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ABSTRACTABSTRACTABSTRACTABSTRACT    
In 1988, the US Nuclear Regulatory Commission approved an amendment that 
allowed the use of best-estimate methods.  This led to an increased development, 
and application of Best Estimate Plus Uncertainty (BEPU) safety analyses.  However, 
a greater burden was placed on the licensee to justify all uncertainty estimates.  A 
review of the current state of the BEPU methods indicate that there exists a number 
of significant criticisms, which limits the BEPU methods from reaching its full 
potential as a comprehensive licensing basis.  The most significant criticism relates 
to the lack of a formal framework for distinguishing between aleatory and epistemic 
uncertainties.  This has led to a prevalent belief that such separation of uncertainties 
is for convenience, rather than one out of necessity. 

In this thesis, we address the above concerns by developing a statistically rigorous 
framework to characterize the different uncertainty types.  This framework is 
grounded on the philosophical concepts of knowledge.  Considering the Plato 
problem, we explore the use of probability as a means to gain knowledge, which 
allows us to relate the inherent distinctness in knowledge with the different 
uncertainty types for any complex physical system.   This framework is 
demonstrated using nuclear analysis problems, and we show through the use of 
structural models that the separation of these uncertainties leads to more accurate 
tolerance limits relative to existing BEPU methods.  In existing BEPU methods, 
where such a distinction is not applied, the total uncertainty is essentially treated as 
the aleatory uncertainty.  Thus, the resulting estimated percentile is much larger 
than the actual (true) percentile of the system's response.   

Our results support the premise that the separation of these two distinct uncertainty 
types is necessary and leads to more accurate estimates of the reactor safety 
margins.     
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DECLARATION OF ACADEDECLARATION OF ACADEDECLARATION OF ACADEDECLARATION OF ACADEMIC ACHIEVEMENTMIC ACHIEVEMENTMIC ACHIEVEMENTMIC ACHIEVEMENT    
The primary contribution from this thesis is the development of a rigorous 
framework for distinguishing, and quantifying, epistemic and aleatory uncertainties, 
as they are currently applied in the statistically based nuclear safety analyses.    

In this thesis, we develop a statistical framework to incorporate two fundamental 
sources of knowledge for any physical system.  These are:  

1) the epistemic knowledge, which represents knowledge due to the process of 
approximating a (true and deterministic) physical phenomenon; and 

2) the phenomenological or aleatory knowledge based on the understanding of 
the physical process, which is deemed true.  

Both types of knowledge involve uncertainties, which are distinct, corresponding to 
the nature of the knowledge.  This is demonstrated in concrete terms by a gedanken 
experiment. 

The statistical framework is applied to complex physical problems involving 
thermal hydraulic codes that model and predict fuel channel dryout powers, which 
are critical inputs in the safety analysis of a plant.  This thesis expands on existing 
theories and methods, based on the structural and measurement error models in the 
literature, to improve the estimation methods required for distinguishing, and 
quantifying, epistemic and aleatory uncertainties.  These concepts have been 
presented at various professional meetings and published in nuclear science 
journals.  The formal and rigorous statistical framework, developed in this thesis, 
plays a critical role in supporting the current Best Estimate Plus Uncertainty safety 
analysis industry reach its full potential as a comprehensive licensing basis.  

 



Ph.D. Thesis – D. Pun-Quach; McMaster University – Department of Mathematics and Statistics 

 

1

1111 INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION    
Historically, nuclear safety analyses has relied on the use of deterministic methods 
as the primary means to support and confirm the original design and commissioning 
of the nuclear reactors, which occurred during the early 1970s.  The deterministic 
method is well characterized by the significant conservatisms built into various 
elements of the safety analysis that include: 1) the acceptance criteria; 2) 
conservative assumptions in the physical models; and 3) conservative input 
conditions.  These conservatisms, which could be embedded in the assumptions, 
limiting values, approximations, and so forth, reflected either the uncertainties in 
supporting knowledge or deficiencies in the ability to measure, or to model or 
compute variable values associated with the physical process of interest.    

For these reasons, it is generally accepted that the operational safety margins (see 
Definition 4 on page 139) are, in reality, larger than what the deterministic safety 
analysis results indicate.  The challenge is then 1) to demonstrate in an acceptable 
manner that the safety margins exist; and 2) to quantify the magnitude of those 
margins.   

In September 1988, the United States Nuclear Regulatory Commission (USNRC) 
approved an amendment to the 10 CFR 50 Appendix K prescriptive rules by allowing 
the use of best-estimate methods.  The development and demonstration of the Code 
Scaling, Applicability and Uncertainty (CSAU) «1­ followed and resulted in an 
increased popularity of Best Estimate Plus Uncertainty (BEPU) analyses as the 
licensing basis for currently operating nuclear reactors.  The BEPU type of safety 
analysis can provide more realistic information about the physical behaviour of the 
physical system, assist in identifying the relevant safety issues/parameters, and 
quantify more realistic estimates of the actual operational safety margins.  

A number of different BEPU methods have been implemented around the world for 
licensing analysis, and these methods have been extensively reviewed in «2­, «3­, «4­, 



Ph.D. Thesis – D. Pun-Quach; McMaster University – Department of Mathematics and Statistics 

 

2

and «5­.  Underlying these different BEPU safety analysis methods is the adherence 
to the principles of the CSAU framework, and characterized by the use of realistic 
codes to represent the physical phenomena, including the use of realistic input data 
and nominal (or best-estimate) initial and boundary condition values.    

The USNRC approved an amendment to the requirements of the 10 CFR 50.46, and 
hence, allowed the use of BEPU safety analysis, but placed a greater burden on the 
licensee to quantify and justify the uncertainty estimates used as part of the 
licensing basis.  This includes the quantification of the uncertainties associated with 
calculated results, with respect to the prescribed acceptance limits.  It is well 
recognized by the BEPU community, and in the environmental risk and safety 
assessment industry ( «6­, «7­, and «8­), that a clear distinction between two 
separate sources of uncertainties may be required in the modeling of complex 
physical systems for the purpose of rational decision-making.  Specifically, these 
different uncertainties are as follows: 

1) aleatory1 uncertainty, which arise because the system under investigation 
can behave in many different and unpredictable ways.  Aleatory refers to 
true, random variations describing the actual physical system.  In the 
application considered in this thesis (which are complex engineering 
phenomenon), the aleatory variables will be mostly unobservable; and  

2) epistemic uncertainty, which arises from the inability to specify an exact 
value for a parameter that is assumed to have a constant value in the 
respective investigation.  Epistemic refers to observable data subject to 
uncertainties, which is inherent in any code (or measurement) that models 
the physical system. 

                                                        
1 Aleatory uncertainties are often referred to as stochastic uncertainties in the literature (see «2­, 

«41­, and «56­, as examples). 
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As shown in «3­, a novel statistical framework (referred to as Extreme Value 
Statistics (EVS) methodology) has shown that the distinction and quantification of 
the aleatory and epistemic uncertainties are fundamental to constructing accurate 
tolerance limits for the purpose of decision-making.  The EVS computed tolerance 
limits are shown to provide improvements over the more traditional BEPU methods, 
including the tolerance limit approach based on order statistics ( «9­, «10­).  The EVS 
methodology has been implemented in solving a number of diverse nuclear safety 
problems ranging from the demonstration of the compliance with reactor channel 
power licence limits, to the evaluation of the neutronic trip coverage for slow Loss of 
Regulation (LOR) events «11­. 

Reviews of the current BEPU community’s state-of-the-art methods, and status 
associated with evaluating aleatory and epistemic uncertainties, are provided in «2­, 
«12­, «13­, and «14­.  These documents describe international activities, such as the 
Best Estimate Methods Uncertainty and Sensitivity Evaluation (BEMUSE), and the 
Post BEMUSE Re-flood Models Input Uncertainty Methods (PREMIUM) projects, 
which exist to:  

1) evaluate the practicability, the quality, and the reliability of BEPU methods 
including uncertainty evaluation in applications relevant to nuclear reactor 
safety; and  

2) promote the use of BEPU methods by the regulatory bodies in the industry.  
The outcome of the BEMUSE programme, and the on-going work of the 
PREMIUM project, highlighted a number of criticisms associated with the 
BEPU safety analysis industry.   

One of the more significant criticisms that were observed from these benchmarking 
exercises was the presence of large subjective user judgment to solve an objective 
problem (i.e., to quantify the nuclear safety margins).  These findings point to a lack 
of consensus in the BEPU community on the acceptable methods for establishing 
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and quantifying uncertainties.  The findings of the BEMUSE and PREMIUM projects 
indicate that the BEPU approach may not ready to be accepted as a licensing basis in 
nuclear safety analysis.  The heavy reliance by the BEPU community on the use of 
subjective judgment suggests that the area is somewhat lacking in scientific rigor.  
Furthermore, many have postulated that individuals who are presented with the 
same information should arrive at the same inference.  The fact that the BEPU 
community cannot achieve such an outcome points to further weaknesses in the 
methodology.  The breakdown of formal decision theory due to the multiple 
recommendations presented to the final decision maker (i.e., nuclear regulatory 
authority) can lead to ad hoc (non-scientific) decision-making criteria that are 
further widely debated.   

1.11.11.11.1 Objectives of the ThesisObjectives of the ThesisObjectives of the ThesisObjectives of the Thesis    
The primary objective of this thesis is the development of a rigorous framework for 
distinguishing and quantifying epistemic and aleatory uncertainties, which currently 
do not exist. 

The framework developed in this thesis ultimately leads to establishing consistent 
and accurate inferences in support of rational decision-making «3­.  Establishing this 
framework is critical to minimize the subjective judgments currently prevalent in 
the BEPU safety analysis industry, and leads to the final acceptance of the BEPU 
safety analysis as a comprehensive licensing basis. 

1.21.21.21.2 Structure of the ThesisStructure of the ThesisStructure of the ThesisStructure of the Thesis    
The present work has been organized into six chapters, as follows: 

Chapter 2 provides a historical perspective of the BEPU nuclear safety 
analysis and a comprehensive review of the available BEPU methodologies 
available for nuclear safety analysis.  In addition, a review of the current 
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BEPU community’s state-of-the-art methods and status associated with 
evaluating aleatory and epistemic uncertainties is also provided. 

Chapter 3 describes the background involved with a typical thermal 
hydraulic computer code.  A computer code is a critical component for any 
BEPU safety analysis, and is used to model and predict the response of a 
physical phenomenon in the nuclear reactor for the purpose of evaluating the 
adequacy of the operational safety margins.  In Section 5, we will use this 
thermal hydraulic computer code to illustrate how the framework 
(developed in Section 4) can be can be applied to a complex problem 
involving a computer code. 

Chapter 4 discusses the development of a rigorous mathematical and 
statistical framework to clearly distinguish the different types of knowledge 
leading to distinct types of uncertainties (i.e., aleatory and epistemic 
uncertainties).  We show that the differences in uncertainties are unique, due 
to the distinct nature of the types of knowledge.  A mathematical and 
statistical framework is developed to provide the rigor and foundation 
required to identify and quantify the different sources of uncertainties.  

Chapter 5 uses the thermal hydraulic computer code discussed in Section 3, 
and applies the framework (developed in Section 4) to clearly distinguish and 
quantify epistemic and aleatory uncertainties associated with the inputs and 
response of a complex physical system.   

Chapter 6 shows the key advantages of distinguishing between the two types 
of uncertainties, which is in providing more accurate tolerance limits than 
existing BEPU methods.  These results indicate that the distinction in aleatory 
and epistemic uncertainties is a necessary requirement to accurately evaluate 
the operational safety margins of the nuclear reactor.   
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Chapter 7 provides a summary of the work presented in this thesis. 

1.31.31.31.3 Research Research Research Research Contribution Contribution Contribution Contribution of the Thesisof the Thesisof the Thesisof the Thesis    
The primary contribution from this thesis is the development of a rigorous 
framework for distinguishing and quantifying epistemic and aleatory uncertainties 
as they are currently applied in the statistically based nuclear safety analyses.   

We develop this framework by incorporating two fundamental sources of 
knowledge for any physical system.  An important application of these ideas is the 
statistical uncertainty analysis of the thermal hydraulic and neutronic response of a 
reactor under upset conditions.  This uncertainty analysis forms a necessary 
component of any nuclear safety analysis.   

These two sources of knowledge are as follows:  

1) the epistemic knowledge, which represents knowledge due to the process of 
approximating (a true and deterministic) physical phenomenon; and 

2) the phenomenological or aleatory knowledge, based on the understanding of 
the physical process, which is deemed true.  

Both types of knowledge involve uncertainties, which distinctly correspond to the 
nature of the knowledge.  This is demonstrated in concrete terms by a gedanken 
experiment. 

The ability to identify and quantify the different sources of uncertainties addresses 
some of the major weaknesses faced in the BEPU safety analysis industry today, and 
limits any BEPU methodology from full acceptance as a comprehensive licensing 
basis.  These weaknesses include the following: 
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• the regulatory perception that the existing BEPU methods are subjective 
when quantifying the different sources of uncertainties, leading to ad hoc 
(non-scientific) decision-making criteria that are further widely debated. 

• there lacks a formal agreement on the importance of the separation of the 
different types of uncertainties within the BEPU industry.  Some in the 
industry consider the distinction of the different types of uncertainties to be 
one for convenience rather than one due to necessity.   

The theory is conceptualized in Section 4, and applications to physical systems are 
provided in Sections 5 and 6.  These applications utilize a thermal hydraulic 
computer code, as described in Section 3, which models and predicts reactor fuel 
channels under dryout conditions.  Accurate modeling and predictions of dryout 
power are critical for assessing the robustness of the reactor design in response to 
perturbations, and in establishing the safety margins of the plant.  The concepts and 
ideas presented in Section 4 are further developed in Section 5, and expand on 
existing work based on the structural and measurement error models in «15­, «16­, 
and «17­ as a means to improve estimation methods.  These ideas have been 
published in «18­ to demonstrate the benefits of accurately distinguishing, and 
modeling, epistemic and aleatory uncertainties in a BEPU safety analysis.   

Furthermore, in Section 6, we show another application of our ideas in a statistical 
framework, referred to as the EVS methodology (published in «3­), which utilizes the 
differences between the two types of uncertainties in constructing accurate 
tolerance limits.  The results in «3­ show numerically that the EVS methodology 
indeed provides more accurate tolerance limits than existing BEPU methods, and 
supports the premise that the distinction in the different types of knowledge is 
necessary.   
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2222 LITERATURE REVIEWLITERATURE REVIEWLITERATURE REVIEWLITERATURE REVIEW:  NUCLEAR SAFETY AN:  NUCLEAR SAFETY AN:  NUCLEAR SAFETY AN:  NUCLEAR SAFETY ANALYSISALYSISALYSISALYSIS    
2.12.12.12.1 Historical PerspectiveHistorical PerspectiveHistorical PerspectiveHistorical Perspective    
A fundamental aspect of the design and commissioning of nuclear power plants is 
the implementation of the concepts of a Defence In Depth.  The key objectives of a 
Defence In Depth are:  

1) to prevent accidents; and  

2) if prevention fails, to limit potential consequences of events or failures, 
and to prevent (or limit) the evolution of more serious conditions.   

Historically, deterministic safety analyses were the primary tools used to support 
and confirm the design basis of the reactor.  In addition, deterministic safety analysis 
is used to ensure that the overall plant design is capable of meeting the prescribed 
and acceptable limits for radiation doses and releases, for each plant condition 
category.  These traditional deterministic methods are well characterized by the 
significant conservatisms built into each level of the safety analysis (e.g., acceptance 
criteria, conservative assumptions in models, conservative input conditions, etc.,), as 
these reflect either limited understanding of the physical system or deficiencies in 
the ability to model physical processes at the time.  As an example, the United States 
Nuclear Regulatory Commission (USNRC) issued the procedures in 1974 for 
analyzing a Loss of Coolant Accidents (LOCA) in 10CFR 50.46 and Appendix K «19­.  
These prescriptive rules are well recognized as a highly conservative approach, 
emphasizing the notion of maximizing consequence and the use of restrictive (i.e., 
conservative) criteria in the evaluation of the safety margins. 

A natural outcome of using overly conservative deterministic safety analysis is that 
the actual safety margins of the design cannot be quantified accurately.  Events using 
such an approach can appear to be at the boundary of both the design basis, as well 
as high on the risk spectrum, and can be concluded to have limited or no safety 



Ph.D. Thesis – D. Pun-Quach; McMaster University – Department of Mathematics and Statistics 

 

9

margins.  Furthermore, this situation can lead to a lack of robustness in the analysis 
methodology when changes in the knowledge base occur or revisions to the analysis 
assumptions are required.  In addition, the use of conservative methodology may be 
so conservative that important safety issues are masked.  None of these effects are 
conducive to rational decision-making, nor useful in paving the way towards the 
development or implementation of advance technologies in safety analysis. 

There has been an evolution in the state of understanding of safety-related 
phenomena in the physical processes and in the corresponding modeling 
capabilities.  These changes in understanding have been driven primarily by the 
intensive thermal-hydraulic experimental research programs, which occurred since 
the 1970s (see «20­, «21­, and «22­).  The improved understanding acquired during 
this period has provided considerable increase in understanding of the thermal 
hydraulic and reactor physics modeling of the events associated with the Design 
Basis Accident 2(DBA).  In addition, changes in computing power have occurred, 
leading to greater power and functionality, leading to better numerical tools and 
codes to be developed (e.g., RELAP, TRAC, COBRATRAC, RETRAN, CATHARE, 
ATHLET, etc.,).   These changes in computing power have resulted in computer 
predictions that are in better agreement with experimental evidence.   

In September 1988, the USNRC approved an amendment to the 10 CFR 50 
Appendix K prescriptive rules by allowing best-estimate methods (see Section 2.3) 
to be employed to provide more realistic estimates of the quantification and 
evaluation of plant safety margins.  The development and demonstration of the Code 
Scaling, Applicability and Uncertainty (CSAU) framework «1­ shortly followed the 
introduction of the amendment, which used a Westinghouse PWR design for limiting 
large LOCA analysis.  The CSAU framework is summarized in Figure 2.1 (see page 
20). 
                                                        
2   See Appendix A: Definitions. 
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This amendment to the requirements of the 10 CFR 50.46 reflected the improved 
understanding of the thermal hydraulic phenomenon occurring during the LOCA 
event, and resulted in an increase in popularity of Best Estimate Plus Uncertainty 
(BEPU) analyses as the licensing basis for currently operating nuclear reactors.   

A number of different BEPU methods employed around the world for licensing 
analysis have been extensively reviewed ( «2­, «3­, «5­, and «23­).  Underlying these 
different BEPU safety analyses is the adherence to the principles of the CSAU 
framework.  In addition, the BEPU methods are characterized by the use of 
computer codes that use more realistic input data and nominal (or best-estimate) 
initial and boundary condition values to better represent the physical phenomena.  
The nuclear safety community has provided different methodologies to quantify and 
qualify code input errors, approaches to justify important safety parameters, and 
techniques to combine uncertainties to determine the total uncertainty of the 
response variable.   

Significant differences among the currently available BEPU methods lie in the 
decision-making aspects of the response (or safety) parameter, and their associated 
uncertainties.  From this perspective, the different BEPU methods (see «2­, «3­, «4­, 
«5­, and «23­) can be divided into four categories of methods, and summarized in 
Table 2.1.  From the decision-making perspective, the first three methods typically 
lead to a percentile estimate of the response variable without being characterized by 
a confidence level, and therefore are statistically incompatible with the tolerance 
limit methods that do attach a confidence level to the percentile estimate.  One of 
these methods applies a novel statistical framework (referred to as the Extreme 
Value Statistics (EVS) methodology) and has been developed for the construction of 
tolerance limits «3­.  This methodology has been shown to provide improvements 
over the more traditional tolerance limit approach based on order-statistics «10­), 
and implemented in solving a diverse number of nuclear safety problems, ranging 
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from a compliance with reactor channel power licence limits, to the evaluation of the 
neutronic trip coverage for slow Loss of Regulation (LOR) events in «11­ and «24­.   

A review of the different BEPU approaches is discussed in greater detail in 
Section 2.2.   

The amendment to the requirements of the 10 CFR 50.46 approved by the USNRC 
promoted the use of BEPU safety analysis, but placed a greater burden on the 
licensee to quantify and justify the uncertainty estimates used as part of the 
licensing basis.  A review of the current state of the uncertainty analysis is provided 
in Section 2.3.  

2.22.22.22.2 Review of theReview of theReview of theReview of the    Different BEPU Different BEPU Different BEPU Different BEPU MethodologiesMethodologiesMethodologiesMethodologies    
The different BEPU methodologies are listed in Table 2.1 (see page 19) and these all 
involve propagation of errors in some manner.  However, the methods are 
sufficiently different that they warrant being looked at more closely, and these 
differences are reviewed and discussed in this section.  

For safety related problems, response variables of interest (e.g., peak cladding 
temperature) are considered to be random, and each of these variables has some 
(generally unknown) probability density function (pdf) (e.g., f).  This randomness, 
represented by f, arises because of limitations in the understanding at the time at 
which the postulated event takes place, as well as conditions prevailing at the time.  
Because of this inherent uncertainty, any decision-making based on the values of the 
variable of interest is inherently statistical in nature.  Specifically, for some chosen [, 
such as 0.95 (precise choice needs to be agreed among the regulator and industry 
partners), WX is the upper 100[ percentile of f.  The decision then becomes one of 
ascertaining whether WX < i, where i is a specified technological limit (e.g., peak 
cladding temperature of 1200 oC) or a licence limit (e.g., limit on maximum reactor 
fuel channel power). 
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The first approach: the Monte-Carlo Percentile Approach is characterized as a BEPU 
method, and involves estimation of a percentile, such as the 95th percentile of the 
desired response variable (e.g., Peak Cladding Temperature (PCT)) without 
specifying a confidence level for the estimate.  The probability distribution of the 
PCT is obtained numerically, and it may be necessary to use a response surface  ( 
«25­ and «26­) as a surrogate for the best-estimate code, and Monte-Carlo sampling 
of the input parameters. The range of variable values being sampled randomly also 
includes variation due to errors associated with estimates of the input variables 
(there is no attempt to characterize the nature of the variation).  Upon computing a 
very large sample, the upper 100[ percentile is obtained and is considered to 
represent WX.  Decision-making can now be applied by comparing this computed 
percentile to the specified limit, i.  The first USNRC approved BEPU LOCA analysis 
was completed by Westinghouse «27­, and followed the prescription described 
above.  Since then, the methodology has been applied further to many Pressurized 
Water Reactors (PWRs) (Reference «28­).  In Canada, for CANada Deuterium 
Uranium (CANDU) reactor design, the Monte-Carlo percentile approach has also 
been adopted for LOCA analyses in «26­ and «25­.  The generation of response 
surfaces to represent the existing codes in the Monte-Carlo Percentile Approach 
requires additional validation and justification.  Also, the method lacks any 
statement of the confidence level to reflect the presence of the epistemic errors.  
That is, one cannot be sure how well the computed upper percentile of the 
generated response variable pdf approximates the actual WX. 

The second approach: the Deterministic Sensitivity and Uncertainty Analysis 
Approach is characterized as deterministic because it is based on formal theories of 
sensitivity and uncertainty analysis «29­.  This approach replaces the need to 
generate a response surface through the use of efficient numerical methods to 
estimate the variance of the response variable using a power series representation 
of the response function.  The deterministic sensitivity and uncertainty methods are 
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then used to evaluate the system sensitivities, and determine the uncertainties of the 
response variable based on the propagation of moments and sensitivity estimates.  
The numerical methods involved are the Adjoint Sensitivity Analysis Procedure 
(ASAP), the Global Adjoint Sensitivity Analysis Procedure (GASAP), and Data 
Adjustment/Assimilation (DAA) methodology «29­.     

The third approach: the Propagation of Code Output Errors considers the aleatory 
and epistemic uncertainties (as does the second approach), however, these two 
error types are not distinguished in actual implementation. The method is 
characterized by the use of relevant experimental data sets to evaluate the errors in 
the response variable(s) of the code.  The method makes use of the UMAE/CIAU 
methods ( «30­ and «31­) for accuracy evaluation, quantification, and for 
extrapolation of the uncertainties to the relevant Nuclear Power Plant (NPP) 
transient scenario.  The end result is an error distribution for the response variable, 
for which a percentile (such as 95th or 98th) is estimated and used to evaluate the 
safety criterion. The success of this uncertainty method is strongly dependent on 
having relevant (i.e., qualified) experimental/validation datasets «2­.  In addition, 
the different uncertainties stemming from different experimental test data sets 
require extensive validation of each input set.  Furthermore, the theoretical basis for 
combining errors from different sources (e.g., stemming from different ITF or SETF - 
Separate Effect Test Facility - different but consistent nodalizations and different 
types of transient scenarios) is not based upon fundamental principles, and requires 
further evaluations «2­.  The UMAE/CIAU and the ASAP/GASAP are generally applied 
in conjunction with evaluating the operational margins of a reactor to deliver the 
greatest benefits.  These methods have been applied in the licensing process of 
Angra-2 NPP and Atucha-2 NPP ( «32­ and «33­). 

The fourth BEPU approach: the Tolerance Limit Approach is characterized by the 
use of order statistics that uses Wilks’ formula «9­ to determine the number of 
required code runs, and the tolerance limit at the desired confidence level.  This 
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BEPU method became popular through the GRS methodology «10­ and resulted in 
the development of the Software System for Uncertainty and Sensitivity Analysis 
(SUSA) code «34­.  Westinghouse also updated its methodology to use non-
parametric order statistics, and developed the Automated Statistical Treatment of 
Uncertainty Method (ASTRUM) «35­ that was approved for licensing (Reference 
«36­).  Order statistics based methods are a possible improvement over the existing 
Monte-Carlo methods in that they use significantly smaller sample sizes, and hence 
they do not require usage of the response surfaces, but the actual codes are used in 
the sampling.  Also, a confidence level, \, is computed based on Wilks’ formula ( «9­ 
and «10­) leading to a “[/\” tolerance limit as an estimate of the actual percentile WX. 
Thus, mathematically, order statistics methods are more rigorous than the Monte-
Carlo approach, as well as the other approaches that use only a single percentile 
estimate.  Nevertheless, this rigour is insufficient as the confidence level is due only 
to the uncertainty that arises from finite sample sizes used, but the epistemic (code 
and input variable) uncertainties are not explicitly included in the determination of 
the confidence level.  For each code run, the estimated input variables are perturbed 
at random based on all uncertainties associated with these variables.  Collecting 
these response values generates a probability distribution, ÍÎ. As noted in «37­, these 
analyses assume that ÍÎ = Í.  This may or may not be true in general due to the 
presence of input variable and code errors (note that the EVS methodology was 
designed specifically to solve this problem when ÍÎ does not equal Í).  Therefore, it 
cannot be assumed that the resulting samples of the response variable are indeed 
samples from the actual Í    (as is required in the application of Wilks’ formula).  

All of the approaches involve propagation of errors in some manner, however, they 
do it sufficiently differently that the differences warrants being studied.  From the 
decision-making perspective, the first three approaches typically lead to a percentile 
estimate of the response variable without being characterized by a confidence level, 
and therefore are statistically incompatible with the tolerance limit methods, which 
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do include a confidence level of the percentile estimate.  In contrast, the novel 
statistical framework (referred to as the Extreme Value Statistics (EVS) 
methodology) does construct the tolerance limits rigorously «3­.  This methodology 
has been shown to provide improvements over the more traditional tolerance limit 
approach, based on order statistics, and has been applied to a number of diverse 
safety problems ranging from compliance with reactor channel power licence limits 
to the evaluation of the neutronic trip coverage for slow Loss of Regulation (LOR) 
events ( «11­, «24­).  This EVS method is further discussed in Section 4.4 and 6. 

2.32.32.32.3 State of State of State of State of Uncertainty Analysis Uncertainty Analysis Uncertainty Analysis Uncertainty Analysis in the BEPU Industryin the BEPU Industryin the BEPU Industryin the BEPU Industry    
As discussed in Section 2.1, the USNRC approved amendment to the requirements of 
the 10 CFR 50.46, approved by the USNRC, reflected the improved understanding in 
the nuclear safety analysis industry of the thermal hydraulic phenomenon, occurring 
during the LOCA event.  The revised rule for ECCS evaluation contains three key 
features, as follows: 

1. the original acceptance criteria were retained;  

2. evaluation model methods based on 10CFR 50.46 and Appendix K may 
continue to be used as an alternative to best estimate methodology; and  

3. an alternate ECCS performance, based on Best Estimate methods, may be 
used to provide more realistic estimates of plant safety margins.  

The revision placed a greater burden on the licensee to quantify and justify the 
uncertainty estimates used as part of the licensing basis.  This includes the 
quantification of the uncertainty associated with calculated results, with respect to 
the prescribed acceptance limits.  It is well recognized by the BEPU community, and 
in the environmental risk and safety assessment industry ( «6­, «7­, and «8­), that a 
clear discrimination between two distinct sources of uncertainties is required in the 
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modeling of complex physical systems for the purpose of rational decision-making.  
Specifically, these different uncertainties are as follows: 

1) aleatory1 uncertainty, which arise because the system under investigation 
can behave in many different and unpredictable ways.  In the application 
considered in this thesis (which are complex engineering phenomenon), the 
aleatory variables will be mostly unobservable; and  

2) epistemic uncertainty, which arises from the inability to specify an exact 
value for a parameter that is assumed to have a constant value in the 
respective investigation.  Epistemic refers to observable data, subject to 
uncertainties that are inherent in any code (or measurement) that models 
the physical system. 

Reviews of the current BEPU community’s state-of-the-art methods and status 
associated with evaluating aleatory and epistemic uncertainties are provided in «2­, 
«12­, «13­, and «14­.  These reviews indicate that there exist concerted efforts by the 
international BEPU community to develop a general consensus on the evaluation of 
uncertainties in the computer codes used in safety analysis.  These efforts include 
the initiation of international benchmarking programs as follows: 

a. The Best Estimate Methods Uncertainty and Sensitivity Evaluation 
(BEMUSE), program ( «5­, «38­, and «39­); and 

b. The Post BEMUSE Re-flood Models Input Uncertainty Methods (PREMIUM) 
project «40­. 

Both programs have been promoted by the Working Group on the Analysis and 
Management of Accidents (WGAMA), and endorsed by the Organization for the 
Economic Cooperation and Development (OECD), and specifically by the 
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Organization’s Committee on the Safety of Nuclear Installations (CSNI).  The high-
level objectives of the work are:  

1. to evaluate the practicability, the quality, and the reliability of BE 
methods, including uncertainty evaluation in applications relevant to 
nuclear reactor safety; and  

2. to promote the use of BE methods by the regulatory bodies in the 
industry.  

The outcome of the BEMUSE program and the on-going work of the PREMIUM 
project highlighted a number of criticisms associated with existing BEPU safety 
analysis methods.  One of the more significant criticisms was the presence of large 
subjective user judgment required to solve an objective problem (i.e., to quantify the 
nuclear safety margins).  As shown in the BEMUSE benchmarking exercises, 
different participants applying the same BEPU method in a licensing analysis can 
produce very different results (i.e., a large scatter in the final results).  Subjective 
user judgment was required in many cases primarily in defining the range of the 
probabilities, the probability types (i.e., uniform versus normal, etc.,), and even the 
importance of a parameter.  These findings point to a lack of consensus in the BEPU 
community on the acceptable methods for establishing and quantifying: model 
uncertainties, input epistemic uncertainties, and uncertainty treatment.  These 
findings have led to a request for further work and follow up as part of the 
PREMIUM project «40­.   

