53) -0.09 (0.75) 0.23 (0.18) -0.14 (0.70) 

rs3824755 0.20 0.14 0.16 -0.18 (0.46) -0.20 (0.76) -0.05 (0.88) 0.12 (0.61) -0.20 (0.73) 

rs7903146 0.38 0.09 5.07E-05 0.02 (0.91) 0.10 (0.93) -0.10 (0.73) 0.27 (0.14) 0.07 (0.89) 

rs749767 0.15 0.09 0.09 -0.03 (0.90) 0.13 (0.85) -0.74 (7.0×10-3) -0.07 (0.71) 0.06 (0.87) 

GRS 0.15 0.02 3.37E-13 -0.10(0.02) 0.01 (0.95) -0.18 (4.0×10-3) -0.04 (0.32) -0.02 (0.86) 

*European was set as reference
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Supplementary Figure 1.  Flowchart for participant selection and quality control 

  

 

  

Total recruitment      (N=24,872) 

Individuals having qualified genotypes                                               

(N= 18,486) 

                 DNA extracted and genotyped (N=19,498) 

Genotyped (N=19,197) 

Sample duplicates, sex discordancy, and 

ethnicity mismatch (301)  

Individuals in six ethnicities (N= 17,453) 

Individuals included in the analysis (N=17,423) 
  

Unclear ethnicity (1,033) 

Missing clinical phenotypes: BMI, age, sex, 

(36) 

No blood sample collected or insufficient DNA 

for genotyping (5,374)  

                Individuals in each ethnicity               
                        European (9,395) 

                        South Asian (2,762) 
                        East Asian (225) 
                        African (1,249) 
                        Latino American (3,292) 
                        Native American (500)  

Genotype failure (call rates <97%) 
HWE tests within each ethnicity (p<1e-6) 
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Supplementary Figure 2. Power to detect a main effect of a SNP on BMI in EpiDREAM. 

  

 

The power was calculated using QUANTO software 
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Supplementary Table 1. Genotypes distributions of 23 BMI/obesity SNPs in each ethnicity in 

EpiDREAM study 

 

Ethnicity Genotype Counts 
Risk 

Allele 
Frequency 

Genotype 
Call Rate 
(%) 

HWE P-
Value 

rs1514176 in TNNI3K GG GA AA G   

European 1490 4149 2929 0.416 100 0.76 

South Asian 772 1288 538 0.545 100 1.00 

East Asian 110 66 35 0.678 100 6.30E-05 

African 504 498 124 0.669 100 0.95 

Latinos 839 1420 720 0.520 100 0.01 

Native American 136 220 87 0.555 100 1.00 

Total 3851 7641 4433 0.482 100 - 

rs6235 in PCSK1 CC CG GG C   

European 633 3283 4651 0.266 99.99 0.11 

South Asian 250 1034 1313 0.295 99.96 0.03 

East Asian 17 91 103 0.296 100 0.74 

African 26 297 803 0.155 100 0.91 

Latinos 134 963 1882 0.207 100 0.43 

Native American 22 163 258 0.234 100 0.69 

Total 1082 5831 9010 0.251 99.99 - 

rs6232 in PCSK1 GG GA AA G   

European 19 799 7750 0.049 100 0.82 

South Asian 15 287 2296 0.061 100 0.08 

East Asian 0 1 210 0.002 100 1.00 

African 0 18 1108 0.008 100 1.00 

Latinos 2 168 2809 0.029 100 1.00 

Native American 0 26 417 0.029 100 1.00 

Total 36 1299 14590 0.043 100 - 

rs2206734 in CDKAL1 TT TC CC C   

European 318 2779 5470 0.801 99.99 0.14 

South Asian 150 912 1536 0.767 100 0.35 

East Asian 28 86 97 0.664 100 0.22 

African 66 411 649 0.759 100 0.94 

Latinos 124 946 1909 0.800 100 0.61 

Native American 17 166 260 0.774 100 0.17 

Total 703 5300 9921 0.789 99.99 - 

rs2272903 in TFAP2B AA AG GG G   

European 109 1609 6850 0.893 100 0.19 

South Asian 125 887 1586 0.781 100 0.95 

East Asian 8 73 130 0.789 100 0.68 

African 109 438 579 0.709 100 0.05 

Latinos 67 716 2196 0.857 100 0.33 

Native American 4 88 351 0.892 100 0.81 
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Ethnicity Genotype Counts 
Risk 

Allele 
Frequency 

Genotype 
Call Rate 
(%) 

HWE P-
Value 

Total 422 3811 11692 0.854 100 - 

rs1211166 in NTRK2 GG GA AA A   

European 333 2634 5599 0.807 99.98 0.30 

South Asian 199 1045 1354 0.722 100 0.92 

East Asian 11 59 141 0.808 100 0.18 

African 122 496 507 0.671 99.91 1.00 

Latinos 135 921 1923 0.800 100 0.07 

Native American 10 99 334 0.866 100 0.41 

Total 810 5254 9858 0.784 99.98 - 

rs6265 in BDNF AA AG GG G   

European 322 2551 5695 0.814 100 0.09 

South Asian 136 895 1567 0.775 100 0.57 

East Asian 45 110 56 0.526 100 0.58 

African 4 68 1054 0.966 100 0.03 

Latinos 88 774 2117 0.841 100 0.10 

Native American 11 112 320 0.849 100 0.71 

Total 606 4510 10809 0.820 100 - 

rs1401635 in BDNF CC CG GG C   

European 747 3482 4338 0.290 99.99 0.20 

South Asian 400 1186 1011 0.382 99.96 0.10 

East Asian 4 26 181 0.081 100 0.03 

African 69 431 626 0.253 100 0.69 

Latinos 139 1008 1832 0.216 100 1.00 

Native American 23 152 268 0.224 100 0.79 

Total 1382 6285 8256 0.284 99.99 - 

rs997295 in MAP2K5 GG GT TT T   

European 1457 4128 2983 0.589 100 0.66 

South Asian 779 1260 559 0.458 100 0.25 

East Asian 139 61 11 0.197 100 0.20 

African 235 554 337 0.545 100 0.81 

Latinos 919 1421 638 0.453 99.97 0.05 

Native American 151 194 98 0.440 100 0.02 

Total 3680 7618 4626 0.530 99.99 - 

rs7203521 in FTO GG GA AA A   

European 1328 4022 3218 0.610 100 0.23 

South Asian 855 1257 485 0.429 99.96 0.55 

East Asian 115 82 14 0.261 100 1.00 

African 158 511 457 0.633 100 0.44 

Latinos 874 1400 704 0.472 99.97 2.0×10-3 

Native American 179 181 82 0.390 99.77 4.0×10-3 

Total 3509 7453 4960 0.546 99.98 - 

rs9939609 in FTO AA AT TT A   

European 1539 4074 2955 0.417 100 0.04 
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Ethnicity Genotype Counts 
Risk 

Allele 
Frequency 

Genotype 
Call Rate 
(%) 

HWE P-
Value 

South Asian 303 1104 1191 0.329 100 0.06 

East Asian 5 65 141 0.178 100 0.64 

African 262 576 288 0.489 100 0.44 

Latinos 360 1281 1338 0.336 100 0.05 

Native American 30 149 264 0.236 100 0.19 

Total 2499 7249 6177 0.3845 100 - 

rs1805081 in NPC1 GG GA AA A   

European 1317 4028 3223 0.611 100 0.32 

South Asian 142 927 1529 0.767 100 0.91 

East Asian 14 75 122 0.756 100 0.58 

African 6 146 974 0.930 100 0.82 

Latinos 305 1236 1438 0.690 100 0.10 

Native American 41 200 202 0.682 100 0.44 

Total 1825 6612 7488 0.678 100 - 
rs2075650 in TOMM40-

APOE-APOC1 GG GA AA A   

European 168 2060 6340 0.860 100 0.96 

South Asian 48 587 1963 0.869 100 0.61 

East Asian 5 44 162 0.872 100 0.35 

African 11 239 876 0.884 100 0.31 

Latinos 43 591 2345 0.886 100 0.41 

Native American 3 83 357 0.900 100 0.60 

Total 278 3604 12043 0.869 100 - 

rs11671664 in GIPR AA AG GG G   

European 113 1607 6845 0.893 99.97 0.10 

South Asian 30 505 2063 0.891 100 1.00 

East Asian 36 86 89 0.626 100 0.06 

African 14 234 878 0.884 100 0.89 

Latinos 25 492 2461 0.909 99.97 0.91 

Native American 3 92 348 0.889 100 0.34 

Total 221 3016 12684 0.891 99.97 - 

rs2984618 in TAL1 TT TG GG T   

European 1385 4062 3121 0.477 99.99 0.30 

South Asian 530 1235 833 0.487 100 0.07 

East Asian 2 18 191 0.412 100 0.10 

African 78 426 622 0.462 100 0.70 

Latinos 698 1369 912 0.476 100 3.16E-5 

Native American 109 211 123 0.489 100 0.34 

Total 2802 7321 5802 0.490 99.99 - 

rs1011527 in LEPR AA AG GG A   

European 52 1160 7354 0.096 99.98 0.38 

South Asian 234 1080 1284 0.136 99.97 0.74 

East Asian 1 38 172 0.121 100 0.70 

African 24 270 832 0.108 100 0.71 
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Ethnicity Genotype Counts 
Risk 

Allele 
Frequency 

Genotype 
Call Rate 
(%) 

HWE P-
Value 

Latinos 11 391 2576 0.127 100 0.40 

Native American 2 44 397 0.141 100 0.37 

Total 324 2983 12615 0.111 99.98 - 

rs7605927 in POMC GG GC CC G   

European 525 3082 4959 0.298 99.94 0.12 

South Asian 547 1296 744 0.370 99.78 0.72 

East Asian 36 108 67 0.301 100 0.57 

African 242 523 361 0.316 99.91 0.05 

Latinos 461 1359 1153 0.372 99.72 0.07 

Native American 67 190 186 0.326 100 0.12 

Total 1878 6558 7470 0.326 99.87 - 

rs611203 in USP37 GG GA AA G   

European 1468 4109 2991 0.397 99.98 0.38 

South Asian 279 1052 1266 0.390 100 0.01 

East Asian 8 63 140 0.372 100 0.82 

African 160 556 410 0.393 100 0.21 

Latinos 511 1477 991 0.380 100 0.35 

Native American 53 198 192 0.382 100 0.83 

Total 2479 7455 5990 0.391 99.87 - 

rs2535633 in ITIH4 GG GC CC G   

European 1422 4127 3016 0.446 99.97 0.88 

South Asian 428 1210 960 0.443 100 0.16 

East Asian 26 100 85 0.438 100 0.77 

African 112 483 531 0.426 100 0.89 

Latinos 697 1469 812 0.449 100 0.51 

Native American 113 215 115 0.442 100 0.57 

Total 2798 7604 5519 0.444 99.98 - 

rs3824755 in NT5C2 CC CG GG C   

European 94 1526 6948 0.128 100 0.31 

South Asian 164 901 1533 0.179 100 0.04 

East Asian 13 92 106 0.126 100 0.31 

African 42 354 730 0.137 100 1.00 

Latinos 89 825 2065 0.168 100 0.55 

Native American 8 108 327 0.140 100 1.00 

Total 410 3806 11709 0.145 100 - 

rs7903146 in TCF7L2 TT TC CC C   

European 886 3574 4108 0.697 100 0.01 

South Asian 258 1116 1224 0.705 100 0.89 

East Asian 1 21 189 0.711 100 0.47 

African 100 476 550 0.708 100 0.89 

Latinos 245 1187 1547 0.706 100 0.42 

Native American 10 131 302 0.707 100 0.40 

Total 1500 6505 7920 0.701 100 - 

rs671 in ALDH2 AA AG GG G   
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Ethnicity Genotype Counts 
Risk 

Allele 
Frequency 

Genotype 
Call Rate 
(%) 

HWE P-
Value 

European 0 1 8567 0.998 100 1.00 

South Asian 0 1 2597 0.997 100 1.00 

East Asian 12 47 152 0.830 100 0.01 

African 0 3 1123 0.997 100 1.00 

Latinos 0 1 2978 0.997 100 1.00 

Native American 0 0 443 0.999 100 1.00 

Total 12 53 15860 0.998 100 - 

rs749767 in KAT8 GG GA AA A   

European 1321 4102 3145 0.632 99.99 0.80 

South Asian 48 587 1961 0.653 99.96 0.61 

East Asian 10 56 145 0.611 100 0.16 

African 104 453 569 0.619 100 0.32 

Latinos 642 1412 924 0.634 99.97 0.02 

Native American 95 213 135 0.649 100 0.57 

Total 2220 6823 6879 0.635 99.98 - 
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  Supplementary Table 2. Literature resources of the 23 SNPs selected in EpiDREAM 

SNP Gene Proxy 

Chromosome 

position        

(GRCh37/hg19) 

Risk Allele Traits  References 

rs1514175 TNNI3K rs1514176 chr1:74991596 G BMI/obesity Speliotes, Nat Genet,2010 

rs6235 PCSK1 
 

chr5:95729398 G obesity Benzinou, Nat Genet, 2008 

rs6232 PCSK1 
 

chr5:95752285 G obesity Benzinou, Nat Genet, 2008 

rs2206734 CDKAL1 
 

chr6:20695384 C BMI Wen, Nat Genet,2012; Okada, Nat Genet,2012 

rs2272903 TFAP2K5 
 

chr6:50787071 G BMI Guo, Hum Mol Genet,2013 

rs1211166 NTRK2 
 

chr9:87286492 A BMI Guo, Hum Mol Genet,2013 

rs6265 BDNF 
 

chr11:27680416 G BMI Thorleifsson, Nat Genet, 2009 

rs1401635 BDNF 
 

chr11:27694491 C BMI/obesity 
Thorleifsson, Nat Genet, 2009; Jiao, BMC Med 

Genet,2011 

rs997295 MAP2K5 
 

chr15:68016843 T BMI Guo, Hum Mol Genet,2013 

rs7203521 FTO 
 

chr16:53769793 A BMI Thorleifsson, Nat Genet, 2009 

rs9939609 FTO 
 

chr16:53821027 A BMI/obesity Fraying, Science,2007; Dina, Nat Genet, 2007 

rs1805081 NPC1 
 

chr18:21140932 A obesity Meyre, Nat Genet, 2009 

rs2075650 
TOMM40-APOE-
APOC1  

chr19:45396119 A BMI Guo, Hum Mol Genet,2013 

rs11671664 GIPR 
 

chr19:46172278 G BMI Okada, Nat Genet,2012 

rs977747 TAL1 rs2984618 chr1:47690438 T BMI Locke, Nat Genet, 2015 

rs11208659 LEPR rs1011527 chr1:65988093 A obesity Wheeler, Nat Genet, 2013 

rs1561288 POMC rs7605927 chr2:25375905 G BMI Graff, Hum Mol Genet, 2013 

rs492400 USP37 rs611203 chr2:219472325 G BMI Locke, Nat Genet, 2015 

rs2535633 ITIH4 
 

chr3:52859630 G BMI Wen, Hum Mol Genet, 2014 

rs11191560 NT5C2 rs3824755 chr10:104595849 C BMI Wen, Hum Mol Genet, 2014 

rs7903146 TCF7L2 
 

chr10:114758349 C BMI Locke, Nat Genet, 2015 

rs671 ALDH 
 

chr12:112241766 G BMI Wen, Hum Mol Genet, 2014 

rs9925964 KAT8 rs749767 chr16:31124407 A BMI Locke, Nat Genet, 2015 
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Supplementary Table 3. Assessment of frequencies of risk alleles in other ethnic groups compared to 

those in European 

 

  
South 

Asian 
East Asian African Latinos 

Native 

American 

Increased 12 8 10 11 12 

Decreased 11 15 13 12 11 

P value* 1 0.21 0.678 1 1 

 

* P values of two-sided binominal tests. Null hypothesis of binominal tests was that 50% of risk 

allele would have increased/decreased frequencies compared to those in European.   
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ABSTRACT 

The effect of recently identified single nucleotide polymorphisms (SNPs) associated with adult 

body mass index (BMI) on excess body weight in early life is unclear. This study aimed to 

investigate the parental and child contribution of 83 SNPs to obesity-related traits in children 

from birth to 5 years old in the FAMILY cohort. A total of 1,402 individuals (541 children, 541 

mothers, and 320 fathers) were genotyped for 83 SNPs associated with adult BMI. An 

unweighted genetic risk score (GRS) was generated by the sum of BMI-increasing alleles. 

Repeated weight and length/height were measured at birth, 1, 2, 3, and 5 years of age, and age-, 

sex-specific weight and BMI Z-scores were computed. Multiple linear and mixed-effects 

regression models were used in genetic association tests, adjusting for relevant covariates 

(maternal pre-pregnancy BMI, gestational weight gain, parity, gestational diabetes, smoking 

status and ethnicity). Cross-sectional analyses showed that the GRS was significantly associated 
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with birth weight Z-score (β±SE, 0.019±0.009/allele; P=0.026). It was also associated with 

weight and BMI gain Z-score between birth and 2 years old and between birth and 5 years old. In 

longitudinal analyses, the GRS was associated with weight and BMI Z-score from birth to 5 

years (β±SE, 0.019±0.007/allele; P=0.01 and 0.017±0.007/allele; P=0.011, respectively). The 

maternal effect of rs3736485 in DMXL2 on offspring weight and BMI Z-score from birth to 5 

years was significantly greater compared to paternal effect (Z-test P=1.20×10
-6 

and P=1.55×10
-5

, 

respectively). Therefore, SNPs contributing to adult BMI start to exert their effect at birth and in 

early childhood. Parent of origin effects may occur in a limited subset of obesity predisposing 

SNPs. 
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INTRODUCTION 

The prevalence of overweight and obesity among children aged 5 to 17 years in Canada 

was 31% in 2012-2013.
1
 Childhood obesity has been linked to early puberty, type 1 and type 2 

diabetes, hypertension, poor mental and physical health during childhood, as well as adult 

obesity and its associated comorbidities.
2
 The total health costs were 21% higher in children with 

obesity compared to their normal weight counterparts in Canada.
3
 Therefore, it is urgent to 

understand the determinants of obesity in early life in order to manage the burden of childhood 

obesity and prevent adult obesity more efficiently.  

The risk factors for childhood obesity are multifactorial, including environmental, 

behavioral and genetic components and their interactions.
2
 Temporal effects also influence 

susceptibility to the development of obesity, the critical windows being defined as gestation, 

early infancy, adiposity rebound (5-7 years old) and adolescence.
4
 Parental BMI, socioeconomic 

status, mother’s gestational weight gain, gestational smoking status, and child’s birth weight, 

weight gain during infancy and infant nutrition are all significant predictors of 

childhood/adolescent obesity.
2, 5

 Rare deleterious mutations and chromosome deletions lead to 

monogenic and early-onset obesity in childhood.
6
 Meanwhile, the total number of common 

genetic variants, single nucleotide polymorphisms (SNPs), associated with adult BMI at genome-

wide significance level (P<5×10
-8

) has recently increased to 116.
7
 Evidence from cross-sectional 

studies and longitudinal birth cohorts indicates that some of the adult BMI loci affect BMI in 

childhood and adolescent.
8-13

 Recent meta-analyses of genome-wide association studies (GWAS) 

not only corroborated the effects of some genetic loci underlying adult BMI in European 

children, adolescents and young adults, but also identified four novel loci (FAM120AOS, ELP3, 

RAB27B and ADAM23) for childhood BMI.
14-16

 Furthermore, the effects of BMI SNPs/genetic 

risk score on the variation of birth weight and weight gain during early childhood were not 
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certain.
8, 9, 17

 Taken together, these studies greatly improved our knowledge of genetic 

contribution to childhood obesity; there are limitations to this evidence. First, many recently 

identified adult BMI risk variants have not been investigated in children (previous studies 

examined at most 32 SNPs identified until 2010). Second, several important maternal variables 

during pregnancy such as maternal prepregnancy BMI, gestational age, gestational weight gain, 

gestational diabetes, parity, and smoking status were not accounted for when examining the 

association between genetic risk score and birth weight. Third, the effects of maternal and 

paternal genotypes on childhood adiposity have not been thoroughly investigated.
18, 19

 

In response, we aimed to investigate the effects of genetic risk score (GRS) combing 83 

SNPs robustly associated adult BMI on birth weight, weight/BMI gain and growth trajectory 

from birth to 5 years of age in children using the longitudinal FAMILY birth cohort. We also 

hypothesized that parental risk alleles in specific genes contributed to child’s weight and BMI in 

early life. Whether the extent of association of parental risk alleles on child weight and BMI 

variation depends on the transmission from the mother or the father was explored by comparing 

the effects of each SNP between the parents.     

 

PARTICIPANTS AND METHODS  

Participants 

The Family Atherosclerosis Monitoring In earLY life (FAMILY) study was designed to 

longitudinally examine the fetal and early childhood determinants for the development of 

adiposity, cardiovascular diseases and atherosclerosis in childhood and has been described in 

detail previously.
20

 Briefly, 857 families including 901 newborns, 857 mothers and 530 fathers 

were enrolled from three hospitals in the great Hamilton region (Ontario, Canada) from 2004 to 
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2009 and were followed for up to 5 years, with a planned follow-up for 10 years or more. We 

selected only singletons into our study because multiple births (n=85) have a strong impact on 

birth weight and postnatal growth velocity. Informed consent was obtained from all the adult 

participants, and the parents provided consent for their children. All experiments were performed 

in accordance with relevant guidelines and regulations. The research ethics boards at Hamilton 

Health Sciences and St Joseph’s Health Center in Hamilton, and Joseph Brant Memorial Hospital 

in Burlington, Ontario, Canada approved the FAMILY study.   

 

Genotyping   

Genomic DNA of all the participants was extracted from buffy coats and genotyping was 

conducted using the Illumina Cardio-Metabochip (San Diego, CA, USA). Eighty-three selected 

SNPs met two criteria of having genome-wide significant associations with adult BMI (P<5×10
-

8
) and being available on the Cardio-Metabochip array (lead SNP or proxy) (Table S1). Five 

proxy SNPs were identified using the 1000 Genomes data of European population via the Broad 

Institute website tool SNAP (SNP Annotation and Proxy Search) (Table S1). To ensure all 83 

SNPs were independent from each other, pairwise linkage disequilibrium in European population 

were examined using the 1000 Genomes Project data and all the pairwise r
2
 were less than 0.1. 

Standard procedures were conducted to assess the quality of genotyping. All 83 SNPs had call 

rates ranging from 95.7-100% and met with Hardy Weinberg Equilibrium (P>0.001). 

Genotyping data also found that 26 individuals had SNP missingness rates >10%, 16 individuals 

were from 5 families having non-biological fathers, and 11 individuals had sex-discordance 

between reported and SNP-identified sex; all of these were excluded from the analysis. Six pairs 

of individuals had cryptic relatedness (2
nd

 degree relatives) and one of each pair was randomly 
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selected for analysis. The ethnicity reported by participants was verified by principal component 

analysis (PCA) using EIGENSTRAT and the first 10 components were used to adjust for 

population stratification. A majority of the FAMILY participants were white Caucasians (92.8% 

mothers, 89.3% fathers and 91.1% children).  

  

Phenotypes 

Child weight and length/height were measured at birth, 1, 2, 3 and 5 years of age by 

trained staff with standard measure scales and the age at measurement were recorded. Maternal 

age, height, self-reported prepregnancy weight, gestational weight gain, parity, gestational 

diabetes and gestational age at birth were obtained either from the mothers at the baseline visit or 

from the medical chart review. BMI was calculated as weight in kilograms divided by 

length/height in meters squared. Individual weight, length/height and BMI in children were 

converted to age- and sex-specific Z-scores using World Health Organization growth reference 

(2006) (http://www.who.int/childgrowth/standards/en/). Child weight/BMI gain in Z-scores at 1, 

2, 3 and 5 years were assessed as the differences between weight/BMI Z-score at 1, 2, 3 and 5 

years of age and weight/BMI Z-score at birth. Maternal gestational weight gain was assessed as 

the difference between the last measured weight prior to delivery and self-reported weight before 

pregnancy. Gestational diabetes mellitus, defined as “any degree of glucose intolerance with 

onset or first recognition during pregnancy”, was diagnosed according to the International 

Association of Diabetes and Pregnancy Study Groups (IADPSG) criteria using a 75 g oral 

glucose tolerance test (OGTT).
21

 Children whose birth weight was less than 1 kg and greater than 

7 kg were excluded. In total, 1,402 individuals were included in data analyses (541 unrelated 

children, 541 mothers and 320 fathers) (See flow chart in Figure S1). The numbers of missing 
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values for each of the exposures and outcomes are different and the numbers for the available 

data on each exposure and outcome for this study are presented in Table 1. For each association 

test, maximal data available were included and the numbers included in each analysis are 

reported in the tables.  

 

Statistical analysis 

We chose the risk alleles for each of the 83 SNPs as previously reported in the literature 

(Table S1). An additive mode of inheritance was applied to each SNP to code three genotypes as 

0, 1 and 2 designating the number of the BMI increasing allele. A GRS was calculated by adding 

up the risk alleles of 83 SNPs and therefore the theoretical scores ranged from 0 to 166. We used 

an unweighted GRS as recommended by Dudbridge.
22

 The values for the missing genotypes 

were imputed with arithmetic average of the coded genotypes from individuals who were 

successfully genotyped.  

The effects of GRS on cross-sectional associations with weight or BMI Z-score at birth, 

1, 2, 3 and 5 years of age were tested using multiple linear regression models. Each model was 

adjusted for relevant covariates including maternal prepregnancy BMI and the first 10 PCA 

components for ethnicity, and the associations between the GRS and birth weight/BMI Z-score 

were adjusted for additional covariates to eliminate the intrauterine effect including gestational 

age, gestational weight gain, parity, gestational diabetes and maternal smoking status. The GRS 

was also tested for associations with weight gain and BMI gain Z-score during the first five 

years. Linear mixed-effects models were used to investigate the effect of the GRS on the overall 

change of weight and BMI Z-score during 0-5 years. This approach was selected since it takes 

the correlations between repeated measures on the same individual into account and allows for 
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missing measurement data and measurement at different time points, assuming the missing 

events are random.
23

 The weight and BMI Z-score at birth of each individual (intercept) and 

correlation among measurements on the same subject (slope of age) were modeled as random 

effects, and time (in years), GRS, maternal prepregnancy BMI and ethnicity were modeled as 

fixed effects. Interaction term, GRS×time, which tests if the effects of the GRS on weight and 

BMI Z-score change over time were also initially added to the linear mixed-effects regression 

model. Due to its non-significance, this term was removed from the final analysis to produce the 

most parsimonious model.  

If the effects of genetic variants on phenotypic variation depend upon the parent from 

whom the variant is inherited, parent-of-origin effects occur.
24

 Imprinting is considered as the 

underlying mechanism of parent-of-origin effects and it has been confirmed in less than 1% of 

human genes.
25

 As a result, the GRS as an overall measurement of all BMI-associated SNPs was 

not expected to have a parent-of-origin effect and we therefore performed an exploratory 

analysis of the parent-of-origin effect on each SNP in addition to the GRS. To assess the effects 

of maternal/paternal SNPs on the child weight and BMI Z-score patterns, linear mixed-effects 

regression was also performed by using the maternal/paternal SNP and child’s SNP and ethnicity 

as fixed effects and the weight/BMI Z-score at birth of each individual (intercept) and correlation 

among measurements on the same subject (slope of age) as random effects. Existence of a 

parent-origin-effect on a specific SNP was tested by a Z-test which compared the effect sizes 

between maternal and paternal genetic variants. Considering the low statistical power of this 

exploratory test, we did a sensitive analysis in which only families with complete data from 

mother, father and child were included. This approach would substantially reduce the bias.    
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Bonferroni corrected P-values are routinely applied to exploratory genetic association 

studies. However, they are overly conservative given the high prior likelihood of association in 

post-GWAS experiments. Previous studies reported the associations between GWAS BMI 

genetic variants and weight and BMI during childhood without applying a Bonferroni correction. 

8, 9, 12, 17
 Therefore, a two-tailed α-level of 0.05 was considered significant for the analyses of 

associations between GRS and child obesity-related traits. A P-value less than the threshold 

corrected for Bonferroni procedures was considered statistically significant (P<1.5×10
-

4
=0.05/(4*84)) when exploratory analyses of parent-origin effects were applied. All the statistical 

analyses were performed using PLINK (version 1.07) and R (version 2.15.2).
26, 27

 

 

RESULTS 

 

Participant characteristics 

 

The characteristics of children included in the analysis are shown in Table 1. Among the 

816 singletons, genotyping data were available in 541 children. The average of birth weight in 

the analyzed individuals was 3.4 kg (SD=0.5). The mean of BMI at birth was 13.5±1.3 kg/m
2
. 

The average gestational age at birth in included children was 39.4±1.5 weeks.  

 

Associations of the child GRS with weight from birth to 5 years of age 

 

The GRS based on 83 adult BMI-associated SNPs ranged from 59 to 94 (Mean±SD, 

78.66±5.74) and it demonstrated a normal distribution. Cross-sectional analyses indicated that 

the GRS was associated with higher birth weight Z-score (β±SE: 0.019±0.009/allele; P=0.026), 

but not associated with weight at 1 year. The GRS was also associated with higher weight Z-

score at 2, 3 and 5 years of age (0.019≤β≤0.026, 0.005≤P≤0.022) (Figure 1A). The GRS was not 
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associated with weight gain Z-score between birth and 1 year and between birth and 3 years. In 

contrast, it was associated with weight gain Z-score between birth and 2 years (β±SE: 

0.016±0.007/allele; P=0.035) and between birth and 5 years (β±SE: 0.021±0.009/allele; P=0.020) 

(Table 2). Using longitudinal analysis there was an association of the GRS with weight Z-score 

from birth to 5 years of age (β±SE: 0.019±0.007/allele; P=0.010) (Table 3).  

    

Associations of the child GRS with BMI from birth to 5 years of age   

Cross-sectional analyses showed that the GRS was not associated with birth BMI Z-score 

(β±SE: 0.015±0.010/allele; P=0.123). Similar to weight Z-score, there was no association 

between the GRS and BMI at 1 year, but associations of the GRS with BMI at 2, 3 and 5 years 

were observed (0.018≤β≤0.028, 0.004≤P≤0.040) (Figure 1B). The GRS was not associated with 

BMI gain Z-score between birth and 1 year and between birth and 3 years. It was associated with 

BMI gain Z-score between birth and 2 years (β±SE: 0.017±0.008/allele; P=0.03) and birth and 5 

years old (β±SE: 0.025±0.009/allele; P=0.007) (Table 2). An association between the GRS and 

BMI Z-score from birth to 5 years of age (β±SE: 0.017±0.007/allele; P=0.011) was identified in 

the longitudinal analysis (Table 3).  

