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PREFACE

vThe aim of this thesis is to,providg an introduction
to the use of carbon fibre reinforced plastié;

The thesis is divided into four sections: section
A deals with the general background of carboﬁ fibres and
serves to provide a designer with the information necessary
to decide whether the material will be of use to him and in
what capacity. It covers such things as basic properties,
comparison with other fibres, forms of material availablé,
preéent-fabrication techniques, and some associated design
problems. The rémainder of the thesis aims to supply some
of the basic tools that the designer will require when he
begins to work with the material.

One of the first tools the designer needs is a
knowiedge of the elastic moduli of the material. Only one
of the five independent elastic moduli of this material is
generally available and section B serves to provide typical
values to give a designer some feel for the material. With
a composite of thisvnature there are several variables which
affect the moduli - fibre content, resin type and fibre type -
and to make full use of this relatively expensive material
it may often be necessary to vary these to give the moduli
desired for a particular application, and thus a reliable

method of predicting the moduli is required. Section B
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compares three commonly used prediction methods, first in
their standard form and then modified to take account of the
anisotropy of carbon fibres. Numerical results for various
fibre contents and fibre types are given and the suitability
of the various prediction'methods is discussed.

Having found the elastic properties of a unidirectional
composite, the next requirement is a method for predicting the
behaviour of a combination of several unidirectional layers
with different orientations. Section C presents such a
method for analysing laminated composites which is far more
realistic than conventional netting analysis. The method 1is
not widely used or even known at present, and this is the
justification for including it.

Section D contains the references, the computer
programme used in section B for predicting the elastic
moduli and a computer programme for analysing composite
structures. This latter programme has been developed from
an existing programme fo simplify its use and the modifications

are explained and discussed in this section.
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SECTION A: CARBON FIBRE AND ITS USES

Al. INTRODUCTION

Today's rapidly expanding technology, especially in
the field of aerospace, is cpntinually creating démands for
new and better materials. Sir Barnes Wallis is attributed
as having said: "I can design an aircraft to fly at ten
thousand miles an hour - can you give me the materials?",
and this is indicative of the problems that face the
materials engineer today.

With the possible exception of beryllium; no metal
available today is sufficiently stiff and light to meet all
future design requirements. In bulk form the majority of
metals and alloys have a specific stiffness (ratio of
elastic modulus to density) of about 100 x 106 in, and this?
value is not expected‘to be improved significantly in the
foreseeable future.

Ceramic whiskers - tiny, single crystal fibres -
offer a significant increase in specific strength and stiff-
ness compared to metals in both bulk and whisker form.

Some properties of several whiskers listed by Sutton [1]%

* Footnote: References appear in Appendix [4]



are shown in Table [i], together with values for some

bulk metals as given in [2].

Table [i] Properties of various whiskers and bulk metals
peneie] Ty || ] v
Material |1b/in® | 103 1bf/in? 10% 1b£/in?| 10% in | 207 in
Whiskers
Ceramic
A9,203 0.143 3000 62 21.2 u3.4
BeO 0.103 1900 . 50 18.4 48.5
BHC 0.091 2000 70 21.9 76.9
SicC 0.115 3000 70 26;1 60.8
SisN,4 0.115 2000 55 17.u4 47.8
Graphite 0.060 2845 102 47.4 170.0
Metal
Cr 0.260 1290 35 5.0 13.4
Ni 0.324 560 31 1.7 9.6
Bulk Metal
Cr 0.260 120 36 0.46 13.8
Ni 0.324 L6 32 0.14 9.9
Ti (99%) 0.163 80 17 0.u49 10.1
Be (QMV) 0.067 4?2 42 0.63 62.6




Whiskers are of little structural use until they are
bonded together in a matrix material. In the resulting com-
posite the whiskers, aligned in one direction, carry the
bulk of the applied load, while the matrix binds them together,
spaces them, protects them from mechanical and chemical damage
and distributes the load té the individual whiskers.

| It will be some while before whisker materials can be
widely used, however, because of the difficulties of growing
’whiskers reproducibly on a large scale and of aligning and
spacing the whiskers in a suitable matrix. Also the problem
of treating the surfaces of the whiskers to promote wetting
and bonding to the matrix remains to be solved.

A more practicable form of reinforcing material at
present is a continuous fibre. The fibre can then be woven
into matting or tapes which are often more convenient, or used
in filament winding processes. Continuous glass filaments
have been available for some years and glass fibre reinforced
plastic is commonly used for making shells - boat hulls, car
bodies, filament wound piping and rocket motor cases etc.

But glass fibre reinforced plastic has. a specific stiffness
no better than most metals, being about 110 x 108 in (although
it does possess an appreciably better specific strength).

Thus there is a need for high modulus, high strength
continuous fibres. The only suitable fibres that are

available in commercial quantities at present are boron,



graphite and carbon, and it is with the latter that this thesis
is primarily concerned. The words carbon and graphite may
generally be used interchangeably when referring to these
fibres. However, the British usually refer to their fibres

as carbon, while the Americans use the word graphite. Thus

for convenience the use of carbon herein will be restricted

to the British fibres and graphite will refer to the U. S.
fibres. Particular emphasis is placed on the carbon fibres

as these at present seem to be attracting most attention from

both British and U. S. industries.


http:these.at

A2. DEVELOPMENT OF CARBON FIBRES

A2.1. Historical Development

Carbon fibres of some form have been in use for many
years: Edison's first electric light bulb filaments were
made using carbonized bamboo fibres over seventy yeérs ago.
Carbon fibres made by pyrolizing rayon or cellulose have
been used for, among other things, ablative purposes in
rocket nozzles. These‘fibres had poor mechanical properties,
however, having specific strengths and stiffnesses of about
0.8 x 10° in and 10 x 107 in respectively.

The first serious work aimed at making carbon fibres
for structural purposes was started at the Wright Patterson
Air Force Base in Ohio in the late 1950's, where they
developed a technique which enabled them to produce graphite
fibres from a viscose thread having a specific st;ffness of up
to 40 x 107 in on occasisns. Union Carbide did further work
on the process and developed it commercially, and in 1964
placed 'Thornel' 25, with a specific stiffness of 40 x lO7 in,
on the market in limited quantities at a price of over
$1000/1b. Union Carbide have since added 'Thornel' 50 to their
range which is a stronger and stiffer material, and more will

be said of this latern.



Meanwhile some work of a similar nature was proceeding
in Japan. A report by Shindo [3] in 1961 showed that

carbon fibres with a specific stiffness of about 30 x 107 in

- could be produced from polyacrylonitrile yarn by a heat treatment
process. The Osaka Institute, for whom Shindo was working,
patented the process but did not try to improve on these
properties to produce a material for structural use.

In Great Britain, Rolls-Royce, who had considerable
expefience in using glass fibre reinforced plastics and had
been investigating various reinforcing systems, began to
concentrafe on carbon fibre - resin systems in 1962. But it
was the Royal Aircraft Establishment (RAE) Fafnborough,
beginning work on carbon fibres in 1963, who obtained the master
patent when Watt, Phillips and Johnson applied for British
Patent No. 1,110,791 in April 1964. The RAE process was diff-
erent to that of Shindo, though it used a similar precursor,
and produced fibres with a specific stiffness of about
100 x 107 in.

In 1965 RAE asked the Ministry of Technology to scale
up the process as fibre production was taking up so much time
that investigation of the fibre properties was being hindered.
Because of its furnaces and other facilities, the Atomic
Energy Research Establishment (AERE) Harwell, was awarded

a contract to produce RAE type fibres and were soon producing

fibres as good as those at RAE.



Thus the Ministry of Techﬁology, aware of the
potential of this material, invited two companies to further
scale up the procéss and develop it commercially. The companies
involved were Courtaulds, a large textile firh and sole
producer of the precursor material in England, both then and
now, and Morgaﬁite Research and Development, who have consid-
eréble experience in carbon and high temperature technology.

The first work to be published concerning the RAE
fibrés was in May 1966, by Watt et al [4], and gave some fibre
properties, an indication of the structure and some information
on thé properties and preparation of carbon fibre.reinforced
plastic. This was followed in July 1966 by an article by
Standage and P?éscott [5] of the Advanced Research Department,
Rolls-Royce Ltd., announcing that they had pbepared carbon
fibres of high elastic modulus in continuous lengths and
relatively iarge guantities. Typical stiffness and strength
distributions for the fibre were given as well as values for
carbon fibre reinforced epoxy and polyimide resins. Rolls-
Royce had collaborated with the government research laboratories
and were using a process based on the RAE one, but much
original research was done in order to turn the technique into
a tonnage process and to produce large amounts of carbon fibre
reinforced resin, known within the company as 'Hyfil'.

In February 1967, Moreton et al [6] of RAE reported

the effect of the heat treatment temperature on the strength



and stiffness of carbon fibre. This showed that for fibres
requiring a high stiffness heat tbeatment at 2500°C or more

was necessary, while fibres with maximum strength were produced
with a heat treatment temperature of 1500°C - 1600°C. Thus

two types of carbon fibre became available - a high modulus
carbon fibre and a high strength carbon fibre,

The adhesion between fibres and resin matrix was poor
with the early carbon fibres, resulting in low interlaminar
shear strengths, but recently a surface treatment operation,
which neither coats nor contaminates the surface of the fibre,
has been introduced which has resulted in much higher values

for interlaminar shear strength.

A2.2 Method of Manufacture

The method of manufacture of RAE type carbon fibres
is necessarily somewhat clouded, but Gunston t?] has given
a good outline of the batch technique originally used and this
is summarized here for completeness.

The precursor of the carbon fibres is a special grade
of Courtelle which is made by squirting the liquid polymer
through a spinneret having 10,000 microscopic holes. The
filaments set in a bath to form a staple fibre, or tow, and
after further processing are wound on a bobbin.

To make carbon fibres the tow is unwound from the

bobbin on to a rigid frame so that it is evenly loaded with



about 300 m of tow under precise tension and lateral spacing
to give the correct weight of fibre in the resulting sheet.
On each side of the frame the parallel tows are stitched
across the top and bottom to form a secure web.

Then several frames are loaded into a furnace in
which the tows are heated in air to a temperature below 300°¢.
They become oxidised and try to shrink; this increases thé
tension in the fibres and helps orientate the fibre molecules.
The frames are then unloaded and each web cut off just outside
the stitching.

The resulting 'warp sheets' are stacked in refractory
boxes and then heated in another furnace to at least 1000°c
for several hours until all that remains is carbon. Finally
the fibres are subjected to a precise heat treatment in an
inert atmosphere to improve their mechanical properties. For
high strength fibres this heat treatment femperature is about
1500°C, while for high modulus fibres it is over 2500°C.

Continuous plants are now in operation but these are
subject to very close commercial security. The main principles,
however, are shown in Fig. [1], which is based on a sketch in

Gunston's article [7].

A2.3 Structure and Properties

It appears [8 and 9] that the structure of carbon

fibres is a consequence of the structure of the parent organic
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fibre. The RAE type fibres consist of long primary units lying
parallel to the fibre axis, and these primary units are bonded
together to form a stretched network of branched fibrils that
apparently run the full length of the fibre [8].

X-ray diffraction photographs [9] suggest that the
fibres consist of highly orientated graphite crystallites
about 50 R‘in-ﬁize, the angle of orientation being very close
to the fibre axis. It is this preferred orientation which
gi&es the fibre its high modulus; this can be seen in Fig.

[2] which shows a plot of the orientation of the fibre against
the mean Young's modulus of a fibre bundle [u4].

| The strength and deulus of these carbon fibres is
dependent on the heat treaﬁ%ent temperature [6] as shown in
Fig. [3]. High modulus fibres [type I or HM] are heat treated
at above 2500°C, while high strength fibres [type II or HT]
require a temperature of only about 1500°C. Some properties
of the commercially available RAE type fibres obtained from
[10] and [11] are shown in Table [ii]l. The tests were performed
on 5 cm gauge lengths; tests on 1 cm gauge lengths have given
average strengths 12% higher than for 5 cm lengths [6]. This
is due to the scatter of fibre strengths; the chance of
including a weak spot in the test piece being less when using

~a shorter specimen.
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Table [ii]l Properties of various RAE type carbon fibres
Filament] Density|Tensile Young's Specific|Specific

Fibre Diameter 3 Strength Modulus Strength |Modulus
Type Microns | 1b/in" 11431p¢/312 1051bF/in%]20% in 107 in
Modmor T 7.5 0.072 200-300 55-65 2.8-4,1 176-90
Modmor I1 7.5 0.063 350-450 35-45 5.6-7.1 [56-71
Grafil A 7.9 0.0628 |275-325 28~-35 b.4-5,2 {44-55
Grafil HT 7.8 0.0635' 350~450 35-42 5.5-7.0 |55~66
Grafil HM 7.5 0.0700 250-325 50~-60 3.5-4.6 {70-85

The consistency in quality of fibre manufacture is in-
dicated [10] by results from 40 successive production batches
of metre length 'Modmor' +type I fibre: the standard deviation
wés only 4 x 106 1bf/in2 for the Young's modulus and

23 x 10°

lbf/in2 for the ultimate tensile strength. More
detailed information on the quality control and test

methods used by Morganite Research and Development is given by
Blakelock and Lovell [12].

Until recently carbon fibres have tended to give low
values of adhesion within a matrix, which limits the composite
properties; this fact made many people regard carbon as an
unsuitable reinfofcing material and helps to explain the
A surface

concentration on boron in the U. S. a few years ago.

treatment has been developed, however, which improves the
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adhesion, and stereoscan electron micrographs [12] shown in

Fig. [4] demonstrate this improved bonding between fibre and
resin. Measurement of the interlaminar shear strength of a
composite also provides an indicaticn cf the degree of bonding
between fibre and matrix, good bonding giving a higher
interlaminar shear strength. Table [iii] shows typical Values
for fibre-resin composites for treated and untreated fibre [11],

the treated fibre being denoted by a suffix S.

Table [iii] Interlaminar shear strengths for composites with
treated and untreated fibre

Fibre ' Grafil HT | Grafil HT-S | Grafil HM | Grafil HM-S

Interlaminar Shear
Strength

lbf/in2 5000-7000 | 10000~12000 | 3000~5000 | 8000~12000

Clearly the resin used has an important effect on the

absolute value of the interlaminar shear strength obtained.

A2.4 Cost

The present cost of carbon fibre is largely dependent
on the length and amount of fibre required. Table [iv] shows
the latest available prices. Clearly the effectiveness of
carbon fibre must not be judged on present prices, however,

but on its cost in, say, five or ten vears' time, when it is
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being used and produced in bulk.

Table [iv] Present cost of carbon fibre

Fibre Type : Length Quantity Price per 1b
Modmor ! 1 metre €2.2 1b $260
Modmor 1 metre >110 1b $130
Modmor 1800-1500 ft| small $410
Grafil HT 48 in < 11 1b $143
Grafil HT , 48 in > 11 1b $130
Grafil HM 48 in < 11 1b $169
Grafil HM » 48 in > 11 1b. : $156
Grafil HT or HM 1000 ft. < 11 1b. : $430
Grafil HT or HM 1000 ft. > 11 1b $390

There have been many estimates of the future cost of
carbon fibres. Possibly the lowest was suggested by the Atomic
Energy Research Establishment at Harwell, who suggest a figure
of abbut $5 per 1lb. Gunston [7] has suggested that a more
realistic figure migﬁt be $12 per 1b. The fibre manufacturers
do not appear to be quite so optimistic, however.

