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ABSTRACT

Typical NGL plant compresses its feed to a high pressure (3040 kPa). The feed gas compressors’ discharge reaches approximately 150 OC.  After that, the feed is cooled by three-stage propane vapour compression refrigeration cycle.  This paper examines various options for thermal power cooling in such plants in order to eliminate part of the propane chilling system.  Since most of the new plants are located in desert climates, typical designs based on absorption refrigeration are not very efficient.   Design proposed in this work employs ejector refrigeration and it is based on 45 OC air as a cooling media (summer conditions in hot climates).  Performance factor has been defined as the total cooling provided by the refrigeration system over the total cooling required in the 1st cooling stage of the NGL Recovery Plant. Cooling based on a single N-pentane ejector cycle with N-pentane has COP of 0.342 and performance factor (ƞ) of 0.842. Multistage ejector N-pentane refrigeration system has COP of 0.714 and performance factor (ƞ) of 1.053.  For a typical 750 Million scf/d NGL plant, the new design saves $12 Millions in capital costs and $1.5 in annual electricity cost.
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NOMENCLATURE:

A
Area, m2
D
diameter, m

h
enthalpy, kJ/kg 
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mass flowrate, kg/s 

M 
Mach number 

a 
Sonic velocity, m/s

Pc * 
critical back pressure of the ejector, MPa 

Pe
 vapor pressure at the suction port of the ejector, MPa 


Pg 
vapor pressure at the nozzle inlet of the ejector, MPa 

R 
gas constant, kJ/kg. OC 

T 
temperature, OC 

Tc* 
saturated-vapor temperature corresponding to the critical back pressure Pc*, OC

Te 
vapor temperature at the suction port of the ejector, OC

Tg 
vapor temperature at the nozzle inlet of the ejector, OC

Tgs 
saturated-vapor temperature corresponding to Pg, OC

HT 
power generated by turbine, kJ/hr

Cp
specific heat of gas at constant pressure, kJ/kg. OC

Cp
specific heat of gas at constant volume, kJ/kg. OC

γ 
Cp/Cv  

V 
gas velocity, m/s 

x 
nozzle position, m 

y 
position of the hypothetical throat 

C
Capital Cost, $

φm
frictional loss coefficient
Superscripts 

* 
Critical mode operation of ejector 

Subscripts 

c 
Condenser; exit of the ejector 

co 
limiting condition of ejector operational mode 

e 
Evaporator 

g 
Generator/Boiler; Primary Flow nozzle inlet 

A
Absorber

r
Rectifier

m 
mixed flow 

p 
primary flow 

p1 
nozzle exit 

py
primary flow at the location of choking for the entrained flow 

s 
suction or entrained flow 

sy 
entrained flow at the location of choking for the entrained flow 

t 
nozzle throat 

y 
location of choking for the entrained flow 

1 
nozzle exit 

2 
entrance of the constant-area section 

3 
exit of the constant-area section

CHAPTER 1. 
INTRODUCTION:

Constant increases of the consumption of electricity for refrigeration applications as well as the consequences of this increase on the environment motivate engineers and innovators to look for new green technologies in the field of refrigeration.  Finding efficient ways to provide refrigeration requirements to residential, commercial, and industrial applications is becoming increasingly important recently. The high increment in the oil consumptions in the last ten years is a major concern to the stability of energy resources prices and availability in the future. According to the international energy agency (IEA), the average energy use per person increased 10% from 1990 to 2008 [1]. Energy use grew significantly in some region of the world. The energy use increased by 170% in the middle east, 146% in China, 91% in India, and world overall energy use grew by 39%[1]. Statistics show that power consumption has also increased in the last ten years. The total worldwide power consumption has increased by 3.0 terawatts (0.40X1010 hp) from 2008 to 2012 [2]. Non-renewable energy resources, namely, oil, gas, and coal, generate high percentage of power. In 2008, 60% of the world electricity was generated by fossil fuel and only 5% of the total worldwide consumed power was produced using renewable energy resources [2]. In addition, this increased in power production from fossil fuel has significant negative impacts on the environment.  Oil, Natural gas, and Coal power generation plants are main contributors to the high CO2 and nitrogen oxides emission rates to environment. These emissions are believed to be the major cause of global warming and Climate change [3]. These environmental problems could cause shortages of food and water and increased risks of flooding according to the Intergovernmental Panel of Climate Change [4]. The burning of fossil fuels produces around 21.3 billion tons of CO2 per year and only 50% of this amount can be absorbed by natural processes [5]. Increment in fossil fuel power generation will increase the severity of the negative impacts on the environment.

1.1
REVIEW OF PREVIOUS WORK:

Extensive research have been done to investigate and study the possibility of utilizing low temperature heating source, such as waste heat, solar power, geothermal heat, or other kinds of renewable energy sources,  to power refrigeration cycles. Many of these investigations show the potential of some refrigeration cycles’ to be operated by this kind of heat sources. More focus has been given to design integrated systems such as cogeneration and polygeneration cycles operated by low heating source where both energy recovery and energy integration result in higher performance than separate simple systems. Absorption refrigeration cycles have been considered widely for low temperature heat source utilization. The Ammonia-water absorption refrigeration cycle was introduced by Ferdinand Carre in 1859 [7]. Kalina cycle was introduce afterword in 1984 which is a novel ammonia-water cogeneration absorption cycle that utilizes gas turbine flue gas [8]. After that, many power and cooling cogeneration systems have been proposed for waste heat and solar power utilization. Goswami et. al. [9] has proposed an ammonia-water power and cooling cogeneration cycle absorption cycle powered by solar heat that uses a turbine instead of the condenser and throttle valve commonly used in refrigeration systems. Some other designs of absorption cycle have attracted the interest of researchers such as the generator-absorber heat exchanger (GAX) absorption cycle. The GAX absorption cycle was introduced in 1911 by Altenkirch and Tenckhoff [7]. The advantage of GAX absorption cycle is the higher heat integration between the generator and absorber. Velzquez and Best [10] have developed an air cooled GAX absorption cycle operated by solar power.  Hanna et. al. [11] studied the GAX absorption cycle’s performance in details using pinch point technique. A useful performance comparison has been performed by Kang and Kashiwagi [36] between GAX absorption cycle and the simple design. 

Another system that has been considered in many studies for low temperature heat source utilization is the Ejector refrigeration system. This system has several advantages over the vapour compression systems. It does not have any rotating equipment, except for the pump, which makes it an easier system to operate and maintain. It can be driven by low temperature heat source such as waste heat or solar power. In addition, it has low capital and operation cost. However, one of the main disadvantages of these cycles is the very low efficiency compared to the vapour compression cycle. The performance of an ejector is strongly influenced by three interconnected factors; operation conditions, ejector geometry, and refrigerant properties [12]. Intensive work has been conducted to investigate the influence of each factor on the ejector’s performance. Huang et al. [13] has theoretically developed a one dimensional model that predicts the ejector performance. He then verified this model experimentally using 11 ejectors with different geometries with R141b as a working fluid. The model results match the experimental tests results within ± 10% [13]. Selvaraju and Mani [14] have conducted an experiment to investigate the ejector performance at different operating conditions using R134a refrigerant. The effect of ejector’s geometry on its’ performance has been also investigated in many studies. Chunnanound and Aphornratana [15] have conducted a detailed review and discussed many of theses studies in details. Ejector refrigeration cycle performance for different working fluids was studied by many researchers over the last twenty years. Selvaraju and Mani [16] conducted a detailed study on the ejector cycle performance using different environmental friendly refrigerants. Their study included five refrigerants, namely;  R134a, R152a, Propane R290, iso-butane R600a, and R717. Their study concluded that R134a has the best performance at the considered range of operation conditions. Roman and Hernandz [17] also studied the performance of the ejector cycle when using hydrocarbons as refrigerants. In addition to the refrigerants covered in Selvaraju and Mani study, they included butane R600 and R123. Dahmani et al. [18] did similar study using R134a, R152a, Propane R290, and butane R600 as refrigerants. In both Roman and Hernandz study and Dahmani study, the best ejector cycle performance was observed for propane R290.  Da-Wen Sun has performed a comparative study of the ejector refrigeration cycle`s performance when operates with eleven different refrigerants, including water, halocarbon compounds (CFCs), HCFCS, and HFCs, and an azeotrope (R500, azeotropic blend of 73.8 wt.% R-12 and 26.2 wt.% of R-152a.) [19]. However, little research work has been conducted to analyse the ejector cycle`s performance when using heavy hydrocarbons. Kasperski and Gil [6] have considered many heavy hydrocarbons and compared the ejector performance and cycle`s efficiency. 

Many attempts have been done recently to improve the ejector performance by applying some modifications to the cycle’s process design [20]. Sokolov and Hearshgal [21] designed a new configuration of the ejector cycle where a mechanical compressor is used to increase the secondary fluid’s pressure and, hence, the ejector entrainment ratio and the cycle’s efficiency. This combined ejector-compression systems were investigated and enhanced by other studies such as Hernandez et. Al. [22], Vidal et. al. [23], and Zhu et. al. [30]. Other studies suggested combining absorption cycle with an ejector cycle for better performance such as Sozen et al. [24] and Wang et al. [25]. Other studies focuses on better utilization of low grade waste heat source using combined power and ejector refrigeration system such as Zhang and Lior [26] and Alexis et al [27].

However, there has been little research focusing on enhancing the ejector cycle’s performance by means of heat integration between two or more ejector cycles at different operating pressures. In addition, process design of the suggested cycles in these studies suggest a condensation temperature of lower that 20 OC which makes air cooling in the condenser not possible.  Most of these research activities have not considered a specific industrial application for their studies. This research explores the opportunity of improving the cycle’s performance by means of heat integration between two ejector cycles. It also focuses on the application of these integrated ejector cycles for an NGL recovery plant for minimal power consumption and environmental impact. 

CHAPTER 2. 
OVERVIEW OF STUDIED REFRIGERATION CYCLES:

Refrigeration is a process for removing heat from a stream, system, or object and rejecting the unwanted heat into a specific preferable environment. There are three common refrigeration systems, which are widely used: Compression Refrigeration System (VCR), Absorption Refrigeration System (ARS), and Ejector Refrigeration System (ERS). 

