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LAY ABSTRACT

I
n this thesis we examine the implications of adding a new force

carrying gauge boson to the Standard Model in the presence of right-

handed neutrinos.

This boson represents a new force that only affects leptons who belong to

either the tauon or muon generation. We examine if one could explain

neutrino masses and dark matter within the same theory by employing a

Dodelson-Widrow like dark matter progenitor scenario suggested by Shuve

and Yavin.

The compatibility of this scenario with neutrino oscillation data is discussed.
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ABSTRACT

T
he Standard Model of particle physics is a phenomenologically

successful description of the strong, weak, and electromagnetic

interactions at all currently accessible energy scales with few

exceptions [1]. The notable deficiencies of the Standard Model are its

inability to explain the matter anti-matter asymmetry, the existence of

neutrino oscillations [2, 3], the anomalous magnetic moment of the muon

[4, 5], and its failure to provide a suitable candidate for the gravitationally

observed dark matter [6].

We explore an extension of the Standard Model that introduces a new gauge

symmetry Lµ−Lτ along with three right-handed neutrinos, and a symmetry

breaking scalar field. The inclusion of right-handed neutrinos are motivated

by the aforementioned neutrino oscillation data while the scalar field is

motivated by cosmological bounds on a new Z′.

We attempt to fit our model to the observed neutrino mass textures in the

see-saw limit. Despite having a Lagrangian density with three Yukawa
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couplings, and four right-handed mass parameters we found the left handed

neutrino mass matrix was controlled by only four independent quanti-

ties. We were attempting to fit to a set of five measured parameters

{∆m2
12,∆m2

13,θ12,θ23,θ13}. This was found to be impossible with our pro-

posed model. Higher dimensional operators were introduced to allow the

model to generate neutrino textures that agree with experiment.

Our first minimal model was able to reproduce the correct neutrino textures

with the exception of one of either θ13 or θ12 the disagreements was at

the level of 25%. We found that our model was able to fit to the central

value of neutrino data after the introduction of various combinations of

dimension-five operators. The parametric dependence of these solutions

were found to be incompatible with the Z′ as a progenitor of dark matter

scenario proposed by Shuve and Yavin [7]. The Z′ progenitor scenario and

the see-saw mechanism seem to be distinct entities in the sense that for the

former to be viable the dark matter candidate cannot play a significant role

in the generation of neutrino textures.
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1
INTRODUCTION

T
here are a variety of phenomenological problems present in the

Standard Model. The three most pressing of these are the inabil-

ity to explain the observed matter anti-matter asymmetry, the

existence of neutrino masses, and the absence of a dark matter candidate.

There also exist some discrepancies with Standard Model predictions whose

significance is disputed. One example is the anomalous magnetic moment of

the muon [5]. These issues signify that the Standard Model is not complete

and requires additional matter content.

In the following research we will investigate a possible extension of the

Standard Model that contains ingredients necessary to solve the latter three
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CHAPTER 1. INTRODUCTION

problems. We investigate whether, in this extension, the parametrically

viable regions to solve each of these discrepancies overlap.

In the Standard Model there are four accidental global symmetries that

are conserved, these are the three generation lepton numbers and baryon

number [13]. Certain combinations are gauge invariant and can be coupled

to a new gauge field self consistently. One such combination is the difference

between muon type lepton number and tauon type lepton number Lµ−Lτ.

Our theory begins by assuming that Lµ−Lτ is the charge that couples to

an, as of yet undiscovered, fifth fundamental force mediated by a spin-one

boson; this is the Z′. If this is the case cosmological constraints on the

mass of a Z′ requires the gauge symmetry to be spontaneously broken

[14]. We elect to use the Higgs mechanism and introduce a complex scalar

field which transforms non-trivially under U ′(1) :=ULµ−Lτ(1) and has some

non vanishing vacuum expectation value that causes the symmetry to be

realized non-linearly. It should be noted that for most of our work regarding

the neutrino textures and dark matter production we remain fairly agnostic

about the mass generating mechanism.

For the correct neutrino phenomenology to be realized one conventionally

extends the Standard Model by assuming the existence of right handed

neutrinos which are SU(2) singlets. Unlike their left handed counterparts

no gauge symmetry prohibits the existence of Majorana mass terms for these
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1.1. EFFECTIVE FIELD THEORY

gauge singlets and they will in general take the form of an unconstrained

3x3 matrix that couples the various generations to one another. In our

proposed scenario the form of this mass matrix is restricted by our imposed

U ′(1) symmetry and charge assignments. These restrictions are responsible

for the difficulty in reproducing the observed phenomenology.

Additionally the existence of a heavy Z′ can potentially give rise to a popula-

tion of sterile neutrino dark matter via decay [7]. The purpose of this thesis

is to analyze the compatibility of this scenario and the neutrino texture

data.

In this thesis we provide a decisive answer to this question. In this chapter

the necessary background information will be covered. In Chapter 2 we will

present the model and cover it’s basic features. In Chapter 3 the model’s

ability to produce neutrino textures that agree with experiment will be

discussed. Chapter 4 will focus on sensible modifications to the model in

the language of effective field theory. Chapter 5 will discuss the interplay

between dark matter and neutrino masses.

1.1 Effective Field Theory

In a physical theory it is often the case that energetics dictate the possibility

of exciting certain degrees of freedom within a system. For example electron

positron pair production only becomes possible for centre of mass energies

3



CHAPTER 1. INTRODUCTION

above 2me = 1.022 MeV . This creates a heirarchy of energy scales where

different degrees of freedom become accessible. Organizing one’s theory

with respect to this hierarchy is computationally advantageous because one

need only analyze the degrees of freedom which are relevant at the scale of

interest [15]. In particle physics as one lowers the energy scale more and

more degrees of freedom are “frozen out” due to the energy gap associated

with massive particles. Once again pair production is a good example of this

phenomenon. A concrete example of this phenomena is a toy model of the

weak interaction with one fermion species ψ and a massive vector boson Aµ

L =ψ (i /∂−m)ψ− 1
4

FµνFµν+ 1
2

M2AµAµ− gψ̄ /Aψ (1.1)

with m the tree level mass of the fermion and M the tree level mass of the

vector boson, where M >> m and Fµν is the field strength tensor and the

action is given by S := ∫
d4xL . The slashed notation denotes contraction

with the four dimensional gamma matrices. For kinematic regimes in which

the centre of mass energy of any two particles is less M, the vector boson

can not be produced and ceases to be a propagating degree of freedom.

A natural question to ask is what are the implications of the existence

of a super massive particle for the system at low energy given that it’s

interpretation as an asymptotic state can no longer be realized. We can

analyze this question in the path integral picture as follows. The theory is

4



1.1. EFFECTIVE FIELD THEORY

defined by the partition function given by

Z =
∫

DψDAeiS[ψ,A] (1.2)

however one can perform the path integral over some subset of field con-

figurations which are only accessible at high energy. This would include

integrating over all field configurations involving Aµ, and those involving ψ

with sufficiently large Euclidean four momentum. We can think of having

some cut-off scale Λ where all field configurations with characteristic energy

greater than Λ are “integrated out". The result can be re-expressed as a

new path integral cut off at Λ with a new action and consequently a new La-

grangian density [16]. We call these quantities Se f f and Le f f respectively

[17].

Z =
∫ Λ

DψeiSe f f [ψ] (1.3)

Se f f [ψ] will describe the physics of justψ accurately at low energies [15] and

when computing amplitudes it is significantly easier to use than employing

S[A,ψ] and taking the low energy limit at the end of the calculation. The

obvious limitation with this method is that it is not immediately clear that

performing the path integral is any less computationally intensive than

working with the high energy theory. To avoid this task a formalism was

developed to determine the most general form of the effective Lagrangian

using the information from the high energy theory [18].

To construct a low energy theory one takes the set of fields which are still

propagating degrees of freedom and writes down every possible interaction

5



CHAPTER 1. INTRODUCTION

that conforms to the symmetries of the high energy theory. This includes

terms that will render the low energy theory non-renormalizable. The inclu-

sion of these operators is the admission that this theory should eventually

cease to be predictive at some energy scale where the dynamics of the vector

boson become relevant. After doing this one matches the effective theory to

the high energy theory at the scale Λ to determine the various coefficients of

the low energy theory in terms of the parameters of the high energy theory.

This is done by explicitly calculating various matrix elements and insisting

the high and low energy theory yield the same result.

Since we are not truncating our operators in this effective Lagrangian

density to preserve renormalizability we will in principle have to calculate

an infinite number of diagrams to constrain all of the parameters of the

theory. One might worry that this would rob the theory of all of its predictive

power. In practice one is only interested in calculating a quantity to a fixed

degree of accuracy; even with a renormalizable theory one typically must

resort to a truncated perturbative expansion.

The action S must be dimensionless in natural units (i.e. it has the same

units as ~ = 1) we express this as [S] = 0. The action is defined by S :=∫
d4xL and so we have [d4x]+ [L ] = 0 because in natural units length

carries inverse dimensions we have [L ] = 4. This implies that in four

dimensions if any operators appear in a theory that have dimensionality

greater than four then they must be multiplied by some quantity which has

6



1.1. EFFECTIVE FIELD THEORY

negative energy dimensions. This negative energy density turns out to be

the cut off scale Λ [15] and as such we say processes are suppressed by that

energy scale because all physical processes that involve that coupling will

go like some polynomial in E
Λ where E is the characteristic energy scale for

that process.

We may take advantage of this suppression and truncate the effective La-

grangian by requiring a fixed degree of precision in our matching procedure,

and since higher energy operators are suppressed by inverse powers of the

cut off this truncation is justified. Thus if we only wish to calculate processes

up to O
(

E2

Λ2

)
we would only include operators with energy dimension less

than or equal to six. In the toy model of the weak interaction discussed

above the lowest dimensional operator we can write down that is consistent

with parity conservation after integrating out the vector boson is

Le f f ⊃GFψψψψ (1.4)

(ψγ5ψψγ5ψ is equivalent by a Fierz identity) where GF is a parameter of

negative energy dimension whose relation to the high energy parameters

will be derived below. So we must match the scattering amplitude for

ψ+ψ→ψ+ψ in the high energy and low energy theories to ensure they

have the same amplitude at the scale Λ. This corresponds to equating the

matrix elements of the two Feynman diagrams shown in Figure 1.1. The

propagator of the vector boson is given by

〈0|Aµ(k)Aν(k) |0〉 =−i
gµν− kµkν

M2

k2 −M2 (1.5)

7



CHAPTER 1. INTRODUCTION

Figure 1.1: The diagram on the left shows ψ+ψ→ψ+ψ scattering in the

high energy theory mediated by the massive vector boson. The diagram on

the right is the same process in the low energy theory where the scattering

is mediated by the dimension-six operator parameterized by GF

[19] which goes as −1
M2 in the low energy limit and so we see that

GF ∝ g2

M2

[
1+O

(
k2

M2

)]
= g2

M2 (1.6)

Where the final equality only holds in the low energy limit. The effects

of the O
(

k2

M2

)
piece will be captured by higher-dimensional operators and

as promised it is suppressed by appropriate powers of the relevant energy

scale. This tells us that despite having an infinite number of operators

in the Lagrangian our theory is predictive up to so fixed level of accuracy

at a given energy scale. This is because higher-dimensional operators are

suppressed at low energies.

The matching can also be obtained by setting the heavy field equal to its

classical equation of motion with all momentum dependent terms set to

8



1.2. ACCIDENTAL SYMMETRIES OF THE STANDARD MODEL

zero. In this case ∂νFνµ = M2Aµ− gψ̄γµψ so in momentum space

Aν =−(
gµν−kµkν−M2)−1 gψγµψ= g

M2ψγ
νψ+O

(
k2

M2

)
(1.7)

substituting this into the original Lagrangian we can calculate GF and we

find

GF ψψψψ := −g2

M2 ψγ
µψψγµψ= 2

g2

M2 ψψψψ (1.8)

and thus GF := 2 g2

M2 . This procedure will only generate the some subset of

the higher-dimensional operators however if that is all one needs it is a

convenient method.

1.2 Accidental Symmetries of the Standard

Model

Quantum field theories are often dictated by internal symmetries. The

concept is essential for particle physics because one can show that a Lorentz

invariant theory of massless spin one vector bosons implies an associated in-

ternal symmetry related to a Lie algebra [20]. Procedurally this means that

to construct a quantum field theory with a set of massless spin one vector

bosons, one specifies the gauge group of the theory G, the matter content,

and the charge assignments and then writes down all possible combinations

of fields which transform as a singlet under G. If one additionally insists

that their theory be renormalizable the set of possible combinations must

9



CHAPTER 1. INTRODUCTION

be truncated so that no operators of energy dimension greater than four

appear in the Lagrangian.

Dimension four is important because if a theory contains any operators

of energy dimension greater than four their couplings must have negative

energy dimension. The consequences of this are best understood with a

specific example in mind. Let us consider our toy model from Equation

1.1. Here the parameter which controls the perturbative series is GF which

has energy dimension [GF ] = −2. This implies that the perturbation ex-

pansion will be controlled by the parameter E2GF and so at E ≈ G1/2
F the

perturbative expansion will break down [19]. This means that the theory

is guaranteed to be invalidated at arbitrarily high energies and as such is

non-renormalizable.

This truncation can result in the appearance of global symmetries which

were not imposed on the model. This is because the combinations of opera-

tors which break these unintended global symmetries are all of dimension

greater than four and as such have been excluded from the theory. These

are known as accidental symmetries [13].

A toy model that illustrates this phenomena is scalar Q.E.D. with two

scalars φ and ψ with charges Q and q respectively. The non-interacting

part of the Lagrangian is qualitatively unaffected by charge assignments

but the interactions we are allowed to write down are dictated by these

10



1.2. ACCIDENTAL SYMMETRIES OF THE STANDARD MODEL

charge assignments. Let us examine two scenarios; one where Q
q =−3 and

another where Q
q = −4. In these models the Lagrangian densities up to

dimension-five operators are respectively

L =LQED +V
(∣∣φ∣∣2 ,

∣∣ψ∣∣2)+ gφψ3 +h.c. (1.9a)

L =LQED +V
(∣∣φ∣∣2 ,

∣∣ψ∣∣2)+ g
Λ
φψ4 +h.c. (1.9b)

In both of these theories the potential is manifestly invariant under φ→ eiθφ

andψ→ eiωψwhere θ and ω are independent. These symmetries correspond

to conservation of phions and psions respectively. The interaction terms

in both theories break these symmetries by relating θ and ω, however had

we demanded renormalizability the second Lagrangian would have been

truncated prior to the appearance of the symmetry breaking operator and we

would have an expanded set of global symmetries which were not imposed

on the model. Note that the existence of these accidental symmetries is a

non trivial result of the various fields’ charge assignments.

It is worth discussing the phenomenological consequences of these accidental

symmetries for each theory. For this discussion let us assume both scalars

are massive and that mφ >> 4mψ. This means that the decay processes

φ→ 3ψ and φ→ 4ψ are kinematically allowed. In the first theory, with the

four point vertex, the former decay mode is allowed while in the the second

theory, with the five point vertex, the latter is permitted. This is because the

charge assignments of the two theories imply a conservation of Nφ−3Nψ

and Nφ−4Nψ respectively where Nx is the x type particle number.

11
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By dimensional analysis this means that any processes involving the dimension-

five operator will be suppressed by factors of g E
Λ as displayed in Figure 1.2

. So for energies much smaller than the cut off this operator is negligible.

In the context of our theory this implies that phions will be meta-stable at

low energies provided mφ <<Λ since the relevant energy scale for the decay

process is the mass of the phion. We can see that charge assignments can

dictate much more than just the strength of a particles interaction with the

gauge group.