In addition to the lack of a formal framework, and despite repeated assertions in the 
safety analysis literature of the need to separate aleatory variation and epistemic 
uncertainty, the same authors also claim that such separation is for convenience 
only ( «6­, «7­), with the overall uncertainty being quantified using both sources         
( «6­, «7­, «8­, «26­, and «34­).  This is in contrast to BEPU methods, such as the EVS 
methodology, that construct tolerance limits based on clearly distinguishing 
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between aleatory and epistemic uncertainties «3­.  We show in this thesis (see 
Section 6, that the use of EVS (which require the different types of uncertainties to 
be separated) naturally leads to more accurate tolerance limits relative to the 
existing BEPU methods.  Hence, the distinction and application of the different 
uncertainty types is one of necessity rather than one for convenience. 

The impact of these findings indicates that realizing the full potential of a BEPU 
methodology is still pending due to the above criticisms.  The fact remains that at 
least part of the BEPU community still heavily relies on the use of subjective 
judgment, and this suggests that additional scientific rigor is needed.  Furthermore, 
there is a sense that analysts that try to resolve the same problem and make use of 
the same data, tools, and methods, should produce the same results.  The fact that 
the BEPU community cannot achieve such an outcome points to further weaknesses 
in the methodology.  The breakdown of formal decision theory due to the multiple 
recommendations presented to the final decision maker (i.e., nuclear regulatory 
authority) can lead to ad hoc (non-scientific) decision-making criteria that are 
further widely debated.   
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Table Table Table Table 2222....1111:  Summary of the Different :  Summary of the Different :  Summary of the Different :  Summary of the Different BEPUBEPUBEPUBEPU    Approaches Approaches Approaches Approaches Used in the Nuclear Safety Used in the Nuclear Safety Used in the Nuclear Safety Used in the Nuclear Safety 
Analysis IndustryAnalysis IndustryAnalysis IndustryAnalysis Industry    

BEPU    Approach Approach Approach Approach 
CategoryCategoryCategoryCategory    DescriptionDescriptionDescriptionDescription    

Approach Approach Approach Approach 1111    
A Monte-Carlo 

Percentile 
Approach  

 
This method involves the estimation of a percentile (such as 95th or 
98th) from the probability distribution of a response variable of 
interest that is generated by a Monte-Carlo sampling of uncertainties 
affecting the system and the safety codes. Response surfaces may 
need to replace actual codes to facilitate the random sampling ( «26­ 
and «25­). 
 

Approach Approach Approach Approach 2222    
A Deterministic 
Sensitivity and 

Uncertainty 
Analysis Approach  

 
This method involves a sensitivity and uncertainty analysis to 
generate a single percentile (such as 95th or 98th) of a response 
variable based on the Forward Sensitivity Analysis Procedure (FSAP) 
or the Adjoint Sensitivity Analysis Procedure (ASAP) ( «29­ and «41­).   
 

Approach Approach Approach Approach 3333    
A Propagation of 

Code Output Errors 
Approach  

 
This method makes use of relevant experimental data to evaluate the 
errors in the response variable(s) of the code.  The method makes use 
of the UMAE/CIAU methods ( «30­ and «31­) for accuracy 
quantification and accuracy extrapolation to the relevant Nuclear 
Power Plant (NPP) transient scenario. 
 

Approach Approach Approach Approach 4444 
A Tolerance Limit 

Approach  

 
This method involves the estimation of a percentile at a required 
confidence level.  This method consist of two subgroups as follows: 

1. Tolerance limit method based on order statistics ( «9­ and 
«10­); 

2. Tolerance limit method based on the EVS method «3­. 
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Figure Figure Figure Figure 2222....1111:  Flow Chart of the CSAU methodology:  Flow Chart of the CSAU methodology:  Flow Chart of the CSAU methodology:  Flow Chart of the CSAU methodology    
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3333 BACKGROUND:BACKGROUND:BACKGROUND:BACKGROUND:    THETHETHETHE    THERMAL HYDRAULIC SATHERMAL HYDRAULIC SATHERMAL HYDRAULIC SATHERMAL HYDRAULIC SAFETY FETY FETY FETY 
ANALYSIS CODEANALYSIS CODEANALYSIS CODEANALYSIS CODE    

In this section, we describe the background for a typical thermal hydraulic computer 
code.  Computer codes are a critical component of any BEPU safety analysis, as 
discussed in Section 2.  The computer code is required to model and predict fuel 
channel dryout powers, which are critical inputs in the safety analysis of a plant.  In 
Section 5, we use this thermal hydraulic computer code to illustrate how the 
framework  (see Section 4), used to clearly distinguish and quantify epistemic and 
aleatory uncertainties, can be applied.   

To appreciate the results presented in Section 5, we provide the background 
information relating to the inputs and outputs of a computer code in this section.  
This section provides the following information: 

• In Section 3.1, we describe the CANDU reactor design.  The CANDU reactor 
differs from the more popular Pressurized Water Reactors (PWRs).  The 
features unique to the CANDU reactor design are discussed here. 

• In Section 3.2, we describe the empirical and semi-empirical models required 
to capture the fuel channel dryout power phenomenon «18­.  Accurate 
modeling and predictions of dryout power is important to assess the 
robustness of the reactor design in response to upset reactor conditions.  The 
evaluations performed here are used to assess the safety margins of the 
plant. 

• In Section 3.3, we summarize/categorize all key inputs associated with the 
modeling of the physical phenomenon in the computer as either: 1) a 
Boundary and Initial Condition Input variable; or 2) a Code Parameter.  This 
categorization is shown in Section 5 to be critical for uncertainty 
identification and quantification.   
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3.13.13.13.1 The The The The Reactor DesignReactor DesignReactor DesignReactor Design    
The CANada Deuterium Uranium (CANDU) reactors are Pressurized Heavy-Water 
Reactors (PHWR).  Heat removal from the fission process is accomplished in a 
CANDU reactor through a Heat Transport System (HTS), as illustrated schematically 
in Figure 3.1 (see page 37).  The HTS accomplishes the safety-related goal of cooling 
the fuel. The complete flow pattern of the HTS resembles that of a figure eight.  
Specifically, a main circulation pump takes cooled heavy water  (i.e., D2O) from a 
boiler, and pumps it to a reactor inlet header.  The header distributes the coolant 
through feeder pipes to individual fuel channels.  Hot coolant leaves the channels 
through an outlet feeder, and collects in an outlet header from where it is directed to 
a boiler.  The hot coolant gives up its heat through the boiler tube walls, and then 
continues from the boiler outlet to a second pump.  From here, it is pumped through 
another set of inlet headers, feeders, and fuel channels, and on to a second boiler.   

A particularly unique HTS design is that of the Bruce NPP design3, where the HTS is 
a single closed loop, but the core is physically divided into two separate hydraulic 
flow zones, referred to as the Outer Zone (OZ) and the Inner Zone (IZ) (Figure 3.2).  
The fuel channels in the OZ are connected to a single reactor inlet header (RIH) on 
each side of the loop (1 East and 1 West) only.  The portion of the coolant flow that 
goes to the OZ is directed to the OZ RIH at the boiler outlet temperature and 
pressure downstream of HT pumps, and is completely separate from flows to the IZ.   

The fuel channels in the IZ are connected to a single RIH on each side of the loop (1 
East and 1 West) only, separate from the OZ RIH.  The portion of the coolant flow 
that goes to the IZ does not go directly to the IZ RIH, but first flows through a heat 
exchanger, which removes more heat from this portion of the coolant, and further 
reducing the IZ coolant temperature.   

                                                        
3   Many of the examples presented in this thesis are based on the Bruce NPP. 
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Because of this unique reactor design, the IZ and OZ fuel channels experience 
different reactor conditions.  Relative to the channels in the OZ, the fuel channels in 
the IZ therefore see incoming coolant that is significantly lower in operating 
temperatures.  Flows from the two zones join together downstream of the fuel 
channels and upstream of the boilers, via a reactor outlet header on each side of the 
loop. 

3.23.23.23.2 Thermal Thermal Thermal Thermal HydrHydrHydrHydraulic Modeaulic Modeaulic Modeaulic Modeling of ling of ling of ling of the Fuel Dryout Power the Fuel Dryout Power the Fuel Dryout Power the Fuel Dryout Power 
PhenomenonPhenomenonPhenomenonPhenomenon    

3.2.13.2.13.2.13.2.1 Heat Transport System Aging EffectsHeat Transport System Aging EffectsHeat Transport System Aging EffectsHeat Transport System Aging Effects    
With time, the thermal hydraulic components of the heat transport system age.  In 
general, aging of the HTS differs from one plant to another, due to differences in 
operating history, and because different mechanisms can influence the rates of the 
aging experienced by components in each plant.  HTS aging has the potential to 
affect safety margins, therefore aging mechanisms and aging changes are closely 
monitored, and their impacts assessed.  

One of the principal aging mechanisms governing the heat transfer and hydraulic 
degradation of the HTS is the phenomenon of Pressure Tube Diametral Creep 
(PTDC).  The pressure tubes in the CANDU reactors contain the fuel and the 
pressurized D2O coolant within the reactor, and are based on a Zirconium alloy (i.e., 
Zr-2.5%Nb).  A typical fuel bundle and fuel channel is depicted in Figure 3.3 and 
Figure 3.4, respectively.  PTDC leads to diametral expansion, and it occurs mostly 
from irradiation-enhanced creep due to the hoop stress in the pressure tube.  It 
varies axially along the fuel channel, and can be correlated with the axial neutron 
flux.  Figure 3.4 shows two fuel channel cross-sections.  One with a nominal pressure 
tube diameter, and the other with a crept pressure tube for stations operating with 
37-element fuel bundles.   
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In general, for the reactor, PTDC causes an increase in core flow and a reduction in 
header-to-header pressure drop along the fuel channel.  Furthermore, the outer-core 
channels will generally suffer a reduction in flow relative to the non-crept 
conditions, while the inner-core channels benefit from a significant increase in flow.  

For a single fuel channel, PTDC increases the available flow area and consequently 
decreases the channel resistance to flow (thereby reducing channel pressure drop).  
The outcome of this is a change in the fuel cooling behaviour, which affects the 
Critical Heat Flux (CHF), and post-dryout heat transfer in the fuel bundle.  

In the nuclear safety analysis industry, accurate modeling of the channel pressure 
drop and CHF, which accounts for the effects due to PTDC, is necessary to reflect the 
HTS aging effects on the reactor system and safety margins.  CHF is used in the 
determination of the reactor Critical Channel Power (CCP), which is in turn used in 
the evaluation of the neutronic trip coverage (e.g., Neutron Overpower Protection 
(NOP)) system for Loss of Regulation (LOR) accidents ( «11­, and «24­).  CHF is also 
important in the assessment of shutdown system effectiveness in postulated 
accident scenarios such as Small Break Loss of Coolant Accident (SBLOCA) and Loss 
of Flow (LOF).  

The following sections of this thesis will discuss the necessary background and 
theory required for modeling the phenomenological changes on the channel 
pressure drop and fuel-cooling behaviour, due to pressure tubes with a significant 
level of diametral creep along each fuel channel.  These models/correlations are 
implemented within the safety analysis code, and the uncertainty analysis associated 
with the input model parameters are addressed as part of Section 5.2. 

3.2.23.2.23.2.23.2.2 Pressure Tube Diametral Creep ModelingPressure Tube Diametral Creep ModelingPressure Tube Diametral Creep ModelingPressure Tube Diametral Creep Modeling    
The methodology presented here is for the development of the best-estimate 
prediction of Pressure Tube Diameteral Creep (PTDC) for each fuel channel.   As 
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discussed in Section 3.2.1, the non-uniform change in PTDC is a principal aging 
mechanism governing the heat transfer and hydraulic degradation of the Heat 
Transport System (HTS) of a nuclear reactor.  For the purpose of demonstration, the 
prediction of PTDC for bundle i, channel j can be developed using measured PTDC 
and a linear functional model that expresses its dependency to fluence, ψ (an 
integrated fuel irradiation over time) as well as the (life-time averaged) coolant 
temperature, ω.  A linear functional form of PTDC is shown to be well represented 
by the measured data and is given as follows «18­: 

f_o = Ðo + ÒÓÔ_o + ÕÓÖ_o + [_o (3.1) 

where: 

× = 1,2, … , Ø are the indices for the bundle position; 

Ù = 1,2, … , Ú are the indices for the channel position; 

f_o = ÛÜÝÞÛß
Ûß

 is the measured strain, which is expressed as a ratio of the 

measured diameters (i.e., Dij ) to the nominal diameter (i.e., Do); 

ψij , is the fluence4 given in units of «n/m2­;  

ωij  = the lifetime average temperature expressed as a function of a threshold 
temperature, Tref (e.g., ωij  = (Tij  – Tref)/100 or 0 if Tij < Tref);  

[_o = random error component; and 

aj, bi, ci =  the regression coefficients.   

                                                        
4   Fluence is an integrated fuel irradiation over time. 
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The regression analysis and statistical error modeling of the PTDC parameter is 
discussed in detail in Section 5. 

3.2.33.2.33.2.33.2.3 Single and TwoSingle and TwoSingle and TwoSingle and Two----Phase Phase Phase Phase Pressure DropPressure DropPressure DropPressure Drop    ModelingModelingModelingModeling    
Using Cartesian5 co-ordinates, the axial rate of change of pressure over a control 
volume in a pressure tube can be represented by the following: 

àáâ
áãä = àáâ

áãä
�

+ àáâ
áãä

åå
+ àáâ

áãä
æ

 (3.2) 

where: 

P is pressure along the axial position of the fuel channel; 

|çè
ç��

�
= the acceleration or momentum flux contribution.  The acceleration 

pressure drop can be a significant component of the total pressure drop for 
boiling flows, or for flows with non-uniform cross sectional flow areas: 

 |çè
ç��

åå
=  the friction and form loss component; and  

|çè
ç��

æ
 =  the gravitational pressure drop term.  For horizontal channels such 

as those in CANDU reactors, the gravitational pressure drop term is zero.   

The single-phase pressure drop in a fuel bundle is predicted using: 

                                                        
5   The convention used in this report is that the x and y-co-ordinates defines the object’s position on 

the horizontal plane and the z-direction corresponds the vertical position of the object. 
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∆âê� = à¹ i
ëì

+ (Σî)ä ïb

2ðñ
 (3.3) 

 where:  

• ∆âê� is the single-phase pressure drop per bundle in Pa; 

• G  is the coolant mass flux through the fuel string in kg/«m2 ⋅ s­; 

• ρl  is the coolant liquid density in kg/m3; 

• f  is the skin friction factor; 

• L  is the bundle length in m; 

• Dh is the equivalent hydraulic diameter in m; and 

• Σî is the sum of form losses (i.e., junction planes, spacer planes, and 
bearing pad form losses). 

Frictional losses are calculated using the friction factor for fully turbulent flow given 
by the implicit Colebrook-White correlation: 

1
ò¹

= ó2log ô¹
v ëìõ
3.7 + ö 2.51

ò¹q÷
øù (3.4) 

where ε is the roughness height in meters and Re is the local Reynolds number 
based on the local velocity, fluid properties, and hydraulic diameter.  

Sufficiently high channel powers will result in boiling in the channel.  The pressure 
drop under such conditions becomes a function of the Onset of Significant Void 
(OSV), the single-phase pressure drop components described above, and the two-
phase multiplier.   
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The OSV refers to the axial location where wall void is first transported with the 
flow, and not immediately condensed as illustrated in Figure 3.5 for flows in a tube.  
During this transition from single-phase to two-phase flow, the pressure gradient 
increases due to increased friction and turbulence caused by the bubble creation 
process.   

Phase transition in complex bundle geometries is somewhat different from that in a 
tube, as it is possible that the sub-channel enthalpy may differ at each cross-section.  
The two-phase multiplier is used to evaluate the friction and form loss pressure 
drop in boiling flows, and generalized as the following: 

|áâ
á��

åå

úû�Þ�ì�ê�

|áâ
á��

åå

ê_dæñ�Þ�ì�ê� = �üè©
b  (3.5) 

where �üè©
b  is the two-phase multiplier and the single-phase pressure drop term is 

evaluated based on the assumption of only liquid flowing through the channel.  
Typically the two-phase multiplier is a function of geometry (i.e., fuel bundle 
geometry) and local flow conditions in the channel (i.e., fluid thermodynamic 
quality, pressure, Reynolds number).  

The implications of PTDC for the acceleration pressure drop component, the friction 
and form loss components, and phase-transition are significant.  In boiling heat 
transfer systems, above a certain heat flux, the coolant can no longer permanently 
wet the heated surface.  This leads to a sudden decrease in the surface heat transfer 
coefficient.  This limit is referred to as the Critical Heat Flux (CHF).   Extensive 
studies have been carried out over the years on CHF mechanisms in different 
geometries, including different nuclear reactor types.  In general, use of empirical 
correlations or tabulated values of CHF are relied upon for predicting CHF.  For the 
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CANDU family of fuel bundles with uniform pressure tube geometry, common 
methods used for predicting CHF include the following:  

• the CHF look-up table (developed based on steam-water data and Freon-12 
CHF data) «42­;   

• flux corrected local conditions CHF approach; and 

• Boiling Length Average (BLA) CHF methodology.  

The flux-corrected local conditions approach for calculating CHF is based on an 
assumption that CHF is a function of local fluid conditions only.  According to this 
approach, the onset of dryout occurs at a channel power level at which the axial heat 
flux curve (along the fuel channel) is tangent to the axial locus of CHF.  However, in 
the BLA-CHF approach, it is postulated that the mechanism of dryout is affected not 
only by the heat flux at the particular dryout location, but also by the upstream heat 
flux history, particularly in starting from the location where bulk boiling first occurs.  

Predicting CHF in rod bundles with PTDC has shown to be a challenge, mostly 
because the effects of pressure tube diametral creep on rod bundle 
thermal hydraulics is poorly understood.  It is therefore important to examine what 
these effects are and how they affect CHF in fuel channels with crept pressure tubes. 

In general, PTDC causes an increase in core flow, and a reduction in header-to-
header pressure drop. Furthermore, the outer-core channels will generally suffer a 
reduction in flow relative to the non-crept conditions while the inner-core channels 
benefit from a significant increase in flow.  

For a single fuel channel, PTDC increases the available flow area, and consequently 
decreases the channel resistance to flow (thereby reducing channel pressure drop). 
The outcome of this is a change in the fuel cooling behaviour, which affects the CHF, 
and post-dryout heat transfer in the fuel bundle.  
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The impact of a redistribution of flow (hence enthalpy) across the cross-section of 
the fuel channel influences the heat transfer characteristics of the bundle, and hence 
the Critical Heat Flux. With PTDC, the onset of dryout occurs earlier than expected 
when compared with nominal pressure tubes.  Based on full-scale experimental 
datasets, it is seen that as the pressure tube creeps, CHF reduces for the same 
coolant conditions, and tends to occur at lower thermodynamic quality «43­.   PTDC 
may also affect the radial location of dryout in the bundle (for nominal pressure tube 
diameter, CHF tends to occur more often in the centre rods).   However, CHF 
correlations are usually based on channel cross-sectional average coolant conditions 
and hence, it is difficult to capture phenomena at a sub-channel level in a CHF 
correlation. 

As indicated above, the CHF correlations are usually based on channel cross-
sectional average coolant conditions and shown to be primarily a function of the 
local pressure, coolant mass flux, the thermodynamic quality, and the local axial heat 
flux at dryout axial location along the fuel channel is given as follows: 

ýþÿ = ýþÿ(â, ï,!ü" ,#) (3.6) 

One way of accounting for PTDC in predicting CHF is to derive a correction-factor, 
which is applied to the correlation when the pressure tube diameter is not uniform 
along the pressure tube.  One of the earliest attempts to derive such a correction 
factor for 37-element rod bundles treated the effect of pressure tube creep on CHF 
by comparing bundle pressure tube systems with and without PTDC, against 
eccentric and concentric internally heated annuli «44­. 

Using qualified datasets, these empirical models (i.e., OSV, CHF, single- and two-
phase pressure drop, etc.,) are developed, and used to “substitute” the balance or 
governing equations to describe these physical phenomena implemented within the 
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computational code.  The empirical models are based on experimental or measured 
data and hence, subject to uncertainty.   

The uncertainty analysis that is completed based on full-scale experiments 
associated with the input model parameters, is addressed as part of Section 5.2.2.2. 

3.33.33.33.3 Components of aComponents of aComponents of aComponents of a    BestBestBestBest----Estimate Thermal Hydraulic CodeEstimate Thermal Hydraulic CodeEstimate Thermal Hydraulic CodeEstimate Thermal Hydraulic Code    
The development of a thermal hydraulic code to compute the dryout power 
response variable of interest in each fuel channel implements the empirical models 
discussed in Sections 3.2.  The empirical models reflect the effects of HTS aging 
discussed in Section 3.1 and hence, the code provides a means to evaluate the safety 
margins in each fuel channel at any reactor age condition «18­.   The benefit of this 
approach is that it provides a means to evaluate the reactor age for which the 
operational safety margins of the plant require additional measures to maintain the 
required trip coverage of the plant. 

The computational code involves a series of iterative steady-state thermal hydraulic 
calculations.  The initial boundary conditions and bundle power distributions 
corresponding to the loss of regulation event are used to calculate the channel flow 
and thermal hydraulic conditions along the channel.  Based on the local thermal 
hydraulic conditions, the critical heat flux (CHF) at each axial node is determined 
and compared against the axial heat flux.  The computed channel power is increased 
until the CHF profile becomes tangential to the axial heat flux profile, which occurs 
at the CCP (i.e., the channel power required to induce intermittent dryout). 

A formal description of the statistical theory of uncertainty analysis presented in 
this thesis requires distinguishing between different input variables and parameters.  .  .  .  
The definition and notation introduced here are used consistently throughout this 
thesis, and is summarized as follows: 

• Boundary and Initial Condition (BIC) variables, $;;;; 
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• Code parameters, ":::: 

Each of these inputs is discussed in greater detail in the following sections. 

3.3.13.3.13.3.13.3.1 Boundary and Initial Condition (Boundary and Initial Condition (Boundary and Initial Condition (Boundary and Initial Condition (BICBICBICBIC) Variables) Variables) Variables) Variables    
A  BIC variable is a common term used to describe variables that are required in 
solving boundary value problems and/or initial value problems.  The boundary and 
initial value problems are associated with solving differential equations used in 
describing the physics of a system (e.g., mass, energy, and momentum equations).   A 
boundary value problem requires conditions specified at the extremes (i.e., 
"boundaries") for the independent variable in the equation whereas an initial value 
problem has all of the conditions specified at the some specific value of the 
independent variable.   The defining features of this class of variables are: 

• these variables are direct inputs to a code.  That is, the user has access to 
defining the values for the BIC variable as input to a code such that the 
analysis is specific to the DBA of interest.   

• the BIC variable uniquely defines a reactor system condition (or ‘state’).   For 
example, the reactor may age and the mean value of the BIC variable will 
change accordingly and hence, it gives rise to a new reactor condition/state 
for which safety analysis is required. 

The BIC variables that are relevant for the code computations of dryout powers (i.e., 
CCP) are summarized as follows: 

• The Reactor Inlet Header Temperatures (RIHT) define the initial 
temperature experienced at the inlet of the fuel channel.  This variable 
may fluctuate due to changes in the primary and secondary side HTS 
conditions.  More importantly, the RIHT variable will systematically 
increase over time due to aging related effects. 
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• The Header-to-Header Pressure Drop (HHPD) defines the pressure drop 
across each fuel channel.  This variable may change and fluctuate due to 
changes in the primary and secondary side HTS conditions or 
systematically decrease over time due to aging related effects; 

• The axial heat flux profile of each channel reflects the power profile along 
the fuel channel.  The initial axial heat flux in each channel affect the 
computation of the dryout powers in each fuel channel.  The different 
axial flux profile include the ‘steady-state’ flux shape defined as the 
channel and bundle powers of the fuel channel under normal steady 
operations or a more ‘peaked’ flux profile (i.e., skewed towards the outlet 
bundles).   The initial axial heat flux profile may fluctuate due to the 
effects of burn-up, poison concentrations (e.g., Xenon), fuelling, and 
proximity of the fuel channel to reactivity control devices. 

• Pressure Tube Diametral Creep profiles are required for each fuel 
channel.   Note that the PTDC variable would more typically represent a 
descriptive parameter (see next Section 3.3.2) under the conditions 
where direct measurements of PTDC were available and constant (i.e., no 
creep effect) with reactor age.  However, the PTDC profile of each fuel 
channel is directly related to the reactor age.  The PTDC modeling is 
discussed in greater detail in Section 5.1. 
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Hence, consider the case where there are P numbers of BIC variables that are 
required to compute a response.  In this case, the vector of BIC variables is given as 
follows: 

H = (ãa, … , ãè)ü (3.7) 

 

3.3.23.3.23.3.23.3.2 CodeCodeCodeCode    Parameters Parameters Parameters Parameters     
This class of variables may not be (strictly speaking) explicit inputs to a code, but 
are inherently part of an executable program (i.e., often referred to as ‘hard-coded’).  
The distinction here is that the user, in general, does not have access to modifying 
these parameters after the code has been compiled.  After the code has been 
compiled, the code is often ‘frozen’ (see step 4 of Element 1 of the CSAU framework 
in Figure 2.1).   

There exist two types of code parameters that are implicitly used within every safety 
analysis code.   The distinct characteristics are described below for completeness, 
but the mathematical representation is common. 

Descriptive Parameters:  Descriptive Parameters:  Descriptive Parameters:  Descriptive Parameters:  These parameters are associated with defining the 
physical description of the system and meant to represent constants (i.e., not 
mathematical variables).  This includes parameters that are required in 
defining the geometry of the components within a physical system, that are 
unchanged (i.e., constant) from nominal conditions prior to the accident 
scenario and under the accident analysis conditions.  These code parameters 
are summarized as follows: 

• coefficients defining the material properties of the fuel channel (e.g., 
skin friction factors, fuel type, etc.,); 
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• fuel channel and bundle dimensions (e.g., length, diameters, etc.,); 

• fuel channel and bundle obstructions (e.g., minor losses,etc.,); and 

• coefficients/scaling factors to account for differences in the data 
obtained from a reduced-scale test configuration. 

ModelModelModelModelinginginging    Parameters:  Parameters:  Parameters:  Parameters:  This class of variables are also not (strictly speaking) 
explicit inputs to a code, but may form as part of an executable code.  These 
parameters arise in the modeling of the phenomena and can be the 
proportionality constants used in phenomenological or constitutive 
equations (i.e., physical laws), or regression coefficients used in regression 
analysis.  These code parameters are referred to as the model parameters 
and those that are relevant for the code computations of dryout powers (i.e., 
CCP) are summarized as follows: 

• model coefficients associated with predicting two phase flows; 

• model coefficients associated with predicting the critical heat flux; 

• model coefficients associated with predicting the onset of significant 
void;  

• model coefficients associated with predicting pressure tube 
diameters; 

• model coefficients/scaling factors to account for differences in the 
data obtained from a reduced-scale test configuration; and 

• proportionality constants (e.g., thermal conductivity). 

Henceforth, the descriptive and model parameters are simply referred to as    code code code code 
parametersparametersparametersparameters.   The notation and conventions used throughout this thesis to describe 



Ph.D. Thesis – D. Pun-Quach; McMaster University – Department of Mathematics and Statistics 

 

36

the code parameters considers the vector, zzzz of size K to denote the code parameters, 
as follows: 

" = (�a, … , �')U (3.8) 

The formalism introduced in this section provides a means by which one can 
evaluate the corresponding code errors associated with the inputs to a code, and the 
corresponding errors associated with the response variable.   

The uncertainty in the code parameters, and the variables that define the initial and 
boundary conditions for the problem, lead to the uncertainties in the computed 
results.  This concept is further explored in Sections 4 and 5. 

  



Ph.D. Thesis – D. Pun-Quach; McMaster University – Department of Mathematics and Statistics 

 

37

Figure Figure Figure Figure 3333....1111:  A simplified and typical CANDU Heat Transport System :  A simplified and typical CANDU Heat Transport System :  A simplified and typical CANDU Heat Transport System :  A simplified and typical CANDU Heat Transport System     
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Figure Figure Figure Figure 3333....2222:  Bruce :  Bruce :  Bruce :  Bruce NPPNPPNPPNPP    CANDU reactor with inner and outer thermal hydraulic flow CANDU reactor with inner and outer thermal hydraulic flow CANDU reactor with inner and outer thermal hydraulic flow CANDU reactor with inner and outer thermal hydraulic flow 
zones (images taken fromzones (images taken fromzones (images taken fromzones (images taken from    «45­«45­«45­«45­))))    
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Figure Figure Figure Figure 3333....3333:  A typical CANDU Fuel Bundle :  A typical CANDU Fuel Bundle :  A typical CANDU Fuel Bundle :  A typical CANDU Fuel Bundle     
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Figure Figure Figure Figure 3333....4444:  Schematic Diagrams of Fuel:  Schematic Diagrams of Fuel:  Schematic Diagrams of Fuel:  Schematic Diagrams of Fuel----Channel Configuration in (A) Nominal and (B) Channel Configuration in (A) Nominal and (B) Channel Configuration in (A) Nominal and (B) Channel Configuration in (A) Nominal and (B) 
Crept Pressure TubesCrept Pressure TubesCrept Pressure TubesCrept Pressure Tubes    
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Figure Figure Figure Figure 3333....5555:  Boiling flow in a :  Boiling flow in a :  Boiling flow in a :  Boiling flow in a horizontal horizontal horizontal horizontal tubetubetubetube    
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4444 A FRAMEWORK FOR DESCA FRAMEWORK FOR DESCA FRAMEWORK FOR DESCA FRAMEWORK FOR DESCRIBING THE NATURE OFRIBING THE NATURE OFRIBING THE NATURE OFRIBING THE NATURE OF    
ALEATORY AND EPISTEMALEATORY AND EPISTEMALEATORY AND EPISTEMALEATORY AND EPISTEMIC KNOWLEDGEIC KNOWLEDGEIC KNOWLEDGEIC KNOWLEDGE    

In this section, we develop a rigorous mathematical and statistical framework to 
clearly distinguish the different types of knowledge leading to distinct types of 
uncertainties (i.e., aleatory and epistemic uncertainties).    We argue (and show in 
later sections i.e., Section 6) that the key advantage of distinguishing between the 
two types of uncertainties is to provide more accurate information about the 
physical system.  This section consists of the following sub-sections: 

• In Section 4.1, a gedanken experiment is discussed to motivate the readers on 
some of the more philosophical and mathematical concepts introduced in the 
later sections.  The gedanken experiment shows that every physical system is 
described by at most two fundamental sources of knowledge:  

1. the epistemic knowledge, which represents knowledge due to the 
process of approximating (a true and deterministic) physical 
phenomenon; and 

2. the phenomenological or aleatory knowledge based on the 
understanding of the physical process, which is deemed true.  

• In Section 4.2, a conceptual framework is developed to clearly distinguish the 
two types of knowledge discussed in Section 4.1, and we show that this 
distinction is related to the nature of the types of knowledge.   This 
framework explores the philosophical concepts of knowledge and proposes a 
statistically based method for describing knowledge.  

• In Section 4.3, a mathematical and statistical framework is developed to 
formalize and provide the rigor (structure) required to describe, and 
characterize, the different sources of knowledge.   
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• In Section 4.4, improved decision-making models are developed based on 
epistemic and aleatory knowledge.  These enhancements relate specifically to 
the construction of more accurate tolerance limits (referred to as the EVS 
methodology) relative to the statistical inference methods in the literature, 
which do not require the explicit separation of the two distinct types of 
knowledge.   