 

Associations of the parental SNPs/GRS with weight variation from birth to 5 years of age 

After controlling for the contribution of child corresponding SNPs, the longitudinal 

analyses showed that only maternal risk allele for rs3736485 in DMXL2 was significantly 

positively associated with weight Z-score (β±SE: 0.252±0.063/allele, P=6.16×10
-5

), whereas 

paternal risk alleles for rs3736485 was nominally negatively associated with weight Z-score 

(β±SE: -0.285±0.095/allele, P=2.66×10
-3

)
 
from birth to 5 years of age. The difference in the 

effects of rs3736485 between mothers and fathers were statistically significant (P=1.20×10
-6

) 
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after Bonferroni correction, indicating a parent-of-origin effect (Table 4). The GRS had no 

parent-of-origin effect on childhood weight from birth to 5 years of age (P=0.107). The 

sensitivity analysis with complete family data showed that the parent-of-origin effect was 

stronger (P=9.01×10
-8

) (Table 4). 

 

Associations of the parental SNPs/GRS with BMI variation from birth to 5 years of age 

After controlling for the contribution of child corresponding SNPs, the longitudinal 

analyses showed that maternal risk allele for rs3736485 was nominally positively associated with 

BMI Z-score (β±SE: 0.212±0.059/allele, P=3.07×10
-4

), whereas paternal risk alleles for 

rs3736485 was nominally negatively associated with BMI Z-score (β±SE: -0.221±0.086/allele, 

P=9.97×10
-3

)
 
from birth to 5 years of age. The maternal association of rs3736485 with increased 

child BMI Z-score was the only one to be statistically significant after Bonferroni correction 

compared to the paternal effect (P=1.55×10
-5

), indicating a parent-of-origin effect of rs3736485 

(DMXL2) in the development of childhood obesity (Table 4). The GRS had no parent-of-origin 

effect on childhood BMI Z-score from birth to 5 years of age (P=0.216). The sensitivity analysis 

showed that the parent-of-origin effect became stronger (P=8.66×10
-7

) with complete family data 

(Table 4). 

 

DISCUSSION 

In the present study, we demonstrate that the GRS based on 83 adult BMI GWAS SNPs 

is associated with birth weight. This finding suggests that SNPs previously associated with adult 

BMI start to have an effect on body composition during fetal growth. These data may support, to 

some extent, the link between high birth weight and subsequent increased risk of obesity.
28

 It is 
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important to note that this relationship was observed after adjustment for newborn sex, age at 

measurement, gestational age at birth, ethnicity, mother’s prepregnancy BMI, gestational weight 

gain, parity, gestational diabetes, and smoking status. This result aligns with observations by 

Elks et al. of a borderline association (P=0.05) between a genetic risk score of 11 BMI variants 

and birth weight using the 1946 British birth cohort (N=2,537).
12

 Whereas alterations in the 

intrauterine environment play important roles in birth weight, 10-40% of the variation in birth 

weight may be explained by inherited factors.
29, 30

 Other studies that did not detect an association 

between BMI genetic variants and birth weight may be due to a small subset of adult BMI SNPs 

being examined and not accounting for some critical confounding factors.
8, 9, 17, 31

 GWAS for 

birth weight have demonstrated that other genetic variants, other than BMI loci, influence fetal 

growth.
32, 33

 The GRS examined in our study covered more of the currently identified BMI adult 

variants (N=83 SNPs) compared to previous studies (N≤32 SNPs).  

The findings of the associations between the GRS and weight and BMI at 2, 3, and 5 

years in cross-sectional analyses are consistent with the results of several other studies.
8-10, 12, 13, 

17
 The increasing trend of the effects on BMI (Figure 1) also supports the increasing heritability 

of BMI over childhood.
34

 Epidemiologic studies have shown that rapid early weight gain predicts 

later obesity and metabolic diseases.
35, 36

 Rapid weight gain may occur at any stage, but the 

greatest variation is commonly seen in the first 1-2 years of life.
35

 This may be related to 

influences from the intrauterine environment and then children return to their genetic trajectory 

around two years old.
35

 In our study, the GRS was associated with both weight and BMI gain 

between birth and 2 and 5 years, which has been shown in other studies even in infancy as early 

as 6 weeks and 3 years after birth.
8, 9
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Obesity typically develops over a long period of time. Using longitudinal analyses of repeated 

measurements of weight and height may identify some specific developmental windows during 

which the GRS shows stronger associations with child growth. Such questions cannot be 

answered from cross-sectional analyses. In our study, longitudinal analysis of five measurements 

from birth to 5 years showed that children at higher genetic risk had higher overall BMI. This is 

in line with three independent longitudinal studies. Elks et al. found that the GRS of 8 or 11 adult 

BMI loci was positively associated with weight and BMI from birth to 11years in two cohorts.
8, 

12
 Belsky et al. reported that the GRS derived from 32 BMI loci predicted higher BMI across 

childhood (ages 3 through 13 years) and adulthood (ages 13 through 38 years).
9
  

GWAS assumes that the maternal and paternal alleles have equal effect on the phenotype 

variation. But in some circumstances the phenotypic variation caused by genetic variants may 

depend on parental origin. It has been observed that the parental-of-origin effects are involved in 

fetal and placental growth and function and have also been reported to be associated with the 

development of obesity.
18, 37

 Recently Hoggart et al. developed a novel method and detected two 

paternal risk alleles in SLC2A10 and KCNK9 that increased BMI compared to the respective 

maternal alleles using genome-wide genotype data of unrelated individual.
18

 In our study, the 

parent-of-origin effect of rs3736485 in DMXL2 on BMI remained significant after Bonferroni 

correction. Maternal rs3736485 risk allele increased BMI whereas the same allele was protective 

when inherited from father, as previously observed for SNPs having strong parent-of-origin 

effects with type 2 diabetes.
38

 Dmx-like 2 or Rabconnectin-3, encoded by DMXL2, is involved in 

regulation of the Notch signaling pathway.
39

 Recently, an in vivo study reported that the Notch 

pathway inhibited brown adipocytes in white adipose tissue and therefore decreased energy 

expenditure and deteriorated obesity.
40

 There is no evidence showing that the variant in DMXL2 
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activates the Notch signaling pathway and promotes obesity. DMXL2 is located on chromosome 

15q21.2, not close to any known imprinted genes (http://www.geneimprint.com/). There has 

been no report of DMXL2 on imprinting and epigenetic modification, therefore, this parent-of-

origin effect warrants further replication in an independent study.  

Our study had several strengths. First, our longitudinal birth cohort, with weight and BMI 

at birth, 1, 2, 3, and 5 years of age and critical confounding factors influencing intrauterine 

environment, enabled us to more accurately investigate the effect of GRS on the weight and BMI 

at birth and in early childhood.
23

 Second, the GRS derived from an updated list of 83 SNPs 

provide the most current state of evidence (until February 2015). Third, a family-based design 

with genotypes from both parents and child which are not available in most birth cohort studies 

permitted us to investigate the potential parent-of-origin effects of genetic variants on weight and 

BMI in early childhood. This study also had some limitations. First, although the longitudinal 

nature of our data increased the statistical power, our study had a relatively modest sample size, 

which increased the chance of random sampling error and false positive associations. Thus, the 

parent-of-origin effect of rs3736485 in DMXL2 needs to be replicated in a large family-based 

birth cohort. Second, we do not have sufficient power to study the impact of individual SNPs on 

BMI early in life as done by others.
11

  Third, we had fewer fathers than mothers having genotype 

data, which may bias the analysis of parent-of-origin effects.  

In summary, we provide evidence that the GRS derived from 83 adult BMI SNPs is 

associated with weight at birth. The GRS also predicts the overall weight and BMI from birth 

and 5 years of age, suggesting adult BMI SNPs start to exert effect in early childhood. Parent-of-

origin effects may occur in a limited subset of obesity predisposing SNPs, providing new 

insights of the mechanisms underlying the childhood obesity.   

http://www.geneimprint.com/
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Table 1. Characteristics of participants in FAMILY study. 

 Measurements 

  
Boys (n=273) Girls (n=268) Total (n=541) 

n Mean SD n Mean SD n Mean SD 

Weight (kg) 

Birth 247 3.5 0.5 251 3.3 0.5 498 3.4 0.5 

1 y 250 10.5 1.3 238 9.8 1.2 488 10.2 1.3 

2 y 239 13.1 1.5 234 12.5 1.5 473 12.8 1.5 

3 y 220 15.2 1.7 222 14.7 1.8 442 15.0 1.8 

5 y 179 19.6 2.6 184 19.5 3.0 363 19.6 2.8 

Length/Height (cm) 

Birth 266 50.7 2.3 259 49.8 2.2 525 50.3 2.3 

1 y 246 77.0 3.3 237 74.9 3.0 483 76.0 3.3 

2 y 235 88.8 3.5 233 87.5 3.4 468 88.2 3.5 

3 y 216 96.6 4.0 221 95.3 3.7 437 95.9 3.9 

5 y 179 111.1 5.3 184 110.1 4.5 363 110.6 4.9 

BMI (kg/m
2
) 

 
Birth 244 13.5 1.3 245 13.4 1.4 489 13.5 1.3 

1 y 246 17.7 1.4 237 17.4 1.4 483 17.5 1.4 

2 y 235 16.5 1.2 231 16.3 1.3 466 16.4 1.3 

3 y 216 16.3 1.2 221 16.2 1.3 437 16.2 1.2 

5 y 179 15.8 1.3 184 16.1 1.9 363 15.9 1.6 

Gestational age at birth (week) 

 

273 39.4 1.5 268 39.4 1.5 541 39.4 1.5 

Maternal gestational weight gain (kg) 

 
195 15.1 5.0 207 15.3 5.7 402 15.2 5.3 

Mother prepregnancy BMI (kg/m
2
) 

       
 

196 26.4 6.6 216 26.9 6.8 412 26.7 6.7 

Father BMI (kg/m
2
) 

          114 28.0 5.1 126 28.9 4.8 240 28.5 4.9 
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Table 2. Cross-sectional associations between the GRS and weight and BMI gain Z-score at different ages. 

Trait 
0-1 year   0-2 year   0-3 year    0-5 year 

N β (SE) P   N β (SE) P   N β (SE) P   N β (SE) P 

Weight 445 0.014 (0.007) 0.059 
 

431 0.016 (0.007) 0.035 
 

402 0.013 (0.007) 0.068 
 

332 0.021 (0.009) 0.020 

BMI 434 0.006 (0.007) 0.411   417 0.017 (0.008) 0.03   391 0.013 (0.007) 0.071   326 0.025 (0.009) 0.007 

 

The associations between the GRS and weight/BMI Z-score change were adjusted for age interval between measurements, birth 

weight/birth BMI Z-score and ethnicity.  
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Table 3. Longitudinal linear mixed modeling of the associations between the GRS and overall 

changes in weight and BMI Z-score from birth to 5 years of age. 

 

Trait N β±SE P 

Weight 411 (1757*) 0.019 ± 0.007 0.010 

BMI 410 (1733*) 0.017 ± 0.007 0.011 

 

* The numbers indicated the total number of measurements in the longitudinal data. 

In the linear mixed-effects models, the weight and BMI Z-scores at birth of each individual 

(intercept) and correlation among measurements on the same subject (slope of age) were 

modeled as random effects, and GRS, ethnicity and mother’s prepregnancy BMI were modeled 

as fixed effects.   
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Table 4. Parent-of-origin effects of rs3736485 in DMXL2 on childhood obesity traits (overall effects from birth to 5 years of age). 

Obesity 

traits 

Maternal    Paternal    
Z-test P value 

N β±SE P value 

 

N β±SE P value 

Weight 411 (1752*) 0.252±0.063 6.16×10
-5

 
 

216 (947*) -0.285±0.095 2.66×10
-3

 
 

1.20×10
-6

 

BMI 410 (1733*) 0.212±0.059 3.07×10
-4

   216 (937*) -0.221±0.086 9.97×10
-3

   1.55×10
-5

 

Sensitive analysis 

Weight 216 (947*) 0.393±0.089 9.51×10
-6

 
 

216 (947*) -0.285±0.095 2.66×10
-3

 
 

9.01×10
-8

 

BMI 216 (937*) 0.340±0.080 2.13×10
-5

   216 (937*) -0.221±0.086 9.97×10
-3

   8.86×10
-7

 

 

* The total number of measurements in the longitudinal analyses. 

Linear mixed-effects regression was performed to assess the overall effects of maternal/paternal SNPs on the child’s weight and BMI 

Z-score from birth to 5 years old, by using the maternal/paternal genetic variants and child’s genotypes and ethnicity as fixed effects 

and the weight and BMI Z-score at birth of each individual (intercept) and correlation among measurements on the same subject 

(slope of age) as random effects. The comparison of the effect sizes between maternal and paternal genetic variants was tested using 

Z-test.  
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Figure 1. Longitudinal associations between the genetic risk score (GRS) and (A) weight Z-

score and (B) BMI Z-score from birth to 5 years old. Regression coefficients ±95% CI are shown 

from multiple linear regression models. Birth weight Z-score and birth BMI Z-score were 

adjusted for child ethnicity, gestational age at birth, maternal prepregnancy BMI, gestational 

weight gain, parity, gestational diabetes, and smoking status. Weight and BMI Z-score at other 

ages were adjusted for child ethnicity and maternal prepregnancy BMI.  
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Supplementary Table 1. Characteristics of the 83 SNPs associated with adult BMI variation. 

Nearest Gene SNP Proxy Chr  
Effect/Other 

Allele 

Risk Allele 

Frequency*  

Call 

Rate 
Genotype 

HWE 

test 

TAL1 rs977747 
 

1 T/G 0.409 100% 259/727/532 TT/TG/GG 0.948 

AGBL4 rs657452 
 

1 A/G 0.421 99.67% 270/723/520 AA/AG/GG 0.896 

ELAVL4 rs11583200 
 

1 C/T 0.405 100% 251/729/538 CC/CT/TT 0.947 

NEGR1 rs2815752         1 A/G 0.627 100% 220/687/611 GG/GA/AA  
0.089 

TNNI3K rs1514175    
 

1 A/G 0.432 100% 283/749/486 AA/AG/GG 
0.846 

PTBP2 rs1555543  rs11165643  1 T/C 0.596 99.93% 268/722/524 CC/CT/TT 
0.291 

SEC16B rs543874  
 

1 G/A 0.199 100% 69/485/964 GG/GA/AA 
0.689 

NAV1 rs2820292 
 

1 C/A 0.557 100% 309/749/459 AA/AC/CC 
1.000 

TMEM18 rs6548238                 2 C/T 0.830 100% 40/451/1027 TT/TC/CC 
0.499 

POMC rs713586 rs10182181 2 G/A 0.469 100% 337/786/395 GG/GA/AA 
0.655 

KCNK3 rs11126666 
 

2 A/G 0.274 100% 138/568/812 AA/AG/GG 
0.055 

FANCL rs887912  
 

2 T/C 0.308 100% 142/630/746 TT/TC/CC  
0.412 

EHBP1 rs11688816 
 

2 G/A 0.531 100% 324/790/404 AA/AG/GG 
0.444 

FIGN rs1460676 
 

2 C/T 0.162 100% 48/415/1055 CC/CT/TT 
0.101 

UBE2E3 rs1528435 
 

2 T/C 0.616 100% 222/724/572 CC/CT/TT 
0.502 

CREB1 rs17203016 
 

2 G/A 0.194 99.93% 58/450/1009 GG/GA/AA 
0.308 

ERBB4 rs7599312 
 

2 G/A 0.741 100% 106/574/838 AA/AG/GG 
0.869 
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USP37 rs492400 
 

2 C/T 0.427 99.74% 287/733/494 CC/CT/TT 
0.044 

RARB rs6804842 
 

3 G/A 0.580 99.93% 255/781/481 AA/AG/GG 
0.005 

FHIT rs2365389 
 

3 C/T 0.593 99.93% 253/766/498 TT/TC/CC 
0.947 

CADM2 rs13078807 
 

3 G/A 0.199 99.93% 53/486/978 GG/GA/AA 
0.369 

RASA2 rs16851483 rs2035935 3 G/A 0.074 100.00% 16/201/1301 GG/GA/AA 
0.057 

ETV5 rs7647305 
 

3 C/T 0.800 100% 64/487/967 TT/TC/CC 
0.111 

GNPDA2 rs10938397  
 

4 G/A 0.425 99.93% 259/761/497 GG/GA/AA  
0.948 

SCARB2 rs17001654 rs17001561 4 A/G 0.157 100% 32/394/1092 AA/AG/GG 
0.277 

SLC39A8 rs13107325  
 

4 T/C 0.071 100% 13/187/1318 TT/TC/CC 
0.328 

HHIP rs11727676 
 

4 T/C 0.908 100% 14/247/1257 CC/CT/TT 
0.707 

FLJ35779 rs2112347 
 

5 T/G 0.619 100% 241/704/573 GG/GT/TT 
0.736 

HMGA1 rs206936  
 

6 G/A 0.197 100% 63/503/952 GG/GA/AA 
0.920 

TDRG1 rs2033529 
 

6 G/A 0.281 100% 116/609/793 GG/GA/AA 
0.270 

TFAP2B rs987237               6 G/A 0.181 100% 53/450/1015 GG/GA/AA 
0.914 

FOXO3 rs9400239 
 

6 C/T 0.696 100% 142/646/730 TT/TC/CC 
0.764 

LOC285762 rs9374842 
 

6 T/C 0.768 100% 67/548/903 CC/CT/TT 
0.245 

IFNGR1 rs13201877 
 

6 G/A 0.144 100% 22/370/1126 GG/GA/AA 
0.439 

PARK2 rs13191362 
 

6 A/G 0.890 100% 20/296/1202 GG/GA/AA 
0.745 

HIP1 rs1167827 
 

7 G/A 0.591 100% 260/754/504 AA/AG/GG 
0.323 

ASB4 rs6465468 
 

7 T/G 0.332 94.73% 140/657/641 TT/TG/GG 
0.462 
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ZBTB10 rs16907751 
 

8 C/T 0.899 100% 21/286/1211 TT/TC/CC 
0.727 

RALYL rs2033732 
 

8 C/T 0.745 100% 108/582/828 TT/TC/CC 
0.676 

C9orf93 rs4740619 
 

9 T/C 0.554 100% 314/726/476 CC/CT/TT 
0.440 

LRRN6C rs10968576  
 

9 G/A 0.316 100% 139/653/726 GG/GA/AA 
0.556 

EPB41L4B rs6477694 
 

9 C/T 0.348 100% 165/736/617 CC/CT/TT 
0.049 

TLR4 rs1928295 
 

9 T/C 0.564 100% 297/725/496 CC/CT/TT 
0.897 

LMX1B rs10733682 
 

9 A/G 0.478 100% 380/747/391 AA/AG/GG 
0.484 

GRID1 rs7899106 
 

10 G/A 0.048 100% 4/147/1367 GG/GA/AA 
1.000 

HIF1AN rs17094222 
 

10 C/T 0.218 100% 65/521/932 CC/CT/TT 
0.514 

NT5C2 rs11191560 
 

10 C/T 0.091 100% 11/259/1248 CC/CT/TT 
1.000 

TCF7L2 rs7903146 
 

10 C/T 0.700 100% 131/646/741 TT/TC/CC 
0.405 

TUB rs4929949 
 

11 C/T 0.521 100% 350/775/392 TT/TC/CC  
0.308 

BDNF rs925946 
 

11 T/G 0.303 100% 125/655/738 TT/TG/GG 
0.201 

BDNF rs6265                11 G/A 0.805 100% 56/479/983 AA/AG/GG 
0.104 

HSD17B12 rs2176598 
 

11 T/C 0.249 100% 109/530/879 TT/TC/CC 
0.050 

MTCH2 rs10838738 
 

11 G/A 0.364 99.80% 204/697/614 GG/GA/AA 
0.192 

CADM1 rs12286929 
 

11 G/A 0.530 99.93% 348/720/449 AA/AG/GG 
0.055 

FAIM2 rs7138803                      12 A/G 0.346 100% 203/639/676 AA/AG/GG 
0.003 

CLIP1 rs11057405 
 

12 G/A 0.895 99.47% 16/286/1208 AA/AG/GG 
0.733 

MIR548X2 rs9540493 
 

13 A/G 0.435 100% 279/767/471 AA/AG/GG 
0.651 
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MIR548A2 rs1441264 
 

13 A/G 0.602 100% 242/735/541 GG/GA/AA 
0.947 

STXBP6 rs10132280 
 

14 CA 0.684 100% 145/655/718 AA/AC/CC 
0.606 

PRKD1 rs11847697 
 

14 T/C 0.044 100% 4/132/1382 TT/TC/CC 
0.426 

NRXN3 rs10150332 rs17109256  14 A/G 0.218 100% 64/534/920 AA/AG/GG 
0.225 

DMXL2 rs3736485 
 

15 A/G 0.466 100% 353/748/417 AA/AG/GG 
0.523 

MAP2K5 rs2241423   
 

15 G/A 0.770 100% 95/531/892 AA/AG/GG 
0.720 

LOC100287559 rs7164727 
 

15 T/C 0.666 100% 170/675/673 CC/CT/TT 
0.253 

NLRC3 rs758747 
 

16 T/C 0.278 100% 127/629/762 TT/TC/CC 
0.579 

GPRC5B rs12444979     16 C/T 0.853 100% 35/366/1117 TT/TC/CC 
0.899 

SBK1 rs2650492 
 

16 A/G 0.291 100% 110/640/767 AA/AG/GG 
0.877 

SH2B1 rs7498665    
 

16 G/A 0.383 99.93% 216/722/579 GG/GA/AA 
0.946 

INO80E rs4787491 
 

16 G/A 0.553 100% 321/741/456 AA/AG/GG 
0.898 

KAT8 rs9925964 
 

16 A/G 0.652 100% 197/693/628 GG/GA/AA 
0.888 

CBLN1 rs2080454 
 

16 C/A 0.391 100% 216/736/566 CC/CA/AA 
0.229 

FTO rs9939609      16 A/T 0.391 100% 234/700/584 AA/AT/TT 
0.463 

SMG6 rs9914578 
 

17 G/C 0.212 100% 65/526/926 GG/GC/CC 
0.390 

RABEP1 rs1000940 
 

17 G/A 0.306 100% 161/614/743 GG/GA/AA 
0.410 

LOC284260 rs7239883 
 

18 G/A 0.409 100% 231/753/534 GG/GA/AA 
0.645 

GRP rs7243357 
 

18 T/G 0.833 100% 47/401/1070 GG/GT/TT 
0.568 

MC4R rs571312 
 

18 A/C 0.247 100% 86/572/860 AA/AC/CC 
0.669 
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PGPEP1 rs17724992 
 

19 A/G 0.745 100% 108/583/826 GG/GA/AA 
0.801 

KCTD15 rs11084753               19 G/A 0.649 99.08% 184/690/630 AA/AG/GG 
1.000 

TOMM40-APOE-

APOC1 
rs2075650  

 
19 A/G 0.855 100% 38/372/1108 GG/GA/AA 

0.898 

GIPR rs2287019    
 

19 C/T 0.813 100% 50/463/1005 TT/TC/CC 
1.000 

TMEM160 rs3810291   
 

19 A/G 0.673 98.09% 147/690/652 GG/GA/AA 
0.024 

ETS2 
rs2836754   

21 C/T 0.628 100% 225/693/600 TT/TC/CC 0.376 

*Risk allele frequencies were calculated from independent mothers and fathers  
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Supplementary Figure 1. Flowchart for quality control. 

 

 

 

 

 

 

 

 

 

 

 

  

Total recruitment      (N=2288) 

                 DNA extracted and genotyped (N=1626) 

Individuals (N=1600) 

Genotype failure (missingness rates in each 

individual >10%)  (26) 

Individuals in the final data analysis (N= 1402) 

541 children 

541 mothers 

                                           320 fathers 

 

No blood sample collected or insufficient DNA 

for genotyping (662)  

Twin or triplet offspring and parents (168) 

Sex discordancy (11)  

Non-biological fathers (16) 

Cryptic relatedness (6) 

Birth weight less than 1 kg (1) 
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Abstract 
 

Objectives: We examined the associations of prepregnancy BMI and gestational weight gain 

(GWG) with maternal postpartum weight retention and offspring obesity-related traits. We also 

investigated the maternal and offspring genetic contribution of BMI-associated SNPs to GWG 

and postpartum weight retention in the FAMILY birth cohort.  

Methods: Blood samples from mothers (n=608) and offspring (n=541) were genotyped for 83 

SNPs associated with BMI. Maternal prepregnancy BMI, GWG, 1-year and 5-year postpartum 

weight retention were obtained. Repeated weight and length/height in offspring were measured 

from birth to 5 years old. Multiple linear regression and mixed-effects regression models were 

performed.  

Results: Prepregnancy BMI was positively associated with offspring weight and BMI Z-score at 

birth and longitudinally from birth to 5 years. GWG was positively associated with maternal 

postpartum weight retention at 1 and 5 years and with offspring weight and BMI Z-score at birth. 
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The maternal BMI susceptibility genetic risk score (GRS) was associated with prepregnancy 

BMI. It was also associated with offspring weight Z-score at birth and postpartum weight 

retention at 5 years, but not associated with GWG.  

Conclusions: Adult BMI-associated SNPs may contribute to the genetic link between maternal 

prepregnancy BMI variation and long-term postpartum weight retention and offspring birth 

weight. 
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Introduction 

The fetal origins hypothesis (also named prenatal programming or thrifty phenotype 

hypothesis) proposed by David Barker in 1995 states that fetal undernutrition in middle to late 

gestation leads to chronic diseases in adulthood.
1
 These findings have been confirmed in several 

independent studies.
2, 3

 A growing body of evidence also supports the fetal origins of obesity.
4, 5

 

High prepregnancy body mass index (BMI) and excess gestational weight gain (GWG) have 

been associated with adverse maternal and offspring outcomes. Pregnant women with obesity or 

whose GWG exceeds the recommended ranges may experience a variety of adverse short- and 

long-term health outcomes including gestational hypertension, gestational diabetes mellitus, 

cesarean delivery, postpartum weight retention and obesity.
6, 7

 High prepregnancy BMI or 

excessive GWG is also associated with higher birthweight, childhood and adulthood obesity, as 

well as related metabolic diseases in offspring.
7-11

  Based on this well-established clinical 

epidemiologic evidence, the 2009 Institute of Medicine (IOM) GWG guidelines recommend 

optimal ranges according to the mother’s prepregnancy BMI: 12.5-18 kg for underweight women 

(<18.5 kg/m
2
), 11.5-16 kg for normal weight women (18.5-24.9 kg/m

2
), 7-11.5 kg for 

overweight women (25-29.9 kg/m
2
) and 5-9 kg for women with obesity (>30 kg/m

2
).

12
 

GWG consists of the accretion of proteins, fat, water and minerals which are deposited in 

the fetus, placenta, amniotic fluid, uterus, mammary gland, blood and adipose tissue 
12

. Using a 

four-composition model to measure fat content, studies have shown that maternal fat mass gain 

during pregnancy parallels GWG and approximately 30% of GWG is fat mass in those pregnant 

women who gain weight within IOM recommendation.
12, 13

 The fetus accounts for 20-25% of 

overall GWG and fat mass consists of 8-20% birth weight.
12, 14

 The difference in fat mass is 

more variable than fat-free mass in both mothers and fetuses during gestation.
15

 In addition to 
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risk factors such as unhealthy lifestyles (e.g. diet, smoking, and physical inactivity) or medical 

conditions (e.g. maternal gestational diabetes mellitus), genetic factors have recently been shown 

to explain 43% of the variation in GWG in the first pregnancy and 26% in the second pregnancy 

in twin studies using structural equation modeling.
16

 Given that a considerable fraction of GWG 

is attributable to the fat in both fetus and mother, it is plausible that fetal and maternal genetic 

variants associated with BMI might also contribute to GWG.
12, 17

 In addition, our previous study 

using FAMILY cohort has shown that fetal BMI-associated genetic risk score (GRS) is 

associated with birth weight. Furthermore, it has been hypothesized that the fetal genotype likely 

to influence maternal metabolism through placenta hormone and proteins.
17

 Therefore we 

examined whether the fetal GRS was linked to maternal GWG and postpartum weight retention. 

Two previous studies in European or North-American populations did not identify any 

associations between 4 to 9 maternal or offspring BMI susceptibility single nucleotide 

polymorphisms (SNPs) and GWG.
18, 19

 However, the total number of SNPs associated with adult 

BMI at genome-wide significance level (P<5×10
-8

) has recently increased to 113.
20

 Therefore, 

the contribution of an exhaustive list of BMI susceptibility variants to the variation of GWG 

warrants further investigation. Furthermore, no study has been done in Canada where the 

environment is believed to be more obesogenic than in Europe, but less obesogenic than in the 

United States.  

In the Canadian prospective FAMILY birth cohort, we investigated: 1) the associations 

between prepregnancy BMI and GWG and postpartum weight retention at 1 year and 5 years; 2) 

the effects of maternal prepregnancy BMI and GWG on offspring weight and BMI from birth to 

5 years of age; 3) the contribution of the maternal BMI-associated GRS combining 83 SNPs 

robustly associated with adult BMI to maternal prepregnancy BMI, GWG, postpartum weight 
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retention at 1 year and 5 years, and offspring weight and BMI from birth to 5 years of age; and 4) 

the contribution of the offspring BMI-associated GRS to maternal GWG and postpartum weight 

retention at 1 year and 5 years. 

 

Methods 

Participants 

The Family Atherosclerosis Monitoring In earLY life (FAMILY) study is a longitudinal 

birth cohort examining the fetal and early childhood determinants for the development of 

adiposity, cardiovascular diseases and atherosclerosis in childhood. The study has been described 

in detail previously.
21

 Briefly, 857 families including 901 newborns, 857 mothers and 530 fathers 

were enrolled from three hospitals in the Hamilton and Burlington regions (Ontario, Canada) 

between 2004 and 2009, and were followed for up to 5 years, with a planned follow-up for 10 

years or more. Only were singletons selected (N=816 families) in our analyses because multiple 

births have a strong impact on offspring birthweight and maternal gestational weight gain. 

Informed consent was obtained from all the adult participants, and the parents provided consent 

for their children. All procedures were performed in accordance with relevant guidelines and 

regulations. The research ethics boards at Hamilton Health Sciences and St Joseph’s Health 

Center in Hamilton, and Joseph Brant Memorial Hospital in Burlington approved the protocol.   

 

Genotyping   

Buffy coats were used for genomic DNA extraction and genotyping was conducted using 

the Illumina Cardio-Metabochip (San Diego, CA, USA). Eighty-three SNPs were selected based 

on two criteria of: being associated with BMI at genome-wide significance level (P<5×10
-8

) in 
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adults and being available on the Cardio-Metabochip array (lead SNP or proxy) (See Table S1). 