Γ ∝ g2mφ Γ ∝ g2
(

mφ

Λ

)2
mφ

Figure 1.2: Leading order φ→ 3ψ decay process for the two charge assign-

ment choices with the right diagram corresponding to 1.5(b) and the left

diagram corresponding to 1.5(a)

The Standard Model contains four accidental U(1) symmetries correspond-

ing to the conservation of B, Le, Lµ, and Lτ [20] (baryon number, and each

generation’s lepton number). The latter three of the listed symmetries are

only exactly realized in a model with massless neutrinos. These symmetries

are incompatible with data from neutrino oscillation experiments [3]. The

breaking of these three symmetries is the result of the inclusion of an extra

dimension-five operator [21] and this suggests the Standard Model is just

12
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some effective low energy limit of another theory, which in turn points to the

existence of some high energy physics which is not encoded in the Standard

Model. The observations of neutrino oscillations still permit two accidental

symmetries B and L := Le +Lµ+Lτ[20].

1.3 Anomalous Symmetries

In classical physics, symmetries of the action manifest themselves as con-

served quantities [22]; in field theory these are conserved currents. One

might expect that this statement holds true in quantum physics as well.

This is often the case, however sometimes quantum corrections break the

symmetry; these are known as anomalous symmetries [23, 24]. This occurs

when the classical action is invariant under a symmetry transformation but

the functional measure is not. In the path integral formalism, the partition

function Z fully defines a theory and is given by

Z =
[

n∏
i=0

∫
Dφi

]
eScl [φ1,φ2,...,φn] (1.10)

We see that the requirement that the classical action be invariant under

a symmetry transformation is not sufficient; we also need the functional

measure to remain invariant. We can quantify this anomalous behaviour

for a symmetry which is realized by a set of fields transforming in an irre-

ducible representation R of a symmetry group S by its anomaly coefficient

AR(S)dabc := 1
2 Tr

({
Ta

R ,Tb
R

}
T c

R

)
where {Ta

R} are the set of generators for the

symmetry group S in the representation R. For reducible representations

13



CHAPTER 1. INTRODUCTION

R = R1 ⊕R2 we have AR(S) = AR1(S)+ AR2(S). For a non-anomalous sym-

metry AR(S)= 0 for all representations of that symmetry group present in

the theory[25].

To determine these anomaly coefficients one can calculate 〈p,k|∂µJµ |Ω〉
where Jµ is the Noether current associated with the symmetry, |Ω〉 is the

vacuum, and 〈p,k| corresponds to two gauge boson final states. In a theory

with no gauge bosons it is consistent for a symmetry to become anomalous

however if the Noether current Jµ couples to a gauge field Aµ then for the

ward identities to be preserved the anomaly must vanish. In the case of

this coupling the anomaly coefficient AR(S) can be can be computed via

the triangle diagrams shown in Figure 1.3 [26]. The trace over generators

and anti-commutator in the definition of the anomaly coefficient can be

understood by the loop structure of the fermions and the Bose statistics

of the two outgoing states respectively. Thus AR(S) is a measure of the

degree to which quantum corrections break a classical symmetry. For

the accidental symmetries of the Standard Model A(B) = 1 while for the

lepton numbers A(L i) = 1 where i ∈ {e,µ,τ}[20]. As a result, any linear

combination of these symmetries whose anomaly coefficients cancel is an

exact symmetry of the quantum theory. The more popularly considered

options in the literature are B−L and L i −L j where i, j ∈ {e,µ,τ} and to

avoid triviality i 6= j [27].

Of all the possible symmetries of the form L i −L j the one which is least

14
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T a

T b

T c

T a

T b

T c

Figure 1.3: Triangle diagrams used to calculate anomaly coefficient for

gauge symmetries

tightly constrained by experiment is Lµ−Lτ. This is due to the relative

abundance of high precision experiments involving electrons compared to

those involving muons or tauons. Experiments involving the higher mass

leptons are difficult to conduct due to the instability of muons and tauons.

One important consequence of a symmetry being anomalous is that it can-

not couple to a gauge field in one’s theory. This is because without the

conservation of a charge the Ward identities are destroyed and the theory

becomes gauge dependent.
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1.4 Neutrino Oscillations

Quark masses are generated in the Standard Model by operators of the form

LSM ⊃ f i jQ iHdc
j + g i jQ iH̃uc

j (1.11)

[13] where Q i := (ui,di)T is the left handed SU(2) doublet of two component

left handed spinor quark fields, uc
j and dc

j are left handed two component

spinors that are a singlet under SU(2) and i and j index the various gen-

erations of the quarks. H is the Higgs doublet and H̃ := −iσ2H∗. After

electroweak symmetry breaking these operators give mass terms which

can be seen by replacing the Higgs field H by its vacuum expectation value

(0,〈h〉)T

LSM ⊃ 〈h〉 f i juiuc
j +〈h〉 g i jdidc

j (1.12)

These terms can be diagonalized by writing each set of fields in a new basis

u′
i = Pi ju j and d′

i = Ri jd j. The existence of the right handed quark fields

uc
i and dc

j are what allow for both up and down type quarks to have masses.

In the broken phase, charged current interactions in the Standard Model

are of the form g2d iσ
µW−

µ ui and as a result when written in the mass basis

these interactions take the form g2Vi jd
′
iσ

µW−
µ u′

j where Vi j := R†
ikPk j is

known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix [28, 29]. The

basis in which the mass matrix for the quarks is diagonal define the basis

whose fields’ excitations can be interpreted as asymptotic states. By requir-
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ing that we write our interactions in this basis we have fixed R and P and

thus Vi j cannot in general be chosen to be diagonal.

In the lepton sector the story is identical except that there is no analogue for

uc
i . We have a set of right handed charged leptons ec

i but no right handed

neutrinos. This absence of mass terms for the neutrinos leaves R to be

freely chosen to diagonalize the charged current interactions. This means

that in the Standard Model all leptons couple diagonally in the mass basis.

Resultantly there are no terms that couple different generations of leptons

to one another so each generation can transform independently under its

own U(1) symmetry. This is why there are three lepton symmetries and

only one Baryon symmetry. The lepton generational symmetries also forbid

processes like νe → νµ because this would violate two of the conserved

charges (Le and Lµ); this is an example of a neutrino oscillation.

Neutrino oscillations have been observed [2, 3] and because oscillations are

forbidden by the symmetries listed above we know that the Standard Model

is incomplete. Without adding additional matter content to the model to

explain the observed non-conservation of generational lepton number one is

forced to abandon renomalizability and include the dimension-five operator

[21]

L ⊃ yi j

Λ

(
L iH̃

)(
L jH̃

)→ yi j
〈h〉2

Λ
νiν j (1.13)

This is known as the Weinberg operator [21] and after symmetry breaking
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it results in a mass matrix of the same form as in the quark sector. This

breaks Le, Lµ and Lτ because the freedom to use R to diagonalize the

interactions with the gauge bosons is saturated due to the requirement that

the neutrino mass matrix be diagonal. Thus any theory which expands

the matter content of the Standard Model to explain neutrino oscillations

with Majorana neutrinos should generate this operator in its effective low

energy description provided the Majorana mass scale is significantly larger

than the Dirac mass scale. There does exist the possibility of a vanishing

Majorana mass scale which would make the neutrino a Dirac type particle.

Neutrinoless double beta decay searches are actively investigating this

possibility [30].

1.4.1 PMNS Matrix

The analogue of the CKM matrix is known as the Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix [31]. It is no longer trivially diagonal due to the

presence of a left handed neutrino mass matrix. It’s standard parametriza-

tion is given by
νe

νµ

ντ

=


c13c12 −c13s12 s13e−iδ

−s23s13c12eiδ− c23s12 −s23s13s12eiδ+ c23c12 s23c13

−c23s13c12eiδ+ s23s12 −c23s13s12eiδ− s23c12 c23c13




ν1

ν2

ν3

 (1.14)

where the left hand side are the flavour basis states, the right hand side

are the mass eigenstates and si j = sinθi j and ci j = cosθi j. The angles θ12,

θ13 and θ23 parametrize the mixing between ν1 and νµ, ν1 and ντ, and ν2
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and ντ respectively. The parameter δ measures the amount of CP violation

and is zero for real Yukawa couplings and the mixing angles measure the

relative abundance of electron, muon and tauon type neutrinos in each mass

eigenstate.

1.4.2 Mixing Data

An important aspect of neutrino data is that there are two discreetly sep-

arated regions of parameter space [32]. This is because the sign ∆m2
13 is

still undetermined. As a result it is not clear whether the neutrino mass

spectrum is such that ν1 is the lightest eigenstate or ν3; in contrast it is

known that m2 > m1. These two possibilities are referred to as the normal

and inverted hierarchies respectively and are denoted NH and IH.

The listed data in Table 1.1 [8] is from the most recent release of nu-fit at

the time of this writing. ∆m2
i j := m2

i −m2
j where mi is the ith eigenvalue of

the left handed mass matrix. The precision in measuring δ is extremely

poor and as a result for this research we assume real Yukawa couplings

and no CP violation for this work. In this paper we will be fitting from data

from nuFit which provides a global fit to neutrino data. The data does not

correspond to any single experiment.
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NuFIT 2.0 (2014)

Normal Ordering (Δχ2 = 0.97) Inverted Ordering (best fit) Any Ordering

bfp ±1σ 3σ range bfp ±1σ 3σ range 3σ range

sin2 θ12 0.304+0.013
−0.012 0.270 → 0.344 0.304+0.013

−0.012 0.270 → 0.344 0.270 → 0.344

θ12/
◦ 33.48+0.78

−0.75 31.29 → 35.91 33.48+0.78
−0.75 31.29 → 35.91 31.29 → 35.91

sin2 θ23 0.452+0.052
−0.028 0.382 → 0.643 0.579+0.025

−0.037 0.389 → 0.644 0.385 → 0.644

θ23/
◦ 42.3+3.0

−1.6 38.2 → 53.3 49.5+1.5
−2.2 38.6 → 53.3 38.3 → 53.3

sin2 θ13 0.0218+0.0010
−0.0010 0.0186 → 0.0250 0.0219+0.0011

−0.0010 0.0188 → 0.0251 0.0188 → 0.0251

θ13/
◦ 8.50+0.20

−0.21 7.85 → 9.10 8.51+0.20
−0.21 7.87 → 9.11 7.87 → 9.11

δCP/
◦ 306+39

−70 0 → 360 254+63
−62 0 → 360 0 → 360

Δm2
21

10−5 eV2 7.50+0.19
−0.17 7.02 → 8.09 7.50+0.19

−0.17 7.02 → 8.09 7.02 → 8.09

Δm2
3�

10−3 eV2 +2.457+0.047
−0.047 +2.317 → +2.607 −2.449+0.048

−0.047 −2.590 → −2.307

�
+2.325 → +2.599
−2.590 → −2.307

�

Table 1.1: Data from nu-Fit after fitting to global data from ’NOW’ confer-

ence in 2014 [8]. This table is taken from the nu-Fit collaboration website

(2015)

1.4.3 See-Saw Mechanism

Suppose we include a new set of three fields which are singlets under the

Standard Model gauge group denoted Ni where i ∈ {e,µ,τ}

L ⊃ N̄i (−i /∂) Ni − 1
2

Mi jNiN j + yi jNi
(
L jH̃

)+h.c. (1.15)

and we take all of the eigenvalues of the Majorana mass matrix to be much

larger than the relevant energy scale. Then we can integrate out the fields

Ni by setting them equal to their classical equation of motion in the limit of

low momenta.

Mi jN j =−i /∂Ni − yik
(
LkH̃

)→ N j = M−1
ji yik

(
LkH̃

)
(1.16)
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where the derivative has been dropped due to its momentum dependence

(see Equation 1.1). Substituting Equation 1.4.3 back into the Lagrangian

in Equation 1.4.3 and performing a phase shift on the leptonic fields L i →
exp iπ/2 L i we obtain

LIR ⊃−1
2

(
Y T M−1Y

)
i j

(
L iH̃

)(
LkH̃

)
(1.17)

this is exactly the Weinberg operator from Equation 1.4. The left handed

neutrino mass matrix can be identified as

M(L) = 〈h〉2 Y T M−1Y (1.18)

where 〈h〉 is the Higgs vacuum expectation value. Excluding neutrinos,

known lepton masses lie within the range of 0.5−2000 MeV. In the Stan-

dard Model all of these masses are generated via the Higgs mechanism

and as a result this is a statement about the relative magnitudes of their

Yukawa couplings lying within a range spanning about four orders of mag-

nitude. In contrast the heaviest neutrino mass is constrained to be less

than about 0.1 eV [14] which is six orders of magnitude lower than the mass

of the electron. If we naively expect that this mass is also generated via

electroweak symmetry breaking then this is a startling statement about

he size of the neutrinos’ Yukawa couplings relative to those of the other

leptons.

In contrast to other leptons a right handed neutrino’s mass need not be

generated via the Higgs mechanism and as a result a disparity in its mass
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compared to Standard Model leptons would not be surprising. Parametri-

cally the see-saw mechanism gives

mν ≈ y〈h〉 y〈h〉
MN

(1.19)

where mν is the mass of the neutrino MN is the Majorana mass of the

sterile neutrino and y〈h〉 is the Dirac mass. So provided the mass scale

of the right handed neutrinos is sufficiently large compared to its Higgs

generated Dirac mass (which may be of the same order as the other leptons)

this mechanism can give a natural explanation of the small neutrino masses

without disparate ratios between the various Yukawa couplings.

1.5 Dark Matter

Astronomers have noted peculiar rotation curves for various galactic sys-

tems since as early as 1933 [33–38]. These systems are peculiar because

if one assumes that luminous mass is the sole cause of gravitation in the

system the velocity of various orbiting bodies violate the virial theorem

[34–38].

One solution to this problem is to postulate the existence of some form of

matter whose coupling to electromagnetism is sufficiently weak such that it

cannot be observed directly. This matter would still have an energy density

and as a result couple to gravity; this is dark matter. Its existence allows

for rectification of the rotation curves mentioned above with our current
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understanding of gravity by providing the additional gravitational potential

energy necessary for the virial theorem to hold.

Evidence for the existence of dark matter also comes from gravitational

lensing data [39]. One system, known as the bullet cluster, is particularly

important in the experimental justification of dark matter. The system

consists of two separate galactic dust clouds which collided in the past.

Gravitational lensing has shown that the mass distribution of the cluster is

partially luminous and partially non-luminous. The non-luminous mass’s

distribution is not indicative of a collision while the luminous bayonic mass

has been slowed significantly [40]. This is suggestive of dark matter’s

self interaction being significantly weaker than those of Standard Model

particles and results in a bound on the self interaction cross section of dark

matter [41].

Along with astrophysical data, dark matter’s interaction with Standard

Model particles must be considered. Two distinct sub-classes of interactions

can constrain dark matter in different ways. The first of these is known

as direct detection. This method involves low background experiments

that search for kinetic transfer between a dark matter particle and some

observable standard model particle; most often an atomic nucleus. These

experiments can then place bounds on the coupling of the dark matter

particle relative to it’s mass [42–46]; for a review see [47].
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The second way to probe dark matter’s interactions with Standard Model

particle content is to look for dark matter annihilation signatures of the

form χ+ χ̄→ SM as well as decay signatures like χ→ SM where χ is used

to denote the dark matter candidate; this is known as indirect detection

[48, 49]. The Standard Model products are observable and so searches

can be conducted to place bounds on parameters in particular dark matter

theories. These process χ→ γ+ν will be discussed in greater detail in the

context of sterile neutrino dark matter.

Finally theories that propose dark matter candidates must examine if

their model agrees with cosmological predictions from the early universe.

Adding new species can create observable changes in the cosmic microwave

background, lead to overpopulation of various standard model species via

decays and result in relic abundances of dark matter that do not agree with

observations. The latter forces one to consider production mechanisms that

would create the correct amount of dark matter in the universe today, these

can be partitioned into two categories; thermal and non-thermal production.