4.14.14.14.1 A GA GA GA Gedanken edanken edanken edanken ExperimExperimExperimExperimentententent    
4.1.14.1.14.1.14.1.1 BackgroundBackgroundBackgroundBackground                                                        
Consider a scenario in which an experimenter is interested in measuring the 
temperature of a liquid (i.e., water) in a cup left sitting in a room for an extended 
period of time (see Figure 4.1).  Heat is neither deliberately added, nor removed 
from the fluid.  In addition, heat is neither deliberately added, nor removed from the 
room (environment).  Hence, the temperature of the fluid reaches the same 
temperature as the room. 

The temperature of a fluid is a measure of the energy associated with the random 
translational motion, as well as to the internal rotational and vibrational motions, of 
the molecules of a medium (e.g., liquid, gas, solid).  The temperature of the fluid is 
proportional to the molecular energies (i.e., the higher the molecular energies, the 
higher the temperatures).   Furthermore, the molecular energies reflect the 
continuous transfer of energy among the molecules, which occurs as molecules 
collide. 

Temperatures can be measured using Resistance Temperature Detector (RTD) 
technology, which detects changes in resistivity in the detector, and relates these 
changes in resistivity to temperature (i.e., the kinetic energy of the molecules).   The 
experimenter then collects n samples of measurements of ‘temperature’ in the fluid 
in the cup with the intention of inferring the true temperature of the fluid.   
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For this particular example: 

• The physical system includes:  1) the properties of the fluid (i.e., air) in the 
room.  These properties include the room temperatures, pressures, and 
humidity; and 2) the properties of the fluid (i.e., water) in the cup such as the 
fluid temperature, and density. 

• The phenomenon of interest is the transfer of heat between the room air and 
the fluid in the cup.  Note that for ‘heat transfer’ to occur, one requires a 
temperature gradient to exist between the room air and the fluid. 

• The response of interest in the physical system (due to the phenomenon) is 
the change in fluid temperature. 

We now consider an exhaustive set of all possible types of experiments that can be 
envisaged given the above scenario, and we study the impacts imposed by the 
different conditions across these sets of experiments on the collected sample of fluid 
temperatures.  We also examine how these different conditions affect our ability to 
make inferences on the true temperature of the fluid.  The four different cases are 
summarized in Table 4.1 (see page 52) as follows: 

A Non-Random Experiment - Case 1 

• perfect control and information of the environment 

• perfect measuring device 

A Random Experiment - Case 2 

• imperfect control and information of the environment  

• perfect measuring device 
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A Random Experiment - Case 3 

• perfect control and information of the environment 

• imperfect measuring device 

A Random Experiment - Case 4  

• imperfect control and information of the environment  

• imperfect measuring device 

 
4.1.24.1.24.1.24.1.2 A Summary of the Different Types of ExperimentsA Summary of the Different Types of ExperimentsA Summary of the Different Types of ExperimentsA Summary of the Different Types of Experiments    
A NonA NonA NonA Non----Random Experiment Random Experiment Random Experiment Random Experiment ----    Case 1Case 1Case 1Case 1    

Consider in this scenario the case where: 

• the temperature instrument used is perfect (no measurement error).  That 
is, the measurements of resistance by the RTD is perfect and conversion to a 
temperature is perfect; and 

• the surrounding (room) conditions (e.g., temperatures (), pressures â), 
humidity, etc.,) are perfectly controlled by technically advanced equipment 
(e.g., fans, humidifiers, etc.,).  The experimenter has the ability to control the 
room conditions, such that the environmental conditions are held perfectly 
constant.  Hence, information about the environment is known to the 
experimenter, since it is under the experimenter’s control.  

Under these conditions, there is no loss or gain in energy (e.g., heat) between the 
fluid and its surroundings, as no temperature gradient exists and hence, the 
temperatures of the fluid and its surroundings are identical.  The experimenter then 
takes n samples of temperature of the fluid and gets n identical values, as expected. 
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A RandoA RandoA RandoA Random Experimentm Experimentm Experimentm Experiment    ----    Case 2Case 2Case 2Case 2    

Consider in this scenario the case where: 

• the temperature measuring instrument used is perfect (no measurement 
error), as in Case 1; and 

• the surrounding (room) conditions (e.g., temperatures (), pressures â), 
humidity, etc.,) cannot be perfectly controlled, and the actual values of the 
room temperatures and pressures are unknownunknownunknownunknown to the experimenter.  At 
most, the experimenter knows that the room conditions may fluctuate 
significantly (e.g., ± 1 oC), and the experimenter will not know when the 
temperature changes. 

Under these conditions, there may be times when there exists a temperature 
gradient between the fluid and its surroundings.  Due to the temperature gradient, 
energy (e.g., heat) can transfer between the fluid and its surroundings.   

Hence, taking n samples of temperatures of the fluid can lead to n different values of 
temperature. 

A Random Experiment A Random Experiment A Random Experiment A Random Experiment ----    Case 3Case 3Case 3Case 3    

Consider in this scenario the case where: 

• the temperature instrument used is imperfect (i.e., there is measurement 
error).  Some examples of sources of the instrument’s imperfection include:  
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a. the instrument is sensitive not only to the fluid temperature, but also 
to the surrounding6 temperatures, pressures, and humidity; 

b. the instrument does not have a perfect relationship between 
resistance and temperature; and 

c. conversion from analog to digital signal is poor and/or affected by 
electronic noise from the surroundings.  

• the surrounding (room) conditions (e.g., temperature (), pressure â), 
humidity, etc.,) are perfectly controlled by technically advanced equipment 
(e.g., fans, humidifiers), as in Case 1.  

Under these conditions, the signal that is recorded for each temperature 
measurement may fluctuate due to the random errors associated with the imperfect 
instrument (see sources listed in b and c above).  Hence, taking n samples of 
temperatures of the fluid can lead to n different values of temperature readings, 
even though the (true) temperature is identical over the time period of interest. 

A Random Experiment A Random Experiment A Random Experiment A Random Experiment ----    Case 4Case 4Case 4Case 4    

Consider in this scenario the case where: 

• the temperature instrument used is imperfect (i.e., has measurement error).  
Examples of sources of the instrument’s imperfection are given in Case 3.  

• the surrounding (room) conditions (e.g., temperatures (), pressures â), 
humidity, etc.,) cannot be perfectly controlled, and the exact values of the 

                                                        
6   Note that for the Case 3, the environment is well controlled.  Hence, the measuring instrument is 

not affected explicitly by changes in the environmental conditions (e.g., humidity, pressures, etc.,) 
since these are held constant. 
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room temperatures and pressures are unknownunknownunknownunknown to the experimenter (similar 
to Case 2).  

Under the above conditions, there can be times when there exists a temperature 
gradient between the fluid and its surroundings.  Due to the temperature gradient, 
energy (heat) can transfer between the fluid and its surroundings.   

In addition, the signal that is recorded for each temperature measurement will 
fluctuate due to the random errors associated with the imperfect instrument. 

Hence, taking n samples of temperatures of the fluid will lead to n different values of 
temperature readings. 

4.1.34.1.34.1.34.1.3 The Random Experiment and Random Variable ConceptsThe Random Experiment and Random Variable ConceptsThe Random Experiment and Random Variable ConceptsThe Random Experiment and Random Variable Concepts    
In the discussion of the different types of experiments above, Case 1 A Non-Random 
Experiment represents a hypothetical, but interesting scenario, where reliable 
knowledge of the true temperature of the fluid in the cup can be gained merely by 
having a perfect measuring instrument (see Section 4.2.2).   

In Cases 2, 3, and 4, our experiments lead to n measurements of resistances (i.e., 
temperatures) that appear random.  In the theory of probability and statistics, 
knowledge is obtained through the use of the Random Experiment and Random 
Variable concepts, which provides a mathematical and statistical framework for 
imposing structure to the data.  A random experiment is formally defined as: 

an experiment that results in different outcomes, even though the experiment 
is repeated under (seemingly) similar conditions and manner «46­. 

The notation of the random experiment naturally leads to the concept of a random random random random 
variablevariablevariablevariable.   Mathematically, a random variable represents a mapping of the value of  
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each outcome in the random experiment to a real numerical value (see Figure 4.2 on 
page 53).  The random variable described above is the fluid temperature denoted as 
( = ((+) where a sample space for this random variable represents the range of 
possible realizations of T  is defined by ,U = -t: tr_d < t < tr��. and + represent 
realizations of sample points in the sample space for the random experiment.   

As indicated above, the experiments for Cases 2, 3, and 4 lead to variations in the 
outcome no matter how well an experimenter attempts to design and control the 
measurement process.  The random experiments for Cases 2, 3, and 4 illustrate a 
situation where one’s understanding of the complete physical systemcomplete physical systemcomplete physical systemcomplete physical system can be 
obtained by the assignment (in the Plato sense - see Section 4.2.2) of a probability to 
each outcome of our random experiment.  This probability is interpreted as our 
degree of beliefdegree of beliefdegree of beliefdegree of belief that a given outcome will occur in the experiment.   Hence, each 
element in ,U = -t: t/Ó0 < t < t/12. represents a possible realization of T, and each 
is assigned a probability of occurrence as follows (for the discrete case):  

â«( = t_­ = 3_ (4.1) 

The use of the concepts of probability provides a vehicle to characterize the reasons 
for the randomness more explicitly.  Knowledge is “gained” through the use of 
probability, as one can now make informed decisions using information obtained 
from the randomness in the given process.  

Each of the sources of randomness is now considered for Cases 2, 3, and 4, leading to 
new categories of knowledge due to the different sources of randomness.  

For Case 2 (i.e., imperfect understanding of the environment; perfect measuring 
device), the sources of this randomness can be attributed to the following: 

• The room conditions cannot be perfectly controlled and the experimenter 
does not know when the surrounding conditions (e.g., temperature) change. 
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• Since the room conditions cannot be perfectly controlled, each observation 
from the random sample reflects a different possible room condition.  As 
discussed above, when the room temperature changes, this leads to a 
temperature gradient between the fluid and its surroundings, and 
consequently to heat transfer to/from the fluid.  Any such heat transfer leads 
to changes in the temperature of the fluid. 

Hence, improved knowledge of the complcomplcomplcomplete physical systemete physical systemete physical systemete physical system can be obtained by the 
assignment of a probability to an outcome.  The type of knowledge gained in this 
case is knowledge of the phenomenological system, referred to as the 
phenomenological knowledgephenomenological knowledgephenomenological knowledgephenomenological knowledge (or aleatory knowledgealeatory knowledgealeatory knowledgealeatory knowledge    as discussed in Section 4.2.3), 
and induced through the aleatory uncertainties.  

As we progress to Case 3 (i.e., perfect understanding of the environment; imperfect 
measuring device), the source of the random values in the experiment is attributed 
to the imperfection in the measuring instrument.  That is, each signal that is 
recorded for each temperature measurement may fluctuate, due to the random 
errors associated with the imperfect instrument.  Some examples of sources of the 
instrument’s imperfection include:  

• the instrument is sensitive not only to the fluid temperature, but also to the 
surrounding temperatures, pressures, and humidity; 

• the instrument does not have a perfect relationship between resistance and 
temperature; and 

• conversion from analog to digital signal is poor and/or affected by electronic 
noise from the surroundings. 

Hence, improved knowledge of the specific physical phenomenon for Case 3 can also 
be obtained by the assignment of a probability to an outcome.  However, we 
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recognize that the type of knowledge gained in Case 3 is of a different type of 
knowledge than that in Case 2.  In Case 3, our knowledge does not reflect change due 
to the factors that affect the fluid temperature, but instead reflects the consequences 
of an imperfect temperature measurement (or computer code/model).  Hence, this 
knowledge is distinct from the phenomenological knowledge discussed in Case 2, 
and is referred to as epistemic epistemic epistemic epistemic knowledgeknowledgeknowledgeknowledge    (see Section 4.2.3),,,, and induced through 
the epistemic uncertainties.  

To complete our gedanken experiment, we progress to the final case, Case 4 
(imperfect understanding of the environment; imperfect measuring device), which 
reflects the usual types of problems experienced in the science and engineering 
fields, and could also reflect any real situation.  It is recognized here that the results 
of Case 4 reflect both sources of randomness identified in Cases 2 and 3: 

• aleatory uncertainties leading to aleatory/phenomenological knowledge; and 

• epistemic uncertainties leading to epistemic knowledge. 

The gedanken experiment illustrated that two fundamental sources of knowledge 
exist, which are critical to understanding the response of a physical system.   It is 
proposed in this thesis that these two sources of knowledge exist in all physical 
systems and improved understanding of these types of knowledge can lead to more 
accurate means to evaluate the response of the physical system.  The results of the 
gedanken experiment will be further explored in the following sections.   
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Table Table Table Table 4444....1111: : : :     Summary of the Different Cases Considered in the Gedanken ExperimentSummary of the Different Cases Considered in the Gedanken ExperimentSummary of the Different Cases Considered in the Gedanken ExperimentSummary of the Different Cases Considered in the Gedanken Experiment    
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Figure Figure Figure Figure 4444....1111: A : A : A : A random experiment involving random experiment involving random experiment involving random experiment involving the the the the measurement measurement measurement measurement of of of of temperature temperature temperature temperature of a of a of a of a fluid fluid fluid fluid 
in a controlled room (a fan is used in the room as a means to control the room in a controlled room (a fan is used in the room as a means to control the room in a controlled room (a fan is used in the room as a means to control the room in a controlled room (a fan is used in the room as a means to control the room 

temperaturetemperaturetemperaturetemperature, , , , U)    and pressure and pressure and pressure and pressure 4)))))    

 

 

Figure Figure Figure Figure 4444....2222:  The :  The :  The :  The random experiment random experiment random experiment random experiment and and and and random variablerandom variablerandom variablerandom variable, , , , T T T T ((((e.g., e.g., e.g., e.g., the temperature of the temperature of the temperature of the temperature of 
the fluid).  Sets A, B and C are subsets of Sthe fluid).  Sets A, B and C are subsets of Sthe fluid).  Sets A, B and C are subsets of Sthe fluid).  Sets A, B and C are subsets of STTTT.  .  .  .      
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4.24.24.24.2 Distinguishing Different Types oDistinguishing Different Types oDistinguishing Different Types oDistinguishing Different Types of f f f Knowledge Knowledge Knowledge Knowledge inininin    Complex Physical Complex Physical Complex Physical Complex Physical 
SystemsSystemsSystemsSystems    

In this section, we build on the results from Section 4.1, where it was identified 
through a gedanken experiment, that there exist two fundamental sources of 
knowledge, which are critical to understanding the response of a physical system.  It 
was proposed that these two sources of knowledge exist in all physical systems.   

We continue this exposition and investigate how we can build a rigorous statistical 
framework that clearly identifies and distinguishes the two types of knowledge in an 
unambiguous way.  The following subsections are discussed as follows: 

• In Section 4.2.1, we provide some background and definitions relating to 
what is meant by a complex physical system.    

• In Section 4.2.2, we explore the philosophical concepts and nature of 
knowledge.  We propose in this thesis that the key to clearly distinguishing 
the different types of knowledge lies in the understanding of the nature of 
each type of knowledge.  Thus, the nature of knowledge is explored by 
reviewing the current state and understanding in the studies of knowledge 
(epistemology), and study of the nature of being (ontology).  This section 
reviews what having knowledge means, and how one obtains knowledge. 

• In Section 4.2.3, we propose a conceptual framework through the use of 
probability theory.  The details provided here are used in subsequent 
sections to develop a formal mathematical framework for representing 
knowledge and quantifying the uncertainties therein. 
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4.2.14.2.14.2.14.2.1 Background:  Background:  Background:  Background:  Complex Physical SystemsComplex Physical SystemsComplex Physical SystemsComplex Physical Systems    
The intent of this section is to formally define what is meant by a physical system 
and complex physical systems.  In science and engineering, we require knowledge of 
a (complex) physical system, such that it can be used for the following purpose: 

• in a decision-making process to evaluate the safety levels of a physical 
system; and 

• to provide improvements to the design and/or operational processes to 
mitigate any possible consequences due to potential failure events.  

In Section 4.2.3, we will develop a framework to gain knowledge on these (complex) 
physical systems. 

The The The The Physical SystemPhysical SystemPhysical SystemPhysical System    

In this thesis, the physical system represents all entities that are contained within a 
closed, physical boundary, where a phenomenon can act.   

As an example, consider a nuclear reactor fuel channel with boundaries set between 
its inlet and outlet feeder end-fittings, and its surroundings, including the concentric 
pressure and calandria tubes separated by an annulus gas space (see Figure 4.3 on 
page 58).  The physical system includes all components of the fuel bundles, such as 
the fuel elements within each bundle, and all physical components within the fuel 
channel (e.g., spacers, bearing pads, end plates, etc.,).  The phenomena within these 
boundaries include such events as a neutron moderation, fission of U-235, heat 
conduction within a fuel element, coolant flow, etc.  An overall response of the 
physical system to the combined effect of all these phenomena is, for example, heat 
transfer to the coolant in the fuel channel and the resulting change in coolant 
temperature. 
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A A A A Complex PhysicalComplex PhysicalComplex PhysicalComplex Physical    SystemSystemSystemSystem    

In this thesis, complex physical systems will always refer to those of the kind 
referred to in Case 4 of the gedanken experiment (described in Section 4.1).  That is, 
complex physical systems involve imperfect understanding of both the 
environment/physical system, and imperfect means to approximate the phenomena 
and response of the physical system.   

For the nuclear reactor example, our physical systems are always of the complex 
kind.  A mathematical model representing the underlying governing phenomena of 
the physical system needs to be implemented, usually within a computer code.  
However, it is rare that the implementation will represent the full underlying 
phenomena.  Some examples of these limitations are given as follows: 

• this physical system can take on a large number of possible nominal states, 
where each nominal state is a snapshot at a moment in time that reflects  
operationally steady-state conditions (i.e., the reactor is not under an upset 
condition).  The initiating event is defined as something apart from the 
nominal state, and disturbs the system in a significant way, causing a notable 
change in a response to the physical system.  Knowledge of both the nominal 
state and the perturbed states are required in any nuclear safety analysis.  
However, the precise time of occurrence of the initiating event cannot be 
known precisely in our analysis, and this introduces a source of imperfect 
understanding of the environment’s conditions before and after the initiating 
event. 

• in safety analysis, we require to make inference of the operational power 
levels in all fuel channels in the reactor core, but we only have information on 
a subset of channels for which our mathematical models are built from.  
Hence, this limitation introduces a source of imperfect understanding of the 
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environment conditions for fuel channels, which we do not have information 
for. 

This knowledge is reflected in the random representation of the response of the 
underlying physical system (see Section 4.3).  Thus, the physical system in our work 
is characterized as complex because it requires a random representation (model) of 
the response of the complete physical system.  Note that a sub-system of the 
complete complex physical system is not complex, in that all the information in the 
sub-system can be available in a deterministic form. 

In addition, our mathematical model, representing the underlying governing 
phenomena of the physical system, requires the use of direct measurements; and/or 
computer codes.  Both of these are sources of imperfection due to the 
approximations in the code and/or imperfections in the measuring instruments. 

In subsequent sections, we identify that for complex physical systems, we will 
require two types of knowledge: knowledge that is related to the phenomenon (i.e., 
aleatory knowledge) and knowledge that is due to the approximation (i.e., epistemic 
knowledge).  The framework to gain both these types of knowledge is discussed in 
greater detail in Section 4.3. 
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Figure Figure Figure Figure 4444....3333::::        An example of a physical system (i.e., control volume):  a typical CANDU An example of a physical system (i.e., control volume):  a typical CANDU An example of a physical system (i.e., control volume):  a typical CANDU An example of a physical system (i.e., control volume):  a typical CANDU 

fuel channelfuel channelfuel channelfuel channel7777....    

 

 
4.2.24.2.24.2.24.2.2 The The The The Nature of KnowledgeNature of KnowledgeNature of KnowledgeNature of Knowledge    
While this thesis is concerned with statistical and mathematical issues in nuclear 
safety analysis, we recognize that the modeling of uncertainties is intimately 
connected with the manner for which knowledge is acquired.  This is a topic where 
the study has roots in the perplexing question (see below) posed by philosophers in 
ancient Greece.  Solutions to these problems continue to interest philosophers.  We 
draw on these concepts and the results of these studies to guide us in defining what 
is needed to “gain knowledge” as a means to allow us to sufficiently model and infer 
information about our complex physical systems.   

As a result, and for the purpose of completeness, this section has been included to 
provide some requisite background material. 

We start by looking at the philosophical problem of knowledge, which goes back 
thousands of years, and has occupied some of the most brilliant minds humanity has 
                                                        
7 Image taken from http://www.thermopedia.com/content/611/. 
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produced.  Numerous summaries of the state of epistemology exist, and perhaps a 
typical example is «47­.  Reference «47­ provides a wide-ranging, but relatively 
compact summary of the state of epistemology.  The difficulties associated with 
defining knowledge have been recognized in Plato’s dialogue, the Meno, where 
Socrates is questioning the difference between true opinion and knowledge.  While it 
is clear that having knowledge then requires that one also has a true opinion, the 
converse does not necessarily hold (e.g., one may guess the answer and be correct, 
but this does not constitute knowledge).  In what is now referred to as Plato’s 
problem, the question has been posed as follows «48­:  

 What is the distinctive aspect that makes true opinion different from 
knowledge? 

The approach to answer this question (which even Plato himself suggested) has 
been to reformulate the problem statement as follows: 

What is that which, when addedaddedaddedadded to true opinion, yields knowledge? 

Philosophers have attempted to address this question, and have considered a 
number of logical choices to resolve Plato’s problem.  Two of the more compelling 
solutions that may apply to the complex physical problems faced in science and 
engineering include:  

a. the need for adequate evidence; and  

b. the use and concepts of probability.    

Many have objected to the usage of the first, due to the fact that it is subjective and 
the presumption (i.e., circular arguments) that evidence actually leads us directly to 
gaining knowledge.  The difficulty with this presumption is that it is possible to have 
evidence and still not know.  One example of this includes having evidence of the 
election outcome to support one’s opinion that a candidate will win, but at no time 
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can%anyone%claim%that%one%has%knowledge%that%this%opinion%is%true.%%That%is,%having%

sufficient%evidence%does%not%lead%us%to%the%truth%until%the%final%outcome%is%obtained.%%

Hence,%the%presumption%that%evidence%leads%us%to%the%truth%is%not%necessarily%true.%%

Another%example%includes%a%researcher%who%presents%adequate%evidence%supporting%

her%hypothesis%that%no%one%can%live%on%planet%Mercury.%%However,%this%evidence%does%

not%lead%us%to%the%required%knowledge%that%life%does%not%exist%on%Mercury,%but%only%

that%the%evidence%available%(relative%to%existing%evidence)%cannot%support%the%

conclusion%that%life%does%exist%on%Mercury.%%What%this%example%and%the%previous%

example%point%to%is%that%having%adequate%evidence%does%not%lead%us%conclusively%to%

the%claim%that%our%true%opinion%leads%us%to%knowledge%based%on%evidence.%%%

This%naturally%leads%us%to%the%possibility%of%using%probability%as%a%means%of%gaining%

knowledge.%%While%the%concept%of%adequate%evidence%requires%us%to%presuppose%the%

concept%of%knowledge,%the%use%of%probability%need%not%do%so%[48].%%However,%even%

under%the%concept%of%probability,%the%answer%to%the%difficult%question:%%“What%is%the%
distinction%between%knowledge%and%true%option?”%%would%not%provide%us%with%the%
answer%to%Plato’s%original%understanding%of%the%question%[48].%%%

In%order%to%resolve%this%fundamental%issue,%we%solve%a%nearby%problem%where%the%

true%opinion%is%allowed%to%be%based%on%some%knowledge%(i.e.,%prior%knowledge).%%This%

is%realistic%in%complex%physical%systems.%%For%example,%it%is%impossible%to%have%useful%

true%opinion,%which%is%not%based%on%some%existing%fundamental%knowledge%(e.g.,%

conservation%laws%of%mass,%energy,%and%momentum).%%Our%problem%now%is%that%we%

search%for%something%that,%when%added%to%this%‘true%opinion’,%leads%us%to%more %
knowledge.%%%

We%note%that%there%are%other%existing%views%of%knowledge%based%on%the%Standard%
View%[47]%and%summarized%as%follows:%
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1. We know a large variety of things, including facts about our immediate 
environment, our own thoughts and feelings, the mental states of others, the 
past, the future, mathematics, and morality. 

2. Our primary sources of knowledge are perception, memory, testimony, 
introspection, reasoning, and rational insight. 

However, we will not use this general understanding of knowledge in our work 
because it is not indigenous to the natural sciences and it does not lend itself to a 
mathematical description of knowledge as intended for this thesis.  We claim that 
the nearby Plato problem, as described above, serves our purpose well. 

A second large area of philosophical endeavour is concerned with what exists (i.e., 
the study of ontology).  The ideas relevant for our purpose of establishing a 
framework for gaining knowledge are discussed here.  It is harder to come to an 
overall summary of the state of ontology in a form that is useful to the present work, 
although «49­ provides an accessible overview.  Instead, we rely on «50­ and a 
number of other documents to focus on the importance of accepting the notion that 
“true values” are presumed to exist even if they are unobservable, and to have 
practical meaning.  The potential for confusion and dispute exists here, and is 
acknowledged by the following statement in «50­: 

If a true value is unknowable, then the need for the concept can be 
questioned (this will also be discussed later in connection with the IEC8 
approach).  However, as discussed earlier, in the GUM9 approach, the concept 
of true value is necessary for describing the objective of measurement.  The 
concept of true value is also necessary for formulating a measurement model.  

                                                        
8 International Electrotechnical Commission.  
9 Guide to the Expression of Uncertainty in Measurement.  
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This concept of a true value is also important in formulating a computer model as 
well «51­.  Therefore, a third assumption we make in this work is: 

• True values exist, and although they cannot always be observed directly, 
they play an essential role. 

Bearing the above ideas in mind, we next formally construct a conceptual 
framework that allows a mechanism for gaining knowledge through probability. 

4.2.34.2.34.2.34.2.3 A Conceptual Framework for Knowledge Through the Use of A Conceptual Framework for Knowledge Through the Use of A Conceptual Framework for Knowledge Through the Use of A Conceptual Framework for Knowledge Through the Use of 
ProbabilityProbabilityProbabilityProbability    

We begin by first defining some concepts, which will be formalized mathematically 
in Section 4.3.  As introduced in Section 4.1 and at the beginning of Section 4.2, the 
concept of the physical system was presented.  The physical system was defined as 
that which includes all entities contained within a closed, physical boundary.  In this 
sense, the physical system, 7, is the source of the truth characterized by perfect 
understanding, and hence it is assumed that the physical system is a deterministic 
concept (non-random).  In the usual case of complex physical problems, one does 
not work with the (complete) physical system, 7    but rather, only information on a 
physical sub-system is available.  For example, we may only have information on 
temperatures (due to some measuring device) for less than 10% of the total number 
of channels in a reactor core.  Hence, we denote the physical sub-system as 7#.     It is 
assumed that there exists a mathematical description J    that represents 7# well in a 
sense that J    can produce results which are in good agreement with the response of 
7#.  In other words, when the results of J    are in a sufficiently close neighbourhood 
of the response of 7#. . . . In this sense, the philosophical concept of true opinion (see 
Section 4.2.2) is interpreted as a phenomenological description of a physical sub-
system (see Figure 4.4 on page 66).  This description and the corresponding 
response are also deterministic, and so is any computer code that represents, J. . . . 
While the phenomenological description of the physical sub-system is necessary, it 



Ph.D. Thesis – D. Pun-Quach; McMaster University – Department of Mathematics and Statistics 

 

63

is not sufficient to understand the complete physical system, 7    that is needed for 
decision-making purposes (i.e., our decision on the safety of the nuclear reactor is 
not based on 22 fuel channels, but based on all 480 channels).        We propose (which 
will be more formally defined in Section 4.3) the usage of probability such that the 
phenomenological description of a physical sub-system 7# can be used to make 
inferences about the complete physical system, 7.  .  .  .  That is, we represent the 
phenomenological description of the complete physical system in a non-
deterministic (i.e., random) sense through the “addition” of probability (see Figure 
4.4 on page 66).  This form of probability that gives rise to the (random) 
phenomenological knowledge is a result of a certain type of uncertainty, referred to 
as aleatory uncertaintyaleatory uncertaintyaleatory uncertaintyaleatory uncertainty.  Here, we note that this type of uncertainty/probability 
discussed relates only to knowledge gained from the phenomenological (i.e., true) 
physical processes and behaviour only.   

Drawing from the results of Case 3 in the gedanken experiments (i.e., perfect 
understanding of the environment; and imperfect measuring device), as discussed in 
Section 4.1, there exists another source of knowledge that is fundamentally different 
from that of the phenomenological/aleatory knowledge described above.  That is, 
this knowledge relates to how a (observable) response approximates the true 
response.  Such an approximate response can be obtained by: 

• direct measurements; 

• fitting of a mathematical model to the measured data, and; 

• computer codes, which implements a set of mechanistic models to represent 
the phenomena that describe the behaviour of the physical sub-system.   

We refer to this knowledge as epistemic knowledgeepistemic knowledgeepistemic knowledgeepistemic knowledge and is fundamentally different 
from phenomenological knowledge.  Hence, using probability to augment the true 
opinion (i.e., phenomenological description) to get an approximate response that 
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reflects epistemic knowledge.  Naturally, the uncertainty representing this form of 
probability is referred to as epistemic uncertainty. The results above (and as 
summarized in Figure 4.4 on page 66), distinguish very fundamentally, the different 
types of uncertainty that arise through the use of probability as a means to gain 
knowledge (i.e.,  aleatory uncertainty and epistemic uncertainty).  Knowledge from 
one’s true opinion of the physical system can now be deduced accordingly (being of 
distinguished type and non-deterministic in its nature): 

1. Phenomenological knowledge; and 

2. Epistemic Knowledge. 

From the gedanken experiments discussed in Section 4.1 and the conceptual 
framework for knowledge summarized in Figure 4.4 (on page 66), it can be 
observed that the following cases of the gedanken experiments describe the 
different types of knowledge as follows: 

• Case 1 (perfect understanding of the environment; and perfect measuring 
device) lead to Phenomenological Knowledge (deterministic)Phenomenological Knowledge (deterministic)Phenomenological Knowledge (deterministic)Phenomenological Knowledge (deterministic), which coincides 
with the phenomenological description;;;; 

• Case 2 (imperfect understanding of the environment; and perfect measuring 
device) lead to Phenomenological Knowledge (nonPhenomenological Knowledge (nonPhenomenological Knowledge (nonPhenomenological Knowledge (non----dedededeterministic);terministic);terministic);terministic); 

• Case 3 (perfect understanding of the environment; and imperfect measuring 
device) lead to Epistemic Knowledge (nonEpistemic Knowledge (nonEpistemic Knowledge (nonEpistemic Knowledge (non----deterministic);deterministic);deterministic);deterministic); 

• Case 4 (imperfect understanding of the environment; and imperfect 
measuring device) lead to both 1) Phenomenological Knowledge (nonPhenomenological Knowledge (nonPhenomenological Knowledge (nonPhenomenological Knowledge (non----
deterministic)deterministic)deterministic)deterministic); and 2) EpistemicEpistemicEpistemicEpistemic    Knowledge (nonKnowledge (nonKnowledge (nonKnowledge (non----deterministic)deterministic)deterministic)deterministic).  