The SNP selection procedure was completed in March 2015. Five out of 83 were proxy SNPs (r
2
 

≥ 0.95 with the lead SNP) which were identified using the 1000 Genomes data of European 

population via the website tool SNAP (SNP Annotation and Proxy Search).
22

 We double checked 

the availability of the SNPs and proxies using SNAP and their chromosomal position in the 

Illumina data file.
22

 To ensure all 83 SNPs were independent, pairwise linkage disequilibrium 

was examined. All the pairwise r
2
 were less than 0.1 in European population tested using the 

1000 Genomes Project data. The call rates of 83 SNPs ranged from 95.7 to 100% and the 

genotypes satisfied Hardy Weinberg Equilibrium test (P>0.001). Genotyping data indicated that 

26 individuals had SNP missingness rates >10%, 16 individuals were from 5 families having 

non-biological fathers, and 11 individuals had sex-discordance between reported and SNP-

identified sex, all of them were excluded from the analysis. Ten pairs of individuals had cryptic 

relatedness (2
nd

 degree relatives) and one individual of each pair was randomly selected for 

exclusion (See Figure S1). The ethnicity reported by participants was verified by principal 

component analysis (PCA) using EIGENSTRAT.
23

 The first 10 components of PCAs were used 

for adjustment of ethnicity. The majority of FAMILY participants were white Caucasians (92.8% 

mothers and 91.1% offspring).   

 

Phenotypes 

 

Newborn characteristics of sex and gestational age at birth were recorded from medical 

charts. Offspring weight and length/height were measured by trained research staff with standard 

scales at birth, 1, 2, 3 and 5 years of age. The BMI was calculated as weight in kilograms divided 

by length/height in meters squared. Individual weight, length/height and BMI in offspring were 
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converted to age- and sex-specific Z-scores using World Health Organization growth reference 

(2006) (http://www.who-.int/childgrowth/standards/en/). 

Mothers’ weight and height during pregnancy visits and at 1 and 5 years after delivery 

were measured by trained staff. Maternal age, self-reported prepregnancy weight, parity and 

smoking were obtained at baseline visit. Gestational weight gain, gestational diabetes, and all 

subsequent live births within 5 years of the index birth were obtained from the questionnaires at 

subsequent visits or from the medical chart review. GWG was assessed as the difference between 

the last measured weight prior to delivery and self-reported weight before pregnancy. Analyses 

including GWG were adjusted by adding the variable of gestational age at the time of the last 

maternal weight measured into the regression models. Maternal postpartum weight retention at 

1- and 5-years was evaluated from the difference in weights between 1- or 5-years after delivery 

and before pregnancy. Gestational diabetes mellitus, defined as “any degree of glucose 

intolerance with onset or first recognition during pregnancy”, was diagnosed according to the 

International Association of Diabetes and Pregnancy Study Groups criteria using a 75 g oral 

glucose tolerance test. Overall, 1149 individuals were included in data analyses in which 608 

mothers were analyzed for maternal epidemiological associations and 541 mother-child pairs 

were analyzed for associations between mothers and offspring (See flow chart in Figure S1). The 

numbers of missing values for each of the exposures and outcomes are different and the numbers 

for the available data on each exposure and outcome for this study are presented in Table 1. For 

each association test, maximal data available were included and the numbers included in each 

analysis are reported in the tables.  

 

Statistical analysis 

http://www.who-.int/childgrowth/standards/en/
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We selected the risk alleles for each of 83 SNPs as previously reported in literature 

(Table S1). The genotypes of each locus were coded as 0, 1 and 2 designating the number of risk 

alleles following an additive mode of inheritance. The coding for the missing genotypes (<0.1% 

of the total genotype) was imputed with arithmetic average of the coded genotypes from 

individuals who were successfully genotyped. A GRS was obtained by summing the risk alleles 

of 83 SNPs and an unweighted GRS as recommended by Dudbridge was used.
24

  

All the associations between prepregnancy BMI/GWG and postpartum weight retention, 

between prepregnancy BMI/GWG and offspring weight and BMI Z-score at birth, between the 

maternal GRS and prepregnancy BMI, or GWG, or offspring weight and BMI Z-score at birth, 

and between the offspring GRS and maternal GWG and postpartum weight retention were tested 

using multiple linear regression models. Each regression model was adjusted for relevant 

covariates which were presented in the footnotes of each table, including offspring gestational 

age at birth, maternal age, prepregnancy BMI, gestational weight gain, parity, gestational 

diabetes, smoking, all subsequent live births within 5 years of the index birth and ethnicity. 

There was no collinearity between covariates. 

Linear mixed-effects models were used to investigate the associations of the maternal 

prepregnancy BMI, GWG, and GRS on offspring weight and BMI Z-score from 0 to 5 years old 

with repeated measurements. This approach was selected since it takes into account the 

correlations between repeated measurements on the same individual and allows for missing 

measurement data and measurement at different time, assuming the missing events are random.
25

 

The offspring weight and BMI Z-score at birth of each individual (intercept) and correlation 

among measurements on the same subject (slope of offspring’s age) were modeled as random 

effects, and time, ethnicity and prepregnancy BMI or GWG were modeled as fixed effects. An 
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interaction term of prepregnancy BMI×time (in year) or GWG×time (in year) or GRS×time (in 

year), which tests whether the effect of the prepregnancy BMI/GWG/GRS changes over time, 

was also initially added to the linear mixed-effects regression model. Due to its non-significance, 

this term was removed from the final analysis to produce the most parsimonious model.  

The analyses of the associations between the maternal GRS and offspring weight and 

BMI Z-score at birth and longitudinally from birth to 5 years old were repeated including the 

fetal GRS in the models to correct for potential confounding caused by direct effect of the fetal 

genotype.
26

  

Multiple outcomes were tested in this study, including offspring obesity-related traits, 

maternal prepregnancy BMI and GWG, and postpartum weight retention. Applying a Bonferroni 

corrected P-value across the outcomes will reduce the chance of making type I errors, but it will 

increase the chance of making type II errors. Therefore, we applied Bonferroni correction to 

outcomes under each question.
27

 A P-value of less than 0.0125 was considered statistically 

significant when analyses of the associations between maternal prepregnancy BMI/GWG/GRS 

and offspring weight and BMI Z-score at birth and longitudinally from 0-5 years old were 

performed (a total of 4 analyses). A P-value of less than 0.025 was considered statistically 

significant when analyses of associations between prepregnancy BMI/GWG and maternal 

postpartum weight retention were performed (a total of 2 analyses). A P-value of less than 0.025 

was considered statistically significant when analyses of GRS on maternal postpartum weight 

retention were applied (a total of 2 analyses). All the statistical analyses were performed using 

PLINK (version 1.07) and R (version 2.15.2).
28, 29

  

 

Results 
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Participant characteristics 

The characteristics of mothers and offspring included in the analyses are summarized in 

Table 1. Mother’s prepregnancy BMI was 26.5 kg/m
2
 (SD=6.4). The percentages of overweight 

and obesity in pregnancy in FAMILY were 26.2% and 21.3%, respectively. The mean of GWG 

was 15.9 kg (SD=5.4) (Table 1). According to the IOM definition, 57.8% of mothers had 

excessive weight gain, 13.8% had insufficient weight gain and 28.4% gained weight within the 

optimal ranges (Supplementary Table 2).    

 

 Association between prepregnancy BMI and GWG 

After adjusting for maternal age, parity, gestational diabetes, smoking and ethnicity, 

prepregnancy BMI was significantly negatively associated with GWG. Each one unit increase in 

prepregnancy BMI was associated with a 0.25 kg decrease in GWG (SE=0.04; P=8.91×10
-11

). 

 

Associations of prepregnancy BMI/GWG and postpartum weight retention at 1 year and 5 

years 

Maternal prepregnancy BMI was not associated with either postpartum weight retention 

at 1 year or at 5 years (β±SE, 0.05±0.04 kg/BMI unit; P=0.28; and -0.09±0.07 kg/BMI unit; 

P=0.16; respectively) with adjustments of maternal age, time interval, GWG, parity, subsequent 

live births within 5 years of the index birth, and ethnicity. In contrast, GWG was significantly 

and positively associated with postpartum weight retention at both 1 year and 5 years (β±SE, 

0.46±0.05 kg/kg GWG; P=1.59×10
-17

 and 0.24±0.08 kg/kg GWG; P=4.42×10
-3

, respectively) 

with adjustments of maternal age, time interval, prepregnancy BMI, subsequent live births within 

5 years of the index birth, and ethnicity.  
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Effects of prepregnancy BMI/GWG on offspring weight and BMI from birth to 5 years old   

Maternal prepregnancy BMI was significantly associated with offspring birth weight Z-

score (β±SE, 0.027±0.007/BMI unit; P=4.24×10
-4

) and BMI Z-score at birth (β±SE, 

0.03±0.008/BMI unit; P=4.82×10
-4

) (Table 2). In the longitudinal analyses, significant 

associations of maternal prepregnancy BMI with offspring weight and BMI Z-score from birth to 

5 years of age (β±SE, 0.021±0.006/BMI unit; P=3.59×10
-4

; and 0.025±0.005/BMI unit; 

P=6.30×10
-6

, respectively) were identified (Table 2).  

GWG was significantly associated with offspring birth weight Z-score (β±SE, 

0.033±0.008/kg GWG; P=8.53×10
-5

) and BMI Z-score at birth (β±SE, 0.031±0.009/kg GWG; 

P=1.19×10
-3

). In the longitudinal analyses, the overall effect of GWG on offspring weight Z-

score from birth to 5 years of age was statistically significant (β±SE, 0.019±0.007/kg GWG; 

P=8.39×10
-3

), but not on offspring BMI Z-score.   

 

Associations of the maternal BMI-associated GRS with offspring weight and BMI from 

birth to 5 years  

The maternal GRS was associated with offspring birth weight Z-score (β±SE, 

0.021±0.008/risk allele; P=0.01), but not BMI Z-score at birth. In the longitudinal analyses, the 

maternal GRS was also associated with offspring weight Z-score from birth to 5 years of age was 

identified (β±SE, 0.016±0.007/risk allele; P=0.01), but not BMI Z-score. After adjusting for the 

fetal GRS, the estimated effects changed to be not significant (Table 3).   
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Associations of the maternal and offspring BMI GRS with maternal prepregnancy BMI, 

GWG and postpartum weight retention  

The maternal GRS was positively associated with prepregnancy BMI (β±SE, 0.11±0.04 

BMI units/risk allele; P=0.01) and explained 1.07% variation of preprgnancy BMI, but it was not 

associated with GWG. The maternal GRS was not associated with 1 year postpartum weight 

retention. On the contrary, it was associated with weight retention at 5 years (β±SE, 0.15±0.06 

kg/risk allele; P=0.02). The offspring GRS was not associated with maternal GWG or weight 

retention at 1 year and 5 years (Table 4). 

 

Discussion 

The prevalence of obesity in pregnancy in FAMILY is 21%, higher than 14% reported in 

Ontario, Canada from the Maternity Experience Survey 2006-2007 (http://www.phac-

aspc.gc.ca/rhs-ssg/survey-eng.php). Overall, 58% of the mothers in our study gained excessive 

weight during pregnancy according to the IOM recommended ranges, similar to that in a 

Canadian cohort of 52%.
30

 Furthermore, 73% of women with overweight and 72% of women 

with obesity had GWG greater than the recommended ranges. In contrast, 27% of underweight 

women and 46% of normal weight women gained excessive weight.   

Our results are consistent with the findings of previous studies that maternal 

prepregnancy BMI was associated with offspring weight and BMI at different ages.
8, 31, 32

 This 

supports the hypothesis that intergenerational factors contribute to obesity in offspring at early 

age. However, these associations may be confounded by genetic or environmental influence 

shared by mother and offspring. Using siblings born from the same mother and fixed-effects 

models to minimize the shared familial effects, Branum et al. found that the genetic effects 
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contributed to the association between maternal prepregnancy BMI and GWG and child BMI.
33

 

In a most recent mendelian randomization study using the maternal GRS as an instrumental 

variable, Tyrrell et al. found that genetically elevated maternal BMI is casually associated with 

higher offspring birth weight.
26

 Our study is the first to examine the effect of the maternal GRS 

on maternal prepregnancy BMI, GWG, postpartum weight retention and offspring weight and 

BMI based on an exhaustive list of SNPs (N=83 SNPs). The results showed that the maternal 

GRS was associated with both maternal prepregnancy BMI and offspring birth weight. In our 

study, there was no evidence of associations between the maternal GRS and any confounding 

variables. Therefore we replicated the causal association between maternal BMI and offspring 

birth weight in the Family cohort. The maternal GRS was also associated with maternal weight 

retention at 5 years after delivery, indicating that the genes contributing to BMI variation in 

general adults may also be involved in the resistance to the long-term postpartum weight loss. 

  Neither maternal nor offspring BMI GRS were found to be associated with GWG in our 

study. This is consistent with two previous studies.
18, 19

 Stube et al. first reported that none of 9 

obesity-associated genetic loci was associated with GWG.
18

 Later, Lawlor et al. demonstrated 

that 4 BMI loci (FTO, MC4R, TMEM18 and GNPDA2), individually or combined as a genetic 

risk score from fetus or mother, were not associated with GWG.
19

 Compared to these two 

studies, we increased the number of obesity susceptible SNPs to 83 which was assumed to 

increase the statistical power to detect an association. Several reasons may explain the null 

finding. First, GWG is a complex trait and the fat accretion in both mother and fetus caused by 

genetic variants may not be sufficient to significantly impact the total GWG. Second, genetic 

variants involved in different biological pathways rather than obesity susceptible variants may 

account for the variation in GWG. Two studies have demonstrated that genetic variants in 
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KCNQ1 and TPH1, which are involved in the regulation of glucose and β-cell proliferation 

during pregnancy, respectively, are associated with GWG.
18, 34

 Third, maternal GWG measures 

weight change during pregnancy, and family and twin studies have shown that genetic factors 

have an important role in response to weight gain or loss 
35

. Although all 83 SNPs are robustly 

associated with BMI, whether they influence the weight change, especially during pregnancy, is 

still unclear.
36

 Fourth, genetic variants may be associated with trimester-specific GWG.
37

 

Therefore, GWAS of GWG, total and trimester-specific GWG, may discover novel genes and 

alternative pathways influencing GWG.      

In addition to the findings of our study, a methodological challenge is worth addressing.  

Assessment of both prepregnancy BMI and GWG requires rigorous methods of data collection. 

For example, prepregnancy weight should be measured at a preconceptional visit, though high 

concordance between self-reported and measured weight has been reported.
11

 GWG should be 

the last measured weight right before delivery from clinical records subtracting prepregnancy 

weight. Unfortunately, most of the data in the literature were not collected with a high level of 

rigor, and most studies relied on self-reported weight values which likely introduce recall error 

and/or bias, such as socially desirable reporting.
11, 33, 38

 

The strengths of our study include repeated measurements of weight and BMI from birth 

to 5 years of age in offspring, appropriate adjustment for critical variables during pregnancy and 

an updated list of 83 obesity-susceptible SNPs. Limitations of this study include a relatively 

modest sample size and self-reported prepregnancy weight.  

 

Conclusions 
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In summary, we have made several important discoveries in the longitudinal FAMILY 

birth cohort representative of the South Canadian population (Ontario). Maternal prepregnancy 

BMI is negatively associated with GWG. It is positively associated with offspring weight and 

BMI at birth and longitudinally birth to 5 years. GWG is positively associated with maternal 

weight retention at 1 and 5 years and it is also associated with offspring weight and BMI at birth, 

and weight longitudinally from birth to 5 years. The maternal BMI GRS is associated with 

prepregnancy BMI and weight retention at 5 years and offspring birth weight, but is not 

associated with GWG. The offspring BMI GRS is not associated with GWG or weight retention 

at 1 and 5 years. Our findings suggest that though adult BMI susceptibility genetic variants have 

no discernable effect to GWG, they may contribute to the genetic link between maternal 

prepregnancy BMI variation and long-term postpartum weight retention and offspring birth 

weight. 
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Table 1. Characteristics of mothers and offspring. 

Characteristics N Mean ± SD 

Mother's age at pregnancy 608 32.3±4.7 

Mother’s prepregnancy weight (kg) 593 72.2±18.1 

Mother’s prepregnancy BMI (kg/m
2
) 591 26.5±6.4 

Gestational weight gain (kg)  576 15.9±5.4 

Smoking in pregnancy (%) 

          Never smoker  368 61.2% 

        Former smoker 203 33.8% 

        Current smoker 30 5.0% 

Parity (%) 

 
 

0 258 42.4% 

1 254 41.8% 

2 69 11.3% 

≥3 27 4.5% 

GDM (%) 

  Yes 92 15.6% 

No 498 84.4% 

Maternal weight at 1 year after delivery (kg) 553 73.4±18.6 

Maternal weight at 5 years after delivery (kg) 362 74.4±19.3 

Maternal weight retention at 1 year after delivery (kg) 541 1.5±6.2 

Maternal weight retention at 5 years after delivery (kg) 354 2.1±7.4 

Gestational age (week) 541 39.4±1.5 

Male offspring (%) 541 50.4% 

Offspring weight (kg) 

           Birth  498 3.4±0.5 

         1 y 488 10.2±1.3 

         2 y 473 12.8±1.5 

         3 y 442 15.0±1.8 

         5 y 363 19.6±2.8 

Offspring BMI (kg/m
2
) 

           Birth  489 13.5±1.3 

         1 y 483 17.5±1.4 

         2 y 466 16.4±1.3 

         3 y 437 16.2±1.2 

         5 y 363 15.9±1.6 
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Table 2. Effects of maternal prepregnancy BMI or GWG on offspring weight and BMI Z-score at birth and from birth to 5 years old. 
 

 Traits 

Prepregnancy BMI   GWG 

Birth 
 

0-5 years (longitudinal analyses) 

 

Birth 
 

0-5 years (longitudinal analyses) 

N β (SE) P   N β (SE) P 

 

N β (SE) P   N β (SE) P 

Weight 444 0.027 (0.007) 4.24×10-4   497 0.021 (0.006) 3.59×10-4 

 

444 0.033 (0.008) 8.53×10-5   497 0.019 (0.007) 8.39×10-3 

BMI 436 0.030 (0.008) 4.82×10-4   496 0.025 (0.005) 6.30×10-6 
  

436 0.031 (0.009) 1.19×10-3   496 0.013 (0.006) 4.62×10-2 

 

The effects of maternal prepregnancy BMI or GWG on offspring weight and BMI Z-score at birth were analyzed using multiple linear 

regression models. Each model was adjusted for offspring gestational age at birth, maternal GWG/prepregnancy BMI, parity, 

gestational diabetes mellitus, smoking and ethnicity.  

 

The overall effects of maternal prepregnancy BMI or GWG on offspring weight and BMI Z-score from birth to 5 years old were 

analyzed using linear mixed models. In each model, the weight or BMI Z-score in offspring at birth of each individual (intercept) and 

correlation among measurements on the same subject (slope of age) were set as random effects, and time, offspring ethnicity, and 

maternal GWG/prepregnancy BMI were set as fixed effects.  
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Table 3. Effects of the maternal BMI GRS on offspring weight and BMI Z-score from birth to 5 years old. 
 

Trait 

Birth   0-5 years (longitudinal analysis) 

 
 no offspring GRS 

 
 offspring GRS* 

  
 no offspring GRS 

 
 offspring GRS* 

N β (SE) P   β (SE) P   N β (SE) P   β (SE) P 

Weight 338 0.021 (0.008) 0.01 
 

0.015 (0.010) 0.12 
 

411 0.016 (0.007) 0.01 
 

0.011 (0.008) 0.17 

BMI 333 0.014 (0.009) 0.14   0.008 (0.011) 0.47   410 0.013 (0.006) 0.03   0.008 (0.007) 0.29 

 

The effects of the maternal prepregnancy BMI-associated GRS on offspring weight and BMI Z-score at birth were analyzed using 

multiple linear regression models. Each model was adjusted for offspring gestational age at birth, sex, maternal GWG, parity, 

gestational diabetes mellitus, smoking and ethnicity.  

 

The overall effects of the maternal BMI-associated GRS on offspring weight and BMI Z-score from birth to 5 years old were analyzed 

using linear mixed models. In each model, the weight or BMI Z-score in offspring at birth of each individual (intercept) and 

correlation among measurements on the same subject (slope of age) were set as random effects, and time, offspring sex and ethnicity 

were set as fixed effects.  

*Adjusted additionally for the fetal GRS 
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Table 4.  Effects of the offspring and maternal BMI GRS on maternal prepregnancy BMI, GWG and postpartum weight retention. 

Maternal trait 

  Offspring GRS     Maternal GRS
§
  

N β (SE) P   N β (SE) P 

Prepregnancy BMI (kg/m
2
)
a
 

 
- - 

 
568 0.11 (0.04) 0.01 

GWG (kg) 
b
 383 0.01 (0.05) 0.90 

 
538 0.03 (0.04) 0.50 

Weight retention at 1 year (kg)
c
  342 0.05 (0.06) 0.36 

 
475 0.03 (0.04) 0.48 

Weight retention at 5 years (kg)
d 

 250 -0.01 (0.08) 0.93   317 0.15 (0.06) 0.02 

§: using maternal phenotypes only and the sample size was larger than those using phenotypes in both maternal and offspring 

a: The associations were adjusted for maternal age at pregnancy, parity, smoking and ethnicity  

b: The associations were adjusted for maternal age at pregnancy, parity, smoking and ethnicity  

c: The associations were adjusted for maternal age at pregnancy, the time interval between measurements of weight at 1 year and 

prepregnancy weight, GWG and ethnicity 

d: The associations were adjusted for maternal age at pregnancy, the time interval between measurements of weight at 5 years and 

prepregnancy weight, GWG, subsequent live births within 5 years of the index birth and ethnicity 
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Supplementary Table 1. Characteristics of the 83 SNPs associated with BMI variation. 

Nearest Gene SNP Proxy Chr  
Effect/Other 

Allele 

Risk Allele 

Frequency*  

Call 

Rate 
Genotype 

HWE 

test 

TAL1 rs977747 
 

1 T/G 0.409 100% 259/727/532 TT/TG/GG 0.948 

AGBL4 rs657452 
 

1 A/G 0.421 99.67% 270/723/520 AA/AG/GG 0.896 

ELAVL4 rs11583200 
 

1 C/T 0.405 100% 251/729/538 CC/CT/TT 0.947 

NEGR1 rs2815752         1 A/G 0.627 100% 220/687/611 GG/GA/AA  0.089 

TNNI3K rs1514175    
 

1 A/G 0.432 100% 283/749/486 AA/AG/GG 0.846 

PTBP2 rs1555543  
rs11165643 

(r
2
=0.98)  

1 T/C 0.596 99.93% 268/722/524 CC/CT/TT 0.291 

SEC16B rs543874  
 

1 G/A 0.199 100% 69/485/964 GG/GA/AA 0.689 

NAV1 rs2820292 
 

1 C/A 0.557 100% 309/749/459 AA/AC/CC 1.000 

TMEM18 rs6548238                 2 C/T 0.830 100% 40/451/1027 TT/TC/CC 0.499 

POMC rs713586 
rs10182181 

(r
2
=0.97) 

2 G/A 0.469 100% 337/786/395 GG/GA/AA 0.655 

KCNK3 rs11126666 
 

2 A/G 0.274 100% 138/568/812 AA/AG/GG 0.055 

FANCL rs887912  
 

2 T/C 0.308 100% 142/630/746 TT/TC/CC  0.412 

EHBP1 rs11688816 
 

2 G/A 0.531 100% 324/790/404 AA/AG/GG 0.444 

FIGN rs1460676 
 

2 C/T 0.162 100% 48/415/1055 CC/CT/TT 0.101 

UBE2E3 rs1528435 
 

2 T/C 0.616 100% 222/724/572 CC/CT/TT 0.502 

CREB1 rs17203016 
 

2 G/A 0.194 99.93% 58/450/1009 GG/GA/AA 0.308 

ERBB4 rs7599312 
 

2 G/A 0.741 100% 106/574/838 AA/AG/GG 0.869 
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USP37 rs492400 
 

2 C/T 0.427 99.74% 287/733/494 CC/CT/TT 0.044 

RARB rs6804842 
 

3 G/A 0.580 99.93% 255/781/481 AA/AG/GG 0.005 

FHIT rs2365389 
 

3 C/T 0.593 99.93% 253/766/498 TT/TC/CC 0.947 

CADM2 rs13078807 
 

3 G/A 0.199 99.93% 53/486/978 GG/GA/AA 0.369 

RASA2 rs16851483 
rs2035935 

(r
2
=0.95) 

3 G/A 0.074 100.00% 16/201/1301 GG/GA/AA 0.057 

ETV5 rs7647305 
 

3 C/T 0.800 100% 64/487/967 TT/TC/CC 0.111 

GNPDA2 rs10938397  
 

4 G/A 0.425 99.93% 259/761/497 GG/GA/AA  0.948 

SCARB2 rs17001654 
rs17001561 

(r
2
=0.95) 

4 A/G 0.157 100% 32/394/1092 AA/AG/GG 0.277 

SLC39A8 rs13107325  
 

4 T/C 0.071 100% 13/187/1318 TT/TC/CC 0.328 

HHIP rs11727676 
 

4 T/C 0.908 100% 14/247/1257 CC/CT/TT 0.707 

FLJ35779 rs2112347 
 

5 T/G 0.619 100% 241/704/573 GG/GT/TT 0.736 

HMGA1 rs206936  
 

6 G/A 0.197 100% 63/503/952 GG/GA/AA 0.920 

TDRG1 rs2033529 
 

6 G/A 0.281 100% 116/609/793 GG/GA/AA 0.270 

TFAP2B rs987237               6 G/A 0.181 100% 53/450/1015 GG/GA/AA 0.914 

FOXO3 rs9400239 
 

6 C/T 0.696 100% 142/646/730 TT/TC/CC 0.764 

LOC285762 rs9374842 
 

6 T/C 0.768 100% 67/548/903 CC/CT/TT 0.245 

IFNGR1 rs13201877 
 

6 G/A 0.144 100% 22/370/1126 GG/GA/AA 0.439 

PARK2 rs13191362 
 

6 A/G 0.890 100% 20/296/1202 GG/GA/AA 0.745 

HIP1 rs1167827 
 

7 G/A 0.591 100% 260/754/504 AA/AG/GG 0.323 
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ASB4 rs6465468 
 

7 T/G 0.332 95.73% 140/657/641 TT/TG/GG 0.462 

ZBTB10 rs16907751 
 

8 C/T 0.899 100% 21/286/1211 TT/TC/CC 0.727 

RALYL rs2033732 
 

8 C/T 0.745 100% 108/582/828 TT/TC/CC 0.676 

C9orf93 rs4740619 
 

9 T/C 0.554 100% 314/726/476 CC/CT/TT 0.440 

LRRN6C rs10968576  
 

9 G/A 0.316 100% 139/653/726 GG/GA/AA 0.556 

EPB41L4B rs6477694 
 

9 C/T 0.348 100% 165/736/617 CC/CT/TT 0.049 

TLR4 rs1928295 
 

9 T/C 0.564 100% 297/725/496 CC/CT/TT 0.897 

LMX1B rs10733682 
 

9 A/G 0.478 100% 380/747/391 AA/AG/GG 0.484 

GRID1 rs7899106 
 

10 G/A 0.048 100% 4/147/1367 GG/GA/AA 1.000 

HIF1AN rs17094222 
 

10 C/T 0.218 100% 65/521/932 CC/CT/TT 0.514 

NT5C2 rs11191560 
 

10 C/T 0.091 100% 11/259/1248 CC/CT/TT 1.000 

TCF7L2 rs7903146 
 

10 C/T 0.700 100% 131/646/741 TT/TC/CC 0.405 

TUB rs4929949 
 

11 C/T 0.521 100% 350/775/392 TT/TC/CC  0.308 

BDNF rs925946 
 

11 T/G 0.303 100% 125/655/738 TT/TG/GG 0.201 

BDNF rs6265                11 G/A 0.805 100% 56/479/983 AA/AG/GG 0.104 

HSD17B12 rs2176598 
 

11 T/C 0.249 100% 109/530/879 TT/TC/CC 0.050 

MTCH2 rs10838738 
 

11 G/A 0.364 99.80% 204/697/614 GG/GA/AA 0.192 

CADM1 rs12286929 
 

11 G/A 0.530 99.93% 348/720/449 AA/AG/GG 0.055 

FAIM2 rs7138803                      12 A/G 0.346 100% 203/639/676 AA/AG/GG 0.003 

CLIP1 rs11057405 
 

12 G/A 0.895 99.47% 16/286/1208 AA/AG/GG 0.733 
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MIR548X2 rs9540493 
 

13 A/G 0.435 100% 279/767/471 AA/AG/GG 0.651 

MIR548A2 rs1441264 
 

13 A/G 0.602 100% 242/735/541 GG/GA/AA 0.947 

STXBP6 rs10132280 
 

14 CA 0.684 100% 145/655/718 AA/AC/CC 0.606 

PRKD1 rs11847697 
 

14 T/C 0.044 100% 4/132/1382 TT/TC/CC 0.426 

NRXN3 rs10150332 
rs17109256 

(r
2
=0.99)  

14 A/G 0.218 100% 64/534/920 AA/AG/GG 0.225 

DMXL2 rs3736485 
 

15 A/G 0.466 100% 353/748/417 AA/AG/GG 0.523 

MAP2K5 rs2241423   
 

15 G/A 0.770 100% 95/531/892 AA/AG/GG 0.720 

LOC100287559 rs7164727 
 

15 T/C 0.666 100% 170/675/673 CC/CT/TT 0.253 

NLRC3 rs758747 
 

16 T/C 0.278 100% 127/629/762 TT/TC/CC 0.579 

GPRC5B rs12444979     16 C/T 0.853 100% 35/366/1117 TT/TC/CC 0.899 

SBK1 rs2650492 
 

16 A/G 0.291 100% 110/640/767 AA/AG/GG 0.877 

SH2B1 rs7498665    
 

16 G/A 0.383 99.93% 216/722/579 GG/GA/AA 0.946 

INO80E rs4787491 
 

16 G/A 0.553 100% 321/741/456 AA/AG/GG 0.898 

KAT8 rs9925964 
 

16 A/G 0.652 100% 197/693/628 GG/GA/AA 0.888 

CBLN1 rs2080454 
 

16 C/A 0.391 100% 216/736/566 CC/CA/AA 0.229 

FTO rs9939609      16 A/T 0.391 100% 234/700/584 AA/AT/TT 0.463 

SMG6 rs9914578 
 

17 G/C 0.212 100% 65/526/926 GG/GC/CC 0.390 

RABEP1 rs1000940 
 

17 G/A 0.306 100% 161/614/743 GG/GA/AA 0.410 

LOC284260 rs7239883 
 

18 G/A 0.409 100% 231/753/534 GG/GA/AA 0.645 

GRP rs7243357 
 

18 T/G 0.833 100% 47/401/1070 GG/GT/TT 0.568 
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MC4R rs571312 
 

18 A/C 0.247 100% 86/572/860 AA/AC/CC 0.669 

PGPEP1 rs17724992 
 

19 A/G 0.745 100% 108/583/826 GG/GA/AA 0.801 

KCTD15 rs11084753               19 G/A 0.649 99.08% 184/690/630 AA/AG/GG 1.000 

TOMM40-APOE-

APOC1 
rs2075650  

 
19 A/G 0.855 100% 38/372/1108 GG/GA/AA 0.898 

GIPR rs2287019    
 

19 C/T 0.813 100% 50/463/1005 TT/TC/CC 1.000 

TMEM160 rs3810291   
 

19 A/G 0.673 98.09% 147/690/652 GG/GA/AA 0.024 

ETS2 
rs2836754   

21 C/T 0.628 100% 225/693/600 TT/TC/CC 0.376 
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Supplementary Table 2. Maternal prepregnancy BMI and GWG categories in the FAMILY 

cohort. 