2.1
COMPRESSION REFRIGERATION CYCLE:

Compression Refrigeration Systems utilizes a mechanical compression driven by an electric motor, at most cases, or a steam drive turbine to mechanically drive the heat transfer from a low temperature to a high temperature stream. Vapour compression refrigeration system is the most popular refrigeration system for residential and commercial applications mainly due to its high efficiency [6]. The simple vapour compression refrigeration cycle consists of a compressor, condenser, a throttle valve, and an evaporator as illustrated in figure 1.
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Figure 1. 
Vapour Compression Refrigeration Cycle


The low temperature and low pressure stream (3) is compressed by a compressor to a high-pressure vapour stream (4). Then, the vapour is condensed (1) and condenser outlet is sent to an expansion device where its pressure is throttled to a low-pressure liquid (2) resulting in decrease in its temperature. This low temperature stream passed on to an evaporator where it absorbs heat from the surroundings. Despite the high efficiency of the vapor compression refrigeration system, it consumes high amount of power and it is one of the sources of heat and CO2 emissions to the environment.  

2.2   
ABSORPTION REFRIGERATION CYCLES:

One of the alternatives to the VCR is the absorption refrigeration system. In the absorption refrigeration system, the mechanical compressor is replaced by two heat exchanger units, a generator and an absorber. Absorption cycle achieves the removal of the heat using the evaporation of the refrigerant in the evaporator. 

ARS has several advantages over VCR system. The strongest two advantages [7] are the lack of rotating equipment and the utilization of any source of heat to operate the ARS including low temperature sources such as waste heat. Other heat sources such solar heat, geothermal heat, and exhaust heat can also be used to operate an ARS unit. However, the ARS has two major disadvantages; low efficiency, and high complexity and capital cost [9]. 

2.2.1
DESIGNS OF ABSORPTION CYCLES:

2.2.1.1
SINGLE-EFFECT ABSORPTION CYCLE

Absorption refrigeration cycles has several types varies in terms of number of stages and effect. A single-effect absorption refrigeration system is the simplest and most commonly used design [7]. Fig. 2 shows the process flow diagram of a single-effect absorption refrigeration cycle. 
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Figure 2. 
Absorption Refrigeration cycle process flow diagram. 

A single substance of working fluid is generally used for the entire process within a compression system, but this cannot be achieved in an absorption refrigeration system. An absorption refrigeration system requires a binary solution as a working fluid consisting of a refrigerant and an absorbent. The heat supplied to the generator will desorb the refrigerant from the absorbent and produce a refrigerant vapour at high purity and pressure. The refrigerant vapour is then condensed and throttled to a lower pressure. The refrigerant will desorb the heat from the surroundings in the evaporator. To complete the cycle for continuous refrigeration, the vaporized refrigerant is being re-absorbed into the absorbents by cooling it down in the absorber. 

Ammonia-water absorption cycle requires a rectifier to recover the evaporated water. Due to the high volatility of water, it will evaporate together with ammonia (refrigerant). Without a rectifier, this water will be condensed and accumulate inside the evaporator which will cause the performance to drop. Water-lithium bromide absorption cycles are also common in industry. For water/LiBr cycle, crystallization is the main problem. In addition, water/LiBr cycle’s cooling temperature is limited to above 0 OC. This cycle is suitable for generator temperature lower than 200 OC [36]. Above this temperature, the solution becomes corrosive and can crystallize which could cause many operational problems [36]. Many studies show that single-effect absorption cycle requires a heat source temperature of 100 OC or higher [37]. Lower temperatures of the heat source results in significant decrease in single-effect cycle’s COP by around 40% [37].

 2.2.1.2
MULTI-EFFECT ABSORPTION CYCLE

Mutli-effect absorption cycle can be utilized when high temperature source is available. It has higher efficiency than the single-effect ARS, however, it is more complicated and has significant higher capital and operation cost [7]. The principle of multi-effect ARS is to utilize the heat rejected from the first generator to drive another generator and an so on. 

Double-effect ARS is the most common type of multi-effect ARS. It was introduced in 1958 [7]. Figure 3 shows the process flow diagram of an ammonia/water double-effect absorption refrigeration cycle. The 1st generator is operated by a high temperature source (generally higher than 150 OC) [8]. The generated vapor refrigerant is then condensed in the 2nd generator. The vapor refrigerant generated from the 2nd generator as well as the partially condensed vapor refrigerant from the 1st generator combines in the condenser. The outlet is then throttled to provide cooling in the evaporator. This cycle produces higher flow rate of the vapour refrigerant and has higher utilization of the waste heat. Other types of Muti-effect absorption cycle have been studied including the triple-effect [35] and the quadruple-effect absorption cycle [36]. It worth noting that increasing number of effect does not necessarily increase the overall cycle COP [7]. As the number of effect increases, COP of each effect decreases and will not be equivalent to the single-effect cycle. 
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Figure 3. 
Absorption Refrigeration cycle process flow diagram. 

2.2.1.3
GAX ABSORPTION CYCLE

Although multi-effect absorption cycles deliver higher efficiencies, its’ configuration tend to be complicated. Another way to improve the ARS efficiency without much complication in the system is to add the generator/absorber heat exchange (GAX). GAX absorption cycle provides higher efficiencies than single-effect absorption cycles [11]. This increment in the efficiency has attracted interest of many researchers recently [37]. In GAX cycle, the absorber heat is supplied to the generator directly which will decrease both the generator and absorber duties.  Figure 4 shows a simplified configuration of the GAX absorption refrigeration system. In some types of GAX absorption cycles, a secondary solution is used to accomplish the heat transfer process which are known as branched GAX cycle or (BGAX). Such arrangement of the GAX cycle could increase the efficiency by 5% [36]. Herold [38] has reported an increment of 10% in GAX cycles’ COP when branched technology is used. Although GAX absorption cycles show higher performance, these types of absorption cycles are not yet commercially available [36]. 
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Figure 4. 
Process flow diagram for GAX absorption refrigeration system.

2.2.1.4
COGENERATION ABSORPTION CYCLE

Cogeneration has been proven to be an effective way to increase efficiency and energy utilization for many applications. In this design, cogeneration has been considered in the absorption cycle to produce both power and cooling for the purpose of higher energy utilization. Power production in the cogeneration absorption cycle is done by a turbine, which is used instead of the throttle valve to depressurize the refrigerant. 
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Figure 5. 
Process flow diagram of Absorption Cogeneration (Power/Cooling) cycle. 

2.2.2
WORKING FLUID FOR ABSORPTION REFRIGERATION CYCLE:

Based on observations and studies, it was found that the biggest increase of global warming since the mid 20th century has very likely been due to the increase of the emissions of the greenhouse gas to the environment [6]. It was also found by many studies that the use of CFCs is a major cause of ozone layer depletion [4]. For this reason, the use of chlorofluorocarbon (CFCs) refrigerants was banned to minimize such emissions. This encouraged researchers to look for other alternative environmental friendly refrigerants to be used for absorption refrigeration system. In this section, we will discuss the advantages and disadvantages of some of these environmentally friendly refrigerants. As mentioned earlier, an absorption refrigeration system requires a binary solution as a working fluid consisting of a refrigerant and an absorbent. The performance of the cycle is very dependent on the thermodynamic and chemical properties of the working fluid [7]. 

The working fluid of an absorption refrigeration cycle has to meet some requirement for the cycle to operate efficiently. The absorbent and refrigerant have to be miscible with enough margin of miscibility within the temperature range of the cycle. Both fluids have to be chemically stable at the operating temperature range, non-toxic, non-corrosive, and environmental friendly. For better efficiency, the difference in boiling points between the pure refrigerant and the mixture has to be high at the boiler pressure. This will increase the efficiency of the cycle. Moreover, higher latent heat of vaporization of the refrigerant will increase the cycle`s efficiency [7]. Below are some of the frequently used and discussed working fluid for absorption refrigeration cycle [38]:
NH3/H2O

H2O/H2O-LiBr

CH3OH/CH3OH-salt solution

R22(CHCIF2)/organic solvent

R133a(CH2CICF3)/ETFE 

Among those working fluids, Ammonia/water and water/lithium bromide are the most widely used in absorption cycles with some limitations as mentioned in section 2.2.1. Zaltash and Grossman [39] suggested a ternary fluid for GAX cycle. The simulation showed that the ternary fluid NH3/H2O/LiBr has 21% higher performance than the binary solution when the generator temperature is above 204 OC .

2.3 EJECTOR REFRIGERATION CYCLE:

Ejectors are devices that are used to pressurize a secondary fluid using momentum and energy of a high velocity primary fluid.  Ejector, also called jet pumps, thermocompressors, and injectors, produces a supersonic chocked flow at the nozzle that allows greater conversion of primary fluid energy to the secondary fluid pressure increase. Figure 6 shows the typical cross sectional view of a gas ejector. The working process of a gas ejector starts by accelerating the high-pressure and low velocity primary fluid to supersonic velocity. This occurs in the nozzle section shown in figure 6. The produced high velocity primary jet fluid entrains a secondary flow from the suction nozzle and accelerates it to the mixing section at which the two streams combine. One of the main advantages of gas ejector is their simplicity in geometry and operation. It does not have any moving parts, and therefore, does not require electrical or mechanical shaft energy. This increases the reliability and reduces the operational cost and complexity of the system. It has the ability to work with environmental friendly refrigerants and has very low vibration and noise compared to the vapour compression refrigeration cycle [31]. Ejectors are widely used in industry. They are used in power plants, aerospace, and propulsion. Gas ejectors are also used in aircraft, hydrogen fuel cells, and other applications [40]. 

[image: image8.jpg]Nozzle Section,

To Condenser

Secondary Fluid




Figure 6. 
Ejector internal design

One of the useful applications of ejectors was found recently in refrigeration cycles [27]. An ejector refrigeration cycle is similar to the typical and most common refrigeration cycle in industry, vapour compression cycle, except for the method of compressing the refrigerant. The ejector refrigeration cycles uses ejectors instead of vapour mechanical compressors to pressurize the low pressure refrigerant at the outlet of the evaporator to complete the refrigeration cycles. Ejector refrigeration cycle has a low coefficient of performance compared to the vapour compression refrigeration cycle.  However, its’ efficiency can boosted by using waste heat, solar energy, geothermal energy, or exhaust heat to operate the cycle. It can be also increased by means of heat integration between two or more ejector refrigeration cycles [28]. 