Morganite Research and Development are producing fibre
at the rate of a few tons a year at present, but Mr. V. Dembo,
New Products Investigation Manager, expected [13] that by the

mid seventies “bey would be producing about one hundred tons
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of fibre a year at a cost of about $35-50 per 1b.

Mr. D. J. Willats, General Manager of Courtoulds
Carbon Fibres Unit, recently disclosed f1u4] that although
people talk of the enormous potenfial demand for carbon |
fibres, most orders at preéent are for experimental quantities
of a few pounds, and that their output at present is only a
few tons a year. He expected the price to fall to about
$70-85 per 1lb for continuous fibres over the next three years.
In ten years' time the price might drop to about $25 per 1b
assuming an output of five hundred tons a year. Mr. Willats
attributed the high cost to two main factors: (i) the high
cost of the precursor material which is about $5 per 1b and
(ii) the fact that the unit output is so low, i. e. there are
very high capital costs. Alsc overall output even at five
hundred tons a year is small in comparison with a normal
textile fibre, say Courtelle, which is produced at the rate of

ten thousand tons a year.
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A3, COMPARISON WITH OTHER FIBRES

A3.1' General

Table [v] shows some typical propertiés of various
commercially aQailable reinfofcing fibres. It can be seen
by comparisonfwith the values shown for bulk metals in Table
[1] that boron, 'Thornel' graphite and RAE type carbon fibre
offer a substantial increase in specific stiffness and

strength over conventional materials.

Table [v] Typical properties of some commercially
available fibres

Density] Tensile Young's Specific| Specific
-3 | strength modulus strength| modulus
. 1b/in 3. .. 2 6., 2 -6 7
Fibre 10°1bf/in"| 10 "1bf/in 10" in 10 in
E-glass | 0.092 | 500% 10.5 5.4 % |11
S-glass 0.090 600% 12.5 6.7 * |14
Asbestos 0.116 300 25 2.6 22
Boron® 0.095 | 460 60 4.8 63
Thornel 50f 0.059 285 50 4.8 85
Modmor I 0.072 250 60 3.5 84
Modmor II 0.063 uo00 40 6.3 6L

t on tungsten core

* wvalue for virgin filament; fiﬁishing, sizing and handling
may cause up to 50% loss in strength
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A3.2. Boron

Boron is considerably mofe expensive than carbon
having a present price of about $300 per 1lb; even in ten
years the price is not expected to fall much below $150 per 1b
[151. Also because of its large cross section (100 microns
compared to 8 microns for carbon) it is less suitable for small
radius applicafions;

A large amount of money has been spent on the devel-
opment of boron fibres, however, and there is consequently_
much more design data pfesently available for‘bofon than for
carbon. Thus boron may be expected to continue to find
applications while more experience is gained with carbon, but
in a few years, carbon should take over a large portion of
these applicatiOns.

Boron may still find applications where the effects
of thermal ekpapsion in a metal-composife structure are
important. The’coefficient of thermal expansion of boron
is much more qompatible with that of metals compared with
carbon which has a negative coefficient of thermal expansion

along the fibre.

A3. 3. 'Thornel' Graphite

The specific strength and stiffness of 'Thornel' 50
graphite are comparable to RAE type carbon fibre as can be

seen in Table [v], but the latter is said to be more consistent
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in continuous‘iengths: the properties of 'Thprnel' tend

to be discontinuous along the fibre. The bonding between
fibre and matrix is also better with RAE type fibre,

producing a greater interlaminar shear strength in the result-

ing composite.

A3.4, Other Graphite Fibres

Other graphite fibres have recently become available
from H. I. Thompson and Co. and the Great Lakes Carbon
Corporation,'both in the U. S. These have a disadvantage
which is common to all the U. S. fibres, namely an irregular
cross-section;‘the British fibres have circular cross-sections.
This difference stems from the essentially different manu-

facturing processes used in Britain and the U. S.
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Al. RANGE OF CARBON FIBRE PRODUCTS AVAILABLE

Carbon fibre is available in the following forms:
[i] Short staple fibre:

Carboﬁ fibre is available as a short staple fibre cut
to any length>from % inch to 12 inches, and is useful in the
manufacture of thermosetting and thermoplastic moulding
materials. It can also be used to manufacture fibrous webs,
é. g. mats, tapes and felté.
£ii] Long staple fibre:

This may be one metre or 48 inches in length and
consists of a twist free tow of 10,000 filamenté.

[iii] Continuous filament tow:

Lengths of up to 3,000 feet of twist free 10,000
filament tow are available for suchluses as filament winding.
[iv] Flock: | |

Carbon fibre is available in flock form having a
nominal length of 1/10 inch, and can be\used as a
reinforcement in thermosetting resin systems.

[v] Preimpregnated unidirectional warp sheet:

Carbon fibres preimpregnated with one of several resins
are available. The 10,000 filament tows are laid parallel
and run the length of the sheet. The sheets are available
in a variety of sizes and thicknesses from 0.001 in to

0.030 in. This form of carbon fibre is ideal for use in

matched moulds.
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{vil] 'Preimpregnated unidirectional tape:

This is available in a standard size 3 inches wide
by 100 yards long. Narrower widths and lengths up to 300
yards are available, however.

[viil Random fibre mats:

Pandom fibre mats can be sypplied lightly bound with
a resin compatible binder to provide cohesion for handling,
or preimpregnated with resin.

[viiil Thermoplastic moulding and extrusion compounds:

A range of carbon fibre filled thermoplastic materials
is avéilable in the form of granules suitable for injection
moulding and extrusion. Nylon 66 and Polypropylene are
available as éﬁandard products containing 20%’by weight of
'"Grafil' A. Other fibre contents in a variety of thermo-
plasties can also be supplied.

[ix] Thermosétting moulding compounds:

A range of moulding compounds is available based on
B~-stage thermosetting resins containing carbon fibre. The
material is supplied as a coarse ground fibrous mass and is
suitable for processing on conventional compression moulding

equipment.
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A5, PROPERTIES OF CARBON FIBRE REINFORCED PLASTIC
A5.1. General

As it was mentioned in the introduction, carbon fibre
must be bonded together in a matrix material before it becomes
a useful structural material. At present plastics and resins
are the most widely used matrix materials because of the
experience gained using them in glass reinforced plastic.
Carbon fibre has been shown to be compatible with the following
thermo?setting resins [16]:

Unsafurated polyesters

Amino, polyamide and anhydride cured epoxides

Phenolic and silicone resins

Friedel-craft resins

Polyphenylenes (Monsanto)

Silphenylenes (I.C.I1.)

Polyimides (Du Pont and RAE types).

The properties of the reinforced plastic will clearly
be dependent on the type and content of matrix and the type
and treatment of fibre used. Typical properties are shown
in Tables [vil and {viil, however, for some typical polyester
and epoxy resin reinforced with Modmor I carbon fibre [10].

Detailed descriptions of the mechanical property measurements

on Modmor carbon fibre-resin composites are contained in [17].



Table [vi] Properties of carbon fibre/polyester resin

composites

50% by volume of untreated 'RAE' type I fibre

Flexural strength
Flexural modulus

Tensile strength
Tensile modulus
Coefficient of thermal expansion
per °C: along fibre
| across fibre

Thermal conductivity
Tensile fatigue at

30,000 *+ 20,000 1bf/in2
Tensile/compressive fatigue at

0 +40,000 1fb/in2

Impact strength (Izod)

120,000 1bf/in2
20 x 10° 1bf/in?

130,000 1bf/in?
28 x 10° 1bf/in?

-0.73 x 10”5

29 x 107°

0.04 cal/s cm®C

>20 x 108 cycles
without failure

>20 x 106 cycles
without failure

19.8 (unnotched)

18.7 (notched)

21.
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Table [viil Properties of carbon fibre/epoxy resin

composites
60% by volume of treated 'Modmor' type I fibre
Flexural strength 120,000-125,000 1bf/in?
Flexural modulus 25—28x106 1bf/in2
Tensile modulus 30-40x106 lbf/in2
Shear strength 7,000-10,000 1bf/in?
AS5.2 Effect of Temperature

Carbon fibre reinforced plastics are precluded from
use in high temperature applications by the temperature limit
of the resin. A standard type Shell epoxy resin (828/DDM/HTS973)
is limited to 100°C for example, wile a Ciba epoxy novalac
resin (LYS558/HT973) is limited to 220°C. As resins capable
of withstanding higher temperatures become available, so the
temperature limit of carbon fibre reinforced plastic will
rise. The carbon fibre‘itself is unaffected by temperature
rises up to about 1500°C in a non-oxidising atmosphere, and
oxidation does not usually present a problem since the

fibres are protected from the atmosphere in a composite.

A5.3. Effect of Water

Unlike glass fibre reinforced plastics which may lose
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15% or more of their strength under humid conditions because
of weakening of the glass/resin interface, carbon fibre
composites suffer little degradation of mechanical properties
even when subjected to prolonged immersion in water. With
certain resins, however, loss in strength up to 5% may be

experienced.

AS. .4, Hardness and Machinability

The hardness of carbon fibre composites is largely
dependent on the hardness of the resin matrix. This is
generally quité low and the composites may thﬁs be machined
by any of the conventional techniques used for machining
metals and plastics.

It has been found that the turning of these composites
is best achievéd dry and at high speeds, the speed being
limited only by the tendency of the tool tc overheat. Tools
should be very sharp, tungsten carbide or diamond tipped
tools being preferable, to prevent tearing of the fibre from
within the matrix. For heavy cuts a positive top rake of
about 20° with side and front clearances of 15° is desirable,

while for finishing cuts no top rake is necessary.

A5.5. Specific Electrical Resistance

The specific electrical resistance of carbon fibre

along the axis is about 775 micro-ohm-cm at 25°C, falling
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to about 660 micro-ohm-cm at 180°C. In a composite the
resistance along the direction of the fibres is proportional
to the volume of fibre. Across the fibre direction the

resistance is much greater and tends to be more variable.

A5.6 Friction and Wear

Lancaéfer‘[183 in a recent survey of the progress in
the development of self-lubricating bearing materials has
drawn attention to the beneficial effect of reinforcing
polymer bearing materials with carbon fibres. He has shown
that carbon fibre reinforced resins appear to exhibit
anisotropy in their friction and wear characteristics and
Fig. [5] shows some results for reinforced polyester sliding
against steel: the coefficients of friection are given
adjacent to each curve. It is concluded from the low wear
rate obtained when the fibres are normal to the sliding
interface that the fibres are then supporting part of the
load. Lancaster has also shown that addition of randomly
orientated chopped fibres can be very effective in reducing
the friection and wear of several different polymers as

shown in Table [wviiil.



Table [viiil] Effect of reinforcement by carbon fibres on the friction and wearp
rate of various polymers sliding against mild steel
lcad, 1.2 kg; speed, 54 cm/s; surface finish =86 uin c.l.a.

, . — —— — SR
Polymer . Wear rate, cmglcm kgx 10_10 Coeffieient of friction

No fibre |30 p2r cent wt fibre| No fibre {30 per cent wt fibre
Friedel-Crafts 860 0.13 0.56 0.24
Polyester (17449) 170 .11 0.50 0.28
Polyvinylchloride 500 0.65 0.43 0.32
P.t.f.e. 480 1.8 0.2% 0.25
Polypropylene 220 1.75 0.47 0.3u
Polymethylmethacrylate| 180 0.5 0.59 0.24
Polycarbonate 41 1.2 0.61 0.25
Nylon 66 10 1.1 0.40 0.35
Polyethylene 4,2 0.9 0.68 0.27
Polymide 2,1 0.4 0.68 0.35

i1
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A6, SOME PRESENT APPLICATIONS AND FABRICATION METHODS
A6.1. General

Carbon fibre components may be fabricated using any
of the techniques developed in glass fibre technology.
These methods may be broadly classified as moulding,
filament winding and laminating from prepreg sheets.

Each of these methods has its advanfages and has been
successfully used in association with carbon fibre. A few

of these applications will now be described.

A6.2. Moulded Structures

One method of forming moulded structures, which
encchpasses hand lay-up, vacuum bag moulding and pressure bag
moﬁlding, involves laying the fibre to form a random mat in
a resin matrix. This method has been widely used in the
manufacture of glass fibre beat hulls, motor-car bodies etc.,
and has the advantage of being inexpensive since it is simple
and requires uncskilled labour. It dces not use the fibre
efficiently, however, and consequently the strength and
modulus of the resulting component are lower than when using
unidirectional fibres. Another disadvantage of this method

" 1is that it is best achieved with a woven fabric: the weave
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crimps the fibre which induces stress concentrations and the
effective strength and modulus are again reduced. Develop-
ment is in progress, nevertheless, on a fabric in which the
cross weave is nylon and this may help to alleviate the
problem.

Fig. [6] shows the ultra-lightweight nose section of
the Lola G.T. tvpe T 70 Mark 3B [Group 4] racing car, made by
Specialised Mouldings Ltd., Huntingdon, England. This is a
moulded structure of glass fibre reinforced polvester resin
containing a network of Courtaulds Grafil HM carbon fibres.
This network achieves a 20% weight saving while producing a
stiffer structure. A car with a similar nose section won the
'Davtona'’ 24 hour race in February 1969,

Another type of moulding is injection moulding where
the molten plastic is injected into a cavity. This method is
widely used for mass producing small plastic components. Ad-
ding short, [1/4 inch] carbon fibres to the liquid resin before
injection increases the rigidity of the resultant component as
well as giving greater dimensional stability, higher heat dis-
tortion temperatures and improved friction and wear characteris-
ties. Alternatively the short fibres may be incorporated into
" a plastic 'dough' which is then moulded. Fig. [7] shows a dough
moulded carbon fibre reinforced "rabbit" made by the Atomic En-
ergy Research Establishment at Harwell. These "rabbits" are

used for nuclear in-pile experiments.
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A6.3. Filament Wound Structures

Fabricéting components by winding continuous filaments
with a resin té act as é binder and matrix is a process that
has been used with glass filaments for some years. It is of
particular use for making circular 6r conical section com-
pohents such as tubes and pressure vessels, dlthough it is
now beihg used in the manufacture of more complex shapes such
as wing flaps. Generation of these complex shapes requires
speciélized machinery and is likely to become an entirely
automatic numerically controlled process. The advantages of
this method, such as the ability to produce an integrated
structure and being able to orientate the fibres in such a
way as to‘place the strength and stiffness where required,
are expected, nonetheless, to make this method important in
thé manufacture of airframe and aero-engine components in
the future. |

In the U.K., Imperial Metal Industries have experience
in winding glass fibre rocket motor cases and were one of the
first companies to produce filament wound carbon fibre
structures. A selection of filament wound tubes, bottles
and rods from I.M.I. is shown in Fig. [8]. They have also
wound carbon fibre rocket motor cases and some experimental
data on the burst level of carbon fibre pressure‘vessels has
been given by Jones [19].