Ph.D. Thesis – D. Pun-Quach; McMaster University – Department of Mathematics and Statistics 

 

65

 Using the conceptual model presented here and illustrated in Figure 4.4, a formal 
mathematical framework can now be developed, such that one can clearly 
distinguish and quantify aleatory and epistemic uncertainties. 
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    Figure Figure Figure Figure 4444....4444:  A Framework for Gaining Knowledge Through Probability:  A Framework for Gaining Knowledge Through Probability:  A Framework for Gaining Knowledge Through Probability:  A Framework for Gaining Knowledge Through Probability    
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4.34.34.34.3 The The The The MathMathMathMathematical Framework for the Representation of ematical Framework for the Representation of ematical Framework for the Representation of ematical Framework for the Representation of 
KnowledgeKnowledgeKnowledgeKnowledge    

A mathematical framework is described in this section, which reflects the distinct 
nature between epistemic and aleatory uncertainties.  This framework builds on the 
concept of applying probability to true opinion as a means to gain knowledge.  This 
framework lends itself to the concepts of a random variable (as discussed in Section 
4.1.3) as a means of representing knowledge.  Thus, the random variables describe 
both the aleatory uncertainty (phenomenological/aleatory knowledge) and 
epistemic uncertainty (epistemic knowledge).  In this section, we show how the 
distinction between the two types of knowledge can be represented by structural 
models ( «15­ and «17­).  These structural models relate the response in the physical 
system, 7 to the (observable) data that approximates the response. 

Recall the notation used in Section 3.3, which describes the different inputs to a 
computer code required to compute a response of a physical system due to a 
phenomenon: 

• Boundary and Initial Condition (BIC) variables, $    (see Section 3.3.1);;;; 

• Code parameters, " (see Section 3.3.2). 

Throughout this discussion, it is assumed that for any point in time or space, there 
exists fixed, unobservable (i.e., true) values of xxxx and zzzz.  Furthermore, the concept 
described here also builds on the discussion presented in Sections 4.1 to 4.2.3.  The 
framework requires formal definitions, and this is provided below.   

Definition 1:    Physical System, Physical System, Physical System, Physical System, 7 = 7($):   

The physical system, 7,,,, represents all entities that are contained within a closed, 
physical boundary.  The response of a physical system can be induced by a 
phenomenon (e.g., heat transfer in the fuel channel coolant).  The physical system 
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depends only on knowledge of the BIC variables, $    that are all fixed (non-random) 
variables.  Hence, 7 is a deterministic concept. 

The example given in Case 1: NonNonNonNon----Random ExperimentRandom ExperimentRandom ExperimentRandom Experiment of Section 4.1 represents a 
(complete) physical system, where all information about the physical system is 
known (e.g., the BIC variables in this example are: x=(x=(x=(x=(x1,x2)’ )’ )’ )’ where x1 is the room 
temperature and x2 is the room pressure, and both are known without error (i.e., 
constant for all times)). 

The usual situation for complex physical systems is that knowledge of the complete 
physical system may not be available, and only a subset of information is accessible.  
Consider as an example Case 2 (i.e., imperfect understanding of the environment, 
and perfect measuring device) of Section 4.1, where the BIC variables (i.e., the room 
temperature and room pressure are both unknown and fluctuate).  This example 
illustrates an incomplete or physical sub-system reflecting knowledge based on onlyonlyonlyonly 
a subset of information (i.e., we only have a sample of data representing n different 
room temperatures).  Note that in the above example, had all knowledge of x1 for all 
points in time been known, then our understanding of the physical system would be 
complete.  Other examples include a sample of temperatures, powers, and diameters 
for J reactor fuel channels where J is a subset of channels from the total of all fuel 
channels (e.g., 480 channels).  The physical sub-system is defined as follows: 

Definition 2:    Physical Physical Physical Physical SubSubSubSub----System, System, System, System, 7# = 7#($):   

The physical sub-system, 7# represents a subset of the (complete) physical system 
and takes on similar properties as 7 (such as responding to a phenomenon and 
being a deterministic concept). 

The fundamental assumption in this thesis is that the phenomena of the physical 
systems (complete or sub-system) being considered are reasonably well 
understood.  Hence, given $ and zzzz (i.e., the BIC variables and the code parameters, 
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respectively), there exists a phenomenological description, J = J($; 7),,,,    such that it 
represents the intended reality.  This assumption provides a reference, perfect 
knowledge, or truth as defined formally below.  Note that in general, one works with 
the physical sub-system, as the information about the complete physical system is 
lacking (naturally, the system is complete if the sub-system coincides with the 
complete physical system).  A concrete physical example is given in Equation (5.1), 
which involves the modeling of the pressure tube diametral creep phenomenon in a 
fuel channel.  Here, the modeling is based on a finite physical sub-system due to the 
available data (i.e., J=37 fuel channel measurements out of a possible 480 total fuel 
channels in a reactor core).  Hence, there is a need for us to describe the 
mathematical representation of the physical sub-system, and this is given below in 
Definition 3. 

Definition 3:    TTTThehehehe    Phenomenological Description onPhenomenological Description onPhenomenological Description onPhenomenological Description on    7#::::   

Let $ and " be the BIC variables and the code parameters as defined in Section 3.3.  If 
there exists 78 ,,,, such that J($;  78) lies in a sufficiently close neighbourhood of the 
response, 7# = 7#($), then J($;  78) is deemed a phenomenologically correct 
mathematical representation/description for    7#.... Note that there may be other 
values (e.g., "′#))))    that may satisfy this definition. 

As discussed in Section 4.2.3, the Phenomenological Description is interpreted as the 
true opinion.  Probabilities that can be added to the true opinion lead us to 
phenomenological knowledge and epistemic knowledge (see Figure 4.4 on page 66), 
such that one can gain knowledge in its philosophical sense «48­. 

Arriving at phenomenological knowledge and epistemic knowledge would require 
the following sources of uncertainties, which will now be explored: 

• epistemic uncertainties; and 
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• aleatory uncertainties. 

4.3.14.3.14.3.14.3.1 Epistemic Knowledge and Epistemic UncertaintiesEpistemic Knowledge and Epistemic UncertaintiesEpistemic Knowledge and Epistemic UncertaintiesEpistemic Knowledge and Epistemic Uncertainties    
As discussed throughout Section 4.2.2, knowledge is gained by the addition of 
probabilities, where epistemicepistemicepistemicepistemic knowledgeknowledgeknowledgeknowledge is always meant to reflect the knowledge 
associated with methods/tools used to approximate the phenomenon, rather than 
knowledge gained through the phenomenon itself.  Using the results of Definition 3, 
we can define epistemic knowledge on 7#    as an outcome of epistemic knowledge of 
the BIC variables: 

: = $ + 8: (4.2) 

and epistemic knowledge of the code parameters: 

!# = 7# + 8! (4.3) 

Note that in the left hand-side of (4.2) and (4.3), epistemic knowledge is expressed 
as random variables.  The randomness is induced through epistemic uncertainties: 
8:    and 8!# , , , , which are both random vectors that relate :    to $ and !#    to 7#, , , , 
respectively and with the following properties: 

• $ and 7# are both fixed (non-random); 

• 8:    and 8!#may have non-zero means and may be statistically dependent. 

Hence, epistemic knowledge on 7# naturally follows:    

J(:;!#) = J($; 7#) + I (4.4) 

where:  
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• J($; 7#) is the phenomenological description of 7# as given in Definition 3; 
and 

• I =  I($; 7#; 8:; 8!)  = J($+ 8:; 7# + 8!) ó J($; 7#) is the epistemic 
uncertainty giving rise to the probability needed to gain epistemic 
knowledge. 

4.3.24.3.24.3.24.3.2 Phenomenological KPhenomenological KPhenomenological KPhenomenological Knowledge nowledge nowledge nowledge and and and and Aleatory UncertaintiesAleatory UncertaintiesAleatory UncertaintiesAleatory Uncertainties    
As discussed at the beginning of Section 4.3, knowledge of the complete physical 
system is typically beyond the reach of the analyst.  Rather, only the information on 
the physical sub-system is available, while inference for the complete system is 
required.  Note that knowledge in this context is fundamentally different from 
epistemic knowledge, which is related to approximation.   

To extend from the physical sub-system to the (complete) physical system, aleatory 
knowledge representation by the BIC variables is required, and expressed as: 

" = $ + O" (4.5) 

Aleatory knowledge representation by the code parameters is also required, and 
expressed as: 

# = 7P + O# (4.6) 

where again, the left hand-side of (4.5) and (4.6) represent aleatory knowledge, 
expressed as a random variable.  In addition, 7Pis problem dependent and chosen in 
such a way that the sample space of #    contains    7#.... 

The randomness is induced by the aleatory uncertainties O"     and O#, which are 
random vectors that relate " to $ and # to 7P, respectively and with these properties: 

• $ and 7P are both fixed (non-random); 
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• "    and #    may have non-zero means and    may be statistically dependent. 

Note that the phenomenological description of the physical sub-system is defined by 
a fixed set, 7#.  .  .  .  In order to extend this to the complete physical system, we need to 
consider 7#    as a random sample.   

Hence, the aleatory (i.e., phenomenological) knowledge representation on 7 
naturally follows:    

J(";  # ) = J($; 7P) + T (4.7) 

where: 

• 7P is derived such that    J($; 7P) is also a phenomenological description of the 
physical sub-system based on Definition 3 (similar to J($; 7#)); 

• T = T$$; 7P; O#; O#% = J($+ O"; 7P + O#) ó J($; 7P) is the aleatory 
uncertainty giving rise to the probability needed to gain aleatory (i.e., 
phenomenological) knowledge on 7. 

4.44.44.44.4 Application of Knowledge Application of Knowledge Application of Knowledge Application of Knowledge ----    Structural Models Structural Models Structural Models Structural Models for Statistical for Statistical for Statistical for Statistical 
Inference Inference Inference Inference     

The mathematical description presented in Section 4.3 needs to be organized in a 
manner that would serve as a model to enable inquiries about the state of affairs of a 
physical system in light of uncertainties.  These states of affairs include the 
evaluation of the operational or safety margins of nuclear power plants under given 
design basis conditions.  We will refer to a model that enables such an inquiry as a 
structural model.  Such a structural model preserves the distinct nature of the 
uncertainties involved. 
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4.4.14.4.14.4.14.4.1 The Coupled Structural ModelsThe Coupled Structural ModelsThe Coupled Structural ModelsThe Coupled Structural Models    
Let U = J(";  #) represent a random simulation of 7($). . . .  Applying the definition of 
the aleatory uncertainty, as described in Section 4.3.2, gives the following: 

U = J($; 7P) + T($; 7P; O"; O# ) (4.8) 

Consider the usual situation for which the simulation of a complex physical system 
consists of two parts.  That is, the BIC variables can be expressed as two separate 
components (e.g., $ = «$P, q­U) ) ) ) where: 

• xxxxoooo, are reasonably well understood and can be estimated very well; 

• q, require a mathematical model to define their contribution to the response 
of the physical system.  Note that q is always thought of as a fixed (non-
random) variable. 

To reflect this situation, we define a function: 

UP = UP(&; 7P) (4.9) 

In this notation, the components of xxxxoooo are accounted for only implicitly because their 
contribution to the overall probability distribution of U is only through O' = O"(in 
the expression for T.  Thus, the structural equation for U is given as follows: 

U = UP(q; 7P) + T(q; 7P; O"(; O# ) (4.10) 

The complete description of T is obtained by replacing q with Q, where Q is obtained 
by randomization of q.  Note that q is introduced as that part of $, which possesses 
less information.  Typically, we will not know the pdf of Q, rather it will be 
represented only by a random sample.  Hence: 
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U = UP(Q; 7P) + T(Q; 7P; O"(; O#) (4.11) 

The complexity of U    in (4.11) arises from the different sources of aleatory variation.  
That is, uncertainties in U include the aleatory uncertainties in the BIC variables 
(O"() and code parameters (O#) as well as aleatory variations in the BIC variables 
themselves.  Equation (4.11) allows us, for example, to manage the risk to the public 
from a process that is described by J("; #).  Thus, if WX is a percentage point of U 
defined by (4.11), which represents a safety limit, then the risk to the public from 
exceeding this limit in an accident scenario that governs the physical system is the 
probability 1-[. 

In the scenario that we described, the aleatory uncertainty T can reasonably be 
estimated by a Monte-Carlo simulation.  The full implementation of the Monte-Carlo 
simulation requires the estimation of the term UP(Q; 7P), which will be done using a 
computational code that implements UP,,,, and using the estimates of the variables.  

This leads to the second structural equation and is derived by applying the definition 
of epistemic uncertainty, as described in Section 4.3.1, as follows: 

J(:;!#) = J($; 7#) + I($; 7#; 8:; 8!#)   (4.12) 

Based on the above discussion, we are interested only in the components q of xxxx. 

Thus: 

J();!#) = UP(q; 7#) + I(q; 7#; v; 8!#)   (4.13) 

where f = � + v. 

It is taken to be understood that J();!#) is the computed data, £,,,, which 
approximate UP(q; 7#) with an error I(q; 7#; v; 8!#).  Thus,  



Ph.D. Thesis – D. Pun-Quach; McMaster University – Department of Mathematics and Statistics 

 

75

£ = UP(q; 7#) + I(q; 7#; v; 8!)   (4.14) 

Replacing q with a corresponding random variable Q, we get: 

V = UP(Q; 7#) + I(Q; 7#; v; 8!#)   (4.15) 

We distinguish between £ and V in a way that £ is the actual code output, while 
Vcan be obtained only as a collection of values, which are obtained by a code at 
some fixed input variables. 

Recall that the mathematical models under consideration are deterministic in 
nature, in that the actual parameters that they use cannot be random variables. It is 
only the interpretation of these values as random (epistemic) that leads to the 
mathematical understanding of the structural model. 

Hence the (basic) coupled structural models for the fixed input q is given as follows: 

U = UP(q; 7P) + T(q; 7P; O"(; OL) (4.10) 

£ = UP(q; 7#) + I(q; 7#; v; 8!#)   (4.14) 

Note that (4.14) is defined for the physical sub-system only. Thus, in order to use the 
data £ to estimate UP on the whole physical system, we need to assume that (4.14) 
holds for every sub-system, and that these sub-systems are random samples in the 
whole physical system. 

The (full) coupled structural models for the random variable Q are: 

U = UP(Q; 7P) + T(Q; 7P; O"(; OL) (4.11) 

V = UP(Q; 7#) + I(Q; 7#; v; 8!#)   (4.15) 
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As mentioned above, V can be evaluated only at discrete values of q, which are 
considered random realizations of Q.  Thus, in practise, V can be represented only as 
a finite (random) sample.  

In any application, this will need to be considered in any solution approach. 

4.4.24.4.24.4.24.4.2 Statistical Inference of the Safety Margins Using a Tolerance Limit Statistical Inference of the Safety Margins Using a Tolerance Limit Statistical Inference of the Safety Margins Using a Tolerance Limit Statistical Inference of the Safety Margins Using a Tolerance Limit 
ApproachApproachApproachApproach    

In Section 4.4.1, we referred to WX as a percentage point of U defined by (4.11), which 
represents a safety limit. Thus, the risk to the public from exceeding this limit in an 
accident scenario that governs the physical system is the probability 1-[. Since U is 
unobservable, we need to estimate WX. 

An appropriate estimate is the (upper) tolerance limit k, which can be defined by: 

â*k > WX, = \ (4.16) 

for some prescribed confidence level \. The tolerance limit, k, is derived from the 
data V in (4.15), and this is where k derives its probability, â.   

For a finite random sample â, b̂, … , d̂, where 

_̂ = _̂(V)  

which satisfies  ¨« _̂­ = ¨«U­, we define k by: 

k = ^̀ + efg (4.17) 

where ^̀    is the sample mean, and fg is the sample standard deviation of â, b̂, … , d̂. 
The tolerance limit factor e is defined in such a way that (4.17) satisfies (4.16) for a 
given [ and \ (where e can be determined by the EVS methodology described in 
«3­). 
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Note that k is based on the structural model described in Section 4.4.1 and as such 
is not the standard tolerance limit.  Typically, the definition of a tolerance limit 
requires the data to come from the same probability distribution, which defines the 
percentage point.  In definition (4.17) the distributions are distinct.  The percentile 
WX is defined by (4.11), and the data V by (4.15).  A particular application of the 
tolerance limit in (4.16) is in decision-making associated with a particular safety 
analysis problem.  That is, if i is a safety limit specified in such a safety analysis 
problem, then the issue is to decide whether or not: 

WX < i  

Upon computing w (a particular realization of k(in (4.16)), if we find that 

- < i (4.18) 

then we will conclude that  WX < i at a tolerance level [/\.  Note that [ and \ are 
prescribed in such a way so as to manage the risk of WX exceeding the safety limit i.  

What is important in the construction of the  [/\ tolerance limits based on EVS 
methodology is the distinction and separation of the aleatory and epistemic 
uncertainty distributions that are needed for k. . . .     
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5555 AAAA    FRAMEWORK FOR EVALUAFRAMEWORK FOR EVALUAFRAMEWORK FOR EVALUAFRAMEWORK FOR EVALUATINGTINGTINGTING    THE UNCERTAINTIES THE UNCERTAINTIES THE UNCERTAINTIES THE UNCERTAINTIES 
IN A SAFETY ANALYSISIN A SAFETY ANALYSISIN A SAFETY ANALYSISIN A SAFETY ANALYSIS    CODECODECODECODE    

In the evaluation of the neutronic or process trip coverage of a reactor’s shutdown 
system, a number of different postulated design basis accident scenarios are 
considered, such as a Loss of Regulation (LOR), a Small Break Loss of Coolant 
Accident (SBLOCA), or Loss of Flow (LOF).  The evaluation of the operational and 
safety margins associated with each DBA (see Appendix A: Definitions) requires a 
thermal hydraulic code that can model the system and channel-level response prior 
to, and also during, the accident scenario.  In the BEPU nuclear safety community, 
and in the environmental risk and safety assessment industry ( «6­, «7­, and «8­), the 
evaluation of the uncertainties that affect the final decision assessment of the 
operational safety margins is a critical component in a BEPU based safety analysis, 
as outlined in the CSAU framework (see Figure 2.1 on page 20).  These uncertainties 
have been classified into two distinct classifications as follows: 1) aleatory 
uncertainty; and 2) epistemic uncertainty.  The origins and the nature of an aleatory 
and epistemic uncertainty are ambiguous in the current literature (as discussed in 
Section 2.3).  

In this section, the mathematical and statistical framework developed in Section 4 is 
applied to a typical nuclear safety analysis problem to demonstrate how one 
distinguishes the different types of uncertainties.  The presentation provides a clear 
application of how phenomenological (aleatory) knowledge and epistemic 
knowledge can lead to the required knowledge of complex physical systems, such 
that one can evaluate the safety margins of the reactor using the statistical inference 
method developed in Section 4.4.   

The general overview of the proposed framework is applied to the code 
computations of fuel channel dryout powers used in many typical safety analyses.  
The overview is summarized in Figure 5.1(see page 79), which is a general 
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framework for any BEPU safety analysis.  The overview reflects the explicit 
recognition that there are different inputs required to accurately model an accident 
condition.  The classification between the different input variables and parameters 
required for a code computation is discussed in greater detail in Section 3.3 (e.g., BIC 
variables, and code parameters).   

 

Figure Figure Figure Figure 5555....1111:  Code Validation Framework for a Safety Analysis Code:  Code Validation Framework for a Safety Analysis Code:  Code Validation Framework for a Safety Analysis Code:  Code Validation Framework for a Safety Analysis Code    
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5.15.15.15.1 Phenomenological Phenomenological Phenomenological Phenomenological KnowledgeKnowledgeKnowledgeKnowledge    and Aleatory Uncertaintiesand Aleatory Uncertaintiesand Aleatory Uncertaintiesand Aleatory Uncertainties    
As discussed Section 4.3, for complex physical problems, such as the safety analysis 
of a nuclear reactor, knowledge of the complete physical system is beyond the reach 
of the analyst.  Rather, only the information on the physical sub-system is available, 
and an extension to the complete physical system is needed to provide the required 
inference.  To extend from the physical sub-system to the (complete) physical 
system, one applies aleatory uncertainties (as discussed in Section 4.3), which are 
expressed through the input variables of the model or code.  Two separate cases are 
typically encountered in the reactor safety analysis, where aleatory uncertainties 
can arise either through the code parameters, zzzz (i.e., in Case 1) or through the BIC 
variable, x x x x (i.e., in Case 2): 

Case 1Case 1Case 1Case 1:  Insufficient information for the complete system affecting the code code code code 
parametersparametersparametersparameters.  This is discussed in Section 5.1.1; and 

Case 2:Case 2:Case 2:Case 2: Insufficient information for the complete system affecting the BIC    
variablesvariablesvariablesvariables.  This is discussed in Section 5.1.2. 

5.1.15.1.15.1.15.1.1 Case 1: Case 1: Case 1: Case 1: Insufficient Insufficient Insufficient Insufficient InformationInformationInformationInformation    for the Complete Systemfor the Complete Systemfor the Complete Systemfor the Complete System    Affecting Affecting Affecting Affecting 
the Code Parametersthe Code Parametersthe Code Parametersthe Code Parameters    

Consider the case for the variable: Pressure Tube Diametral Creep (PTDC), 
discussed in Section 3.2.2.  Pressure tube diameters undergo physical deformation 
(which is a phenomenon of the physical system) due to irradiation and harsh 
reactor conditions (e.g., high coolant temperatures and pressures - see Section 
3.2.1).  It is important to monitor and manage the extent of PTDC due to its impact 
on the safety margins.  However, rarely does one have direct measurements for all 
J=480 channels and for all reactor units.  Typically, we have only a subset of 
channels.  Hence, under these conditions, one can only express a phenomenological 
description, J of the PTDC response for the physical sub-system, 7# (see Definition 
3), which represents our true opinion.  This work is provided in Section 5.1.1.1.  The 
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extension to the complete physical system is then described in Section 5.1.1.2, which 
requires the use of probabilities to arrive at the phenomenological knowledge. 

 
5.1.1.15.1.1.15.1.1.15.1.1.1 True Opinion:  Phenomenological Description on the Physical SubTrue Opinion:  Phenomenological Description on the Physical SubTrue Opinion:  Phenomenological Description on the Physical SubTrue Opinion:  Phenomenological Description on the Physical Sub----SystemSystemSystemSystem    

Consider the case where there exist measurements of PTDC (also known as 
strain10), f_o where × = 1,2, … , Ø describe the axial position (i.e., bundle position) in a 
fuel channel, and Ù = 1,2, … , Jê are the indices for the set of fuel channels measured.  
In addition, the sample of measured channels (i.e., Jê) that are available for 
regression is less than the total number of channels in an actual reactor (i.e., J=480 
channels in a Bruce NPP reactor or J=380 channels in a Pickering B NPP reactor).   

The results of the available experiments are illustrated in Figure 5.2 (see page 88) 
and summarized as follows: 

• measurements of PTDC are shown to be directly proportional to fluence, ψ 
(an integrated fuel irradiation over time); 

• PTDC measurements are also observed to be directly proportional to the 
(life-time averaged) coolant temperature above some reference 
temperature, ω. 

These results provide the support and basis for the development of the 
phenomenological description of PTDC as it relates to fluence and coolant bundle 
temperatures.  Using the theory of regression, the phenomenological description of 
PTDC and the measured data are used to determine the set of model coefficients, "#.  
The model coefficients, "# are such that they reflect the model’s prediction at the 
specific bundle location for the set of Jê < J channels as follows:  

                                                        
10 See (3.1) where the diameters are normalized by a nominal diameter to give the results in terms of 

PT strain. 
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J($; 7#) = Ðo + Ò_Ô_o + Õ_Ö_o  (5.1) 

where:  

• $ = (Ô_o, Ö_o)    are the BIC variables corresponding to the fluence, ψ  and (life-
time averaged) coolant temperature, ω, respectively;   

• 7# = $Ðo, Ò_, Õ_% are the regression coefficients reflecting a functional form that is 
both channel- and bundle-specific; and 

• Jê is the size of the sample of channels measured, which is less than the total 
number of channels in the reactor core denoted by J. 

Under the above scenario, since J(H; 7#)    is the phenomenological description for the 
physical sub-system, then the difference between the observations, f_o and J(H; 7#) 
must solely be due to the measurement errors in f_o, expressed below as follows: 

[_o = f_o ó J($; 7#)  = f_o ó $Ðo + Ò_Ô_o + Õ_Ö_o% (5.2) 

where: 

• f_o is the observed (i.e., measured) strain for the ith bundle and jth channel; and 

• [_o is a random error component representing the unexplained variability 
corresponding to precisely the measurement/instrument error in f_o. 

The results above can further be assessed independently by different means.  
Specifically, information regarding the accuracy of the PTDC measurement can be 
used to compare the results presented in (5.2).  The information on the instrument 
uncertainties for the measurements of pressure tube strain is readily available.  This 
is related to the fact that PTDC is obtained using highly controlled and accurate 
instrumentation due to the significance of the effects of pressure tube strain on the 
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operational safety margins, and the continual (regulatory) need to demonstrate fuel 
channel integrity.  Hence, the uncertainty associated with the instrument used to 
measure pressure tube strain is well known, and described as follows: 

[_o~¦(0,.Xb)   (5.3) 

where [_oare independent and identically distributed.    

Hence, the available results of the PTDC instrument uncertainty and the results of 
the regression analysis provide two independent means to verify the estimates of .Xb 
and assess the adequacy of the developed phenomenological description, J($; 7#).... 

Using Maximum Likelihood Estimation methods, 7#    are estimated (this is often 
referred to as the Fixed Effects Model (FEM) and used to estimate [_o ).  The results 
in «18­ have shown the variance for [_o  (as estimated using the FEM) is comparable 
to the PTDC instrument error (see (5.3)), based on data from any CANDU reactor.  
Hence, the developed phenomenological description, J($; 7#)    is shown to be an 
accurate description of our true opinion. 

5.1.1.25.1.1.25.1.1.25.1.1.2 PhenomenologicalPhenomenologicalPhenomenologicalPhenomenological    Knowledge for the Complete Physical SystemKnowledge for the Complete Physical SystemKnowledge for the Complete Physical SystemKnowledge for the Complete Physical System    

In the nuclear safety analysis industry, the objective involves the evaluation of the 
operational safety margins for the full reactor system, and not just limited to the 
channels for which direct measurements were available (i.e., Jê).  The extension to 
the complete physical system from the knowledge of the physical sub-system is now 
shown where probabilities are required, such that one obtains phenomenological 
knowledge (in the non-deterministic sense). 

From Section 4.3.2, we extend to the complete physical system through the input 
parameters of J    where, $;  7( are both unobservable and fixed (non-random).  As 
discussed in Section 4.3.2, 7Pis problem dependent and chosen in such a way that 
the sample space of #    contains    7# (i.e., the parameters from the physical sub-
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systems).  Following the results in Section 4.3, the extension to the complete 
physical system involves the addition of probabilities in the code parameters as 
follows: 

# = 7P + O# (5.4) 

Hence, the aleatory (i.e., phenomenological) knowledge on 7 naturally follows:    

J($; #) = J($; 7P) + T (5.5) 

where T is the aleatory uncertainty, giving rise to the information needed to gain 
aleatory knowledge on 7.   

Continuing with the PTDC example discussed, the required implementation is given 
as follows: 

f_o = Ð� + Ò_Ô_o + Õ_Ö_o + no + [_o = J($; #) + [_o (5.6) 

where: 

• J($; #) = J($; 7P) + no = Ð� + Ò_Ô_o + Õ_Ö_o + no is the random model for the 
complete physical system (i.e., describes PTDC response for all J channels in the 
core); 

• 7P is derived such that    J($; 7P) is also a phenomenological description of the 
physical sub-system based on Definition 3 (similar to J($; 7#)); 

• $ = (Ô_o, Ö_o)    are the BIC variables corresponding to the fluence, ψ  and (life-
time averaged) coolant temperature, ω, respectively;   

• 7P = (Ð�, Ò_, Õ_) are the regression coefficients reflecting a functional form that is 
only bundle-specific;  
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• T = no is the aleatory uncertainty required to allow the extension to the 
(complete) physical system (i.e., allows us to gain phenomenological knowledge 
for all J channels). 

The form of the error structure consists of two random components as follows: 

÷_o = no + [_o (5.7) 

where no is the aleatory uncertainty and [_o is the measurement error in f_o 
described by (5.3).  The aleatory uncertainty, no are unobservable random variables 
and described by: 

no ~¦(0,./ 
b)  (5.8) 

where no are independent, and identically distributed.    

The proposed model form in (5.6), with error structure given in (5.7), is evaluated 
using a Maximum Likelihood Estimation (MLE) solution. 

Using the results from Theorem 1 (see Appendix B), (5.6) can be expressed in 
matrix form as follows: 

SSSS = xxxx'Ð� + xxxx�0+ xxxxb1+ $23 + $45 = XXXX6+ 7 (5.9) 

where: 

• xxxx' = £8 is a column vector of ones of size N = Ø ×  Ú9 ;  

• diag$:∙o% = ;
:ao ' '
' ⋱ '
' ' :�o

= for i=1,…,I bundles, and the jth channel; 
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• diag$Ö∙o% = ;
Öao ' '
' ⋱ '
' ' Ö�o

= for i=1,…,I bundles, and the jth channel; 

• xxxxa = ;
diag(:∙a)

⋮
diag(:∙¿)

=;    xxxxb = ;
diag(Ö∙a)

⋮
diag(Ö∙o)

=;    xxxx> = $�?⨂£�% ;  xxxx@ = �A ; 

• �A is an identity matrix of size N= I × J = total number of observations; 

• ⨂ is the Kronecker product;   

• XXXX = «xxxx', xxxx�, xxxxB­ ;  6 = C
aD
E
F
G;  E = �

ba
⋮

bH
�; F = �

ca
⋮

cH
�; and  

• 7 = xxxx3333I + xxxx4444J    is the vector of unexplained variability described by (5.7). 

Based on the assumptions of (5.3) and (5.7), the distributional form of SSSS (see 
Theorem 1 in Appendix B) is given as follows: 

�~8(K,L)  (5.10) 

where: K = E«�­ = XXXXO; and    L = Cov«�­ = E«��U­ ó K�K�
U = �M⨂$¨�.Nb + ��.Xb%. 

The maximization of the likelihood function is a non-linear process, given the 
presence of the non-zero off-diagonal entries in the covariance matrix, L.  Using the 
results of Theorem 2 and Theorem 3 (see Appendix B), the explicit solution of the 
unbiased MLE estimators of the regression coefficients are determined and 
summarized as follows: 

6O = (:PLÞa:)Þ�(:PLÞa))  (5.11) 

and the unbiased MLE estimators of the error parameters, σ/b and σRb are given as 
follows: 



Ph.D. Thesis – D. Pun-Quach; McMaster University – Department of Mathematics and Statistics 

 

87

σSO/b = T(HÞa)USV�

T(HÞa)ÞWtrö(XÞYA):|:PZYAÞ �
([\])X^:�

_~
:Pø

  (5.12) 

σSORb = T(HÞa)US�̀

T(HÞa)Þtrö(HYAÞX):|:PZYAÞ ~
([\])X^:�

_~
:Pø

  (5.13) 

where a = $�M⨂¨�%, ¨� = £�£�
U, and b = cd�

ce�
. 