The ejector refrigeration cycle simply consists of three heat exchangers, an ejector, throttle valve, and a pump as illustrated in figure 7. The three heat exchangers are the boiler at which the refrigerant is vaporized by waste heat or any other heating source, the condenser which condense the vapor refrigerant at intermediate pressure level, and the evaporator at which the cooling is provided to the NGL recovery plant feed gas. 
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Figure 7. 
Ejector Refrigeration Cycle

2.3.1 WORKING FLUID FOR EJECTOR CYCLE:

Performance of an ejector refrigeration cycle is dependent on the thermodynamic properties of the working fluid. In order for the cycle to be efficient, the working fluid has to have a large latent heat of vaporization [16]. Moreover, to avoid high cost & heavy construction of the pressure vessels and heat exchangers, the pressure at the design boiler temperature should not be too high. Lower boiler pressure will minimize the capital cost and the power required by the Pump [15]. The fluid has to be non-toxic, non-corrosive, environmental friendly, and chemically stable. The molecular weight of the fluid has direct impact on the ejector performance and, therefore, should be considered in the process of working fluid selection. Working fluid for an ejector can be categorized as wet vapor and dry vapor [28]. For the dry vapor, there is no phase change during expansion of the primary fluid stream at the nozzle exit. There is a partial condensation in form of droplets at the nozzle exit for the wet vapor working fluid [27]. The performance of both types of fluids is different because of the condensation process [29]. In this analysis, the dry vapor working fluid was assumed.

2.3.2
EJECTOR DESIGN MODEL:

Many research activities were conducted for the purpose of accurately modeling the ejector performance based on operating conditions and ejector geometries. The earliest attempt was in 1942 when Keenen and Newman proposed a one-dimensional theoretical model [32]. Other researchers followed their steps and tried to come up with more accurate models using different working fluids and operation conditions with slightly different assumptions and approaches [14,33]. Most of these models are based on ideal gas dynamics and on principles of mass, momentum, and energy conservation [6]. Many assumptions were made in these models to simplify the complicated behavior and dynamics in the ejector. These assumptions include:

1- No or insignificant friction and heat loses.

2- Constant-pressure mixing occurring inside a mixing section of the ejector. 

3- Entrained flow reaches choking stage as it exit the mixing chamber. 

4- Scale has no effect on ejector’s performance.

In this study, the one-dimensional model of ejector performance developed by Haung el al. [13] was used. It is one of numerical models that work accurately with heavy hydrocarbon refrigerants. 

In Huang Model [13], it was assumed that the mixing of the two streams occurs inside the constant area section with a uniform pressure. Fig. 2 is a schematic diagram showing the mixing process of the two streams in the ejector [13]. Some other assumption were made in Hung model including [13]:

 1. Ideal gas working fluid with constant properties Cp and γ.                                        

2. The flow inside the ejector is at steady state and one dimension. 

3. The kinetic energy is negligible at the primary and secondary suction inlets as well as the diffuser outlet. 

4. The effects of frictional and mixing losses are taken into account by using a friction loss coefficient introduced in the isentropic relations. A value of 0.85 for this coefficient has been assumed for this study. 

5. Mixing between the primary and secondary fluid starts at a hypothetical throat cross section y-y with uniform pressures Ppy, Psy which is inside the constant-area section.

6. The entrained flow is choked at the hypothetical throat.

7. The shock for the mixed stream starts at at the cross section s–s.

8. The inner wall of the ejector is adiabatic. 

The steps followed for ejector to determine the ejector geometry dimensions for a specific ejector outlet pressure (condenser pressure) are the following: 
1- Calculation of the primary flow rate at the primary suction throat based on Pg, Tg, and At using equation 1. Isentropic efficiency of the compressible flow in the nozzle was assumed to be 0.85.
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(1)
2- Primary fluid Mach number and pressure at section nozzle exit are estimated using equation 2&3.
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(2)
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(3)
3- Based on assumption 6, the secondary flow is chocked at section y-y in the constant area mixing section. That means the secondary fluid mach number at y-y is supersonic and equal to one (Msy=1). Using equation 4, we would be able to estimate the secondary fluid pressure at section y.
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(4)
4- Mach number of the primary fluid at y-y (Mpy) is calculated using equation 5 and primary mach number at the nozzle exit Mp1 found in step 2.
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(5)
5- Once Mpy is calculated, the area of primary flow core at section y-y ([image: image23.emf] is calculated using equation 6:

[image: image25.emf]     



(6)

6- The geometrical cross-sectional area at the diffusing section is approximated to be equal to the addition of Apy and Asy . Applying this assumption, Asy can be calculated using equation 7:
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(7)

7- Similar to step#1, the secondary flow rate is calculated using the equation 8 :
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(8)
8- Using equation 9 & 10, the primary and secondary fluids temperatures at mixing section are calculated.
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(10)
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(11)
9- Streams velocities are then calculated using equation 12 & 13 and temperatures found in step#8. 
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(12)
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(13)
10- Using the calculated streams’ velocities, mixture stream velocity and mach number at the mixing section is then calculated using equation 14
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(14)
11- Following Vm calculation, the mixture stream temperature and mach number is calculated using equation 15.
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(15)
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(16)
12- Based on assumption (5), pressure is uniform at the mixing section, therefore, Pm= Ppy=Psy. Applying this assumption, diffuser section pressure P3 and mach number M3 can be calculated using equation 17 & 18:
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(17)
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(18)
13- The pressure at the exit of the diffusing section follows the relation expressed in equation 19. Using this equation, the ejector outlet pressure (Pc) can be calculated.

[image: image51.emf]






(19)
These steps are performed with iteration to reach the required  ejector mixing and diffuser section area, i.e.  Ay and A3 required to achieve the condenser pressure specified in the process design. The flowchart in figure 8 summarizes the ejector geometry steps based on Huang model. All thermodynamic properties of the working fluids were obtained from HYSYS simulation.  The SARK fluid package was selected for the simulations. 
[image: image52.jpg]P g Tg; At

e Equation [1]

mpy

A \ 4
pl ,
o Equation [2]&[3]

Mpl; Ppl

Pe; Apl ] —
- Equation [4]& [5]

Py

A 4

> Equation [6]
’ APV’ MPV

\
Equation [7]
Asy

As, <0

Equation [8]
¢
Equation [10]&[11]
l TSV’ pr

Equation [12]&[13]
VPV ’VSV

\ 4
Equation [14]
Vi

\ 4
Equation [15]&[16]
T Mn,

y

\
Equation [17]&[18]
P3 M3

v
Equation [19]





Figure 8. 
Ejector sizing calculation steps flowchart.

Kasperski and Gil [6] have used Hung model [13] for heavy hydrocarbon refrigerants at pressure and temperature level, that are very close to this study application. The condenser temperature is at 40 OC and evaporator temperature is 10 OC. The condenser pressures vary depending on the refrigerant used from a highest of 1370 kPa for propane to 4.2 kPa for Octane. The evaporator pressures vary from 637 kPa for propane to 0.8 kPa for Octane. Nevertheless, an experimental work is required to test the accuracy of Huang model [13] at lower pressures and discuss the reasonability of the assumptions made for the model which is beyond the scope and objective of this study. 

2.3.3
EJECTOR GEOMETRIC PARAMETERS:

Ejector geometry has a strong and major influence on the ejector performance [15]. The ejector performance determines to the large extent the efficiency of the ejector refrigeration cycle; therefore, optimization of ejector geometry is mandatory for optimum cycle’s efficiency. The ejector is mainly composed of three sections; nozzle section, mixing chamber section, and diffusing section. The diameters’ ratios of these sections as well as the working fluid’s properties determine the ejector performance. Several parameters are used to measure the ejector performance, however, entrainment ratio is the most important one [6]. The entrainment ratio (ER) of an ejector is the ratio of the primary fluid (motive fluid) flow rate to that of the secondary fluid (entrained fluid). 

[image: image53.emf]
Expansion ratio (Xr) and compression ratios (Cr) are other parameters that are used for ejector performance analysis.  The Expansion ratio is the ratio of the primary to the secondary fluid whereas the compression ratio is the ratio of the compressed stream, i.e. the ejector outlet stream, to the secondary fluid stream. 

[image: image54.emf]
[image: image55.emf]
Using Huang model, the entrainment ratio (ER) was determined for a given nozzle throat diameter (Dt), constant-area section diameter (Dp1), and diffuser diameter (D3). It was found that the area ratio between these three geometric parameters has significant effect on the performance of the ejector. Based on Huang model, several runs were performed to study this effect when N-Pentane is used as a working fluid. 

2.3.3.1
Effect of Dp1/Dt area ratio on ejector performance:

The effect of the ratio between the constant-area section (mixing section) diameters to the throat nozzle diameter on the entrainment was studied at different boiler and evaporator pressure. It was found that higher Dp1/Dt enhances the entrainment ratio as illustrated in figure 9. This enhancement was noticed at three different boiler pressure levels, 982.8, 810.6, and 709.2 kPa. It was also noticed from this analysis that higher boiler pressure results in lower entrainment ratio at fixed ejector geometries and cycle’s parameters. The maximum entrainment ratio of 0.508 was found at boiler pressure of 709.2 kPa and Dp1/Dt of 1.14. 

Similar behavior was noticed when the evaporator pressure was changed. This is clearly shown in figure 10. The entrainment ratio increases as Dp1/Dt increases. At constant boiler and condenser pressures and ejector geometry, the entrainment ratio increases as evaporator pressure decreases. Same effects were reported by other studies using different working fluids and operating parameters [33].
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Figure 
9.
Entrainment Ratio change with mixing section to nozzle section area ratio change at different boiler pressures. 

2.3.3.2
Effect of D3/Dp1 on Ejector Performance:

Similarly, the ratio between the diffuser diameter (D3) to the mixing section diameter (Dp1) was changed at different boiler and evaporator pressure levels. It was found that increasing this ratio decreases the ejector performance significantly.  Figure 11 illustrates the change in entrainment ratio with diffusing section to mixing section area ratio change. 
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Figure 10. 
Entrainment Ratio change with mixing section to nozzle section area change at different evaporator pressures. 
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Figure 11. 
Entrainment Ratio Change with diffuser section to mixing section area ratio change at different evaporator pressures.

2.3.4
EJECTOR OPERATION MODES:

For constant primary and secondary pressure and fixed ejector geometry, the entrainment ratio changes with the ejector discharge pressure change, condenser pressure [7]. The operation of the ejector can be classified into three main regions depending on the flow characteristics in the mixing chamber, which are dependent on the ejector geometry and condenser pressure. These three modes of operations are double-choking, single-choking, and back flow. The double-choking is the desirable mode of operation where two choking phenomena exist in the ejector performance [13]: the first one occurs in the primary flow through the nozzle and the other one occurs in the entrained flow. The entrained flow is choked due to the acceleration of the flow to a supersonic velocity at the mixing section. This mode of operation occurs when the back pressure Pc is lower than the critical pressure Pc*. The single-choking mode occurs when Pc is higher than Pc*. At this mode, only the primary flow is choked and the velocity changes as back pressure changes. The third mode, which is considered a malfunction of the ejector operation, occurs when Pc is lower than PCO, where PCO is the limiting pressure for the ejector performance defined experimentally. At this mode, back-flow takes place and none of the fluids is choked. Figure 12 illustrates these three operational modes of the ejector with respect to condenser pressure change. 
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Figure 12.