Thermal production assumes that at some early epoch of the universe the

dark matter comes into thermal equilibrium with the photon bath via some

interaction that leads to a temperature dependent cross section. At some

later epoch the thermalizing cross section becomes sufficiently small due

to the lower temperature and the mean free path of dark matter particle

exceeds the Hubble length. This means that the universe is expanding
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faster than the dark matter candidate can react with the Standard Model

bath resulting in it’s departure from thermal equilibrium [50]. As a result

the dark matter “freezes out” and maintains its temperature at freeze-out

(see Figure 1.5). This scenario is insensitive to the initial conditions of

the universe and is almost exclusively determined by the dark matter’s

interaction cross section with the Standard Model; the greater the cross

section the lower the relic abundance.

Non-Thermal production, in contrast, is sensitive to the initial conditions

of the universe. The mechanism relies on the production of dark matter in

a latter epoch of the universe. This dark matter never comes into thermal

equilibrium due to its feeble interactions with the primordial soup of par-

ticles and after the production mechanism terminates the dark matter is

sufficiently stable to leave a relic abundance of dark matter particles. A

concrete example of this mechanism is the decay of a massive particle into

dark matter. Once the temperature drops below approximately half the

mass of the progenitor decay is possible but production becomes kinemati-

cally disallowed. The progenitor species will be depleted by decay and the

remaining dark matter candidates will not be able to thermalize due to its

weak interaction cross section with the remaining soup of particles [51].

There are three major classifications of dark matter: hot
(
Tχ >> Mχ

)
, cold(

Tχ << Mχ

)
and warm

(
Tχ ≈ Mχ

)
where Tχ is the temperature of the dark

matter when galaxy sized masses enter the horizon [52]. Hot dark matter
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Figure 1.4: A schematic diagram showing a freeze-out scenario. The dark

matter species remains in equilibrium until some critical temperature and

then it decouples from the photon bath resulting in a relic abundance.

Figure taken from Hooper (2009) [10]

fails to form galaxies a due to its high velocity and its correspondingly long

free streaming length [6]. If one assumes dark matter is mostly hot one

makes predictions that disagree with observations and as a result hot dark

matter cannot account for all of the observed energy density. This is what

rules out active neutrinos as a dark matter candidate their free streaming

length is so long that they wash out the formation of structure in the galaxy.
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Models of structure formation have previously favoured warm dark matter

however more recent simulations that incorporate baryonic effects found

that both cold and warm dark matter remain viable possibilities [53]. For

sterile neutrinos the possibility of hot dark matter is still viable due to its

unconstrained mass scale. The lower bound for structure formation mass is

given by MSF ≈ 3 ·1015
(

30eV
mν

)2
Ω−1
ν M¯ [54] where Ων is the energy density

fraction of neutrino dark matter, M¯ is the mass of the sum and mν is

the mass of the sterile neutrino dark matter candidate. and as such for

higher masses the minimum mass required for structure formation can be

lowered to the necessary 106M¯ [52] by considering sterile neutrinos with

sufficiently large mν.

1.6 Sterile Neutrinos as Dark Matter

A natural candidate one may consider for dark matter are the Standard

Model neutrinos. They are known to be massive, interact via only the weak

interaction and most importantly their existence is experimentally verified,

however bounds on large structure formation prohibit the Standard Model

neutrino from being a viable candidate to account for all of the observed

dark matter [6]. Standard Model neutrinos must be relativistic because

Tν ≈ 2eV while measurements of the cosmic microwave background force

mν . 0.1eV [55]. As such neutrinos destroy large scale structure by the

argument given in the previous section due to their ultra light mass.
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Right handed neutrinos can be expected to exist for the reasons given above

and they are a suitable dark matter candidate. Since their mass scale is not

fixed, whether or not they classify as warm or cold dark matter is dictated by

parametrics. The production method for sterile neutrino dark matter that is

of interest for this paper has its roots in the 1993 proposal by Dodelson and

Widrow [54]. The concept was to rely on non-thermal production of dark

matter via neutrino oscillations. Oscillations are dictated by the relative

right and left handed neutrino content of propagating mass eigenstates.

During interactions with Standard Model particles a mostly sterile mass

eigenstate can be generated if it has a small active component.

This is related to the diagonalization of the mass matrix which contains

both Majorana and Dirac masses; because the mass matrix is symmetric the

relative quantity of right and left handed neutrinos can be parametrized by

a mixing angle θm. In the see-saw limit at zero temperature this angle is

given by θ0 = y〈h〉
M however at higher temperatures this angle is corrected.

Since the early universe is a hot and dense primordial soup of particles

these high temperature effects are important. The temperature dependent

mixing angle takes the form

sin2 2θm = sin2 2θ0

sin2 2θ0 + [cos2θ0 +∆R(k,T)]2 (1.20)

Where ∆R(k,T) is related to the contribution to the neutrino self energy

from vector-boson exchange [56, 57] and is composed of corrections from

Standard Model processes and a Z′ correction [7]. At zero temperature
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the corrections vanish, however at high temperatures the mixing angle

is suppressed. The high temperature behaviour of the Standard Model

contribution to ∆R(k,T) is given by

∆(SM)
R (k,T)= 28πsin2θWGF T4k2

45αms
(1.21)

[56, 57] where GF is the Fermi constant, θW is the Weinberg angle, ms is

the mass of the sterile neutrino dark matter candidate, and α is the fine

structure constant. Therefore in early epochs of the universe, neutrino

production would not result in transformations into the sterile state due to

the strong mixing angle suppression from high temperature effects.

Then in some intermediate epoch the active to sterile transformations would

become significant enough to produce sterile neutrinos but not sufficient to

allow them to reach equilibrium. Finally, at the time of neutrino freeze-out,

neutrinos decouple from the bath and cease to have interactions that would

allow for transformation into sterile states. Thus the population of sterile

states becomes decoupled and represents a possible dark matter candidate.

Bounds on models of sterile neutrinos come from many sources: neutrino-

less double beta decay, big bang nucleosynthesis, cosmic microwave back-

ground measurements, x-ray telescopes and large scale structure formation

[58]. For this thesis the bounds from x-ray emission are our primary concern.

If dark matter is composed of sterile neutrinos there are two bounds one

must satisfy. These are related to the possibility of decays such as N1 → ν+γ
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N

SM

W

e
νe

Figure 1.5: An example of a process that contributes to the production

of a sterile neutrino abundance via transformation of an electron into an

electron neutrino (written in flavour basis) which composes some small

component of the mass eigenstate N. As a result there is a non-vanishing

probability of “transforming” an electron into a sterile neutrino.

which are mediated at the one loop level by process shown in Figure 1.6.

The decay rate for these processes is given by [58]

Γ= 1
1.8 ·1021s

sin2θm

( ms

keV

)5
(1.22)

The first concern is to ensure that the decay rates from these diagrams

are sufficiently small to ensure a cosmologically stable lifetime. Even for

decay rates which are sufficiently small to ensure that the dark matter is

stable, decay signals involving photons can still be detectable [48]. This

is because of the large number density of sterile neutrinos that would be

required to explain the observed dark matter abundance. Even if the decay
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rate of a single dark matter particle is negligible, if it is non vanishing it

will eventually yield an observable signal for a sufficiently large number

density.

The large number density of sterile neutrinos to yield the correct dark

matter energy density means that decays such as those shown in Figure

1.6 can be relevant even for very small decay rates. We are interested

in the quantity nχΓχ where nχ is the number density of the dark matter.

The energy density of the dark matter, if it is entirely composed of non-

relativistic sterile neutrinos, is given by nχms and as a result for a given

ms the number density is fixed. Equation 1.6 depends on only two free

parameters ms and sin2θm however because the production of the dark

matter is mediated by known (Standard Model) physics. In the Dodelson

Widrow scenario for a given ms the only free parameter left to determine

the relic abundance of sterile states is θm. As such in a plot of sin2θm vs ms

there is only a narrow band in which the Dodelson Widrow scenario is valid.

W

γ

N1

l ν

γ

ν
W

l

N1

Figure 1.6: Primary decay mode for a heavy sterile neutrino N → ν+γ via

a loop process with a charged W boson and any Standard Model fermion

charged under SUW (2) resulting in the emission of a neutrino and a photon.
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By searching for x-ray signals in regions of the sky with known dark mat-

ter densities this two dimensional parameter space can be probed to test

the validity of the Dodelson Widrow dark matter scenario. Galactic x-ray

searches have failed to discover such a signal and this lack of observation

establishes bounds constraining the mixing angle of sterile neutrinos for

various possible masses. Boyarsky et. al. [11] looked for these x-rays in the

Milky Way galaxy where there is a known density of dark matter. Their

results are shown in Figure 1.7. The lack of observation of galactic x-rays

has ruled out the Dodelson Widrow scenario if it is mediated by Standard

Model interactions and has pushed the bounds on sin2 2θm all the way down

to 10−10 for ms ≈ 10 keV.
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Figure 1.7: Constraints on sterile neutrino dark matter from observations

of the Milky Way [11]. Figure taken from Boyarsky et. al. (2006).
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2
OVERVIEW OF THE PROPOSED MODEL

O
ur model supposes the existence of three right-handed neutrinos

and an additional vector boson that couples to the charge Lµ−
Lτ. The inclusion of this additional vector boson necessitates

a mass generating mechanism [7]. One possibility is an order parameter

which spontaneously breaks the U ′(1) symmetry this is known as the Higgs

mechanism [26, 59]. This can be achieved via a complex scalar field that

couples to the Z′ and thus must be charged under the new gauge group.

Its charge relative to the sterile neutrinos is fixed by phenomenological

requirements. Our choice of charge assignments are presented in Table 2.1.
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Field UY (1) SU(2) ULµ−Lτ(1)

Ne 0 1 0

Nµ 0 1 −1

Nτ 0 1 1

Lµ −1
2 2 1

Lτ −1
2 2 −1

Le −1
2 2 0

H −1
2 2 0

S 0 1 1

Table 2.1: Charge assignments of the relevant fields under hypercharge

SUW (2)and the new U ′(1). Here 2 refers to the fundamental representation

of SU(2).

The order parameter responsible for the generation of a massive Z′ is

denoted by S. Ni are left-handed two component spinors that are singlets

under the Standard Model gauge group and the rest of the fields are the

familiar Standard Model matter content (see Appendix A). Writing down

the most general renormalizable Lagrangian density consistent with the

matter content and charge assignments, one arrives at

L =LSM +L ′
kin +L ′

Y uk −V
(
S†S

)
(2.1a)
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L ′
kin = N i /DNi − 1

4
F ′µνF ′

µν+
(
DµS

)† (
DµS

)+h.c. (2.1b)

L ′
Y uk = yi

(
L iH̃

)
Ni + 1

2
MeNeNe +MNµNτ+ gµNµNeS+ gτNτNeS† +h.c.

(2.1c)

V
(
S†S

)
= λS

2

(
S†S− 〈S〉2

2

)2

(2.1d)

Dµ is the covariant derivative for each field whose charges are dictated by

Table 2.1. The notation of slashes with (without) an overbar correspond to

contraction with σµ (σµ) and all spinors are two component Weyl spinors.

Kinetic mixing terms between the photon and the Z′ such as FµνF ′µν are

forbidden by upper bounds on the photon’s mass. Here we have elected to

include the mass matrix with the Yukawa terms for future convenience.

The gauge coupling constant is the only parameter not explicitly appearing

in the Lagrangian density and will be denoted g′. Additionally we must

augment the Standard Model covariant derivatives for µ and τ generation

leptons to include their coupling to the new Z′.

2.1 Phases of Parameters

It is worth developing a convention for the phases of various parameters

so that consistency is maintained when comparing bounds from different

sources. Despite being interested in a CP conserving limit for our analysis

fixing the phase of a parameter can guarantee its positivity. This may in

turn render certain solutions obsolete if they require said parameter to be

negative.
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By re-phasing fields in our theory we can demand that a fixed number of

parameters are real and positive, however the number of independent re-

phasings we can perform is limited by the number of fields at our disposal.

As a result only some subset of our parameters will have their phase fixed

with the remaining parameters free to take on any complex value. We will

be interested in a CP conserving limit and so the phase freedom of the

unfixed parameters allows for the possibility of them taking on negative

values.

Let us begin with the singlet scalar field. Here we define the phase of

the field to be such that when the symmetry is spontaneously broken the

breaking pattern is such that the field’s vacuum expectation value is entirely

real. This fixes the phase of the complex field S.

Next we examine the right-handed neutrinos. Let us first re-phase Ne to

force Me to be positive this will modify the phase of both gµ and gτ however

we may then fix the phase of both of these parameters by using the freedom

provided by the fields Nµ and Nτ. This leaves the phase of M undetermined

since it is the result of coupling between Nµ and Nτ and these fields’ phases

have been fixed.

For the Yukawa couplings we are free to re-phase the Standard Model

leptonic fields L i and so we can fix the phase of all of our Yukawa couplings

but after doing so we have exhausted all of our degrees of freedom. Thus of
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the parameters controlling neutrino mixing only M may take on negative

values.

The fact that only one parameter that is related to neutrino mixing in

our theory is not fixed to be positive is a result of the Yukawa couplings

being diagonal and the lower 2x2 block of the mass matrix having only

one independent entry. Had there been additional operators in our theory

which induced couplings in the lower 2x2 block their phases would not be

fixed. This is important because we will be considering modifications to

the presented theory which involve dimension-five operators in the listed

entries. As a result their phases will not be fixed and they can take on

negative values.

2.2 Consequences of Singlet Symmetry

Breaking

2.2.1 A Massive Z′

The spontaneous breaking of the U ′(1) symmetry was motivated by the

generation of a mass for the new Z′ gauge boson. It is worth examining this

mechanism in detail and reviewing Faedev-Poppov gauge fixing procedure

in the context of our model [26]. In the context of the Higgs mechanism we

wish to excite our fields about the minimum energy state or true vacuum
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[26]. In the case of the potential in our theory there are infinitely many

degenerate vacuua that minimize the potential.

V
(|S|2)= λ

4

(
|S|2 − 〈S〉2

2

)2

(2.2)

The vacuum solution is manifest and is given by S = 1p
2
〈S〉 eiθ. We may

choose to expand our field about the vacuum with θ = 0 with no loss of

generality. We are therefore interested in the quantum excitations about

this field configuration and so we should choose to write

S = 1p
2

(〈S〉+σ)eiπ/〈S〉 (2.3)

and interpret the quanta of σ and π as particle states. Here π is the Nambu-

Goldstone boson and σ is the remaining gapped degree of freedom. Gapped

refers to the finite amount of energy required to excite a one particle state.

The field π is normalized by 〈S〉 so that it will be canonically normalized.

Writing the field this way emphasizes that the U ′(1) symmetry is realized

non-linearly. If we substitute this into the kinetic term for the singlet field

we obtain

L ⊃
[(
∂µ+ ig′Z′

µ

) 1p
2

(〈S〉+σ)e−iπ/〈S〉
][(

∂µ− ig′Z′µ) 1p
2

(〈S〉+σ)eiπ/〈S〉
]

= 1
2

(∂σ)2 + 1
2

g′2
(
Z′
µ−

1
g′∂µ

π

〈S〉
)(

Z′µ− 1
g′∂

µ π

〈S〉
)
(〈S〉+σ)2

(2.4)

If we take the limit where g′ = 0 we see that the kinetic term for the

Goldstone mode is canonically normalized as promised. If we now expand

the final term and recognize that the new field strength tensor F ′µν is
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invariant under gauge transformations we can take Z′
µ → Z′

µ + 1/g′∂µπ

which amounts to a gauge fixing condition. This finally leads to

L ⊃ 1
2

(∂σ)2 + 1
2

(
g′ 〈S〉)2 Z′

µZ′µ+ 1
2

(
g′σ

)2 Z′
µZ′µ+ g′2σ〈S〉Z′

µZ′µ (2.5)

We can identify MZ′ := g′ 〈S〉 and we see that in this gauge the Z′ boson has

eaten the Nambu-Goldstone boson and gained an additional degree of free-

dom, namely it’s longitudinal polarization. Analyzing the full Lagrangian

one may worry this substitution is not helpful since it will introduce cou-

plings between the Goldstone mode, which no longer has a kinetic term, and

the charged fermions. Due to the lack of kinetic term, the field ceases to be

a propagating degree of freedom and we may ignore its contributions; this

justifies the transformation to unitary gauge.