BMI
a
 

IOM GWG ranges 
b,c

 

Lower Normal Higher 

Category N (%) N % N % N % 

Underweight: 11 (1.9) 2 18.2 6 54.5 3 27.3 

Normal weight: 299 (50.6) 57 19.4 103 35.0 134 45.6 

Overweight: 155 (26.2) 5 3.2 37 24.0 112 72.7 

Obesity: 126 (21.3) 15 13.0 17 14.8 83 72.2 

Total: 591 79 13.8 163 28.4 332 57.8 

 

a. BMI was categorized using World Health Organization (WHO) definition: a BMI less 

than 18.5 kg/m
2
 is underweight, a BMI between 18.5 and 24.99 kg/m

2 
is normal weight, a BMI 

between 25 and 29.99 kg/m
2 

is overweight, and a BMI greater than 30 kg/m
2 

is obesity. 

b. GWG was categorized according to the 2009 Institute of Medicine (IOM) definition: the 

recommend optimal ranges according to the mother’s prepregnancy BMI: 12.5-18 kg for 

underweight women (<18.5 kg/m
2
), 11.5-16 kg for normal weight women (18.5-24.9 kg/m

2
), 7-

11.5 kg for overweight women (25-29.9 kg/m
2
) and 5-9 kg for obese women (>30 kg/m

2
).  

c. The mothers having both measurements of BMI and GWG were included for GWG 

categories. 
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Supplementary Figure 1. Flowchart for quality control. 
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Mothers N=643 

Father    N=366 

                          Offspring    N=617 

 

Mothers and offspring (N=1260) 

Genotype failure (missingness 

rates in each individual >10%)  

(4) 

Mothers in the final data 

analysis (N= 608) 

                                          

Mothers (N= 643) 

                                             

Offspring (N= 617) 

                                             
Genotype failure (missingness rates 

in each individual >10%)  (12) 

Offspring in the final 

data analysis (N= 541) 

                                          

Mothers who had twin or triplet 

(85) 

Sex discordancy (2)  

Mendel errors (5) 

Cryptic relatedness (4) 
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CHAPTER V: SUMMARY OF NOVEL CONTRIBUTIONS AND FUTURE DIRECTIONS 

 

This thesis addresses some novel questions surrounding the genetics of obesity in the 

post-GWAS era. This work provides several original contributions and I will highlight them by 

chapter and discuss future research directions. 

Chapter II: Transferability of obesity susceptibility loci across multiple ethnic groups 

EpiDREAM is a large multi-ethnic cohort study and well represents the variety of 

worldwide ethnic populations. BMI is significantly different across six ethnic groups in our 

study, in line with the evidence that the prevalence of obesity varies across countries and 

ethnicities although this was not a random sample.
1-4

 The major findings of this study are that the 

risk allele frequencies of most of the tested SNPs are significantly different across ethnic groups 

and the obesity susceptibility genes are partially generalizable across 6 ethnicities. Most of the 

SNPs and the GRS displayed associations with BMI that were directionally consistent with 

previous reports, yet the effects of a few SNPs and GRS on the level of BMI may be influenced 

by the ethnicity. However, the DNA samples in this study were genotyped using a cardiovascular 

gene-centric 50K SNP array 
5
 and only 23 out of 136 currently identified BMI or obesity SNPs 

were available to be tested.
6
 Definitely, such a conclusion drawn from GWAS array data would 

be more convincing and biologically meaningful. Our results argue for the completion of large-

scale GWAS meta-analyses with dense SNP arrays in multi-ethnic designs to capture the 

universal proxies for associations and eventually identify the causal variants.
7-9

 Meanwhile, it 

would be interesting to explore the identified heterogeneity in some genes and GRS across 

ethnicities. NPC1 provides an interesting example. Only was one polymorphism (rs1805081) 

studied in EpiDREAM and three non-synonymous SNPs (rs1805081, rs1805082, rs1788799) are 
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in the same LD block in Europeans, but their minor allele frequencies varied dramatically in the 

different ethnic groups. It is tempting to speculate that these three coding SNPs may have 

accumulative detrimental effect on NPC1 function, meaning that haplotype rather than single 

SNP analyses may better capture the association.
10,11

 The effect sizes of GRS were not consistent 

across ethnic groups. The ethnicity of South Asian and African significantly influence the effects 

of GRS on the level of BMI. This indicates GWAS of BMI or obesity in these two populations 

may of great importance.  

In addition to different risk allele frequencies, ethnic-specific associations and gene × 

environment interaction, allelic heterogeneity, different linkage disequilibrium patterns or gene × 

gene interactions may explain the incomplete generalizability of all known associations across 

ethnicities.
12

 Furthermore, the “thrifty genotype” hypothesis proposed by the geneticist JV Neel 

in 1962 implies that genetic variants that favor highly efficient fat metabolism and storage may 

have undergone positive selection during historical periods of erratic food supply.
13

 If the 

hypothesis that an ethnic group experiences positive selection at obesity associated alleles holds, 

some of the characteristics of a risk variant may develop: high frequency of the derived allele, 

longer haplotype, and highly differentiated risk allele frequencies across different populations.
14

 

This may explain in part why some SNPs are associated with BMI in one population but not in 

another. Thus, a relevant follow-up project would be to examine the signatures of natural 

selection (including Tajima’s D, Fay and Wu’s H, EHH, XP-EHH, iHS and Fst) for all known 

BMI and obesity susceptibility SNPs in different ethnic populations using the 1000 Genomes 

Project sequencing data.
15,16

 If most of the 136 SNPs underwent natural selection in a specific 

population when exposed to a specific environmental change, this will explain the differences in 
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the frequencies of risk alleles or genetic structure  and can infer that obesity is the consequence 

of natural selection, supporting the “thrifty genotype” hypothesis.  

Chapter III: Parental and child genetic contributions to obesity traits in early life based on 83 loci 

validated in adults: the FAMILY study 

One of the major findings of this study is that SNPs contributing to adult BMI start to 

exert their effect at birth and in early childhood. The GRS derived from 83 adult BMI SNPs was 

associated with birth weight after adjustment for important maternal confounding factors 

including pre-pregnancy BMI, GWG, parity, GDM and smoking status. It is generally accepted 

that the in utero environment plays a critical role in regulating offspring birth weight.
17,18

 The 

results of the association between SNP/GRS and birth weight in previous studies are conflicting, 

but they did not account for critical confounding variables.
19-21

 Furthermore, GWAS for birth 

weight have demonstrated that other genetic variants, other than BMI loci, may influence fetal 

growth.
22,23

 All these findings indicate that we need to replicate this association in a larger study 

with the availability of additional maternal confounding variables.  

 Another major finding is that a parent-of-origin effect of rs3736485 in DMXL2 is 

significantly associated with BMI variation from birth to 5 years old in children. Imprinting is 

one specific type of parent-of-origin effect
24

 and its occurrence relies on the stage of 

development and the tissue in question. It has been observed that the majority of imprinted genes 

are involved in fetal and placental growth and function.
25,26

 Parent-of-origin effects have also 

been reported to be associated with the development of obesity.
27,28

 Imprinted genes are 

especially sensitive to environmental signals. Because imprinted genes have only a single active 

copy and no back-up, any epigenetic changes will have a greater impact on gene expression. 

Therefore, a relevant follow-up project would use candidate gene approach to examine the 
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methylation status of gene DMXL2 and other genes showing nominal significant parent-of-origin 

effects in our exploratory analysis, including IFNGR1, HHIP, FTO, SEC16B, TMEM18 and 

C9orf93. This may provide novel insights into the mechanisms underlying childhood obesity.  

Chapter IV: Evidence of a genetic link between pre-pregnancy BMI variation and postpartum 

weight retention  

We found no association between maternal and child GRS and GWG. Although genetic 

factors have recently been shown to explain 43% of the variation in GWG in the first pregnancy 

and 26% in the second pregnancy,
29

 our results, along with two other studies, show that BMI 

SNPs are not associated with GWG.
30,31

  Two directions may be worth to pursue to identify the 

genetic variants associated with GWG. One way is to produce high-quality data with accurate 

measurements of maternal pre-pregnancy BMI and GWG, because most studies in the literature 

rely on recalled weight values which likely introduce recall error and/or bias.
32-35

 Then candidate 

gene approach can be applied to investigate whether BMI SNPs are associated with GWG. The 

second approach is to conduct GWAS of GWG to search alternative pathways involving GWG.   

We also found a genetic link between pre-pregnancy BMI variation and postpartum 

weight retention. Maternal GRS is associated with both pre-pregnancy BMI and weight retention 

at 5 years after delivery. This association needs a replication in a larger study with more accurate 

measurement of GWG. 

Summary:  

Taken together, these findings indicate that GWAS of specific ethnic group, children, 

birth weight and GWG are necessary and essential to look for novel variants and alternative 

pathways influencing the development of obesity. 
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Epilogue and personal reflections: 

This thesis witnesses my growth from having a limited understanding in the field of genetic 

epidemiology to being able to write comprehensive genetic epidemiology reviews and to perform 

sophisticated genetic association studies. I experienced both the challenges and cheerfulness 

during this journey. I have been fortunate to study in such a stimulating scientific area, 

participate in wonderful courses and work with students in a stimulating and collaborative 

learning environment. I am also lucky to work in a harmonized and cooperative environment in 

Dr. Meyre’s lab. In addition, I have gained an appreciation for the rapid expansion of knowledge 

in genetic epidemiology, from the HapMap Project to Phase I, Phase II and Phase III of the 1000 

Genomes Project, from single studies to consortia, from meta-analysis to network meta-analysis 

and from 32 BMI SNPs to 136, just to name a few. This also inspires me to push forward my 

research investigations in genetic epidemiology. What I have learned from this experience is that 

I do not know what the truth is, but I will strive to approach it.  
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SUPPLEMENTARY CHAPTER VI: JUMP ON THE TRAIN OF PERSONALIZED 

MEDICINE: A PRIMER FOR NON-GENETICIST CLINICIANS 

PART1. FUNDAMENTAL CONCEPTS IN MOLECULAR GENETICS 

Aihua Li, David Meyre 

 

ABSTRACT  

With the decrease in sequencing cost and the rise of companies providing sequencing services, it 

is likely that personalized whole-genome sequencing will eventually become an instrument of 

common medical practice. We write this series of three reviews to help non-geneticist clinicians 

get ready for the major breakthroughs that are likely to occur in the coming years in the fast-

moving field of personalized medicine. This first paper focuses on the fundamental concepts of 

molecular genetics. We review how recombination occurs during meiosis, how de novo genetic 

variations including single nucleotide polymorphisms (SNPs), insertions and deletions are 

generated and how they are inherited from one generation to the next. We detail how genetic 

variants can impact protein expression and function, and summarize the main characteristics of 

the human genome. We also explain how the achievements of the Human Genome Project, the 

HapMap Project, and more recently, the 1000 Genome Project, have boosted the identification of 

genetic variants contributing to common diseases in human populations. The second and third 

papers will focus on genetic epidemiology and clinical applications in personalized medicine.  
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Introduction 

Most human diseases have a genetic component. Non-genetic clinicians are familiar with 

single-gene disorders for the simple reason that the medical training, including human genetic 

courses, mainly refers to Mendelian diseases. An example of single-gene disorder is Huntington 

disease which is caused by a single mutation in the HD gene and that follows the easily 

recognized pattern of autosomal dominant inheritance across generations.
1
 Some clinicians are, 

however, less comfortable with the principles of genetic contributions to complex disorders, 

despite the fact that a majority of human diseases (e.g. diabetes, cardiovascular diseases, cancers 

and psychiatric disorders) fall into this category. Complex diseases are triggered by multiple 

genetic variants in multiple genes acting in combination with environmental factors, and they 

typically do not follow any Mendelian patterns of inheritance. This limited knowledge in the 

medical community is understandable as genetic determinants for complex diseases were 

uncovered in the last 15 years and new discoveries are ongoing. Two important breakthroughs 

have revolutionized the search for genetic variants contributing to complex diseases and have 

boosted the elucidation of complex traits in the last five years. First, the commercialization of 

high throughput genotyping microarrays has led to the emergence of genome-wide association 

studies (GWAS) and to an unparalleled harvest of disease-associated loci.
2,3

 Since the first report 

of GWAS in 2005, more than 2000 loci have been conclusively associated with one or more 

complex traits.
4,5

 However, most genetic variants from GWAS can only be correlated with a 

disease and the underlying mechanism may not be known. Over the past three years, the advent 

of high-throughput next generation sequencing platforms has led to the availability of whole-

exome sequencing experiments which specifically sequence the subset of the human genome that 

code proteins, and to the tremendous progress in the elucidation of Mendelian and complex 

disorders.
6,7

 With the decrease in sequencing cost and growing patient willingness to participate, 
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8
 personalized whole-genome sequencing may eventually become an instrument of common 

medical practice.
9,10

 These new perspectives challenge the clinicians to jump into the fast-

moving field of personalized medicine, an emerging practice that uses an individual's genetic 

profile to guide decision-making in regard to the prevention, diagnosis, and treatment of 

diseases.
11

 Despite all the recent ‘buzz’ around personalized medicine, the potential benefits of 

genetics in clinical practice are regarded with a certain degree of skepticism by the majority of 

clinicians.
12,13

 Obvious reasons include ethical concerns about privacy and discrimination or 

negative consequences of genetic testing for the patients (worry and anxiety).
14

 A less 

acknowledged but important reason is that genetics is regarded as a hermetic scientific field. The 

fact that geneticists use a highly technical language with terms like genome-wide association 

study (GWAS), single nucleotide polymorphism (SNP), and haplotype, certainly does not help. 

Ignorance begets fear and clinicians lacking the scientific background in genetic epidemiology 

may be more prone to mistrust or to scorn the promises and potential applications of genetic 

discoveries in their fields. Taking that into account, now is the time for clinicians to become 

more familiar with the key concepts of genetic epidemiology in order to become active 

participants of the personalized medicine revolution. We intend to write this series of three 

reviews to help non-geneticist clinicians prepare for the major genetic breakthroughs that are 

likely to occur in the coming years and to welcome genomic medicine into their spheres of 

practice with the hope of achieving better prevention and care of human genetic disorders. In this 

Part I of the series of three reviews, we will detail the basic concepts of molecular genetics in 

user-friendly language. In the next two reviews we will then discuss the study designs and 

statistical procedures classically used in genetic epidemiology (in Part II) and the realistic 

promises and challenges in application of recent genetic discoveries in medicine (in Part III).       
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DNA, RNA and proteins 

It has been known since time immemorial that offspring inherit, to a certain extent, their 

appearance, characteristics, and personality from their parents. As early as 1920s, a chemical 

substance called DeoxyriboNucleic Acid (DNA) was identified to carry the genetic information 

and transmit these characteristics from one generation to another.
15

 In 1953, James Watson and 

Francis Crick confirmed the double helix model of DNA structure which is the fundamental 

discovery for the central dogma of molecular biology.
16

 Nucleotides are the basic units of the 

complex DNA molecule. They contain three parts of a five-carbon sugar, a phosphate molecule 

and a nitrogen-containing base, which is either adenine (A), thymine (T), cytosine (C) or guanine 

(G). Nucleotides polymerize into long chains by phosphodiester bonds. Because phosphodiester 

bonds link the 3’ carbon atom of one sugar to the 5’ carbon atom of the next sugar, the 5’ end has 

a terminal sugar residue in which the 5’ carbon atom is free and the 3’ end has a terminal sugar 

residue in which the 3’ carbon atom is free. Adequate evidence has corroborated that cellular 

DNA forms a double stranded helix. The two coiled long polynucleotide chains are in an 

antiparallel formation in which the sugar-phosphate backbones are on the outside of the double 

helix, and the nitrogenous bases are on the inside and perpendicular to the backbones. Therefore, 

one strand runs in the direction of 5’ to 3’, whereas the other runs from 3’ to 5’. The hydrogen 

bonds between pairs of bases join the two strands following a specific and base-pairing rule: A to 

T only and C to G only. Although most of a cell’s DNA in humans is contained in the nucleus, 

mitochondria have their own independent genome that bears a strong resemblance to bacterial 

genomes.
17

 Every cell in the human body has a complete set of DNA called a genome with the 

exception of mature red blood cells (erythrocytes), which lack a nucleus and most organelles. A 

gene is a segment of DNA along the genome encompassing specific regulatory elements (5’-

untranslated regions (5’-UTRs) and 3’-untranslated regions (3’-UTRs)), non-coding regions 
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(introns) and coding-regions (exons) which give instructions to messenger ribonucleic acid 

(mRNA) in the form of three base-pair sets called codons that assemble amino acids to a 

functional protein (Figure 1). Therefore, a gene is considered to be the basic unit of heredity. 

During cell growth and division, DNA replication initiates when two DNA strands unwind at a 

specific origin and serve as their own templates and synthesize the second copy of each DNA 

strand with the assistance of DNA polymerase and other enzymes. DNA self-replication is 

conducted in an extremely accurate manner (less than 1 mismatched nucleotide in 10
7
).

18,19
 Once 

an error occurs, a repair system including DNA polymerases, exonuclease and other enzymes 

will proofread DNA sequence and excise the incorrect base pair, ensuring the stability and high 

fidelity of DNA within an individual and across generations.
20,21

 On the other hand, if the repair 

system fails, a mismatch will lead to a de novo mutation. The DNA composition of the different 

types of cells in human is basically identical. However, the extent to which a given gene is 

“converted into” a functional protein may vary greatly in different cell types or even in the same 

type of cells at different states. Generally speaking, DNA is the instruction book, RNA is a 

photocopy of a specific page of the book and this page tells the cell how to make the protein. The 

RNA step ensures that energy is not wasted because the entire book is contained in every cell in 

the body, but certain cells only need to read certain pages (e.g. a nerve cell and a muscle cell use 

different sets of genes). When a specific protein is required, a process of transcription, the first 

step of gene expression, is initiated in which DNA is copied into an intermediate molecule 

named ribonucleic acid (RNA). One of the DNA strand serves as a template (called template or 

antisense strand), and RNA synthesis is also oriented in a 5’ to 3’ direction (corresponding to the 

N-terminus to C-terminus of the sequence of a polypeptide). The RNA transcript is 

complementary to the template, just like during DNA replication, except that a nucleobase uracil 
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(U) pairs with A; therefore it has the same sequence as the non-template strand of DNA (which 

is called sense strand) except that U replaces T. A proofreading mechanism is also involved in 

transcription, but it is not as accurate as that of DNA replication.
19

 Corresponding introns (non-

coding sequencing in the RNA transcript) in a newly synthesized RNA molecule are 

subsequently removed by RNA splicing and a final mature messenger RNA (mRNA) is 

produced, which contains only exons (sequences that directly code for amino acids). The mRNA 

needs to be exported into organelle called ribosomes in the cytoplasm where the proteins are 

assembled. The sequence of an mRNA molecule is the template used to synthesize the 

corresponding a protein. The process by which mRNA is converted into a linear sequence of 

amino acids is called translation, the second step of gene expression. Specific nucleotide triplets, 

called codons, on the mRNA determine the start, the stop or the addition of an amino acid, 

leading to the creation of a polypeptide chain. Then a transfer RNA (tRNA), carrying the 

anticodon sequence (complementary to the codon on the mRNA) and a corresponding amino 

acid, binds to the codon on the mRNA and delivers the new amino acid to extend the polypeptide 

being synthesized.  The maximum number of combinations of three bases out of four is 

theoretically 4
3
=64 (Table 1). Except for one specific codon (AUG) that initiates the translation 

of mRNA into protein and 3 codons (UGA, UAG, UAA) that stop translation, 61 out of the 64 

triplets encode 20 different amino acids. Most amino acids are represented by more than one 

codon (e.g., six codons of UUA, UUG, CUU, CUC, CUA, and CUG for leucine). A specific 

codon always encodes a specific amino acid except in the case of the mitochondrial genome, 

which has four codons used differently from the nuclear DNA. This determines two important 

characteristics of the genetic code: specificity and degeneracy (also termed as redundancy). The 

degeneracy makes the protein more tolerant to some point mutations in coding regions and 
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accounts for synonymous coding mutations. This means that a substitution of one nucleotide by 

another nucleotide does not necessarily result in an amino acid change (synonymous mutation) 

but others do change the coding sequence (non-synonymous mutations). All kinds of biological 

functions need the participation of proteins. However, the physiological roles of a protein depend 

on its amino acid sequence, configuration, and modulations from other relevant factors such as 

regulator proteins, ligands/receptors or substrates. Mutations outside of the coding regions of the 

gene of interest may rather influence its mRNA expression or stability.  

Chromosomes, mitosis and meiosis 

Most normal human somatic cells are diploid, and in their nucleus there are 46 

continuous DNA molecules and each of them is named a chromosome.
22

 The 46 chromosomes 

make up two sets, and therefore two copies of each chromosome have the same length, same 

centromere and identical genes and are designated homologs. One homolog is maternally 

inherited and the other is paternally inherited. Each set has 23 single chromosomes-22 autosomes 

and an X or Y sex chromosome. A male has an X and Y chromosome pair and female has a pair 

of X chromosomes (Figure 2). The twenty-two autosomes have been ordered from chromosome 

1 to 22 according to the length of DNA base pairs (from the longest to the shortest). The X 

chromosome is much larger than the Y chromosome. The DNA sequences of two homologous 

chromosomes are usually not completely identical. DNA in a chromosome is packed in many 

complex units called nucleosomes consisting of two copies of core histones H2A, H2B, H3 and 

H4 around which is wound by a fragment of DNA, like many beads (histones) on a string 

(DNA). A fifth histone H1 is located in the spacer region between any two nucleosomes. Histone 

H3 and H4 can be modified by post-translational regulation mechanisms such as methylation, 

acetylation, ubiquitination and phosphorylation.
23,24

 These proteins are involved in epigenetic 
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mechanisms, which determine in part the stable gene expression pattern from cell to cell or from 

generation to generation in the absence of change to DNA sequences.
25,26

 Along each 

chromosome, a constriction point called the centromere divides the chromosome into two arms: 

the shorter arm or “p arm” and the longer arm or “q arm”. In addition to identifying genetic 

diseases based on the patterns of G-banding (stained by Giemsa’s solution at the metaphase),
27

 

chromosome arms are useful to describe the location of a specific gene mutations.  

There are two types of cell divisions, mitosis and meiosis.
28

 Mitosis occurs in the context 

of body growth, cell differentiation, self-renewal and regeneration in somatic cells. DNA 

replication and partitioning go along with mitosis, ensuring the maintenance of a diploid 

chromosome stock (2×23 chromosomes) in daughter cells. Meiosis is a specialized reductive cell 

division which occurs exclusively in germ cells and gives rise to sperm and egg cells. In a single 

diploid spermatocyte or oocyte, DNA duplication generates two identical sister chromatids, 

followed by two DNA segregations and cell divisions known as meiosis I and II. During meiosis 

I, the homologous chromosomes, which are paired together to form a bivalent may possibly 

exchange a fragment of DNA between maternal and paternal strands. This process of exchange 

of genetic material is called recombination (crossover) and is one of the key mechanisms by 

which genetic diversity between daughter cells is generated. Subsequently, a complete set of 

2×23 chromosomes are pulled to either pole and separated to form two haploid cells, each with 

one of the homologs. Which homolog in a bivalent pair ends up to in which daughter cell is 

independent and this is called the independent assortment. Independent assortment is the second 

major mechanism of genetic diversity. Therefore in humans, the total number of possible 

combinations of chromosomes in one gamete is 2
23

. Meiosis II is similar to mitosis except that 

final daughter cells have 23 chromosomes instead of 46. As a result, meiosis eventually produces 
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four haploid gametes. All eggs have a 23,X chromosome constitution representing 22 autosomes 

plus a single X chromosome, and 50% of the sperms have a 23,X chromosome constitution and 

the other half are 23,Y (Figure 3). When a sperm fuses to an egg, a zygote is formed and the 

diploid chromosomal status is re-established. Taken together, the daughter cells from mitosis are 

genetically identical, whereas the daughter cells from meiosis are genetically different as a 

consequence of independent assortment and recombination. As discussed earlier, de novo DNA 

mutation may be caused by a failure in the repair system during DNA replication. In addition to 

this, an error in combination process may also generate structure abnormalities in DNA. The 

average number of crossovers per cell is about 55 in males and is approximately 50% more in 

females, which means crossovers are not rare events. Crossovers are essential in maintaining the 

genetic variability that is transferred from parent to offspring. The exception again is 

mitochondrial DNA, which is inherited as a single linked molecule through the female line. It 

does not undergo recombination. Just as in DNA replication, errors during recombination do 

occur at a very low frequency, giving rise to translocations, inversions, duplications, or deletions.  

Abnormalities of chromosome structure are reported to contribute to a small portion of 

cases in psychiatric disorders. Balanced translocation is an exchange of chromosome segments 

between two non-homologous chromosomes. A balanced translocation between chromosome 1 

and 11 disturbed DISC1 gene is associated with increased risk of schizophrenia.
29,30

 

Chromosome inversion occurs when there are two breaks in one chromosome and the same 

segment is re-constituted with the orientation inverted. A pericentric inversion on chromosome 9 

was found to be associated with schizophrenia.
31

  

Characteristics of the human genome 
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The completion of the Human Genome Project in April 2003  and  the 1000 Genomes 

Project in 2012 has revealed several important characteristics of the Human genome:
32,33

 1) there 

are about 3 billion of base pairs in the human genome; 2) 99% of nucleotide bases are the same 

in all humans; 3) an estimated 30,000 genes exist in humans, with an average length of 3000 

base pairs; 4) genes represent less than 2% of the human genome; 5) more than 50% of genomic 

DNA consist of non-repetitive DNA sequences and most of the genes display unique DNA 

sequences; 6) about 45% of genomic DNA consists of repetitive sequences which are thought to 

contribute to maintaining chromosome structure; 7) there are 38 million validated SNPs in which 

a single nucleotide differs at a particular position among 1,092 human genomes.  

Genetic variations 

The current entire database of human genomic variation was recently derived from a 

panel of whole-genome sequence data in 1,092 individuals from 14 populations in the context of 

the 1000 Genomes Project.
33

 The next targeted milestone of the 1000 Genomes Project is 

sequencing the genome of 2,500 individuals from 27 populations across the world.
34

 Although 

99% of the genomic DNA sequences are identical, 1% still signifies 38 million genetic variants 

between unrelated individuals, indicating there is one allele variant in every 80 base pairs on 

average. During the assembling of consensus sequences, differences between (among) the 

nucleotide sequences of different individuals were noticed. The genetic variants of SNPs 

represent more than 90% of all human variation.
35

 If the frequency of a SNP is greater than 5%, 

it is considered a common variant or polymorphism. If the frequency is between 1-5%, it is a 

low-frequency SNP. If the frequency is less than 1% in population, it is defined as a mutation. In 

addition to SNPs, other genetic variants have been observed in the human genome, including 

microsatellites, variable number of tandem repeats (VNTR), and copy number variants (CNV). 
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The 1000 Genomes Project also identified 1.4 million bi-allelic short insertions and deletions, 

and more than 14,000 large deletions.
33

 Because these genetic variants were discovered during 

the sequence assembly, their locations are inherently known, providing a key resource in 

mapping genes that predispose to common diseases.  

Genetic variants may occur in any region of the genome. A SNP that is located in the 

coding region without changing the corresponding amino acid is called synonymous, while 

coding SNPs that lead to changes of the amino acid, shifting of the reading frame or to an earlier 

stop code are called non-synonymous, frameshift or non-sense, respectively. SNPs found in a 

non-protein coding area in a gene may influence the protein expression by changing regulatory 

elements such as transcription factor, binding sites or configuration. In humans, there are usually 

only two alleles at a SNP location, but three alleles are sometimes reported, such as e2, e3, e4 

alleles at the APOE gene locus.
36

 The most common nomenclature of a SNP uses a unique 

reference SNP (rs) number. An example is the rs10994336 SNP in the ANK3 gene that has been 

associated with bipolar disorder.
37

 SNP data are available from publicly accessible resources and 

are constantly updated, such as dbSNP polymorphism repository, Human Genome Variation 

Database, the International HapMap Project, SNP consortium or 1000 Genomes Project 

database. 

Microsatellites or short tandem repeats (STR) refer to repeated sequences of less than 10 

bp of DNA. When the repeat units have 10-100 nucleotides and the copy number reaches 

hundreds to thousands, this repeat cluster is referred as a minisatellite or a variable number 

tandem repeat (VNTR).
22

 The number of alleles in microsatellites and minisatellites is usually 5 

or more. Though both microsatellites and minisatellites are highly unstable, the majority of the 

variations have no detrimental clinical consequences. The mutation mechanisms in 
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microsatellites and minisatellites are different. In minisatellites, mutations occur during 

homologous recombination at meiosis, but the rate is approximately 10 times greater than that of 

other DNA sequence. Microsatellites undergo slip-strand mispairing during replication and 

subsequently the genes in the repair systems are inactivated, leading to expansion of the repeats 

22
. This mutation rate is also several of orders of magnitude higher than the mutation processes 

that lead to SNPs. Some of them result in increased risks of diseases. For example, whereas 

healthy individuals carry less than 36 repeats of CAG in the HD gene, the number of repeats 

increases to more than 40 in individuals who will develop Huntington disease.
1
  

Another type of polymorphism is called copy number variant (CNV). CNV refers to the 

duplication or reduction of a DNA segment (200 bp to 1.5Mb) and they usually have 2 alleles. 

CNVs (deletion or duplication) can have important functional consequences and have been 

convincingly associated with psychiatric disorders such as schizophrenia.
38

  

Alleles and genotypes 

The location of a DNA sequence or a gene on a chromosome is called a locus. If there is 

more than one type of nucleotide at a specific locus in a population, each nucleotide is called an 

allele. Most polymorphic sites have only two alleles, while a few have more than two alleles. 

Individuals are called homozygotes when the two alleles of homologous chromosomes at a 

specific locus are identical. When the two alleles are different, individuals are classified as 

heterozygotes. At bi-allelic SNPs, the allele with higher frequency in a given population is called 

the major, and the less common one is called minor allele. The three (or more) possible 

combinations of alleles at a specific locus (e.g. major allele / major allele, major allele/ minor 

allele, minor allele / minor allele) are called genotypes. Sometimes, a genotype refers to the 

overall genetic constitution of an individual.  
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For instance, the SNP rs1024582 in the CACNA1C gene is associated with bipolar 

disorder and schizophrenia.
39

 There are two alleles A and G, A being the minor allele with 

frequency of 33.7% and G being the major allele. The three genotypes of an individual at this 

locus can be AA, AG or GG. The minor allele A increases the risk of bipolar disorder and 

schizophrenia.
39

  

Haplotypes and linkage disequilibrium 

Alleles of different loci are sometimes not independently transmitted from one generation 

to another. They may be physically linked on the chromosome and the crossovers across 

generations do not break them apart. Such a cluster of alleles is called a haplotype (Figure 4). 