One interesting test structure made by I.M.I. is shown
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in Fig. [9]. It is a circular cylinder with circum-
ferential and longitudinal stiffeners. The entire structure
was hade from carbon fibre reinforced plastic and all but
the longitudinal ribs filament wound in one piece.v The
circumferential ribs have a special shape so that the
helically wound fibres remain'straight.

Bristol Aerojet, also in the U. K., again have
considerable experience of filament winding rocket motor
cases, and a Sxinch diameter solid propellant rocket motor
case made by Bristol Aerojet from substandard material as
a winding trial is shown in Fig. flO]. Small scale pressure
vessels have been filament wound from type 11 material using
epoxy resin and the results of tests on these are given by
Trigg [20]. This paper also gives a good account of the
development of rocket motor systems and the advantages of
using carbon fibre therein.

Another form of construction, similar to filament
winding, is tape winding, in which a number of parallel tows
preimpregnated with resin to form a tape up to 3 inches in
width and from 5 to 30 thousandths of an inch in thickness are
wound over a frame or mandrel. This method has the advantage
of allowing quicker lay down rates and permits a further
stage of inspection, i. e. the tape can be inspected before
use. It has several disadvantages, nonetheless: to be

efficient a high uniformity of tension within the tape is
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necessary and this tends to make the tapes expensive;

winding several tows (up to 40 is already common) under

individual tension may be easier. Also tape winding is less

suitablé for winding parts

Nevertheless; tape
method for thé manufacture
-énd other relaﬁively large
[21],.describe a programme

develop an automatic boron

of large curvature.

winding iooks to bg a promising
of components suchias wing flaps
flat parts. Yurenka and Parks
initiated at McDonnel Douglas to

prepreg®* tape lay-up machine for

orienting and laminating the skins of a Douglas A-u4 Skyhawk

flap and the Boeing Corporation have also spent a consider-

able amount of mohey on developing tape lay-up techniques.

AB .4, Structures Made from Prepreg

The third main method of fabrication is to laminate

parts from sheets of prepreg carbon fibres. The sheets may

be cut to shape with scissors or, for mass production, with

cutters rather like pastry

to give the desired directional properties, are placed together.

in a matched metal mould and subjected to a carefully controlled

cutters. Several sheets, orientated

cyele of temperature and pressure to form the shape and cure

the resin.

® 'prepreg' is a corruption of the work 'preimpregnated' and
although it does not as yet appear in the Oxford English
dictionary, it is a commonly used word in this subject.
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This method is most suitable for fabricating relatively
thin solid parts and has the advantage of being a semi-automatic
process once the pre-form shapes and moulding cycle are
determined. Also when removed from the mould the part requires
very little finishing. The method may be restricted to parts
where a large number is required, however, since the moulds
are expensive fg manufacture.

Rolls-Royée are using this method for the manufacture
of all their high duty composite components and one area of
application which has received much publicity is in the
fan blades of the RB211 turbo fan shown in Fig. [11]. By
using carbon fibre reinforced plastic for the fan blades in
the low pressure compressor they are able to produce a more
efficient blade with a higher surge margin on a weight to
weight basis with titanium. Alternatively, considering titanium
and composite blades of the same aero-dynamic efficiency, it
is possible to produce a much lighter blade, and consequently
lighter supporting structure, by using the composite. further-
more,‘these blades are cheaper. The arrangement and shapes
of the various layers of carbon fibre prepreg used to
manufacture these blades is shown in Fig. [12] and a description
of the manufacturing process is given by Weil [22]. Weil
also gives a detailed account of the reasons for choosing this
material together with some of the problems that had to be

overcome in order to do so.
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A slightly different way of using prepreg sheets 1is
to sandwich aluminum honéycomb coré between two sets of
prepreg sheets fo form panelling for such things as aircraft
flooring. Each set might contain one unidirectional sheet,
two orthogonél sheets or any other combination required to
give the desired properties. This idea is used in the
satellite structure shown in Fig.‘[l3]vwhich was recently built
by I.M.I. to dévelop fabrication techniques and provide a
éomparison with conventional metal structures. The principle
of construction is rather interesting and is described by Jones
[19], together with the manufacturing details. Basically
it consists of four filament wound octagonal spines as the
structural members and panels are formed by sandwiching alum-
inum honeycomb core between carbon fibre reinforced plastic
cylin@rical shgpes of rectangular or triangular cross section
as shown in Fig; [14]l. The optimum design indicates a weight
saving of 38% of the equivalent metal structure and if tests
at RAE show clear advantages, this could replace the all metal
construction on the flight hardware of the X53 payload intended

to be launched by a Black Arrow.

A6.5. Other Applications

Other applications which are already being tested
include stiffening conventional metal components. The British
Aircraft Corporation are following this approach and are now

testing reinforced components for the new, wide-bodied BAC3-11,
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asrreported by McElhinney et al [23]. Development work is
progressing on reinforcing the flanges of conventional metal
beams used in aircraft for such purposes as supporting the
passenger floor and stiffening pressure carrying bulkheads.

Ian Proctor Metal Masts Ltd. in the U.K. have made
lighter and stiffer metal masts for the Flying Dutchman class
of racing dinghy by reinforcing a smaller section alloy mast
with carbon fiﬁres.

At least one golf club has been manufactured from

carbon fibre reinforced plastic.
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AT. SOME DESIGN PROBLEMS

The most obvious design problem associated with carbon
fibre reinforced plastic is its anisotropy, i.e. its strength
and stiffness are dependent on direction. The designer working
with this material cannot rely on conventional analyses based
on isotropic elasticity but must, at present, go back to first
principles and rework each analysis using the theory of
anisotropic elasticity. Each analysis must also be more
thorough, since secondary stresses which mayksometimes be
neglected when working with isotropic materials may now become
important: for example, a transverse stress of the order of
3% of the longitudinal stress could reasonably be ignored when
dealing‘with mild steel, say, but for unidirectional carbon
fibre reinforced plastic the transverse strength may be only
about 3% of the longitudinal strength and thus the transverse
stress becomes significant. This anisotropy may be used to
advantage, nonetheless. The designer is now able to add a
further variable to his optimization sequence: the materials
optimization. By varying the fibre content and the number and
orientation of layers in a structure he is able to produce
a material with appropriate strength and stiffness in each
direction. |

The negative coefficient of thermal expansion of carbon
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fibre reinforced plastic in the fibre direction creates
problems for the designer, especially when using carbon fibre
and metal components together. McElhinney et al [23] report
that when reinforcing the flanges of aluminum beams by wet
lay-up of individual tows, subsequent curing (at temperatures
over 100°C) produced distortion and large residual stresses.r
The problem was overcome in this case by bonding precured
carbon fibre reinforced plastic to the beam with a low-
temperaturefcufe adhesive instead of using the wet lay-up
technique. Further problems arise, of course, if the
component haé to operate at varying temperatures. Moreover,
residual thefmal stresses result whenever prepreg laminates‘
are bonded together at temperatures differentyfrom their oper-
ating‘temperatures as shown in the following sections. These
may be quite large.

Carbon fibres do not possess a plastic range but remain
elastic to faiiure. Because of this, unidirectional carbon
fibre reinforced plastic remains elastic to failure in the
fibre direction, though Petit and Wadoups [24] have shown
that the transverse stress-strain response is non-linear and
that cqnsequently the response of laminated composites may also
be non-linear. This non-linearity is generally small, never-
theless, compared to normal engineering materials such as

mild steel or aluminum.
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This essential lack of yield c¢reates many problems
for the designer. Pearce [25], in an article which attempts
to acquaint deéigners with some of the ways in which carbon
fibre reinforced plastic differs from both metals and glass
reinforced plastic, draws attention to the faét Fhat high modu-
lus cérbon fibre reinforced plastic has an elongation at fail-
ure of only about 0.5%. An engineer would normally regard this
material as briftle, being used to working with materials
having elongations of about 20% at failure, but Pearce points
out that he ﬁnconSCiously accepts a limiting strain of about
0.4% anyway, aé,this is the strain at proof or yield stress
for common engineering materials. If he looké at stresses,
howevér, using'similar safety factors in the two materials
results in a higher load in the carbon fibre reinforced
plastic étructure? with the added advantage that if the struc-
ture is overioaded short of the ultimate thefe will be no
detrimental effect and it will recover elastically.

But, as it was mentioned earlier, the stress analysis
must be much more thorough. Any local overloading in conven-
tional structures merely results in local plastic deformation,
and the load is diffused into the rest of the structure: in
carbon fibre reinforced plastic structures, because the mater-
ial does not yield, local overloading can result in failure.
This inability to distribute concentrated loads over the

structure becomes very important when considering how to attach
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other parts; for instance, how does one attach engines and
landing gear to a carbon fibre reinforced wing?

For similar reasons, joining components can present
problems, especially when joining a composite part to a metal
one. Various'méthods are beiné investigated and adhesive
bonding may provide an answer in some cases. ' The basic
solution, howeyer, is a complete change in the aﬁproach to a
design. Insteéd of relying on traditional ideas and methods,
the designer must rid himself of all conception of the design
as it now is and start right from the beginning. While it may
be pfgdent at‘present td simply make or reinforce existing
parts using this new material in order to gain experience, if
the material is to be utilized to its full potential, whole
structures must be redesigned right from the start in such a
way as to elimihate any attachment or joining problems.

Another problem, though not strictly design, is that
of:testing the components once made. Sample checks on
strength, resin content, stiffness and interlaminar shear
strgngth can be made but these are destructive tests. Non-
destructive testing is more difficult since few of the present
techniques are applicable to this material, but the subject
is receiving much attention. Rolls-Royce (Composité Materials)
Ltd. have used acoustic tests to check the homogeneity of
glass fibre reinforced plastic and Yurenka and Pérks [21]

describe two methods which were used at McDonnel Douglas to
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test the A-u4 Skyhawk flaps referred to earlier. Radiographic
(X-Ray) examinations were used to determine the position of |
internal details, the presence of any foreignvmatter in the
bond area, and any crushed or damaged core. Another test used
was to apply a coating containing thermally sensitive phosphors
to the material. When the coating is heated and viewed under
an ultra-violet light, the phosphors fluoresce in inverse
proportion to the heat sink area underneath. Since the heat
sink of the panel varies greatly from bonded to unbonded
areas, this technique accurately discloses any disbond in the
panel. While it is possible to discover areas of disbonding,
however, it is still extremely difficult to determine areas

of poor bonding.
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A8, FUTURE DEVELOFMENTS

The possible applications of carbon fibre reinforced
plastic are too numerous to cover in detail here. Peters
261, in an introductory article on this material, suggests
besides the aerospace field such diverse areas as chemical
engineering, bearing materials, competition yachts and racing
craft, model aircraft, telecommﬁnications (radar scanners,
dishes and masts), submersibles and stiffening overhead EHT
and MV lines. Some description of each of these uses is given
in this article. Gunston [7] also lists and describes numerous
possible applications including prostheses, sporfing goods
(skis, fishing rods, oars, etc.), glassware and marine and
hydrospace uses.

The more immediate applications are clearly going to
be in the field of aerospace, however, where the weight saving
can justify the present high cost of the material; it has been
suggested [e.g. (23)] that on a typical subsonic aircraft the
value to the operator may range from $80 to $1,300 per 1b
of weight saved depending on the aircraft utilization. Peters
[26] suggests a figure of about $250 in the case of the Concorde
and proposes ten areas where carbon fibre reinforced plastic
could be used to save weight. Thece arekéhcwn in Fig [15]

which appeared in Peters' article.
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Hieronymus [27] in a recent survey of the progress
of some American aircraft companies in the use of composites
reports that the largest programme devoted exclusively to
carbon is at the Aircraft Division of the Norfhrop Corporation.
They will fabricate and ground test the main landing gear
strut door, speed brake, leading edge flap, horizontal
and vertical sfabiiizers of the F-5 over the next three years
under an Air Force contract of a little less than $4% million.
Testing of the main landing gear strut door should be completed
by the end of 1969 and the speed brake, which will be made
with chopped fibres in an epoxy matrix using matched moulds,
should be tested by the middle of 1970. The leading edge
flap and horizontal stabilizer will comprise full depth
honeycomb structures covered with a one piece carbon skin.
The most difficult structure, the vertical stabilizer is
scheduled for fabrication in late lQ?l,and test completion in
early 1972. It will utilize carbon fibre reinforced epoxy
skins with spars and substructure and is representative of
the structures common to most aircraft wings. The programme
includes no flight testing, but Northrop may undertake this
at its own expense. |

This programme is indicative of the rate of progress
to be expected over the next few years in the aircraft

industry. Prime structures of commercial aircraft will probably
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.be reinforced with carbon fibre by about 1975. Other
applications will increase as the price of fibre,drops and
the extent of knowledge of its usage increases.

Development of different matrices for use with carbon
fibres is progressing and resins capable of withstanding 400°C
should be available by about 1973. Metal matrices will be |
necessary in higher temperature applications and work is in
progress on the reinforcement of nickel with carbon fibres.
This should have a temperature limit of about 1000°C, but some
"estimates do not expect this material to reach its full
potential before 1978.'

An impoftant question asked by fhe potential users of
carbon fibre‘is whether this fibre is going to continue to be
used for a réaéonable period of time, or is some other newer
and better material going to become available. One can never
be certain, but it appears that in the foreseeable future there
are only two improvements likely to be offered: better fibres
and whiskers. Any improvement in fibres is likely to be small,
and when improved fibres do become available, none of the
present experience with carbon will be iost as it will almost
certainly be directly applicable to the new fibre. Of the
many possible whiskers, silicon carbide may be one of the first
to become available. Evans and Parrat [28] have reported
a programme of wdrk which demonstrated the feasibility of
producing these whiskers cheaply and of using them successfully,

and licences have been issued to some manufacturers to develop
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the process. But work to scale up production of carbon fibres
was started over four years ago, so evén if the work
progresses smoothly one would not expect SiC whiskers to be
commercially available in large quantities for at least tﬁree
or four years{, Also, once they are available, it may take a
little longer to develop fabrication methods as with carbon
fibres there was the experience gained with glass and boron to
be drawn upon. The applications are also likely to be different:
SiC whiskers do not appear to be very suitable for reinforcing
resins, but are most likely to be used to reinforce aluminum
especially in high temperature applications. Thus whiskers
are likely to supplement carbon fibres rather than replace

them.
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A9, CONCLUSIONS

Carbon fibres are now commercially available and
appear to offer advantages over other commercially available
fibres. The advantages to be gained from using carbon fibre
reinforced plastic, mainly an increase in specific stiffness,
justify the expense of development programmes: this has been
shown in particular by Rolls-Royce Ltd.