The Faddeev-Popov method can allow one to see, somewhat more transpar-

ently, how this issue of Goldstone modes coupling to fermions is resolved.

Here we choose our gauge fixing functional in such a way that the additional

contribution to the Lagrangian density from integrating over the redundant

degrees of freedom is given by [60]

L ⊃− 1
2ξ

(
∂µZ′

µ−ξMZ′π
)2

(2.6)

After integration by parts this will remove the kinetic mixing that comes

from expanding the bracketed gauge boson terms in Equation 2.4. After

including the above gauge fixing term, resultant kinetic terms for Z′ and π
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in the Lagrangian will be of the form

Lkin ⊃ 1
2

[
(∂π)2 −ξM2

Z′π
2]+ 1

2
Z′
µ

[
ηµν∂2 −

(
1− 1

ξ

)
∂µ∂ν+M2

Z′

]
Z′
ν (2.7)

This leads to the following propagators for the Z′ and the Goldstone mode

〈0|T{Z′
µZ′

ν} |0〉 =
−iηµν+ i(1−ξ) kµkν

k2−ξM2
Z′

k2 −M2
Z′

(2.8a)

〈0|T{ππ} |0〉 = i
k2 −ξM2

Z′
(2.8b)

This choice of gauge is known as Rξ gauge and different choices of the

parameter ξ define different gauges. In the limit of ξ→∞ unitary gauge

is recovered and the mass of the Goldstone mode becomes infinite and it

ceases to be a dynamical field. This is in agreement with the previous

discussion. Calculations done in Rξ gauge provide a useful consistency

check to determine if any errors were made during a calculation because

any physically observable quantity in the theory must be independent of

the gauge parameter ξ. This cancellation is highly non-trivial and generally

does not occur diagram by diagram.

2.2.2 Contributions to the Neutrino Mass Matrix

The mass matrix of the theory initially looks extremely restrictive, however,

due to the Yukawa coupling with the Higgs singlet field and its acquisition

of a vacuum expectation value additional mass terms are generated. We can

then write the mass terms for the right-handed neutrinos as a mass matrix
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written L ⊂−1
2 NiM(R)

i j N j. In the broken phase we may elect to write the

singlet field in such a way as to emphasize the non-linear realization of the

U ′(1) symmetry. To do this we define mµ,τ := 1p
2

gµ,τ 〈S〉 and express the

right-handed mass matrix as

MR =


Me mµ mτ

mµ 0 M

mτ M 0

 (2.9)

notice that this matrix is controlled by four parameters. In the see-saw

limit (see Section 1.4.3) the left-handed mass matrix is given by ML =
〈h〉2 Y T M−1

R Y where 〈h〉 is the Standard Model Higgs’ vacuum expectation

value and Y is the matrix of Yukawa couplings which in our theory is

diagonal in the flavour basis by virtue of our charge assignments. Applying

the see-saw formula to the above right-handed mass matrix produces

ML = 〈h〉2

MMe −2mµmτ


M −mτyµye −mµyτye

−mµyµye
m2
µ y2

µ

M

(
Me − mµmτ

M

)
yµyτ

−mτyτye

(
Me − mµmτ

M

)
yµyτ

m2
τ y2

τ

M


(2.10)

The production of this mass matrix can be attributed to integrating out the

right-handed neutrinos and writing down an effective theory. In this case

more operators than the one above will be produced. The mass matrix, as it

is written above, can be used to determine what the effective operators would

look like before symmetry breaking. Note that gµS →
(
mµ+ 1p

2
gµσ

)
eπ/〈S〉

so that we can make the substitution of mµ → gµS in the above equation
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and then subsequently break the symmetry. Correspondingly mτ → gτS†

so that terms involving the combination mµmτ have no coupling to the

Goldstone modes. This results in the following "coupling matrix"

〈h〉2

MMe −2gµgτ |S|2


M −gτyµyeS† −gµyτyeS

−gτyµyeS† g2
µS2 y2

µ

M

(
Me − gµgτ|S|2

M

)
yµyτ

−gµyτyeS
(
Me − gµgτ|S|2

M

)
yµyτ

g2
τ

(
S†)2 y2

τ

M


(2.11)

One can then take S → 1p
2

(〈S〉+σ) eiπ/〈S〉 and extract whatever couplings

are of interest. To extract Feynman rules one must expand various functions

as a Taylor series in the fields.

For the Goldstone modes this is fairly straightforward but for the gapped

modes one must be careful since the denominator in front of this operator

when expanded has terms of first and second order in the field σ. One way to

avoid talking about couplings to the Goldstone modes is to work in Unitary

Gauge however if one wishes to do a calculation in the broken phase in Rξ

gauge these couplings become very important as they are the manifestation

of the longitudinal modes of the massive Z′.

2.2.3 Singlet Field in the Broken Phase

The breaking of the singlet field results in a modification of the scalar

quanta’s mass gap as well as inducing couplings that are not present in the

unbroken phase. Taking the potential and expanding about the minimum
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one finds that

V
(|S|2)→ λS

2

(
1
2
σ2 +〈S〉σ

)2
= 1

2
λS 〈S〉2σ2 + 3λS

3!
〈S〉σ3 + 3λS

4!
σ4 (2.12)

The mass of the scalar excitation in the broken phase can be identified as

mσ =√
λS 〈S〉. This result and the preceding discussion of couplings will

not play a significant role in the rest of the discussion. If one wishes to take

this model seriously and investigate its consequences these features would

play and important role. For example the couplings resulting from the mass

matrix can play an important role in the renormalization group flow of the

Weinberg operator LH̃LH̃.

2.3 The Z′ Progenitor Scenario Proposed by

Shuve and Yavin 2014

The Dodelson Widrow proposal has been ruled out via galactic x-ray searches

because the mixing with active neutrinos required to obtain the correct

dark matter abundance predicts an excess of galactic x-rays that have not

been observed (see Section 1.6). The progenitor scenario introduces a new

mechanism by which sterile neutrinos could be produced which allows for a

much smaller mixing angle to evade galactic x-ray bounds. This is because

the model’s production mechanism relies on physics beyond the Standard

Model, and, as a result, is no longer constrained by the precision tests of the

Standard Model.
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The mixing results from mass terms that couple right-handed and left-

handed particles to one another in the Lagrangian density. This mixing can

be parameterized by an angle θm via the matrix equation νa

νs

=

 cosθm −sinθm

sinθm cosθm


 ν1

ν2

 (2.13)

Where the left hand side denotes active and sterile neutrinos in the flavour

basis and ν1 and ν2 are the mostly active and mostly sterile mass eigen-

states respectively. As such these are what represent propagating degrees

of freedom. This scenario only includes one active and one sterile neutrino

while our model contains three of each. These two pictures can be recon-

ciled by thinking about integrating out the two heaviest sterile states and

only considering the linear combination of active states that couple to the

remaining sterile state. This is discussed in greater detail in Section 5.3.4.

High temperature effects modify the mixing angle resulting in a suppression

which is given by the relationship below.

sin2 2θm = sin2 2θ0

sin2 2θ0 + [cos2θ0 +∆R(k,T)]2 (2.14)

Where ∆R(k,T) is related to the contribution to the neutrino self energy

from vector-boson exchange [56, 57] (see Section 1.6).

The important feature here is that for T & 150 MeV
( ms

keV

)1/3 the mixing angle

is heavily suppressed [7]. This allows for Z′ decay to have no effect on dark

matter production in early epochs of the universe while having significant
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contributions after the universe cools below some critical temperature. This

decay is mediated by Z′ → νa+νa with one subsequent oscillation of νa → ν2

and another of νa → ν1 parametrically this results in the decay rate being

proportional to sin2θm cos2θm = 1/4sin2 2θm. More careful analysis yields

ΓZ′→ν2 =
g′MZ′

12π
sin2 2θm

4
(2.15)

in the limit where tanθm << 1 [7]. This allows one to calculate the relic

abundances via the Boltzmann equation [61]. Shuve and Yavin found that

the possibility of this mechanism is not excluded and calculated viable

parameter combinations that can explain the observed dark matter energy

density while simultaneously evading x-ray bounds [7]. The parameters

of interest for their analysis were M′
Z ≈ MeV-GeV, g′ ≈ 10−3 −10−6, and

Ms ≈ 1−100 keV [7].

2.3.1 Restrictions on a new Z′

Introducing a new gauge group amounts to postulating a new force and

with it a new Z′ boson. This particle cannot have arbitrary properties

and is subject to constraints both from collider searches and cosmological

considerations.

It is worth noting the bound on the far left of Figure 2.1 from Ne f f . This

bound comes from Planck’s measurement of the cosmic microwave back-

ground which is very sensitive to the number of neutrino species at neutrino
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Figure 2.1: Plot showing contours in the g′−MZ′ plane that fit to various

masses of the sterile neutrino in the Z′ progenitor scenario [7]. This plot

was taken from Shuve and Yavin (2014)

freeze-out [14]. If MZ′ ≈ T f o
ν , where T f o

ν is the neutrino freeze-out tempera-

ture, the Z′ will overpopulate the number of effective neutrino species via

decay and the neutrino species will have no opportunity to equilibriate with

the photon bath. If the decay occurs before neutrino freeze-out the num-

ber of neutrinos species can return to it’s equilibrium distribution before

freeze-out occurs and then the Plank measurement will be insensitive to

this history.
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Z ′

γ

µ µ

Figure 2.2: Z′contribution to the anomalous magnetic moment of the muon

(g−2)µ

Collider searches can also place bounds on new Z′ bosons however these

colliders rely on hadronic and electron collisions [12, 62–64]. In our par-

ticular model of a gauged Lµ−Lτ the Z′ is completely hidden from these

interactions. As a result the strongest bounds on Z′ phenomenology comes

from the muon’s anomalous magnetic moment[65] and neutrino trident pro-

duction [66]. The current measurement of the muon’s anomalous magnetic

moment (g−2)µ is in disagreement with the Standard Model’s prediction;

this discrepancy is at the 3.3σ level [5]. The addition of a new Z′ that

couples only to the second and third generation leptons can remedy this

situation without affecting the anomalous magnetic moment of the electron

(g−2)e. The contribution of the Z′ to (g−2)µ corresponds to the diagram

shown in Figure 2.2. In the case where the Z′ is massive this results in a
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N2

N1

SMZ ′

Figure 2.3: Decay mode of a heavier sterile N2 into Standard Model particles

and the dark matter candidate N1 via a Z′ interaction

correction to (g−2)µ of [67]

∆(g−2)µ = α′

π

∫ 1

0
dx

2mµx2 (
1− x2)

x2mµ+ (1− x)M2
Z′

(2.16)

In the limit of MZ′ << mµ this reduces to ∆(g−2)µ = α′
π

this is the familiar

result from Q.E.D. In the opposite limit MZ′ >> mµ the contribution is

∆(g−2)µ = α′
π

2m2
µ

3M2
Z′

. This can been seen in the bounds in Figure 2.1 where

the bound from (g − 2)µ is very flat until about 100 MeV ≈ mµ. These

measurements place bounds on the mass and coupling of the Z′ because if

the contribution from the Z′ is too large its predictions will disagree with

the measured value. If the contributions from the Z′ do not account for

the entire discrepancy from the Standard Model this does not rule out the

model it just suggests that other physics beyond the Standard Model is the

cause of this discrepancy.

Neutrino trident production is a rare process that occurs when neutrinos
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scatter off of nuclei inelastically via the process ν+N → ν+µ+µ++N. In the

standard model this process is mediated by the weak and electro-magnetic

forces. With the inclusion of the Z′ there are additional contributions [66].

Thus, agreement with the Standard Model predictions can place bounds on

the Z′ model.

2.4 Dark Matter Candidates in Our Model

The inclusion of sterile neutrinos in our model give multiple possible dark

matter candidates. Due to the coupling between the various generations

of right-handed neutrinos we should expect that the mixing between the

generations could facilitate decay among the sterile neutrinos via a virtual

Z′ process such as the one shown in Figure 2.4. Dark matter must be stable

and so the state which is a natural candidate for dark matter is the lightest

of the sterile neutrino eigenstates.

The Z′ scenario requires that the dark matter candidate couple to the new

force only through kinetic mixing. This is because the scenario requires

that the dark matter is produced non thermally and as such its production

mechanism must be suppressed in the early epochs of the universe and

subsequently turn on. Equation 2.3 allows for this to occur and relies on

the fact that the dark matter is mostly composed of a sterile component.

Additionally the zero temperature mixing must conform to x-ray bounds

[11]. Thus to take advantage of the Z′ progenitor scenario would require
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Figure 2.4: Bounds on a Z′ coupling to the charge Lµ −Lτ in the g′ vs

MZ′ plane. Bounds from Borexino are sub-dominant to all other bounds.

Neutrino trident production is the leading bound for MZ′ larger than about

4 MeV. Plot produced by Brian Shuve. For a review of these bounds see ref.

[12]

that this state be primarily Ne since the other two right-handed states are

only sterile with respect to the Standard Model but couple directly to the Z′.

As such for the purposes of the progenitor scenario we should identify the

mass eigenstate which is most weakly coupled to the Z′ as the dark matter.

One can then write down an effective theory containing only the lightest

sterile eigenstate as a propagating degree of freedom and integrate out
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the two heavier sterile states. This will leave an effective theory with a

single right-handed neutrino state and a left-handed mass matrix generated

by the two heavy right-handed states. One must insist on a right-handed

mass spectrum that generates a mostly sterile (i.e. predominantly Ne in

our model) lightest eigenstate. This is in correspondence with Equation 2.3

This scenario will be investigated in greater detail in Chapter 5.
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3
FITTING TO NEUTRINO DATA

N
eutrino oscillation data offers the most stringent source of con-

straints for our model due to the high level of precision in solar,

reactor and atmospheric neutrino oscillation experiments [68–

71]. Generically any model with sterile neutrinos will generate neutrino

masses, but due to the imposed symmetries of our model the right handed

mass matrix is constrained with two of the entries vanishing. This mani-

fests itself as a relationship between various entries of the left handed mass

matrix which constrains the possible neutrino mass spectrum by having

fewer than six free parameters to control the left handed mixing.

In the following chapter we will give conclusive evidence that without
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additional dimension-five operators being added to the theory our model is

incapable of generating the observed neutrino mass textures. This will be

done in the see-saw limit which is justified for the combination of parameters

of interest. First the mass matrix is conveniently parameterized. Next the

set of all possible left handed mass matrices that could correspond to the

observed neutrino phenomenology, in the CP conserving limit, is generated.

Finally we will show that no element of this set can satisfy all of the

relationships that exist between various entries in the parametrization of

the mass matrix generated by our theory.

3.1 Mass Matrix Parameterization

Taking the inverse of the mass matrix expressed in Chapter 2 and multiply-

ing on both sides by the Yukawa matrix we obtain the following expression

for the left handed mass matrix

〈h〉2

MMe −2mµmτ


y2

e M −mτyµye −mµyτye

−mτyµye
m2
τ y2

µ

M

(
Me − mµmτ

M

)
yµyτ

−mµyτye

(
Me − mµmτ

M

)
yµyτ

m2
µ y2

τ

M

 (3.1)

where 〈h〉 is the Standard Model Higgs boson’s vacuum expectation value.

Naively this matrix seems to be controlled by the set of Yukawa couplings,

and the four entries in the right handed mass matrix for a total of seven

independent degrees of freedom. However in reality the matrix can be
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reduced to four independent parameters with one of these only controlling

the overall mass scale.