Operational Modes of gas ejectors.

CHAPTER 3. 
NGL RECOVERY PLANT PROCESS DESCRIPTION:

Natural-gas processing plant is a complex industrial process that cleans raw natural gas by removing impurities and the heavy hydrocarbon to produce dry NGL, Ethane, and methane with high purity. This plant removes common contaminants such as water, carbon dioxide (CO2), and hydrogen sulphide (H2S).  The hydrogen sulphide is, in most natural gas plants, processed to produce solid sulphur to be sold.  Residential, commercial and industrial consumers can use the produced pure methane gas as fuel. 
One of the major process facilities in the natural gas processing plant is NGL Recovery plant. At this plant, the sweetened natural gas is compressed, cooled, and dried to separate the heavy hydrocarbon components, i.e. C3+ components.

In this study, an NGL recovery plant with feed gas standard flow rate of 2,696 m3/hr which is equivalent to a mass flow rate of 295 kg/s was considered. The feed sweet gas is compressed from 1013 kPa (147 psi) to 3040 kPa (441 psi) approximately to enable further processing and separation of sweet natural gas. After compression, the feed gas is then being processed through several cooling stages to bring the temperature down to about -20 OC. The higher the cooling capacity, the better separation of Heavy HC components and the higher quality of the produced methane. Figure 4 illustrates the simplified process flow diagram of a typical NGL recovery plant.
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Figure 13. 
NGL Recovery Plant Process Flow Diagram

Cooling is provided to the feed gas by three propane compression stages refrigeration system. In this cycle, the propane is compressed, condensed, and throttled to provide the required cooling temperature level and capacity at each stage. Figure 14 illustrates the process flow diagram of the closed propane refrigeration system typically used in NGL Recovery plant. 
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Figure 14. 
Propane Vapour Compression Refrigeration Cycle

3.1
DESIGNE CRITERIA OF THE NEW REFRIGERATION CYCLE FOR NGL RECOVERY PLANT:

One key approaches to improving the energy efficiency of industrial operations is to recover every possible sources of waste heat and turn them to useful outputs. The objective of this research is to design a heat operated refrigeration system that is driven by an NGL Recovery Plant’s waste heat to maximize the plant’s energy efficiency and minimize the plant’s power consumption. The new system will replace the third compression stage at the propane compression refrigeration cycle. Offloading the third stage refrigeration system by replacing it with a heat operated system will result in minimizing power consumption by 7755 KW in addition to minimizing heat emissions to environment significantly. Alternative refrigeration systems will be studied to investigate its efficiency and feasibility for this application. The new refrigeration cycle has to have the following minimum requirements:

· Provide a minimum total cooling capacity to the feed gas of 3.06×108 kJ/hr. 

· Provide cooling at maximum temperature of 27 OC. 

· The feed gas outlet temperature of the new refrigeration system chiller has a maximum temperature of 36 OC. 

· Condensation of the refrigerant at the new refrigeration cycle is achieved by fin fan air cooler assuming maximum summer temperature of 45 OC, average winter temperature of 15 OC, average spring/fall temperature of 25OC.

· Design Limiting Constraint: 

Based on the assumption of 45 OC as ambient temperature in hot climate,  the new refrigeration system design is limited by the condensation cooling temperature and , therefore, refrigerant temperature at the condenser must be 54 OC or higher to allow condensation using air coolers. 
CHAPTER 4. 
Absorption Refrigeration cycle for NGL recovery plant

In this section, we will investigate the feasibility of using an absorption refrigeration cycle to provide the required cooling specified in section 4.1. An ammonia-water absorption refrigeration cycle was designed and simulated using HYSYS. 

4.1
SINGLE-EFFECT ABSORPTION REFRIGERATION CYCLE :

The single-effect simple refrigeration cycle was studied as a replacement to the vapor compression system in NLG Recovery plant. Ammonia-water mixture with 0.50 mole composition of ammonia was selected for this analysis. HYSYS simulation was developed to study the performance of this cycle when heated by feed gas compressor discharge stream with drive the boiler of 130.7×106 kJ/hr duty. Using this waste heat, the generator has been designed to boil 82.33 kg/s of ammonia-water mixture at 2584 kPa and 56.4 OC to produce ammonia vapor at 108 OC with 0.972 purity. Condensation of this vapor takes place in the fin fan air condenser. The outlet of the air condenser is saturated liquid ammonia at 60.0 OC which is throttled to 982.2 kPa providing cooling in the evaporator at 25.65 OC. This cycle illustrated in figure 15 has been designed for air-cooling in the condenser for higher efficiency. The coefficient of performance of this cycle is not satisfactory due the requirement of a rectifier and the high absorber cooling duty. Table 1 lists all the energy streams in the designed single-effect absorption refrigeration cycle for NGL feed gas cooling. 

[image: image62.jpg]Rectifier

) 97.2% Ammonia Conc.: 108 °C
14.2 kg/s ; 2584 kPa

Condenser =

= A\

ed) £€5C
D, 09

00

V]
Al

Throttle Valve

Feed Gas EVaporator -~ o
| f 97.54 °C
| Y
| 4
81.67 °C

P

A

D, S9'ST

€d 6°¢86

SvT0

N4
\
Feed Gas (Waste Heat)
150 °C
3039 kPa v
295.5 kg/s / \ 1% R
t\ Generator /
B
3 S
S D w N >
w o 9 > S 2
w s p 3 =)
~ XN @) ¢
€355 B%
) O
o
2 5
y
Pump XD
< ©
M 0o
n N
p (o)
w A
W 5 )
7 Cooling Source
Absorber >
VF=0.0

VF=1.0

Sales Gas (Methane)
120 kg/s ; 2634 kPa
10 °C

h
85.88 °C K ; 3
Sales Gas Cooler\

L 40°C

aH

A




Figure 15. 
Single-effect Absorption Refrigeration Cycle for NGL Recovery Plant

Table 1. 
Energy Streams for NGL Recovery Plant ARS cycle. 

	Energy Stream
	Duty (KJ/hr)
	Source of cooling/heating

	Absorber Duty
	128.6×106
	Cooling Water

	Reboiler (Generator) Duty
	130.7×106
	Waste Heat (Feed Gas)

	Rectifier Duty
	1.53×106
	Cooling Water/ Air Cond.

	Condenser Duty 
	59.9×106
	Fin Fan Air Condenser 

	Evaporator Duty
	59.0×106
	Feed Gas stream

	Pump Work
	0.62×106
	----

	Sales Gas Cooler
	29.1×106
	Sales Gas Cooler


The coefficient of performance (COP) of this cycle was calculated based on the       following equation:
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                (23)
[image: image65.emf]
This definition of COP does not provide a clear measure of the total cooling provided to the feed gas and, therefore, can be misleading and cannot be used as a measure to study the feasibility of the system for this specific application. 

In order to accurately measure and estimate the performance of this cycle with respect of total cooling provided to the feed gas in NGL recovery, a performance indicator (η) has been defined as the total cooling provided by the thermal refrigeration compared to total cooling provided by the 3rd stage of the vapour compression refrigeration system.  

η= [image: image67.emf] QUOTE  
Performance factor that compares the cooling provided by the thermal refrigeration system to the total cooling provided by the 3rd compression stage of the vapour compression system 

[image: image69.emf]                                     (24)
where Qx is the total cooling provided for the feed gas by the alternative cooling system, x. And QVCR is the total cooling provided to the feed gas by the current VCR system in the first cooling stage.  Performance factor (η) equals to 1.00 shows the ability of the system to provide the required cooling in the 1st stage to cool down the feed gas to 36 OC. If the η is less than 1.00, the system can’t provide the required cooling and therefore can’t be used to replace the current VCR 3rd compression stage. The objective is to find an alternative system that has a performance factor higher or equal to 1.00 to replace the VCR 3rd compression stage. 

 [image: image71.emf] QUOTE  
Single- Effect Absorption Refrigeration Cycle Performance Factor:

[image: image72.emf]
Based on this low COP and performance factor in addition to the high complexity and capital cost, it is very clear that the absorption refrigeration cycle is not a feasible option to replace the vapor compression cycle in an NGL Recovery plant. 

4.2
GAX ABSORPTION REFRIGERATION CYCLE:

GAX absorption cycle was also considered as a replacement to the VCR in NGL Recovery plant. GAX cycles have shown better performance than single-effect absorption cycle mainly to higher heat integration in the system. Figure 16 shows the process flow diagram of a GAX absorption cycle for NGL recovery plant driven by the waste heat at the feed gas compressors discharge. The GAX cycle was designed so that the waste heat utilized in this cycle is equivalent to the single-effect absorption for accurate comparison, i.e. Qg of 130.7 kJ/hr. Due to the higher heat integration, the vapour refrigerant flow rate has increased to 17.6 kg/s compared to 14.2 kg/s in the single-effect ARS. This has a slight increase in the cycle COP as shown in the results below.

The coefficient of performance (COP) of this cycle was calculated based on the       following equation:

Coefficient of Performance COP using equation (23):
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Figure 16. 
single-effect GAX absorption cycle for NGL feed gas cooling. 

Single-Effect GAX absorption Refrigeration Cycle Performance factor (η) using equation (24):

[image: image75.emf]
As shown by both COP, GAX design has a slight increment on the absorption cycle performance factor. The performance factor of 0.772 shows that the GAX cycle is not efficient enough to replace the 3rd compression stage in the VCR system in an NGL recovery plant. Table 2 lists all energy streams in GAX absorption refrigeration cycle for NGL recovery plant. 

Table 2. 
Energy Streams for single-effect GAX absorption cycle for NGL feed gas cooling

	Energy Stream
	Duty (kJ/hr)
	Source of cooling/heating

	Absorber Duty
	127.9×106
	Cooling Water

	Reboiler (Generator) Duty
	130.4×106
	Waste Heat (Feed Gas)

	Rectifier Duty
	1.98×106
	Cooling Water/ Air Cond.