These results provide a means to gain phenomenological knowledge (non-
deterministic) of the complete physical system 7 through the introduction of no, 
which is the aleatory uncertainty.  The error parameters are estimated using (5.12), 
and these results will be used as input to the structural equation (see (4.11) of 
Section 4.4.1) for modeling the aleatory response variable.  This leads to more 
accurate estimates of the tolerance limit due to the separation and the distinct 
nature of the uncertainties.  
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Figure Figure Figure Figure 5555....2222: : : : TOP:TOP:TOP:TOP:    Pressure Tube (PT) diameter as a function of fluence; Pressure Tube (PT) diameter as a function of fluence; Pressure Tube (PT) diameter as a function of fluence; Pressure Tube (PT) diameter as a function of fluence; BOTTOM:BOTTOM:BOTTOM:BOTTOM:    PT PT PT PT 
diameter as a function of fluence and time averaged local temperature.  PT diameters diameter as a function of fluence and time averaged local temperature.  PT diameters diameter as a function of fluence and time averaged local temperature.  PT diameters diameter as a function of fluence and time averaged local temperature.  PT diameters 
are observed to increase proportionally to increasing are observed to increase proportionally to increasing are observed to increase proportionally to increasing are observed to increase proportionally to increasing coolant coolant coolant coolant ttttemperatures above emperatures above emperatures above emperatures above a a a a 

reference reference reference reference ttttemperature (i.e., Temperature (i.e., Temperature (i.e., Temperature (i.e., Trefrefrefref))))    
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5.1.25.1.25.1.25.1.2 Case 2: Case 2: Case 2: Case 2: Insufficient Information for the Complete System Affecting Insufficient Information for the Complete System Affecting Insufficient Information for the Complete System Affecting Insufficient Information for the Complete System Affecting 
the the the the BICBICBICBIC    variablevariablevariablevariable    

Another common example in the nuclear safety analysis industry, where one does 
not have knowledge of the complete physical system, is that where knowledge of a 
particular parameter or variable is limited to past (historical) data, and inference of 
the behaviour of the parameter in the future is required.  Information on future data 
is not available (for obvious reasons), but one typically is required to make 
inference on the state of affairs regarding the safety of the plant under some future 
conditions.  Hence, phenomenological knowledge for the complete physical system 
relies on the physical sub-system defined by data obtained from historical results.    

The BIC variables, x x x x are more commonly affected by such requirements.  The reactor 
system is dynamic due to the continuous process control required to maintain 
reactor power levels within acceptable license limits, and to maintain adequate 
pressure boundaries in both the secondary side and primary side heat transport 
systems.  Furthermore, the reactor system can also change in a gradual and 
systematic way due to aging related mechanisms (see Section 3.2.1), resulting in the 
degradation of the system components, measuring instruments, and heat transfer 
capabilities (e.g., fouling in the boilers and corrosion in the pipes, feeders, etc.,).  
Hence, it is very unlikely that the BIC variables, x x x x can be maintained at a constant 
value at all times.   

The stochastic behaviour of each BIC variable in the future is inferred from past 
(historical) data, which represents the physical sub-system.  Hence, the extension to 
the future (i.e., the complete physical system) relies on the use of probabilities 
inferred from (i.e., historical data) the physical subphysical subphysical subphysical sub----systemsystemsystemsystem to obtain the 
phenomenological knowledge (non-deterministic) of the complete physical systemcomplete physical systemcomplete physical systemcomplete physical system.  
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The example to follow holds for the case when there exists11 highly accurate 
measuring instruments.  Hence, historical data obtained for the BIC variables 
reflects the stochastic variability of the phenomenon at the current plant condition 
(assumed to be the same in the future plant conditions).  

Consider then the Bruce Nuclear Power Plant (NPP) CANDU reactor design with 
inner and outer thermal hydraulic flow zones (see Figure 3.2 on page 38).  The 
evaluation of the safety margins of each fuel channel requires an analysis of the 
channel dryout powers (e.g., Critical Channel Powers (CCPs)), as discussed in 
Section 3.  The phenomenon in this example is a loss of regulation leading to the 
response (i.e., dryout powers in the channel).  Let the (true) phenomenological 
description for dryout powers be J($; 7#),,,,    where the BIC variables of interest in this 
BEPU safety analysis are those that define the boundaries of the fuel channel, such as 
the inlet and outlet conditions of the fuel channels.  These conditions include: 

• the Reactor Inlet Header Temperatures (RIHT); 

• the Reactor Inlet Header Pressure (RIHP); and  

• the Reactor Outlet Pressures (ROHP).   

Since our evaluation of the dryout powers is required in the future, J($; 7#)    holds 
only for the physical sub-system, where historical data is available for BIC variables, 
x.  x.  x.  x.  To extend our safety analysis results to the complete physical system (i.e., 
evaluation of the safety margins for some future reactor condition), the BIC 
variables, x x x x must be extended through the addition of (aleatory) uncertainties. 

Hence, using the historical operational data (as provided in Figure 5.3 on page 92), 
the random behaviour of these BIC variables is used to infer the stochastic 
                                                        
11 This is common for nuclear reactor systems due to the safety significance of the parameter.  Highly 

advance technology and equipment are used to monitor the reactor conditions of the plant. 
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behaviour of the BIC variables under the future reactor conditions12 (i.e., complete 
physical system).  

The mathematical description of this stochastic behaviour is formalized in this 
section.  Let the P number of BIC variables (e.g., RIHT, ROHP, etc.) be given as 
described in (3.7) (which holds for the physical sub-system): 

H = (ãa, … , ãè)ü (3.7) 

To extend from the physical sub-system to the (complete) physical system, aleatory 
knowledge in the BIC variables is required and expressed as: 

" = $ + O" (5.14) 

where the probability distributions describing O" are inferred based on historical 
data. 

Each realization of " is described by (3.7) and represents some values of the P 
number of BIC variables that may occur in the future.  Note that the structure of 
(3.7) ensures that any relationship (e.g. covariance) between the P number of BIC 
variables are preserved. 

Combining the results from Section 5.1.1.2 (where these exists aleatory 
uncertainties in the code parameters), the phenomenological knowledge can now be 
expressed non-deterministically as follows: 

J("; #) = J($; 7P) + T (5.15) 

                                                        
12   This is under the conditions that the uncertainties in instrument readings are negligible relative to 

the variability due to the stochastic process.  Hence, the variability observed in the time series 
reflects the stochastic (aleatory) variability of the plant, and this information is used here to extend 
to the future conditions. 
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where: 

• T = T($; 7P; O"; OL) is the aleatory uncertainty giving rise to the probability 
needed to gain aleatory (i.e., phenomenological) knowledge on 7; and 

• 7P is derived such that    J($; 7P) is also a phenomenological description of the 
physical sub-system based on Definition 3 (similar to J($; 7#)); 

 

Figure Figure Figure Figure 5555....3333:  :  :  :  Time series of operational measureTime series of operational measureTime series of operational measureTime series of operational measurements at Bruce NGSB (ments at Bruce NGSB (ments at Bruce NGSB (ments at Bruce NGSB (ttttaken fromaken fromaken fromaken from    
«18­«18­«18­«18­). TOP: Reactor inlet header temperatures (inner zone(iz) and outer zone(oz)); ). TOP: Reactor inlet header temperatures (inner zone(iz) and outer zone(oz)); ). TOP: Reactor inlet header temperatures (inner zone(iz) and outer zone(oz)); ). TOP: Reactor inlet header temperatures (inner zone(iz) and outer zone(oz)); 

BOTTOM: Reactor outlet header pressure (ROHP).BOTTOM: Reactor outlet header pressure (ROHP).BOTTOM: Reactor outlet header pressure (ROHP).BOTTOM: Reactor outlet header pressure (ROHP).    
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5.25.25.25.2 EpistemicEpistemicEpistemicEpistemic    KnowledgeKnowledgeKnowledgeKnowledge    and Epistemic Uncertaintiesand Epistemic Uncertaintiesand Epistemic Uncertaintiesand Epistemic Uncertainties    
From Figure 4.4 (see page 66), it is recognized that there must exist a second kind of 
knowledge that relates to approximation.  That is, given the true (unobservable) 
response caused by the underlying phenomena of the given physical sub-system, 
this type of knowledge provides an approximate (observable) response to the true 
response, and obtained by: 

• direct measurements; 

• fitting of a mathematical model to the measured data; 

• computer codes, which implement numerical simulation of mechanistic 
models, which represent the phenomena that constitute the physical sub-
system.   

In all of the above responses, there are underlying true values, which are 
unobservable.  Therefore, we need to approximate the true values as indicated 
above.  The augmentation by probabilities reflects these approximations, and serves 
as a means to gain knowledge.  This gained knowledge is of the epistemic kind, and 
fundamentally different from the phenomenological knowledge.   

We present two common cases that are discussed in the following section that 
require a means to gain epistemic knowledge: 

Case 1Case 1Case 1Case 1: : : : direct measurements available for input variables/parameters; and 

Case 2Case 2Case 2Case 2::::  mathematical modeling of input variables/parameters. 

The two different cases are discussed in greater detail in Sections 5.2.1 and 5.2.2, 
respectively. 
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5.2.15.2.15.2.15.2.1 Case 1: Estimates by Case 1: Estimates by Case 1: Estimates by Case 1: Estimates by Direct MeasurementsDirect MeasurementsDirect MeasurementsDirect Measurements    
As discussed throughout Section 4.2.2, knowledge (in the Plato sense) is gained by 
the addition of probabilities, where epistemicepistemicepistemicepistemic knowledgeknowledgeknowledgeknowledge is always meant to reflect 
the knowledge associated with methods/tools used to approximate the 
phenomenon, rather than knowledge gained through the phenomenon itself.   

The ability to specify a particular value for any one of the input 
variables/parameters, discussed in Section 3.3 based on direct measurements, is the 
simplest scenario of the cases described in Section 5.2.  

Consider as an example, the BIC variables, discussed in Section 3.3.1.  If $ is the true 
value of a variable, which is fixed (i.e., non-random), and this is approximated using 
some measuring instrument, then the following represents our (epistemic) 
knowledge: 

: = $+ v2 (5.16) 

where: 

• $ represents our true opinion 

• v2 are epistemic uncertainties describing the errors in our instrument used to 
approximate and gain knowledge. 

In this case, the behaviours of v2 can be obtained from the manufacturers of the 
instrument tools itself, which must demonstrate the instrumentation accuracies 
before implementing it in the plant.   

5.2.25.2.25.2.25.2.2 Case 2: Case 2: Case 2: Case 2: Mathematical Mathematical Mathematical Mathematical MMMModeodeodeodeling ling ling ling of Input Variablesof Input Variablesof Input Variablesof Input Variables    
In this section, we consider two typical cases encountered in the nuclear safety 
analysis industry.  That is, we can be faced with a situation where we: 
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1. Fit a mathematical model to the measured data by the usual regression 
analysis; 

2. Update model coefficients within a computer code (i.e., data 
adjustment/assimilation method) 

These two cases are discussed in Sections 5.2.2.1 and 5.2.2.2, respectively. 

5.2.2.15.2.2.15.2.2.15.2.2.1 Regression ModelRegression ModelRegression ModelRegression Modeling of Input Variablesing of Input Variablesing of Input Variablesing of Input Variables    

The more typical scenario involves a complex physical system, which involves 
additional mathematical models (e.g., regression) as a means to provide specific 
values for the variable or parameter of interest.  The method based on a specific 
regression modeling technique is discussed here, but the framework presented here 
is general and applicable for all input variables/parameters that require regression 
modeling (i.e., with measurement error modeling or without).  Hence, we continue 
with the presentation of the regression modeling of the PT strain discussed in 
Section 5.1.   

Consider the random model for the complete physical system given in (5.6), with 
estimates of the regression coefficients given in (5.10).  The results are used for the 
purpose of predicting PT strain for the BEPU safety analysis of interest, and leads to 
the best-estimate model for PT strain as follows: 

ff_o = Ðg� + ÒÎ_Ô_o + Õ̂_Ö_o (5.17) 

The model is used for the purpose of predicting the PT strain beyond the model 
range of conditions to model the phenomena of PT strain at some future reactor 
aged condition, to explicitly account for the effects of HTS aging.  The estimate of the 
model coefficients used in (5.17) may be inaccurate due to the following reasons: 
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• imperfect measurements were used in obtaining estimates of the regression 
coefficients; and 

• the inaccuracies associated with the method used in the estimation of the 
model coefficients; 

Thus, let ãi_o = «1, Ôj_o, Ök_o­ define (in vector notation) a given fixed (future) reactor 
aged condition, and let the true PT strain at the same set of fixed (future) reactor 
aged condition for the i,jth position be denoted as l_o.  The epistemic error is given as 
follows: 

m_o = ff_o ó l_o = ãi_o(nÎ ó n) (5.18) 

where n and nÎ are the true and MLE estimates of the model coefficients, 
respectively. 

The variance in the epistemic error (by Theorem 4 in Appendix B) is given as 
follows: 

^Ðt$m_o% = ãi_ooãi_o
ü (5.19) 

where o = ±P²$nÎ ó n% = (9ULÞ�9)Þa. 

5.2.2.25.2.2.25.2.2.25.2.2.2 Data Adjustment MethodData Adjustment MethodData Adjustment MethodData Adjustment Method    

The data adjustment method is similar to the regression case discussed in Section 
5.2.2.1, in that both methods require a means to estimate the model coefficients of a 
mathematical model or code.  The data assimilation method differs from the usual 
regression case, in that the data assimilation case is involved in the estimates of the 
coefficients associated with (usually complex) computer code, whereas the 
regression analysis involves a single functional form (linear or non-linear).  Similar 
to Section 5.2.2.1, in this section we show the methodology required to distinguish 
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and quantify the epistemic uncertainties associated with approximating the model 
coefficients in the data adjustment case. 

An alternative data assimilation method based on non-linear regression is provided 
and discussed in this section.  This proposed data assimilation method is compared 
to the more commonly used methods in the nuclear industry (i.e., deterministic data 
adjustment ( «2­ and «52­)), which uses a minimization of a quadratic objective 
function subject to assigned constraints (see Section 5.2.2.2.2 and Figure 5.4). 
 

Figure Figure Figure Figure 5555....4444: Data a: Data a: Data a: Data adjustment based on djustment based on djustment based on djustment based on the the the the Constraint Optimization Constraint Optimization Constraint Optimization Constraint Optimization MMMMethodologyethodologyethodologyethodology        
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5.2.2.2.15.2.2.2.15.2.2.2.15.2.2.2.1        An An An An A PosterioriA PosterioriA PosterioriA Posteriori    Data Adjustment and Assimilation MethodData Adjustment and Assimilation MethodData Adjustment and Assimilation MethodData Adjustment and Assimilation Method    

Consider the model parameters, zzzz,,,, which are required by a safety analysis code to 
accurately model the perturbed condition (e.g., increase in reactor power leading to 
two-phase flow, critical heat flux, etc.,).  Hence, qualified datasets relevant to the 
accident transient conditions of interest are required (e.g., test results applicable for 
Loss of Regulation events, etc.,).  These datasets are typically based on Separate 
Effects Tests (SETs) and Integral Effects Tests (IETs) (see Element 2 of the CSAU 
summarized in Figure 2.1 on page 20).  Under the above conditions, the usual case 
for typical SETs and IETs is that BIC variables, $ are controlled by the user and are 
such that both are observed without error. 

The following data assimilation method is referred to as the a posteriori data 
adjustment and assimilation (DAA) method, as it is a method that estimates the 
model parameters that proceeds following the obtainment of empirical data.  This 
method will be contrasted to the more popular method used in the BEPU 
community, which estimates the model parameters based on a priori knowledge of 
the model parameters and the uncertainty associated with the model parameters 
(i.e., referred to as the a priori DAA).  The following information and notation are 
required for the a posteriori DAA: 

1. The SETs and IETs experiments consider a wide-range of possible initial 
reactor conditions associated with the failure event.  The different possible 
initial reactor conditions are experimentally determined/set by the BIC 
variables in the experiment.  Viewed differently, these possible values for 
the BIC variables can also be viewed as the different reactor age conditions 
that the plant may take on due to HTS aging.  Hence, the given set of P 
system condition variables that defines the tth reactor condition is denoted 
by: 
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  Hú = (ãúa, … , ãúè)ü  

where W = 1, … ,( defines the different system conditions of interest leading 
to a total of T different measured responses considered during an 
experiment. 

2. The experimental design seeks to measure a response13 variable relevant in 
defining the safety margins of a reactor.  Hence, the tth measured response is 
denoted as follows: 

qúr = 7(Hú) (5.20) 

where 7    defines the physical system, as discussed in Section 4. 

Using the qualified dataset consisting of the measured responses, as defined in 
(5.20), a data assimilation method based on non-linear least squares is presented in 
the following sections.  This data assimilation method considers cases where the 
input code parameters are statistically independent of the measured responses 
consistent with that of «52­.  Let tú = 7(Hú) be the true response associated with the 
tth experimental run.  Hence, the measurement error is defined as follows: 

qúr = tú + vúr (5.21) 

Let the Phenomenological Description of the physical system be given in (5.22), 
which involve a computational code, J (e.g., see Section 3) as follows: 

tú = J(Hú; ") (5.22) 

                                                        
13For example, dryout power and peak clad temperatures are important response variables in 

evaluating the operational safety margins of a reactor. 
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Note that the values of zzzz are not known in general, as they are unobservable, true 
values.  Hence, only estimates of zzzz are available to compute the tth code response 
under the perturbed conditions.  The estimates of zzzz are denoted by ZZZZ,,,,    and therefore: 

qú = J(Hp; D) (5.23) 

The error in computing the jth code response based on the original estimates, ZZZZ is 
defined as: 

vúq = qú ó tú = J(Hú; D) ó J(Hú; ") (5.24) 

As discussed above, the model parameters, z z z z include models used to predict/model 
the accident scenario, such as two-phase flow.  These empirical models, in general, 
fall under one or more of the following conditions: 

• model parameters, z z z z are based on experimental datasets that may no longer 
be available for use in evaluating the uncertainties in each Zk ; 

• model parameters, z z z z based on experimental datasets not specific to the 
reactor core associated with the BEPU safety analysis (i.e., issue of code 
scaling issue); 

• model parameters, z z z z are derived with insufficient rigor (e.g., upper bound 
values based on engineering judgment or crudely estimated based on 
available data).   

Thus, the objective here is to estimate zzzz and/or provide improved estimates of zzzz and 
the corresponding uncertainties in the zzzz estimates. 

For a given a vector of T measured responses ux = (qa
r, … , qü

r)U, a data 
assimilation method based on non-linear regression can be used to estimate  zzzz based 
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on the minimization of the Euclidean length squared, or l2-norm of the measurement 
error as follows: 

 rs$qúr ó J(Hú; ")%b
ü

úta
uv  min  (5.25) 

where J(H; ") = � is the corresponding vector of true responses of size T.  In vector 
form, the measurement error in (5.21) is expressed accordingly as follows: 

8x = ux ó � (5.26) 

where 8x,,,, the measurement error, is distributed as:   

8x~8(',Lx) (5.27) 

To solve for the model parameters, (5.25) is used to express the original non-linear 
function in an approximate, linear form in (5.31), for use in a non-linear regression 
numerical method, such as the Gauss-Newton method.  Using the usual least squares 
theory, the minimization of the sum of the squares of the residuals between data and 
non-linear equations provides our desired estimate, "g.   

The error in our estimates is given as follows: 

y = "g ó " (5.28) 

where:  " is the true perturbed input code parameters; �̂ is the estimated values of 
the perturbed input code parameters;  y the epistemic error (by definition) is 
associated with the perturbed input code parameters. 

To evaluate (5.28), let y the epistemic error be distributed as:  

 y~8(',Ly) (5.29) 
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In addition, consider the first-order approximation of the tth computed response 
variable as follows: 

qú =  J(Hp; D) =  J(Hú; ") +  Sv3 = tú +  Sv3 (5.30) 

where:  Sv = ∇"tú;  ∇"= | }
}"~

, … , }
}"�

� is the gradient row vector; and 3 =

(na, … , n')ü = $(·a ó �a), … , (·' ó �')%ü. 

Similarly, the vector of T computed responses expressed as a first-order linear 
approximation is given by (5.31) as follows: 

u =  J(H; ") +  )"3 = � +  )"3 (5.31) 

where: 

 ∇"= | }
}"~

, … , }
}"�

� is the gradient row vector;  

�" = �
∇"��

⋮
∇"�U

� is the sensitivity matrix of z; and 

3 = (na, … , n')ü = $(·a ó �a), … , (·' ó �')%ü. 

Hence, the residuals expressed as a first-order linearization is given as follows: 

wx = ux ó  J(H; "g) = 8x ó )"y (5.32) 

where the computed response based on the estimates of the model parameters, "g is 
defined as: 

uO =  J(H; "g) =  J(H; ") + )"y (5.33) 
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Thus, the covariance of the residuals (see (5.32)) is a linear function of the 
covariance in the measurements and epistemic errors as follows: 

Lw = Lx + )"Ly)"U (5.34) 

where (5.34) holds under the conditions that: 

• the uncertainties associated with the experimental measurements are 
much smaller than the uncertainties in the computed response; and 

• Cov«vr, m­ = ' as assumed. 
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5.2.2.2.25.2.2.2.25.2.2.2.25.2.2.2.2        Evaluating the Data Adjustment and Assimilation MethodEvaluating the Data Adjustment and Assimilation MethodEvaluating the Data Adjustment and Assimilation MethodEvaluating the Data Adjustment and Assimilation Methodssss    

The proposed a posteriori DAA method, discussed in Section 5.2.2.2.1, is compared 
to the more popular DAA method currently used in the BEPU industry in this 
section.  The popular DAA method proposed by «52­ is widely used in the BEPU 
industry ( «2­, «30­, «31­, «32­, and «33­), and referred to as an a priori DAA method 
in this thesis.   

An important aspect associated with the a priori DAA is that knowledge of the model 
parameters and the uncertainty associated with the model parameters are required 
before the method can be used (hence, the name: a priori DAA ).  Furthermore, the a 
priori  DAA method uses the minimization of a quadratic objective function subject 
to constraints as a means to find improved estimates of the code parameters «2­.  

The application of the a priori DAA method of «52­ involves as input, the original original original original 
vector of K estimates of the model parameters, defined as: 

DP = (·�a, … , ·�')U (5.35) 

and the corresponding uncertainty matrix of DP given as follows: 

LP = CovCovCovCov«DP­ (5.36) 

Using consistent notation as that of Section 5.2.2.2.1, consider a single-valued 
response function (i.e., a code computed response for a single response variable) to 
be defined as follows: 

u =  J(H; DP) (5.37) 

where Σu is the corresponding uncertainty matrix for q. 

Also, let the measured response, qr with an uncertainty matrix be given as follows: 
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Lx = CovCovCovCov«qr­ (5.38) 

Furthermore, let the deviations between the measured response and computed 
response be defined by the following: 

x = u ó ux    (5.39) 

Assuming independence (i.e., Cov«u, ux­ = 0), and for the case which the 
uncertainties in the measured response are smaller than the uncertainties in the 
calculated response, then one can define the covariance matrix for the deviation in 
(5.39) is given as follows: 

Lx = Lu + Lx    (5.40) 

where the covariance matrix of the response, Σuis defined in terms of a linear first 
order approximation as follows: 

Lu = )LP)P     (5.41) 

Let us denote the adjusted model parameters as given in (5.42), which are defined 
as the improved estimates of DP (also where "y is defined as the true model 
parameters in «52­) as follows: 

"y = (�a
y , … , �'y )U (5.42) 

Hence, the computed response based on the adjusted model parameters are defined 
as follows: 
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uy =  J(H; "y) (5.43) 

Let the following new deviations be defined as follows14: 

H = "′ ó DP    
z = u′ó ux (5.44) 

The a priori  DAA method of «52­ uses the minimization of the quadratic given in 
(5.45) (with respect to H and z): 

{(H,|) = HüLPÞ�H + züLxÞ�z (5.45) 

subject to the constraint given as follows:  

â(H,z) = } + �"H    ––––    yyyy = 0 (5.46) 

where  Sv is the sensitivity matrix with respect to zzzz. 

The minimization problem is a typical mathematical weighted constrained 
optimization problem, which is typically solved using Lagrange multipliers as 
follows: 

min
H,z, e~H

ULD
Þ�H + zULxÞ�z + 2(x+ �"H –  � )Ue� (5.47) 

where � is the Lagrange multiplier.  The solution for determining the Lagrange 
multiplier is provided «52­ as follows: 

� = LxÞ�x (5.48) 

where � is used in determining the adjusted model parameters   
                                                        
14  Note that notation presented below is consistent with that of «52­, and H as defined here is not the 

same as that which is meant to represent the BIC variables, as described in Section 3.3.1. 
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"y = DP ó LP�ULxÞ�x (5.49) 

and corresponding code computed response based on "yas follows: 

uy = u ó LxLxÞ�x    (5.50) 

The results above can be used to determine the uncertainty matrix for "y and uy,,,, as 
provided in «52­, and given in (5.51) and (5.52), respectively. 

Ly = LP ó LP)PLxÞ�)LP (5.51) 

and   

Luy = Lu ó LuLxÞ�Lu (5.52) 

The results given above are applied to a sample numerical problem as a means to 
compare to the a posteriori DAA method, discussed in Section 5.2.2.2.1. 

The results of the numerical exercise are summarized in Appendix C.  The results are 
summarized as follows: 

• As shown in Case 1 results, the a priori DAA method (i.e., based on the 
optimization with constraint problem in «52­) and the a posteriori DAA 
method  (i.e., the non-linear regression method) lead to comparable results 
when the measurement error of the response variable varies.   

• However, as shown in Case 2, results indicate that the a priori DAA method 
depends heavily on the quality of the given model parameters.  That is, the 
estimates of the model parameters are poor for large variances in the initial 
estimates of the model parameters.  In contrast, a posteriori DAA method is 
not affected by the large variances in the initial estimates of the model 
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parameters, and only dependent on the accuracy of the measurements to 
determine the model parameter estimates. 

• As shown in Case 3 results, the a priori DAA method does worse for all 
correlation coefficient values relative to the a posteriori DAA method.  In 
particular, the a priori DAA method does worse as the correlation coefficient 
approaches a negative relationship between model parameters z1 and z2. 

5.35.35.35.3 TransformatioTransformatioTransformatioTransformationnnn::::    Input Input Input Input andandandand    Response Response Response Response Sample Space Sample Space Sample Space Sample Space     
The Monte-Carlo methodology for evaluating the uncertainties in the response 
variable (e.g., critical channel powers, etc.,) is described below using the notation 
introduced in Sections 3.3 and Sections 5.1 to 5.2.  The results are described in 
Section 5.3.1. 

The response variable is computed for all fuel channels in the reactor core (i.e., 
J=480 channels for Bruce NPP).  A statistical description of the response variable is 
provided and discussed in Section 5.3.2. 

5.3.15.3.15.3.15.3.1 The MonteThe MonteThe MonteThe Monte----Carlo MethodCarlo MethodCarlo MethodCarlo Method    
The usual case in a safety analysis is the evaluation of the operational safety margin 
of a reactor at a fixed set of the initial system conditions, UP($; 7P).  Hence, consider 
the aleatory error models for the code parameters, 7 and the BIC input variables, $ 
(see Sections 5.1.1 and 5.1.2, respectively), which are used to represent our 
phenomenological knowledge of the response in the (complete) physical system as 
follows: 

U = UP($; 7P) + T($; 7P; O"; OL)  

where:  

• U =  J("; #)    is the (non-deterministic) phenomenological knowledge; 



Ph.D. Thesis – D. Pun-Quach; McMaster University – Department of Mathematics and Statistics 

 

109 

• UP($; 7P) = J($; 7P)    is the phenomenological description of the physical sub-
system based on Definition 3; and  

• T($; 7P; O"; O#)    is the aleatory uncertainty giving rise to the probability 
needed to gain aleatory (i.e., phenomenological) knowledge on 7.... 

Considering the epistemic error models developed in Section 5.2, these results lead 
to epistemic knowledge of the response in the (complete) physical system as 
follows: 

V = UP($; 7#) + I($; 7#; 89; 8!)    

where:  

• V =  J(9; D#)    represents the (non-deterministic) epistemic knowledge; 

• I($; 7#; 89; 8!)  is the epistemic uncertainty giving rise to the probability 
needed to gain epistemic knowledge on 7.... 

In the above scenario, the aleatory uncertainty T and epistemic uncertainty I can be 
estimated by a Monte-Carlo simulation, following the results of «51­.  A surrogate 
approach is applied in which the vector of unknown variables are substituted using 
their corresponding best-estimate values. 

This is a reasonable approach provided that best-estimate values (!P,!#, 9)    are a 
sufficiently close estimate of 7P, 7#, and $,,,, respectively.  Thus, the (coupled 
structural) equations above are re-expressed as follows: 

   TO = J$9 + O�;!P + O�% ó J(9;!P) (5.53) 

and  
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   Ig = J(9 + 8�;!# + 8v) ó J(9;!#) (5.54) 

as approximations to T and I, respectively.   

 

The results discussed are extended to the case for all j =1,2,…,J fuel channels as 
follows: 

    TO±±4 = $TO�, . . , TO�%
U (5.55) 

Similarly, aleatory variability for all the j =1,2,…,J  fuel channels are given as follows: 

   Ig±±4 = $Ig�, . . , Ig�%
U (5.56) 

The error parameters TO±±4 and Ig±±4 are used in a Monte-Carlo simulation to obtain 
the tolerance limit �,    as discussed in Section 4.4.2, for evaluating the neutronic trip 
coverage of the reactor.  Therefore, any dependencies among the errors need to be 
known to enable proper sampling in the simulation, yet (5.53) and (5.54) do not 
explicitly reveal such dependencies.  In Section 5.3.2, the methodology used to 
derive and describe the error structure (with the explicit error distributions) of 
TO±±4 and Ig±±4    is provided. 

5.3.25.3.25.3.25.3.2 Statistical Statistical Statistical Statistical Error Modeling of the Response VariableError Modeling of the Response VariableError Modeling of the Response VariableError Modeling of the Response Variable    
Using the Monte-Carlo method discussed in Section 5.3.1, estimates of T±±4 and I±±4 
are readily obtained for further statistical analysis.  The development of statistical 
models, that clearly distinguish between the aleatory and epistemic variables, and 
preserve the more complex structures of the errors, are desirable for accurate NOP 
trip setpoint solutions «3­.  Examining the results of T±±4 and I±±4,,,, a finer error 
structure is observed between different channels in the core for the aleatory errors.   
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These channels are defined as Inner Zone (IZ) and Outer Zone (OZ) channels as 
shown in Figure 3.2 (see page 38).  For the aleatory variable T±±4 (a similar 

argument holds for I±±4), let: T±±4  = CTo~
�D

To�
�DG; where To~

�D with Ùa=1,2,…,Úa are all the 

channels in the inner zone region and To�
�D with Ùb=1,2,…,Úb are all the channels in 

the outer zone region.   

A five-parameter statistical error model has been proposed, which captures the 
observed phenomenon for the inner zone channels, as follows:  

To~
�D = Φ� + Φ��� + Φo~

�� (5.57) 

and outer zone channels, as follows: 

To�
�D = Φ� + Φ��� + Φo�

�� (5.58) 

where: 

Φ�  = variation common to both inner and outer zone region channels; 

Φ���
 = variation common to all inner zone region channels; 

Φ���= variation common to all outer zone region channels;  

Φo~
��

 = variation unique to inner zone region channel Ùa; and 

Φo�
��= variation unique to outer zone region channel Ùb. 