M(L) =M


1 − r

µ
− r−1

µ

− r
µ

r2

µ2
µ·µe−1
µ2

− r−1

µ

µ·µe−1
µ2

r−2

µ2

 (3.2)

These variables are related to the original set of parameters by

r :=
√

mτyµ
yτmµ

(3.3a)

my :=
√

mµmτyµyτy2
e (3.3b)

µ := y2
e M
my

(3.3c)

µe := yµyτMe

my
(3.3d)

M :=µ〈h〉
2

my

y2
e yµyτ

µµe −2
(3.3e)

This reduction in the number of independent parameters is important

because effectively we are attempting to fit to five pieces of information from

neutrino oscillation data with only four parameters.

The two conditions that can be seen very transparently are the relationships

between M(L)
1 j and M(L)

j j for j ∈ {1,2}, namely that, after normalization, the

square of the former is equal to the latter. This projects out two degrees of

freedom compared to a general symmetric 3x3 matrix. We may define Ω :=
1

M(L)
11

M(L) and then define r j j := Ω2
1 j

Ω j j
. So we may check to see if any matrix
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that can reproduce the measured neutrino textures can satisfy r22 = r33 = 1.

These relationships are the result of parametrizing a symmetric 3×3 matrix

(six independent entries) with only four independent parameters.

3.2 Generation of Possible Mass Matrices

To determine whether or not our model is capable of fitting to neutrino data

there are a few possible strategies. We could begin by trying to extract the

mixing angles from our theory as a function of the Lagrangian parameters.

This strategy offers the advantage of having analytic control over the mixing

angles however it is very costly in a computational sense. Another route

one could elect to take would be to find solutions which fit to the mixing

data in some coarse approximation and then perturb about these solutions.

The disadvantage here is that due to the high precision measurements

of the mixing data there is no guarantee that the coarse approximation

is sufficiently close to a viable solution such that it is within reach of

perturbation theory. Also can not conclusively prove that no solution exists

using perturbation theory.

The final possible strategy abandons trying to solve for the mixing angles in

terms of the given parameters and instead works to generate all possible

mass matrices that could give the correct textures. These matrices would be

written in the flavour basis and then compared to the parametrization given

in Equation 3.1. This has the advantage of allowing one to calculate simple
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3.2. GENERATION OF POSSIBLE MASS MATRICES

analytic requirements for the generated mass matrices. For our theory

these constraints are trivial and are just that r22 = r33 = 1. To construct all

possible mass matrices we begin by noting that any neutrino mass matrix

can be written

M(L) = PT diag(m1,m2,m3)P (3.4)

where P is the PMNS matrix. Now since we are interested in Ω := 1
M(L)

11
M(L)

and we will be dividing by the magnitude of the first element so we may

multiply the matrix by 1
m2

and still obtain the same Ω; this is equivalent to

m1 and m3 being measured in units of m2. It is convenient to use the second

mass for normalization purposes since it is the only one of the three which

is guaranteed to be non-zero in both the normal and inverted hierarchy.

We will allow the lightest mass m` to take on any value in the interval

[0,m2]. In the case of the normal hierarchy this is m1 and for the inverted

hierarchy this is m3. The remaining mass which has not been fixed will be

determined by the relationships between the mass squared differences. The

remaining degrees of freedom are discreet and correspond to the possibility

of any of the masses being negative.

We partition the set of possible matrices in the following way. First distin-

guish between the normal and inverted hierarchies as they have different

mixing angles. Next within these sets we distinguish between the cases

where either all three masses are positive, or where one of the masses is
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CHAPTER 3. FITTING TO NEUTRINO DATA

negative resulting in a total of four cases (one for each negative mass).

This is exhaustive since all other combinations can be obtained via scalar

multiplication of ML which will be cancelled in the normalization of Ω.

This leaves us with eight sets of matrices, with either m1 or m3 undeter-

mined depending on the hierarchy of interest. We then have a computer

program run through all possible values of the lightest mass and generate

the various possible matrices. Each of these matrices’ r22 and r33 values

are then calculated and plotted for the various masses.

As can be seen from Figures 3.1 and 3.2 at no point do both conditions

become simultaneously satisfied nor do they come with in any reasonable

neighbourhood of being simultaneously satisfied (all three plotted lines

intersecting i.e. r22 = r33 = 1. For further discussion see Appendix B.

One may subsequently be tempted to wonder how sensitive the matrices

produced from the experimental data are to changes in the mixing angles

and mass spectra. Due to the high precision of the measurements made the

sensitivity to modification of measured parameters at the 2σ level is small

and is orders of magnitude smaller than the discrepancy between the model

and observation.
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3.3. SUCCESSES OF THIS MINIMAL MODEL

a All masses positive b Lightest mass negative

c Middle mass negative d Heaviest mass negative

Figure 3.1: Possible normal hierarchy mass matrices’ r22 and r33 generated

by taking central fit values for the PMNS matrix [8] and rotating all possible

mass spectra that conform to the data for the normal hierarchy into the

flavour basis

3.3 Successes of this Minimal Model

Although we have shown that this model is inconsistent with observed

neutrino phenomenology the features it produces are very similar to what

is observed in nature. Due to the high level of precision present in modern

measurements of neutrino phenomenology the model is excluded however it
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a All masses positive b Lightest mass negative

c Middle mass negative d Heaviest mass negative

Figure 3.2: Possible Inverted hierarchy mass matrices’ r22 and r33 generated

by taking central fit values for the PMNS matrix [8] and rotating all possible

mass spectra that conform to the data for the inverted hierarchy into the

flavour basis

is able to succeed to within about 25−30% for all of the values of sin2θi j.

The two conditions (r22 = r33 = 1) manifest themselves as tension between

θ13 and θ12 while θ23 is easily accommodated by an approximate µ↔ τ

exchange symmetry. As you can see in Table 3.3 we are able to match to

two of the three mixing angles and achieve the correct ratio of mass squared
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3.3. SUCCESSES OF THIS MINIMAL MODEL

Quantity Prediction nu-Fit value % Difference σ Discrepancy

∆m2
13/∆m2

12 32.40 32.44 0.1% 0.13σ

sin2θ13 0.0198 0.0218 9.2% 2.00σ

sin2θ12 0.296 0.304 2.7% 0.68σ

sin2θ23 0.329 0.452 27.2% 4.40σ

Table 3.1: Comparison of minimal model’s predicted neutrino texture for

r = 0.8212, µ=−0.61, µe = 0.75. This texture is in the normal hierarchy and

so sin2θ23 is the appropriate value. All neutrino data is taken from [8]

differences however the precision measurements rule out the predicted

neutrino texture conclusively despite matching to within about 25%. A

similar fit can be made in which θ12 is fit to within less than 1σ however

this comes at the cost of a near vanishing θ13.
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4
MODIFYING THE MODEL

T
he inability of our model to fit neutrino oscillation data mandates

the inclusion of additional degrees of freedom if our extension of

the Standard Model is to explain the neutrino oscillation data.

These additional degrees of freedom could manifest themselves as additional

fields in the model, or as higher dimensional operators with the same field

content.

These two possibilities are united via the language of effective field theory.

The inclusion of additional matter content can generate higher dimensional

operators in the low energy effective theory. As a result we can investigate

the effects of various higher dimensional operators at low energies while

65



CHAPTER 4. MODIFYING THE MODEL

remaining agnostic as to their origin in the ultraviolet.

We have already considered all operators of dimension four or less, however

we know that operators of higher dimensionality are suppressed by appro-

priate powers of some cut off. So to leading order we should only concern

ourselves with operators of dimensionality less than or equal to five.

4.1 Possible Dimension-Five Operators

If we ignore Weinberg type operators the set of possible dimension-five oper-

ators that concern the generation of neutrino masses will have to contain at

least one of the sterile fields Ni. As a result this must couple to at least one

other Weyl spinor to achieve Lorentz invariance. This gives us the choice

of either another sterile state, or the Standard Model leptons. One class of

operators corresponds to the former, and one to the latter. I will refer to

these as mass-inducing and Yukawa-inducing operators respectively.

The mass operators, at this point, are composed of only two Weyl spinors

and so can accommodate two additional powers of energy. The only possible

field which can achieve this while maintaining Lorentz invariance is the

SU(2) singlet scalar field S, which will come in two powers. This allows us

to include the operators

δMµ

〈S〉2 NµNµS2 (4.1a)
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4.1. POSSIBLE DIMENSION-FIVE OPERATORS

δMτ

〈S〉2 NτNτ

(
S†

)2
(4.1b)

where Nµ and Nτ are the right-handed neutrinos charged under the U ′(1)

symmetry and δMµ and δMτ are couplings with mass dimension one.The

ratio δMµ,τ/〈S〉 controls the strength of these dimension-five operators.

These operators will modify the right-handed mass matrix; this is the root

of the mass operator nomenclature. In principle there is also the operator

NeNeSS†, however this can be captured by a redefinition of Me.

Due to the SU(2) structure of the left-handed leptons we must include

couplings that include both the Higgs doublet and the lepton doublet. Since

we are interested in operators that will modify the left-handed mass matrix,

we must couple to the right-handed neutrinos as well. This leaves four

possible operators; these are called Yukawa-inducing operators

Zµ

〈S〉LeH̃NµS (4.2a)

Zτ

〈S〉LeH̃NτS† (4.2b)

χτ

〈S〉LτH̃NeS† (4.2c)

χµ

〈S〉LµH̃NeS (4.2d)

As these operators have been written their inclusion in the mass and

Yukawa matrices respectively is manifest after setting the singlet scalar

field equal to its vacuum expectation value.

67



CHAPTER 4. MODIFYING THE MODEL

It is worth pausing and qualitatively discussing the effects of these operators.

The mass operators will result in a modified right-handed mass matrix. As

a result its inverse will have some additional degrees of freedom and the

constraints on the left-handed mass matrix will be relaxed.

The Yukawa-inducing operators that couple Le to Nµ and Nτ allow the gen-

eration of a 3x3 left-handed mass matrix, even for the case of a vanishing ye.

The operators that couple Ne to Standard Model leptons, conversely, induce

a coupling of Ne to the Standard Model even in the limit of a vanishing ye.

We may therefore think of the Zµ,τ operators as a way to produce acceptable

neutrino textures without coupling Ne to the Standard Model while the χµ,τ

operators induce additional coupling between Ne and the Standard Model;

this will be important when we discuss dark matter.

4.2 Consequences of Mass-Inducing

Operators

The inclusion of the mass-inducing operators results in a new right-handed

mass matrix. After the singlet state acquires a vacuum expectation value

this matrix can be written

MR =


Me mµ mτ

mµ δMµ M

mτ M δMτ

 (4.3)
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4.2. CONSEQUENCES OF MASS-INDUCING OPERATORS

(see Section 2.2.2)After applying the see-saw relation with a diagonal

Yukawa matrix the resultant left-handed mass matrix for δMτ = 0 is given

by

ML =M


1 − r

µ
− r−1

µ
+δµ r

µ

− r
µ

r2

µ2
µ·µe−1
µ2

− r−1

µ
+δµ r

µ

µ·µe−1
µ2

r−2

µ2 −δµ µe
µ

 (4.4)

These parameters are the same as those introduced in Chapter 3 (with

the additional contribution from δMµ), and are related to the original set of

parameters by :

r :=
√

mτyµ
yτmµ

(4.5a)

my :=
√

mµmτyµyτy2
e (4.5b)

µ := y2
e M
my

(4.5c)

µe := yµyτMe

my
(4.5d)

Mµ := 〈h〉2

my

y2
e yµyτ

µµe −2+δµr2µ (4.5e)

δµ := δMµyτ
M yµ

(4.5f)

The limit in which δMµ = 0 and δMτ 6= 0 can be obtained by exchanging the

µ and τ indices, and taking r → r−1 on any of the quantities contained in

the definitions of δµ and Mµ.

Table 4.1 shows that all of the dimensionless parameters defined by Equa-

tion 4.5 that are required to fit the neutrino textures are within two orders
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of magnitude of unity. This condition is enough to obtain rough parametric

dependence of various parameters to within two orders of magnitude.

This matrix differs from the mass matrix of our previous theory in that we

no longer have the condition that Ω2
13 =Ω33 ( Ω2

12 =Ω22) for a non-zero δMµ

(δMτ). Provided the other dimension-five operator vanishes, the remaining

constraint remains so we may make use of the data from Figure 3.1 and

Figure 3.2 to determine which regions of parameter space can be fit with

only one of these operators.

We see that there are single points of intersection between r22 and the

horizontal line set equal to unity in Figures 3.1b,3.1d, 3.2d and two points of

intersection in Figure3.1c. In Figure 3.1b there is also one mass combination

that could be fit by a non-zero value of δMτ. The matrices corresponding to

these points of intersection can then becompared to the parametrization in

Equation 4.2, and the parameters that fit to this matrix can be extracted.

4.2.1 Finding the Model Parameters

We have identified matrices that our theory can parametrize at tree level

and that agree with experimental neutrino textures . Now we must develop

a procedure to extract the Lagrangian parameters which yield a mass

spectrum that agrees with experiment.

Since we are fitting in flavour space, this procedure only requires that we
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4.2. CONSEQUENCES OF MASS-INDUCING OPERATORS

equate each entry of the generated mass matrix with our matrix parametriza-

tion. This will allow us to determine µ, µe, δMµ, and r. The overall mass

scale is not fixed by experiment, but is bounded from above by cosmological

considerations [14], and from below by ∆m2
13 [8].

Due to the conventional positivity of the Yukawa couplings, Me, mµ, and

mτ, we can rule out any solutions that require either µe or r2 to be negative.

In contrast, we can say nothing about the phase of either δµ or µ, which is

in one to one correspondence with the unconstrained phases of δMµ and M.

The possible combinations of parameters which fit to the central values of

the neutrino parameters from nu-Fit are given in Table 4.1.

Note that all of the parameters are approximately of order one. We must be

careful to ensure that our effective field theory picture is self consistent. We

would naively expect δMµ < M due to energy scale suppression, however

some fits have δµ > µ which would require that yτ >> yµ to maintain our

naive assumption.

All of the fits presented in Table 4.1 have all of the parameters approximately

equal to one with the exception of the first line where µ≈ 0.05, however this

is still only about an order of magnitude discrepancy. The fact that all of the

parameters need to contribute significantly to the mixing is an important

feature of the model and will be expanded upon in Chapter 5.
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Hierarchy m`

m2
µ µe δµ r M (eV)

Normal −0.271 0.0471 1.51 9.45 0.823 6.43 ·10−5

Normal −0.967 −0.741 0.641 −0.380 0.976 0.0135

Normal −0.162 0.262 1.76 1.87 0.786 0.00272

Normal 0.995 −4.72 4.99 −0.194 1.04 0.0803

Inverted −0.704 4.70 −3.81 0.319 0.914 0.0117

Table 4.1: Parameter values for mass-inducing operators that fit to the data.

m`

m2
is the ratio of the lightest mass to m2

4.3 Yukawa-Inducing Operators

4.3.1 Motivation

After symmetry breaking the Yukawa-inducing operators of interest exclu-

sively couple first-generation lepton fields to second-generation lepton fields.

We may therefore distinguish between two classes of operators. Those that

couple Le to sterile fields and those that couple Ne to Standard Model states

as was done in Equation 4.1.

We have just found that by introducing dimension-five operators into the

mass matrix we can fit to the central values of neutrino data. Since mass-

inducing operators are sufficient one may be inclined to ask what the pur-

pose of discussing these Yukawa-inducing operators is?
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4.3. YUKAWA-INDUCING OPERATORS

This thesis concerns the interplay of neutrino oscillations and the Shuve-

Yavin Z′ progenitor scenario, therefore the ability for our model to conform

to bounds from dark matter is of great significance. These bounds will be

discussed in the next chapter however, heuristically we can expect any cou-

pling to the Standard Model from a dark matter candidate to be potentially

problematic because this will affect the mixing angle constrained by galactic

x-ray searches [11].

We would naturally identify the lightest sterile state as a potential dark

matter candidate, therefore we need only consider one linear combination

of the sterile fields (namely that which has the smallest mass). For the Z′

scenario the sterile state is required to be uncharged under Lµ−Lτ. This

naturally suggests that Ne would need to compose the majority of the dark

matter candidate.