	Condenser Duty 
	77.9×106
	Fin Fan Air Condenser 

	Evaporator Duty
	76.2×106
	Feed Gas stream

	Pump Work
	0.80×106
	----

	Sales Gas Cooler
	29.1×106
	Sales Gas Cooler


4.3
SINGLE-EFFECT COGENERATION ABSORPTION CYCLE:

For higher energy conversion and waste heat utilization, the single-effect cogeneration absorption cycle has been considered for this application. Cogeneration has been proven to be an efficient way to increase efficiency in some applications specifically for applications where available power is less than the plant’s requirement. At such cases, cogeneration absorption cycle can be used to provide the plant with the power demand and provide cooling at the same time. This, however, requires an intermediate to high waste heat temperature source. 

The single-effect cogeneration ARS for NGL recovery plant has been designed to use a turbine to perform the required pressure drop in the vapour refrigerant strem instead of a throttle valve. The Turbine will generate a total power of 1500 kW by dropping the vapour refrigerant from 2584 kPa to 982.9 kPa. This amount of produced power is considered insignificant compared to the size of the plant and the approximate plant total power consumption of 65,000 kW. Moreover, adding a turbine to the process design will increase the capital and operation costs significantly. Figure 17 shows the process flow diagram with operation conditions of a single-effect Cogeneration (Power/Cooling) absorption cycle for NGL recovery plant. 

In addition to the previous drawbacks of a cogeneration ARS for NGL recovery plant, the COP and performance factor were not satisfactory. The cycle has COP of 0.279 and performance factor of 0.666. This proves that the system is not a feasible option for this application for both performance and operational drawbacks. 

Coefficient of Performance COP for cogeneration cycle is defined in equation (25):
[image: image77.emf]                                                                                               (25)
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Single-Effect Cogeneration Absorption Refrigeration Cycle Performance Factor (η) :
[image: image79.emf]
Table 3 lists all the values of all energy streams in the single-effect cogeneration (Power/Cooling) absorption cycle. 

Table 3.
Energy streams for single-effect Cogeneration absorption cycle for NGL feed gas cooling. 

	Energy Stream
	Duty (KJ/hr)
	Source of cooling/heating

	Absorber Duty
	128.7×106
	Cooling Water

	Reboiler (Generator) Duty
	130.7×106
	Waste Heat (Feed Gas)

	Rectifier Duty
	1.53×106
	Cooling Water/ Air Cond.

	Condenser Duty 
	63.1×106
	Fin Fan Air Condenser 

	Evaporator Duty
	67.5×106
	Feed Gas stream

	Pump Work
	0.62×106
	----

	Power Produced 
	5.40×106
	----

	Sales Gas Cooler
	29.1×106
	Sales Gas Cooler
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Figure 17. 
single-effect Ammonia/Water cogeneration (Power/Cooling) absorption cycle for NGL feed gas cooling. 

4.4
GAX COGENERATION ABSORPTION CYCLE:

As mentioned earlier in section 2.1.3, GAX absorption cycles have higher efficiency due to the higher heat integration between the cycle’s streams. In this section, we will consider the GAX Cogeneration absorption cycle, which similar to the single-effect cogeneration absorption cycle with addition of GAX. Figure 18 shows the process flow diagram with operating conditions of  the designed GAX absorption cycle for NGL recovery plant. 

Coefficient of Performance COP using equation (25):

[image: image81.emf]
[image: image82.emf]
[image: image83.emf]
GAX cogeneration absorption cycle has slightly better COP and performance factor and produces more power than the single-effect absorption cycle. Nevertheless, it is not capable to provide the required cooling for the feed gas. Feed gas outlet of this system is approximately at 75.5 OC which far from the required temperature of 36 OC. Table 4 lists all the energy streams in the single-effect GAX cogeneration (Power/Cooling) absorption cycle. 

Table 4 List of energy streams in GAX cogeneration absorption cycle for NGL recovery plant.

	Energy Stream
	Duty (KJ/hr)
	Source of cooling/heating

	Absorber Duty
	128.2×106
	Cooling Water

	Reboiler (Generator) Duty
	130.7×106
	Waste Heat (Feed Gas)

	Rectifier Duty
	1.99×106
	Cooling Water/ Air Cond.

	Condenser Duty 
	77.9×106
	Fin Fan Air Condenser 

	Evaporator Duty
	87.9×106
	Feed Gas stream

	Pump Work
	0.70×106
	----

	Power Produced 
	7.04×106
	----

	Sales Gas Cooler
	29.1×106
	Sales Gas Cooler


When comparing the performance of the designed absorption cycles for NGL recovery plant, we can see that addition of GAX to the absorption cycle increases the efficiency by 5% to 10%. Cogeneration (power/cooling) Absorption cycles have better performance than cooling absorption cycles. However, this increment in efficiency comes with a penalty of higher capital and operation cost. Figure 19 compares the COP and efficiencies of the four types of absorption cycles for NGL recovery plant designed in this study for comparison. 
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Figure 18. 
single-effect GAX cogeneration (Power/Cooling) absorption cycle for NGL feed gas cooling. 


[image: image85.png]1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

Effeciency Various Designs of Absorption Cycles for NGL
Recovery plant Feed Gas Cooling

0.68

0.62 0.67

0.29

0.23

cop Effeciency n

M single-effect Absorption Cycle
(SEAC)

M Single-effect GAX Absorption
Cycle (SEGAC)

M Single-effect Cogeneration
Cycle (SECC)

M Single-effect GAX Cogeneration
Cycle (SEGCC)




Figure 19. 
Comparison between designed Absorption cycles for NGL feed gas cooling. 
CHAPTER 5.
EJECTOR REFRIGERATION CYCLE:

5.1
SINGLE EJECTOR REFRIGERATION CYCLE 

The new novel ejector refrigeration cycle will utilize the waste heat emitted to the environment at feed gas compressor discharge. Cooling this hot stream from the discharge temperature to around 60 OC using air requires three large fin fan air coolers with total surface area of 1370 m2. This waste heat can be utilized to operate an environmental friendly refrigeration cycle such as an ejector refrigeration cycle. In this cycle, the high temperature (150 OC) stream at the feed gas compressor discharge outlet will be used to boil the refrigerant at the boiler. The outlet vapor refrigerant will then entrains, pressurize, the low pressure vapor refrigerant at the evaporator outlet using an ejector. For higher COP, The condenser pressure, which is determined by the ejector design and geometry, was selected so that the outlet is cooled using air. The liquid at the outlet of the condenser is spitted into two streams; one to the evaporator where it is throttled and provides cooling in the evaporator, the other stream is pressurized to the boiler pressure and then sent to the boiler.

Selection of the working fluid is a critical step in designing an ejector refrigeration cycle that delivers the desired minimum requirement mentioned in section 3.1.  In addition to the features mentioned previously, the working fluid has to have physical properties that allow total vaporization at 150 OC and total condensation at ambient temperatures at reasonable and acceptable pressures. In addition, the fluid has to provide cooling at a maximum temperature of 26.9 OC at an acceptable evaporator pressures. In this study, several working fluids have been studied for this application. 

a. Methanol:
Methanol (CH3OH) is the lightest aliphatic alcohol, a function group hydroxyl (–OH) replaces a hydrogen atom of the methane. Despite the toxicity of methanol, it can be used in refrigeration cycles with the required safety procedures and precautions. The availability and cheap prices of methanol makes it an attractive option. However, using the vapor pressure diagram, we can notice the very low-pressure levels required to operate a methanol ejector refrigeration cycle for NGL recovery plant feed gas cooling. The condenser pressure has to be around 81.1 kPa and the evaporator pressure has to be as low as 18.2 kPa. This adds some complications to the operation of the cycle’s and ejector design and performance. Figure 20 shows the vapor pressure of methanol at different temperatures. 

b.  Propane 

Propane or R-290 is a very common and popular refrigerant due to its physical properties and low environmental impact. Propane has been gaining popularity since 1990s as an excellent alternative to fluorocarbons in a wide range of applications. It has several advantages over other refrigerants including zero ozone depletions potential, very low global warming potential, good compatibility with system components, and excellent thermodynamic properties leading to high 
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Figure 20. 
Methanol Vapor Pressure

energy efficiency [30]. Flammability of propane is not a problem when the cycle operation is sealed and equipped with the proper safety requirements. Examining propane for this application, the required pressure level at the condenser will be extremely high for the ejector to achieve. These high-pressure levels will increase the operation and capital costs of the cycle. Propane vapor pressure in kPa is shown in figure 21.
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Figure 21. 
Propane Vapor Pressure 

c. N-pentane

N-pentane (R-601) was found to be the most efficient option for this application as a working fluid in the ejector refrigeration cycle for the following two reasons:

1. Acceptable operating pressure levels in the boiler and condenser:

As illustrated in the vapor pressure diagram in Fig. 20, When N-pentane temperature is round 88 OC, the boiler pressure will be around 304.0 kPa. N-pentane saturated vapor temperature at 182.4 kPa is 54.4 OC which allows utilization of fin fan air cooler for the condenser. N-pentane can provide cooling at 26.96 OC at evaporator pressure of around 73.0 kPa.  
2. High ejector entrainment ratio. 

Kasperski and Gil [6] study of ejector performance using heavy hydrocarbons concluded that the best performance of an ejector cycle at boiler temperature range of 130-160 OC is achieved by using pentane as a working fluid.  The entrainment ratio at this boiler range reaches to 0.5. 

In addition, N-pentane, as well as some other hydrocarbons, is an environmental friendly refrigerant and has very low global warming potential. Fig. 22 shows the vapor pressures of N-pentane at different temperatures and the operating points for generator, condenser, and evaporator.
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Figure 22. 
N-Pentane Vapor Pressure

d. N-Hexane:

N-hexane (R-602) shows high ejector entrainment ratio as well at higher boiler pressures [6]. However, in order to provide cooling at 26 OC, the evaporator pressure will be very low at around 20.3 kPa which will add some complications to the ejector performance and the cycle operation. Nevertheless, N-hexane can be used to provide cooling at higher temperatures as a first cooling stage in a multi-stage ejector refrigeration cycle. Figure 23 shows the vapor pressures of N-hexane at different temperatures. 
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Figure 23. 
N-hexane Vapor Pressure

Using HYSYS simulation and Huang model for ejector performance, single N-Pentane ejector refrigeration cycle powered by the compressor feed gas discharge was simulated using HYSYS. In this cycle, boiler pressure is set at 304.0 kPa, evaporator pressure at 73.0 kPa, and condenser pressure at 182.4 kpa. Using Huang model, the entrainment ratio of the ejector at these conditions for n-pentane was calculated and found to be 0.2740. Figure 24 shows the process flow of the process flow diagram of a single ejector refrigeration cycle operated by the feed gas compressor discharge. 
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Figure 24.
N-Pentane single ejector refrigeration cycle for feed gas cooling in NGL recovery plant.