Based on available data, the results indicate that the five parameters: Φ�, Φ���, Φ���, 
Φo~

��, and Φo�
��, are well represented as normal and independently distributed 

random variables, each with zero mean and standard deviations σ�b, σ���
b , σ���

b , σ��
b , 
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and σ��
b , respectively.  Thus, the variance of the aleatory variable for each inner zone 

channel Ùa is given as follows: 

VarVarVarVar****To~
�D,,,, = σ�b + σ���

b + σ��
b  (5.59) 

Similarly, for the outer zone region channel Ùb: 

VarVarVarVar****To�
�D,,,, = σ�b + σ���

b + σ��
b  (5.60) 

As indicated by (5.57), the aleatory error To~
�D for the inner zone channel can be 

described by a random variable that is common to both inner and outer zone region 
channels, a random variable common to all inner zone channels, and a random 
variable that is unique to the inner zone channel p itself.  

The covariance of the aleatory variable for each pair of inner zone region channels Ùa 
and Ùa

y  is given by: 

CovCovCovCov ZZZZTo~
�D, To~�

�D ^̂̂̂ = σ�b + σ���
b  (5.61) 

for all Ùa ≠ Ùa
y .  

Likewise, a similar argument holds for the outer zone channels from (5.58) with: 

CovCovCovCov ZZZZTo�
�D, To��

�D ^̂̂̂ = σ�b + σ���
b  (5.62) 

where  Ùb ≠ Ùb
y .  

Finally, the covariance of the CCP aleatory variable for each inner zone region 
channel Ùa with each outer zone region channel Ùb

y  is: 

CovCovCovCov****To~
�D, To�

�D,,,, = σ�b (5.63) 
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Using a method of moments, the five unknowns σ�b, σ���
b , σ���

b , σ��
b , and σ��

b  are 
estimated using (5.59) to (5.63).  The solutions to the five-parameter error model 
have been shown to give non-negative estimates and model the data very well.   

5.3.35.3.35.3.35.3.3 ResultsResultsResultsResults    
Estimates of T±±4 and I±±4 are readily available using the Monte-Carlo method and 
statistical error models associated with each input variable, using the method 
proposed in Sections 5.3.1 and 5.3.2, respectively.  The methodology is completed 
using a Bruce NPP reactor core based on a safety analysis code, described in Section 
3.  A unique feature of this approach is that the proposed Monte-Carlo method over 
the deterministic methods, discussed in «29­, provides a means to accurately capture 
the statistical dependencies in the system inputs and responses when actual 
operational data are available (e.g., see Figure 5.3 on page 92).  This approach 
accurately reflects the intricate inner and outer zone design of the HTS (see Figure 
3.2 on page 38).  That is, uncertainties specific to each reactor header are reflected 
in the response variable (i.e., CCP).  This approach eliminates the need to provide 
accurate estimates of the covariance matrix to describe the multivariate joint 
probability distributions for the variables that define the initial boundary conditions 
of the system.  This covariance matrix is required in the more traditional 
deterministic methods, such as that discussed in «29­.   

Furthermore, statistics and evaluation of the characteristics of T±±4 and I±±4 are 
possible using results from the Monte-Carlo analysis.  As an example, plots of 
histograms and qq-plots associated with typical channels in the inner and outer 
zone are provided in Figure 5.5 and Figure 5.6 (see page 114), respectively.   

The statistics for all channels in a reactor core is computable, such as the mean error 
and standard deviations, as illustrated in Figure 5.7 (see page 116). 
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Using the error modeling methodology discussed in Section 5.3.2, the coefficients of 
the five-parameter CCP error model are estimated and used to describe variations 
that are either common or unique to the inner and outer zone region channels.  The 
randomness in each channel is simulated (i.e., using Monte-Carlo) based on the 
results of the five-parameter model.  The correlation coefficients are then computed, 
and the results are compared against the actual raw data to test the adequacy of the 
five-parameter model.  These results are shown in Figure 5.8 (see page 117) and 
demonstrate that the proposed five-parameter model captures the complex error 
structure observed in the data very well. 

 

Figure Figure Figure Figure 5555....5555:  Monte:  Monte:  Monte:  Monte----Carlo analysis results: Histogram and qqCarlo analysis results: Histogram and qqCarlo analysis results: Histogram and qqCarlo analysis results: Histogram and qq----plots of the aleatory error plots of the aleatory error plots of the aleatory error plots of the aleatory error 
for channels in the outer zone (i.e., channels M03 and Q01)for channels in the outer zone (i.e., channels M03 and Q01)for channels in the outer zone (i.e., channels M03 and Q01)for channels in the outer zone (i.e., channels M03 and Q01)    
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Figure Figure Figure Figure 5555....6666: Monte: Monte: Monte: Monte----Carlo analysis rCarlo analysis rCarlo analysis rCarlo analysis results: Histogram and qqesults: Histogram and qqesults: Histogram and qqesults: Histogram and qq----plots of the aleatory error plots of the aleatory error plots of the aleatory error plots of the aleatory error 
for channels in the inner zone (i.e., channels K10 and L11).for channels in the inner zone (i.e., channels K10 and L11).for channels in the inner zone (i.e., channels K10 and L11).for channels in the inner zone (i.e., channels K10 and L11).    
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Figure Figure Figure Figure 5555....7777:  :  :  :  LEFT:  Standard deviationsLEFT:  Standard deviationsLEFT:  Standard deviationsLEFT:  Standard deviations15151515    ofofofof    T±±4    for each channel for each channel for each channel for each channel jjjj    RIGHT:  Mean RIGHT:  Mean RIGHT:  Mean RIGHT:  Mean 
errorerrorerrorerror4444    of of of of T±±4    for each channel for each channel for each channel for each channel jjjj    

 
  

                                                        
15 Values are normalized by the maximum variance of f T±±4. 
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Figure Figure Figure Figure 5555....8888: TOP: Plots of correlation coefficients based on the actual raw data for each : TOP: Plots of correlation coefficients based on the actual raw data for each : TOP: Plots of correlation coefficients based on the actual raw data for each : TOP: Plots of correlation coefficients based on the actual raw data for each 
channel.channel.channel.channel.        BOTTOM:  Correlation coefficients based on BOTTOM:  Correlation coefficients based on BOTTOM:  Correlation coefficients based on BOTTOM:  Correlation coefficients based on simulations from the results of simulations from the results of simulations from the results of simulations from the results of 

the 5the 5the 5the 5----parameter CCP error modelparameter CCP error modelparameter CCP error modelparameter CCP error model....    
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6666 A A A A STATISTICAL FOUNDATISTATISTICAL FOUNDATISTATISTICAL FOUNDATISTATISTICAL FOUNDATION ON ON ON FOR DECISIONFOR DECISIONFOR DECISIONFOR DECISION----MAKING MAKING MAKING MAKING 
BASED ON EPISTEMIC ABASED ON EPISTEMIC ABASED ON EPISTEMIC ABASED ON EPISTEMIC AND ALEATORY ND ALEATORY ND ALEATORY ND ALEATORY KKKKNOWLEDGE NOWLEDGE NOWLEDGE NOWLEDGE     

In this section, we illustrate (through numerical studies) the key advantage of 
distinguishing between the two types of uncertainties (as provided by the distinct 
nature of the underlying knowledge).  In particular, the results of Section 4.4.2, 
which describes the EVS methodology for constructing the 95/95 tolerance limit, 
show that the EVS methodology indeed provides more accurate tolerance limits than 
existing BEPU methods, and supports the notion that the distinction in the different 
types of knowledge is necessary to accurately evaluate the operational safety 
margins of the nuclear reactor.   

The most fundamental aspect of the statistical framework of the EVS methodology 
for constructing the tolerance limit is that it distinguishes between the true values of 
the system variables and their estimated values.  A conceptually simpler problem is 
presented here as a means to illustrate the decision making process using the 
maximum fuel channel power problem.  Here, the response variable is a maximum 
fuel channel power, which takes on different values at different reactor states 
(maximum fuel channel power is needed to assess the regulatory compliance with 
licence limits to ensure the reactor is within the a safe operating envelope).   

6.16.16.16.1 BackgroundBackgroundBackgroundBackground: Compliance with Power LicenseCompliance with Power LicenseCompliance with Power LicenseCompliance with Power License    LimitLimitLimitLimit    
At any instance of time, or a reactor state, one fuel channel of all the fuel channels in 
the reactor core has the maximum power.  At a different instance of time, a different 
fuel channel may have the maximum power (in a CANDU reactor, such a dynamic is 
mostly driven by on-line fuelling).  We will denote by qqqq the vector of the individual 
(true) fuel channel powers, i.e., 

� = «�a, �b, … , �©­ü (6.1) 
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where ª is the number of reactor fuel channels.  Components of q can be estimated 
by a physics fuel management code and are denoted by fa, fb, … , f©.  Let the code 
errors for the individual channels be denoted by v_

����, and the error in the total 
reactor power (common to all fuel channels) be denoted by v��.  Since the computed 
(“un-normalized”) channel powers need to be normalized so that they add up to the 
total reactor power, the resulting (relative) error is v�� + v_

����(the relative error is 
used for convenience, since code validation shows that the relative error is 
independent of the magnitude of the channel powers under operating conditions).  
That is, 

f_ = �_(1 + v�� + v_
����), i=1,2,…,M (6.2) 

This multiplicative model will reduce to an additive model by taking logarithms, a 
step which is justified because the relative errors v�� and v_

���� are assumed to be 
sufficiently small. 

The true and estimated maximum channel powers are defined, respectively, as: 

�r�� = �Ðã_-�_. 
fr�� = �Ðã_-f_. 

(6.3) 

Note that the two maxima above are generally attained at different channels.  The 
error, �, in the estimated maximum channel power is defined by: 

fr�� = �r��(1 + �) (6.4) 

or 

1 + � = fr��
�r��

= �Ðã_~�_(1 + v�� + v_
����)�

�Ðã_-�_.
 (6.5) 
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Extensive studies have been done in «3­ to show how the error � can be estimated.  
Here, we make an observation that τ cannot be determined analytically for an 
arbitrary set -�_., even if the analytical form of pdfs of v�� and v_

���� were given.  If 
all values of �_ were the same, � would be the maximum order statistics of the 
parental errors, otherwise the error possesses more general extreme value 
probability distributions. 

For convenience, we take the logarithms of (6.3) and define: 

(D = log (�/12) 
� = log (f/12) (6.6) 

As argued before, the errors involved are sufficiently small so that the first order 
approximation ���(1 +  ã)  ≈ ã is justified, and we get: 

� = (D(�) + �(�, v) (6.7) 

For the particular problem under consideration, the components of the error ε are 
given in (6.3).   

Let Q Q Q Q be a random variable for which qqqq in (6.1) is a possible realization.  For (D 
given by (6.3) and (6.6), a response variable T representing a maximum fuel channel 
power is given by: 

( = (D(�) (6.8) 

Replacing qqqq by Q Q Q Q in (6.8), we obtain the following: 

� = (D(�) + �(�, v) (6.9) 

The maximum fuel channel power model given by (6.8) and (6.9) is consistent with 
the general model given by (4.11) and (4.15) (see Section 4.4.1) with � = 0 and 9 =
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�.  The latter notation is chosen to specifically indicate (as in the previous example) 
that the values of qqqq are presumed only at a set of finite number of reactor states from 
the operating history, and therefore, the corresponding random variable QQQQ is 
mathematically given only as a finite random sample.  Again, no knowledge of the 
probability distribution for QQQQ is assumed.  

The underlying decision problem is to ascertain that the upper percentile WX of the 
probability distribution for T in (6.8) does not exceed the maximum allowable fuel 
channel power license limit L in order to comply with the safe operating envelope. 
Using the EVS solution (described Section 4.4.1) of a tolerance limit given by (4.16), 
the compliance at a [/\ safety level can now be carried out using (4.18).  

6.26.26.26.2 Solution Method for the Tolerance LimitSolution Method for the Tolerance LimitSolution Method for the Tolerance LimitSolution Method for the Tolerance Limit    
The problem based on the Compliance with Power License Limit, described in 
Section 6.1, represents the simplest model for which the EVS solution is 
representative of the intricacies of the proposed approach, as described in Section 
4.4.2. Moreover, it represents an actual reactor operation problem for which we 
have available measurements (at a subset of channels equipped with flow and 
temperature measurement instrumentation). This allows us to verify the accuracy of 
the EVS approach, and as such, provides a valuable validation exercise, as described 
in Section 6.3.  We will consider a situation (the maximum channel power problem is 
an example) of estimating an upper 100[ percentile WX of the distribution of T for 
some [ defined by: 

WX = �ü + tX.ü (6.10) 

where �ü and .ü are the mean and standard deviation for T, respectively.   

Since ( = (D(�), we have:  



Ph.D. Thesis – D. Pun-Quach; McMaster University – Department of Mathematics and Statistics 

 

122 

�ü = �D and .ü = .D (6.11) 

We note that the model considered for (6.8) is much more involved, since (D(�) is a 
random variable, rather than a constant.  

Furthermore, since the error �, defined by (4.15) in Section 4.4.2, is a result of 
propagating the input errors 8 through the computation of the response variable, 
the mean of � will generally be nonzero.  

For example, if the computation involves extrema, as is the case in the maximum 
channel power problem, the mean of the maximum is necessarily positive if the 
individual (parental) means are all zero.  More formally, for arbitrary random 
variables X and Y: 

¨«max-¬, ³.­ ≥ max-¨«¬­, ¨«³­. (6.12) 

This can be easily seen from ¨«max-¬, ³.­ = ¨«¬­ + ¨«(³ ó ¬)9­, where (³ ó ¬)9 =
³ ó ¬    if (³ ó ¬) > 0        and  0 otherwise. 

Thus, the means of U and (D are generally different. 

We will now transform the data in such a way that the mean of the new data will 
coincide with the mean of the variable that is being estimated (i.e., (D).  To this end 
we define: 

¬� = ¬�(�) = ¨«�|�­ (6.13) 

and 

³I = ³�(�) = ¯°�«�|�­ (6.14) 

where ¨«�|�­and ¯°�«�|�­ are the expected value and variance, respectively, of � 
conditioned on �.  Subtracting this conditional mean from �, we define:  
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^ = � ó ¬�(�) (6.15) 

It can now be seen that the means of ^ and ( are equal, i.e., �g = �ü.  

For, �g = �� ó ¨«¬�­ = �� ó ¨*¨«�|�­, = �� = �ü. 

We used the fact that ¨«�­ = ¨*¨«�|�­,    (see Theorem 4.4.3 in «46­).  Note that any 
possible confusion as to which E stands for which expectation can easily be resolved 
from context.  ¨«�­ is the expectation with respect to the marginal distribution of �.  
The first EEEE in ¨*¨«�|�­, is the expectation with respect to the marginal distribution 
of �, while the second ¨ stands for the expectation with respect to the conditional 
distribution of � given �.  

For an independent and identically distributed (iid) sample of size n, -{a,{b, . . . ,{d., 
we determine - â, b̂, . . . , d̂.,  from (6.15).  Using - _̂., we will look for an upper 
tolerance limit on WX as in (4.16) of the form (see (4.16) from Section 4.4.2): 

k = ^̀ + efg (4.16) 

where e is some scaling factor (to be determined), ^̀    is the sample mean, and fg is 
the sample standard deviation of â, b̂, … , d̂.  

For normal data, the sample mean and standard deviation are independent.  This is 
not the case here.  However, we will assume that the sample size n is sufficiently 
large so that the Central Limit Theorem (CLT) applies, and so that the moments ^̀ 
and fg can be accurately estimated.  

Letting .g denote the standard deviation of ^, the multivariate central limit theorem 
«53­ together with Slutsky’s theorem «46­ show that if the fourth moment of ^ is 
finite, then the joint distribution of √ (^̀ ó �g, fg ó .g)ü is asymptotically bivariate 
normal with limiting mean � and covariance matrix Σ.  That is,  
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lim
d→)

C √ (^̀ ó �g)
√ (fg ó .g)G~8öZ00^ , C .g

b .g¢
.g¢ .¢b

Gø (6.16) 

where 

.¢b = 1
4 (q@ + 2).g

b (6.17) 

and 

.g¢ = 1
2 q>.g

b (6.18) 

where R3 and R4 are the skewness and kurtosis, respectively, given by:  

q> = ¨ �ö^ ó �g
.g

ø
>

� (6.19) 

and 

q@ = ¨ �ö^ ó �g
.g

ø
@

� ó 3 (6.20) 

Note that if ^ were normal, then R3= 0 (by symmetry) and R4=0, which leads to 
familiar results; namely, ^̀ and fg are independent, and ¯°�«fg­ = .g

b/(2 ). 

Also, note that since we are dealing with a maximum problem, we expect ^ to be 
skewed to the right, and hence, we expect R3 to be positive.  For convenience, we 
also define: 

ë@ = 1
4 (q@ + 2)  
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We will now estimate e in (4.16) in order for k to be an upper tolerance limit that 
satisfies:  

â*WX £ k( â, b̂, … , d̂), = \ (6.21) 

for some given \.   

Substituting (6.10) and (4.16) into the above probability statement, rearranging 
terms, and using the definition of : 

b = .ü
.g

 (6.22) 

we obtain:  

â*�ü + tX.ü £ ^̀ + efg, = \  

â«√ $�ü ó �g + tX.ü ó e.g% £ √ $(^̀ ó �g) + e(fg ó .g)%­ = \  

and  

â«√ $tXb.g ó e.g% £ √ $(^̀ ó �g) + e(fg ó .g)%­ = \ (6.23) 

Based on the CLT (as described above), the right side of the inequality in (6.23) can 
be approximated by:  

√ $(^̀ ó �g) + e(fg ó .g)% ≈ ¤.g
b + q>e.g

b + ë@eb.g
b· (6.24) 

using (6.16), (6.17), and (6.18), where · is the standard normal ¦(0, 1).  

We now substitute this expression into (6.23). It follows that:  

lim
d→)

â«√ $tXb ó e% £ ò1 + q>e + ë@eb·­ = \ (6.25) 
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The 100\ percentage point �  for ¦(0,1) is given by â*ó�  £ ·, = \.  Therefore,  

�  ≈ √ 
e ó tXb

ò1 + q>e + ë@eb
 (6.26) 

The expression for e can be rewritten as a quadratic equation in the form  

ö1 ó � 
b

  ë@ø eb ó ö2tXb + � 
b

  q>ø e + ötXbbb ó � 
b

  ø = 0 (6.27) 

The equation can be easily solved for e.  Neglecting terms 1/n (while retaining terms 
of order 1/√ ), we obtain: 

e = tXb + � ð (6.28) 

where: 

ðb = *1 + tXbq> + tXbbbë@, (6.29) 

We will now derive an equivalent expression for b given by (6.22) and used in 
(6.28) and (6.29). This expression will be suitable for estimating b using the 
available finite samples of data.  To do that, we will evaluate ¯°�«^­ in terms of 
conditional expectation and variance of �. Using the conditional variance identity 
(see Theorem 4.4.7 in «46­), we have: 

.g
b = ¯°�*¨«^|�­, + ¨«¯°�«^|�­­    (6.30) 

Substituting (6.14)and then (6.9) into the above identity, we obtain  

.g
b = ¯°�«¨«�|�­ ó ¬�­ + ¨«¯°�«�|�­­     

 = ¯°�«(� + ¨«�|�­ ó ¬�­ + ¨«¯°�«�|�­­     
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Using definitions of ¬� in (6.13), ³� in (6.14), and replacing (�with (, we obtain  

.g
b = .ü

b + ¨«³�­    (6.31) 

Since b = c¥
c¦

, we obtain the following expression for b: 

b = §1 ó ¨«³�­
.g

b = §1 ó ¨«¯°�«�|�­­
.g

b     (6.32) 

In (6.32), b is now expressed in terms of moments that are naturally estimated by 
the corresponding sample moments from data.  

6.36.36.36.3 Validation Exercises: Numerical Results and Comparison to Other Validation Exercises: Numerical Results and Comparison to Other Validation Exercises: Numerical Results and Comparison to Other Validation Exercises: Numerical Results and Comparison to Other 
MethodsMethodsMethodsMethods    

In this section, we will provide numerical examples that demonstrate the EVS 
methodology.  We have solved the numerical problems with existing BEPU methods, 
and this enabled us to compare these methods with the EVS methodology.  

This validation exercise is based on actual reactor (CANDU) operating data «3­ for 
fuel channel powers because of the need to comply with power license limits (see 
Section 6.1 and 6.2 for background).  These channel powers are regularly evaluated 
by a fuel management physics code, and validated against measurements that are 
available in a number of fully instrumented channels.  Given a long history of reactor 
operation, we can obtain a good estimate of the upper percentile of the true 
maximum channel power based on the measurements.  

Thus, we have available data with actual measurements that enable us to provide a 
rigorous validation of the EVS methodology. We solved for the estimate of the upper 
percentile using both Monte-Carlo and order statistics methods. We will show the 
EVS solution to be significantly more accurate in Section 6.3.1. 
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6.3.16.3.16.3.16.3.1 Numerical Results: Compliance with Power License LimitNumerical Results: Compliance with Power License LimitNumerical Results: Compliance with Power License LimitNumerical Results: Compliance with Power License Limit    CaseCaseCaseCase    
We have implemented the EVS methodology for the problem of estimating the upper 
95th percentile of a maximum fuel channel power over a large operating history of a 
CANDU reactor (the derivation of a model for this problem is presented in Section 
6.1 and 6.2). 

We computed the maximum channel power error � using (6.5) by randomly 
sampling from the distributions of the errors v�� and v_

���� defined in (6.2).  Based 
on extensive validation «3­, these errors are known to be independent and normally 
distributed.  

The upper 95/95 tolerance limit ([ = \ = 0.95) is computed using (4.16), and e is 
estimated based on (6.28) and (6.29).  The random sample of the channel powers 
(reactor states) is of size  , where we took progressively larger   to demonstrate the 
results.  The channel powers are estimated using a fuel management code based on 
three-dimensional two-group diffusion equations for fast and thermal neutron 
fluxes.  

We also have available an independent set of channel power measurements.  These 
are available for both bulk and spatial reactor control in the reactor regulating 
system. The measured channel powers are also used for code validation.  The 
primary purpose of the fuel management code is to provide aid to station fueling 
engineers for decisions relating to on-line fueling of the reactor.  We use the 
measured channel powers to provide us with an estimate of a true power to which 
our computed values are compared.  We used over 900 reactor states to compute an 
accurate 95th percentile upper maximum channel power based on the measured 
values.  

The results of our computation are presented in Figure 6.1.  In addition to the EVS 
methodology, we also used the Monte-Carlo approach (see Table 2.1 on page 19) 
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and the order statistic methodology, which uses the number of code runs (sample 
size  ) based on the Wilks formula «9­.  Based on this one-sided tolerance limit 
formula with [ = \ = 0.95, we selected the sample sizes to be:   =
(59,93,124,153,180,207,234,260,285,311).  

These correspond precisely to successive order statistics (i.e., the tolerance limits 
are the first maximum, the second maximum, etc., of the computed sample of the 
corresponding size  ).   

In Figure 6.1, the labels ‘‘EVS,’’ ‘‘MC,’’ and ‘‘ORD’’ denote the results obtained by the 
respective methodologies for the increasing   (note that ‘‘MC’’ stands for the Monte-
Carlo sampling and ‘‘ORD’’ stands for the order statistics methodology).  Included in 
Figure 6.1 is also the value of the measured 95th percentile maximum channel 
power, which is 6.6894 MW.  Note that we do not expect the results to be 
monotonically decreasing with increasing  , since the accuracy also depends on the 
channel power profile.  Because of the dynamics of the reactor operation, this profile 
changes all the time with a number of channel powers close to the maximum (i.e., 
within 2 to 3. of the code error) varying from 50 to 100 or more (we state without 
further elaboration that a varying number of such ‘‘participants’’ significantly affects 
the nature of the pdf for �).  

We also present the results in Table 6.1 to aid the relative comparison among the 
methodologies.  The results are presented as relative differences between the 
computed 95/95 tolerance limits, based on samples of size   and the measured 95th 

percentile value of the maximum channel power derived from the whole population 
of reactor states.  

The EVS method provides the most accurate results, while the Monte-Carlo method 
gives more accurate results than the order statistics method.  However, the Monte-
Carlo method has no confidence level associated with its results.  
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Table Table Table Table 6666....1111:  :  :  :  Accuracy (%) of the Accuracy (%) of the Accuracy (%) of the Accuracy (%) of the ccccomputed omputed omputed omputed ttttolerance olerance olerance olerance llllimits by imits by imits by imits by ddddifferent ifferent ifferent ifferent mmmmethodsethodsethodsethods    

 

Figure Figure Figure Figure 6666....1111:  Numerical simulation of the maximum channel power compliance :  Numerical simulation of the maximum channel power compliance :  Numerical simulation of the maximum channel power compliance :  Numerical simulation of the maximum channel power compliance 
problem. problem. problem. problem.     
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6.3.26.3.26.3.26.3.2 Numerical ResultsNumerical ResultsNumerical ResultsNumerical Results: : : :     EVSEVSEVSEVS----DerivedDerivedDerivedDerived    Tolerance Limit Factors Tolerance Limit Factors Tolerance Limit Factors Tolerance Limit Factors for for for for 
Other Types of ProblemsOther Types of ProblemsOther Types of ProblemsOther Types of Problems    

Two other types of problems (referred to as validation exercises) are considered 
that provide distinct applications of EVS and provide where comparisons are 
possible.  These comparisons further demonstrate the robustness of the EVS 
methodology to solve a diverse set of problems.   

The first type of problem is a standard statistical problem of finding a one-sided 
tolerance limit using a finite sample of independent and identically distributed 
normal random variables.  The solution is well known and is provided by Hahn and 
Meeker «54­.  This problem is trivially of the form of our structural model given by 
(4.11) and (4.15) (see Section 4.4.1).  We find that the values for e for different 
sample sizes are in excellent agreement with Hahn and Meeker’s results, even for 
small sample sizes.  Comparing the results to the equivalent tolerance limit factors 
for order statistics (obtained numerically by simulation), we find EVS results to be 
much closer to the normal case.  

The second type of problem involves a problem of the type consistent with our 
general model (4.11) and (4.15) (see Section 4.4.1) for which we provide an 
analytical solution. We chose asymmetric probability distributions to simulate the 
system variables.  The data are randomly generated from this analytical solution by 
assuming values for the epistemic (code) uncertainties in accordance with our 
statistical framework.  This numerical simulation allows us to compute all the 
important parameters for detailed examination, as well as to generate the pdf for the 
tolerance limit, k by repeatedly sampling from different samples of data based on 
the aleatory uncertainty, and perturbed by the epistemic uncertainty, to simulate 
code output.  We also solve this problem using order statistics methodology.  

The results are consistent with the previous normal case in that EVS is a more 
accurate method, even for problems that are naturally designed for order statistics.  
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7777 SUMMARY AND CONCLUSISUMMARY AND CONCLUSISUMMARY AND CONCLUSISUMMARY AND CONCLUSIONSONSONSONS    
In September 1988, the USNRC approved an amendment to the 10 CFR 50 
Appendix K prescriptive rules by allowing the use of best-estimate methods.  This 
led to an increase in both the development and application of BEPU safety analyses.  
However, the USNRC placed a greater burden on the licensee to quantify and justify 
the uncertainty estimates used as part of the licensing basis.  This includes the 
quantification of the uncertainty associated with calculated results, with respect to 
the prescribed acceptance limits.  A review of the current BEPU community’s state-
of-the-art methods indicate that there exists a number of significant criticisms, 
which limits the BEPU methods from reaching its full potential as a comprehensive 
method for a licensing basis.  The most significant criticism relates to the lack of a 
formal framework for distinguishing aleatory and epistemic uncertainties, leading to 
the subjective applications and conclusions from the use of the method, and a 
prevalent belief that such separation of uncertainties is for convenience rather than 
one out of necessity. 

In this thesis, we address the above concerns by developing a statistically rigorous 
framework to characterize the different types of uncertainties.  This framework is 
grounded on the study of knowledge.  We show that by using probability to 
represent knowledge, we are able to relate the distinctive types of knowledge to the 
distinctive nature of the uncertainties.  This allows us to develop a mathematical and 
statistical framework to incorporate two fundamental sources of knowledge for any 
physical system.  These are:  

1. the epistemic knowledge, which represent knowledge due to the process of 
approximating a (true and deterministic) physical phenomenon; and 

2. the phenomenological or aleatory knowledge based on the understanding of 
the physical process, which is deemed true.  
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This framework is demonstrated in concrete terms using nuclear safety analysis 
problems.  Through the use of structural and measurement error models, we can 
reflect the distinct nature of aleatory and epistemic uncertainties.   These results 
lead to significant improvements in the estimation methods (published in «18­).  

We also show the significance of distinguishing between the two types of 
uncertainties in the statistical framework, referred to as the EVS methodology 
(published in «3­).  The results show numerically that the EVS methodology provides 
more accurate tolerance limits than existing BEPU methods (e.g., Order statistics, 
Monte-Carlo Percentile Approach percentile, etc.,).  We show that in existing BEPU 
methods, when this distinction in uncertainty is not applied, that the actual 
derivation of the statistical properties of the physical system lead to the total 
uncertainty being essentially treated as the aleatory uncertainty.  Thus, the 
estimates of percentile are necessarily much larger than the actual (true) percentile 
of the system's true response.    

The statistical framework presented in this thesis, and results therein, support the 
premise that the distinction in the different types of knowledge is one out of 
necessity (rather than one out of convenience), as the results lead to more accurate 
inference of the true safety margins of a nuclear reactor.   

  



Ph.D. Thesis – D. Pun-Quach; McMaster University – Department of Mathematics and Statistics 

 

134 

REFERENCESREFERENCESREFERENCESREFERENCES    
 

«1­  USNRC, “Quantifying Reactor Safety Margins: Application of Code Scaling, 
Applicability, and Uncertainty Evaluation Methodology to Large Break Loss of 
Coolant Acciden,” December 1989. 

«2­  A. Petruzzi and F. D’Auria, “Approaches, Relevant Topics, and Internal Method for 
Uncer- tainty Evaluation in Predictions of Thermal-Hydraulic System Codes,” 
Hindawi Publishing Cor- poration Science and Technology of Nuclear 
Installations, vol. 2008, no. Article ID: 325071, 2008.  

«3­  P. Sermer, F.M. Hoppe, D. Pun-Quach, C. Olive, K.Weaver, and I.Cheng, “Statistical 
Foundations for Decision Making in Nuclear Safety Related Problems Using Best 
Estimate Plus Uncertainty Analysis,” Nuclear Science and Engineering, vol. 178, 
no. 2, pp. 119-155, October 2014.  

«4­  A. Prosek and A. Mavko, “The State-of-the-Art Theory and Applications of Best 
Estimate Plus Uncertainty Methods,” Nuclear Technology, vol. 158, no. 1, 2007.  

«5­  OECD/NEA/CSNI, “CSNI Status Summary on Utilization of Best-Estimate 
Methodology in Safety Analysis and Licensing,” in NEA/CSNI/R; OECD Nuclear 
Energy Agency, Paris, France, 1996.  

[6]  G. Apostolakis , "The Distinction Between Aleatory and Epistemic Uncertainties is 
Important: An Example from the Inclusion of Aging Effects into PSA," in PSA ‘99, 
Washington, DC, August 22 - 25, 1999.  

[7]  G. Apostolakis, "The Concepts of Probability in Safety Assessments of 
Technological Systems," Science, vol. 250, pp. 1359-1364, December 1990.  

[8]  J. Helton and D. Burmaster, "Treatment of Aleatory and Epistemic Uncertainty," 
Special Issue of Reliability Engineering and System Safety, vol. 54, p. 9194, 1996.  