As a result it would be helpful to see if for certain additional operators

the correct neutrino phenomenology could be obtained even in the limit

of an entirely decoupled dark matter candidate which would be composed

mostly of Ne. This is related to the fact that the mixing angle θm in the

Shuve Yavin progenitor scenario is constrained by galactic x-ray searches.

To exist within viable parameter space our dark matter candidate must be

sufficiently decoupled so as not to produce x-ray abundances in excess of the

bounds set by astronomers [11].
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Any operator that connects Ne to Standard Model neutrinos will facilitate

decay via the channel N → ν+γ (see Figure 1.6). Operators which couple Ne

to the Standard Model are not of interest as they will only serve to enhance

the decay rate. Thus, we are interested in operators which couple Nµ or Nτ

to Le; these are defined by Equation 4.2a and 4.2b.

We would therefore like to see if, in the absence of any other non-zero

dimension-five operators, Zµ and Zτ can satisfy the neutrino phenomenology,

even in the limit of ye = 0.

4.3.2 Resultant Left-Handed Mass Matrix

In this case the right-handed mass matrix, and consequently its inverse, is

unaffected by the additional Yukawa-inducing operators. After expanding

the see-saw formula. however, we see a markedly different left-handed

mass matrix due to the modified Yukawa matrix. The parametrization used

previously involved the quantity my ∝ ye. But since we are taking ye = 0

this quantity is not particularly useful. It turns out that the matrix can be

parameterized more conveniently by the variables:

Xµ =
Zµ

yµ
(4.6a)

Xτ = Zτ

yτ
(4.6b)

κµ =
mµ√
MeM

√
yτ
yµ

(4.6c)
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κτ = mτ√
MeM

√
yµ
yτ

(4.6d)

M Y = 〈h〉2

M
yµyτ

1−2κµκτ
(4.6e)

Using these relations the left-handed mass matrix can be written as

ML =M Y


X2
µκ

2
τ+ X2

τκ
2
µ+2

(
1−κµκτ

)
XµXτ • •

κ2
τXµ+

(
1−κµκτ

)
Xτ κ2

τ •

κ2
µXτ+

(
1−κµκτ

)
Xµ 1−κµκτ κ2

µ

 (4.7)

where the dots reference the symmetry of the mass matrix. The parameters

that fit experimental data all predict the lightest neutrino to have zero mass.

This is not surprising since generically, models with right-handed neutrinos

require at least one right-handed neutrino for every massive left-handed

neutrino [58]. Ne is entirely decoupled from the Standard Model particles

at tree level. This implies that we effectively only have two sterile neutrinos

for the purposes of left-handed mass generation.

Table 4.2 shows multiple different solutions that reproduce the correct

neutrino phenomenology. Note that there are fewer solutions than in Table

4.1. This is because, with the lightest mass set to zero, the number of

possible sign combinations for the matrices reduces from two to four, since

negative and positive m` are indistinguishable in the limit where m`→ 0 .

Note that once again all parameters of interest are approximately of order

one. In this case having Z ≈ y is somewhat more palatable than δMµ ≈ M

since nothing forbids arbitrarily small Yukawa couplings.
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Hierarchy m`

m2
Xµ Xτ κµ κτ M Y (eV)

Normal 0 0.595 −0.339 0.694 0.630 6.06 ·10−3

Normal 0 0.595 −0.339 0.787 0.715 6.06 ·10−3

Inverted 0 −5.09 −4.34 5.17 4.43 1.93 ·10−4

Inverted 0 −5.09 4.34 1.13 0.320 2.46 ·10−3

Table 4.2: Parameter values for Yukawa-inducing operators that fit to the

data. m`

m2
is the ratio of the lightest mass to m2.

We have shown that for both mass and Yukawa-inducing operators the

correct neutrino phenomenology can be generated. In the case of the

Yukawa-inducing operators this was done in the limit where ye = 0 with

no dimension-five operators coupling Ne to Standard Model leptons. As a

result we say Ne is entirely decoupled.

4.4 Weinberg-Inducing Operators

If we wish to remain entirely agnostic we should also include the dimension-

five Weinberg-inducing operators that couple Standard Model leptons to

other Standard Model leptons. These are

We
(
LeH̃

)(
LeH̃

)
(4.8a)

Wµ,τ
(
LτH̃

)(
LµH̃

)
(4.8b)
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These operators result in direct contributions to the neutrino mass matrix.

Since we are interested in whether or not the progenitor scenario and

neutrino textures can be explained in a unified frame work these operators

are not of particular interest to us. It should be noted that these Weinberg-

inducing operators would modify the conditions that Ω has to obey from

r22 = r33 = 1 to the less restrictive r22 = r33.

4.5 A Comment on the Mass Scale

By matching the model’s neutrino textures to the experimentally measured

neutrino textures we have obtained various predictions for the overall mass

scale. This can be probed by measuring anisotropies in the cosmic microwave

background [14] or by searching for neutrinoless double beta decay [72].

The former is able to constrain the sum of all of the neutrino masses [14]

while the latter can set bounds on one entry in the left-handed neutrino

mass matrix as it is written in the flavour basis.

To understand the final comment it is useful to understand what neutri-

noless double beta decay is. Beta decay is the name given to the process

N → P+ e+νe where N is a neutron, P is a proton, e and electron, and νe is

an anti-neutrino. Neutrinoless double beta decay is a much rarer process

given by 2N → 2P +2e. This process violates lepton number and observing

its signal is direct evidence of a Majorana mass for the Standard Model

neutrinos [73]. The matrix entry this process is sensitive to is M(L)
11 ≡ M(L)

ee .
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This can be understood on the level of partons by the diagram in Figure 4.1.

dL uL

dL uL

eL

eL

M
(L)
11

W

W

Figure 4.1: Parton level diagram contributing to neutrinoless double beta

decay. This diagram is written using two component spinor techniques

where the arrows track chiral charge. We see that to get two outgoing

electrons that couple to the weak charged-current we need a Majorana mass

term M11.

The bounds from cosmology and neutrinoless double beta decay experiments

are shown in Figure 3 of [72]. The mass scales we found satisfy the experi-

mental requirements however there is no distinctive signal of this theory

in neutrinoless double beta decay experiments assuming we consistently

include all dimension five operators. Even just considering the one mass-
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inducing operator, and the two Yukawa-inducing operators we have found

multiple solutions for the normal, and inverted hierarchies. Were we to

consider these operators simultaneously there would be further solutions.

It should be emphasized that in the case of the mass-inducing analysis the

parameter M is exactly M11. In the case of the Yukawa-inducing operators

M Y must be multiplied by the first entry in the matrix in Equation 4.7.

This number turns out to always be some number that is very close to unity

and because M Y is less than 0.01 eV the non observation of neutrinoless

double beta decay is consistent with our model.

The model’s predictions satisfy the requirements of cosmic microwave back-

ground measurements and neutrinoless double beta decay searches. There

is no “smoking gun” of our model that can be found in neutrinoless double

beta decay experiments.

4.6 A Quick Summary

We have found that by augmenting our minimal model we are able to fit to

the best fit parameters in the literature for neutrino mixing. We have found

that this can be achieved in two distinct non trivial ways in an effective field

theory frame work: via mass-inducing and Yukawa-inducing operators.

The successful fits all had the parameters defined by Equations 4.5 and
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4.6 to be order one. We argue that the Yukawa-inducing operators being

comparable to the Yukawa couplings of the theory is more easily accommo-

dated within the language of effective field theory than the mass-inducing

operators being on the same order as the Majorana masses as is suggested

by the order one parametrics in Table 4.1.
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5
DARK MATTER VIABILITY AND X-RAY

CONSTRAINTS

I
n the previous section we succeeded in showing that both mass and

Yukawa-inducing operators (defined by Equation 4.5 and 4.6 respec-

tively) are sufficient additions to the model to fit to the observed

neutrino phenomenology. What remains to be seen is the capacity of these

models to account for dark matter phenomenology without violating bounds

from galactic x-ray searches.

In this chapter we will examine the relative sizes of the various Lagrangian

parameters that are implied by the neutrino data. We will then see that

the parametric dependence that is required to satisfy the conditions of the
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Z′ progenitor scenario cannot be achieved while simultaneously satisfying

galactic x-ray search bounds.

5.1 Mixing angles in the See-Saw Limit

As reviewed in the introduction, the see-saw mechanism involves the cou-

pling of a set of massless Weyl spinors to a set of massive Weyl spinors

with characteristic mass scale M via a Dirac mass term m(D). The see-saw

limit is defined by the criterion m(D) << M. We would ultimately like to

find a basis in which the mass couplings are diagonal to isolate propagating

degrees of freedom. For n massless fermions and m massive fermions this

amounts to diagonalizing the following matrix. 0 m(D)
m×n

m(D)
n×m Mm×m

 (5.1)

In the case of n = m = 1 this can be understood easily the context of pertur-

bation theory. The leading order correction to the mass of the massless state

is m(D)

M , and the first-order eigenstates are given by (1,−m(D)

M )T and ( m(D)

M ,1)T .

If we parametrize the rotation matrix that diagonalizes our states by the

standard convention we can equate to first-order cosθm sinθm

−sinθm cosθm

≈

 1 θm

−θm 1

=

 1 m(D)

M

−m(D)

M 1

 (5.2)

So, we see that in the see-saw limit, sinθm ≈ θm = m(D)

M . This means that

bounds from x-ray searches, which are quoted in terms of sin2θm, can be

82



5.2. REQUIREMENTS FOR Z′ PROGENITOR DARK MATTER

translated into bounds on the relative size of the Dirac mass compared to

the Majorana mass scale (provided the see-saw approximation is valid).

5.2 Requirements for Z′ Progenitor Dark

Matter

The Z′ progenitor decay scenario is reliant on the production of the dark

matter candidate being dominated by the kinetic mixing of a sterile state

with vanishing charge and an active state with non-zero charge under the

U ′(1) gauge group. In our model we seek some linear combination of Ne, Nµ,

and Nτ to be our dark matter candidate. Any amount of Nµ or Nτ will result

in some coupling to the Z′ . Therefore this coupling must be sufficiently

suppressed. This is equivalent to saying that the lightest eigenstate of

the right-handed mass matrix is almost entirely Ne. To achieve this one

requires that δM ≈ M >> mµ ≈ mτ >> Me. This can be understood using

perturbation theory. Suppose mµ,τ
M ≈ ε and Me

M ≈ ε2 while δMµ ≈ M. We can

then write the right-handed mass matrix as

MR = M




0 0 0

0 # 1

0 1 0

+ε


0 # #

# 0 0

# 0 0

+ε2


# 0 0

0 0 0

0 0 0



 (5.3)

Where all of the # stand for O (1) numbers. We can see that at zeroth-

order in perturbation theory the eigenstates are given by (1,0,0)T , and

two orthogonal linear combinations of (0,1,−1)T and (0,1,1)T . The former
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has zero mass and the latter two states have masses on the order of M.

The effects of the perturbations are to mix the unperturbed states (this

effect appears at first-order) and to shift the masses of the unperturbed

states. This happens at second-order in ε since the diagonal perturbation is

O (ε2) and the off diagonal perturbation, which only affects eigenvalues at

second-order, is O (ε).

This implies that the mass of the lightest state will be of order Mε2 =
M

(
Me
M

)
= Me and that the Nµ and Nτ content of this state will be on the

order of ε. Thus, provided ε is sufficiently small, we will have a lightest

right-handed neutrino with minimal Nµ and Nτ content and a mass that

is set by the parameter Me. Other possible hierarchies of parameters in

the mass matrix can give a sterile state but it will not be the lightest of the

three without excessive tuning.

5.3 A Single-Sterile Effective Theory

Our discussion of mixing angles in Section 5.1 was most transparent when

we discussed the case of a single sterile state mixing with a single active

state. This is because, when more species are introduced, additional angles

must also be introduced. We would therefore like some simplified theory in

which our dark matter candidate mixes with some linear combination of

Standard Model neutrinos such that the mixing can be parameterized by a

single angle.
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It is convenient to integrate out the heavy sterile states and produce an

effective theory in which the only sterile state is the dark matter candidate.

To do this we must diagonalize the right-handed mass matrix to find the

mass basis; this will be composed of three states: N1, N2, and N3. We may

then express our Lagrangian density in this new basis — let us call this

L (N1, N2, N3) where any other field dependence has been suppressed for

brevity’s sake.

N1 is the lightest eigenstate and is to be identified as our dark matter

candidate. We wish to find an effective Lagrangian density, Le f f (N1), that

accurately describes the low-energy physics with no mention of the two

heavier mass eigenstates N2 and N3. To obtain an effective theory with

only one sterile state, we set N2 and N3 equal to their classical equations of

motion in the low-energy limit (see Section 1.1).

This will result in an effective Lagrangian density that contains the follow-

ing terms

Le f f ⊃−1
2

M1N1N1 +N1H̃
(
y′eLe + y′µLµ+ y′τLτ

)
− 1

2
M′

i jL iL j (5.4)

where M′ is the mass matrix obtained by integrating out the two heavy

sterile states and the set of y′ couplings are Yukawa couplings between

N1 and the Standard Model leptons induced by kinetic mixing. The linear

combination of Standard Model neutrinos in brackets, up to a normalization

factor, will be denoted by νΣ. We may then parametrize the mixing between
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this active state νΣ and N1 by a single mixing angle θm.

5.3.1 Zeroth-Order Result

Due to the necessary hierarchy of parameters we may find M1, M2, and M3

(corresponding to N1, N2 and N3) in perturbation theory as discussed in

Section 5.2. Quantities Q which are determined to nth order in perturbation

theory will be denoted Q(n) such that Q = ∑
εnQ(n). So our first step is to

solve the zeroth-order mass matrix’s spectrum. Explicitly the right-handed

mass matrix is given by

MR = M




0 0 0

0 δMµ

M 1

0 1 0

+
pmµmτ

M


0 ρ ρ−1

ρ 0 0

ρ−1 0 0

+ Me

M


1 0 0

0 0 0

0 0 0




(5.5)

where ρ =√
mµ/mτ and keeping in mind that

pmµmτ

M is O (ε) and Me
M is O (ε2).

This is readily achieved exactly for arbitrary values of δMµ, but it will be

sufficiently illustrative, and markedly simpler, to work in the limit of δMµ =
0. In this case the spectrum is given by eigenvalues {M(0)

1 , M(0)
2 , M(0)

3 } =
{0, M,−M} corresponding to {N(0)

1 , N(0)
2 , N(0)

3 }= {(1,0,0)T , (0,1,1)T , (0,1,−1)T}.

This is obvious from the block diagonal structure of the matrix.
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5.3.2 First-Order Corrections to the Eigenstates

The first-order corrections to the mass matrix’s eigenstates can be computed

via the standard non-degenerate perturbation theory procedure [74]. first-

order corrections to eigenstates of an operator H with eigenvalues {λ(0)
i }

from a perturbation εV are given by

|n〉(1) = 〈k|V |n〉
λ(0)

n −λ(0)
k

|k〉(0) (5.6)

Applying this equation to the mass matrix yields first-order states that can

be written in the flavour basis as

N(0)
1 +εN(1)

1 =
(
1,−mτ

M ,−mµ

M

)T
(5.7a)

N(0)
2 +εN(1)

2 = 1p
2

(mµ+mτ

M
, 1 , 1

)T
(5.7b)

N(0)
3 +εN(1)

3 = 1p
2

(mµ−mτ

M
, 1 ,−1

)T
(5.7c)

The first equation may initially seem surprising in that the Nτ content of the

N1 state is controlled by the coupling between Ne and Nµ, and vice-versa

for the Nµ content. This is because the unperturbed matrix is a "flip" matrix

that swaps Nµ and Nτ.