The US National Institute of Health initiated the International HapMap Project in 2002 to 

develop a human haplotype map 
40

. In phase I more than 1 million common SNPs were 

genotyped in 2005 in 270 individuals from four geographically distinct populations, Japanese, 

Han Chinese, Yoruba of Nigeria and Americans of North Western European ancestry 
41

. These 

data were used to explore the patterns of association among SNPs in the genome, and how these 

patterns vary across populations. In Phase II HapMap, over 3.1 million SNPs were genotyped to 

create a second generation human haplotype map.
42

  

Linkage disequilibrium (LD) measures the non-random association of alleles at two or 

more loci that may or may not be on the same chromosome. For instance, we may consider two 

loci with alleles A1/A2 and B1/B2, A1 and B1 alleles being on one chromosome and A2, B2 

alleles being on the other homologous chromosome. The frequency of A1 is 60% and B1 is 30% 

in a population. If the recombination of the two loci is independent, the expected frequency of 

the four possible haplotypes A1B1, A1B2, A2B1 and A2B2 would be 18%, 42%, 12% and 21%, 

respectively. If the distribution of these four haplotypes is consistent with the theoretical 



                         Ph.D Thesis – A. Li; McMaster University - Health Research Methodology 

 

174 
 

frequency, the alleles are in linkage equilibrium. If the distribution significantly departs from the 

theoretical frequency, the alleles are in linkage disequilibrium, indicating the two loci are not 

independent. If one of the alleles is a disease causing allele, the haplotype including this allele is 

considered as a disease-containing haplotype. In most circumstances, a genetic variant that is 

found to be associated with a disease is not the functional diseasing causing allele; rather it is a 

proxy SNP. This indicates that this proxy SNP is in the same LD block with the potential causal 

SNP which is not genotyped in the array. LD may change over time and the patterns of LD may 

vary depending on the population. The sizes of LD blocks, which reflect the frequency of 

recombination, have been reported to be smaller in African than in Asian and European 

populations (Figure 5).
43

 Thus, knowing the LD pattern in a specific ethnic group (e.g. from the 

HapMap Project) is useful to refine the association signal and ultimately lead to the discovery of 

the causal variant.
44,45

  Many other factors may influence LD patterns, including random genetic 

drift, population growth, admixture, inbreeding, natural selection, and de novo mutation.
46

  

Using the example of haplotype given above, one statistical test to measure LD is 

D’=D/Dmax=(PA1B1-PA1PB1)/Dmax, where Dmax is the maximum difference between PA1B1 and 

PA1PB1. D’ ranges from -1 to 1. One or -1 denotes there is no recombination between two loci A 

and B, and 0 indicates that A and B are in linkage equilibrium. If the allele frequencies of A1 and 

B1 are similar, a high D’ value indicates A is a good surrogate for B. However, if the sample size 

is small or one allele is rare, D’ will be inflated. There is a second measurement of LD, using the 

squared coefficient of determination r
2
 (ranging from 0 to 1). r

2
 takes into account the sample 

size and allele frequency. Therefore, D’ is extensively used by population geneticist to assess 

recombination patterns such as defining haplotype patterns, whereas r
2
 is a more appropriate 

measure of linkage disequilibrium in association studies.
47

 For example, two SNPS can display a 



                         Ph.D Thesis – A. Li; McMaster University - Health Research Methodology 

 

175 
 

D’ value of 0.85 and a r
2
 value of 0.18. In an association study, these two SNPs cannot be tagged 

or substituted for each other because of low r
2
. Pairwise measurement of LD for neighboring 

SNPs are used to group more than 2 loci into a haplotype termed LD block if the values of D’ 

between any two SNPs within the group are above a certain threshold (e.g. D’ > 0.8). This 

knowledge is essential to guide the design of whole-genome SNP genotyping arrays because 

carefully selecting a single or a few SNPs representing a haplotype block due to their strong 

associations can be used to identify an important haplotype, rather than genotyping all the SNPs 

in this haplotype (Figure 5). The common SNPs in commercial genotyping arrays captures 

untyped common variation with an average maximum r
2
 (a correlation coefficient between 

genotyped and untyped SNPs) from 0.9 to 0.96 depending on the population. Therefore, the 

advances from Phase II HapMap, in combination with increased density of high-throughput 

technology and capability of imputation of untyped SNPs, greatly improved the power of 

association studies. HapMap 3 was completed in 2009 and it genotyped 1.6 million common and 

rare variants including CNVs in 1,184 reference individuals from 11 global populations.
48

 The 

integrated map of genetic variation from the complete HapMap data and the 1000 Genomes 

Project 
33

 enables analysis of common and rare variants and CNVs in populations of different 

ethnic background. For instance, Sung and colleagues recently derived the genotypic distribution 

of 6.7 million SNPs from the information of 324,607 SNPs genotyped in their sample, using the 

1000 Genome reference panel.
49

 

Conclusions 

Having a stronger background in molecular genetics, we are ready to discuss the subtle 

concepts of genetic epidemiology including study design implementation, gene identification 

strategies, genetic marker selection, genotyping strategies, data analysis, data interpretation and 
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their potential applications in the context of personalized medicine. The two next articles in this 

series will review these topics. 
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Figure 1. Schematic gene structure. This gene has 5 introns and 6 exons. It is assumed there 

are 10 SNPs along the gene which may locate at promoter, introns or exons.   
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Figure 2. A human male karyotype with Giemsa banding. The autosomes are arranged from 1 

to 22 according to their length. Sexual X and Y chromosomes are displayed separately.  
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Figure 3. Mitosis and Meiosis. In mitosis, one cell produces two identical daughter cells 

through DNA duplication, and division. In meiosis, one diploid germ cell gives rise to four 

haploid gametes through DNA duplication, and two cell divisions (meiosis I and meiosis II). 

Four chromosome pairs are shown as demonstrations.  
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Figure 4. Schematics of linkage disequilibrium (LD) plot. LD blocks among the 11 SNPs in 

ANK3 gene are shown. The LD between the SNPs is measured as r
2
 and shown (× 100) in the 

diamond at the intersection of the diagonals from each SNP. r
2
 = 0 is shown as white, 0 < r

2
 <1 is 

shown in gray and r
2
 = 1 is shown in black. The top shows the relative physical positions of the 

SNPs on the chromosome 10. Two haplotype blocks (outlined in bold black line) indicate 

markers that are in high LD.  
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Figure 5. Linkage disequilibrium patterns in different ethnic/racial groups. The size of the 

LD block where locates the causal SNP is smaller in African than in Asian and European 

populations. SNP2, SNP3 and SNP4 are proxy SNPs.  
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 Table 1. The genetic codes. Sixty-four different combinations of triplet codons are derived 

from 4 unique bases. Except ATG for the start codon and TAG, GTA, TAA for stop codons, 

each codon codes for one of the 20 amino acids. 
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GLOSSARY 

Mendelian diseases: Phenotypes that are caused by a single gene mutation and display a clear 

pattern of inheritance 

Complex diseases: Phenotypes that are caused by multiple genetic variants, environmental 

risk factors and interplays between them. They do not exhibit classic patterns of Mendelian 

inheritance 

Genome-wide association studies: A study evaluating simultaneously associations between a 

dense subset of genetic variants theoretically covering the whole genome genetic diversity and 

a phenotype of interest 

Single nucleotide polymorphism (SNP): A DNA variant in which a single base pair changes 

at a particular position compared with a “wild-type” allele 

Gene: A segment of DNA embedding specific regulatory elements, non-coding regions and 

coding-regions which give instruction how amino acids assemble to a protein 

Genotype: The genetic constitution at a specific locus or sometimes the overall genetic 

constitution of an individual 

Allele: Each type of nucleotide at a given locus in a DNA fragment if there are two or more 

than two different types of nucleotides 

Locus: The unique location on a chromosome at which a SNP or a gene is located 

Homozygote: Individuals in whom the two alleles on the homologous chromosomes at a 

specific locus are identical 

Heterozygote: Individuals in whom the two alleles on the homologous chromosomes at a 

specific locus are different 

Linkage disequilibrium: A measure of non-random association between alleles at different 

loci 
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SUPPLEMENTARY CHAPTERVII: JUMP ON THE TRAIN OF PERSONALIZED 

MEDICINE: A PRIMER FOR NON-GENETICIST CLINICIANS 

PART2. FUNDAMENTAL CONCEPTS IN GENETIC EPIDEMIOLOGY 

Aihua Li, David Meyre 

 

Abstract: With the decrease in sequencing costs, personalized genome sequencing will 

eventually become common in medical practice. We therefore write this series of three reviews 

to help non-geneticist clinicians to jump into the fast-moving field of personalized medicine. In 

the first article of this series, we reviewed the fundamental concepts in molecular genetics. In 

this second article, we cover the key concepts and methods in genetic epidemiology including 

the classification of genetic disorders, study designs and their implementation, genetic marker 

selection, genotyping and sequencing technologies, gene identification strategies, data analyses 

and data interpretation. This review will help the reader critically appraise a genetic association 

study. In the next article, we will discuss the clinical applications of genetic epidemiology in the 

personalized medicine area. 
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 What is genetic epidemiology? 

Genetic epidemiology emerged in the 1960s at the crossroads of multiple disciplines such 

as molecular genetics, epidemiology and biostatistics. Genetic epidemiology studies the role of 

genetic factors in determining health and disease in families and in populations, as well as the 

interplay of genetic determinants with specific environmental exposures. Morton elegantly 

defined genetic epidemiology as "a science which deals with the etiology, distribution, and 

control of disease in groups of relatives and with inherited causes of disease in populations".
1
 In 

this article, we aim to illustrate how to identify genetic variants associated with a disease 

including the relevant concepts, study designs and statistical analyses classically used in genetic 

epidemiology. Due to the complexity of the steps needed to explore genetic variation in common 

diseases, we provide a diagram which outlines how this paper is structured (Figure 1). The 

questions illustrate the step by step procedures to conduct genetic epidemiology research; the 

methods show the parameters which are measured, and the third column lists the study designs 

most commonly used in genetic epidemiology. 

Phenotype 

A phenotype represents the observable physical or biochemical characteristics of an 

individual or a group of organisms, as determined by both genetic make-up and environmental 

influences. In human genetics, phenotypes refer to traits as diverse as diseases, biochemical 

measurements or the levels of expression of a gene transcript. A phenotype can be binary (e.g. 

presence or absence of schizophrenia), categorical (e.g. personality disorders) or quantitative 

(e.g. hippocampal volume).
2
 The ideal phenotype should be clinically and biologically relevant, 

not too rare, and inexpensive, thus allowing large-scale discovery and replication studies 
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feasible. It should be well defined so that measurement errors, misclassification and 

heterogeneity can be minimized. 
3
   

Modes of inheritance  

There are five basic patterns of Mendelian inheritances (Figure 1). Punnett squares which 

are used to predict the chance of genetic disease in children for parents with an increased risk are 

presented in Figure 2. First, autosomal dominant inheritance explains more than 50% of 

Mendelian diseases. One deleterious copy of the gene is sufficient to confer the disease. Both 

males and females have 50% risk of being affected and the disease occurs in every generation. 

Huntington’s disease follows an autosomal dominant mode of inheritance.
4
 If each copy of the 

gene contributes to the trait and the heterozygote generates an intermediate phenotype, this is 

called co-dominant (e.g. ABO blood type) or additive inheritance (e.g. genetic effects from most 

risk alleles). Generally speaking, the concept of co-dominant includes additive models. If the 

trait is quantitative, when the heterozygotes have a mean level which is the average of two types 

of homozygotes means it is an additive model. An autosomal recessive disease only occurs when 

an individual harbors two deleterious copies at the locus. In most cases, both parents of the 

affected person are healthy heterozygous carriers of risk allele.
5
 In accordance with Mendel’s 

Laws, every offspring has a 25% probability of developing the disease. Offspring of 

consanguineous marriages are more likely to develop autosomal recessive disorders because 

consanguinity increases the risk to inherit two identical mutations.
5
 Sometimes, individuals 

develop autosomal recessive disorders in non-consanguineous pedigrees because they carry two 

mutant alleles for the same gene, but with those two alleles being different from each other (for 

example, two mutant alleles are at different loci). This phenomenon is called compound 

heterozygosity. Compound heterozygotes usually get ill later in life with less severe symptoms. 
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Phenylketonuria, an inherited disorder that is characterized by seizures, delayed development, 

behavioral problems and psychiatric disorders, follows an autosomal recessive pattern of 

inheritance.
6
 The fourth mode is X-linked recessive inheritance. A mutation in a gene located on 

the X chromosome causes a disease in males who are also called hemizygous (the gene mutation 

only occurs on the X chromosome) and in females who carry the mutant on each of the X 

chromosome. Thus, X-linked recessive diseases, such as X-linked mental retardation,
7
 affect 

more males than females. On the other hand, if only the father is affected, none of his sons will 

develop the disease, whereas all his daughters will carry the mutant allele. Fifth, X-linked 

dominant disorders are less common compared with X-linked recessive type. All the offspring of 

affected females have a 50% chance that they will inherit from such a disease whereas all the 

daughters of an affected male will develop it. Usually, males are affected more severely than 

females as observed in Fragile X syndrome.
5
 However, more female patients with X-linked 

dominant disorders are sometimes observed. In the Rett syndrome for instance, 50% of the males 

with the mutant allele miscarry before birth.
8
   

Departure from classical Mendelian patterns of inheritance often occurs and can be 

explained by different mechanisms that include incomplete penetrance, variable expressivity, 

genomic imprinting effects, mosaicism, mitochondrial inheritance, de novo mutations, 

overdominance or digenic inheritance. Incomplete penetrance refers to a situation in which the 

occurrence of the disease in individuals who harbour the same disease-causing allele is less than 

100%.  Although the mutant allele does not inevitably cause the disease, it is still passed to the 

offspring. On the other hand, individuals who inherit the same mutant allele may experience a 

different level of severity of the disease. This phenomenon is called variable expressivity. 

Incomplete penetrance and variable expressivity are commonly observed in autosomal dominant 
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and X-linked recessive disorders and can be explained by the effect of modifying genes or by 

differential regulation of gene expression.
9
 For instance, microdeletion of 15q13.3 shows 

incomplete penetrance of autism and a wide spectrum of mental retardation.
10,11

 Genomic 

imprinting is a phenomenon by which imprinted alleles are silenced such that the genes are 

expressed in a parent-of-origin-specific and mono-allelic manner.
12

 In other words, the genes are 

expressed only from the non-imprinted allele inherited from the mother (maternal imprinting) or 

from the father (paternal imprinting). Imprinting is an epigenetic process that involves DNA 

methylation or histone methylation mechanisms with no alteration of the genetic sequence 
12

. 

These epigenetic marks are established in the germline cells and are maintained throughout all 

somatic cells of an organism. Genomic imprinting has an important role in fetal and placental 

growth and development.
13,14

  Angelman or Prader–Willi syndromes are classical examples of 

genetic defects in genes submitted to parental imprinting.
15

 When the paternal copy is imprinted 

and silenced, a deletion of 15q12 inherited from the mother causes Angelman syndrome. On the 

other contrary, if the maternal copy is imprinted and silenced, the deletion inherited from the 

father leads to Prader-Willi syndrome. Genomic DNA in every single cell of an individual is the 

same. But, if a mutation occurs during mitotic cell divisions of the developing fetus, it can give 

rise to mosaicism of at least two populations of cells (somatic or germline) that are genetically 

different. Mosaicism may explain a substantial fraction of unusual clinical observations, for 

example, mosaic structural variations are two-fold more frequent in schizophrenic cases than in 

controls.
16

 A very small but functionally important portion of genomic DNA resides in the 

cytoplasm of mitochondria. Mitochondrial DNA can only be inherited from the mother, because 

mitochondria present in sperm are eliminated from the embryo. Another unique feature of 

mitochondrial DNA is that it is randomly distributed into daughter cells during mitosis and 
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meiosis, leading to remarkably variable expressivity in mitochondrial diseases. Schizophrenia 

and bipolar disease have been reported to present excessive maternal inheritance, and mutations 

in mitochondrial DNA are also related to these disorders.
17-19

 There is a probability of 10
-6

 to 

have a de novo mutation in any types of inheritance modes. The de novo mutations in autosomal 

recessive diseases are more frequent than autosomal dominant and X-linked disorders. The over-

dominant mode of inheritance is rarely observed in humans.
20

 In that model, the mean of the 

heterozygotes is higher than the mean of two types of homozygotes. Sometimes, a disease occurs 

only if two mutations in two different genes are present in the same individual which belongs to 

a digenic mode of inheritance.
21

 Digenic inheritance has been reported in severe familial forms 

of insulin resistance.
22

 Most of the time, non-Mendelian modes of inheritance observed in human 

diseases result from polygenic genetic architectures (see the section below). 

Familial aggregation, heritability and segregation analyses 

Clinicians are used to collecting family history information related to a particular disease 

in order to assess whether a person is at risk of developing similar problems. A more frequent 

recurrence of a disease in a pedigree may be because of their shared environmental exposure 

(e.g. toxin), however, most of the time it indicates that the disease has a hereditary component. 

Familial aggregation analysis answers the question of whether the relatives of the affected person 

(proband) are more likely to suffer the same disease compared with the general population at a 

specific point of time. If the phenotype is qualitative, familial aggregation is measured by 

recurrence risk ratio in relatives λR  (Table 2).
23

 A greater λ is expected in first degree than in 

second degree relatives of the affected person if genetic factors play a role in the occurrence of 

the disease.
23

 A λR of 2 and above is a good indication that the causes of the underlying familial 

aggregation warrant further study.
24

 Very high relative risk ratios λS for siblings have been 
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observed for autism (λS=75), schizophrenia (λS=10) and bipolar disorder (λS=15) 
25

 in which 

shared genes greatly contribute to the familial recurrence of the diseases. If the phenotype is 

quantitative, familial aggregation is measured by intra-family correlation coefficients (ICC) 

which is the proportion of the total variance in the phenotype attributed to differences between 

families. The larger λR or ICC, the greater the familial component of the trait will be.
23

 Neither 

λR nor ICC distinguishes genetic from environmental components, because family relatives share 

not only genes but also similar environment. For example, familial aggregation for depression 

could be due to either shared genes or similar environmental factors, such as socioeconomic 

status of the family.  

Heritability reflects the proportion of total phenotypic variability explained by genetic 

variance in a particular population at a specific time. When only additive genetic effects are 

accounted for in the genetic variance, heritability is named narrow-sense heritability or just 

heritability (h
2
); when all genetic variance from additive, dominant and epistatic (gene × gene 

interaction) effects is accounted for, heritability is defined as broad-sense heritability (H
2
).

26
 

Twin and adoption studies are ideal experimental designs to estimate heritability because of their 

natural separation of genetic and environmental components.
26

 In twin studies, monozygotic 

(MZ) twins share 100% of their genome whereas dizygotic (DZ) twins share 50%. If genetic 

factors play a role in the phenotype, the correlation coefficient of the phenotype between MZs 

should be significantly higher than in DZs. The calculation of the heritability is listed in Table 2. 

These calculations are based on the assumption that MZ pairs and DZ pairs grow up in an 

identical environment.
27

 There is a methodological concern that twins are not representatives of 

the general population.
28

  In practice, the assumption of identical environment in twin studies 

may be difficult to hold. Twins may display difference in delivery process, special life events, 
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and interactions with teachers or friends. In an alternative adoption study, a biological parent and 

an adopted-away offspring, or a full sibling and an adopted-away full sibling share 50% of genes 

that attribute to their resemblance in the trait. The heritability in this situation assumes they have 

different environmental exposures (Table 2).  When the traits are binary, a liability scale model 

in which a disease arises when the determined probability exceeds a certain threshold, or the 

statistical models developed for quantitative traits may be applied.
29,30

 Although the assumptions 

underlying the twin and adoption studies are not always met in practice, many important findings 

have been discovered from such designs.
31

 More recently, structural equation models have been 

used to estimate heritability with consideration of shared and non-shared environment effects by 

collecting diverse environmental variables.
32

 Recently, Yang et al. has developed a GCTA 

model, a tool that estimates heritability using GWAS data and unrelated individuals for both 

quantitative and binary traits.
33,34

 The phenotypic variance explained by this model is from all 

the SNPs (including imputed SNPs) rather than individual SNPs associated with this phenotype. 

It has been applied to estimate the heritability in intelligence and schizophrenia.
35,36

 Heritability 

is an important concept in genetics but is often misunderstood.
26

 Heritability does not influence a 

trait in itself, but it can play a role in the variation of a trait. Therefore, heritability estimate 

cannot be used as an indicator of the individual risk. Heritability may vary in different 

populations and change over time. It is important to select a phenotype in a population with a 

substantial heritability to identify the genetic determinants underlying the trait.
24

 Studies have 

shown that schizophrenia, bipolar disorder and autism are highly heritable traits with heritability 

greater than 80%, whereas drug dependence shows moderate heritability of 50-60%.
37

 We do not 

encourage gene identification programs if traits show heritability estimates lower than 30%, as 

these programs may become a ‘geneticist’s nightmare.
3,38
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Once twin studies, adoption studies, family studies or population based studies of 

unrelated individuals have provided evidence that a trait has a genetic component, a segregation 

analysis with family data will answer the question of what is the best inheritance mode this trait 

follows.
39

 It determines whether the transmission pattern of a trait in families is consistent with 

the expectation of one of the Mendelian inheritance modes we discussed above. Likelihood ratio 

test or chi-squared test is usually applied to examine whether a segregation ratio deviates from 

the expected under Mendelian laws, with no need for genetic marker information. For example, a 

dominant disease has a theoretical segregation ratio of 0.5. If the hypothesized Mendelian 

segregation ratio is true, it indicates the disease is determined by a single gene. Otherwise, the 

deviation may be an indication that the disease is determined by multiple genes, or caused by 

interplay between genetic and environmental factors, or the disease has an incomplete 

penetrance. Under these complicated circumstances, maximum likelihood tests are used to 

compare different inheritance models.
40

 Therefore, segregation analysis seems appealing to 

typical Mendelian modes of inheritance. To a few notable exceptions (e.g. type 1 diabetes) 
41

 

segregation analyses for psychiatric diseases did not succeed in revealing the presence of a major 

gene and a clear pattern of inheritance.
42

  

Single gene disorders versus complex diseases  

A single-gene disorder (also called a Mendelian or monogenic disorder) is caused by a 

single mutation in a single gene. It exhibits a familial pattern consistent with one of the 

Mendelian inheritance modes. According to the statistics of Mendelian Inheritance in Man 

(OMIM) (www.ncbi.nlm.nih.gov/omim), more than 5200 diseases follow a Mendelian 

inheritance pattern, and the underlying molecular basis of 66% of them has been elucidated. 

Sometimes, mutations in only one gene elucidate 100% of disease cases (e.g. Huntington’s 

http://www.ncbi.nlm.nih.gov/omim
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disease). Sometimes, mutations in different genes lead to similar disease presentation. For 

instance, mutations in 15 different genes lead to the Bardet-Biedl syndrome.
43,44

 In that situation, 

the disease is referred as a heterogeneous monogenic disorder. The identification of genes 

responsible for single-gene diseases has made tremendous progress in the past 15 years and has 

greatly facilitated the understanding of disease-related molecular mechanisms. However, 

Mendelian segregation law which predicts discrete traits (like yellow/green, wrinkled/smooth 

peas in the original experiments) cannot explain many anthropometric features such as height 

and weight that show continuous variation. These quantitative traits do display familial 

clustering (e.g. relatives of the taller individuals tend to be taller than the general population), 

however, their transmission across generations does not follow clear Mendelian patterns of 

inheritance. In 1918, Ronald A Fisher, together with Sewall Wright and JBS Haldane, solved the 

dilemma by developing a polygenic inheritance theory using analysis of variance.
45

 Multiple 

genes contribute to the continuous variation of a trait, each with allelic variation. Meanwhile, 

each allele follows Mendel’s segregation law and makes a small change in the total variance.
45,46

 

Many common diseases (eg. cancers, diabetes, cardiovascular diseases, Alzheimer’s disease and 

schizophrenia) follow a polygenic model.
47,48

 Though the etiology of them is not completely 

understood, it is believed that they are caused by multiple genes and environmental factors and 

their interplay. The term complex disease is exchangeable with common disease and polygenic 

disease in the literature. It is important to pinpoint that monogenic genes exist in polygenic 

diseases, often initially identified in extreme end of the distribution of a trait. For example, more 

than sixty loci modestly contribute to the risk of obesity.
49

 In addition, rare mutations or 

deletions at nine loci lead to monogenic forms of early-onset severe obesity and may explain 5-

10% of obesity cases. 
49,50
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Different models have been proposed to explain the genetic architecture of complex 

diseases. First, the common disease-common variant hypothesis (CDCV) states that risk variants 

are at relatively high frequency (>1%) in populations and modestly contribute to the risk of 

disease.
51,52

 The advent of genome-wide association studies (GWAS) has identified more than 

2000 common loci modestly associated with complex traits and has given some credit to the 

CDCV hypothesis. However, the fact that common variants identified through large-scale 

GWAS consortium initiatives only explain a small proportion of heritability for most complex 

diseases excludes the possibility that CDCV hypothesis is the only relevant model.
53,54

 The 

second hypothesis, common disease-rare variant (CDRV), states that most of the common 

phenotypic variance are caused by rare variants (allele frequency <1%) with large effect sizes.
55

 

Recently, rare variants have been identified to play a role in several multifactorial disorders such 

as prostate cancer,
56

 inflammatory bowel disease 
57

 or type 2 diabetes.
58

 Third, Dickson et al. 

recently proposed the synthetic association model in which the association of a common non-

functional SNP with a disease may be the result of several disease-causing rare variants that have 

stronger effects and are tagged by the common SNPs.
59

 Although the synthetic association 

hypothesis has been validated for specific SNPs associated with hearing loss, sickle cell anemia 

or Crohn’s disease,
59,60

 it is unlikely to explain most of the associations between common 

variants and complex traits identified through GWAS.
60,61

 In fact, CDCV and CDRV models are 

complementary, and there is a growing consensus that multifactorial diseases may result from a 

combination of rare and common risk variants.
62,63

 

Identification of disease predisposing genetic variants: study designs  

Different study designs can be used to identify disease-associated genetic variants in 

different contexts. Case-control and prospective cohort studies commonly used in classical 
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epidemiology are also applied to genetic epidemiology. A case-control study recruits two groups 

of individuals who are diagnosed with (cases) or without (controls) a disease and determines the 

risk of being affected depending on different genotypes. This enables researchers to identify 

genes responsible for a disease (especially a less-common disease) in a time- and cost-efficient 

way, because adequate sample size is required to reach sufficient power to detect modest genetic 

effects. The major weaknesses of a case-control design are biases brought up by the retrospective 

recalls of exposures and misclassification of cases and controls.
3,64

 However, such biases are not 

a significant concern in a genetic association study because the genotypes (exposures) of 

individuals does not change with time.
65

 However, when confounding factors of some exposures 

or gene-environment interactions are assessed, considerations to such biases are still relevant. 

Since genetic associations are sensitive to population stratification between cases and controls, 

individuals in both groups should come from the same population.
66

 In some case-control 

studies, an enrichment sampling strategy may be applied to increase power to detect a novel 

genetic variant.
67

 Such a strategy increases power but usually overestimates the relative risk. 

Therefore, it is necessary to replicate in a population-based sample or make a conclusion based 

on a specific group of people.  

In a prospective cohort study, individuals without the disease at baseline are followed for 

a period of time and then the associations between genotypes and the incident disease status are 

assessed at the end of the study. Because the disease has not yet presented during sampling, it 

allows the researchers to control the potential selection bias and minimize the misclassification 

errors as well. This is why cohort studies are considered the gold standard for both classical and 

genetic epidemiology studies, but this is with the sacrifice of time and cost. For this reason, case-

control studies are more popular in genetic epidemiology. An alternative study design, the nested 
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case-control study, collects cases in a defined cohort and selects a specific number of controls 

among those who have not developed the disease yet at the time of assessment.
68

 Such an 

approach shows its unique value in gene-environment interaction association studies because it 

increases the measurement accuracy of environmental exposures which is essential to increase 

statistical power to detect interactions.
64,69

   

Population-based designs are desirable in genetic epidemiology but they require larger 

sample sizes than case-control designs to reach the same statistical power, the latter being 

enriched in a greater proportion of cases.
70

 This limitation can become critical if expensive 

technologies are used (e.g. genome-wide DNA arrays, whole genome sequencing).  

Family-based designs are also widely used in genetic epidemiology, which are ideal to 

assess parental imprinting effects or in haplotype studies (the reconstruction of the haplotype 

phase is improved by the availability of parental genotypes).
71

 A case-parent triad design which 

consists of one affected offspring and the two parents in each family is commonly used. Given 

the same power, type I error threshold and risk allele frequency, the number of trios in family-

based study is the same as the pairs in a case-control study, signifying 50% more individuals and 

50% increased genotyping or sequencing costs are needed. For example, if the power is 90%, 

using two-sided P-value of 0.001 and an allele frequency of 20% in the control group, 3731 trios 

will be requested to detect an odds ratio of 1.20 in family-based design and 3731 pairs of case 

and control in a case-control study, representing 50% more participants. Case-parent triad design 

is also used to confirm an association from a case-control study because it is robust to population 

stratification. However, it is not well-adapted to late-onset diseases due to the difficulty or 

unavailability of DNA collection in parents.
72

 There are also other family-based matching 

designs and corresponding statistical methods.
73

 The main limitations are the lack of power, 
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especially if the effect sizes are small, difficulties in recruiting required number of samples and 

the generalization of the discoveries from family-based studies to general populations.
74,75

  

As mentioned above, the choice of an appropriate control is critical to conduct a valid 

case-control study. The case-only study is one of the designs which have no controls involved. 

As well explained by Khoury et al., this design is especially efficient in the context of gene-

environment interaction studies when the assumption that the tested genotype and environmental 

exposure are independent in a given population is met 
76,77

. Case-only studies can only examines 

the departure from a multiplicative interaction model rather than an additive interaction model, 

which is also less accepted by the scientific community. Although the case-only study design 

provides better estimation and needs a smaller sample size than traditional case-control design, it 

also may increase type I error if the assumption is not true.
77,78

 In addition to gene-environment 

interactions, it has also been used in gene-gene interaction and pharmacogenetic studies.
79,80

 

Pharmacogenetic interaction is a special type of gene-environment interaction and is designed to 

identify genetic variants which predict response to treatment. When case-only study design is 

applied, the assumption that there is no correlation between genetic variants and treatment 

assignment must been examined. Thus, a case-only design nested in a randomized controlled 

trial (RCT) provides an ideal model for pharmacogenetic studies in which treatment assignment 

is random and unrelated to genotypes.
80

     

How do we get the genetic information? 

DNA extraction 

Adequate quantity and quality of DNA from a large number of individuals are 

prerequisites for a successful genetic epidemiology study, both of which depend on the samples 
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collected and DNA extraction. The samples stored in the Biobank of study centres may be buffy 

coat (mainly blood leukocytes), saliva (mainly buccal cells) or tissue biopsies. The buffy coat is 

most commonly used, but saliva is getting more and more popular because of its non-invasive 

nature and stability at room temperature. Modern DNA extraction methods are fast, non-toxic 

and reach high yields. A general DNA extraction procedure consists of cell lysis by alkaline, 

protein removal by salt precipitation and DNA recovery by ethanol precipitation.
81

 Extracted 

DNA is dissolved in appropriate buffer and stored in small aliquots at -70°C for long-term 

storage, but repeated freezing and thawing should be avoided.  