Table 2 lists all the energy streams in the single N-pentane ejector refrigeration cycle. The cycle COP was calculated based on the evaporator cooling capacity over the boiler duty and pumps work as shown in equation (26): 
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(26)

[image: image93.emf] 
The system performance factor has been calculated as defined earlier and found to be lower than one which indicates the inability of the system to provide the required cooling to the feed gas.  
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There is slight improvement in the performance factor when using single ejector refrigeration system compared to the absorption refrigeration cycle. However, both systems are not efficient enough to replace the 3rd compression stage in the NGL recovery plant. 

Table 5.  Energy streams in the single N-pentane ejector refrigeration cycle. 

	
	Single N-pentane ejector refrigeration cycle  (kJ/hr)

	Boiler Duty
	171.2×106

	Condenser Duty
	----

	Evaporator Duty
	37.1×106

	Pump Work
	0.125×106

	COP
	0.217

	Sales Gas Cooler
	28.7×106


5.2
MULTIPLE EJECTOR REFRIGERATION SYSTEM (MS1): N-HEXANE/N-PENTANE 2+1 EJECTOR REFRIGERATION CYCLE:

One way to increase the ejector refrigeration cycle efficiency is to use multiple cycles driven by the feed gas waste heat at different temperature levels. In this section, two multiple ejector refrigeration cycle process designs are considered and studied for NGL Recovery plant Feed gas cooling. 

This process design relies on the integration of two cycles with different working fluids to enhance the overall cycle performance. This heat integration allows higher utilization of waste heat providing cooling at two temperature levels. 

This ejector refrigeration system consists of one N-Hexane ejector cycle and two N-Pentane ejector refrigeration cycles. The N-hexane cycle is integrated with one of the N-Pentane cycles. The two integrated ejector cycles operates with different working fluids to allow heat integration between the two cycles. The first cycle (cycle-1) consists of two ejector cycles operate with two different working fluids; N-hexane and N-Pentane. Cycle-1 provides cooling to the feed gas at two temperature levels; N-hexane cycle provides cooling at 53.7 OC whereas the N-pentane cycle provides cooling at 26.9 OC. Cycle-2 is a single ejector refrigeration cycle driven by the feed gas stream at the outlet of cycle-1 boiler to increase the utilization of waste heat and maximize feed gas cooling. Figure 25 is a process flow diagram that illustrates the integration between the N-Hexane and N-Pentane ejector cycles. 
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Figure 25. Two integrated ejector cycles with different working fluids; N-
Hexane/N-Pentane. 

Feed gas compressor discharge (waste heat) operates the N-hexane ejector cycle, which operates another N-Pentane cycle. The excess waste heat is then used to operate a third single N-pentane cycle. The overall COP of this cycle is higher than the single N-Pentane cycle but still not satisfactory. Figure 26 illustrates the overall process flow diagram of the N-hexane/N-pentane 2+1 Ejector Refrigeration cycle driven by the feed gas compressor discharge hot stream. 
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Figure 26. 
N-hexane/N-Pentane 2+1 Ejector Refrigeration Cycle for NGL 
Recovery Plant

The overall cycle COP was calculated based on the total cooling provided by the three evaporators, cycle-1 HP evaporator, Cycle-1 LP evaporator, cycle-2 LP evaporator.

[image: image99.emf]                                            (27)

[image: image101.emf] 
The system performance factor, as defined earlier, will be calculated for better analysis of the ability of this system to provide the required cooling to the feed gas. 
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[image: image103.emf]
Although this cycle has high COP and higher performance factor, it does not meet the     minimum requirement of maximum feed gas outlet of 36.0 OC and, therefore, can not be used as a replacement to the third compression stage of the propane vapor compression system. Table 6 lists all energy streams in the multiple ejector refrigeration system (MS1) for feed gas cooling at NGL recovery plant. 

Table 6. 

Energy Streams of Multiple Ejector Cycle (MS1) N-hexane/N-pentane 2+1 Ejector Refrigeration Cycle for feed gas cooling at NGL Recovery Plant. 

	
	High Pressure N-hexane Cycle-1 (kJ/hr)
	Low Pressure N-Pentane Cycle-1 (kJ/hr)
	Low Pressure N-Pentane Cycle-2 (kJ/hr)

	Boiler Duty
	51.0×106
	51.6×106
	120.8×106

	Condenser Duty
	----
	----
	----

	Evaporator Duty
	6.54×106
	15.43×106
	36.7×106

	Pump Work
	0.06×106
	0.07×106
	0.09×106

	COP
	0.128
	0.299
	0.304


5.3
MULTIPLE EJECTOR REFRIGERATION SYSTEM (MS2): N-PENTANE 2+1 EJECTOR REFRIGERATION CYCLE:

Another way to perform heat integration between two or more ejector cycles is to operate them at different pressure levels using the same working fluid in these cycles. This process design consists of a high pressure N-Pentane ejector cycle integrated with a low pressure ejector cycle, and a separate low pressure N-Pentane ejector cycle. 

The typical COP of an N-pentane ejector cycle ranges between 0.25 and 0.35 whereas this integrated ejector cycle COP is 0.99. This integrated cycle has another advantage as it provides cooling at two temperature levels. The high-pressure cycle provides cooling at 52.5 OC whereas the low-pressure cycle provides cooling at 26.9 OC. The third separate ejector cycle operates at pressure and temperature levels similar to the low pressure cycle at the two integrated ejector cycles providing cooling at 26.9 OC. This process design utilizes the waste heat at the discharge of feed gas compressor to operate three ejector refrigeration cycles as shown in figure 27. 
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Figure 27. 
N-Pentane 2+1 Ejector Refrigeration Cycle for NGL Recovery Plant 

The integrated cycle (Cycle-1) COP was calculated based on the high pressure N-Pentane boiler duty:

[image: image106.emf]              (28) 
The overall cycle COP was calculated based on the total cooling duty provided to the feed gas stream as defined in (27):
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The Performance factor (η) for this multiple ejector refrigeration system (MS2) : 
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The overall COP is significantly higher than the COP of a single ejector refrigeration cycle and MS1 cycle. This is mainly due to the higher utilization of waste heat and heat integration between the two cycles in Cycle-1. This system shows a performance factor higher than 1.00 which means that the system is capable of providing the required cooling to the feed gas in the 1st cooling stage of the NGL recovery plant. Table 7 lists all energy streams of this new ejector cycle with COP calculation of each individual ejector cycle. 

Table 7.
Details of energy streams at N=Pentane 2+1 Ejector Cycle

	
	High Pressure N-Pentane Cycle-1 (kJ/hr)
	Low Pressure N-Pentane Cycle-1 (kJ/hr)
	Low Pressure N-Pentane Cycle-2 (kJ/hr)

	Boiler Duty
	101×106
	157×106
	69.8×106

	Condenser Duty
	----
	----
	----

	Evaporator Duty
	53.3×106
	47.9×106
	21.3×106

	Pump Work
	0.142×106
	0.115×106
	0.511×106

	COP
	0.527
	0.305
	0.304


5.3.1
Ejector Internal Dimensions Calculations:

N-Pentane 2+1 ejector refrigeration cycle was found to be an efficient refrigeration system that provides the minimum requirements for an NGL Recovery plant 1st stage cooling listed in section 3.1. Following the performance analysis of this cycle, detailed calculations of the ejector design was performed. Huang [13] ejector performance model was used to identify the ejector’s internal dimensions required to produce the designed outlet condenser pressure (Pc) assuming coefficients accounting for the loss in the primary and secondary flows at the nozzle section of 0.95 and isentropic efficiency is assumed of 0.85.  Table 8 shows the calculated internal dimensions of the ejector required to achieve the design condenser pressure at each cycle. 

Table 8. 
Ejector internal dimensions for the 2+1 N-Pentane Ejector Cycle

	Size (mm)
	High Pressure N-Pentane Cycle-1
	Low Pressure N-pentane Cycle-1
	Low Pressure N-pentane Cycle-2

	Nozzle throat diameter dt 
	355
	418
	278

	Mixing Section Diameter dp1 
	378
	443
	294

	Ejector Diffuser diameter d3 
	500
	600
	400


5.3.2
Cycle Performance Sensitivity to Ambient Temperature 

This cycle has been designed for hot climate where air temperature reaches up to 45 OC in the summer. Simulation cases have been developed to test the performance of this cycle when air temperature goes down in winter or fall/spring seasons. Using Huang Model, it was found that the ejector entrainment ratio is a strong function of the evaporator pressure. The ejector entrainment ratio decreases as the evaporator pressure decreases. This reduction in ejector ER results in lower COP. For this reason, the cycle will not provide any significant additional cooling when air temperature decreases in winter, fall, or spring seasons. Table 9 shows the details of the simulation cases performed to analyse the cycle performance at different ambient temperatures. Table 9 shows the details of the simulation cases performed to analyse the cycle performance at different ambient temperatures.  

Table 9.
Simulation Cases for MS2 Cycle Performance Sensitivity to Ambient Temperature Change.

	Season
	Ambient 
Temp 
OC
	Pg (kpa)
	Pc (kpa)
	Tc (OC)
	Pg (kpa)
	Te (OC)
	ER

	Winter
	15
	304.0
	68.4
	25.24
	30.40
	5.25
	0.139

	Average Spring /Fall
	30
	304.0
	116.5
	40.30
	50.66
	17.46
	0.213

	Average Summer
	35
	304.0
	136.8
	45.19
	60.80
	22.13
	0.254

	Maximum Summer
	45
	304.0
	182.4
	58.40
	72.95
	29.39
	0.274


CHAPTER 6.
ECONOMIC AND FEASIBILITY ANALYSIS:

6.1
CAPITAL COST ESTIMATION 

In order to study the feasibility of replacing the third stage at the vapor compression refrigeration system with the new ejector refrigeration cycle, Capital costs have been estimated for all equipment in the current and new refrigeration systems. These costs were estimated using two methods, CAPCOSTS software and costs equations from literature. 

6.1.1
CAPCOST Software Analysis:

CAPCOST software is a capital cost estimation program that is widely used in industry mainly for estimating preliminary process capital cost of new projects or facilities [41]. Using CAPCOST software, the total capital cost of the new ejector refrigeration system was found to be 5.60 MM$ compared to 17.14 MM$ for the currently used vapor compression refrigeration system. This is mainly due to the low capital costs of ejectors compared to compressors. The refrigeration compressors for the current system represent 41.7% of the total capital cost. In addition, this reduction in the capital cost is due to the
demolishing of the feed gas fin fan air cooler which contributes to 11.0% of the total capital cost. 

a. Current Propane Vapor Compression System Capital Cost:

The main contributors to the capital cost of the current VCR system are the Feed gas air fin fan coolers and refrigeration compressors. They together represent more than 50% of the total capital cost. These two equipment are not needed in the new process design when using the new ejector refrigeration cycle. Figure 28 illustrates the capital cost percentage of each type of process equipment of the current VCR system to the total capital cost. 
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Figure 28. Capital Cost Percentage Analysis per equipment type for Current Propane VCR system.