These states can be arranged in a matrix R. This is the matrix that maps

the flavour basis to the mass basis for the right-handed neutrinos. Thus,

this matrix is essential for our procedure of integrating out the two super

heavy sterile states, while leaving the lightest sterile state as a propagating

degree of freedom.
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5.3.3 Second-Order Corrections to the Eigenvalues

The first-order mass corrections are given by the diagonal matrix elements

of a perturbation. In our case the only diagonal perturbation is second-order

and so we must calculate the additional contributions from the off-diagonal

elements as they will also enter at second-order.

These small effects are important because they will determine the mass

of the lightest eigenstate, N1, to leading order. This is our dark matter

candidate and we are principally interested in its phenomenology. The for-

mula for calculating second-order corrections to eigenvalues in perturbation

theory is given by

λ(2)
n = |〈k|V |n〉|2

λ(0)
n −λ(0)

k

(5.8)

Applying this formula leads to

ε2M(2)
1 = Me + 1

2M

[(
m2
µ−m2

τ

)2 − (
mµ+mτ

)2
]

(5.9)

Since mµmτ/M ≈ Me, we expect M1 ≈ Me if the hierarchy is satisfied

because M(2) is the first non-vanishing correction to the lightest eigenstate’s

mass.

5.3.4 Integrating out the Super Massive Sterile States

In the ultraviolet our theory is defined by the Lagrangian density L =
LN +Lother where LN contains all the terms that involve sterile states and

Lother contains all of the other field content. After electro-weak and U ′(1)
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symmetry breaking, the sterile Lagrangian density is given by

LN ⊃ N̄i i /DNi − 1
2

Mi jNiN j +〈h〉Yi jNiν j (5.10)

with i ∈ {e,µ,τ} and where the both Yi j and Mi j include any terms from the

singlet scalar’s vacuum expectation value. The scalar couplings have been

excluded for brevity’s sake (these can be easily recovered by tracking factors

of mµ and mτ, as was done in Section 2.2.2). The multi-species covariant

derivative is diagonal in this basis but that need not be true in the mass

basis. To emphasize this point it is convenient to write

Dµ

i j = ∂µ1i j − ig′Q i jZ′µ (5.11)

where the kinetic term is manifestly invariant under any set of unitary field

redefinitions but the charge matrix Q i j is basis dependent, because it is

sensitive to any states containing Nµ or Nτ.

We wish to transform from the flavour basis, which is indexed by i ∈ {e,µ,τ},

to the mass basis, which is indexed by a ∈ {1,2,3}. To do this we must use

the matrix R which is defined by Na = RaiNi. To first-order R is determined

by the perturbed eigenstates of the original mass matrix, and so R is given

by

R =


1 −mτ

M −mµ

M

1p
2

mµ+mτ

M
1p
2

1p
2

1p
2

mµ−mτ

M
1p
2

− 1p
2

 (5.12)

R is an orthogonal matrix and so we can insert RTR wherever we would

like within the Lagrangian density. We may do so to eliminate all fields
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Ni in favour of their mass basis counterparts Na. If we wish to do this, we

must make the following substitutions.

Mi j → RaiMi jRT
jb := M̃ab (5.13a)

Q i j → RaiQ i jRT
jb := Q̃ab (5.13b)

Yi j → RaiYi j := Ỹa j (5.13c)

We have now expressed the Lagrangian density in terms of N1, N2, and N3

and integrated out N2 and N3. Our first step is to calculate the classical

equations of motion in the zero momentum limit. The equations of motion

in this limit are found by neglecting all derivative terms; this leads to

N2 =−〈h〉
M2

Ỹ2 jν j (5.14a)

N3 =−〈h〉
M3

Ỹ3 jν j (5.14b)

Setting the fields equal to these values, and only keeping operators of

dimension-five or less, we arrive at the truncated effective Lagrangian

density

LIR =N̄1 (i /∂−M1) N1 +〈h〉N1Ỹ1 jν j −
〈h〉2

2

(
Y T

3×2M̃−1
2×2Ỹ3×2

)
i j
νiν j

+ g′N̄1Q̃11 /Z′N1 + g′ 〈h〉
M2

N̄1Q̃12 /Z′Ỹ2 jν j + g′ 〈h〉
M3

N̄1Q̃13 /Z′Ỹ2 jν j

(5.15)

The dimension-five operators coming from the kinetic terms have been omit-

ted because their contribution to any physical process will be suppressed by

factors of
(

y〈h〉
M

)2
. The term in brackets has been written to emphasize that

the left-handed neutrinos acquire a mass via the see-saw mechanism with a
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2×3 Yukawa matrix and only two sterile states being integrated out. If we

define νΣ := 1
N

Ỹ1 jν j, where

N :=
√∑

i
Ỹ 2

1i (5.16)

then we have

L ⊃ [νΣ, N1]

 mΣ N 〈h〉
N 〈h〉 M1


 νΣ

N1

 (5.17)

mΣ is the Majorana mass of νΣ. In principle νΣ may not be a mass eigenstate.

However, to a first approximation, the above expression should be valid and

it is a convenient parametrization. Provided the Majorana mass terms for

all of the Standard Model neutrinos are small compared to M1, they have

no effect on the mixing angle at leading order. There is no mixing between

N1 and the other active neutrino states that are orthogonal to νΣ. We see

that, if we wish to diagonalize this mass matrix in the see-saw limit, the

mixing angle is given by

θm = N 〈h〉
M1

(5.18)

This analysis is easily generalized for non-zero mass-inducing operators.

All that is required is to modify the unperturbed eigenstates of the mass

matrix.

5.4 Mass-Inducing Operator Parametrics

In the previous chapter we found that, in the absence of Yukawa-inducing

operators, one required non-vanishing mass-inducing operators to fit to
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neutrino data. Although we only worked in the limit of δMµ = 0, the issues

we encounter in this limit are exactly the same issue that are encountered

for finite mass-inducing operators. Since this limit is simpler and equally

illustrative we will restrict our discussion to this case exclusively.

Table 4.1 shows that all of the dimensionless parameters defined by Equa-

tion 4.5 required to fit the neutrino textures are within two orders of magni-

tude of unity. This condition is enough to obtain rough parametric depen-

dence of various parameters to within two orders of magnitude. We can

use this condition, and the hierarchy of sterile masses required for dark

matter coupled with the relations in Equation 4.5, to see if galactic x-ray

search bounds can be satisfied while simultaneously reproducing the correct

neutrino phenomenology.

The hierarchy of M >> mµ ≈ mτ >> Me and the condition of order one

couplings implies a similar hierarchy for the Yukawa couplings in the theory.

This is because

r :=
√

mτyµ
yτmµ

≈O (1) (5.19a)

µ := Mpmµmτ

yepyµyτ
≈O (1) (5.19b)

µe :=
pyµyτ

ye

Mepmµmτ
≈O (1) (5.19c)

We see that the disparity in scales between the various masses must be

accounted for by a disparity in size of the various Yukawa couplings to

correctly account for neutrino phenomenology. This tells us that y2
e

yµ yτ
≈O (ε2)
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and yµ ≈ yτ. Lastly, we should consider the overall mass scale of the left-

handed neutrino mass matrix. With the stated hierarchy of masses and

Yukawa couplings, this is given parametrically by

M := 〈h〉2

my

y2
e yµyτ

µµe −2
µ≈ 〈h〉2 ye

pyµyτpmµmτ
≈ y2

e 〈h〉2

Me
(5.20)

where the final equality used the fact that Mepmµmτ
≈ yepyµ yτ

. Referring to

Equation 5.3.3 and noting that mµmτ

M ≈ Me we see that M1 ≈ Me; this has

a physical interpretation as the mass of the dark matter candidate. Next

we would like to connect ye to some experimentally probed parameter. For

a diagonal Yukawa matrix in the flavour basis the Yukawa matrix in the

right-handed mass basis is given by

Ỹ =


ye −yµ

mτ

M −yτ
mµ

M

1p
2

mµ−mτ

M
1p
2

1p
2

1p
2

mµ+mτ

M
−1p

2
1p
2

 (5.21)

This implies that N ≈ ye. Noting that θm = N 〈h〉
M1

, we can re-express the

overall mass scale as

M ≈ M1

(
N 2

M2
1

)
= M1θ

2
m ≈ Me sin2θm (5.22)

The sterile neutrino mass must be around 1−100 keV to account for the

dark matter energy density [7] and, for range of sterile dark matter masses,

sin2θm ≤ 10−12; this leads to M ≈ 10−9−10−7eV. Neutrino oscillation data

requires that the heaviest neutrino be at least
√
∆m2

13 = 4.95 ·10−2eV [8].
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This massive disparity in scales is impossible to reconcile since the matrix

is composed of order one numbers multiplied by the overall mass scale.

The same parametric dependence is present with non-zero mass-inducing

operators and so neutrino mass phenomenology is incompatible with the Z′

progenitor scenario even with the inclusion of dimension-five mass-inducing

operators.

5.5 Yukawa-Inducing Operator Parametrics

The Yukawa-inducing operators are not constrained by the same ordering

as the mass-inducing operators. This is because the parametrics for the

Lagrangian parameters are significantly different for the Yukawa-inducing

operators when compared to the mass-inducing operators.

The relevant parameters are

Xµ =
Zµ

yµ
(5.23a)

Xτ = Zτ

yτ
(5.23b)

κµ =
mµ√
MeM

√
yτ
yµ

(5.23c)

κτ = mτ√
MeM

√
yµ
yτ

(5.23d)

M Y = 〈h〉2

M
yµyτ

1−2κµκτ
(5.23e)
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From the equations above we see that, provided yµ,τ ≈ Zµ,τ and mµ ≈ mτ,

we only require mµ,τ ≈
√

MMe for all of the parameters that control mixing

to be of order unity. This is required to fit to the neutrino texture data as

shown in Table 4.2. This is easily achieved in conjunction with the sterile

mass hierarchy required to provide a suitable dark matter candidate. The

modified Yukawa coupling matrix written in the basis that diagonalizes the

sterile mass matrix is given to first-order in perturbation theory by

Ỹ =


−

(
Zµ

mτ

M +Zτ
mµ

M

)
−yµ

mτ

M −yτ
mµ

M

1p
2

(
Zµ−Zτ

) 1p
2

1p
2

1p
2

(
Zµ+Zτ

) −1p
2

1p
2

 (5.24)

If we assume an approximate µ↔ τ exchange symmetry we may speak

loosely of y ≈ yµ ≈ yτ and Z ≈ Zµ ≈ Zτ. Then N ≈ y m
M (see Equation 5.3.4)

since Z ≈ y by virtue of the fact that Xµ,τ ≈ O (1) for all of the solutions

presented in Table 4.2. Since the dark matter mass scale is fixed by Me

we can use the fact that κµ,τ ≈ O (1) to see that when M →αM m →p
αm.

Noting that left-handed mass scale is also bounded by neutrino texture

data and cosmological considerations we can see that the Yukawa couplings

also scale like y→p
α y. The mixing angle is given by θm = 〈h〉N

M1
and since

the scaling of N goes like ym
M → ym

M

p
α
p
α

α
we see that the mixing angle is

independent of our choice of M. One can solve for the mixing angle as

sin2θm ≈ θ2
m =

(〈h〉N
M1

)2
≈ 〈h〉2 y2

M
m2

MM1

1
M1

≈ M Y

M1
(5.25)

With the final equality being given by the fact that M1 ≈ m m
M (note this holds
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even in the limit of Me = 0). For M1 = 10keV and M Y = 0.01eV we arrive

at sin2θ ≈ 10−6 which violates the x-ray search bounds [75]. Thus we have

shown that Yukawa-inducing operators, like the mass-inducing operators,

cannot account for observed neutrino phenomenology in a manner which

is consistent with the Z′ progenitor scenario. Note that ta very similar

relationship was found for the mass-inducing operators in the previous

section.

5.6 Both Yukawa- and Mass-Inducing

Operators

We have now shown that, for Yukawa and mass-inducing operators, our

dark matter candidate cannot be involved in the production of neutrino

masses. This is because if our dark matter candidate composes a significant

fraction of the observed dark matter energy density then it’s mixing with

Standard Model states is severely constrained. This in turn constrains the

ratio mµ,τ/M. To conform to x-ray bounds one cannot obtain the correct

neutrino textures in the simple models we considered

This analysis followed from considering Yukawa- and mass-inducing oper-

ators separately. There is the possibility that both types of operators are

present. In this case we can examine in the limit where mµ = mτ = 0 to

guarantee a totally decoupled N1 = Ne with ye sufficiently small to satisfy
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x-ray bounds and so that Ne does not significantly affect neutrino textures .

Here we will have a 2x2 mass matrix and a 3x2 Yukawa matrix. This sce-

nario can produce the correct neutrino, albeit with a plethora of coincidental

ratios of scale.

This possible solution is paramount to considering the Z′ progenitor and

see-saw mechanisms are disjoint since the fields have been partitioned into

two sets which are completely decoupled. One could argue it is equally well

motivated to simply add a fourth sterile neutrino, which is uncharged under

U ′(1), and decouple it from the other three. This would then represent the

dark matter candidate and the neutrino textures would be controlled by the

other three fields.

The left-handed mass matrix for a theory with non zero δMµ,δMτ,Zµ, and

Zτ, but with vanishing ye, mµ , and mτ is given by

ML = yµyτ 〈h〉2

M
1

1−κµκτ


−κµX2

τ +2XµXτ−κτ • •

Xτ−κτXµ −κτ •

Xµ−κµXτ 1 −κµ

 (5.26)

with the following definitions:

Xµ =
Zµ

yµ
(5.27a)

Xτ = Zτ

yτ
(5.27b)

κµ =
δMµ

M
yτ
yµ

(5.27c)
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Hierarchy m`

m2
Xµ Xτ κµ κτ

p
κµκτ

Normal 0 0.595027 −0.338739 0.85531 0.7059 0.7770

Normal 0 0.595027 −0.338739 1.41738 1.16849 1.2869

Inverted 0 −4.50355 −4.95879 0.95494 1.14328 1.0448

Inverted 0 −4.50355 −4.95879 1.44039 0.370025 0.7301

Table 5.1: Parameter values for Yukawa-inducing operators and mass-

inducing operators in a ye = 0, mµ = mτ = 0 limit that fit to the data. m`

m2
is

the ratio of the lightest mass to m2.

κτ = δMτ

M
yµ
yτ

(5.27d)

This very similar structurally to the case of the Yukawa-inducing opera-

tors with non vanishing mµ and mτ and as a result the solutions for both

actually have identical Xµ and Xτ however due to the slight difference in

the κ parameter definitions these take on different values. The results are

summarized in Table 5.1. The parameters κµ and κτ are required to be O (1)

to explain the observed neutrino textures. The quantity p
κµκτ =

p
δMµδMτ

M

is a useful measure of the relative sizes of the mass terms induced by the

dimension-five operators because it is independent of the Yukawa couplings.

The δMµ terms arise from operators of the form δµ
1
ΛSSLeH̃Nµ and so

δMµ = δµ 〈S〉 〈S〉
Λ (the same story holds for δMτ). Provided M

δµ,τ〈S〉 ≈ 〈S〉
Λ , the
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approximate equivalence of δMµ,τ and M is consistent within the framework

of effective field theory.

If we include both mass- and Yukawa-inducing dimension-five operators

the correct neutrino phenomenology can be generated even in the limit

of a totally decoupled Ne. This leaves Ne to lend itself as a dark matter

candidate for the model.

It should be noted that for the inclusion of only mass- and Yukawa-inducing

operators the neutrino masses must be generated by only two of the right-

handed states. This leads to a massless lightest neutrino, however we have

neglected the aforementioned Weinberg-inducing operators that could have

supplied mass terms to the left-handed mass matrix directly. This could

accommodate three massive right-handed neutrinos.
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6
CONCLUSIONS AND FUTURE DIRECTIONS

I
n this thesis we were interested in determining if the progenitor

scenario described by Shuve and Yavin could manifest itself in a

model which simultaneously explained the observed neutrino tex-

tures. We found that a model with three right-handed neutrinos labelled

by the same generational indices as the Standard Model leptons was not

capable of reproducing observed neutrino textures.