No“substantially better fibre is likely to become -
available for a considerable tihe and whiskers, which may be
an economic proposition by 1974 at the earliest, will tend
to supplement rather than replace carbon fibres. Any devel-
opment work on the use of carbon fibre reinforced plastic would,
in any case, be applicable to another fibre and most would
be applicable also to.whiskers. “

Fabrication methods that will be widely used are
filament and tape winding and forming prepreg sheets in matched
moulds, though some use of chopped fibres in thermo-plastics
is to be expected. Military aircraft with composite prime
structures should be flying by 1973 and commercial aircraft
by 1975. Also by this time carbon fibre reinforced plastic
will have become much more competitive in areas other than
aerospace. |

Carbon fibre reinforced plastic offers some problems

to designers, principally because of its anisotropy and lack
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of a plastic range. At the present time the effect of the
anisotropy is to make the analysis much more complicated, but
in time, as designers become more familiar with tﬁe theory

of anisotropic elasticity and computer programmes for
analysing composite structures become available, this problem
will reduce in magnitude. The difficulty of attaching and
joining composite structures, caused by the lack of a plastic
range, can belalleviated by better‘design. This will only
come by taking.a fresh look at what the component should do
and then designing without regard to traditional designs.

For this reason it may be a bad idea to use carbon fibre
reinforced plastic to just stiffen or replace existing sub-

components as this will tend to give set ideas on its usage.



SECTION B: ELASTIC MODULI OF FIBRE
REINFORCED COMPOSITES

B1. INTRODUCTION

Bl.1. Stress-Strain Relationships for an_Othortropic Body

If through each point of a body it is possible to
draw a plane possessing the property that any two directions
symmetric with respect to this plane are equivalent with
respect to the elastic properties, the body is said to possess
a plane of elastic symmetry. A body which has three orthbgonal
planes of elastic symmetry at each point is called orthogonally-
anisotropic, of for brevity, orthotropic.

The stress-strain relationships for an orthotropic

body may be expressed in the form [291]:

0w C11 C12 013 0O 0 O €,

0y 022 C23 0 0 © e'y

g 4 = Csg 0 0 O €, -===(1)
T vz cuue 0 Y vz

T <z | CSSQ Y s

Where o and Tt denote the normal and tangential components of
stress, and € ‘and y denote the normal and tangential components

of strain respectively. Cij = Cji and are the moduli of

- 145 -
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elasticity. As shown, there are a maximum of 9 independent

elastic moduli for an orthotropic body.

Bl.2. Transverse Isotropy

If an axis of elastic symmetry of rotation passes
through each point of an orthotropic body then the body is
said to be transversely isotropic. All directions in the
planes normal to the axis of symmetry are equivalent with
respect to the elastic properties and the body is isotropic
in these planes.

Clearly an isotropic matrix reinforced with isotropic
fibres all orientated in one direction which form a hexagonal
or random array in the plane normal to the fibres will be
transversely isotropic with the plane normal to the fibres
being isotropic. Carbon and graphite fibres are not generally
isotropic, however, but are approximately transversely
isotropic, with the cross sectional plane of the fibre beiﬁg
isotropic. Nevertheless, an isotropic matrix reinforced with
these fibres will still be transversely isotropic.

The number of elastic moduli are reduced from nine
for a general orthotropic body to five for a transversely
isotropic body by the following relationships [29]:

133 G2 7 C333

.1
and C,) = 5 (Cg5 = Cygy

€12 7 € Cs5 = Coe>
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where the x-axis is perpendicular to the plane of isotropy.

Then the stress-strain relationships may be written:

o z Cllex + Clzey + Clzez ———-{2)
a, = leex + Cwey + 023ez -—==(3)
o, = ClzeX + ngsy_+ szez ()
Tk I C..)y meee(5)
vz y 22 23" 'yz

sz = CGBsz ———=(6)
Txy = CGGny -——=(7)

Denoting the 'engineering' elastic constants as:

E longitudinal Young's modulus (i.e. in x direction)

L
ET transverse Young's modulus (i.e. in plane of isotropy)
GT shear modulus in plane of isotropy
GLT longitudinal shear modulus (i.e. in x-y or x-z plane)
. . . . . _ _
VT major Poisson's ratio (i.e. ey/ex or eZ/eX for
pure tension in x direction)
. . . . . y , L
Vit minor Poisson's ratio (i.e. ex/ey or ex/eZ for
pure tension in y or z directions respectively)
. ' . . _
Vopp transverse Poisson's ratio (1.ef. ey/eZ or ez/ey

for pure tension in z or v directions respectively)
It can easily be shown that these are related to the five

elastic moduli'by the expessions:
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2
. _ (Cllfgz + Cy1Chg = 2C4,7) —=—=(8)
L (Cyy * Cpj)d
- 2
p o (L9pmC3)(C11Cpp*C12Cr5m2Cs, ) ~-==(9)
v = 2
(C11C9p=Cy07)
Gp = 3 (C,=C,.) (10
T - ? 22723 -===
GLT‘ = CSG --;-_(11)
v, . et - -e==(12)
LT 7 (eo+c..)
22 -23
y 0 Cp(€yp=Chyd | e (13)
T, T 2,
(C17€52-C45
(C..C..=C..2)
Vor = 11%237C12 emee(18)
= 2
(C11C99=Cq57)

Since there are only five independent elastic constants
there must exist two relationships between the seven engineering

constants used above. These are:

ET = 2 GTk(l +vTT) : morme(15)
and
vTL = Vi ET/EL w—==(16)

By consideration of the inverse of Cij it can easily
be shown [30] that the elastic moduli may be expressed in

terms of the engineering constants as follows:
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)
1 T
c - (___ - m)/x mem(17)
11 \Fr By
\)‘f v
C,y L. i TR eee(18)
EpEp Ep Ep  Ep
Cig = vyp / EX -5--(19)
Vop V217 3 Ve
Chy = +—= /= =X ————(20)
| EpE, B Ep  Eq
C66 = GLT -———(21)
o (1. 2, 2 )
Where X = Z— | Z= (1=vpm) = (Vv Y ====(22)
| B, \Ep TT B LT
Bl.3. Composite‘Elastic Moduli

With many different matrices and fibre reinforcements
available and a vériable fibre content, it becomes useful to be
able to predicf'the properties of the composite in terms of
the constituent material properties and the proportions of
each material. The remainder of this section outlines and
compares some methods by which the five elastic constants of
the composite mav be predicted from a knowledge of the two
elastic constants of the isotropic matrix, two or five elastic
constants of the isotropic or transversely isotropic fibre and

the volume fraction of fibre in the composite.
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Bl.u. Some Previous Work

Chamis and Sendeckyj [31] have recently presente& a
very thorough critique on the theories predicting the
thermoelastic properties of unidirectional fibrouékcomposites
covering over one hundred articles in which the method of
approach vari;s from simple netting analysis fo complex
statistical methods. Concise descriptions and evaluations
of these techniques are provided and current trends discussed.
Numerical results for a few theories are presénted together
with a limited amount of experimental data, and it is shown
that, in general, values predicted for ET and GLT are too
low. It appears that the simple methods at present still
provide at least as good agreement with experimental data
as the mobe sophisticated methods, and so only a few of the
simpler methods are-presented here.

The method of Hashin and Rosen [32], though not the
simplest of methods, is included more for general reference
purposes than because of any agreement with experimental data
as it is the method most often cited for comparison by other
authors. ;

Whitnéy and Riley [33] used a method which may be
considered somewhat analogous to that of Hashin and Rosen, but
is much less rigorous mathematically‘and is written to appeal
to the engineer rather than the mathematician. It is included

here for this reason and also because Whitney [34%] has extended
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this method foi'use with anisotropic fibres and}Blakslee et al
{351 have found good agreement with experimental data from
graphite fibre reinforced plastic using this latter method.
References [331 and [34] contain numerous errors, however, and
thus the results presented for these methods are not
necessarily those given in the published papers, but are
results which have been derived using these methods.

A further review of the more important prediction
methods is contained in [36]. This reference suggests that
for design purposes a simple but approximately precise
formula is desirable for rapid calculation of the composite
properties, and that the Halpin-Tsai equations give both quick
and accurate results. Thus these equations are also included
in this section and compared with other predictions and some

experimental data.
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B2. SOME METHODS :FOR PREDICTING COMPOSITE ELASTIC MODULI

B2.1. Method of Hashin and Rosen

Hashin and Rosen [32] have derived bounds and
expressions for the five elastic moduli of materials reinforced
with hollow circular fibres by a variational method. Exact
results have been obtained for hexagonal arrays of identical
fibres and approximate results for a random array of fibres,
which may have unequal cross sections, and modifications for
use with solid fibres are included. The composite -is assumed
macroscopically homogeneous and the matrix and fibre are assumed
linearly elastic, homogeneous and isotropic.

The results for a random array of solid fibres are
presented as they have a much simpler form and their bounds
coincide except for GTT' Also this arrangement is the one
which generally occurs in practice.

The bulk modulus governing plane-strain deformation
in the yz - plane, KT is used in the anélysis'and is

related to the previously defined constants by the

relationship:
£ = s -—-=(23)
T KT + WGT
2
4K, v.
where Yy =1 + I LT ~===(24)
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Then
™ opll ¢+ (1-2v™vE1 + (1-20™)" ----(25).

i

K =
T (ev™ + vf + 1-2v™)

f

m . .
where v. and v~ are the volume fractions of matrix and

fibre respectively and

£
¢ = K --=-(26)

km

£

where k™ and k* are the plane-strain bulk moduli of matrix

and fibre respectively and are given by

2v6 . e
Y Ty (27

Then ET can be evaluated from equations (23) and (24).

The bounds on the transverse shear modulus are given

by:
m
6 (") = 6" (1 . 2y ) vfﬁi) —-==(28)
(1-2v™)
. m
and GT(-) = g"y (1 + zillxﬁl__ vfﬁg)- -———=(29)
(1-2v™)

where the superscripts (+) and (-) refer to upper and lower
bound solutions respectively, and AE and Rg are each the -
solutions of systems of six linear simultaneous equations

as given in Appemdix (1].
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The longitudinal shear modulus is given by:

f m
m B(l+v™) + v ,
GLT' G n 3 : -==={30)
Bv + (l+v7)
Gf
where 8 = - --=-=(31)
G

The longitudinal Young's modulus is given by:

E

u
<
t
+
<
Ly ]

m
L | -===(32)

and the major Poisson's ratio by:

f.f m m
. V'ETL; + v Emsz (33
LT vafL + vMED,
3 2
where
f m? f m m,.m )
Ly = 2v (1-v™ ) v' + v®1+v™y
£,, £ . f£2
Ly = v (1-v'- 2v ) : S ———=(34)
m2 f m, m
L3 z 2(1-v )v. + (1l+v )v

B2.2. Method of Whitney and Riley

Whitney and Riley [33] have dérived approximate
expressions for four of the elastic moduli of a materia;*
reinforced with solid circular fibres and suggest the_uée of
Hashin and Rosen's result for the fifth. The same assumptions

as regards the properties of the constituents are made as before
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and it is assumed that the fibres are packed in such a way

as to make the composite transversely isotropic. The repeating
element consists of a single filament embedded in a matrix
ceylinder of finite outer radius and the analysis consists of
finding the stresses in tﬂe cylinders for various surface
loadings and using the results in an energy balance to

yield the elastic constants.

The ekpression derived for the longitudinal Young's
modulus is the same as given in equation (32) and the use of
equations (30) and (31) is suggested for the longitudinal
shear modulus.

The major Poisson's ratio is given#by the relationship:
mo 2 (WPovTy (19 yELy T

Eh1-v™mLt ¢+ ro™Ee (1+v™IE

where L = 1-v-2vZ C L22(36)

Vet oV

T ~===(35)

The plane strain bulk modulus is given by:

CraEee™i™ ¢+ (kFa™emyE

—===(37)

kK. =
T radee™ - afac®™ il
where 'k = E —-——-{38)
7L

which is equivalent to equation (27).
As an approximation it is assumed that the transverse

Poisson's ratio is given by the law of mixtures relationship:

Vo= vivE 4T (l-vf) --=-=(39)
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Then the transverse Young's modulus can be

obtained from the expression:

2K, (L=Veur ) E |
Ep = — itk —mem(140)

T
Ep, * bkpVig

and the transverse shear modulus can then be

obtained from equation (15).

B2.3. Whitney's Extension to Include Anisotropic Fibres

Whitney [ 341 , by applying the equations of anisotropic
elasticity to the fibre, extended the method above to include
the effect of transversely isotropic fibres, with the plane
of isotropy being normal to the axis of a fibre. Using
subscripts as defined in Bl.2. to distinguish between
longitudinal and transverse fibre properties, the expression
for the determination of the longitudinal composite Young's

modulus becomes:
+ Il ————(41)

while the major Poisson's ratio is given by the

relationship:

2
m f m f f
2(v —vLT)(l—v )ETv

v, =" - ———C42)
EM1-v™LE [Lmvf+(1+vm)]B§
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where L™ is given by equation (36) and

£
E; 2
f _ f T\ f
L =1 = Vpp = 2 Eﬁr/vLT ———=(43)
L

The plane strain bulk modulus, Ko s is given by

equation (37) where ™ is given by equation (38) and

kI = I mmme (1)
2L »

Then, using the approximation

f £ m

- f
VoS Vpq V +v (1-v7)

mem (45)

the transverse Young's modulus can be obtained from
equation (40).

The expression for the longitudinal shear modulus
is unchahged exéept for the substitution of G{T for Gfand(

is given by equations (30) and (31).

B2.4. The Halpin-Tsai Equations

It has been suggested [36] that it is often
advantageous for design purposes to be able to rapidly calculate
accurate estimates for the elastic moduli of fibre reinforced
composites, and that a simple but approximately precise formula
to interpolate the existing exact machine calculations
available in the current literature is to be desired. Halpin
and Tsai [37] have shown that Herman'é solution [38] general-

izing Hill's self consistent model [39] can be reduced to



very simple approximate forms: these are known‘as the
Halpin- Tsai equations and aim to satisfy the need
expressed above.

The expression for the longitudinal Young's modulus
is the same as given in equation (41) while the major

Poisson's ratio can be approximated by the relationship:

- f f m £
Vir % Vi V +v (1l-v") ————(l46)

The expressions for the remaining three

independent‘elastic moduli can be reduced to the form:

.+ gnvh) | eem(47)
mo(1- nvf)
f, m
where n = \(pf/pmnl) e (148)
(o™ /p7+L)
and p = composite moduli, ET, GLT’ or GT
o™= corresponding matrix moduli
.F‘

p = corresponding fibre moduli

C =.$ measure of .the reinforcement which depends upon

thé boundary cbnditions

It is suggested in [36] that for estimating Glps
the‘c.factor is given by

£ =1 —em e (49)
while for Ep it is given by

z = 2 --==(50)
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The expression for estimating GT becomes identical to that

derived by Herman if ¢ is given by

= — —=-=(51)

B2.5. A Modification for the Longitudinal Shear Modulus

The estimates for the ¢ factors given above were
obtained from comparison with numerical micromechanics solutions
employing formal elasticity theory. It is said [36] that by
setting ¢ =1 and 2, equation (47) yields results for GLT
and BT respectively that duplicate those of Adams and Doner
(40,41], obtained by a lengthy numerical procedure, for all
ratios of pf/om. On inspection, however, it is clear that
with =1, equation (47) reduces to the same expression as
derived by Hashin and Rosen [32] for a random array of solid
fibres [equation (30)]: this expression is generally
regarded as giving poor agreement with experimental results
[31, 361, the predictions being too low. Referring to Table
iI of [40], which compares the numerical results of Adams and
Doner with the predi~tions of [32], it appears that equation
(47)’with z=1 only gives reasonable agreement with [40]
for fibre volume fractions up to about 0.5, and that using
this equation for a volume fraction of 0.75 would give a value

about 30% too low when G{T/Gm = 20 (this is a typical modulus
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ratio for a glass or carbon-resin system).