Table 10. 
Process Equipment Capital Costs for Current Propane VCR System.

	
	Total Equipment Costs (MM$) 
	Percent of Total Refrigeration system Capital cost (%)

	Refrigeration Compressors
	7.160
	42

	Feed Gas Air Fin Fan Cooler
	1.818
	11

	Refrigeration Air fin fan Cooler
	5.040
	29

	Heat Exchangers
	0.933
	5

	others
	2.188
	13

	Total Equipment Capital Cost 
	 17.14 MM$


b. New N-Pentane 2+1 Ejector Cycle Capital cost:

The new ejector refrigeration system’s capital cost is only 30% of the current refrigeration system. This is mainly due to the low capital costs of ejectors compared to refrigeration compressors and the demolishing of feed gas air fin fan coolers. In the new ejector cycle, heat exchangers and the two air fin fan condensers at the low pressure cycles represent 90% of the total capital cost of the system. Figure 29 illustrates the capital cost percentage of each type of process equipment of the new ejector system MS2 to the total capital cost. 
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Figure 29. 
Capital Cost Percentage Analysis per equipment type for the new N-Pentane 2+1 Ejector Refrigeration Cycle. 

Table 11.
Process Equipment Capital Cost of the New N-Pentane 2+1 Ejector Refrigeration Cycle

	
	Total Equipment Costs (MM$) 
	Percent of Total Refrigeration system Capital cost (%)

	Refrigeration Air fin fan Cooler
	2.591
	46.1

	Heat Exchangers
	2.548
	45.4

	Ejectors
	0.210
	3.7

	Others
	0.268
	4.8

	Total Equipment Capital Cost 
	5.62 MM$


6.1.2
Literature Capital Cost estimation Equations:

Based on literature equations to estimate process equipment capital costs [42], applying the new ejector refrigeration system will result in capital cost savings of 24.9 MM$ based on a plant capacity of 725 MMSCFD. Figure 30 compares the capital costs of both system when using equipment capital costs estimation equations. 
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Figure 30.
Process Equipment Capital Costs based on estimation equations. 

Below are the detailed calculations of the capital costs of both systems:

A. Current VCR system:

1- Refrigeration Compressors A/B/C/D:

Capital cost estimation equation from [42] for Centrifugal compressors:

[image: image113.emf]
The subject NGL plant has four parallel refrigeration compressors with total power consumption of 1940 kW, equivalent to 2600 hp :

[image: image115.emf]=1035 K$ = $1,035,000 

Assuming an installing multiplier of 1.5 as listed in table 21.3 in reference [42]:

[image: image116.emf]
[image: image117.emf]
2- Feed gas Compressor Discharge fin fan cooler A/B/C:

Capital cost estimation equation from [42] for air fin fan coolers:

[image: image118.emf]
Three large fin fan coolers A/B/C each with surface area of 14,475 ft2 are cooling compressor discharge stream in the current design. 

[image: image120.emf]=1385 K$ = $1,385,000 

Assuming an installing multiplier of 2.2 [42]:

[image: image121.emf]
[image: image122.emf]
3- Feed gas Compressor Discharge fin fan cooler A/B/C:

Four large fin fan coolers A/B/C/D each with surface area of 58600 ft2 are cooling propane hot vapour at refrigeration compressors discharge in the current design. 

[image: image124.emf]=2,423 K$ = $2,423,000 

[image: image125.emf]
4- Shell and Tube first stage cooler A/B:

Capital cost estimation equation from [42] for air fin fan coolers:

[image: image126.emf]
[image: image127.emf]
[image: image129.emf] 

Shell and tube heat exchanger with surface area of 11,300 ft2 is used in the first cooling stage. [image: image131.emf]are found to be 0.774, 1.249, and 1.00, respectively [42]:

[image: image132.emf]
[image: image133.emf]
Assuming an installing multiplier of 2.5 [42]:

[image: image134.emf]
5- Refrigeration systems knock-out drums:

Capital cost estimation equation for vertical vessels[42]:

[image: image135.emf]
[image: image136.emf]
[image: image137.emf]
FM is the material of construction factor and was considered to be 1.7 for stainless steel. Current Vapour Compression refrigeration system has four knockout drums each with hight of 17 and width of 8.5 ft. 

 [image: image139.emf]  

assuming installation multiplier of 2.8 [42]:

[image: image141.emf]  

[image: image143.emf] 

Total Capital Cost for all equipment in the current VCR system = 37.6 MM$

B. New N-Pentane Ejector Refrigeration cycle (MS2):

Capital costs of the air coolers and shell and tube heat exchangers in the new -Pentane 2+1 Multiple Ejector refrigeration system (MS2) were calculated in the same way shown above for the current system. The table below lists the costs calculated based on literature estimation equations [42] for heat exchangers in the new ejector cycle.

Table 12. Process Equipment Capital Cost of the heat exchangers in the New N-Pentane 2+1 Ejector Refrigeration Cycle (MS2) using estimation equations.
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E-101 Cycle-1 HP Boiler 840 9038 115894.080.748 1.231 1.00 129966

2.5

$324,915

E-102 Cycle-1 HP Evaporator 715 7693 99910.37 0.737 1.223 1.00 109698

2.5

$274,245

E-103 Cycle-1 LP Boiler 208022381285365.980.812 1.276 1.00 360162

2.5

$900,406

E-104 Cycle-1 LP Evaporator 441 4745 65390.68 0.706 1.199 1.00 67368

2.5

$168,421

E-105

Cycle-1 LP Fin Fan 

Air Condenser

782084143 --- --- --- --- 2799812

2.1

$5,879,605

E-201 Cycle-2 Boiler 640 6886 90401.17 0.730 1.217 1.00 97822

2.5

$244,555

E-202

Cycle-2 Fin Fan 

Air Condenser

347037337 ---- ---- ---- ---- 2022916

2.1

$4,248,125

E-203 Cycle-1 Evaporator 336 3615 52238.80 0.688 1.185 1.00 51916

2.5

$129,789


 The ejectors and pumps costs are calculated as shown below.

1- Pumps 

Capital cost estimation equation for centrifugal pumps[42]:

[image: image145.emf]
[image: image146.emf]
FM is the material of construction factor and was considered to be 1.35 for cast iron and the type cost fact FT was calculated and found to be 1.95. The new ejector refrigeration system requires total of three pump:

 [image: image148.emf]
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[image: image150.emf]
Assuming installation multiplier of 2.8 [42]:

[image: image152.emf]  

2- Ejectors:

Capital cost estimation equation for ejectors[42]:

[image: image153.emf]
X = flow rate (lb) / suction pressure (Torr)

[image: image154.emf]
[image: image155.emf]
All of these three factors was found to be 1.00 for the carbon steel single stage ejector with no internal condenser. 

[image: image156.emf]
[image: image157.emf]
[image: image158.emf]
Assuming an installation factor of 1.7 [42]:

[image: image160.emf]  

Total Capital Costs for the New Multiple Ejector Refrigeration system (MS2) = 12.7 MM$.
6.2
POWER CONSUMPTION ANALYSIS:

As mentioned earlier, one the major advantages of the ejector refrigeration cycle over the vapor compression cycle is the low power consumption. Based on the power consumption of the third compression stage, applying the new ejector refrigeration cycle will result in a minimum savings of 0.68 MM$ annually based on power costs in Saudi Arabia [43]. This savings could reach up to 1.35 MM$ annually in other countries like USA [44]. Figure 31 shows the savings in US$ due to lower power consumption in the new ejector system MS2. 
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Figure 31.
Power Consumption Savings When Applying the new N-Pentane 2+1 Ejector Refrigeration Cycle. 

CHAPTER 7.
CONCLUSION AND FUTURE WORK:

The new developed N-Pentane 2+1 Ejector Refrigeration cycle was found to be an efficient, environmental friendly, heat operated, feasible and cost effective replacement of a vapor compression refrigeration cycle for the 1st cooling stage in an NGL Recovery Plant. The new N-pentane [2+1] Ejector Refrigeration cycle uses low grade heat of the NGL plant at the feed gas compressor discharge. Cooling of the NGL plant feed is accomplished by using it as a hot stream to drive the higher pressure ejector refrigeration cycle and by further heat removal in the three evaporators of the higher and lower ejector refrigeration cycles.  Final cooling is accomplished by the third ejector refrigeration cycle, which also uses N-Pentane and operates at the lower pressure level. COP of the new cycle is 0.714 with performance factor of 1.053. The new multiple ejector refrigeration system (MS2) supply the plant with cooling capacity that cools the feed gas to 34 OC. It provides cooling to the feed gas at two temperature levels, 50.6 OC and 26.9 OC. It will minimize the NGL Recovery plant power consumption by 7755 kW equivalent to minimum annual savings of 0.68 MM$. Moreover, the new ejector refrigeration cycle’s capital cost is only 30% of the propane VCR system which is equivalent to a reduction of 12 Million US$ for an NGL recovery plant with 2969 m3/hr capacity. For such plant size, using the new ejector cycle reduces the power consumption by 7755 kW, which is equivalent to 0.68 MM US$ in Kingdome of Saudi Arabia and 1.35 Million US$ in USA. Reduction in electricity consumption will reduce CO2 emissions by 47,000 metric tons per year, which is equivalent to removing 9,900 vehicles from the road or to the amount of CO2 which is sequestered by 38,500 acres of forest [45].
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Appendix B
HYSYS Simulation PFD and Workbooks of Single-effect GAX Absorption Cycle for NGL feed gas cooling 
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Appendix C
HYSYS Simulation PFD of Single-effect Cogeneration (Power/Cooling) Absorption Cycle for NGL feed gas cooling 
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Appendix D
HYSYS Simulation PFD of Single-effect GAX Cogeneration (Power/Cooling) Absorption Cycle for NGL feed gas cooling 
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Appendix E
N-Pentane Ejector Performance at different operating conditions. 
	Entrainment Ratio Calculations for N-Pentane Ejector Cycle at different Boiler and 
Condenser pressures *