[9]  S. Wilks, “Determination of sample sizes for setting tolerance limits,” Annals of 
Mathematical Statistics, vol. 12, pp. 91-96, 1941.  

[10] E. Hofer, “Probabilistische Unsicherheitsanalyse von Ergebnissen umfangreicher 
Rechen- modelle,” January 1993. 

[11] P. Sermer, G. Balog, D. Novog, E. Attia and M. Levine, "Monte Carlo Computation 
of Neutron Overpower Protection Trip Set-Points Using Extreme Value 
Statistics," in Proceedings of the 24th Annual CNS Conference, Toronto, Canada, 
2003.  



Ph.D. Thesis – D. Pun-Quach; McMaster University – Department of Mathematics and Statistics 

 

135 

[12] A. Petruzzi, N. Muellner, F. S. D'Auria and O. Mazzantini, "The BEPU (Best-
Estimate Plus Uncertainty) Challenge in Current Licensing of Nuclear Reactors," 
in The 14th International Topical Meeting on Nuclear Reactor Thermalhydraulics 
(NURETH-14), Toronto, Canada, 2011.  

[13] OECD/NEA, "BEMUSE Phase III Report, Uncertainty and Sensitivity Analysis of 
the LOFT L2-5 Test," in OECD/NEA/CSNI/R(2007)4, Organization for Exonomi 
Co-operation and Development/Nuclear Energy Agency, October 2007.  

[14] C. Chauliac, "A EU Simulation Platform for Nuclear Reactor Safety: Multi-Scale 
and Multi-Physics Calculations, Sensitivity and Uncertainty Analysis," in 7th 
European Commission Conf. on Euroatom research and Training in Reactor 
Systems (FISA 2009), Prague, Czech Republic, June 22-24, 2009.  

[15] M. Kendall and A. Stuart, The Advanced Theory of Statistics, Volume II: Inference 
and Relationship, 4th, Ed., New York: Macmillan, 1979.  

[16] W. Fuller, Measurement Error Models, New York: John Wiley & Sons, Inc., 1987.  

[17] C.-L. Cheng and J. Van Ness, Statistical Regression with Measurement Error: 
Kendall's Library of Statistics 6, New York: Oxford University Press, 1999.  

[18] D. Pun-Quach, P. Sermer, F. Hoppe, O. Nainer and B. Phan, "A BEPU Analysis 
Separating Epistemic and Aleatory Errors To Compute Accurate Dryout Power 
Uncertainties," Nuclear Technology, vol. 181, no. 1, pp. 170-183, January 2012.  

[19] USNRC 10 CFR 50.46;, "Acceptance Criteria for Emergency Core Cooling Systems 
for Light Water Cooled Nuclear Power Reactors and Appendix K to 10 CFR 50, 
“ECCS Evaluation Models”," 39, 3, January 4, 1974. 

[20] CSNI, “Code Validation Matrix of Thermal-Hydraulic Codes for LWR LOCA and 
Transients,” March 1987. 

[21] USNRC, “Compendium of ECCS Research for Realistic LOCA Analysis,” 1988. 

[22] N. Aksan, F. D’Auria, H. Glaeser, R. Pochard, C. Richards and A. Sjoberg, “Separate 
Effects Test Matrix for Thermal-Hydraulic Code Validation, Volume I: Phenomena 
Characterisation and Selection of Facilities and Tests, Volume II: Facility and 
Experiment Characteristics,” September 1993. 

[23] A. Bucalossi, A. Petruzzi, M. Kristof and F. D’Auria, “Comparison Between Best-
Estimate-Plus-Uncertainty Methods and Conservative Tools For Nuclear Power 
Plant Licensing,” Nuclear Technology, vol. 172, no. 1, 2010.  



Ph.D. Thesis – D. Pun-Quach; McMaster University – Department of Mathematics and Statistics 

 

136 

[24] D. Novog and P. Sermer, "A Statistical Methodology for Determination of Safety 
Systems Actuation Setpoints Based on Extreme Value Statistics," Science and 
Technology Nuclear Installations, 2008.  

[25] J. Luxat, R. Huget, D. Lau and F. Tran, “Development and Application of Ontario 
Power Generation’s Best Estimate Nuclear Safety Analysis Methodology,” in 
International Meeting on “Best Estimate” Methods in Nuclear Installation Safety 
Analysis (BE-2000), Washington, DC, USA, 200.  

[26] H. G. Glaeser, L. E. Hochreiter and A. J. Wickett, “Independent Expert Peer Review 
Canadian Industry Best Estimate Analysis and Uncertainty Methodology,” Report: 
COG-JP-02-001 (http://nuclearsafety.gc.ca), 2002.  

[27] USNRC, "Safety Evaluation by the Office of Nuclear Reactor Regulation Related to 
Acceptability of the Topical Report WCAP-12945 (P) ‘Westinghouse Code 
Qualification Document for Best-Estimate Loss of Coolant Accident Analysis’ for 
referencing in PWR Licensing Applications, Westinghouse Electric Corporation," 
Topical Report WCAP-12945 (P), 2004.  

[28] K. Takeuchi, M. Nissley, J. Spaargaren and S. Dederer, "Scaling effects predicted by 
WCOBRA/TRAC for UPI plant best estimate LOCA," Nuclear Engineering and 
Design, Vols. 186, 1&2, pp. 257-278, 1998.  

[29] D. Cacuci, Sensitivity and Uncertainty Analysis, Theory, I, Boca Raton: Chapman & 
Hall/CRC,, ISBN 1-58488-115-1, 2003.  

[30] A. Petruzzi, F. D'Auria, W. Giannotti and K. Ivanov, “Methodology of Internal 
Assessment of Uncertainty and Extension to Neutron Kinetics/Thermal-
Hydraulics Coupled Codes,” Nuclear Science and Engineering, vol. 149, no. 2, 
2005.  

[31] F. D'Auria and W. Giannotti, “Development of Code with capability of Internal 
Assessment of Uncertainty,” Nuclear Technology, vol. 131, no. 1, pp. 159-196, 
2000.  

[32] F. D'Auria and G. Galassi, “Best-Estimate Analysis and Uncertainty Evaluation of 
the Angra-2 LBLOCA DBA,” Pisa, Italy, 2001. 

[33] F. D'Auria, A. Petruzzi, N. Muellner and O. Mazzantin, “The BEPU (Best Esti- mate 
Plus Uncertainty) Challenge in Current Licensing of Nuclear Reactors,” in The 
14th Interna- tional Topical Meeting on Nuclear Reactor Thermal Hydraulics 
(NURETH-14), Toronto, Canada, Sept 25-29, 2011.  

[34] H. Glaeser, E. Hofer, M. Kloos and T. Skorek, “Uncertainty and sensitivity analysis 
of a post-experiment calculation in thermal hydraulics,” Reliability Engineering 



Ph.D. Thesis – D. Pun-Quach; McMaster University – Department of Mathematics and Statistics 

 

137 

and System Safety, vol. 45, pp. 19-33, 1994.  

[35] M. Nissley, C. Frepoli, K. Ohkawa and K. Muftuoglu, “Realistic Large-Break LOCA 
Evaluation Methodology Using the Automated Statistical Treatment of 
Uncertainty Method (ASTRUM),” Pittsburgh, PA.. 

[36] C. Frepoli and L. Oriani, “Notes on the Implementation of Non-Parametric 
Statistics within the Westinghouse Realistic Large Break LOCA Evaluation Model 
(ASTRUM),” in Proceedings of ICAPP’06, Reno, NV, USA, June 4-8, 2006.  

[37] Y. Orechwa, "Best-Estimate Analysis and Decision Making Under Uncertainty," in 
Best Estimate 2004, Washington D.C,, 2004.  

[38] OECD/NEA, "First Meeting of the BEMUSE Programme (Best-Estimate Methods – 
Uncertainty and Sensitivity Evaluation) – BEMUSE Phases 1 and 2," in 
NEA/SEN/SIN/AMA(2003)27, Cadarache, France, September 4-5, 2003.  

[39] A. Petruzzi, F. D'Auria, J. Micaelli, A. De Crecy and J. Royen, "The BEMUSE 
programme (Best-Estimate Methods – Uncertainty and Sensitivity Evaluation)," 
in International Meeting on Best-Estimate Methods in Nuclear Installation Safety 
Analysis (BE-2004) IX, Washington D.C. (US), Nov. 14-18, 2004.  

[40] OECD/CSNI, "Workshop on Best Estimate Methods and Uncertainty Evaluations," 
in OECD/CSNI Workshop, Barcelona, Spain, 2013 .  

[41] M. Ionescu-Bujor and D. Cacuci, “A Comparative Review of Sensitivity and 
Uncertainty Analysis of Large-Scale Systems—I: Deterministic Methods,” Nuclear 
Science and Engineering, vol. 147, p. 189– 203, 2004.  

[42] D. Groeneveld, L. Leung, P. Kirillov, V. Bobkov, , I. Smogalev, V. Vinogradov, X. 
Huang and E. Royer, "The 1995 Look-up Table for Critical Heat Flux in Tubes," 
Nuclear Engineering Design, vol. 163, pp. 1-23, 1995.  

[43] R. Oduntan, D. Pun-Quach, C. Wong and A. Tahir, "Critical Heat Flux, Single-Phase 
and Two-Phase Pressure Drop Methodologies For CANFLEX-NU with Crept and 
Uncrept Pressure Tubes," in 9th International CNS CANDU Fuel Conference, 
Belleville, 2005.  

[44] S. Doerffer, D. Groeneveld and S. Cheng, "A Comparison of Critical Heat Flux in 
Tubes and Bilaterally Heated Annuli," Nuclear Engineering and Design, vol. 177, 
pp. 105-120, 1997.  

[45] Training Centre, "Heat Transport System," January 1996. [Online]. Available: 
http://canteach.candu.org. 



Ph.D. Thesis – D. Pun-Quach; McMaster University – Department of Mathematics and Statistics 

 

138 

[46] G. Casella and R. L. Berger, Statistical Inference, 2, Ed., Duxbury.  

[47] R. Feldman, Epistemology, Upper Saddle River, N.J. : Prentice Hall, 2003.  

[48] R. Chisholm, Theory of Knowledge, 3rd ed., Englewood Cliffs, NJ: Prentice-Hall, 
1989.  

[49] N. Effingham, An Introduction to Ontology, Polity Press, April 2013.  

[50] C. Ehrlich, R. Dybkaer and W. Wöger, "Evolution of philosophy and description of 
measurement (preliminary rationale for VIM3)," Accreditation and Quality 
Assurance, vol. 12, pp. 201-218, 2007.  

[51] W. Press, B. Flanner, S. Teukolsky and W. T. Vetterling, Numerical Recipes, 
Cambridge: Cambridge University Press, 1986, p. 529 – 532. 

[52] Y. Ronen, Ed., Uncertainty Analysis, Boca Raton , Florida: CRC Press, Inc., 1988.  

[53] J. Shao, Mathematical Statistics, 1st Edition ed., New York: Springer Verlag, 1999.  

[54] G. Hahn and W. Meeker, Statistical Intervals: A Guide to Practitioners, New York: 
John Wiley & Sons, 1991.  

[55] S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, page 483, 6th ed., 
New York: McGraw Hill, 2010.  

[56] A. Cullen and H. Christopher Frey, Probabilistic Techniques in Exposure 
Assessment, New York: Plenum Press, 1993.  

 
 
  



Ph.D. Thesis – D. Pun-Quach; McMaster University – Department of Mathematics and Statistics 

 

139 

APPENDIX APPENDIX APPENDIX APPENDIX AAAA::::    DEFINITIONSDEFINITIONSDEFINITIONSDEFINITIONS    
Definition 1Definition 1Definition 1Definition 1: Physical System, ¤ � ¤(x):   
 

The physical system, �,,,, represents all entities that are contained within a 
closed, physical boundary.  The response of a physical system can be induced 
by a phenomenon (e.g., heat transfer in the fuel channel coolant).  The 
physical system depends only on knowledge of the BIC variables, �    that are 
all fixed (non-random) variables.  Hence, � is a deterministic concept. 

 
Definition 2:Definition 2:Definition 2:Definition 2: Physical Sub-System, ¤� � ¤�(x):   
 

The physical sub-system, �� represents a subset of the (complete) physical 
system and takes on similar properties as � (such as responding to a 
phenomenon and being a deterministic concept). 

 
Definition 2: Definition 2: Definition 2: Definition 2: The Phenomenological Description on ¤�:   
 

Let � and � be the BIC variables and the code parameters as defined in 
Section 3.3.  If there exists ��,,,, such that �(�; ��) lies in a sufficiently close 
neighbourhood of the response, �� � ��(�), then �(�; ��) is deemed a 
phenomenologically correct mathematical representation/description for    ��.... 
Note that there may be other values (e.g., �′�) ) ) ) that may satisfy this definition. 

 
Definition Definition Definition Definition 4444: : : : Safety Margin 

The safety margin is the defined as the difference between the safety analysis 
computed result and the acceptance criterion.   

 
Definition Definition Definition Definition 5555: : : : Design Basis Accident 

A design basis accident (DBA) is a postulated accident that a nuclear facility 
must be designed and built to withstand without loss to the systems, 
structures, and components necessary to assure public health and safety.  
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Definition Definition Definition Definition 6666: : : : Dryout and Dryout Power 
The onset of dryout occurs at a channel power level at which the axial heat 
flux curve (along the fuel channel) is tangent to the axial locus of CHF.  The 
channel power at which dryout occurs in a channel is known as the critical 
channel power under constant initial flow. 

 
Definition Definition Definition Definition 7777: : : : Critical Channel Power 

The channel power at which dryout occurs in a channel is known as the 
critical channel power under constant channel pressure drop. 
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APPENDIX APPENDIX APPENDIX APPENDIX BBBB: THEOREMS AND PROOF: THEOREMS AND PROOF: THEOREMS AND PROOF: THEOREMS AND PROOFS S S S FOR THE FOR THE FOR THE FOR THE PT STRAIN PT STRAIN PT STRAIN PT STRAIN 
REGRESSIONREGRESSIONREGRESSIONREGRESSION    

Theorem Theorem Theorem Theorem 1111    

Considering the bundle-specific regression model, as given in Equation (5.6) of 
Section 5.1.1.2, then the following results hold: 

1. the observations, wxyis a random sample of size J, which can be expressed 
in matrix form as follows: 
    SSSS � xxxx'¦} + xxxx¨0 + xxxx�1+ �23 + �45 � XXXX© + w; and 

2. ª    has a 88(K, «) distribution  
 

where: 
N� ¬ × ® (i.e., the total number of observations) 
xxxxD � ¯8 is a column vector of ones of size ° � ¬ × ®  

xxxx± � ;
¨©ª«(:∙±)

⋮
¨©ª«(:∙´)

=;    xxxx� � ;
¨©ª«(µ∙±)

⋮
¨©ª«(µ∙y)

=;    xxxx> � $¶?⨂¯¶% ;  

xxxx@ � ¶A ;  
¶8 is an identity matrix of size N 
⨂ is the kronecker product;  

 XXXX � [[[[xxxx', xxxx¨, xxxxB]]]];  

© � C
¦D
0
1
G;  

w � �23 + �45    
0 � (¸±, … , ¸º)o;;;; 
1 � (»±, … , »º)o;;;; 
w � (¼±±, … , ¼º´)o; 

K � ½[ª] � XXXX©;  
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« � t¾¿[ª] � ½[ªªo] − KKo � ¶�⨂$½¶.N� + ¶¶.Xb% ; 

½¶ � ¯¶¯¶
o;;;;and    

t¾¿(3,5) � '    
ProofProofProofProof::::    
For a given j and i�1,…,I,  
let: 

 ª∙y � Á
¦D
⋮

¦D
Â + ;

:±y ' '
' ⋱ '
' ' :ºy

= Á
 ¸±
⋮

¸º
Â + ;

µ±y ' '
' ⋱ '
' ' µºy

= Á
»±
⋮

»º
Â + ;

Ãy
⋮

Ãy
= + Á

~±y
⋮

~ºy
Â    

� ¯¶¦} + ¨©ª«(:∙y)0+ ¨©ª«(µ∙y)1+ ¯¶Ãy + 5∙¬ 
 
Hence, for j�1,…,J: 
 

ª � Á
ª∙±

⋮
ª∙´

Â � Á
¯¶¦}

⋮
¯¶¦}

Â + ;
¨©ª«(:∙±)

⋮
¨©ª«(:∙´)

= 0 + ;
¨©ª«(µ∙±)

⋮
¨©ª«(µ∙y)

= 1 + Á
¯¶Ã±

⋮
¯¶Ã´

Â + Á
5∙±

⋮
5∙´

Â 

� ¯8¦} + Ä¨0 + ÄB1 + $¶?⨂¯¶%3+ 5    
� xxxx'¦} + xxxx¨0+ xxxx�1+ Ä23 + Ä45 

 
where: 

xxxxD � ¯8 is a column vector of ones of size ° � ¬ × ®  

xxxx± � ;
¨©ª«(:∙±)

⋮
¨©ª«(:∙´)

=;    xxxx� � ;
¨©ª«(µ∙±)

⋮
¨©ª«(µ∙y)

=;    xxxx> � $¶?⨂¯¶% ;  

xxxx@ � ¶A ;  
¶8 is an identity matrix of size N� I × J (i.e., total number of 
observations); and ⨂ is the kronecker product;  

 
Thus, letting: 
 Å � [xxxx', xxxx¨, xxxxB]; © � C

¦D
0
1
G; and  w � Ä23 + Ä45, we get the following result as 

required:   ª � Æ© + w. 
 
For the distributional properties of SSSS, we consider the following from (5.3) 
and (5.8): 

            I~8�(0, Y�.N�) and  J~88(0, Y8.Xb) 
 
The expected value of Y Y Y Y are obtained as follows:  
K = ­«�­ = ­«9O + w­ = 9O 
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where Å � [xxxx', xxxx¨, xxxxB]; and © � C
¦D
0
1
G;  

 
The covariance of S S S S is defined as: 
 
« � ­[ªªo] − KKo � .N�xxxx2Ä>P + .Xbxxxx4 = .Nb$�?⨂£�%$�?⨂£�%

ü + .Xb�8 
= �?⨂ |$£�£�

U%.Nb + ��.Xb� = �?⨂$¨�.Nb + ��.Xb% 
 
For all t t t t ϵ ℝ0, the mgf of SSSS is given as follows: 
 
M°(t) = ¨*÷ttttTTTT�, = ­*e±U(xxxx'�ß9xxxx�09xxxx�19$239$45), 

= ÷|ttttTTTT(H'�ß9H�09H�1)�­«÷($2U±)¥39($4U±)¥5­  
= exp(ttttTTTT(H'Ð� + H�0 + Hb1) + a

b ±
U$.Nbxxxx2$>P + .Xbxxxx4%±  

= exp(ttttTTTT9O + a
b ±

Uw±)  
 
Hence, �~8(K, w). 

       ∎ 
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Theorem Theorem Theorem Theorem 2222    

Considering the bundle-specific regression model, as given in Equation (5.6) of 
Section 5.1.1.2 and expressed in matrix notation as given in Theorem 1, then the 
MLE estimators for the regression coefficients and the error parameters are given as 
follows: 

1. ©O � $Æo«OÈ¨Æ%È¨$Æo«OÈ¨ª%    

2. .gN� � ±
É(ºÈ±) wg

o(a − ¶8)wg 

3. .gXb = a
¤(�Þa) wg

U(Ø�8 ó a)wg  

where: wg = � ó 9OO; a � $¶�⨂½¶%, and ½¶ � ¯º¯º
o from Theorem 1 

 
ProofProofProofProof::::    
Given a random sample of observations (of size J+) of PT strain 
              ª � (w±±, … , wº´\)o,,,, and unknown parameters: 

² � (©,.N�,.Xb)ü; 

© � C
¦D
0
1
G;  

 
Let the usual likelihood function be given as follows: 
³(²; �) � (2´)Èµ

B |"|È±/�exp �− ±
� (SSSS − #)o "È¨(SSSS − #)�; 

 
and the corresponding log-likelihood function: 
    
$(%; �) � log(&(%; �)) � − É

' log(2() − ±
' log(|"|) − ±

� (SSSS − #)o "È¨(SSSS − #)  
 
where: 

# � XXXX©; 
" � ¶)⨂*½¶+,

� + ¶¶+-./, and 
¨� = £�£�

U as given in Theorem 1. 
 
The partial derivatives with respect to the unknown parameters;  
    2$(%;4)

26 = ó�ü"Þ�9 ó 9U"Þ�� + 9U"Þ�9O + OU9U"Þ� (E.(E.(E.(E.1111)))) 



Ph.D. Thesis – D. Pun-Quach; McMaster University – Department of Mathematics and Statistics 

 

145 

 

    Ê$(%;�)
Ê78

Ë � − ±
�

Êlog(|"|)
Ê78

Ë − ±
� 9o �Ê":¨

Ê78
Ë � 9 (E.(E.(E.(E.2222)))) 

 

    Ê$(%;�)
Ê7;Ë

� − ±
�

Êlog(|"|)
Ê7;Ë

− ±
� 9o �Ê":¨

Ê7;Ë
� 9 (E.(E.(E.(E.3333)))) 

 
Setting the partial derivative in (E.1) to equal 0 and rearranging leads to the 
MLE estimates of ©::::    
 

    <= � *Å>"=È¨Å/È¨*Å>"=È¨)% (E.(E.(E.(E.4444)))) 
 
To obtain the MLE estimators of .N�,.-., we use the following identities for 
any square matrix (  ×  ), non-singular matrix, ¶ = ¶(O) with positive 
determinant, and where O = (na, … ,n�)U(see Appendix 4.A of «16­): 

     çlog(|?|)
ç@A

= tr B?Þ� çAAAA
ç@A

C;     ∀E = 1, … , F (E.(E.(E.(E.5555)))) 
 
and 
 

     ç?:�

ç@A
= ó?Þ� | çAAAA

ç@A
� ?Þ�;     ∀E = 1, … , F (E.(E.(E.(E.6666)))) 

 
where tr-∙.  is the trace operator. 
 
For the MLE estimator of +,

b, setting the partial derivative in (E.2) to equal 0 
leads to the following result: 
0 = ó 1

2 trG"Þ�*�)⨂¨�/H + 1
2 9U*"Þ�*�)⨂¨�/"Þ�/9 

 
Let I = *�)⨂¨�/    and rearranging: 

     tr-"Þ�I. = 9U("Þ�I"Þ�)9 (E.(E.(E.(E.7777)))) 
  
Similarly, for the MLE estimator of +,

b, setting the partial derivative in (E.3) to 
equal to 0 and rearranging leads to the following result: 

     tr-"Þ�. = 9U("Þ')9 (E.(E.(E.(E.8888)))) 
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The solution of both (E.7) and (E.8) requires estimates of "È¨, which can be 
expressed in explicit form as follows: 
" � ¶)⨂*½¶+,

� + ¶¶+-./ = �)⨂J    
 
Hence,  
"Þ� = �¿

Þa⨂JÞ� = �¿ ⨂JÞ�    
 
where (by the Sherman-Morrison formula),  

JÞ� = �*��+Xb/Þ� ó *��+Xb/Þ�*+,
b£�£�

U/*��+Xb/Þ�

1 + *+,
b£�

U/*��+Xb/Þ�*+,
b£�/

�    

let: 

     K = 7;�

78
� (E.(E.(E.(E.9999)))) 

 
and reduce JÞ�as follows: 

JÞ� = 1
+Xb

L�� ó (£�£�
U)

(Ø + K)M    
 
Hence,  

     "Þ� = a
7;�

�)⨂ N�� ó *£O£O
U/

(�9·) ¸ (E.(E.(E.(E.10101010)))) 

 
The result for LÞB can be obtained as follows: 

LÞB = ö 1
.Xb

�?⨂ C�� ó (£�£�
U)

(Ø + b)Gø
ü

ö 1
.Xb

�?⨂ C�� ó (£�£�
U)

(Ø + b)Gø 
 
which reduces to: 
LÞB = ö 1

.X@
�?⨂ C�� ó (£�£�

U)
(Ø + b)G C�� ó (£�£�

U)
(Ø + b)Gø 

        = à a
cd¹

�?⨂ º�� ó 2 $£»£»U%
(�9·) + �$£»£»U%

(�9·)� ¸ä 
 
Since a = $�?⨂¨�%, where ¨� = £�£�

U , this gives the explicit form for LÞB    as 
follows: 

     LÞB = à a
cd¹
Z�¤ ó a

(�9·)� (2b + Ø)^ä (E.(E.(E.(E.11111111)))) 
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Hence, the results of (E.10) and (E.11) are used to evaluate trÌLÈ±aÍ of (E.7) 
as follows: 
trÌLÈ±aÍ � tr ¼ 1

.-.
P?⨂ CPR − (TRTR

U)
(V + b)Ga½ = tr ¼ 1

.Xb
Ca ó aB

(Ø + b)G½    
therefore: 

    tr-LÞaa. = ¤·
cd�(�9·) (E.(E.(E.(E.12121212)))) 

    
Similarly, for tr-LÞa. from (E.8): 

    tr-LÞa. = ¤(·9�Þa)
cd�(�9·)  (E.(E.(E.(E.13131313)))) 

 
Furthermore, since: 
aB = $�?⨂¨�%

U$�?⨂¨�% = Ø$�?⨂¨�% = Øa    
 
thus, the term from (E.7) is reduced as follows: 
(LÞaaLÞa)====à a

cd�
�?⨂ º�� ó $£»£»U%

(�9·) ¸äa à a
cd�

�?⨂ º�� ó $£»£»U%
(�9·) ¸ä 

 
                    ====à a

cd�
ä
B

|Zaó a�
(�9·)^� |Z�¤ ó a

(�9·)^� 
 

                    ====à a
cd�

ä
B

|Zaó a�
(�9·) ó aB

(�9·) + aB�
(�9·)�^� 

 
                    ====à a

cd�
ä
B

| a
(�9·)��bb = à a

ce¹
ä | a

(�9·)�� 
 

Therefore, the above reduces to following result: 
    (LÞaaLÞa) = a

ce¹(�9·)� (E.(E.(E.(E.14141414)))) 
 
The above systems of non-linear equations are used to solve for Equations 
(E.7) and (E.8).   
 
From (E.7), and using the results from Equations (E.12) and (E.14) gives the 
following result: 
 
     tr-LÞaa. = wU(LÞaaLÞa)w    
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°b

.-.(V + b) = wU ö a
.N@(Ø + b)bø w    

    
and hence, upon reducing leads to the following: 

   .Nb¦(Ø + b) = wUaw (E.(E.(E.(E.15151515)))) 
 
Similarly, from (E.8) and using Equations (E.11) and (E.13) gives the 
following: 
 
          tr-LÞa. = wU(LÞb)w    
     ¤(·9�Þa)

cd�(�9·) = wU öà a
cd¹
Z�¤ ó a

(�9·)� (2b + Ø)^äø w    

     .Xb
¤(·9�Þa)

(�9·) = wUw ó (b·9�)
(�9·)� wUaw    

    
and hence, upon reducing leads to an explicit form for .Nb as a function of 
.Xbas follows: 

   .Xb + .Nb = a
¤ w

Uw (E.(E.(E.(E.16161616)))) 
 
From Equations (E.15): 
.Nb¦(Ø + b) = wUaw    
which is rearranged:  Ø.Nb +  .Xb = a

¤ w
Uaw    

substitute the results of (E.16) to the above leads to: 
                                      Ø.Nb +  |a

¤ w
Uw ó .Nb� = a

¤ w
Uaw    

and hence: 
   .gNb = wgU Z aÞ�8

¤(�Þ�)^ wg  (E.(E.(E.(E.17171717)))) 
 
where wg = � ó 9OO.  Substituting the result from (E.17) back into (E.16) gives 
the following: 
.Xb = 1

¦ wUw ó wU º a ó �8
¦(Ø ó 1)¸ w = wU C�8(Ø ó 1) ó a + �8

¦(Ø ó 1) G w 
Therefore: 

   .gXb = a
¤(HÞa) wgU«�8I ó a­wg  (E.(E.(E.(E.18181818)))) 

       ∎ 
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Theorem%3%

Consider)the)bundle/specific)regression)model,)as)given)in)Equation)(5.6))of)Section)
5.1.1.2)and)expressed)in)matrix)notation)as)given)in)Theorem)1,)and)the)MLE)
estimators)for)the)regression)coefficients)and)the)error)parameters)given)Theorem)
2,)then)the)following)results)hold:)

• ! = !!!!!! !! !!!!!! )is)an)unbiased)MLE)estimator)for)!; )

• !!! = !(!!!)!!!

! !!! !!tr !!!! ! !! !!! !
!!! ! !

!!
!!
) is)an)unbiased)MLE)estimator)for)!!!; )

• !!! = !(!!!)!!!

! !!! !tr !!!!! ! !! !!! !
!!! ! !

!!
!!
) is)an)unbiased)MLE)estimator)for)!!!; )

Note)that)the)above)results)hold)provided)that)!!!and)!!!sufficiently)converge.)
Proof:%
To%prove%1,%the%expected%value%of%the%(E.4)%is%given%as%follows:%
%
E ! = E !!!!!! !! !!!!!! = E !!!!!! !! !!!!! !"+ ! %
% % % % % % %= E ! = !%
where%from%Theorem%1,%! = !!!+ !!!. %
Hence%! = !!!!!! !! !!!!!! % is%an%unbiased%MLE%estimator%for%!. %
%
To%prove%2,%first%note%that:%
! = !− !! = !− !! !!!!!! = !! − !!!!!!! !%

where%! = !!!!!! !! = !!!"
!!!

!!
; %and%

%%%%%%%%%%%%%! = !!⨂ !! − !!!!!
!!! %from%(E.10);%and%

!!! = !
!!!
!!%

%
Thus,%the%expected%value%of%the%(E.17)%is%given%as%follows:%

E !!! = E !! !− !!
!(! − 1) ! = 1

!(! − 1)E tr !− !! !!! %
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                                � ±
É(ºÈ±) trÎ(a − ¶8)(¶8 − Æ¾ÆoLÈ±)L(¶8 − LÈ±Æ¾Æo)Ï 

                                � ±
É(ºÈ±) trÎ(a − ¶8)(L− Æ¾Æo)Ï 

                                � ±
É(ºÈ±) trÎ(a − ¶8)L− (a − ¶8)(Æ¾Æo)Ï 

 
                                � ceË

É(ºÈ±) (°(¬ − 1) − btr[(a − ¶8)Æ(Æo�Æ)È¨Æo]) 
 
Therefore, 
.gÐN� � °(¬ − 1).gN�

°(¬ − 1) − b ÁXY ¿(a − P8)Z [ZU ºP8 − a
(b + V)¸Z\

]^
ZUÀ_

 

              is an unbiased MLE estimator for .Nb....    
    

To prove 3, the expected value of the (E.(E.(E.(E.18)))) is given as follows: 

EEEE**** .ggggXb,,,, = EEEE ºººº �
¦((((I ó �)))) wgggg

U««««�8I ó a­­­­wgggg ¸̧̧̧ = 1
¦(Ø ó 1) EEEE««««tr((((((((�8I ó a))))wggggwggggU))))­­­­    

                                            = a
¤(�Þa) tr|(�8I ó a)(�8 ó 9¾9ULÞa)L(�8 ó LÞa9¾9U)� 

                                            = a
¤(�Þa) tr|(�8I ó a)(L ó 9¾9U)� 

                                            = a
¤(�Þa) tr|(�8I ó a)L ó (�8I ó a)(9¾9U)� 

 
                                            = cd�

¤(�Þa) (¦(Ø ó 1) ó tr«(�8I ó a)9(9U�9)Þ�9U­) 
 
Therefore, 
.gÎXb = ¦(Ø ó 1).gXb

(¦(Ø ó 1) ó tr«(�8I ó a)9(9ü�9)Þ�9ü­) 
as required. 