Since it has been shown [42] that the predictions
of [40] agree very well with experimental data for both
carbon and glass fibre reinforced plastics, it would seem to
be appropriétg to determine a function for z that makes
" equation (47) more nearly approximate these results. The
considerationé gerrning the choice of the function were (i)
that it shoulé’increase G/G™ for high values of vf;
(ii) that G/G™ should still reduce to the correct values at
vf=0'and 1; (iii) that it should be a simpie function capable
of rapid calcﬁlation. These three conditions are met by
choosing the function to be: |
| r = 1+ wo(vhHH0 ——am(52)

Théré is no apparent theoretical justification
for choosing this function, and this apbroximation is no mpre
than simple cufve fitting. However, substitution of equation
(52) into equations (48) and (47) gives results which
approximate to Adams and Doner's solution to a much greater
degree than is obtained using ¢ = 1, as can be seen in Fig.
[16]1. The maximum discrepancy for fibre volume fractions
of up to 0.75 (which is a common practical limit) is of the
order of 10%, which is quite acceptable for engineering’

estimates, compared with discrepancies of up to 50% when using

T = 1.
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It is undoubtedly possible to determine a function
for ¢ which will offer an even closer approximation to the
results of [40]. Such a function would generally be more
complex than the one given in equation (52), however, and would
no longer offer a simple rapid estimate of the modulus,
whereas the e#pression for z given above is a simple piece
of mental arithmetic assuming access to a set of logarithmic
tables. Furthermore it is difficult to justify a more
accurate approximation until a greater quantity of reliable

experimental data becomes available.
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B3. NUMERICAL RESULTS AND DISCUSSION

B3.1. Comparison of Numerical Results for Glass Fibre
Reinforced Plastic with Experimental Data

Comparison of theoretical predictions with experimental
data is somewhat difficult because of the limited amount of
reliable data that is currently available. TFurthermore the
data that is available tends to be from samples with slightly
different constituent properties which further complicates
the process. The results presented in this section are, with
the exception of Fig. [17], for an E glass-epoxy resin

system with the constituent properties shown in Table [ix].

Table [ix] Elastic properties of E-glass and epoxy resin
E-glass Epoxy Resin
E 10.6x10%1bf/in? | 0.5x10%1b£/in?
\V 0.22 0.35

- 6 . 2 6 .2
G = m 4,34%10 1bf/in 0.185%10 1bf/in

This particular system was chosen since it is one
of the most common and provides therefore a useful comparison

with the carbon fibre systems presented later.
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To show the effect of the modificatidn to the
Halpin-Tsai equation for the longitudinal shear modulus,
presented in B2,5, however, a different system was used.
Fig. [17] shows some experimental data obtaiﬁed from [42]
for an E-glass, polyester resin system, together with
Adams and Doner's predictions and the predietions based on
equation (47) with ¢ = 1 aﬁd L = 1+40(vf)10. This parficular
set of data was used as it was obtained from pure torsion
of a solid circular cylindrical rod with the fibres oriented
parallel to the longitudinal axis. This is recognized as
being the best method of determining the shear modulus,
though it has not often been used as specimens are usually
prepared from ﬁrépreg from which it is much easier to
produce plates than solid rods. The data would seem to be
reliable since there is very little observed scatter, in
contrast to the results obtained from other methods. It can
be seen ffom»Fig. £17] that the modified Halpin-Tsai equation
approximates Adams and Doner's numerical solution quite closely
and that it fits the experimental data to within about 10%,
the approximation underestimating the experimental values.

The modification clearly improves the accuracy of the

£ above about 0.5 and does not have

prediction for values of v
a deleterious effect below this value.
Figures [18] to [22] show the predictions for the

five independent elastic constants for the glass fibre epoxy
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resin system described above with some experimental data
obtained from [43]. Fig. [18] shows that the rule of’mixtures
prediction used by each of the methods approximates tﬂe data
to within about 10%, and that the data is distributed both
above and below the prediction.

From Fig. [19] it is clear that there is quite a spread
in both the pfedictions and the experimental data for the
transverse Yoﬁng's modulus. Hashin and Rosen's lower bound
yields the 10Qest prediction while Halpin and Tsai's and
Whitney and Riley's prediction are very similaf to Hashin
and Rosen's uppér bound solution, but the error is as much as
25% in some cases.

| The pbediction shown in Fig. [20] for the majop‘
Poisson's ratio using the method of Hashin and Rosen is the
éame as when using Whitney and Riley's method. It gives
slightly lower values than the rule of mixtures as used by
Halpin and Tsai, but. the maximum discrepancy is only about
3%. The experimental data is somewhat limited but is generally -
lower than both predictions, the maximum difference between
the rule of mixtures prediction and the experimental data
being about 16%.

Fig. [21] shows the predictions for the longitudinal
shear modulus of the glass fibre reinforced epoxy system.
The set of experimental data shown is subject to large

variations probably because of the method of testing.
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Nonetheless, it is clear that the modified Halpin—Tsai
equation gives a better approximation to it than Hashin and
Rosen's prediction.

The Halpin-Tsai prediction for the transverse shear
modulus lies between Hashin and Rosen's upper and lower
bounds, as shown in Fig. [22], while Whitney and Riley's pre-
diction lies somewhat above the upper bound. There is no |
experimental data with which to compare these predictions,
however, as it is very difficult to measure the transverse

shear modulus.

33.2. Numerical Results for Carbon Fibre Reinforced Plastic

In order to give some idea of the variation in the
elastic properties of carbon fibre reinforced epoxy resin with
fibre conteht, some results have been calculated using the
Halpin-Tsai equations (the modified form for the longitudinal
shear modulus) and these results are shown in Fig. [23] to
[271. Th; Halpin-Tsali equations were used for the predictions
as these were shown in the previocus section to give
reasonable approximations to the experimental data while being
of a very simple form. Since the elastic moduli of the
carbon fibre itself are not currently available, with the
exception of the longitudinal Young's modulus, estimates for
both the high modulus and high strength fibres were obtained

by comparison with some estimated and measured values for
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Thornel given in [35] and [36]. The figures for Thornel have
been shown to be reasonable by comparing predicted composite
values with experimental data [35]. The estimates used for
the carbon fibre herein are shown in Table [x], while the

moduli of the epoxy resin are given in Table [ix].

Table [x] Estimated elastic properties of carbon fibres

High modulus High Strength

fibre fibre

6 L 2 6 - 2
EL | 60x10 1bf/in 40x10 1bf/in
Ep 1.2x10%1bf/in? 1.5%x10%1p£/in2
Gy 0.5x10%1bF/in? 0.6x10°1bf/in?
Gy y.0x10%1bf/in? 4.0x10%1bF/in?
v | 0.2 0.2

The term 'high modulus' refers only to the
iongitudinal Young's modulus of the fibre, and if can be seen
from Fig. [23] to [27] that the only elastic modulus of the
composite that is greater with the high modulus fibre
reinforcement is the longitudinal Young's modulus. Both the
transverse shear modulus and the transverse Yqung's modulus
of the composite are greater for the high strength fibre,

while the longitudinal shear modulus is the same for both
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since the fibre modulus was assumed to be the same for

both types.

B3.3 Effect of the Fibre Anisotropy

To show the effect of neglecting the anisotropy of
carbon fibfe, some predictions of the elastic moduli have
been calculated using the same method as in the previous
section, and assuming the fibre properties to be:

Efl = 60 x 10° 1b£/in” and v = 0.2

Clearly the longitudinal Young's modulus and the
major Poisson's ratio will be unaffected as they depend upon
the longitudinal fibre properties which are unchanged. The
transverse properties are affected, however, and Fig. {28]
shows the variation of the transverse Young's modulus with fibre
content for the high modulus fibre reinforced epoxy resin
calculated using the Halpin-Tsai equations assuming both
isotropic and anisotropic‘fibre. Because of the reduced value
of the transverse fibre modulus in the anistropic case, the
modulus of the resulting composite is also reduced, and it can
be seen from Fig. [28] that for a fibre content of 0.70
assuming the fibre to be isotropic results in a predicted

transverse modulus four times too large.
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Fig. [29] shows that the predictions for the longitudinal
shear modulus of the composite are also larger when the fibre
is assumed to be isotropic. The difference is not as great as
for the transverse Young's modulus, however, because the
fibre shear modulus is assumed to be very similar for

isotropic or anisotropic fibres.
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By, CONCLUSIONS

It has been shown that the simple Halpin-Tsai
equations for predicting the elastic moduli of fibre
reinforced composites give good agreement with experimental
data for glass fibre reinforced époxy resin in the case of the
longitudinal Young's modulus, the major Poisson's ratio and
the transverse Young's médulus.' The agreement is atvleast
as good as provided by some other common, but more complex,
methods and the Halpin-Tsai equations are thus to be preferred.

The modified form of the Halpin-Tsai equation for the
longitudinal shear modulus gives excellent agreement with
experimental data for glass fibre reinforced polyester
resin,band gives better agreement in general than analytical
methods. Numerical procedures may give slightly closer
approximations but the simplicity of the modified Halpin-Tsai
equation makes it ideal for rapid design estimates.

There is no experimental data With which to compare
the predictions for the transverse shear modulus, but the
appropriate Halpin-Tsai equation gives values consistent with
those of other predictions and may therefore be used until
more information becomes available.

Some typical values for the elastic moduli of both
high modulus and high strength carbon fibre reinforced epoxy

resin have been given -and only in the case of the longitudinal
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Young's modulus does the high modulus fibre give a higher
composite modulus. If the fibre is assumed to be isotropic
- the predictions for the transverse Young's modulus are very
much higher than when anisotropic fibre properties are

assumed.



SECTION C: ANALYSES OF COMPOSITE STRUCTURES

Cl. INTRODUCTION

Most fibre composite structures today are effectively
built up from a series of thin sheets containing unidiré%tional
fibres, and this will continue to be the principal method of
construction for some years to come. Thus, although its use
might at first sight appear to be rather limited, a method
for analysiﬁg just laminated composites is quite adequate
when dealing with fibre reinforced composite structures.
Furthermore, extension of this method to include random chopped
fibre composites, which are the only other fibre composites
likely to be used, is‘possible.

Essentially, the method consists of finding the stress-
strain behaviour of a unidirectional layer and then using
this, together with the thickness, number and orientations
of the layers of a structure, to predict the stress-strain
behaviour of the structure. Applying the external loading‘
system, the stress-strain state of the structure is determined
and then referred back to the individual layers, where a
failure criteria is used to determine whether the individual

lavers can withstand the given loading system.

- 71 =
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This method was first presented by Tsai [43,44,45]
though not very’clearly, and has very recently been presented
in some depth [36]. This section attempts to present a clear
outline of the method sufficient to enable a design engineer
to use the computer programme given in section D3, with
confidence and understanding, without going to the depth

required by a research engineer.
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Cc2. THEORY OF LAMINATED COMPOSITES

C2.1. Characterization of a Lamina

In chapter Bl.2. it was shown that a unidirectional
fibre reinforced composite car be characterized in general
by five indepehdent elastic constants, and the stress-

strain relationships are given as:

-Ox_- E].l Ci2 Ci2 0 o o] rex-
v €2 Cas 0 0 of|eg
%z Cr3 0 0 0 €,
Tyz = % (Cyp=Cy3) O O Yys -(53)
"z Ces O | Yxz
__TXX_ | CSGJ _?Xz

Since a lamina 1is usually thin, a state of plane
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stress within each lamina is assumed, whence
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the stress-strain relationships may be expressed as

—

Q1 @, O ex«
Q12 Qq © €y
0 0 QGG ny

-===(58)"

It may be noted that there are only four independent

elastic constants necessary to characterize a lamina, the

constant governing shear in the yz plane being unnecessary.

Considering successively pure tension in the x and

y directions and thenrn pure shear in the xy plane, it can be

easily shown that the elastic constants given above

mav be expressed in terms of engineering constants by the

following relationships:

and

n

(1 )

“VoLVur

v

(1-v )

TLVLT
1122 * V1l

LT

~===(59)
~-~--=(60)
--=-=(61)

-===(62)
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To take account of thermal strains that arise when
the operating temperature is different from the laminating
temperature (at which a stress free state is assumed to
exist), one ndtes that the total strain ﬁay be considered
as the sum of ‘the mechanical and free thermal strains, i.e.

£ = e 4 a.T ————(63)

i i i
where ay is the appropriate thermal expansion
coefficient and T is the difference between the lamination and

operating temperature [Tz(Toner_llam)]

e €l z e, - a.T -=-=(64)
For an orthotropic material the thermal expansion

matrix is given as [u46],

41 0O 0
% = 0 oy 0 —===(55)
0 C o

Then for a plane stress system it is easily shown
that the overall stress-strain relationships, taking account

of thermal effects mav be written:

P 0 o I[¢ T)) d
% 117 Q2 Ex~ %x '
cv = Ql2 Q22 0 (cy— ayi) ~——=(66)
_T"V ° 0 QG.C:J __Y Xy
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This is the basic equation for a limina with the
fibres oriented along the x direction. For laminae with
fibres not Ori;nted along the x direction, the stiffness and
th.ermal expansion matrices given above must be transformed
to different coordinate axis. Then for fibres oriented at

any angle 6 to the reference coordinates, xy, equation (66)

becomes:
- - ar ]
o | %1 Qo Qgl| By oD
Oy | = |01 Qpp  Qpgf] (B~ T ————(87)
_¥xy_ _516 Q6 §66 .vxy' axyT)

where Q.. and &, are given by the usual transformations [36]
i3 i g

i. e.