Genotyping 

Single nucleotide polymorphisms (SNPs) represent more than 90% of the entire genomic 

variants. SNPs have been initially detected by direct sequencing and genotyping of 270 

individuals in the context of the Human Genome Project and HapMap Project and more recently 

through the 1000 Genomes Project. There are over 38 million validated human SNPs in the 

dbSNP database (dbSNP Build 137) (https://www.ncbi.nlm.nih.gov/SNP/). In the past two 

decades, many genotyping principles have been developed, with most of them assuming a bi-

allelic feature of most SNPs in human. The commonly used approaches include restriction 

fragment length polymorphism (RFLP), differential  hybridization (TaqMan), allele-specific 

primer extension (SNaPshot, SNPstream, pyrosequencing), allele-specific oligonucleotide 

ligation (Applied Biosystems SNPlex), allele-specific extension (Illumina Omni Whole-Genome 

Arrays) and single-base extension (Affymetrix 6.0) which can be detected by mass spectrometry 

(Sequenom MassArray), fluorescent light (TaqMan, Applied Biosystems), bioluminescent light, 

electrophoresis or high-resolution melting curves (Roche Applied Sciences LightTyper).
82,83

 

Generally speaking, all these methods are performed in two different formats: homogeneous 

https://www.ncbi.nlm.nih.gov/SNP/
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reactions (in solution) and heterogeneous reactions (in solution and a solid phase such as a 

microtiter well plate, latex beads, a glass slide, or a silicon chip). The former has limited 

capability of multiplexing which is to examine more than one SNP at a time; while the latter one 

is flexible in multiplexing ranging from a few to a hundred to several millions SNPs. Because of 

their intrinsic characteristics, each genotyping method has unique application and multiplexing 

capability. For examples, TaqMan SNP Genotyping Assays (Applied Biosystems) identify the 

genotypes of single SNP at a time with great precision and is widely used in candidate-gene 

association and replication studies even with large sample size.
84

 The Sequenom MassArray uses 

a single-base primer extension genotyping method followed by distinguishing DNA base by 

molecular weight. It has high resolution but moderate multiplexing, and it is appropriate for 

small number of SNPs.
85

 The more recent genome-wide genotyping arrays can accommodate up 

to 4.8 million genetic markers, including single nucleotide polymorphisms (SNPs) and probes for 

the detection of copy number variations (CNV). Therefore, some platforms work better for single 

SNPs or a few targeted SNPs in many individuals, some are suitable for small to moderate 

number (hundreds to thousands) of SNPs on a few subjects at one time, and others are the best 

choice for several millions of SNPs on one subject at one time, depending on the aim and design 

of a particular study. Customized design may also be applied to genotyping on a single SNP or 

moderate number of SNPs. More than 4.5 million predesigned probes are available to 

customized uses with TaqMan genotyping.
83

 Table 1 gives a simple guideline on how to choose 

an appropriate genotyping platform, and the updated capacity of each platform is always 

available on the commercial websites. 

Sequencing 
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Sequencing is a method to determine the exact sequence of nucleotides from a fragment 

of DNA or the whole genome. It not only examines the presence of the bi-allelic variants 

reported in databases, but also provides information on all possible polymorphisms (including 

those with 3 or 4 alleles). Sequencing is the ideal method to characterize the sequence of a new 

genome or to identify rare genetic variants not reported in SNP databases. Due to its current cost, 

sequencing has not yet been an efficient and economical way to genotype SNPs.  Sanger 

sequencing (the first generation sequencing method), which was described in 1977,
86

 

experienced many technical revolutions and eventually developed into today’s automated Sanger 

sequencing.
87,88

 The completion of the Human Genome Project led to tremendous improvements 

in the Sanger sequencing method, including the development of whole-genome shotgun 

sequencing and a parallel sequencing initiative of the human genome by the company Celera 

Genomics.
89

 However, Sanger sequencing is still expensive and laborious, and faster and more 

affordable methods to sequence DNA were in great demand from broad research interests such 

as variant association studies, comparative genomics, population evolution and clinical 

diagnostics. High-throughput next generation sequencing (NGS), first launched in 2005, involves 

“massively parallel” sequencing and offers to sequence up to hundreds of millions of DNA 

fragments in a single platform. It cost $2.7 billion and 12 years to complete the Human Genome 

Project with Sanger sequencing, but it is now possible to obtain a personal whole-genome 

sequence at a cost of $1,000.
90

  

Currently the DNA polymerase-dependent sequencing strategies are widespread on the 

market and can be classified as single nucleotide addition (SNA), cyclic reversible termination 

(CRT) and real-time sequencing. Here we will introduce three major platforms which are 

commercially available, in combination with their unique sequencing principles (Table 4). 
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Roche/454 was first developed NGS, using “pyrosequencing” technique of DNA.
91,92

 The 

current Roche/454 GS FLX+ Sequencer is able to produce 700 Mb of sequence with 99.997% 

accuracy for single reads of 1,000 bases in length (http://454.com/products/gs-flx-

system/index.asp).  

The second NGS approach is the Illumina/Solexa Genome Analyzer which currently 

dominates the market. The capacity of the newest model generates up to 600 Gb of bases per run 

with a read length of about 100 bases (http://www.illumina.com/technology/solexatechnology. 

ilmn). This is less than Roche/454 due to less efficient incorporation of modified nucleotides.   

Another NGS system is Applied Biosystems Supported Oligonucleotide Ligation and 

Detection (SOLiD) sequencer based on sequencing by ligation 
93

. The complicated process is 

well illustrated in Metzker’s paper.
92

 SOLiD systems have two independent flow cells and allow 

two completely different experiments to be run at the same time. The updated SOLiD system can 

yield 320 Gb of sequence per run with a 99.99% accuracy and a read length of 50-75 bases 

(http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Sequencing-

/NextGenerationSequencing/).  

Recently, the novel sequencing technology ION Torrent arose on the market. It does not 

need any modified nucleotides. Its chemistry rationale is very simple. During the process of 

DNA synthesis, the incorporation of each dNTP causes the release of a hydrogen ion. The 

hydrogen ion changes pH in the solution, which can be detected by an ion-sensitive field-effect 

transistor (ISFET) detector.
94

 This method enables a fast, accurate, inexpensive, and simple 

massively parallel sequencing. Ion Personal Genome Machine (PGM) and Ion Proton sequencers 

load amplified DNA fragments into micro wells of a high-density Ion chip to perform 

sequencing. The changed pH can be detected by an ion sensitive layer beneath the wells and 

http://www.illumina.com/technology/solexatechnology.%20ilmn
http://www.illumina.com/technology/solexatechnology.%20ilmn
http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Sequencing-/NextGenerationSequencing/
http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Sequencing-/NextGenerationSequencing/
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converted into voltage changes. The change in voltage is proportional to the type and number of 

nucleotides incorporated and recorded. These smaller and cheaper sequencers can produce up to 

2 Gb output per run with a read length of 200-400 bases.       

In addition to the strategies discussed above, many other technologies are under 

development and all the methods will continue to compete and improve.
88

 Currently, it is not 

easy to predict which approach will be the winner of the future sequencing market. NGS is 

certainly another ground-breaking revolution in biology and medicine after the completion of the 

Human Genome Project, making personal whole-genome studies more than just a dream. The 

1000 Genomes Project has used Illumina/Solexa and Roche/454 platforms to sequence whole 

genomes and has validated up to 38 million SNPs, 1.4 million short insertions and deletions, and 

more than 14,000 larger deletions.
95

 Whole-genome sequencing plays a unique role in facilitating 

a deeper and broader understanding of the spectrum of genetic variants and their pathogenesis in 

complex diseases, clinical diagnosis and personalized health decision-making. It will eventually 

come into daily practice in the near future; however, current cost and analytical challenges limit 

its applicability.
90,96

 An alternative solution to this may be to apply NGS to target specific 

sequences of interest, for example, whole-exome sequencing which sequences the entire protein-

coding genes. In spite of constituting approximately 1% of the human genome, protein-coding 

regions include 85% of mutations associated with Mendelian diseases.
97

 Meanwhile, non-

synonymous variants predict with a high likelihood a functional change.
98

 As such, the whole-

exome is a relevant subset of the genome to search for genetic variants with large effect sizes and 

has been used to dissect the genetic architectures of Mendelian and complex disorders.
99,100

 

Exome sequencing by NGS, in conjunction with developed strategies in study design and 

analytic methods, has had a great success in identifying causal alleles for several dozen 
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Mendelian disorders 
99

. Although it is more challenging, whole-exome sequencing has also been 

an effective strategy in identifying coding variants associated with complex diseases such as 

autism spectrum disorders and schizophrenia.
101-103

 Compared to whole-genome sequencing, 

whole-exome sequencing is currently a more widely accepted strategy to search for rare variants 

because of its cost-effectiveness, the simpler data analysis and interpretation.  

Gene identification strategies  

The identification of genes responsible for Mendelian and complex diseases may enable a 

better understanding of their pathology, provide efficient molecular targets for innovative 

therapeutic drugs, and help to better predict disease risk in populations for targeted prevention. In 

the past decade, a remarkable progress has been made in the journey of discovering disease-

causing genes. However, more than 30% of the underlying genes leading to Mendelian disorders 

are still unknown, and the identified genetic variants to complex diseases account for only a 

small portion of heritability. In order to pursue gene identification efforts, traditional and novel 

gene identification strategies are introduced below.    

Genetic linkage studies  

Linkage analysis aims to map the location of a disease-causing loci by looking for genetic 

markers that co-segregate with the disease within pedigrees, though the disease causing allele has 

not to be directly genotyped.
75

 Linkage is based on the facts that recombination occurs between 

homologous chromosomes during meiosis and recombination likelihood increases with the 

distance between two loci, a random probability from zero to 0.5. When a marker allele is 

inherited along with the disease in pedigrees, it strongly suggests that the disease-causing locus 

is located in the vicinity of the genetic marker on the chromosome. A set of 400 highly-
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informative microsatellite markers (repeated sequences of DNA fragments less than 10 bp 
104

) 

equally distributed across the genome is generally selected in a whole-genome linkage analysis. 

More recently, a set of 6,000-10,000 markers have been proposed by different companies to 

perform linkage analysis.   

Different linkage approaches are chosen depending on the type of disease (monogenic or 

polygenic) or trait (dichotomous or quantitative). Parametric or model-based linkage analysis is 

used if the disease follows one of the typical Mendelian inheritance modes. Results of linkage 

analysis are often reported as logarithm of the odds (LOD) score which is a function of the 

parameter θ.  θ is the probability of a recombination event (recombination fraction) between a 

genetic marker and the disease locus.
75

 LOD score analysis is equivalent to likelihood ratio test, 

assessing the null hypothesis H0 of θ=0.5 (absence of linkage) versus alternative hypothesis H1 

of θ<0.5 (presence of linkage). In the simplest scenario with a known inheritance model, 

complete penetrance, no de novo mutations and no phenocopies (different environmental 

exposures and genetic variants lead to the same disease), θ is estimated by the maximum 

likelihood method, thus giving rise to a maximum LOD score (Table 2). The higher the LOD 

score is, the stronger the evidence of linkage will be.  Historically, a rule of thumb states that a 

LOD score above 3 is sufficient to claim a significant linkage, based on the critical value from 

Morton.
104

 An even higher LOD score of 3.3 is required to ensure the genome-wide type I error 

of 0.05. Other complicated model-based cases with incomplete penetrance, phenocopies and 

mutations, and more relaxed LOD score thresholds are discussed in detail by Ziegler and Konig. 

30
 Linkage analysis has successfully mapped genes responsible for Mendelian disorders such as 

the Wolfram syndrome on the short arm of chromosome 4.
105,106
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Little is known about loci predisposing to complex diseases, and attributing a clear 

Mendelian pattern of inheritance within families for such a locus is impossible. As a result, 

model-based linkage analyses do not apply to complex trait linkage analyses and model-free 

linkage analyses have been developed. The fundamental rationale underlying model-free linkage 

analysis is that the genetic resemblance in the affected sibling pairs is more similar in certain 

regions of the genome if the disease is heritable. Therefore, the statistical tests assess whether the 

observed degree of genotypic similarity exceeds the expected value. Instead of measuring 

recombinant fraction of θ, genotypic similarity is measured by the identical by descent (IBD) 

value which refers to the number of alleles inherited from the same common ancestor in a pair of 

relatives. The IBD values can be 0, 1, or 2. If the distribution of IBD values is determined, 

model-free linkage analysis examines whether allele sharing in affected siblings is different from 

the expected distribution. More generally, it tests whether the mean number of IBD shared alleles 

departs from the expected value of 1 in sibling pairs.
107

 Excess of IBD sharing can also be tested 

by other methods such as the maximum non-parametric LOD score test and Wald test 
30

 which 

successfully identified the HLA region associated with type I diabetes.
108

  

Linkage studies also apply to quantitative traits such as cholesterol or glucose level. The 

approaches for model-free linkage analysis of quantitative traits include the Haseman-Elston, 

variance component methods among others.
30

 A region between markers D9S925 and D9S741 

on chromosome 9p associated with high-density lipoprotein-cholesterol concentration in 

Mexican Americans was initially identified with variance component analysis.
109

  However, true 

linkage has been hard to find in complex trait studies, likely due to the modest effect sizes of 

genetic variants, allelic heterogeneity, or gene by environment interactions in complex diseases. 

25,110
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Homozygosity mapping  

Homozygosity mapping is a powerful tool to map genes responsible for recessive 

Mendelian disorders in consanguineous pedigrees.
111

 With this approach less than a dozen of 

affected individuals are needed and more importantly no additional family members are required 

to identity a disease-causing locus. These advantages render it possible to map disease loci of 

many rare recessive disorders when it is impossible to collect adequate number of families as 

linkage analysis usually requires. The principle underlying this approach is that if the offspring 

of a consanguineous marriage (for example sibling, first-cousin, and second-cousin) is affected 

with a recessive inherited disease, a large region spanning the disease locus is homozygous by 

decent 
111

. For instance, a child of a consanguineous couple has a coefficient of inbreeding F of 

1/4, 1/16, 1/64 for sibling, first-cousin, and second cousin, respectively. Assuming the frequency 

of the disease allele in this population is q, the probability of homozygosity by decent at the 

disease locus is α= F*q/[F*q+(1-F)*q
2
]. If q is far smaller than F, α is close to 1, indicating the 

greatest chance to be homozygous. The comparison of homozygous regions in several affected 

family members, along with traditional linkage analysis and a sufficiently dense genetic map, 

can narrow down the location of a gene underlying a recessive disease. Low-density restriction 

fragment length polymorphism (RFLP), microsatellite linkage maps, and more recently high-

density SNP arrays have been used in homozygosity mapping gene identification. For instance, 

the use of a high-density GeneChip containing 57,244 SNPs identified the linked region for 

autosomal recessive Bardet-Biedl syndrome which was initially missed by linkage studies with 

400 highly informative microsatellites in a small Israeli Bedouin consanguineous pedigree.
112
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Candidate gene studies 

This approach is hypothesis-driven and has been widely used in genetic association 

studies before the advent of GWAS. Candidate genes are selected based on prior knowledge of 

their potential role on the trait of interest from in vivo, in vitro or in silico studies in animals or 

humans.
113,114

 One important advantage of the candidate gene approach is to restrict the number 

of hypotheses tested and to relax the multiple testing correction thresholds in comparison with 

genome-wide approaches. One limitation of the candidate gene approach is its dependence on the 

level of current knowledge of a specific gene. The success rate of candidate gene studies has 

been low, in part due to the limited understanding of the molecular and genetic mechanisms in 

complex diseases.
66

 Selecting strong candidate genes on the basis of converging arguments from 

different research disciplines has been more successful, as illustrated by the identification of 

SNPs in APOE4 associated with Alzheimer disease (AD).
115

. APOE4 gene was indeed located on 

the proximal long arm of chromosome 19, in a region of linkage for late-onset AD.
116

 In 

addition, apolipoprotein E (ApoE) was a key protein related to AD.
115

  

Genome-wide association studies  

Hypothesis-free GWAS exhaustively test the genotype-phenotype associations across up 

to 4.8 million genetic markers and represent to date the most efficient way to identify common 

variants (MAF> 1%) associated with complex diseases.
117

 Along with the advanced high-

throughput technology, more and more SNPs and copy number variants (CNVs) are validated by 

the 1000 Genomes Project, which enable the current genotyping arrays to include rare variants 

and CNVs in addition to common variants., GWAS have identified several risk variants 

associated with bipolar disorder 
118

 or schizophrenia.
119

 However, there are two major limitations 
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of GWAS. First, a very stringent level of significance is required to adjust for multiple testing. 

Second, most of the statistically significant associations lack a biological support.
120-122

  

Whole-genome/whole-exome sequencing 

Whole-genome/whole-exome sequencing strategies are currently efficiently applied to 

identify rare variants associated with Mendelian or complex traits. Whole-genome/whole-exome 

sequencing is not just an alternative way for genotyping as it also detects novel mutations not 

catalogued in SNP databases and additional alleles beyond bi-alleles. The biggest challenge in 

whole-genome/whole-exome sequencing experiments is how to analyze a huge sequencing 

dataset to identify the novel causal genes for either Mendelian or complex diseases.
123

 Usually, 

20,000 to 30,000 variants are found through each whole-exome run. Unreliable variants are first 

removed by data quality control procedures (e.g. read coverage less than five, inconsistency 

among the reads). If the investigators focus their attention on potentially deleterious rare coding 

variants, variants located outside the coding regions and synonymous coding variants are filtered 

out. Then the most important step with substantial reduction of the number of variants is to 

exclude known polymorphisms in human population based on appropriate databases.
124

 At this 

step, approximately 150-500 non-synonymous or splicing variants remain to be potentially 

causal variants. Additional filtering methods may include in silico functional evaluation of 

mutations, candidate gene, linkage, homozygosity mapping, de novo and overlap strategies.
123

 

Becker et al. have successfully used homozygosity mapping, in combination with an exome 

sequencing strategy, to elucidate the genetic basis of osteogenesis imperfecta.
125

 They found 318 

non-synonymous variants after several filtering strategies. Among them, 17 were autosomal 

homozygous, but only three were in the regions with the larger stretch of homozygous loci. In 

combination with overlap strategy and functional testing, truncating mutations in gene 
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SERPINF1 were identified as causal loci leading to autosomal-recessive osteogenesis 

imperfecta.
125

   

How to interpret genetic associations in complex disease? 

Power of a study  

In genetic epidemiology, most genetic variants confer small to modest effect sizes with 

an odds ratio (OR) lower than 1.5, indicating that a large sample size is needed in a population-

based association study. For example, if the risk allele frequency in controls is 20%, 1763 cases 

and 1763 controls are needed to detect an OR of 1.3 at a type I error level of 0.001 (two-sided) 

and power of 90%.
3
 The requirement for such large sample sizes can be difficult to achieve by 

single teams and as a result researchers have to pool samples in large-scale international 

consortium initiatives to reach an adequate power. These power estimations also imply that many 

previously published case-control studies were underpowered. This may explain why many 

promising associations were never replicated.
126

 Replication of an association study in an 

independent sample is recommended. The sample size for the replication study should take into 

account of the risk of overestimation of the true effect in the initial sample (a phenomenon called 

the Winner’s curse effect).
127,128

. Statistical power may be even more a concern in genetic 

association studies involving rare variants, and the desired number of individuals may not be 

feasible in practice.
129

 To deal with these issues, researchers select designs where additional 

copies of the variant of interest can be sampled (perhaps in large pedigrees or in a founder 

population). They also pool together variants likely to have an impact on the function of a 

specific gene and compare the global distribution of these variants in case control designs.
130

 

Data quality control (QC) 
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Genotyping errors cause genotype misclassification and have the potential risk of 

decreased power, leading to false associations.
131

 The procedures to remove the uncertain 

individuals and DNA markers are critical steps before statistical analysis of associations. It is 

recommended to conduct QC on the individuals before QC on the DNA markers.
132

 Individuals 

with discordant sex information, inaccurate phenotypic data, or a conflicting ethnicity between 

self-reported and genetically determined should be identified and removed. Individuals with low 

DNA quality (e.g. displaying >10% missing genotypes in a genotyping array) should also be 

taken out. At the genetic marker level, the genotyping method should be reliable and the 

laboratory protocols should be standard. The concordance rate of duplicated samples must be 

higher than 99% (usually > 10% of the entire sample are re-genotyped with the same or a 

different genotyping method). SNPs with a genotyping call rate (percentage of successfully 

genotyped individuals) <95%, a significant deviation from a Hardy-Weinberg equilibrium 

(HWE) test 
133

 (P HWE < 0.005 in the control group), a significant difference in the missing 

genotype rates between cases and controls, or a very low allele frequency should be filtered out. 

In a family-based study, an additional check of Mendelian inconsistencies should be conducted 

.
30

  

According to the workflow of NGS, standard protocols for QC should be developed and 

implemented at each step including DNA extraction, targeted gene enrichment, library 

preparation and sequencing. Current NGS technologies have higher raw per-base error rates than 

Sanger sequencing.
134

 However, this shortcoming can be compensated to some extent by 

increasing the coverage depth of sequencing, checking the presence of a mutation in related 

individuals or validating the findings by Sanger sequencing.
135,136

 False-positive association may 

also result from a difference of coverage depth between cases and control groups.
137
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Statistical analysis  

A genetic model (i.e., dominant, additive, recessive) needs to be defined prior to any 

genotype-phenotype association study. If the underlying genetic model is unknown, an additive 

model is frequently assumed, but testing the three models is more informative. Given two alleles 

A and B (B is risk allele) and three genotypes AA, AB and BB at a locus, AA is coded as 0, AB 

as 1 and BB as 2, and a 2×3 contingency table is created under an additive model as illustrated in 

the table 3.  In the simplest scenario in which cases and controls are matched for confounding 

factors (e.g. age, sex), the Cochran-Armitage test is used to test the association between the allele 

B and a trait, which is similar to Peason’s χ2 test but taking into account the order of risk of the 

three genotypes (AA<AB<BB) 
138

. Meanwhile, the ORs are often calculated to provide a 

measure of the strength of the associations. If individuals have one risk allele B, the risk of 

having the disease is OR1=(b/a)/(e/d)=bd/ae times higher than those who has no risk allele B; 

and if individuals have two copies of B, the risk of being affected is OR2=(c/a)/(f/d)=cd/af times 

higher than those who has no B. If the outcome is binary (presence or absence of the disease), a 

simple logistic regression can also be applied. The exponential of the regression coefficient 

equals to the increased OR with per additional B. If the outcome is a continuous (or quantitative) 

variable, a linear regression model will be used. The beta coefficient from a linear regression 

analysis means how much increase in the outcome for each additional risk allele B. Compared to 

Cochran-Armitage and Peason’s χ2 tests, the advantage of using a linear or logistic regression is 

that they allow for the adjustment for the confounding factors such as age, sex and including of 

gene × gene and gene × environment interaction terms into the model.
139

 When the outcome is a 

count/rate or a time-to-events, a Poisson regression model or a Cox proportional hazard model 

will be chosen, respectively. As a result, relative risk (RR) or hazard ratio (HR) will be 
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estimated.
140

 Sophisticated methods such as the kernel association test have been recently 

developed to assess the association of groups of rare variants with a disease or a quantitative 

trait.
141,142

  

From the perspective of statistics, GWAS analysis is just an extension of the single-SNP 

analysis and covariates can also be adjusted in linear or logistic regression models. One issue is 

that most of the significant associations at the nominal level (P < 0.05) are likely to be spurious 

in the context of the many tests performed in GWAS 
143

. There is no universal standard to obtain 

a critical value for adjustment; nevertheless, the Bonferroni correction, Bayesian procedures and 

false-discovery rate (FDR) are widely used to define an appropriate threshold of significance 

level accounting for multiple testing. The Bonferroni correction considers a simple setting in 

which the type I error α level is 0.05 and n independent SNPs are tested, the adjusted 

significance level α’ should meet α=1-(1-α’)
n
 and then α’≈α/n. If 1 million SNPs are 

independently tested whether they are associated with a trait in a GWAS context, the Bonferroni-

adjusted threshold will be 0.05 / 1,000,000 = 5 ×10
-8

, which is a genome-wide significance level 

frequently reported in the GWAS literature.
144

 The Bonferroni correction is overly conservative 

because many SNPs being tested are in linkage disequilibrium and tightly correlated each other. 

The Bayesian approach is based on the prior probability of true positive association from 

previous evidence.
145

 As a result, the P-values are far less stringent and the thresholds are 

different from study to study and from researcher to researcher. The FDR method measures the 

false rate of the rejected null hypotheses (detected associations) rather than focusing on the 

presence of at least one error, resulting in an increase in power.
146,147

 A FDR of 0.05 is usually 

adapted and indicates that 5% of the detected associations are random results. However, in 



                         Ph.D Thesis – A. Li; McMaster University - Health Research Methodology 

 

216 
 

GWAS, because the majority of the null hypotheses are true, FDR does not provide a substantial 

advantage in comparison with the Bonferroni correction.  

Multiple testing presents new challenges in whole-exome and whole-genome sequencing 

experiments due to the massive amount of genetic data generated by these methods. Because 

there are many rare variants which are expected to have larger effect sizes and more severe 

functional impacts, it is not practical to use the same threshold across all the variants. Several 

recommendations are proposed and different analytic packages are in implementation.
130,148

 

Some authors suggest gene-based or pathway-based tests,
130

 while others recommend different 

thresholds would be generated according to cut-offs derived from different allele frequencies. 

Probably, a permutation-based approach is more accurate to handle multiple testing by naturally 

taking into account allele frequency and correlated alleles.
100

  

Most genetic association studies focus on the main effects of variants contributing to the 

development of a disease. However, predisposing SNPs identified to date only explain a small 

portion of the heritability of many complex diseases. Gene by gene (G×G) and gene by 

environment (G×E) interactions are critical components of the architecture of complex traits and 

have been proposed to explain at least a fraction of the “missing heritability”. 
47,54

 May a variant 

missed by a classical GWAS have an increased effect in presence of another genetic variant or in 

a specific environment? This hypothesis can be tested by incorporating interaction terms into a 

SNP-based linear or logistic regression model 
65

. When a systematic search for G×G epistatic 

interactions is undertaken, the power dramatically decreases due to the numerous combinations 

of any two SNP tests. If two SNPs interactions are systematically investigated in a first 

generation GWAS (e.g. 300,000 SNPs), 100 billion epistasis tests will be performed, resulting in 

an exceptionally stringent Bonferroni-corrected significance threshold of 5 × 10
-13

.
149

 As a result, 
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the few epistasis studies using GWAS data published up to date failed to identify G×G 

interactions significant after multiple testing correction.
150,151

 Compared to an epistatic study, a 

G×E interaction study is more feasible in the context of GWAS, although an empirical rule states 

that the samples needed are four times larger than those needed for studying the main effect.
152

 

Currently, three classical methods are used to identify G×E interactions.
153

 The first tests G×E 

interactions using biologic candidate genes and/or GWAS validated loci. This is currently the 

more commonly used approach in literature. The second approach is the hypothesis-free 

Genome-Environment Wide Interaction Study (GEWIS), which systematically tests G×E 

interactions across the genome. Multiple testing decreases the statistical power in GEWIS. The 

third method of variance prioritization (VP) prioritizes SNPs on the basis of heterogeneity in the 

variance of a quantitative trait among three genotypes of a bi-allelic SNP.
154

 It selects a subset of 

SNPs for G×E interaction tests, thus increasing the chance to detect potential associations missed 

by GEWIS.   

All the commonly used statistical software (such as SAS, SPSS or STAT etc) can be used 

to analyze genetic data. PLINK 
155

 is a free and very efficient tool to deal with genetic quality 

control and data analysis, especially for GWAS data. R software is more and more used in 

genetic epidemiology as many packages with specific genetic functions are programmed and it is 

free online.    