       ∎ 
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Theorem Theorem Theorem Theorem 4444    

Consider the PTDC model given in Equation (5.6) of Section 5.1.1.2 with regression 
coefficients given by the general form: 

©O � $Æo«OÈ±Æ%È¨$Æo«OÈ±ª% is an unbiased estimator for ©;;;; 

then, given: 

• �ixy � [1, Ñjxy, µkxy] (in vector notation) defines a new set of fixed (future) 
reactor aged condition; 

• the lxydefines the true PT strain at the same set of fixed (future) reactor aged 
condition for the i,jth position; and 

• both .gN�and .g-.sufficiently converge. 

the error given by:  m_o = ff_o ó l_o = ãi_o(OO ó O) has the variance given by the 
following: 

 ^Ðt$m_o% = ãi_ooãi_o
ü 

where o = Á(Â$OO ó O% = (9ULÞ�9)Þa. 

ProofProofProofProof::::    
Consider the following m_o = ff_o ó l_o = ãi_o$OO ó O% = ãi_o∆6  
    
Thus, Á(Â$m_o% = ¨ Z$ãi_o∆6%$aibc∆6%U^ = ãi_o¨«∆6∆6U]aibc

e 
    
where: 
 ¨«∆6∆6U] = ¨«((:PLÞa:)Þ�(:PLÞa)) ó O)((:PLÞa:)Þ�(:PLÞa)) ó O)U­    
                                                                = ¨«(o(:PLÞa)) ó O)(o(:PLÞa)) ó O)U­ 
 
where:  o = (9ULÞ�9)Þa 
                                                            = ¨«o:PLÞa))ULÞa9oó 2o9ULÞa�OU + OOU­ 
 
by Theorem 1, 

w = ­«��U­ ó KKU = ­«��U­ ó 9OOU9U    
and 

� = 9O + w    
w~8(', w)    
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hence,  
 ½[∆6∆6U] = o:PLÞa(w + 9OOU9U)LÞa9oó B(o9ULÞa(9O + w)OU) + OOU    
                                                                = o + OOU ó B(OOU) + OOU = o    
 
therefore,  
Á(Â$m_o% = ãi_o¨«∆6∆6U]aibc

e = ãi_ooãi_o
ü 

as required. 
       ∎ 
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APPENDIX APPENDIX APPENDIX APPENDIX CCCC::::    COMPARING THE DATA ACOMPARING THE DATA ACOMPARING THE DATA ACOMPARING THE DATA ADJUSTMENT METHODSDJUSTMENT METHODSDJUSTMENT METHODSDJUSTMENT METHODS    
Background:Background:Background:Background:    

The following numerical example is taken from [55], where the True 
Phenomenological Description is given as follows: 

   �(Ä; Ò) � Ó±(1 − ¼ÈvËxxxx)  

where this problem has known true parameters:  � � (Ó±, Ó�)� �
(0.79186, 1.6751)�.   

A plot of this function is given in Figure E.0.4, which defines the four regions used in 
the numerical study.  A vector of measured responses is generated based on an 
assumed measurement error, ÔÕ~8(0, ΣÕ) where: 

   LÕ � Á(Â[ÔÕ] � .×� ¶´  

For the a priori DAA in [52] (i.e., optimization with constraint), the original 
estimates of the input parameters, Ø} � (Ø}±, Ø}�)� and the uncertainty associated 
with input parameters is an additional required input.   

Hence, the original estimates are drawn from an assumed distribution:  

 Ù¾ � (Ø}±, Ø}�)o~8(�, Σ¾); 

where the structure of covariance matrix is assumed as follows: 

   L¾ � Á(Â[Ù¾] � º .±
� Ú.±.�

Ú.±.� .�
� ¸  
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The following different cases are studied: 

Case 1: Case 1: Case 1: Case 1:    

• The effect of measurement error (LÕ�.×� ¶´) on the estimates of the model 
parameters; 

• The results of the three cases are summarized in Table E.0.1 to Table E.0.3; 
and 

• The results are illustrated in Figure E.0.1. 

Case 2: Case 2: Case 2: Case 2:    

• The effect of differences in the variances of the model parameters (e.g., .±
�and 

.�
� in L¾) on the estimates of the model parameters; 

• The results of the three cases are summarized in Table E.0.4 to Table E.0.6; 
and 

• The results are illustrated in Figure E.0.2. 

Case 3: Case 3: Case 3: Case 3:    

• The effect of covariance in the model parameters (e.g., Ú in L¾) on the 
estimates of the model parameters; 

• The results of the three cases are summarized in Table E.0.7 to Table E.0.9; 
and 

• The results are illustrated in Figure E.0.4. 

The following conclusions can be drawn from these results: 

• As shown in Case 1 results, the a priori DAA method (i.e., based on the 
optimization with constraint problem in [52]) and the a posteriori DAA 
method  (i.e., the non-linear regression method) lead to comparable results 
when the measurement error of the response variable varies.   

• However, as shown in Case 2, results indicate that the a priori DAA method 
depends heavily on the goodness of the given model parameters. That is, the 
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estimates of the model parameters break-down for large variances in the 
initial estimates of the model parameters.  In contrast, a posteriori DAA 
method is not affected by the large variances in the initial estimates of the 
model parameters and adaptive, based on the accuracy of the measurements 
and the given model parameter estimates. 

• As shown in Case 3 results, the a priori DAA method does worse for all 
correlation coefficient values relative to the a posteriori DAA method.  In 
particular, the a priori DAA method does worse as the correlation coefficient 
approaches a negative relationship between model parameters z1 and z2. 
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Table E.Table E.Table E.Table E.0000....1111:  Case 1: Impact on the Mean :  Case 1: Impact on the Mean :  Case 1: Impact on the Mean :  Case 1: Impact on the Mean Estimation Error.  Note that Estimation Error.  Note that Estimation Error.  Note that Estimation Error.  Note that the Estimation is associated with the Estimates of the the Estimation is associated with the Estimates of the the Estimation is associated with the Estimates of the the Estimation is associated with the Estimates of the 
Model CoefficientsModel CoefficientsModel CoefficientsModel Coefficients....    

IDIDIDID    Standard Deviation inStandard Deviation inStandard Deviation inStandard Deviation in    
Measurement Error, Measurement Error, Measurement Error, Measurement Error, ÃÕ    

Standard Standard Standard Standard 
Deviation inDeviation inDeviation inDeviation in    

Model Model Model Model 
Coefficient, Coefficient, Coefficient, Coefficient, 
Ã¨ � ÃB    

Correlation Correlation Correlation Correlation 
CoefficientCoefficientCoefficientCoefficient    

Mean Error Mean Error Mean Error Mean Error     %%%%[1][1][1][1]    

Original EstimatesOriginal EstimatesOriginal EstimatesOriginal Estimates 
[2] 

a posterioria posterioria posterioria posteriori    DAA    
methodmethodmethodmethod [3] 

a prioria prioria prioria priori    DAA    
methodmethodmethodmethod [4] 

1 1.33 18.50 0 14.44 0.46 0.65 
2 2.65 18.50 0 14.60 0.86 0.96 
3 5.30 18.50 0 14.60 1.57 1.61 
4 6.63 18.50 0 14.59 1.85 1.87 
5 13.25 18.50 0 14.35 3.26 3.27 
6 19.88 18.50 0 14.46 4.63 4.63 

    
Notes: Notes: Notes: Notes: «1­ Error  = (Estimates of Model Coefficient using the selected method) – (True value) as taken from Region 4; 
             where:  True value � the value based on the true parameter values (taken from [55]); 

[2] The original estimates are sampled and a random value obtained given the covariance in the model 
parameters (i.e., "¾).  No additional corrections are applied to the estimates; 

[3] a posteriori method is based on the Gauss-Newton Method.  The non-linear regression method based on 
MATLAB toolsets is also used and shown to be comparable to the Gauss-Newton method (method described 
in Section 5.2.2.2.1); 

[4] a priori method is based on the optimization with constraint problem described in [52] (method described in 
Section 5.2.2.2.2).  Note the method based on the description presented in [52] leads to the same result as 
the optimization without constraint; 

[5] Regions R1 to R4 refer to the four evenly defined different regions of the response function; 
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Table E.Table E.Table E.Table E.0000....2222:  :  :  :  Case 1: Impact on the Standard Deviation of Estimation Error.  Note that the Estimation is associated with the Case 1: Impact on the Standard Deviation of Estimation Error.  Note that the Estimation is associated with the Case 1: Impact on the Standard Deviation of Estimation Error.  Note that the Estimation is associated with the Case 1: Impact on the Standard Deviation of Estimation Error.  Note that the Estimation is associated with the 
Estimates of the Model CoefficientsEstimates of the Model CoefficientsEstimates of the Model CoefficientsEstimates of the Model Coefficients....    

Run IDRun IDRun IDRun ID    Standard Deviation inStandard Deviation inStandard Deviation inStandard Deviation in    
Measurement Error, Measurement Error, Measurement Error, Measurement Error, ÃÕ    

Standard Standard Standard Standard 
Deviation inDeviation inDeviation inDeviation in    

Model Model Model Model 
Coefficient, Coefficient, Coefficient, Coefficient, 
Ã¨ � ÃB    

Correlation Correlation Correlation Correlation 
CoefficientCoefficientCoefficientCoefficient    

Standard DeviationStandard DeviationStandard DeviationStandard Deviation    
of Errorof Errorof Errorof Error    %%%%[1][1][1][1]    

Original 
Estimates[2] 

a posteriori DAA 
method [3]    

a priori DAA 
method [4] 

1 1.33 18.50 0 10.65 0.32 0.59 
2 2.65 18.50 0 10.98 0.59 0.69 
3 5.30 18.50 0 10.99 1.07 1.09 
4 6.63 18.50 0 10.67 1.26 1.29 
5 13.25 18.50 0 10.57 2.28 2.29 
6 19.88 18.50 0 10.78 3.30 3.31 

    
Notes: Notes: Notes: Notes: «1­ Error  = (Estimates of Model Coefficient using the selected method) – (True value) as taken from Region 4; 
             where:  True value � the value based on the true parameter values (taken from [55]); 

[2] The original estimates are sampled and a random value obtained given the covariance in the model 
parameters (i.e., "¾).  No additional corrections are applied to the estimates; 

[3] a posteriori method is based on the Gauss-Newton Method.  The non-linear regression method based on 
MATLAB toolsets is also used and shown to be comparable to the Gauss-Newton method (method described 
in Section 5.2.2.2.1); 

[4] a priori method is based on the optimization with constraint problem described in [52] (method described in 
Section 5.2.2.2.2).  Note the method based on the description presented in [52] leads to the same result as 
the optimization without constraint; 

[5] Regions R1 to R4 refers to the four evenly defined different regions of the response function; 
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Table E.Table E.Table E.Table E.0000....3333:  :  :  :  Case 1: Impact on the Case 1: Impact on the Case 1: Impact on the Case 1: Impact on the 95959595thththth    Percentile of thePercentile of thePercentile of thePercentile of the    Estimation Error.  Note that the Estimation is associated with the Estimation Error.  Note that the Estimation is associated with the Estimation Error.  Note that the Estimation is associated with the Estimation Error.  Note that the Estimation is associated with the 
Estimates of the Model CoefficientsEstimates of the Model CoefficientsEstimates of the Model CoefficientsEstimates of the Model Coefficients....    

Run IDRun IDRun IDRun ID    Standard Deviation inStandard Deviation inStandard Deviation inStandard Deviation in    
Measurement Error, Measurement Error, Measurement Error, Measurement Error, ÃÕ    

StaStaStaStandard ndard ndard ndard 
Deviation inDeviation inDeviation inDeviation in    

Model Model Model Model 
Coefficient, Coefficient, Coefficient, Coefficient, 
Ã¨ � ÃB    

Correlation Correlation Correlation Correlation 
CoefficientCoefficientCoefficientCoefficient    

95959595thththth        
Percentile Percentile Percentile Percentile     

of Errorof Errorof Errorof Error        %%%%[1][1][1][1]    

Original 
Estimates[2] 

a posteriori DAA 
method [3]    

a priori DAA 
method [4] 

1 1.33 18.50 0 34.89 1.07 1.64 
2 2.65 18.50 0 35.81 2.02 2.29 
3 5.30 18.50 0 35.96 3.63 3.74 
4 6.63 18.50 0 34.95 4.31 4.38 
5 13.25 18.50 0 34.90 7.69 7.74 
6 19.88 18.50 0 35.42 11.02 11.05 

    
Notes: Notes: Notes: Notes: «1­ Error  = (Estimates of Model Coefficient using the selected method) – (True value) as taken from Region 4; 
             where:  True value � the value based on the true parameter values (taken from [55]); 

[2] The original estimates are sampled and a random value obtained given the covariance in the model 
parameters (i.e., "¾).  No additional corrections are applied to the estimates; 

[3] a posteriori method is based on the Gauss-Newton Method.  The non-linear regression method based on 
MATLAB toolsets is also used and shown to be comparable to the Gauss-Newton method (method described 
in Section 5.2.2.2.1); 

[4] a priori method is based on the optimization with constraint problem described in [52] (method described in 
Section 5.2.2.2.2).  Note the method based on the description presented in [52] leads to the same result as 
the optimization without constraint; 

[5] Regions R1 to R4 refers to the four evenly defined different regions of the response function; 
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Table E.Table E.Table E.Table E.0000....4444:  Case :  Case :  Case :  Case 2222: Impact on the : Impact on the : Impact on the : Impact on the Mean Estimation Error.  Note that the Estimation is associated with the Estimates of the Mean Estimation Error.  Note that the Estimation is associated with the Estimates of the Mean Estimation Error.  Note that the Estimation is associated with the Estimates of the Mean Estimation Error.  Note that the Estimation is associated with the Estimates of the 
Model CoefficientsModel CoefficientsModel CoefficientsModel Coefficients....    

IDIDIDID    Standard Deviation inStandard Deviation inStandard Deviation inStandard Deviation in    
Measurement Error, Measurement Error, Measurement Error, Measurement Error, ÃÕ    

Standard Standard Standard Standard 
Deviation inDeviation inDeviation inDeviation in    

Model Model Model Model 
Coefficient, Coefficient, Coefficient, Coefficient, 
Ã¨ � ÃB    

Correlation Correlation Correlation Correlation 
CoefficientCoefficientCoefficientCoefficient    

Mean Error Mean Error Mean Error Mean Error     %%%%[1][1][1][1]    

Original EstimatesOriginal EstimatesOriginal EstimatesOriginal Estimates 
[2] 

a posterioria posterioria posterioria posteriori    DAA    
methodmethodmethodmethod [3] 

a prioria prioria prioria priori    DAA    
methodmethodmethodmethod [4] 

1 3.31 0.12 0 0.10 0.10 0.10 
2 3.31 2.47 0 1.92 0.72 0.72 
3 3.31 4.93 0 3.91 0.82 0.82 
4 3.31 9.87 0 7.62 0.96 0.96 
5 3.31 18.50 0 14.44 1.04 1.12 
6 3.31 30.84 0 23.79 1.08 1.75 

    
Notes: Notes: Notes: Notes: «1­ Error  = (Estimates of Model Coefficient using the selected method) – (True value) as taken from Region 4; 
             where:  True value � the value based on the true parameter values (taken from [55]); 

[2] The original estimates are sampled and a random value obtained given the covariance in the model 
parameters (i.e., "¾).  No additional corrections are applied to the estimates; 

[3] a posteriori method is based on the Gauss-Newton Method.  The non-linear regression method based on 
MATLAB toolsets is also used and shown to be comparable to the Gauss-Newton method (method described 
in Section 5.2.2.2.1); 

[4] a priori method is based on the optimization with constraint problem described in [52] (method described in 
Section 5.2.2.2.2).  Note the method based on the description presented in [52] leads to the same result as 
the optimization without constraint; 

[5] Regions R1 to R4 refers to the four evenly defined different regions of the response function; 
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Table E.Table E.Table E.Table E.0000....5555:  Case :  Case :  Case :  Case 2222: Impact on the Standard Deviation of Estimation Error.  Note that the Estimation is associated with the : Impact on the Standard Deviation of Estimation Error.  Note that the Estimation is associated with the : Impact on the Standard Deviation of Estimation Error.  Note that the Estimation is associated with the : Impact on the Standard Deviation of Estimation Error.  Note that the Estimation is associated with the 
Estimates of the Model CoefficientsEstimates of the Model CoefficientsEstimates of the Model CoefficientsEstimates of the Model Coefficients....    

Run IDRun IDRun IDRun ID    Standard Deviation inStandard Deviation inStandard Deviation inStandard Deviation in    
Measurement Error, Measurement Error, Measurement Error, Measurement Error, ÃÕ    

Standard Standard Standard Standard 
Deviation inDeviation inDeviation inDeviation in    

Model Model Model Model 
Coefficient, Coefficient, Coefficient, Coefficient, 
Ã¨ � ÃB    

Correlation Correlation Correlation Correlation 
CoefficientCoefficientCoefficientCoefficient    

Standard DeviationStandard DeviationStandard DeviationStandard Deviation    
of Errorof Errorof Errorof Error    %%%%[1][1][1][1]    

Original 
Estimates[2] 

a posteriori DAA 
method [3]    

a priori DAA 
method [4] 

1 3.31 0.12 0 0.07 0.07 0.07 
2 3.31 2.47 0 1.43 0.52 0.52 
3 3.31 4.93 0 2.89 0.58 0.58 
4 3.31 9.87 0 5.67 0.65 0.66 
5 3.31 18.50 0 10.87 0.71 0.78 
6 3.31 30.84 0 17.84 0.75 2.63 

    
Notes: Notes: Notes: Notes: «1­ Error  = (Estimates of Model Coefficient using the selected method) – (True value) as taken from Region 4; 
             where:  True value � the value based on the true parameter values (taken from [55]); 

[2] The original estimates are sampled and a random value obtained given the covariance in the model 
parameters (i.e., "¾).  No additional corrections are applied to the estimates; 

[3] a posteriori method is based on the Gauss-Newton Method.  The non-linear regression method based on 
MATLAB toolsets is also used and shown to be comparable to the Gauss-Newton method (method described 
in Section 5.2.2.2.1); 

[4] a priori method is based on the optimization with constraint problem described in [52] (method described in 
Section 5.2.2.2.2).  Note the method based on the description presented in [52] leads to the same result as 
the optimization without constraint; 

[5] Regions R1 to R4 refers to the four evenly defined different regions of the response function; 
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Table E.Table E.Table E.Table E.0000....6666:  Case :  Case :  Case :  Case 2222: Impact on the 95: Impact on the 95: Impact on the 95: Impact on the 95thththth    Percentile of the Estimation Error.  Note that the Estimation is associated with the Percentile of the Estimation Error.  Note that the Estimation is associated with the Percentile of the Estimation Error.  Note that the Estimation is associated with the Percentile of the Estimation Error.  Note that the Estimation is associated with the 
Estimates of the Model CoefficientsEstimates of the Model CoefficientsEstimates of the Model CoefficientsEstimates of the Model Coefficients....    

Run IDRun IDRun IDRun ID    Standard Deviation inStandard Deviation inStandard Deviation inStandard Deviation in    
Measurement Error, Measurement Error, Measurement Error, Measurement Error, ÃÕ    

Standard Standard Standard Standard 
Deviation inDeviation inDeviation inDeviation in    

Model Model Model Model 
Coefficient, Coefficient, Coefficient, Coefficient, 
Ã¨ � ÃB    

Correlation Correlation Correlation Correlation 
CoefficientCoefficientCoefficientCoefficient    

95959595thththth        
Percentile Percentile Percentile Percentile     

of Errorof Errorof Errorof Error        %%%%[1][1][1][1]    

Original 
Estimates[2] 

a posteriori DAA 
method [3]    

a priori DAA 
method [4] 

1 3.31 0.12 0 0.24 0.23 0.23 
2 3.31 2.47 0 4.67 1.70 1.70 
3 3.31 4.93 0 9.38 1.94 1.93 
4 3.31 9.87 0 18.60 2.22 2.23 
5 3.31 18.50 0 35.37 2.39 2.59 
6 3.31 30.84 0 58.13 2.56 4.66 

    
Notes: Notes: Notes: Notes: «1­ Error  = (Estimates of Model Coefficient using the selected method) – (True value) as taken from Region 4; 
             where:  True value � the value based on the true parameter values (taken from [55]); 

[2] The original estimates are sampled and a random value obtained given the covariance in the model 
parameters (i.e., "¾).  No additional corrections are applied to the estimates; 

[3] a posteriori method is based on the Gauss-Newton Method.  The non-linear regression method based on 
MATLAB toolsets is also used and shown to be comparable to the Gauss-Newton method (method described 
in Section 5.2.2.2.1); 

[4] a priori method is based on the optimization with constraint problem described in [52] (method described in 
Section 5.2.2.2.2).  Note the method based on the description presented in [52] leads to the same result as 
the optimization without constraint; 

[5] Regions R1 to R4 refers to the four evenly defined different regions of the response function; 
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Table E.Table E.Table E.Table E.0000....7777:  Case 3: Impact on the Mean Estimation Error.  Note that the Estimation is associated with the Esti:  Case 3: Impact on the Mean Estimation Error.  Note that the Estimation is associated with the Esti:  Case 3: Impact on the Mean Estimation Error.  Note that the Estimation is associated with the Esti:  Case 3: Impact on the Mean Estimation Error.  Note that the Estimation is associated with the Estimates of the mates of the mates of the mates of the 
Model CoefficientsModel CoefficientsModel CoefficientsModel Coefficients....    

IDIDIDID    Standard Deviation inStandard Deviation inStandard Deviation inStandard Deviation in    
Measurement Error, Measurement Error, Measurement Error, Measurement Error, ÃÕ    

Standard Standard Standard Standard 
Deviation inDeviation inDeviation inDeviation in    

Model Model Model Model 
Coefficient, Coefficient, Coefficient, Coefficient, 
Ã¨ � ÃB    

Correlation Correlation Correlation Correlation 
CoefficientCoefficientCoefficientCoefficient    

Mean Error Mean Error Mean Error Mean Error     %%%%[1][1][1][1]    

Original EstimatesOriginal EstimatesOriginal EstimatesOriginal Estimates 
[2] 

a posterioria posterioria posterioria posteriori    DAA    
methodmethodmethodmethod [3] 

a prioria prioria prioria priori    DAA    
methodmethodmethodmethod [4] 

1 3.31 18.50 -0.8 13.47 1.00 1.26 
2 3.31 18.50 -0.5 13.91 1.03 1.20 
3 3.31 18.50 -0.2 14.17 1.07 1.17 
4 3.31 18.50 0 14.27 1.06 1.13 
5 3.31 18.50 0.2 14.78 1.05 1.11 
6 3.31 18.50 0.5 14.95 1.01 1.07 
7 3.31 18.50 0.8 14.79 0.91 1.00 

    
Notes: Notes: Notes: Notes: «1­ Error  = (Estimates of Model Coefficient using the selected method) – (True value) as taken from Region 4; 
             where:  True value � the value based on the true parameter values (taken from [55]); 

[2] The original estimates are sampled and a random value obtained given the covariance in the model 
parameters (i.e., "¾).  No additional corrections are applied to the estimates; 

[3] a posteriori method is based on the Gauss-Newton Method.  The non-linear regression method based on 
MATLAB toolsets is also used and shown to be comparable to the Gauss-Newton method (method described 
in Section 5.2.2.2.1); 

[4] a priori method is based on the optimization with constraint problem described in [52] (method described in 
Section 5.2.2.2.2).  Note the method based on the description presented in [52] leads to the same result as 
the optimization without constraint; 

[5] Regions R1 to R4 refers to the four evenly defined different regions of the response function; 
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Table E.Table E.Table E.Table E.0000....8888:  Case 3: Impact on the Standard Deviation of Estimation Error.  Note that the Estimation is associated wi:  Case 3: Impact on the Standard Deviation of Estimation Error.  Note that the Estimation is associated wi:  Case 3: Impact on the Standard Deviation of Estimation Error.  Note that the Estimation is associated wi:  Case 3: Impact on the Standard Deviation of Estimation Error.  Note that the Estimation is associated with the th the th the th the 
Estimates of the Model CoefficientsEstimates of the Model CoefficientsEstimates of the Model CoefficientsEstimates of the Model Coefficients....    

Run IDRun IDRun IDRun ID    Standard Deviation inStandard Deviation inStandard Deviation inStandard Deviation in    
Measurement Error, Measurement Error, Measurement Error, Measurement Error, ÃÕ    

Standard Standard Standard Standard 
Deviation inDeviation inDeviation inDeviation in    

Model Model Model Model 
Coefficient, Coefficient, Coefficient, Coefficient, 
Ã¨ � ÃB    

Correlation Correlation Correlation Correlation 
CoefficientCoefficientCoefficientCoefficient    

Standard DeviationStandard DeviationStandard DeviationStandard Deviation    
of Errorof Errorof Errorof Error    %%%%[1][1][1][1]    

Original 
Estimates[2] 

a posteriori DAA 
method [3]    

a priori DAA 
method [4] 

1 3.31 18.50 -0.8 10.09 0.68 0.97 
2 3.31 18.50 -0.5 10.40 0.69 0.89 
3 3.31 18.50 -0.2 10.56 0.73 0.84 
4 3.31 18.50 0 10.56 0.72 0.78 
5 3.31 18.50 0.2 10.94 0.72 0.78 
6 3.31 18.50 0.5 11.02 0.69 0.75 
7 3.31 18.50 0.8 10.95 0.61 0.75 

    
Notes: Notes: Notes: Notes: «1­ Error  = (Estimates of Model Coefficient using the selected method) – (True value) as taken from Region 4; 
             where:  True value � the value based on the true parameter values (taken from [55]); 

[2] The original estimates are sampled and a random value obtained given the covariance in the model 
parameters (i.e., "¾).  No additional corrections are applied to the estimates; 

[3] a posteriori method is based on the Gauss-Newton Method.  The non-linear regression method based on 
MATLAB toolsets is also used and shown to be comparable to the Gauss-Newton method (method described 
in Section 5.2.2.2.1); 

[4] a priori method is based on the optimization with constraint problem described in [52] (method described in 
Section 5.2.2.2.2).  Note the method based on the description presented in [52] leads to the same result as 
the optimization without constraint; 

[5] Regions R1 to R4 refers to the four evenly defined different regions of the response function; 
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Table E.Table E.Table E.Table E.0000....9999:  Case 3: Impact on the 95:  Case 3: Impact on the 95:  Case 3: Impact on the 95:  Case 3: Impact on the 95thththth    Percentile of the Estimation Error.  Note that the Estimation is associated with the Percentile of the Estimation Error.  Note that the Estimation is associated with the Percentile of the Estimation Error.  Note that the Estimation is associated with the Percentile of the Estimation Error.  Note that the Estimation is associated with the 
Estimates of the Model CoefficientsEstimates of the Model CoefficientsEstimates of the Model CoefficientsEstimates of the Model Coefficients....    

Run IDRun IDRun IDRun ID    Standard Deviation inStandard Deviation inStandard Deviation inStandard Deviation in    
Measurement Error, Measurement Error, Measurement Error, Measurement Error, ÃÕ    

Standard Standard Standard Standard 
Deviation inDeviation inDeviation inDeviation in    

Model Model Model Model 
Coefficient, Coefficient, Coefficient, Coefficient, 
Ã¨ � ÃB    

Correlation Correlation Correlation Correlation 
CoefficientCoefficientCoefficientCoefficient    

95959595thththth        
Percentile Percentile Percentile Percentile     

of Errorof Errorof Errorof Error    %%%%[1][1][1][1]    

Original 
Estimates[2] 

a posteriori DAA 
method [3]    

a priori DAA 
method [4] 

1 3.31 18.50 -0.8 33.22 2.30 3.02 
2 3.31 18.50 -0.5 34.25 2.38 2.81 
3 3.31 18.50 -0.2 35.14 2.51 2.79 
4 3.31 18.50 0 34.03 2.44 2.67 
5 3.31 18.50 0.2 35.54 2.46 2.61 
6 3.31 18.50 0.5 36.38 2.35 2.49 
7 3.31 18.50 0.8 35.71 2.10 2.32 

    
Notes: Notes: Notes: Notes: «1­ Error  = (Estimates of Model Coefficient using the selected method) – (True value) as taken from Region 4; 
             where:  True value � the value based on the true parameter values (taken from [55]); 

[2] The original estimates are sampled and a random value obtained given the covariance in the model 
parameters (i.e., "¾).  No additional corrections are applied to the estimates; 

[3] a posteriori method is based on the Gauss-Newton Method.  The non-linear regression method based on 
MATLAB toolsets is also used and shown to be comparable to the Gauss-Newton method (method described 
in Section 5.2.2.2.1); 

[4] a priori method is based on the optimization with constraint problem described in [52] (method described in 
Section 5.2.2.2.2).  Note the method based on the description presented in [52] leads to the same result as 
the optimization without constraint; 

[5] Regions R1 to R4 refers to the four evenly defined different regions of the response function; 
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Figure E.Figure E.Figure E.Figure E.0000....1111    ––––    Case 1 Results: ImpCase 1 Results: ImpCase 1 Results: ImpCase 1 Results: Impact of Differences in Standard Deviations in Response Measurement Error on the act of Differences in Standard Deviations in Response Measurement Error on the act of Differences in Standard Deviations in Response Measurement Error on the act of Differences in Standard Deviations in Response Measurement Error on the 

Accuracy of the Accuracy of the Accuracy of the Accuracy of the a priori a priori a priori a priori and and and and a posteriori a posteriori a posteriori a posteriori MMMMethods ethods ethods ethods     
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Figure E.Figure E.Figure E.Figure E.0000....2222    ––––    Case 2 Results: Impact of Differences in Standard Deviations in Model Coefficients on Accuracy of the Case 2 Results: Impact of Differences in Standard Deviations in Model Coefficients on Accuracy of the Case 2 Results: Impact of Differences in Standard Deviations in Model Coefficients on Accuracy of the Case 2 Results: Impact of Differences in Standard Deviations in Model Coefficients on Accuracy of the a a a a 

priori priori priori priori and and and and a posteriori a posteriori a posteriori a posteriori MethodsMethodsMethodsMethods.  .  .  .      
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Figure E.Figure E.Figure E.Figure E.0000....3333    ––––    Case 3 Results: Impact of different CorrelatioCase 3 Results: Impact of different CorrelatioCase 3 Results: Impact of different CorrelatioCase 3 Results: Impact of different Correlation Coefficients in Model Coefficients on the Accuracy of the n Coefficients in Model Coefficients on the Accuracy of the n Coefficients in Model Coefficients on the Accuracy of the n Coefficients in Model Coefficients on the Accuracy of the a a a a 

priori priori priori priori and and and and a posteriori a posteriori a posteriori a posteriori MMMMethods.ethods.ethods.ethods.    
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Figure E.Figure E.Figure E.Figure E.0000....4444    ––––    The True Response Function and the Different Regions of the Curve The True Response Function and the Different Regions of the Curve The True Response Function and the Different Regions of the Curve The True Response Function and the Different Regions of the Curve 
Defined.  Note that the Defined.  Note that the Defined.  Note that the Defined.  Note that the Analysis Analysis Analysis Analysis of the Results are Based on Region 4of the Results are Based on Region 4of the Results are Based on Region 4of the Results are Based on Region 4....    
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