611 = Qllcosue + 2(Q12+2Q66) sinze c0829 + szsinue
_ oy .9 2 "
Qy9 z Q1151n 8 + 2(Q12+2Q66) sin”6 cos 6 + Qy,cos 8
0, = (Q11+Q22-4Q66)sin26c0526+ le(sin“e+cos“e )
o) = (Q,,+Q,,-2Q,,-2Q )sin29c0329+Q (sinue+cosu9)
66 11%Q22-2Q75=2Qg4 66
G = (Qll-Q12-2Q66)sin6cos36+ (Qy,=057*2Q4 ) sin36cos®
0,6 = (oll-Q12-2Q66)sin3ecose+(Q12-Q22+2Q66)sinecos3a

——-=(68)
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- N 2 . 2
and - = axcos 8 +aysln 0

o = g sin26 +a 00829 -===(69)

y X , y

axy = 2sinfcos (ay—ax)

In order to clarify the development of the
remainder of the equations relating fo laminated composites
the effect of thermal strains will not be included in the
following derivations. They can, however, be dealt with
quite simplv in the same way as the mechanical strains, and
for comnletenéss their effect is included in the final

results.

th

The constitutive esquations for the p layer for the

remainder of this section will be denoted by:

[o]p = [Q]p[e]p -——e(70)

for the xy coordinate system (fibres coincident with x
direction) and

g = [3]) [€] ——==(71)

L ]p N, D D
for the Xy coordinate system (oriented at an angle 6 to the

Xy system).

€2.2. Strain-Displacement Relationships

Consider the deformation of a section of a laminate

in the xz plane as shown below. It is assumed that point A
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at the geometrical midplane undergoes a displacement U,

in the x directicn and that the normal to the midplane remains

straight.
i Uo
B
—
B
r—F=X
Zf_ C B A dw
a) initial cross-section b 2= 3x b) deformed
’ ’ ' C X cross-section
|
z 7 D
<~ Zcd

Then the displacement in the x direction of any point

C on the normal is given by

- ~ dw -
u, ug Z, g (72)

where z is the z eoordinate of C measured from the midplane
and w is the displacement the z direction.

Since

gu ——(7
< . (73)

€

for small deformations, then

€ = 2 (u_ -z aw)
X 55( o oX
au 2
- o _ 3w —
i.e. F:x - — 2 (7“‘)
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But the midplane strain, ez, is defined as

£© _ auo | ————(75)
% - oKX

and the plate curvature, kx’ is defined as

k, = - 5 C eme=(78)
9%

Thus, substituting equations (75) and (76) into (74)

Similarly it can be shown that

= +
ey ev zk
R @
and ny = (xy + kay
Thus [el = [€°1 + z[x] —e LD

Hence the strains at any point in a laminate may be
determined from the midplane strains, which are known functions
of the midplane displacemehts, the plate curvatures, which are
known furctions of the deflection (W ), and the z coordinate.

Then equation (71) may be rewritten

(o] = SQJD [E°] + z[Q]p[E] -———=(78)

D



Cc2.3. Stress and Moment Resultants

Since the stress in a laminate varies from layer to
layer, it is more convenient to use an equivalent system of
stress and moment resultants on a laminate. Three strecs
and three moment resultants are defined which togethef fofm
a statically equivalent stress system, but which is applied
to the geometrical midplane. These six quantities are

defined as:

h/?2
Nx =z Oy dz —-——=(79)
~h/2
h/?
N = c -dz -~-=-={(80)
y vy
~-h/?2
"h/?2
ny = TXY dz ~m==(81)
~-h/2
Nn/?2
Mx = Oy zdz ~--=(82)
J-n/2 |
rh/2
M = o zdz —-——=(83)
y v
J-h/2
h/2
ky = TXV zdz -—-—=-(84)

~h/2

where h is the thickness of the laminate.
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Clearly the stress resultants, N, have the
dimensions of force per unit length and the moment
resultants, M, moment per unit length. The positive

directions of these resultants are shown below.

et dx
dy ! )
A= = - — e e e
// P
et I //
T /,’ ! - Ny Myxy
- + //—--——D- e
" - X\s
- Ao e e A §————
///My /// P
TR o Sy~ S __...1(/
’///’/" Nxy
P
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C2.4. Laminate Constitutive Equations

Equations (79-81) can be expressed in the form

~===(85)

Substituting equation (78) into (85) and separating

the continuous integral into an integral over n layers

vields
[ , .
n hp Ap
[N] = g iéJDEEOJ dz + [QJP[E] zdz [ (86)
D=1__ hp-l hp—l _

' : T
where hp—l and hp are the z coordinates of thept“ layer. But

since [01, [€°] and [k] are independent of =.

n h h

D P
[N] = zi f@fD[EO] dz + rﬁ}n[E] zdz | --(87)
p=1 hoy hoy

Purthermore [£°7 and [K] are not functions of p and thus
equation (87) may be reduced to the form:

[N] [A] [E°] + [B] [K] . -=--(88)

where

n

Aii % (Qij)p (hp-hp_l) ———=(89)

p=1
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and

n
- 1 = 2 2
p=1l
Similarly equations (82-84) can be expressed in the form

h/?
[6] zdz -——=(91)
-h/2

i

[(M]

which may be reduced to the form

(M1 = [B] [£°1 + [D] [K] ---=(92)
n
_ ; . 3 _ 3 e
where Dij = 3 ZE:(Qij)p(hp hp»l ) (93)
p=1

and Bii is defined as before.

Combining equations (88) and (92), the total plate

constitutive equation can be written as:
N . A B e

M - B D O|LE ----(34)

By simple matrix manipulation it can be shown that

equation (94) can also be expressed in the form

g9 A% BE| N
- ) ———-(95)
M c* p*| |k
. a=1 N
where [A*] = [A]
[B%] = -[A1"1[B]
: ' MV aee=(96)
(o] = [B] [A1°%
[p*¥1 = [D1 - [B] [A1”'[B] J



This form of equation is used in plate and shell

formulation. Complete inversion of equation (94) vields:

£° At B! N
k i ct p¢ M -——=(97)
where ,
) N\
[A']1 = [A*] - [B#] [D=17 [c%]
= % P ~1 :
[B'] = [B ]1[13 ] L o8y
[cr] = [D*1™ [c*]
[D'] = [D*1% J

Equations (94), (95) and (97) are the most useful forms of
the laminate ébnstitutive equations; they can be obtained from
the elastic properties of cach lamina, the stacking sequence
and som2 simple matrix calculations.

The effect of temperature variations can be included
by defining thermal stress and moment resultants in a

similar way as for the mechanical stress and moments, i. e.

h/2

® ll % 120.y + Qllaxy) T dZ ""'"(99)

etc. Then N etc. in equations (94), (95) and (87) is

replaced by ﬁx etc., where

= } T
N, = N+ N === (100)
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C2.5. Effect of Coupling Terms

Equation (92) indicatcs that for a general laminated
plate the beﬁding moments arise from, or are given in terms
of, the midblane strains and the plate curvatures. That is
stretching (or compressing) the midplane as well as enforcing
curvatures results in bending moments. Similarly equation
(88) shows that normal stresses are given in terms of both
the strains and curvatures. Hence under a pure tensile
load, for example, a general laminate will twist as well as stretdh.
One consequence is that tensile testing of laminatéd specimens
requires special equipment as normal methods do not allow
twisting to occur; thus a bending moment would be imposed
and so the load would no longer be purely tensile. Also
temperature variations will induce bending of a general

laminate because of these coupling terms.



c3. SOME SPECIAL LAMINATES

Two classes of laminates are worthy of particular
attention because of the simplifications that are introduced
in the constitutive equation when.they are used. One of
these is known as a midplane symmetric laminate and, as its
name implies, for each layer above the midplane there is an
identical layver (both in orientation and properties)
at the same distance below the midplane. Now the terms in
the [B] matrix are given by equation (90) as:

n
= 2 2
s h: -
Z(O'n)p ( p ~ Pp1’
p=1

]
NI

B, .
i3

Clearly Bij is even in hp and thus for a midplane symmetric
laminate [B] is identically zero. Besides considerably
simplifying the constitutive equation and thus making comﬁosite
analysisimuch easier, such laminates are free from the bending-
Stretching coupling present in non-symmetric laminates. Thus
‘thermal variations, for example, will not cause warping of
the laminate.

Another laminate deserving attention is one in which
'for every lamina at a positive orientation @ there is another
with the same properties (including thickness) at a negative

orientation 6. Now 616 (and 625) has the same absolute value
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for a positive orientation 6 as for a negative orientation,
but with an opposite sign. Thus from equation (89) it is
clear that for this type of laminate A16 and A26 are zero.
This means that such a laminate will be orthotropic with
respect to the inplane forces and strains.

Clearly it is also possible to construct a laminate
in which [B] is identically zero and A16=A26=0. Such a

laminate is orthotropic with respect to the inplane problem.
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Ch. LAMINATE STRENGTH ANALYSIS

The basic assumption involved in a laminate
strength analysis is that a strength criterion for a lamina
under a state of plane stress exists and that th=: criterion
is valid for any orientation of the lamina in the laminate.
The criterion generally used is based on Hill's [u47]
generalizati-n of the Mises (distortional energy) isotropic
yield criterion.  Tsai [4u4] proposed that failure by
yielding and ultimate strength could be considered synonymous
for fibre reinforced composites, and that the strength

criterion for plane stress could then be written

2 . 2 e N2
() -0« @ - e
where X and Y ‘are the tensile or compressive strengths in
the x and v directions respectively of the lamina and S is
the shear strength. These three guantities are usually
determined experimentallv.

To estimate whether a particular laminate can with-
stand some given loading svstem, the stress and moment
resultants are found from a load analysis of the overall
structure and then the state of strain in the laminate can be‘
obtained using equation (87). Then using equation (78) the

stress state in each lamina 1s determined in the structural
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(xy) axis system. Since equation (101) applies only to the
natural (xy) axis system, the ctresses must be transformed
to this system by the usual stress transformation equations
before substitution into the strength criterion. The laminate
will withstand the load if the left hand side of equation.
(101) 1is lesslthan one for each and every lamina. This
rrocedure may be repeated for loadings up to the point where
one lamina fails, at which point the laminate might fail or
the other laminae might be able to carry the additional
load. What load the failed lamina is capable of taking is
not'well understood at this time, however, and for design
purposes it is usually assumed that the failed lamina is
incapable of taking any lcad. The actual failing load is
generally considered to be the load at which the first
lamina fails, but may also be calculated as the maximum load,
if as each lamina fails it is assumed to contribute nothing
to the laminate apart from holding the other laminae together.
As might be expected it 1s also possible to determine
the maximum values of the stress and moment resultants for
particular loading configurations by obtaining the lamina
stresses in terms of theée resultants and then substituting
in the strength criterion and solving for the resultants.
One complication with this procedure is that the tensile and

compressive strengths of a lamina may not be equal, particularly
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in the transverse direction. This means that the values
of X and Y in equation (101) depend upon the signs of

Oy and ¢_. This is easily taken into account in a computer

programme, however.
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Cs. COMPARISON WITH NETTING ANALYSIS

Nettihg analysis has been and is still widely used in
some sectors of industrv to analyse filament wound and prepreg
structures. The method assumes that the filaments are
perfectly flexible and the matrix perfectly compliant. Thus
netting analysis, in a very approximate manner, takes into
account the [A] matrix but ignores the [B] and [D] matrices.

As for the strength analysis, netting analysis assumes
that all the load is taken by the fibres in the fibre
direction. This would suggest that for a unidirectional u5©
lamina, for example, the uniaxial strength would be about 0.7
of the strength in the fibre direction, while for a typical
fibre reinforced composite, the theorv presented above
suggests a figure of only about 0.1. Furthermore, netting
analvsis predicts the strength in the fibre direction to be
given bv the simple rule of mixtures relationship, which is not
confirmed experimentally.

A comparison between the two analyses for the
strength of a unidirectional composite is shown in Fig. [30]
with experimental data for glass fibre reinforced plastic
taken from [44]. The values for X, Y and S used in the

3 3 3

computation were 150 x 10°, 4 x 10” and 6 x 10 lbf/in2

respectively, and the fibre strength and volume fraction were
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taken as 400 x 10% 1b£/in? ana o0.s. Clearly the continuum

analysis gives a much better approximation to the experimental
data.
As a further example, Fig. [31] shows the stiffness

and strength éf a typical cross-ply glass fibre reinforced

plastic composite. The experimental data is again taken from

[44] and it may be noted that a further limitation of netting
analvsis is that it gives no information as to when

individual layers will fail.
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C6. CONCLUDING REMARKS

It is now accepted in major American aerospace
industries that the type of analysis presented in this section
is more realistic than conventional netting analysis, and its
adoption by industries still using netting analysis is to be
encouraged. The approach may also be used to’investigate the
vibration and stability ete. of laminated structures (e.g.
[481). |

A computer programme which encompasses all of the

above results is discussed and listed in section D3.



SECTION D:

D1.

APPENDICES

DETERMINATION OF R§ AND A

The constant RE used in the expression for the upper

bound of the transverse shear modulus presented by Hashin and

Rosen is given by the solution of the following system of

equations.

.
Al

>l
= m

e}
-~ M

o1}
N M
1]

(3-2vm)vf

ot
NM

=2}

N M

gl
N m

177, o F

>
M

1 -(102)
0 -(103)
0 -(10#)
=0 -(105f
0 -(106)
0 -(107)
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The constant Kg used i.n the corresponding lower
bound is given by an analagous solution with equations

(102) and (103) replaced by:

f
=0 3 Y =0 v =0
A + A - 3A + A = 0 ~-=-(108)
1 (3—2vm)vf 2 3 (1-2v™) N
2 f
1 =0 £f7z0 _ v o ———
- F A2 + 2v A3 - Kq = 0 (109)
(3~2v)v (1-2v")



97.

D2. PROGRAMME FOR DETERMINING ELASTIC CONSTANTS

D2.1. Description of Programme

The computer programme listed in D2.4. evaluates
the engineering elastic constants for a material reinforced
with isotropic and anisotropic fibres using the methods
described in section B. The constants may be evaluated for
more than one volume fraction for any set of data and several
sets of data may be processed in one run. Two alphanumeric
arrays are provided, SYSTEM and UNITS, so that the type of
composite and the units in which the constants are expressed
may be printed out. Other parameters are adequately defined

in the listing.

D2.2. Typical Input

A typical data input deck is shown below.
Parameter Value - Format

IS0
NHR
NHT
NWR

(4I1)

QOO0

EM .500000E+06

VM .35 (E12.6,F12.0)
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Parameter Value Format
EFL .600000E+08

UNITS (J) UNITS-LBF/SQ.IN (8A10)
SYSTEM(J) HIGH MODULUS CARBON

FIBRES USING SOME (8A10)
ASSUMED PROPERTIES

VOLF .5 (F12.0)

VOLF LT ' (F12.0)

VOLF -0.9 (F12.0)

IS0 1

NHR 1

NWR 0

EM .500000E+06

o e (E12.6,F12.0)

EFL .600000E+08

EFT .120000E+07

GFT .500000E+06

GFLT .400000E+07 (4E12.6,F12.0)

VFLT .20

UNITS(J) UNITS-LBF/SQ.IN (8A10)

SYSTEM(J) HIGH MODULUS CARBON
FIBRE USING SOME (8A10)
ASSUMED PROPERTIES

VOLF .5 A (F12.0)

VOLF .7 (F12.0)

VOLF -2.0 (F12.0)

Dz.3.  Typical Output

The output corresponding to the input deck above

is shown below.


http:UNITS-LBF/SQ.IN
http:UNITS-LBF/SQ.IN

BREQICTION OF ~L2aSTIC CUNSTANTS FOK HIGH #ODILUS CARAON o 1RRE USING SOME ASSULED PROFERTIES -
UNITS = LuF /S99 IN 4 : . N o § }
AMISOTROFIC FIARFES

FIdRE PROPERTIES ARE

Ei= 6,000F+07

m
-
U

1.200£+06 GT= 5.0008+05 . GLT= 4,000F5+06 VLT= ,200 VTIL= 004 VTT= 20

MATRIX PROPERTIES ARE - | | 2

£ = 2.,2005+05 it

i
-
.