However this highly minimalistic model was able to capture the qualitative

features of the observed neutrino textures quite well and was also able to

achieve quantitative agreement within about 25%. The model naturally

gives a near maximal θ23 and is capable of fitting on of the two angles θ12
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or θ13. This is perhaps suggestive that lepton flavour symmetries may play

a role in the structure of neutrino masses.

Subsequently, modifications with dimension five operators were investi-

gated and it was found that these extended models could reproduce the

observed neutrino textures for multiple sets of Lagrangian parameters. The

magnitude of these dimension five operators in comparison to the dimension

four operators were found to be self consistently small as would be suggested

by an effective field theory picture. These operators came in two distinct

sub-classes mass- and Yukawa-inducing operators. Both were capable of

reproducing the neutrino phenomenology.

The Yukawa- type operators’ dimensionless scaling parameters Zµ and

Zτ were found to be on the same order as Yukawa couplings yµ and yτ.

This is entirely consistent with the description as an effective field theory

because the Yukawa couplings were found to be on the order of 10−6 for

dark matter masses on the order of 10 keV. Thus one could imagine an

ultraviolet completion in which the parameters that are associated with

these dimension five operators are on the order of say 10−2 at high energies,

but, due to suppression from energy scale ratios in the infrared, these

parameters are on the order of the Yukawa couplings yµ and yτ at lower

energies.

The mass-inducing operators were found to be on the order of the other
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masses in the theory and similarly could be imagined to arise from a stronger

coupling in the ultraviolet that is suppressed by ratios of the infrared

energy scale to the cutoff energy scale. The naive expectation is that the

mass terms generated by these operators go something like g 〈S〉 (g 〈S〉 /Λ)

. Therefore provided Λ > g 〈S〉 > mµ,τ the equivalence of the mass terms

coming from dimension-five operators and dimension-four operators is easily

accommodated.

The fact that the neutrino textures require additional dimension five op-

erators suggests that this minimalist approach must be relaxed. These

operators can be generated via additional right-handed states. The mass

of these states would play the role of Λ and one could imagine integrating

them out to obtain the effective theory we considered in this thesis.

The parametrics required to fit the neutrino textures in our model suggest

an unacceptably large amount of mixing with the Standard Model leptons if

one wishes to identify the lightest sterile as a dark matter candidate and to

employ the Shuve-Yavin Z′ production mechanism. This was found to be

a generic feature that could not be avoided without decoupling the fields

responsible for the see-saw mechanism and the dark matter candidate. The

tension was that a sterile neutrino’s (in this case the dark matter candi-

date’s) contribution to the active neutrino mass matrix is parametrically
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given by
y2

DM 〈h〉2

mDM
= mDMθ

2
m (6.1)

where mDM is the mass of the dark matter candidate and yDM is it’s only

Yukawa coupling to some linear combination of Standard Model neutrinos.

The equality in Equation 6 made use of the see-saw mixing angle formula

θm = yDM〈h〉
mDM

. As an example the bounds on 10 keV sterile neutrino dark

matter set θ2
m < 10−12 [11, 58] leading to a contribution to the active neutrino

masses on the order of 10−8 eV: approximately six orders of magnitude below

the minimum characteristic mass scale for the heaviest neutrino.

This tells us that even if we were to expand the matter content sufficiently

to allow for a dark matter candidate it would not contribute significantly to

neutrino mass generation. This argument is general and will be a generic

consequence of models with sterile neutrinos as a dark matter candidate.

Although the dark matter candidate’s coupling to the Standard Model is

sufficiently restricted that it cannot contribute significantly to the produc-

tion of neutrino masses, the Z′ progenitor scenario and neutrino oscillation

data are not in conflict with one another. They may be accommodated

within a single model however the degrees of freedom required to realize

one mechanism are independent of the degrees of freedom to fit the other.

This is an important lesson about sterile neutrino dark matter because it

tells us that it is in some sense less well motivated than one would naively
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expect. At least the observation of neutrino masses does not imply a well

motivated dark matter candidate in our model as it would necessarily not

be involved in the production of the observed neutrino masses. This feature

is one which we would generally expect to see in other models of sterile

neutrinos.

The Z′ progenitor model remains a viable possibility to explain the observed

dark matter abundance for sterile neutrino dominated dark matter. The

dark matter candidate in these types of models does not seem to be capable

of contributing significantly to active neutrino’s mass structure and it’s

contributions should be considered a sub dominant effect. Additionally we

found that the charge structure implied by local Lµ−Lτ symmetry that is

spontaneously broken seems to naturally generate neutrino textures that

are similar to those that are observed.

The analysis at the end of Chapter 5 showed that, provided a coincidence in

the ratio of scales occurred, with both Yukawa- and mass-inducing operators

Nµ and Nτ can generate the neutrino textures while Ne acts as a dark

matter candidate.

This possibility is also easily realized in the context of a gauged B−L because

there are no restrictions on the form of the right-handed mass matrix or

on the Yukawa coupling matrix. The right-handed mass terms would be

generated via a single order parameter in the same way as in our theory and
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CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS

this breaking pattern would populate every entry in the mass matrix. No

dimension five operators would be needed. The unattractive feature of this

proposal compared to that involving a lepton flavour symmetry is that the

model provides no explanation for the structure of the neutrino textures and

a large number of parameters must be set to zero due to phenomenological

considerations with no theoretical motivation.

Never the less it may be worth investigating the parametrics of the Shuve

Yavin progenitor scenario in the case of B−L. Bounds on B−L would

have to be investigated to see if the parametrically viable region for the

progenitor scenario is still viable, and to determine if this possibility is

self consistent and if the hypothesis could be tested or constrained by any

current experiments.
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A BRIEF REVIEW OF THE HIGGS MECHANISM

IN THE CONTEXT OF THE STANDARD MODEL

T
he Standard Model incorporates a number of non-trivial features

of quantum field theory. It contains spontaneous breaking, CP

violation, non-Abelian gauge symmetries, and accidental symme-

tries; I will give a brief review of its features. The Standard Model is defined

by the gauge group SU(3)⊗SU(2)⊗U(1) and its matter content which trans-

forms in the representations shown in Table A [13]. The Standard Model

doublet fields are defined as

Le =

 νe

e

 (A.1a)
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APPENDIX A. A BRIEF REVIEW OF THE HIGGS MECHANISM IN THE
CONTEXT OF THE STANDARD MODEL

Qu =

 u

d

 (A.1b)

H =

 φ+

φ0

 (A.1c)

H̃ = εH∗ =

 φ0∗

−φ+∗

 (A.1d)

Where e is the left handed component of the electron field, νe is the left

handed electron neutrino and u and d are the left handed up and down

quarks respectively; all fields are two component Weyl spinors (for a good

review of two component spinor techniques see [76]). H is the Higgs doublet.

Note that H and H̃ transform identically under SUL(2) but have opposite

hypercharge Y . This is what allows for the generation of mass terms for both

the up and down quark with a single Higgs field. One may then employ the

definitions above and write down every possible renormalizable interaction

possible to obtain the Standard Model Lagrangian. The explicit form of

this Lagrangian including field strength tensors, covariant derivatives, and

Yukawa interactions is very lengthy and is nicely summarized in Chapter

Two of The Standard Model A Primer by Burgess and Moore [13] (in this

text four component Dirac spinors are used instead of two component Weyl

spinors). The important feature for our analysis is how particles go about

acquiring a mass.

In the Standard Model to maintain gauge invariance the masses are gener-
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Field UY (1) SUL(2) SUc(3)

Lm −1
2 2 1

Qn +1
6 2 3

ec
m 1 1 1

uc
n −2

3 1 3

dc
n +1

3 1 3

H −1
2 2 1

H̃ +1
2 2 1

Table A.1: Charge assignments of the fermionic and scalar fields in the

Standard Model. The gauge bosons transform in the adjoint representation.

The indices m ∈ {e,µ,τ} and n ∈ {u, c, t} denote the generations of leptons

or quarks respectively (i.e. dc := s the strange quark). All fermionic fields

are defined as left-handed Weyl spinors. The triplet representations under

SUc(3) are indexed by colour while the first generation SUL(2) are defined in

Equation A.1 the additional generations are obtained by trivial substitution.

The nomenclature for groups is such that the number is the dimension of the

representation while the bar differentiates between objects transforming

as a tensor with upper indices (bar) v.s. with lower indices (no bar) (see

Coleman Aspects of Symmetry [9])

109
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ated by the spontaneous breaking of the Higgs doublet. This is achieved via

the potential

V
(
H†H

)
= λ

4

(
H†H− 〈h〉2

2

)2

(A.2)

This is minimized by the solution H†H = 1
2 〈h〉2 and with no loss of generality

we can choose our basis such that this vacuum expectation value points

along the real component of φ0. Thus for the purposes of mass generation

we may make the substitution

H → 1p
2

 0

〈h〉

 (A.3)

Then combinations which are allowed by gauge invariance which initially

have the form of Yukawa couplings take on the form of masses for various

particles. For example the combination

L ⊃ yeLeHec → 1p
2

ye 〈h〉 eec := meeec (A.4)

where we have defined the quantity me := 1p
2

ye 〈h〉 and this is the Dirac

mass of the electron. If one only considers one generation the up and down

quark masses are generated by the operators ỹuQuH̃uc and ydQuHdc res-

pectively. Neutrinos are massless in the Standard Model because the matter

content does not provide a fermionic field that would allow for the genera-

tion of a neutrino mass via the Higgs mechanism in a renormalizable theory.

This is because LH̃ is a singlet under the Standard Model gauge group, but

not under Lorentz transformations. To achieve Lorentz invariance we would

need a two component spinor that is uncharged under the Standard Model.
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When additional generations are included the Yukawa couplings are pro-

moted to matrices and the couplings have the form ỹnn′QnH̃uc
n′ and ynn′QnHdc

n′ .

This couples the right handed quarks of one generation to the left handed

quarks of another.

Some selected original literature on the subject of the Standard Model’s

development include the following [59, 77–79].
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B
METHOD FOR EXTRACTING LAGRANGIAN

PARAMETERS

T
o determine if the theories we considered in this thesis could

reproduce neutrino masses we generated all possible matrices

that could produce the correct neutrino phenomenology in the CP

conserving limit and then expressed these matrices in the flavour basis. In

this appendix I will review the basic methodology.

The goal was to be able to extract combinations of Lagrangian parameters

which would fit the neutrino data from nu-Fit [8] exactly. As a result all of

the mixing parameters employed can be found on nu-Fit’s website which

provides a global fit of the neutrino mixing parameters.
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APPENDIX B. METHOD FOR EXTRACTING LAGRANGIAN
PARAMETERS

B.1 Generating the Correct Mass Spectra

The measurements of ∆m2
12 and ∆m2

13 allow the set of three neutrino masses

{m1,m2,m3} to be parametrized by only one variable. If one specifies the

value of m2, and the hierarchy, the absolute values of m1and m3 are known.

Eigenstates {ν1,ν2,ν3} are defined by their composition in the flavour basis

(i.e. ν1 is the “mostly νe” state).

The key observation is that

∆m2
13

∆m2
12

= 32.76 (NH) (B.1a)

∆m2
23

∆m2
12

= 32.65 (IH) (B.1b)

For the Normal Hierarchy this allows us to define the heaviest neutrino

mass in terms of m2 and the lightest neutrino mass.

|m3| =
√

32.76
(
m2

2 −m2
1
)+m2

1 (NH) (B.2a)

|m1| =
√

m2
2 −

(m2
2 −m2

3)
32.65

(IH) (B.2b)

There is no positivity condition on the eigenvalues of a fermionic mass

matrix and as a result the relative signs of the neutrino masses is undeter-

mined. We consider separately to four different possibly sign combinations

{+,+.+}, {−,+.+},{+,−.+}, {+,+.−} corresponding to the sign of {m1,m2,m3}.

This accounts for all possible sign choices because all other possibilities can

be obtained via a multiplication by −1.

114



B.2. RE-EXPRESSING IN THE FLAVOUR BASIS

For the rest of this discussion we will restrict ourselves to the case of the

Normal Hierarchy to avoid redundancy. At this point we have just generated

the diagonal left handed neutrino matrix in the mass basis written

ML =


m1 0 0

0 m2 0

0 0 m3(m1,m2)

 (B.3)

B.2 Re-expressing in the Flavour Basis

This matrix can then be “rotated” into the flavour basis by multiplying by

the PMNS matrix on the right and its inverse on the left. To do this we

must first construct the PMNS matrix from the mixing data.

This is done via the standard parametrization of the PMNS matrix given

below with ci j (si j) being shorthand for cosθi j(sinθi j).
νe

νµ

ντ

=


c13c12 −c13s12 s13e−iδ

−s23s13c12eiδ− c23s12 −s23s13s12eiδ+ c23c12 s23c13

−c23s13c12eiδ+ s23s12 −c23s13s12eiδ− s23c12 c23c13




ν1

ν2

ν3

 (B.4)

For our purposes δ= 0 because we are working within the CP conserving

limit. It is simply a matter of using the mixing angle data from [8] to

reconstruct this matrix. It is important to use the correct value of θ23

because it is different depending on the hierarchy of interest.

After multiplying on the left and right of the mass matrix we have a new

mass matrix written in the flavour basis let us denote this M′
L or written
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PARAMETERS

explicitly

M′
L = PMNST ·ML ·PMNS (B.5)

B.3 Strategy to find Candidates for our

Theory

For the subsequent discussion let us restrict ourselves to the model as it is

presented in Chapter 2 (i.e. no dimension-five operators). The left handed

mass matrix in that particular scenario was parametrized by the set of

parameters {r,µ,µe,M } and could be written

M′
L =M


1 − r

µ
− r−1

µ

− r
µ

r2

µ2
µ·µe−1
µ2

− r−1

µ

µ·µe−1
µ2

r−2

µ2

 (B.6)

So if we define Ω := 1
M′

11
M′

L, where the L subscript has been omitted in the

denominator in the interest of indices, then we see that our theory predicts

all M′
L to have the property that Ω2

12 =Ω22 and Ω2
13 =Ω33. If we define

r ii := Ω
2
1i

Ωii
(B.7)

So if we find a mass matrix that does not satisfy the condition r11 = r22 = 1

then our theory is incapable of producing it. So if we take all of the M′
L

generated from the nu-Fit neutrino data, and normalize them by their entry

in the first row and first column, we can check to see if any of them satisfy
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B.4. EXTRACTING LAGRANGIAN PARAMETERS

this criteria. To do this we can plot r11 and r22 as a function of m1 in the

interval m1 ∈ [0,m2] and look for some point where r11 = r22 = 1 if no such

point exists for all of the possible sign combinations, and this is true for

both hierarchies, then our theory cannot reproduce the global fit values.

B.4 Extracting Lagrangian Parameters

If a fit is found (as was the case when dimension-five operators were in-

cluded) then to extract the Lagrangian parameters is a simple exercise in

algebra. Let us examine the case of the mass type operators. There the

mass matrix was given by

ML =M


1 − r

µ
− r−1

µ
+δµ r

µ

− r
µ

r2

µ2
µ·µe−1
µ2

− r−1

µ
+δµ r

µ

µ·µe−1
µ2

r−2

µ2 −δµ µe
µ

 (B.8)

From this one can equate the bracketed portion of the matrix with the Ω

that has been generated from nu-Fit oscillation data. Here the condition

from the previous section is relaxed to r22 = 1 and so only matrices which

satisfied this criteria were kept. After some algebra one has

r−1 =

√√√√ Ω33 − Ω13Ω23
Ω12

Ω12Ω13 −Ω23
(B.9a)

µ=− r
Ω12

(B.9b)

µe =µ
(
Ω23 +Ω−2

12 r−2) (B.9c)
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δµ = r−2 −Ω13

Ω12
(B.9d)

This gives the necessary parameters to reproduce the central values of the

nu-Fit global neutrino mixing data. Perturbation theory can be used to

study small departures from these solutions.
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