	
	CASE NO.
	Pg (atm)
	 Tg (OC)
	 Pc  (atm)
	Tc (OC)
	Dt (mm)
	DP1 (mm)
	D3 (mm)
	ER
	Cr

	Fixed Pg  at 3.00 atm
	1
	3.00
	72.30
	1.00
	36.18
	355
	406
	550
	0.3314
	1.39

	
	2
	3.00
	72.30
	1.20
	41.58
	355
	395
	550
	0.326
	1.67

	
	3
	3.00
	72.30
	1.30
	44.02
	355
	389
	550
	0.316
	1.81

	
	4
	3.00
	72.30
	1.40
	46.32
	355
	384
	550
	0.308
	1.94

	
	5
	3.00
	72.30
	1.50
	48.49
	355
	380
	550
	0.299
	2.08

	
	6
	3.00
	72.30
	1.60
	50.20
	355
	378
	550
	0.291
	2.22

	
	7
	3.00
	72.30
	1.70
	52.52
	355
	374
	550
	0.285
	2.36

	
	8
	3.00
	72.30
	1.80
	54.40
	355
	370
	550
	0.274
	2.50

	
	9
	3.00
	72.30
	1.90
	56.00
	355
	368
	550
	0.268
	2.64

	Fixed Pc  at 1.80 atm
	11
	3.20
	74.60
	1.80
	54.40
	355
	376
	550
	0.260
	2.50

	
	12
	3.40
	76.80
	1.80
	54.40
	355
	382
	550
	0.246
	2.50

	
	13
	3.60
	79.00
	1.80
	54.40
	355
	390
	550
	0.238
	2.50

	
	14
	3.80
	81.30
	1.80
	54.40
	355
	395
	550
	0.224
	2.50

	Fixed Dp1/Dt
	19
	3.00
	72.30
	1.50
	48.49
	355
	380
	550
	0.291
	2.08

	
	20
	3.00
	72.30
	1.47
	48.49
	355
	380
	560
	0.326
	2.04

	
	21
	3.00
	72.30
	1.44
	48.49
	355
	380
	570
	0.344
	2.00

	
	22
	3.00
	72.30
	1.40
	48.49
	355
	380
	580
	0.368
	1.95

	
	23
	3.00
	72.30
	1.37
	48.49
	355
	380
	590
	0.391
	1.90

	
	24
	3.00
	72.30
	1.34
	48.49
	355
	380
	600
	0.416
	1.86

	
	* Evaporator pressures and mp are fixed at 0.72 at and 100 kg/s, respectively. 
	


Appendix F

N-Hexane Ejector Performance at different operating 




conditions. 

	Entrainment Ratio Calculations for N-hexane Ejector Cycle at different Boiler and 
Condenser pressures *

	CASE No. 
	Pg (atm)
	Tg (OC)
	Pc (atm)
	 Tc  (OC)
	Dt (mm)
	DP1 (mm)
	D3 (mm)
	ER
	Cr

	1
	4.00
	120.4
	1.50
	82.43
	228
	312
	345
	0.173
	2.50

	2
	4.20
	122.5
	1.50
	82.43
	228
	317
	345
	0.165
	2.50

	3
	4.50
	125.2
	1.50
	82.43
	228
	326
	345
	0.156
	2.50

	4
	4.80
	128.0
	1.50
	82.43
	228
	334
	345
	0.147
	2.50

	5
	5.00
	130.2
	1.50
	82.43
	228
	340
	345
	0.143
	2.50

	6
	5.00
	130.2
	1.50
	82.43
	228
	340
	345
	0.143
	2.50

	7
	5.00
	130.2
	1.60
	84.50
	228
	336
	345
	0.138
	2.67

	8
	5.00
	130.2
	1.80
	86.80
	228
	327
	345
	0.133
	3.00

	9
	5.00
	130.2
	2.00
	92.30
	228
	322
	345
	0.121
	3.33

	10
	5.00
	130.2
	2.20
	95.10
	228
	318
	345
	0.114
	3.67

	11
	4.50
	125.6
	1.50
	82.43
	228
	326
	345
	0.157
	2.50

	12
	4.50
	125.6
	1.60
	84.67
	228
	323
	345
	0.153
	2.67

	13
	4.50
	125.6
	1.80
	88.85
	228
	317
	345
	0.146
	3.00

	14
	4.50
	125.6
	2.00
	92.69
	228
	311
	345
	0.135
	3.33

	15
	4.50
	125.6
	2.20
	96.23
	228
	307
	345
	0.128
	3.67

	16
	4.00
	125.6
	1.50
	82.43
	228
	312
	345
	0.173
	2.50

	17
	4.00
	125.6
	1.60
	84.67
	228
	308
	345
	0.166
	2.67

	18
	4.00
	125.6
	1.80
	88.85
	228
	303
	345
	0.158
	3.00

	19
	4.00
	125.6
	2.00
	92.69
	228
	299
	345
	0.150
	3.33

	20
	4.00
	125.6
	2.20
	96.23
	228
	294
	345
	0.140
	3.67

	21
	4.00
	120.4
	0.85
	63.82
	228
	344
	345
	0.210
	1.41

	22
	4.20
	122.5
	0.94
	67.13
	228
	344
	345
	0.196
	1.57

	23
	4.50
	125.2
	1.10
	72.05
	228
	344
	345
	0.176
	1.83

	24
	4.80
	128.0
	1.27
	76.82
	228
	344
	345
	0.158
	2.12

	25
	5.00
	130.2
	1.40
	79.96
	228
	344
	345
	0.147
	2.33

	26
	4.00
	120.4
	2.41
	99.75
	228
	290
	345
	0.131
	4.02

	27
	4.20
	122.5
	2.74
	104.60
	228
	290
	345
	0.115
	4.56

	28
	4.50
	125.2
	3.29
	112.00
	228
	290
	345
	0.093
	5.48

	29
	4.80
	128.0
	3.93
	119.00
	228
	290
	345
	0.073
	6.55

	30
	5.00
	130.2
	4.40
	125.20
	228
	290
	345
	0.062
	7.34

	* Evaporator pressures and mp are fixed at 0.60 atm and 100 kg/s, respectively. 
	


Appendix G
HYSYS Simulation PFD and Workbooks of Multiple Ejector N-Hexan/N-Pentane (MS1) Refrigeration Cycle for NGL Recovery Plant. 
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Appendix H
Multiple Ejector Cycle (MS2) Ejector Performance Analysis For Optimum Operating Conditions.   
	CASE No. 
	Pg (atm)
	Pc (atm)
	Pe (atm)
	Dp1/Dt
	D3/Dp1
	ER
	Cr
	Xr

	CASE MS2A
	5.00
	4.13
	1.00
	1.01
	1.67
	0.245
	4.13
	1.21

	CASE MS2B
	6.00
	3.91
	1.00
	1.06
	1.60
	0.221
	3.91
	1.54

	CASE MS2C
	7.00
	3.95
	1.00
	1.11
	1.53
	0.198
	3.95
	1.77

	CASE MS2D
	8.00
	4.08
	1.00
	1.15
	1.47
	0.175
	4.08
	1.96

	CASE MS2E
	9.00
	4.02
	1.00
	1.20
	1.41
	0.156
	4.02
	2.24

	CASE MS2F
	6.00
	3.94
	1.40
	1.66
	1.69
	0.360
	2.82
	1.52

	CASE MS2G
	7.00
	4.15
	1.40
	1.05
	1.62
	0.303
	2.96
	1.69

	CASE MS2H
	8.00
	4.00
	1.40
	1.09
	1.55
	0.272
	2.86
	2.00

	CASE MS2I
	9.00
	3.91
	1.40
	1.14
	1.48
	0.259
	2.79
	2.30

	CASE MS2J
	6.00
	4.01
	1.60
	1.01
	1.68
	0.403
	2.51
	1.50

	CASE MS2K
	7.00
	4.01
	1.60
	1.02
	1.66
	0.389
	2.51
	1.75

	CASE MS2L
	8.00
	3.99
	1.60
	1.06
	1.60
	0.373
	2.49
	2.01

	CASE MS2M
	9.00
	4.04
	1.60
	1.09
	1.55
	0.343
	2.49
	2.23


Appendix I
Multiple Ejector Cycle (MS2) Simulation Cases Cycles Performance For Optimum Operating Conditions.   

	CASE No. 
	Qg,HP
	Qg,LP1
	Qe,LP1 
	Qe,HP
	Qe,cycle-1
	Qe,cycle-2
	COP1
	COPHP
	COPo
	Total Cooling 
Duty*

	CASE MS2A
	111.50
	47.44
	44.21
	40.53
	84.74
	14.39
	0.74
	0.35
	0.62
	261.57

	CASE MS2B
	96.16
	66.28
	34.53
	18.99
	53.52
	20.42
	0.56
	0.20
	0.46
	236.38

	CASE MS2C
	79.72
	82.72
	27.17
	13.31
	40.48
	25.13
	0.51
	0.17
	0.40
	228.05

	CASE MS2D
	64.29
	98.15
	20.70
	8.98
	29.68
	29.94
	0.46
	0.14
	0.37
	222.06

	CASE MS2E
	50.94
	111.50
	15.67
	6.06
	21.73
	33.80
	0.43
	0.12
	0.34
	221.47

	CASE MS2F
	96.28
	66.16
	42.41
	40.31
	82.72
	20.13
	0.86
	0.42
	0.63
	265.29

	CASE MS2G
	79.72
	82.72
	25.06
	30.86
	55.92
	25.08
	0.70
	0.33
	0.50
	243.44

	CASE MS2H
	64.61
	97.83
	23.50
	19.09
	42.59
	29.73
	0.66
	0.30
	0.45
	234.76

	CASE MS2I
	50.85
	111.60
	17.81
	12.21
	30.02
	34.08
	0.59
	0.24
	0.39
	226.55

	CASE MS2J
	93.91
	68.54
	45.01
	49.50
	94.51
	21.50
	1.01
	0.53
	0.714
	278.46

	CASE MS2K
	79.72
	82.72
	37.67
	44.54
	82.21
	25.12
	1.03
	0.56
	0.66
	269.77

	CASE MS2L
	64.50
	97.94
	27.36
	28.54
	55.90
	29.82
	0.87
	0.44
	0.53
	248.16

	CASE MS2M
	50.95
	111.50
	19.93
	19.17
	39.10
	34.13
	0.77
	0.38
	0.45
	235.68


* Energy in MMBTU

Appendix J
HYSYS Simulation PFD and Workbooks of Multiple Ejector N-Pentane (MS2) Refrigeration Cycle for NGL Recovery Plant. 
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