X
Ji
N

1
+
<
1#2]
<

u
.
[
U1
<S

YOLUME FRACTION F FIISRF

«50

METHOU £L ET 6T GLT VLT ,VTL yT

HALP I EPEFLIET Y TUR3BES0S T 2,885 ¢05 T8 004E405 L2785 <007 .35
- 4 ,953E+G5

AITNEY | 2.C<8F+07 9. THR3IE+ND5 C3.,436F4+0S «273 <009 27

VOLUME FRACTIAN F FIbHE

1l
-
~d
]

vE THQD

[
—

£T a1 GLT vi. T T T T

HALP I 4,
SrilTHEY Ve

o

.
ot Ll

G 258F+05 3.95295+05 C1.,0R3F+80 e 245 <003 o3
1.0635+06 G 269F +05 He3B1E*03 Eh4 <006 P4

"
~N s

U R

T
+ 4
<o

SO " — e e ot e b —— o e s e —— e PRSP, - e e < o = o




SREDICTION OF FLASTIC

N

COMSTANTS FOR RIGH 10DULUS CARKON

UMITS = LoOF/S0,.1

ISOTROPIC FILAPES

FTHRE USTNG SOME ASSUMED PROPERTIES . -,

FIBRE P

MATRIX

ROPERTIES - ARE

E = 0.00u08+G7

PROPERTIES ARF

E = 9.,000F+35

VOLUME

METHGD

FEACTTION OF FINKE

Fl

G = 2.500F+07 V = 4200
G = 1.8528+405 v = o350
= 050

ET

HASHIN

el PN
At L TNEY

vaLumMe

:ME?HOD

340256 +07

3.08E407
Y- TR XN 4

Faalllan 0F FIR

1,233F«06
1.9265+96
1,939+ 06

RE =2 70

E HalPIn

2.219F+04h
3.726F+ 06k
3.5425+04

T.7108+496

3.231Feus T

GT

3.9T6F+05
4,790F+ 5%
T.200F+05

)

31

-
+

1.7232F 06

7.6 0%
8,4a01res

1,422 06

OuLT

vi T

e FHH

LETS
-’({’L:’

1. 00RF+06

1. 4G60F+0¢&
1.0082&09

VT

oLl

<011
NSES
D17

o012
L0272

. o029

05‘)
- Y7
\

vY

o 31
belA

25


http:3.�Ji:?=:�+.07
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D2.4. Listing
The Fortran IV computer listing is shown overleaf.
The programme was processed on a C.D.C. '6400' digital

computer.
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102.

PROGKANAL Tu tVALuATL EnGiNEERING ELASTIC CONSTANTS FUR A
MATERTAL SKEITNFURCED WITH 150TRUPIC UK TKRKANSVEKRSELY 150TnUFlC

FlekbEd FROM A KNOGWLEDGE OF THE FloRe AND MATRIX ELASTIC CuneTlanto

AnD THE CONTENT OF FloRt LY vuLUmbe THREE DIFFERENT PRewICT [uin
METHODS ARE AVAILABLE WITHIN THIS PROGRAMME .

(] —- MATRIX YOUNGSS MOUDOVLUDS

G = WATHIX SHEAK mODbULuL

Vi =~ MATRIX PUlsLON RATIO

EFL = FlBxRE LONGITUDINAL YUUNGYS #UDJULUS

EFT =~ FlorkE TRANSVERGE YUURNGYS MOUDULUS

GFT = FlIpkt SHEAR MODULUS In PLARE OF 1SOTRUPY
GFLT ~ FIBKE LONGITULINAL SHEAR mODULUS

VFLT = FilpRe MmAJOUR PUISSUN xATTO

VETL = FIgkE wIntik POISSUn mATIO

VETT ~ Fluke TRANSVERSE PUlSSUn RATIU

kL ~ CUmPGSTTE LUuNGITULINAL YUUNG'S MubDJLUD
ET - CUMPUSITE TRANSVEROE YUUNGYS SMUODYLUS

6T = (OMPUSTTE SHEAR MOUULUL Tiv PLANE OF [S5UTRUPY

GuT ~ CUMPUSITE LUunGITUDINAL SHEARK mMODULUS

Vil - COMPUSTITE MAJUR PUlSSun RATIU

Vi = COmbULITE MINUK PUlosun RATIU

Vi - CumbPusITE TRANoVeERkLE PUlsoun KATIU

VULF = VoLdemeo FrRACTIun UF Flouroe AL S CuUNTRUL LrAKALTE N
IF VolF G U PROGKRAMME [o5 EXECUTED USInG TawlilAL wiia
Ir vOouF LT ¢ sul G7T =1 A NEw S2T OF DATA Lo REAL T
IF VOLF LT =1 PRUGRAMME I35 ThimlnATED

150 =~ CONTROL CHAKACTERY =0 FUR JSUTROPIC FlostS

=1 FOR ANISUTRUPIC Flureo
Nk~ CONTRKOL CHARAUTERs =0 IF WHITNEY 'S mETHOL TU wk vorwu
: =] UTHERWISE
NHR = Cuntirubt CHARACLTERY =20 Ir HASHINYS wmETHUD TU ot vstw
- =] UIHERWISE
NHT =~ (UNTROL CHAKACTERs =0 [IF HALPIN'S #METHUD Tu 2B usty
=1 OQTHERWISE :

CUmMUN EMsGrasVrisEFLsEFT sGF T oGFLT o vFL T o VFTLIVFTTaVULF I oU

DIMENSTGN URITS{8) 98YSTEMIB)sA(66) Y (6)

READUS s 1Y ToUshHRsNHT sidix

FORMATI&GT 1)

REAL(D 92) Lmavai

FORMAT (Ll Ze0sFlZeuU)

IFtlsuetuel) GO TO 1lu

FEALIBeZ) b sVFLI

EFT=LFL

GFLT=LFL/lZau¥* (] qU+VFLT))

GFT=6GFLI

GO TC 12u- ,

KEAU(L 93) e LoEFTsGFTLOFLEsVFLIT

FURMAT(GELIZe6sF12au)

READ(S 94) (UNITJ(J),J=l’8)’(bY5TEM(1)9l=1o8)

FORMAT(BALG)

GrisEr /7 lZeu¥{ L auu+VM})

VETL=VFLT®ER [/7LFL

VETH=LF T/ (20w GF 1) =1au

wWRITE(S L) tovysTem(l)sl=lsolslunllolu)ed=sles)

FORMATUIMHL s LuXe37H FREDICTIVN UF ELASTIC CUNSTANTS FUK s8Alusi// /s

112Xs8Alue// 7/
FFLIOCetLel) GU TU dvu
WRITEE L) cFLesGFTWVFLIT

FORMATULIX o1 TH TouTiu=IC ripRebe///7911X921H FluxE PrUPerTIED ANE’/

P/ a bR} atiid ¥ a1 0 W a X g . woad fita da /X alibi VM =g b0 ae /)


http:FOk~Al14El2e6,fl2.ul
http:IFll.;;;u.u.,.ll
http:fORMATlll2.o,Fl2.uJ
http:MlTHuJ.lu
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GU TO suv
20UV WRITL(6BaL12) EFLsiFlesGFTsGhLTsVFLTaVETLOVFIT
12 FURMATULIAsLYH ANISCTRUMIC FlonbSe///7911X9210 Floke PrubkoikTled AL
19/7916X9G14 tL=sF1lUe392Xo4r ET=9E10e392X00R GT=oELVe392X5 Gul=sfiv
Jes02X05H VLIS 9FSa302X95H VIL=9F5e392Xe5H VIT=eF5eie/)
30U WIRITE(H913) EfasCideViM
13 FURMATILIXeZer #ATHIX ProrelRTIcos AREs//7118Xeb4tt £ SsrivedscXoart G =
lot luenedXoderi vV =eobveleli/) :
AL RKEALID Y)Y VULF
) FOURMATIFIZaw}
FFAVOLFeLTeveuwl) OGU TU Huu
WRITE(G 4} VUOLF
14 FORMAT(lr~eloxe2Ti VOLUME FRACTION OF FIuRE =sFGeds//)
wRITE(G915) . ' L
15 FORMATILILIXotH METHUD o TXsztHbbLolaXesZhbl s 14X 2HGT 915X sHUL T s LA sttVL
1T eUXeoHVIL Y X 3HYTTe/) .
IF(hriRetiweu ) CALL HAOHIN
PF(ivHTeiew ) CALL HALPIN
iFiwWRebidew) CALL wHE g
GO TO 4UQ .
HuU TFIVOLF el Te—leu) HTOP
GG TO 11Ul ‘
MW


http:lFC~WH.Lu.01
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SUBROUT Ik AASHIN

SUBROJUTIRE TU DETERMKINE cbASTIC CunSTANTS USING METHODL UF
HASHIN ANL ROSER

ETu -~ UPPER SQUND O ET

GTU - UPPER guusng On 6T

ViLL — JPPER BUUND O VTL

VIiTu = uPpkbic BOuink O VI

ETL  ~ Luwkx puunb un £T

ol - LUwoKk BOJRG O OF

VILL = LOwEs BUUnb ON VITL

VITL - LOWER BUUND ON VTT

CuriiN ErioGriosVAsEFLsEFToOF ToGFLT o VFLTsVFTLIVFTTsVULF s ISU
DIMENOIUN AlSe0)9YL6)

IFUISUEGeY) U TU 1V

wRiITL{esy)

FURMATCLiXoor HADSHLIv saXeocr Trlo wMelHUo 15 Nl APPLICAGLL Ty Ando
1OTRUPTIC FloRkeo)

RETURN

EL=EFLEVOLF+Er* L 1eU=VOLF)

PLI= e URVFLT % {1 au=VME¥Vi4} ¥ VOLF+{1e0~VOLFI*#{1aU+Vi) &V
PL2EVULF*llaw=VFLT=2eUsVFLI#VFLT)

PL3=s PV l.u-'\/'/*\/n)*\/\ F+\j .U"’Vz’l)*( l.b-\lul [‘)

Vi b= (VoLFsgresPLi+(l. U—VJLP}*L.*PLaqu)/(Vqu»;rLﬁFLg+(1.V~Vuur)*L
1Ml 2)
bLTz(bFLI*(j.u+vuLF)+Gm*(1.u—VuLF))*um/(bFLT*(l.u-VULF)+um*(1.u+vU"
1LF))

PKF=GFLT+2eusVFLT*GFLT/ (140~ d.u*VFLl)

PRKM= GM+¢.U*VW*GM/‘loV‘gtd*VM)

Pl E=PRF /}-f'tl

PRLEPRAF(PHIT {leut{lev=2euXdViiI®VUOLF )+ (1lel~ 400*V4)*(100_VULF>)/(PHK*
1{ileu— VOLF I+ (VOLF+({Leu=2eu®Vii}l)

Pl leutdeu® PREVLTHEVLT /LU

TEMP=1-u/(lou—2¢u*VM)

COURSTEl Squ=bd sURVM) /(B qu=2 e URVM)
FOCONST=({3eu=aeutVFLT I/ {34U=2eunVELT)

ETA=GFLT/GM

DEFInG COBFFICIENTS A AND Y AL InN nPPtNUiK 1 uF tAsHIND FAPLK
FOR UPPER BUUND SULUTION

Allel)=laeu

Alls2)=leb/VOLF

ALl 3¥=VULFRVOULF

A(Las)=vOLb

A{leD)=Ueu

Alless)=Uels

Aol )=0eu

Aldsc Y ==Cuno T /VOLF

Alloe3)=—Z eu®VOLF¥VULF

AlZsa )=Vl ¥ THiab

AlZ2ebli=veu

Al2eH)=UeV

A{3sl)1=1ev

Al392)=1aU

A{3s3)=feu

AlBsd)=14ti

Alsesb)=—]ev

Al396)=~]1eu

A(Q’l):u.J

Alder)==LONST

Al o3 yzm—g o

Alass)=Tgmp

AB{G 91D ) muew

[ SR A D M A H
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Al i)=lel

AlHeyl =3 .J/‘jcu-d.U*Vi‘g)

Al )=~340u

A(Se4 ) =TEMP

A{HsS ) ==ETA
AlDsb)=—34U*ETA/(Geu~ZeU*VFLT)
Aibellsueu
AlGesct==lou/{dev—"deditVi)
AlGesS)=dew

AlH 4 ) s=Tomk

Albed)=Uels

Albsy=eTAs L] so\"Z.‘J“‘\iFL‘ }
Y{1)=iew

Y{2)1=Uaeu

Y{3)=Ueu

Y(‘H*J.u’

Y{5)FUeu

Y{O)Zuew

CALL SOLVE(ASY 1D e646)

SGLVE I5 A LIBRARY SUBRUUITNE Tu SULVE A SET UF STMULTAREGUS
EWUATIUNS A*X=YeY 15 INITIALLY sHO AND FInALLY Subullun velTux
GIu=Grd{lev—Cou¥llew=ViM)/lleu=2eudVM)I*VULF¥*¥Y(4]))
ETUu=b e vt GTURPR/(PE+PLIHRGTC])
VieusviT#ETU/EL
VITL=ETU/{2eudGlU)=10eu
REUDEFIRNE A AND Y FUR LUwER 8BUuNw 20LJTIun
Allesl)=lebl
A(Loi)m(ﬁ-v/(aou~4cusml)/VULF
Alied )= eudVULFRVULE
Aflsa ) =VOLERTEMP

AlieDH)=Ueu

Allesbl=uaev

Aldsl)=Vau
AlZ2sz)=(~1eu/ (3 qu=2aukvin) ) /VULF
Al295)=2 e v BVIOLF#VULF
AlZosa)==-VOLF#*TEMP

AlZeb)zUgaUl

AlZeb)=uew

Al3si)=laev

AlZeZ)=]lau

Alss3)=lel

Al3s4)=ley

Al3sb)z==10eu

A{B39b)==1eU

Aldesli=vels

Alae2)=—=CONST

Alge3)z==2aV

AlbG a6 ) aThmb

A(‘O’ )—L).u

Al&s 6 =FCONST

A(Ssl)=leu
AlbeZ2) =340/ B eu~2eid*VN)
AlS5s3)==340

AlSeday=TEMP

Albeb)=~LTA
A(Seb)==3 e uF L TA/(3eu~deukVFLIT)
A(bsl)=Uaeu

AlBel)=~]e U/(j.u-—?..\."*\h‘vi)
Albe3)=2ew

AlBsa)==TEMP

Al et Yzia i
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AlOs8 1=t TA/ e u=Cai,®#VFLT)