Meta-analysis 

An individual linkage or association study is rarely conclusive in genetic epidemiology; 

therefore replication studies are always required. Following the same rules as in traditional 

clinical epidemiology, meta-analysis is also applied to genetic epidemiology. Meta-analysis 

combines relevant but independent studies and increases the power of the analysis and the 
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precision of the effect size by increasing sample size, thus providing more precise evidence of 

association.
156

 Usually, more weight is assigned in the meta-analysis to studies displaying a 

larger sample size or a greater event rate. Both the sample size and event rate can be reflected in 

the variance estimate. Therefore, a usual way to assign a weight to individual studies in a meta-

analysis is to use inverse variance, even though alternative methods exist (e.g. Mantel-Haenszel 

test). The estimation of the degree of between-study heterogeneity is important in the 

interpretation of meta-analyses.
157

 Between-study heterogeneity is measured by I
2
 which is a 

modified Cochran’s Q statistic.
158

 Because this test has a low power, a p value of less than 0.1 is 

considered as significant heterogeneity. Usually, I
2
 values of 25%, 50% and 75% represent low, 

moderate and high levels of between-study heterogeneity, respectively. If heterogeneity exists, 

subgroup or sensitivity analysis may further be performed to assess the causes of such 

heterogeneity (e.g. study ascertainment). New global fixed-effect (FE) and random-effects (RE) 

meta-analytic methods have been recently proposed to deal with heterogeneity between 

studies.
159

 The recent emergence of international consortiums and the conduct of large-scale 

meta-analyses of genetic association studies have revolutionized the field and have led to an 

important yield of novel disease-predisposing loci. For instance, a recent meta-analysis of the 5, 

10-methylenetetrahydrofolate reductase (MTHFR) gene variant C677T in 29,502 subjects has 

confirmed its associations with schizophrenia, bipolar disorder and unipolar depressive disorder 

and suggests a shared genetic susceptibility among distinct psychiatric disorders.
160

 Numbers 

matter but do not always lead to success. Recently, the psychiatric GWAS consortium conducted 

a mega-analysis for major depressive disorder in 18, 759 subjects followed by a replication in 

57,478 samples. They did not find genome-wide significant association signal and concluded that 
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the sample was still underpowered to identify common variants associated with major 

depression.
161

 

Conclusions 

Genetic epidemiology is a relatively recent but fascinating research field in which 

expertise from different disciplines converge to elucidate genetic factors responsible for 

Mendelian and complex diseases. We comprehensively reviewed the key concepts and methods 

in genetic epidemiology including single gene disorders and complex diseases, study design 

implementation, genotyping and sequencing strategies, gene identification strategies, data 

analysis and data interpretation. We hope this review will help non-geneticist clinicians critically 

appraise a genetic association study and understand what makes a good genetic association 

study. With the decrease in sequencing costs, personalized genome sequencing will eventually 

become an instrument of common medical practice. In the next paper, we will review the past, 

current and coming applications of genetic knowledge in medical practice, and we will 

appreciate how far we are from the personalized medicine revolution.  
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Figure 1. Framework outlining the procedures, methods and study designs to identify the genetic 

determinants of common diseases    
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Figure 2. Modes of inheritance. Pedigrees with autosomal dominant inheritance (A), autosomal 

recessive inheritance (B), autosomal co-dominant inheritance (C), X-linked dominant inheritance 

(D), X-linked recessive inheritance (E).  
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Figure 3. Punnett squares of inherited traits. Punnett squares are used to predict the chance of genetic disease in children for 

parents with an increased risk. The disease-causing mutation is denoted by A and the normal gene is denoted by a. A) Autosomal 

Autosomal dominant inheritance 

X-linked dominant inheritance X-linked recessive inheritance 

Autosomal recessive inheritance 
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dominant inheritance: A mother with an autosomal dominant mutation has children with a father who is normal. They have 50% 

chance with each pregnancy of having a child (boy or girl) affected by the disease and a 50% chance having a child (boy or girl) 

unaffected. B) Autosomal recessive inheritance: A mother with an autosomal mutation has children with a father who also has the 

same autosomal mutation. They have 25% chance with each pregnancy of having a child (boy or girl) affected, a 50% of chance 

having a child unaffected but with the same mutation (carriers), and 25% chance having a child unaffected with normal genotypes. C) 

X-linked dominant inheritance: A mother with an X-linked mutation has children with a father who is normal.  They have 25% chance 

with each pregnancy of having a girl affected by the disease and a 25% chance having a boy affected. The rest of the children are 

unaffected with normal genotypes. D) X-linked recessive inheritance: A mother with an X-linked mutation has children with a father 

who also has a copy of X-linked mutation. They have 25% chance with each pregnancy of having a girl affected by the disease and a 

25% chance having a boy affected. The other half of the girls are unaffected but are the mutant carriers and the other half of the boys 

are unaffected with normal genotypes.    
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Table 1. Genotyping methods and study designs 

Number of SNPs to be 

genotyped 

Study designs Genotyping methods 

1-10 Candidate gene studies 

Replication studies 

TaqMan 

LightTyper 

Pyrosequencing 

1-500 Replication studies 

Linkage studies 

Fine-mapping studies 

SNaPshot 

SNPlex 

Sequenom MassARRAY 

Illumina Golden Gate with 

BeadXpress readout 

384-3,072 Linkage studies 

Fine-mapping studies 

Disease-specific SNPs  

Pathway-specific SNPs 

Illumina Golden Gate with 

iScan readout 

6,000-70,000 Linkage studies 

Fine-mapping studies 

Disease-specific SNPs  

Pathway-specific SNPs 

 

Illumina Infinium iSelec 

Custom Beadchip  

>500,000 

Up to 4.8 million 

GWAS (SNPs, CNVs) 

 

Illumina Omni Whole-

Genome Array 

Affymetrix 6.0 Array 
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Table 2. Measurements of familial aggregation, heritability and linkage analysis  

 Measurements Formula Thresholds 

Familial 

Aggregation 

recurrence risk ratio in 

relatives λR 
23

 

λR =prevalence of the disease in 

the relatives of the affected 

individual / prevalence of the 

disease in the general 

population 
24

 

2 
24

 

Heritability  the proportion of total 

phenotypic variability 

explained by genetic 

variance in a particular 

population 
26

  

Twin study: h
2
=2(rMZ-rDZ) 

Adoption study : h
2
=2rPO 

27
 

Population-based: (narrow- 

sense)  h
2
= variance of additive 

genetic effects/total variance of 

the observed phenotype 
26

 

There is no consensus 

on the minimum 

threshold of heritability 

needed to follow-up 

with gene identification 

program. A heritability 

estimate of 30% maybe 

considered as the 

minimum.
3
   

Linkage 

study 

LOD: logarithm of the 

odds score 
75

  
LOD(θ)=log10[Likelihood(θ̂)/L

ikelihood(θ=0.5)] 
75

 

3.3  
75

 

 

rMZ: correlation coefficient of the trait between monozygotic twins 

rDZ: correlation coefficient of the trait between dizygotic twins  

rPO: correlation coefficient of the trait between a biological parent and an adopted-away child  

θ is the probability of a recombination event (recombination fraction) between a genetic marker 

and the disease locus. Observed θ̂ can be obtained by counting recombinants and non-

recombinants when the genotypes of individuals within a family are available. 
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Table 3. A 2×3 contingency table in an additive model 

 AA AB BB 

Case a b c 

Control d e f 

 

a, b, c are the counts of individuals with genotypes of AA, AB, BB respectively in cases, and d, e, f are 

the counts of individuals with genotypes of AA, AB, BB respectively in controls. 
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Table 4. Characteristics of sequencing platforms 

Platform 
Sequencing 

technology 

Sequencing 

reaction 
Capacity 

 

Efficiency 

(bp/read) 

 

Roche/454 

Single nucleotide 

addition  

(pyrosequencing) 

Synthesis 700 MB 1,000 

Illumina/Solexa 

Genome Analyzer 

Cyclic reversible 

termination 
Synthesis 600Gb 100 

Applied 

Biosystems/ 

(SOLiD) 

Real-time 

sequencing 
Ligation 320Gb 50-75 

Applied 

Biosystems/ION 

Torrent 

Semiconductor 

 
Synthesis 2Gb 200-400 
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SUPPLEMENTARY CHAPTER VIII: JUMP ON THE TRAIN OF PERSONALIZED 

MEDICINE: A PRIMER FOR NON-GENETICIST CLINICIANS 

PART3. CLINICAL APPLICATIONS IN THE PERSONALIZED MEDICINE AREA 

Aihua Li, David Meyre 

 

Abstract 

The rapid decline of sequencing costs brings hope that personal genome sequencing will 

become a common feature of medical practice. This series of three reviews aim to help non-

geneticist clinicians to jump into the fast-moving field of personalized genetic medicine. In the 

first two articles, we covered the fundamental concepts of molecular genetics and the 

methodologies used in genetic epidemiology. In this third article, we discuss the evolution of 

personalized medicine and illustrate the most recent success in the fields of Mendelian and 

complex human diseases. We also address the challenges that currently limit the use of 

personalized medicine to its full potential.  
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Introduction 

The observation of a familial clustering for human diseases was first reported by the 

Greek physician Hippocrates at the time of the 5
th

 century BC.
1
 He believed that hereditary 

material in all parts of the body affected health of next generation.
1
 In 1865, Gregor Mendel 

published his seminal work on the laws of Mendelian inheritance from his experiments in peas. 
2
 

In 1902, Archibald Garrod postulated that inborn errors of metabolism in humans might follow 

Mendel’s laws and described how alkaptonuria, a rare human disorder, followed a pattern of 

recessive inheritance. This was the first report linking Mendel’s laws and a human disease.
3
 

Garrod can be considered as the founder of human genetics, a field that has long been considered 

by most physicians as an esoteric academic specialty.
4
 Times have changed with the 

development of clinical genetics and more recently with the emergence of the concept of 

personalized medicine. 

Personalized medicine, also known as genomic medicine or precision medicine, 

originated with the idea of using an individual’s unique genetic make-up to assess the risk of 

developing disease, predict the course and prognosis of disease, and tailor therapeutic 

interventions accordingly.
4,5

 It was this blueprint that inspired the United States (US) National 

Research Council in 1990s to initiate the Human Genome Project.
6,7

 Completion of the Human 

Genome Project, the HapMap project and more recently the 1000 Genomes Project has resulted 

in an explosion of genetic discoveries related to human disorders.
8-10

 Since then, there has been 

marked improvement in high-throughput technologies for both genotyping and sequencing; 

which along with advances in computational biotechnology, has fostered great promise in the 

potential of personalized medicine to revolutionize how we understand, diagnose, prevent and 

treat diseases.  
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Genetic screening is an important tool to use advances in genetics and genomics to 

improve public health.
11

 However, in the first half of the 20
th

 century, many scientifically 

unsound and socially harmful policies and laws based on “perceived genetic risks”, had been 

adapted and implemented in many countries in the name of eugenics. Eugenics was coined by Sir 

Francis Galton in 1883 and he claimed that “a highly gifted race of men” could be generated by 

the process of selective breeding.
12

 Among the most famous proponents of the eugenic idea, the 

United States was the first country to take some actions. On one side, the US advocated “positive 

eugenics” to encourage reproduction among those who were presumed to hold superior gifted 

genes. On the other side, as many as 33 American states passed “negative eugenics” laws to 

promote compulsory sterilization surgeries to disabled individuals who were mentally disabled 

or ill, morally undesirable (like the prisoners), or who belonged to socially disadvantaged groups 

living on the margins of society.
13

 These laws were upheld by the US Supreme Court in 1927, 

but the “negative eugenics” movement led to more than 60,000 sterilizations across the US.
13,14

 

German politicians and scientists endorsed the Nazi “racial hygiene” eugenic movement during 

1933-1945. As a consequence of such motivation and actions, approximately 400,000 feeble 

patients were sterilized without consent and 275,000 of them were murdered by the Nazi 

“euthanasia” programs.
15-18

 Some other countries also adapted such sterilisation programs, for 

example in Sweden, Canada and Japan.
19-21

 In reaction to Nazi abuses, eugenics became almost 

universally reviled in many of the nations where it had once been popular. Scientists recognized 

the difficulty of predicting characteristics of offspring from their parents and demonstrated the 

inadequacy of simplistic theories of eugenics. The Universal Declaration of Human Rights was 

adopted by the United Nations in 1948 and affirmed, "Men and women of full age, without any 

limitation due to race, nationality or religion, have the right to marry and to found a family”.   
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The modern concept of personalized medicine aims to use personal genetic information 

to predict or diagnose a disease (through prenatal diagnosis, neonatal screening, diagnosis of 

genetic disease in children, screening prospective parents for the carrier status of specific 

disorders, prediction for a serious late-onset disease), to minimize the exposure to environmental 

risks or to assess the differentiated response to a therapeutic drug.
11,22

 In this review, we will first 

discuss how to estimate the clinical utility of genetic testing; second, illustrate the current status 

of personalized medicine with examples; third, highlight the challenges on the way towards 

personalized medicine; and last, envision the future of  personalized medicine. 

 
How to assess the clinical utility of a genetic marker 

Whereas some genetic variants have an obvious clinical utility in disease diagnosis (e.g. 

mutation F508del in the CFTR gene and cystic fibrosis 
23,24

), others genetic variants despite 

being strongly associated with diseases do not  necessarily imply a predictive value in clinical 

practice.
25

 The measurements of genetic variant’s effect sizes (odds ratio, relative risk, hazard 

ratio) commonly used in traditional epidemiology are not adequate to determine the potential 

value of a genetic marker for predicting individual risk. The efficiency of a new test is typically 

evaluated by discrimination using a receiver operating characteristic (ROC) curve
26

 or an 

alternative c statistic in survival data.
27

 The ROC curve is a plot of sensitivity or the true positive 

(the probability of a positive test among those with the disease) verse 1-specificity or the false 

positive (the possibility of a positive test among those without the disease). Each point on the 

ROC curve represents the decision criterion at a given threshold. With a specific threshold, the 

predictor values above this are classified as positive (diseased category) and those lower than this 

are classified as negative (non-diseased category). The ROC curve also shows the trade-off 
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between sensitivity and specificity. In other words, any increase in sensitivity will be 

accompanied by a decrease in specificity. The area under the curve (AUC) from the ROC 

analysis is used to assess how well the model can distinguish people who do have the disease 

from those who do not. By definition, an AUC of 0.5 indicates classification of cases and 

controls by chance and 1 designates a perfect classification. AUCs of 0.50-0.70 are considered as 

low, 0.70-0.90 are considered as moderate, and > 0.9 are considered as high.
28

 For example, in a 

study of prediction of depression in dementia in mild to moderate Alzheimer patients which is 

measured by the Cornell Scale based on signs and symptoms, an AUC of 0.91 meant that the 

probability was 91% that a randomly selected case had a higher Cornell Scale than a randomly 

selected non-case.
29,30

 This approach has been widely used to examine the clinical utility of 

common and rare genetic variants in predicting the risk of having common diseases.
31-33

 These 

results for the most part have showed that the addition of genetic variants only slightly or 

modestly improve the performance of risk prediction compared with the models with standard 

clinical risk factors. This phenomenon may be explained by the small individual effect size (odds 

ratios<1.5) of genetic variants analyzed separately and by an insufficient knowledge of disease 

predisposing genetic variants. Notably, Pepe et al., have suggested that an odds ratio of 3.0 or 

smaller may be of clinical importance in characterizing population variations in risk but may 

have little impact on the ROC curve or c statistics.
34

 In other words, a strong association between 

an outcome and a predictor does not imply that the ROC curve analysis or c statistic will give 

rise to a good estimate of discrimination. Additionally, the ROC curve and c-statistic are 

insensitive to assessing the impact of adding new markers to an existing predictive model, 

especially when there is a correlation between them.
30
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In the end, when it comes to risk factors, patients and physicians alike are interested in 

the likelihood of disease development and options for a better medical management afterwards, 

rather than the true positive rate and true negative rate if the patient has been diagnosed. This can 

be measured by calibration or reclassification, another measurement of clinical utility. If a model 

with novel predictive markers can more accurately classify individuals into higher or lower risk 

categories, it is better calibrated and will lead to a better clinical outcome. For instance, three 

independent studies performed reclassification analysis using genetic variants to predict the risks 

of cardiovascular diseases, type 2 diabetes and breast cancer.
35-37

 These studies showed various 

risk reclassification improvements from 4 to 53%. 
35-37

 For example, in Wacholder’s study, after 

the addition of 10 common genetic variants associated with breast cancer into the traditional risk 

model, the AUC increased from 58% to 61.8% which was modest; but 32.5% of patients was 

reclassified into a higher quintile, 20.4% into a lower quintile, and 47.2% remained in the same 

quintile.
37

 Thus, different therapeutic options would be applied to different subgroups and 

improved outcomes would be expected. Furthermore, whether the reclassification is correct can 

be tested using Hosmer-Lemeshow test.
38

 Based on the reclassification table, a single measure 

named net reclassification index (NRI) was proposed by Pencina et al.
39

 It examines the 

proportions moving up or down categories among cases and controls separately and NRI = 

[Pr(up|case)-Pr(down|case)]-[Pr(up|control)-Pr(down|control)]. The most advantageous feature of 

NRI over ROC curve analysis and reclassification is that the categories of up and down can be 

defined according to clinically important risk estimates. As a result NRI can detect the prediction 

of clinically significant improvement due to genetic markers. Strictly speaking, NRI is a measure 

of discrimination rather than calibration. Therefore, when clinical utility of genetic variants and 
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other molecular signatures are investigated, careful selection of relevant statistical metrics, such 

as risk reclassification and NRI, is essential.  

Current personalized medicine applications 

In the post-genomic era, the elucidation of genetic basis of human disorders is 

progressing with unprecedented rapidity. Genome-wide association studies (GWAS) have 

identified several thousand common and low-frequency single-nucleotide polymorphisms 

(SNPs) associated with human diseases. Whole-exome sequencing (WES) and whole-genome 

sequencing (WGS) have more recently led to the discovery of disease-causing rare variants. 

WES selectively sequences the coding regions and is useful to discover rare coding variants 

which usually have more severe functional consequences. WES has been successfully used to 

identify genetic determinants of both common and rare diseases.
40-42

 WES is currently cheaper 

and more commonly used than WGS.
43

 The applications of this new body of knowledge to state-

of-the-art personalized medicine are described below.  

Mendelian diseases 

Until the advent of high-throughput technology, positional cloning and candidate gene 

approach were the primary methodologies by which approximately 2,000 genes causing 

Mendelian diseases were identified.
44,45

 These genes represent the foundation on which the 

routine genetic tests that are widely used in clinical laboratories provide early diagnosis or early 

prediction. The relevance of mutations or structural variants responsible for Mendelian disorders 

is obvious in genetic tests as they have very clear effects on phenotype. The diagnosis of 

Mendelian disorders is more beneficial if efficient treatments are available. For example, 

permanent neonatal diabetes is caused by mutations in the KCNJ11 and ABCC8 genes.
46,47

 The 
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two genes encode Kir6.2 and sulfonylurea receptor 1 (SUR1), the two subunits of the  ATP-

sensitive potassium (KATP) channel, and trans-activating mutations in these genes result in a 

failure of the beta-cell KATP channel to close in response to increased intracellular ATP and 

impaired insulin secretion.
48

 Ninety percent of patients carrying a mutation in KCNJ11 or 

ABCC8 genes reverse diabetes when they are shifted from insulin to oral sulfonylurea 

medication.
47,49

 However, the clinical diagnosis of permanent neonatal diabetes is based on 

Sanger sequencing of the PCR fragments from the KCNJ11 and ABCC8 genes. This molecular 

diagnosis is restricted to a limited number of the known mutations and other possible genetic loci 

elsewhere in the genome are not assessed. Recently, Bonnefond et al. performed WES for a 

permanent neonatal diabetes patient and identified a novel non-synonymous mutation 

(c.1455G>C/p.Q485H) in ABCC8 gene which was missed by classical Sanger sequencing.
50

 

Using WES in the maturity-onset diabetes of the young (MODY) patients, the same research 

group found one mutation (p.Glu227Lys) in KCNJ11, indicating that such MODY patients can 

be ideally treated with oral sulfonylureas.
51

 Although Sanger sequencing is the gold-standard 

DNA sequencing method, next generation sequencing (NGS) has its unique advantage at finding 

a novel disease-causing mutation in larger areas of the genome when the exact site of mutation is 

unknown.     

When WES is performed, 20,000-30,000 genetic variants are typically identified in 

patients comparing to reference genomic sequences. A series of filtering strategies are then 

required to isolate the disease-causing variant(s).
52

 Since the first report of the targeted capture 

and massively parallel sequencing of the exomes of 12 humans in 2009,
43

 WES has identified 

many novel disease mutations that contribute to both Mendelian and common diseases.
52

 In 

2010, Sarah Ng and colleagues used WES to sequence four patients who were affected with 
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Miller syndrome (MIM#263750), an autosomal recessive inherited disorder. By simple filtering 

procedures using dbSNP and the HapMap databases to prioritize the candidate variants, they 

found Miller syndrome was caused by mutations in DHODH gene.
53

 This was the first WES 

study that identified a causal gene for a Mendelian disorder. Targeted re-sequencing in another 

four affected individuals using Sanger approach found that all of them were compound 

heterozygotes for missense mutations in DHODH. Furthermore, each parent of the affected 

individual was a heterozygous carrier, none of the mutations appeared to be de novo, and none of 

the unaffected siblings were compound heterozygotes. All of these features supported the 

hypothesis that DHODH was the causal gene of Miller disorder.
53

  

More recently, WES has not only led to the identification of a novel Mendelian mutation 

and the elucidation of a novel mechanism underlying inflammatory bowel disease (IBD), but 

also provided key information for the clinicians to find an effective treatment.
54

 A boy started to 

present Crohn’s disease-like symptoms when he was 15 months old. Comprehensive clinical 

evaluation and laboratory examinations (including genetic tests of defined forms of IBD) could 

not reach a conclusive diagnosis, thus his illness could not be controlled and was getting worse 

and life-threatening. When the patient was at age of 5 years and 8 month, a WES was conducted 

and a mutation in the X-linked inhibitor of apoptosis gene XIAP was identified. The affected boy 

was a hemizygote for a cysteine to tyrosine amino acid substitution, leading to a previously 

undefined form of IBD. This variant was confirmed and his mother was heterozygous carrier for 

the same mutation. XIAP protein has a central role in the pro-inflammatory response and 

bacterial sensing through the NOD signaling pathway.
55,56

 In in vitro tests with the patient’s 

cells, the mutated protein had an increased susceptibility to activation-induced cell death and 

defective response to NOD2 ligands and its function was tested. After receiving an allogeneic 
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hematopoietic progenitor cell transplant, the boy was able to eat and drink normally and there 

was no recurrence of gastrointestinal symptoms.
54

 

These studies clearly demonstrate that disease-causing variants for Mendelian disorders 

can be directly identified by WES in several unrelated individuals or in a single family. In 

addition to filtering variants based on a variety of reference databases, another strategy used to 

remove benign variants is bioinformatics-based prediction of the putative impact of point 

mutations on the structure and function of human proteins like software PolyPhen-2 

(Polymorphism Phenotyping v2) 
57

 which has been used in Bonnefond et al.’s study.
50

 It should 

be known that such computational algorithms have at least 20% of false prediction.
52

 In 

combination with other challenges encountered by WES during filtering and interpretation, 

current success rate of identifying causal mutations with WES is approximately 50%.
52

 

Theoretically, WES is expected to be more efficient when applied to recessive disorders because 

the likelihood to find homozygous or compound heterozygous carriers for rare non-synonymous 

variants is low. 

 Common diseases 

Unlike Mendelian diseases, the predictive value of common genetic variants with modest 

effects identified by GWAS is limited in the context of common diseases. Some common loci 

with unusual large effect sizes have been used for disease prediction in clinical settings, for 

example, HLA variants in autoimmune disease like type 1 diabetes and rheumatoid arthritis, 

APOE in Alzheimer’s disease, and BRCA1 and BRCA2 in breast and ovarian cancers.
58

 It is 

important to mention that these variants were identified by linkage studies or candidate gene 

approach before the GWAS advent. Among thousands of genetic variants identified by GWAS, 

except for a handful of variants having odds ratios greater than 3, most of them so far have small 
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effects with a median odds ratio of 1.33.
59

 When the associated variants thus far are considered 

together they generally account for a small proportion of the heritability of a specific disease.
60

  

Is it too early to implement genomic information in the prediction of the risk of having a 

common disease? ROC analysis using genetic information from common variants identified by 

GWAS did not provide clinically relevant improvement in the prediction of type 2 diabetes or 

cardiovascular disease, even using more than 20 SNPs together.
32,61,62

 Such failures are not 

surprising, as the variants selected in these studies are usually associated with the disease 

exceeding a stringent level of statistical significance (P < 5 × 10
-8

). Beyond these ‘top hits’, 

many genetic variants with true modest effects on the trait do not reach such a level of 

association because of statistical power issues. These variants are consequently excluded from 

the prediction analyses. Genome-wide association consortium initiatives studies with very large 

samples and the use of new algorithms may enable a better prediction of the risk of common 

diseases.  

Height is a polygenic trait with an estimated heritability of 80%. To date, a large-scale 

GWAS meta-analysis in close to 200,000 subjects identified hundreds of genetic variants in 180 

loci conclusively associated with height that together explain 20% of the genetic variation of 

height.
63

 Yang et al, chose a method of restricted maximum likelihood that simultaneously 

accounted for all the SNPs (N=294,831) genotyped in a DNA array and explained 45% of the 

genetic variation of height.
64

 Stahl et al. developed a novel method based on Bayesian inference 

and evidenced that thousands of common SNPs were able to explain approximate of 50% of the 

heritability for both cardiovascular diseases and Type 2 diabetes.
65

 This suggests that many more 

SNPs contributing to the trait remain to be discovered and that GWAS from even larger studies 

and with better imputation methods (e.g. using the 1000 Genomes Project reference panel) will 
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continue to be highly productive for the discovery of additional susceptibility loci for common 

diseases. In another study, Wei et al. used a sophisticated Support Vector Machine (SVM) 

algorithm to assess the risk of type 1 diabetes using whole-genome genotyping array data.
66

 They 

demonstrated that SVM could accurately assess the risk of type 1 diabetes with an AUC of 

approximate 0.84 in two independent datasets. This study also reported that the higher the 

heritability is, the more accurate prediction SVM provides. These studies suggest that the current 

lack of clinical relevance of prediction models for common diseases may be related to 

incomplete knowledge of the disease-associated SNPs and to the use of suboptimal 

methodologies. The integration of common genetic variation information into efficient prediction 

models is definitely relevant in personalized medicine. 

Psychiatric diseases are currently diagnosed by symptoms and psychopathological tests 

with criteria from the Diagnostic and Statistical Manual of Mental Disorders (DSM, 5
th

 

edition).
67

 These criteria are more categorical than quantitative, sometimes making the diagnosis 

ambiguous. Furthermore, it is common that different psychiatric disorders share biologic 

background and environmental exposures. Recently, Bragazzi proposed to apply OMICS science 

and personalized medicine to the field of psychiatry to refine the disease classification and 

diagnosis and tailor the therapeutic regimen.
68

 Recently, Professor Bernard Lerer, the director of 

the Biological Psychiatry Laboratory at Hadassah-Hebrew University Medical Center, Israel, 

won the Werner Kalow Responsible Innovation Prize in Global Omics and Personalized 

Medicine because of his achievements in the development of methodology and novel discoveries 

in the field of psychiatric pharmacogenetics.
69

 This shows a strong international peer-recognition 

for the success and potentials of personalized medicine in psychiatric disorders.     
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Along with common variants, low-frequency SNPs and rare variants are also important in 

the elucidation of missing heritability and in prediction of the risk for common diseases.
70,71

 

Many studies have provided clear evidence that rare variants contribute to chronic diseases.
72-75

 

By resequencing the exons and regulatory regions of 10 candidate genes, Nejentsev et al. 

identified that four rare variants in the exons and introns of IFIH1 (encoding interferon induced 

with helicase C domain 1) gene were associated with type 1 diabetes, none of which was 

dependent on a known common SNP in the same gene, suggesting IFIH1 gene is casual.
72

 Large-

scale exon re-sequencing of MTNR1B gene (encoding melatonin receptor 1B), which was 

initially found to be associated with type 2 diabetes by GWAS, revealed that 36 very rare 

variants with minor allele frequency less than 0.1% were associated with type 2 diabetes, and a 

pool of 13 of them having partial- or total-loss-of-function strongly increased the risk (odds 

ratio=5.67, 95% confidential interval: 2.17-14.82, P=4.09 × 10
-4

).
73

 Subsequent biological 

evaluation of these rare variants further confirmed the functional link between MTNR1B and type 

2 diabetes. An extended haplotype association study in an enrichment population of Ashkenazi 

Jewish, in which the prevalence of Crohn’s disease is several-fold higher compared with non-

Jewish European ancestry, has found an ethnic-specific missense rare mutation R642S in 

HEATR3 to be associated with Crohn’s disease.
74

 An integrated simulation framework to mimic 

the empirical genetic data of common diseases suggested that rare variants played a significant 

causal role in explaining missing heritability, but it also excluded such an extreme hypothesis 

that rare variants are entirely responsible for disease.
76

 Therefore, the combined effect of both 

common and rare genetic variants may significantly improve disease prediction. 
77

 

In addition to prediction based on GWAS data, the potential applications of WGS are 

being explored to predict the risk of common diseases. A report by Roberts et al.
78

 constructed a 
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mathematical model and used the information of incidence of 27 common diseases from large 

monozygotic twin studies to assess the capacity of WGS data in predicting who were at risk of 

these diseases. They concluded that the predictive value of this approach was small. This study 

raised much debate.
79-81

. Begg and Golan criticized the analytic caveats in this study and proved 

that WGS could theoretically offer more optimistic risk prediction compared with what presented 

by Roberts et al.
79,80

  As pointed out by Topol, the predictive capacity of WGS is unlikely to be 

sufficiently powerful until the sequences of many individuals with the same well-defined trait 

and advanced analytic approaches are available.
81

 He stated with optimism that his lab would 

sequence 14 million people at the end of 2014. Another study sequenced whole-genome for eight 

individuals, four at upper and four at lower deciles of risk for metabolic, cardiovascular, skeletal 

and mental health.
82

 Approximately two-thirds of the genetic predictions were concordant with 

longitudinal clinical measurements.  

Combining genomic information with regular monitoring of clinical status which 

measures other “omics” profiling with different high-throughput platforms will theoretically 

improve personalized medicine. Recently, Chen et al. first used “integrative personal omics 

profiling” (iPOP), which included genomics, transcriptomic, proteomic, metabolomics and 

autoantibody profiles, to evaluate healthy and diseased status.
83

 They collected blood samples 

from a 54-year-old male volunteer at 20 time points during a 24-month study and captured 

snapshots of several molecular metrics at different conditions of health (i.e. healthy, during viral 

infection, recovery). The subject coincidentally developed type 2 diabetes during the monitored 

time frame. The results captured extensive and dynamic changes in diverse molecular features 

and biological pathways that occurred as the subject transitioned from healthy to diseased 

conditions. Using poly-omics dataset, Heather et al. recently developed a method called 
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OmicKriging and showed substantially better performance in prediction of seven diseases than 

any single OMIC dataset in the study from the Wellcome Trust Case Control Consortium 

(WTCCC).
84

 With this strategy, collective databases with “omics” profiles from more 

individuals with different diseases may be valuable in the diagnosis and monitoring diseases, 

even if this approach may not be realistic in a clinical setting. 

Pharmacogenetics 

Traditionally, clinical trials classify patients into different groups on a basis of symptoms 

(e.g. mild/severe depression) or histological patterns (e.g. breast cancer stage I/II/III), assuming 

that the patients within the same subgroup will have similar responses to treatment. This current 

symptom-based treatment regimen leads to more than 2 million adverse drug reactions annually 

in US alone with a cost of $76 billion for drug-related morbidity and mortality.
85

 Generally 

speaking, with a given medication, 25-60% of the patients gain therapeutic benefits and the rest 

either do not respond or suffer from drug toxicity.
85

 Administrating a drug to non-responders 

also induces colossal loss of money for the public health system. For example, 30-40% of the 

psychiatric patients with major depression do not respond to treatment with fluoxetine.
86

 These 

numbers highlight the fact that individuals vary greatly in their response to treatment, and part of 

this response may be inherited. If the patients are stratified using genetic markers (or genomic 

markers such as gene expression signatures in the broader context of pharmacogenomics), 

subgroups are expected to become more homogenous and display a more similar response to the 

same treatment.  

Pharmacogenetics refers to genetic variations that affect individual responses to drugs, in 

terms of both clinical efficacy and adverse effects, thus predicting efficacy and toxicity and 

indicating dosage adjustments.
87

 The genes harboring these genetic markers usually encode 
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enzymes which are involved in the course of the pharmacokinetics and pharmacodynamics of the 

drug.  

Cardiovascular medicine offers a good illustration of the impact of pharmacogenetics in 

clinical practice. Warfarin has been the most widely used oral anticoagulant for 60 years and it 

achieves therapeutic anticoagulation without excess risk of bleeding or thromboembolic events 

only within a narrow range of concentrations in the blood. The response to warfarin varies 

greatly from patient to patient and 10-20 fold differences in warfarin dosage have been reported 

to achieve the therapeutic effect.
88

 As a result, warfarin use is associated with multiple dose 

adjustments, long periods of over- or under-anticoagulation for the patients, and inappropriate 

dosage of this drug is the leading cause of emergency department visits and hospitalizations due 

to an adverse drug reaction.
88

 Finding new strategies for an effective and safe use of warfarin is 

therefore an ongoing and vital concern. Sequence variants in genes that encode cytochrome P450 

2C9 (CYP2C9), a major enzyme that metabolizes warfarin, and vitamin K epoxide reductase 

(VKORC1), the molecular target of warfarin, have proved to contribute to more than 50% of dose 

variation among the patients.
89,90

 In 2009, the International Warfarin Pharmacogenetics 

Consortium established a dose algorithm based on these genetic variants and clinical relevant 

indicators.
91

 The results showed that this algorithm was superior to predominant strategy, using 

clinical variables only, at directing the initial dosage to achieve desirable and stable therapeutic 

concentrations. It identified 49.4% of the patients that needed lower doses and 24.8% that 

required higher doses, in comparison to 33.3% and 7.2% from clinical algorithm, thus providing 

a better dose adjustment and improved treatment. This algorithm has been followed by evidence-

based studies to evaluate its effectiveness. Initial warfarin dosage adjusted from the patient’s 

genotype data could reduce the risk of hospitalization in outpatients by 31% 
92

 and globally 
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improve the clinical outcomes including significantly lower rate of serious hemorrhage.
93

 Based 

on this evidence, Food and Drug Administration (FDA) modified the warfarin label, stating that 

CYP2C9 and VKORC1 genotypes may be useful in determining the optimal initial dose of 

warfarin 
94,95

.  Most recently, two large randomized controlled trials tested the effect of the 

genotype-guided algorithm for warfarin dosing.
96,97

 The study by Kimmel et al recruited patients 

from different ethnic groups in US and showed that the percentage of time reaching the 

therapeutic range was almost identical in both genotype-guided and clinically guided groups 

(45.2% vs. 45.4%) and the rates of side effects did not differ either.
96

 A significant interaction 

between dosing and race was observed. Controversially, Pirmohamed et al. reported significant 

improvement in the percentage of time reaching the therapeutic range (67.4% vs. 60.3%) and 

significant decrease in the rate of side effects in the genotype-guided versus clinically-guided 

groups of Europeans.
97

 However, these two studies were underpowered to assess the more 

important end-point, the rate of bleeding and thrombotic complications, which was reported as 

the secondary outcome in both trials.
98

 Therefore, meta-analysis of these outcomes or 

randomized controlled trials based on ethnic-specific algorithms may be necessary, indicating 

that the promise of genotype-based algorithm is proving to be more difficult than first predicted.   

Another example of pharmacogenetics at work is statin, a cholesterol-lowering drug that 

effectively reduces the incidence of heart attack and stroke.
99

 However, high doses of statin (e.g. 

80mg/day) may induce myopathy.
100

 A GWAS that selected 175 matched cases and controls 

from a 12,000-participant trial identified a non-coding SNP rs4149056 strongly associated with 

statin-induced myopathy.
101

 This variant is located in the gene SLCO1B1, a well-known 

regulator of the hepatic uptake of statin. The homozygotes of the risk allele (CC) have 16.9 times 

higher risk of myopathy than non-risk allele homozygotes (TT). The screening of this genetic 



                         Ph.D Thesis – A. Li; McMaster University - Health Research Methodology 

 

255 
 

variant may help avoid serious side-effect of statin. However, the very low incidence of 

myopathy lowers the positive predictive value of this variant and reduces its cost-effectiveness, 

therefore, this pharmacogenetic indication has not been pursued by FDA. 

Cytochrome P450s (CYPs) consist of a large family of metabolizing enzymes which are 

active in the metabolism of clinically used drugs like warfarin discussed above. P450 genes are 

polymorphic and variations in CYP2D6 and CYP2C19, alone or together, have also been shown 

to cause the ultra-rapid or delayed clearance of many psychiatric medications.
102-104

 For example, 

citalopram is one of the widely prescribed antidepressant medications, but more than 50% of the 

patients do not have a complete remission of their symptoms.
105

 Citalopram is a highly selective 

serotonin reuptake inhibitor metabolized by CYP2C19, CYP3A4 and CYP2D6 enzymes.
106,107

 

Individual who are homozygous for CYP2C19*17/*17 genotype (ultra-rapid metabolizer) have 

42% lower of serum concentration of citalopram compared with those with normal function 

alleles and increase the probability of therapeutic failure.
108

 Therefore, increasing the starting 

dose is recommended. On the other hand, individuals with the CYP2C19*2/*2, *2/*3, *3/*3 

(poor metabolizer) genotypes have higher serum concentration and increased risk of side effects, 

thus using 61% of the standard dose has been suggested.
109

 Although minimal downward dose 

adjustment has been suggested for poor CYP2D6 metabolizers, a potential interaction between 

CYP2C19 and CYP2D6 effect has been reported and labeled by FDA.
104,110

  

The number of pharmacogenetic associations is increasing steadily 
111

 and  the FDA has 

appended pharmacogenetic information to approximate 140 drug labels across a variety of 

diseases and 23 of them are psychiatric medications (http://www.fda.gov/Drugs/Science 

Research/ResearchAreas/Pharmacogenetics/).
112

 Black box warnings on some drugs denote 

serious or life-threatening risk of adverse effects to patients related with specific genetic variants. 

http://www.fda.gov/Drugs/Science%20Research/ResearchAreas/Pharmacogenetics/
http://www.fda.gov/Drugs/Science%20Research/ResearchAreas/Pharmacogenetics/
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Importantly, such pharmacogenetics-based genotype tests should be considered before initiating 

drug treatment to maximize the patients’ benefits and minimize the drug side effects. When 

someday a clinical genetic program which integrates drug-gene interactions will be applied into 

patient electronic medical record system, a patient’s tested genetic information will help the 

physicians to choose the optimal drug  and its appropriate initial dosage.
113

 In fact, patient 

electronic medical records are gradually being introduced into clinical practice and will keep 

updated with evidence from pharmacogenetic research.
113

   

Cancers 

Cancer is a common disease that is standing on the frontier of personalized medicine. The 

importance of inherited cancer risk has long been realized and the American Society of Clinical 

Oncology (ASCO) released its first statement on genetic testing for cancer susceptibility in 1996. 

114
 This statement has since been updated repeatedly to keep up with the rapid pace of new 

discoveries in genetics.
115

 Some of the genetic variants identified from germline genetic testing 

are highly penetrant and confer substantial increases in cancer risk. BRCA1 and BRCA2 are such 

examples, where breast-cancer risk by the age of 80 years in carriers of the BRCA1 and BRCA2 

pathogenic mutations are 90% and 40%, respectively, though their frequencies in the population 

are low.
116

 Therefore, if the mutations in BRCA1 and BRCA2 are detected in a woman with 

multiple affected family members, clinical decisions of intensive screening with mammography 

or magnetic resonance image, and even preventive surgery would be prudent. 
115

 Most genetic 

variants identified from GWAS are low-penetrant and have limited clinical relevance in the 

context of the currently applied methodologies. Thus, they are not currently used as part of 

standard cancer diagnostics.
115

 The challenge is how to parse the flood of data into simple and 

usable information. Recently, Massachusetts-based Foundation Medicine has developed software 
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to interpret sequenced genomic data in tumor tissues and are now capable of sequencing up to 

300 cancer related genes and extracting potentially actionable information for clinicians and 

studies are ongoing to link the results to care recommendations.
117

  

Beyond genetic information, gene expression markers which measure the levels of 

messenger RNA (mRNA) are extremely useful in all aspects of cancer management, from 

disease classification, response to chemotherapy, development of new therapeutics, and 

prognosis.
118

 In some tumors, like breast cancers and glioblastmas,
119

 molecular markers have 

been implemented as disease classification criteria. Breast cancer has been distinguished into 

four molecular categories on the basis of histological patterns and gene-expression markers 

120,121
: basal-like cancers (estrogen-receptor (ER)-negative, progesterone-receptor (PR)-negative, 

and human epidermal growth factor receptor 2 (HER2)-negative), luminal-A cancers (ER-

positive and histological low-grade), luminal-B cancers (ER-positive and histological high-

grade), and HER2-positive cancers. This classification is still evolving as more data from 

microarray profiling, which measures thousands of mRNA transcripts simultaneously, increase 

the number of categories and classifications under each type of cancer, providing more precise 

targeted and efficient therapy. Gene-expression signatures also provide a unique approach to 

identify certain primary tissue of a metastatic tissue, because expression pattern of the origin 

tissue are often retain in the cancer.
118

  

Another two categories of biomarkers, epigenetic changes and microRNA, are 

increasingly thought to drive the development of cancers.
122-125

 Epigenetic changes are heritable 

and cause the changes of gene expression without alteration of DNA sequence.
126

 DNA 

methylation is the currently most studied epigenetic mechanism which has been linked to both 

normal development and human diseases.
126

 In cancer, epigenetic mechanisms act in term of 
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silencing tumor suppressor genes and DNA repair genes and activating oncogenes.
122

 For 

examples, methylation of tumor suppressor gene BRCA1 is associated with breast cancer, 

activated DNA repair gene MGMT is associated with glioblastomas.
127,128

 Recently, the genome-

wide methylation technologies enable the comparison of DNA methylation patterns in normal 

and cancer cells.
129

 Distinct patterns of DNA methylation have been reported to be associated 

with several cancers and their progression.
130

 MicroRNAs are endogenous small (about 18-24 

nucleotides) non-coding RNA molecules and are thought to play a key role in the regulation of 

translation and degradation of mRNA in the physiological and pathological process, including 

cancer.
131,132

 MicroRNA expression profiling using microarrays has been linked to a wide range 

of human cancers such as prostate and colorectal cancers.
133

 Importantly, abnormal DNA 

methylation and microRNA expression levels in the plasma or serum are non-invasive and are 

consistent with the methylation and microRNA status in the primary tumor. Because both 

epigenetic changes and microRNA expression are involved at every step of cancer development, 

and are potentially reversible by methylation inhibitors or antisense microRNAs, they hold 

promise in diagnosis, prognosis and specific tailored cancer therapies. But the clinical benefits 

are uncertain and lack scientific rigor at this early stage of evidence.
125,134

  

Targeted therapy in cancer may also be directed by gene-expression based classification. 

Among breast cancer patients, 25-30% of them overexpress HER2 which encodes a trans-

membrane glycoprotein receptor and stimulates cell proliferation.
135

 Meanwhile, the 

overexpressed HER2 is highly associated with relapse within a short time and low survival rate. 

Trastuzumab, a recombinant monoclonal antibody, specifically targets HER2-postive breast 

cancer and improves the survival.
136,137

 Similarly, Gefitinib targets the tyrosine kinase domain of 

the epidermal growth factor receptor, which is overexpressed in 40-80% of non-small-cell lung 
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cancers and other epithelial cancers. However, only 10% of non-small-cell lung patients harbor 

specific somatic mutations in the tyrosine domain and response quickly and well.
138

 In the 

patients with the mutations, the response rate is 71% compared with 1% for those without.
139

  

Gene expression signatures including several dozens of genes have been applied to 

predict clinical outcomes, thus avoiding the hazards of unnecessary or ineffective chemotherapy 

and expensive costs. Before the prognostic gene signature for breast cancer, the clinical 

guidelines based on histologic and clinical characteristics recommended chemotherapy for 85-

90% of lymph-node-negative patients, even though about 60-70% of them would survive without 

it. A 70-gene signature (MammaPrint) derived from primary tumors has been used to predict 

distal metastasis and select patient for adjuvant systemic treatment.
140

 The results showed that 

52% of patients with “poor prognosis” needed chemotherapy, rather than 82% and 92% 

suggested by St Gallen and the National Institute of Health (NIH) guidelines, respectively. This 

predictive signature was later attested in an evidence-based study and approved by FDA.
141,142

 

This signature provides a powerful tool to allow clinician to avoid adjuvant systematic therapy to 

a specific group of patients with low metastatic scores. Another 76-gene-expression profiling 

from an independent study was reported to present similar results.
143

 In parallel, many other gene 

expression profiles have been developed to optimize the use of therapeutics, identify the novel 

targets for drugs, and design clinical trials.
118,144

 

In spite of unprecedented development of genomic application in cancers, and their 

promising potentials in personalized medicine, most of them do not have sufficient evidence to 

move to clinical application yet. Currently, there are only a few diseases and molecular 

subgroups in which the prognostic and therapeutic strategies are proved or recommended by 
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FDA, ASCO or the Evaluation of Genomic Applications in Practice and Prevention Initiative 

(EGAPP) working group.  

Challenges and concerns 

Technology and computational analysis development 

Massively paralleled technology has made the cost of DNA sequencing plummet. 

Nevertheless, WGS remains too expensive to study most common diseases as well-powered 

studies typically require several thousand individuals. WES is a cost-effective alternative to 

WGS, but it does not include copy number variants and non-coding variants which may also be 

critical to the development of diseases.
145

 Because NGS technology which is currently used in 

WGS and WES can only reads short lengths per run, identifying the copy number variants from 

WGS can be an arduous task. However, many NGS companies have been making significant 

improvement in read length and algorithms are being developed to capture these variants with 

WGS data.
146,147

    

Another challenge is how to store and interpret the massive amount data of WGS from a 

group of participants. Even in the context of affordable WES/WGS strategies, other costs 

including storage of the data, analysis, validation and implementation may be still too expensive 

to extend their application in common diseases.
148

 There is also an urgent need to develop 

software to figure out the “actionable” components which can be used in a more straightforward 

way to make a diagnosis, guide the change of the patients’ lifestyle, or provide specific targets 

for pharmaceutics.
117

 

Accuracy of prediction 

GWAS have identified numerous genetic variants associated with common diseases,  

pharmacogenetic studies have discovered many variants associated with the efficacy or hazards 
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of a drug in a specific group of individuals, and plenty of gene-expression signatures have been 

reported to predict the outcomes of treatment; however, only a small portion of them have been 

approved for clinical use. There are three reasons for this. First, a genome-wide or an array-wide 

test may lead to many abnormal genomic findings which are unrelated to the primary reason, 

which is a phenomenon called “incidentalome”. 
149,150

 As the number of tests (SNPs or gene 

expression) increases, the chance of a false-positive association increases as well. Second, 

researchers who discover novel genetic tests usually do not have the resources to conduct the 

evidence-based studies to examine their clinical utility. Third, there is insufficient clinical 

validation.
151

 Three clinical trials testing the prediction of gene signatures on the outcomes of 

chemotherapy in non-small-cell lung cancer and breast cancer were suspended in 2011 because 

of the faults in the original data processing and analysis, and non-reproducibility.
152

 

Recently, some genomic companies (23andMe, deCODEme, GeneticHealth and 

Navigenic) have started to provide genetic and genomic test on demand.
153

 The relevance of this 

direct-to-consumer (DTC) medical service on disease risk estimation is controversial. The 

advocates may consider that DTC will improve the screening practices and motivate the buyers 

to switch to a healthier lifestyle; the opponents may ponder its safety, privacy and 

effectiveness.
154

 The DTC results are not consistent when the same individual is assessed using 

different platforms offered by different companies, which may leave consumers confused or 

cause unnecessary anxiety from an unreliable diagnosis.
155,156

 The risk predictions, especially for 

some serious diseases, are somewhat contradictory. Ng et al. ordered DTC tests for five 

individuals from two firms and they found that less than 50% of the risk estimations were 

consistent across them for seven diseases.
155

 These discrepancies may be the consequences of 

different genetic markers used in different platforms. The genetic markers included in each 
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platform are chosen from GWAS, but different companies may have their own criteria and more 

than 40% of the genomic variants used in commercial tests have not been replicated in meta-

analyses.
157

 The algorithms they use to calculate the risk only include genes that explain small 

portion of heritability and rely on preliminary clinical relevance.
158

 Moreover, some companies 

may update the markers with the ongoing discoveries in research, and some may not. This 

exemplifies the lack of validation and oversight and the insufficient medical input in the DTC 

business. 

Training physicians and medical students 

Today’s physicians are facing the challenge of a transition from traditional to genomic 

medicine. Considering the growing number of approved genetic tests, a survey of American 

Medical Association members reported that only 10% respondents were confident enough to 

apply them in their practice.
159

 Although the usefulness of epidermal growth factor receptor 

genetic testing in directing chemotherapy in lung cancer patients has been incorporated into the 

guidelines, one third of all physicians have yet to adopt it.
160

 The emergence of DTC genomic 

service raises another challenge for traditional physicians. DTC has broken the established 

physician-patient relationship in which the clinical tests are ordered by physicians. Now 

thousands of people order their own genomic tests through DTC and bring the genomic profiles 

to their physicians. Many doctors are not familiar with the concepts of genomics and genomic 

medicine and are hard pressed to explain the estimated risks from such data.
161,162

 Some 

physicians may take the uncertainty of the genetic test results as an excuse to reject them. On one 

hand, many patients believe that the doctors have an obligation to help them interpret and use the 

genetic results;
163

 on the other hand, 83% of Americans do not believe their doctors are 

sufficiently trained in this capacity.
161

 These facts highlight the urgent need to integrate the 
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education about the principles of genomic, targeted therapy, biomarker development, and 

biomarker-based clinical trials into the training curriculum and teaching program in the medical 

schools. Johns Hopkins University is leading this evolution by changing the teaching plans and 

opening new programs in the school of medicine.
159

 The impetus came from the belief that every 

case is unique. A study introduced the 21-gene recurrence score assay to oncologists over 

standard tools to quantify the risk of distant recurrence and predict the extent of chemotherapy 

benefit in tamoxifen-treated patients with lymph node-negative, ER-positive breast cancer.
164

 

Before and after obtaining the score assay, the recommendation from the oncologists changed in 

28 out of 89 cases. Among them, chemotherapy was removed from the treatment regimen in 20 

cases. Meanwhile, the oncologists were more confident in their decision-making with the 

evidence from the score assay. Though this was a small study, it reflected the impact of genomic 

knowledge on the doctors’ decision-making.
159

 

Cost-effectiveness of genomic tests  

Cost-effectiveness, which assesses whether a new diagnostic tool or a new drug is worth 

of its investment, is a critical concern for a health agency in allocation of limited health 

resources. Therefore, beyond clinical validity, cost-effectiveness presents another barrier to 

implement personalized genomic tests. In fact, genome-based diagnosis and therapies possess 

great potential to improve cost-effectiveness. Pharmacogenetic applications in cardiovascular 

diseases will improve effectiveness and decrease adverse effects; and predictive magnitude of 

chemotherapy in cancers will prevent prescription of expensive drugs in the non-responders and 

avoid toxicity as well. The examples from rare diseases may even better demonstrate this. 

Without a definite diagnosis, the patient will seek a variety of examinations and treatments 

which are actually useless. A baby suffering from a cascade of infections caused by severe 
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combined immunodeficiency disease (SCID) spent more than two months looking for many 

physicians before he got a conclusive diagnosis. At the end, he missed the treatment and died at 

6 months and 15 days with a medical cost of $500,000. His younger sister who had the same 

disease was conclusively diagnosed by genotyping tests, received bone marrow transplantation at 

16 days after birth, and survived with a lower bill than what her brother cost.
165

 

Currently, most of the research grants are invested in basic discovery research, diagnostic 

and therapeutic clinical trials. There is only a small portion of research evaluating candidate 

applications and developing evidence-based recommendations, even fewer studies investigating 

cost-effectiveness in genomic research.  The genomic research is still being ever-improving, with 

test accuracy keeping improved over time and costs dropping even faster. Re-evaluation of the 

cost-effectiveness might be necessary. Someday when everyone has his own genome sequence 

and the technologies are mature, cost-effectiveness may eventually not be a worry any more. 

Gene patenting and prediction 

A gene patent gives the owner of the gene exclusive rights for its application in research, 

diagnosis and therapeutics for 17 to 20 years and excludes anyone else from making, using or 

selling it. Currently, approximately 20% of the human genes had been patented and more than 

40,000 DNA-related patents have been generated since 1982, when gene patents were first 

allowed.
166

 Although gene patents are incentive to innovation, they also impede other institutes 

and companies to contribute to important genetic discoveries and limit patient access to health 

services. Whether genes should be patentable was a hot topic in the last couple of years because 

of the lawsuit in 2009 involving Myriad Genetics, a biotechnology company, which had owned 

the patents of BRCA1 and BRCA2. Since Myriad won these patents in 1998, all laboratories 

across US that were doing such tests stopped their practice, whereas Myriad started to monopoly 
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the market with high price.
167

 When a WES or a specific panel is able to sequence all exons and 

cancer-related genes in a single experiment, definitely including BRCA1 and BRCA2 and many 

other patent genes, doctors had to order them separately from other companies with authority or 

reported the results without the information of these genes if they did not buy licences. 

Furthermore, expensive cost for the patent genes adds another layer of complexity to cost-

effectiveness analysis of genomic testing. In polygenic diseases, gene patents do stand in the 

middle to prevent scientist from doing better jobs towards personalized medicine. Fortunately 

and reasonably, on June 13, 2013, the US Supreme Court rejected Myriad’s arguments and 

overturned the gene patents by saying that “genes are a product of nature and therefore are not 

patentable by law and myriad did not create anything”. As hoped by many scientists and doctors, 

including Francis Collins, the director of the National Institute of Health, BRCA1, BRCA2 and 

many other patent genes are set free.
167

 

Ethical and legal issues 

Many ethical and legal issues should be considered in the course of implementation of 

genetic and genomic testing.
85

 People may reject genetic or genomic testing because they are 

afraid of genetic discrimination from insurance companies by denying coverage or from 

employers in employment decision. In 2008, the US Senate passed Genetic Information 

Nondiscrimination Act (GINA) to protect an individual’s genetic information from insurance and 

employer discrimination.
168

 This Act is also important to encourage Americans to make good use 

of genetic testing to prevent and prepare for potential diseases. Who else, except the patient, can 

the results be released to, and how to protect genetic privacy from the third party in the system of 

electronic medical record? There are still no answers for these questions. It is a challenging 

decision whether to inform children, adolescents or young adults when they have a diagnosis of a 
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cancer due to the special age window. It is however admitted that their awareness of their disease 

should offer a psyco-social support, thus leading to better compliance and adherence to the 

treatment and better clinical outcomes.
169

 There is always a consensus to conduct newborn 

screening for a panel of early-onset but treatable diseases; however, newborn screening for late-

onset or no cure diseases is controversial.
170

 Some may consider screening for late-onset or no 

cure diseases adds extra anxiety for the individuals and their families if there is no preventive 

and early treatment options or no immediate intervention needed or the complications of a 

newborn screening are not clear;
171

 others may think the testing can inform the individuals for 

their reproductive decision-making and the family for financial and psychological preparation. 

Some interesting concerns come with the advent of DTC. What are the proper procedures to 

obtain informed consents from DTC customers?  Should only the results with sufficient clinical 

validity be reported to the patient or all of them? How to avoid the misleading or the uncertain 

results from DTC? Currently, there is no sufficient regulation on genetic and genomic testing. 

Some agencies like American Society of Clinical Oncology are calling for oversight from FDA 

and Center for Medicare and Medicaid Services to ensure highest standards for quality, accuracy, 

and reliability, but, on the flipping side, not hinder the scientific development or delivery of best 

available treatment and preventive care.
115

 Fortunately, the FDA and other organizations have 

been active in addressing regulatory issues on personalized medicine. Very recently, the FDA 

has granted authorization for the first high-throughput genome sequencer, Illumina’s MiSeqDx, 

for its clinical laboratory use because of its best performance in precision and reproducibility.
172

 

In February 2014, the FDA also withdrew the personal genome service from 23andMe due to its 

potential risks of inaccurate results 
158

. We believe that this decision is a step in the right 

direction, as the accuracy of genetic testing must be controlled by authorized agencies in the best 
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interest of the patient. Some authorized organizations are making recommendations when 

personalized medicine is practiced.
173,174

 For example, the American College of Medical 

Genetics and Genomics (ACMG) published a policy statement on clinical sequencing that a 

minimal list of genes and variants (currently in 24 diseases) should be routinely evaluated and 

reported as the incidental or secondary findings to the clinician who orders the test.
173

   

The future of personalized medicine 

Although many challenges and hurdles remain, for personalized medicine the future is 

bright. Recently, the term P4 medicine was coined by Leroy Hood.
175

 It includes Predictive, 

Preventive, Personalized and Participatory aspects.
175-177

 It is a system approach beyond 

genomics and uses each person’s system biology, in combination with bioinformatics, to 

generate “actionable” regimen and convert billions of data points into an intelligible synopsis 

that is accessible to physicians and care providers. System biology consists of unique genomic 

sequence data that is combined with dynamic molecular and cellular information, as well as 

elastic environmental and phenotypic measurements that are fundamental health determinants. 

Compared with genomic medicine using one-dimensional data, P4 medicine utilizes biological 

information in totality to detect the disease-disturbed components, providing deep insights into 

disease mechanisms and new targets for diagnosis and therapeutic drugs. By identifying the 

actionable information from a vast composite of information, P4 medicine is quasi-holistic in its 

aim not only to demystify diseases but also to improve wellness, which meets with the latest 

definition of health edited by the World Health Organization as a state of complete physical, 

mental and social well-being. This P4 model expands personalized medicine beyond genomic 

medicine. Furthermore, P5 medicine with additional fifth P of Population science is proposed by 

Khoury, which is to be incorporated into each aspect of P4.
178

  Population science covers almost 
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every aspects of health and uses ecologic model systems and mixed methods to input intelligence 

from multiple disciplines. It assesses the validity of evidence from P4 and is useful in guiding 

policy making.
179

 From a population perspective, biological signatures from P4 models of 

uncertain clinical utility require strong evidence from randomized controlled trials before clinical 

use is recommended.
178

 Among hundreds of reported predictive gene signatures of different 

cancers, only a handful of tests passed the FDA approval.
152,180

 Without sufficient clinical 

validation, the newly developed personalized medicine strategies from P4 medicine may be 

misleading and consequently may be a waste of resources and do more harm than good to the 

patients. Meanwhile, a different P5 model with the different fifth P of Psyco-cognitive aspect 

was proposed by Gorini and Pravettoni.
181,182

 Such a P5 medicine will not only inform the 

patients of their health status, but also empower them to be involved in their decision-making 

with doctors by their specific needs, values, behaviours, hopes and fears. Following this, a sixth 

P of Public was introduced by Bragazzi who was inspired by a Salvatore Iaconesi’s clinical 

story.
183

 Salvatore Iaconesi is a skilled computer scientist and one day was diagnosed with a 

brain tumor. He posted his medical records on his website and desired to seek help from various 

sources and shared his experience with anyone who needed it.
183

 In other words, P6 approach 

brings up the additional notion of e-health into personalized medicine. The sixth P is an 

interesting concept but it may lead to important ethical considerations such as confidentiality, 

discrimination and implications to family members, and therefore its applications are limited.     

Hood and Flores also portray a stunning picture of future P4/P5 medicine and predict that 

it would likely become true within the next decade.
184

 They assume that accurate assessments 

from genomic sequence to proteomics and their function, to conventional medical data, to 

enormous amounts of clinical diagnostic imaging and environmental measurements would be 
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available, affordable and accessible for individuals. The leading edge biology and medicine in 

every field of “omics” will drive the development of new high-throughput technology and 

analytic tools to explore the multi-dimensional data from individuals, families, and across the 

population. P4/P5 medicine considers each person as unique, thus each has his own genome 

which would need to be sequenced only once, while measurements of other dynamic parameters, 

would require more regular assessments (e.g annually or biannually). By analyzing these data 

any transition from health to disease will be marked.
185

 Genomic variants and protein profiles 

will also be used to assess drug toxicities, avoiding unnecessary adverse effects. P4/P5 medicine 

model is characterized by stratifying health and disease based on different markers and 

extracting actionable variants. Assuming that targeted drugs that are effective at different stages 

of disease progression are available in the future, tailored interventions will be engaged to 

correct a disease-perturbed network to restore an individual to wellness. All these information is 

linked to the individual’s electronic medical records and the doctors will receive health messages 

in time such as health status change, drug choice and dosage, or progress/prognosis of a disease, 

achieving personalized prevention and treatment. More importantly, the P4/P5 medicine model 

postulates that individuals are active and networked rather than simple passive recipients of 

doctors’ advice. Their participation will contribute to the advancement of medical and health 

knowledge and will eventually maximize their own wellness. They will be the most powerful 

drivers of the emergence of P4/P5 medicine. P4/P5 medicine also has the potential to drop the 

ever increasing costs of health care by active prevention, early diagnosis and specific treatments.    

Does this sound like a scientific fiction story? Are they castles in the sky? Because we 

have witnessed the unprecedented success of human genomic, this ambitious vision should not 

be rejected. However, in the first decade after deciphering the human genome, only a handful of 
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genetic discoveries have been applied into routine medical practice and the clinical benefits are 

still far from enhancing the wellness and treating diseases for most individuals.
25,186

 In addition 

to genomics, integration of other types of personal “omics” profiles including transcriptomics, 

proteomics, metabolomics, epigenomics, metagenomics will theoretically enable to understand 

the onset, progression and prognosis of common diseases, thus broadening the capability of 

personalized medicine.
187

 The laboratory experiments have shown that the levels of these 

“omics” vary greatly across time, within individuals, and between individuals, and this massive 

variation has made clear interpretations difficult. Meanwhile, many of these analyses are 

currently prohibitively expensive. Importantly, P4/P5 medicine is built on stringent assumptions 

that all these “omics” are accurately measured. Therefore, it is too optimistic to build up such a 

system with integration of huge data that are not yet fully-understood.        

Will this become reality in 10 years? P4/P5 medicine will use multi-level data within 

individuals and across a population to generate lots of information which can be used to improve 

health. Obviously, this complicated system in P4/P5 medicine model cannot be mimicked in the 

experiment settings. Therefore, one critical prerequisite to practice P4/P5 medicine is that all the 

elements in system biology should be clinically valid before they are used for final outcome 

syntheses. Over the past a few years, many evidence-based studies were undertaken to assess the 

clinical validity and utility of emerging genetic testing. The Evaluation of Genomic Applications 

in Practice and Prevention Initiative (EGAPP) Working Group, established in 2005, reviews 

evidence reports from randomized controlled trials and/or observational studies and assesses the 

analytic validity and clinical validity, providing recommendations on the appropriate use of 

genetic tests in specific clinical scenarios. Currently, EGAPP have released 11 recommendations, 

in which only 3 have sufficient evidence. The lack of information on the clinical validity for 
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most genetic and molecular tests is a major practical barrier to the implementation of P4/P5 

medicine.
188

 Another concern is that it takes average of 17 years to translate a new scientific 

discovery to clinical practice, with a success rate of less than 15%.
160

 Furthermore, this P4/P5 

medicine revolution will not happen without a new generation of experts who are able to create 

algorithms to integrate and interpret all the diverse sources of information from genetics, 

molecular biology, clinical knowledge, statistics and bioinformatics, and eventually synthesize 

the actionable messages for the clinicians and patients. We believe that P4/P5 medicine can 

progress with exponential acceleration as genomic science does, but it will be a long journey to 

reach the full potential of personalized medicine.   

Conclusions 

Because an individual’s DNA sequence is static unless exceptional circumstances occur 

(eg. tumor, exposure to mutagenesis compounds), it is considered to be an easier and more 

reliable tool to predict long-term risk.
189

 This review illustrates some of the successes of using 

personal genomic data in Mendelian and polygenic diseases. Personalized medicine is in its 

infancy and is also moving steadily forward, but many challenges remain. We describe the hopes 

and hypes of personalized P4/P5 medicine which is driven by advances in technologies such as 

OMICS platforms, computation, information integration, and analyses. We hope this review will 

encourage clinicians to be active contributors in this medical revolution.  
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