Y‘1)=100

Y(Z,‘:V.U

Y{3i=zuev

Y{4)zUeu

Y{S)={eu

Y(lel=uel

CALL SOLVELAY21Ds6He6}

GTL= u“/(l.u-r._.wt(L.u-v.f.)/u.a—z URY M) RVULF#Y(4) )

ETL=4 e URQTLHIFA/{PS+PLHI#*0T W)

vilt=viT®eliL/s/tn

VITUSETL/{24uRGTLI=1eU _

WRITE(GsIw) ETUSGIUIVILUsVTITUSELsGLT VLT sETLoGTLaVTLLIVTTL
10 FURMAT U 38X 00 JU e 396X 0E1Ve3936X9F 259 TX9F9e39/ 912X 6HHASHINYGXE1Q J

143 ‘:IX’tls/o.ﬁ,/X’f'b‘5;/o.”SXngx)oﬁg()X,tonﬁ’ﬁéX FOeldeTXeF2e3)

RET UM
EiNw
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SUBROUTINE HALPIN
SUBRUGTINE TU DETERMINE ELASTIC CUNSTANTS USING HALPIN=TSAL
EGUAT IONS ‘ )
COMMGIN ErisGrisVMi o EFLaEFToGF T o GFLTSVFL T oVFTULIVFT Ve VULF 1 50
EL=EM%* [ lev=VULF )+ FL*VULF
VLT =Viri*(leu=VULF ) +VFLTI#VULF
ETAs{eF 1 /Emi=lev )/ AEFTZEMT LU
ET=Eri#*{levtl e AL TARVULF ) /{Lau~LTAXVULEF )
LETAzleutboeusVOLFH¥#]G
ETAS{GFLT/0rM=1ew) 7 LGFLT/Gin+LE TA)
OLIT=GMd( Lleuv+t L TARETA#RVULF I/ {eu=ETARVULEF)
LETAZl eu/{ B et oquiyh)
EVAZ(GFT/70m=Leu )/ LGFLZGMELE TAD
Gl=GM¥ (lou+ L TARETA¥VOLE I/ { eu=L TA¥VULF )
VIt=bi/(deu# 0l ~1loau
VIL=VLT*ET/EL
WRITEL(S 1 LIELSETyGT oGLT oV ToVIiLevTT
FORMAT(L1IXo8H HALPIN 93XoE1Ue396X9E10e390XsE1Ve29TX9ELUe397X0FDe5s
17XeFHa39 7Kl be3) : '
RETURK
END
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SUBROUTINE wHITNE o

SUBKOQUTINE v DETEKMINE teASTIC CORSTANTS USING wmETHOD OF

wHITNEY AND RILEY

CUMMON ErisGreVMsEFLaEF ToGF T s GFLTovFL ToVFTLaVETTaVULF I2U

PLF 2 e U=VF I T2 UREFT/EFLEVEFLTI®YFL]

PLim=]l aud=Vii~d ¢ uR V¥ Vi,

DEsUMm=Ea® { Leu=VOULF YRPLF+ Lo VUL F+{leutvii) ) el T

Vi isVii=Ze L {Voi=VFLT)I®( leu=Viisvin ) #LF TRVOLF 7 UENGA

EL=EM+ {EFL=-EM}#VULF '

VIT=sVFTI#VOLF+YM#¥(leu=-VOLF)

GLT=({GFLT+oM)I4IBFLT«GMI#VOLF)I*Gu/ LIGFLT+GH 1= (GFLT =G ) ¥ VCLF)

PRKFsEFT/L24v*PLF) '

PRid=EM/ (L eudPLI)

FERFIPEFAQAa) B RMAERPKF =P ) RO R VOLE 1/ (PRF4A0GIM={ FRF=PRei b FVULF )

ET=2(ZoU*PRt (lau=VIT)IRELI/{EL+4 e URPRAVLTRVILT)

VIL=VLT®ET/ZLL

GTapT/(Z2euinl letusdVITY)

WIRITELOLIUIELsEToGIsGLT VLT oVIL VT v :
1o FORKMATELIXe0H WHIINEY 93X et lUe 290X iUels0RELveds IXotlUedr TXIFDe

17X9FS5e397XoF%e3)

KETURN

g
LNY
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D3. PROGRAMME FOR ANALYSING COMPOSITE STRUCTURES

D3.1. Description of Programme

The programme listed in D3.6. is based on the one
that appears in [45]. The only modifications are to the
input and output and these are deséribed below. The logic
of the programme is not described as full documentation
is available in [u5]  if it is required. For normal usage,
knowledge of the input and output formats and the theory in
section C should be adequate.

Essentially the programme calculates the in-plane and
coupling stiffness and compliance ﬁatrices and then performs
a strength analvsis for any one stress or moment resultant
not eaual to zero. The output shows the maximum stress or
moment resultant that each surface of each layer is capable

of withstanding for any input temperature difference.

D3.2. Modification to Original Programme

The input to Tsai's original programme required the
elastic properties of each layer referred to the structural
axes, together with the orientation of each layer. Since a
‘laminate is normally made from layers of similar material, it
is possible to calculate all the elastic properties of the

‘layers from just the four engineering constants of a
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unidirectional lamina and the orientations, and the programme
has thus been modified accordingly. This makes the input

far simpler, there being less data to read ing furthérmore
one is more used to working with the engineering constanfs,
and they are more easily available.

The facility of reading in the elastic constants for
each layer is retained, however, for laminates constructed
from laminae of different materials. This is achieved via
the control character NENG which is defined below.

Because it is_possible for a lamina to have different
tensile and coﬁpressive strengths, it is not possible to compute
the failing stresses directlv. For each lamina, one set of
" values of_ox and Uy is computed for eéch quadrant in the xy
stress plane using the appropriate strength values for each
quadrant. Then, in the original programme, the stress or
moment resultant corresponding to this set of values is
printed out together with the quadrant number assigned. From
the signs of o and oy it is determined to which quadrant
these results belong, and this number is then also printed
out. The user must then check all the results to find a valid
solution, i.e. one where the solution is in the same quadrant
as originallv assigned.

The second modification to the programme was to enable
fhis last step to be performed within the programme, and so

simplify its use. All that the user is now required to do is
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check which layer will fail first and on what face.  This

has not been incorporated into the programme as it generally

is desirable to know which layer will fail first and just

how strong the other layers are.

D3.3.
N
THTA

LPP

JJ

RMM

NENG

THETA(K)
EL

ET
GLT

VLT

Input Parameter Definitions

total number of layers

defined only for angle ply composites is the
fibre orientation in degrees.

defines the partlcular case under consideration
LPP = 1 implies a cylinder or pressure vessel
LPP = 2 implies a plate

defines the heading to be printed

1l implies cross ply (i.e. orthogonal plies)
2 implies angle ply

3 implies general laminate

Cy Ty
gy
0N on

cross ply ratio (total thickness of all layers
oriented in one direction to total thickness of
layers oriented in orthogonal direction)

defines type of input data to be used
NENG = O implies elastic constants of each layer
are to be read in

NENG = 1 implies engineering elastic constants
for one unidirectional ply are to be read in

fibre orientation of the kth layer in radians

longitudinal Young s modulus of unidirectional
lamina

transverse Young's modulus of unidirectional
lamina

longitudinal shear modulus of unidirectional
lamina

major Poisson's ratio of unidirectional lamina



c(I,J,K)
UNIALP(1)

UNIALP(2)

ALPHA(TI,K)
H(K)
KOR

LL

NM
T(J)

XA(K)
YA(K)
XP(K)
YP(K)
S(K)
TITLE

112.

elastic constant Qij fdr kth layer

longitudinal thermal expansion coefficient of a
unidirectional lamina

transverse thermal expansion coefficient of a
unidirectional lamina

thermal expansion coefficient a, for kth layer
thiekness of kth layer

control character

KOR = 1 implies only stiffness analysis

KQR = 0 implies strength analysis to be performed
also and that following data should also be read in

defines the loading conditions

For a plate:

LL = 1 implies N ¥ 0
LL = 2 implies N* 0
LL = 3 implies Nz Z 0
LL = 4 implies Mxy Z 0
LL = 5 implies M 70
LL = 6 implies}Miy #0

For a cvlinder or pressure vessel:

LL = 1 implies Nx # 0
LL = 2 implies N F ARV
‘LL = 3 implies QNz = N,

number of input values of temperature

jth input temperature difference = operating
temperature - lamination temperature

axial tensile strength of kth layer
transverse tensile strength of kth layer
axial compressive strength of kth layer
transverse compressive strength of kth layer
shear strength of kth laver

alphanumeric description of case under consideration
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A data input deck for a two layer 150 angle ply

Parameter
N

THTA

LPP

JJ

RMM

NENG

THETA(1)
THETA(2)

EL
ET
GLT
VLT

UNIALP(1)
UNIALP(2)

H(1)
H(2)

KOR
LL
‘NM

T(1)
T(2)
T(3)

XA(1)
XA(2)

YA(1)
YA(2)

XP(1)
XP(2)

YP(1)
YP(2)

composite is shown below for the case Nxzﬁ.

Value

2
15.0

NETPCEN
o

.261800E+00

-.261800E+00

.302500E+08
.783800E+06
.500400E+06
.275000E+00

~.730000E-06
.290000E-0Y4

.5
.5
0
1
3
-200.0
.0
200.0

.130000E+06
.130000E+06

.120000E+05
.120000E+05

.130000E+06
.130000E+06

.200000E+05
.200000E+05

Format

(I12,F5.0,21I1,F12.0,1I1)

(6E12.6)
(6E12.6)

(6E12.6)

(6F12.0)
(211,12)

(6F12.6)
(6E12.6)
kGElQ.G)
(6E12.6)

(6E12.6)
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Egzgmetgr Value Format
S(L) .100000E+05 (6E12.6)
S(2) .100000E+05

TITLE N1 not equal to 0.0 (12A6)

D3.5. Tvpical Output

The output corresponding to the input deck above is

shown below.



AMGLE=PLY  THFETE = 1%5.0n0 DEGREES CALL LAYERS INTACT

PROPERTIES 0F A UNINTRECTIONAL LAYER

m

TR "T= 7T.n320Fennt LaR/Sn,IN GLT= D.0060E+05 LBF/SC,TH vi.i= .28

MLVE (L) ST .3000E=07 PED DEG.F ALRHA(T) = 2.30006=05 PER DERLF

LAMIWATE PROAPEXTIES
AOCINENATES OF
s - COEFS. 0F STIFFNESS MATRIX " COFFSe< OF THERMAL EXPANSIN®

{ TR S) , {10+a LR, /INS30L) {(10=a INJ/IN,/DEG.F.)

Y 7 (K+1) Cllaly C(la2) C(2.2) C(d9) Cl{642) Clhsb)  ALPHA(L) ALPHA(2) ALDHA (A

= 500y 4,020 2645403 2.00732 0 L9TIR =6,71932 =.5878  2,25917  1.,7615 27.0nR5 14 ,.uA57
| TH 27.0n

deay L5ANG 26,5403 2.0072 LAT1R 647532 G5 2.7917  1.2615

14 nh%y



http:L8F/SG.TN
http:L~~/SQ.IM

A PeInE

h COFF . OF TRERVAL EOPC
{166 Lo/ (lo=6 Tii /1.0 (106 (Ne/18,) ~ ti.d./1M. /D5,
n3 2,0077 Uaan L0447 - DUZP g.n00n 020 -.07%1 Ca0000 Nl=T =13.,705]}
3 SHT L velipn -, 0922 LeZluh C.oneo - 0751 1.2254 De0OD M2=T 2060395
¢ I S ParSid G adgin Galiin . 3354 Letinnnn 0.000n0 Ledl77 Nd=T Qafinnin
i B B PRIME COEF, OF THERMAL MOHE
(10+6 L3 (1040 TN,) (10=6 1/L+.) (LR./DEGLE,
o0 IO 15723 ~.0000 -0.006n.  =,3A23 Qe0000 0.0000 =7606 M1-T D000
i Gefinin iato ~u.00060 -0.,000n -~ 226 0.0r00 (G.0000 - 2758 2T S 0.0009
53 “E/'X‘/ Jaln -o?[;ll OO(’L:'} N, ,0H00 "c?f?{"(} -.27:31(‘ daNOOC 3=-T —2.4'\(.\”
[ SR
(10+0 1N,
DeN0CO Hafinnge « 7411
10060 S.0n0n TN %1
« /23 P24 00000
w2 N N PRIME
(1‘_"4'() L~ ! (l“#(} L;"“.T;".) (10.}(‘ I/LR‘YN,)
17 PN (SIEER AR L) « 9532 BEA A,0000 “1.1n43 -, annu n.onnn
‘3 PSR! Gatiitoil o NG/ e3Pl 140030 - INN 14,7500 e300
v Deirist «15: D Jan0in Ja.unne L1619 JJNnno B.0000 1P2.2120



COEF . OF w2
(l/INQ)

CoFF, NF N6
{(1/71na)

CAEF. CF wfh
"«3.,:.',3-) (1/’.;\!.";@0}

CnefF, DOF TEWP
(L e/ TN Slia/F

COEF, COF M1 (COFF, OF M2
(377450, 1/

- L AYEE ] e-

2000 5I6Ma ] -.2917 -.46483 1M,3%598 -8,5834 -.9367 -4 ,97256 -4241036
:f.’ -r}‘ll}{ .C}’-itgh ) .;.’"’73 ‘.2235‘ -bon‘qll '303?14 "3.6“3'4
o . 29n%H <1053 -2 o144 1.7430 «H320 01621 > RS I

BeS SIGVMA .27 o4H83 1N, 0930 5.1668" 1.2733 Y = ] - 42,1036
7 L111s l.040% ~e 7034 NS .1621 ~3.3714 36434
t EES-T:3 Nt -.2107 -2 o534 -1.7430 - 3720 1621 18,0354

we= I AYED

gel SioMaj 7.2917 SH6E3 103698 -5 _1663 -1.5733 -21.2931 42.1036
< <1118 1.0405 5273 - 46671 ~.1A71 20627 3.6434
8 S350 L1 U7 LYY = 1.74630 R3SV 5. 1668 18,9386

SO0 SI0MA ) 2917 ~ L6813 - 7768 %,5834 « 5367 -21.24%3] L =842,1035%
P ~.1114 . 3845 - 134D .2236 b.ORLL =2.0627 | =3.6434
“ -e295 -.1053 ~e1r11 1.7630 ,0320 SelthR

- HnnIG




tEST)

,_‘x”';OS . 10"’000")0&-"(34
1.P00000E+04

TRANSVERST TENSILE STRENGTH

TOANSYERSE COMPRESSIVE
s

2.00000nF+04
?-Oﬂﬂnﬁnt{-»oa

GHENR STRENGTH
(PST)

1,000 N00E+04
1.000000E+006




CASE M1 NOT EQUAL TC 0.0

CoAYER 1 ==

TEXPERATURE STRESS OR VaMENT PER INCH OF THICKNESS
(BRG.F) o o (LKF/IN OR LHF) R

=200.0 ’ 4e655635E9n4 ~4 B4 465EF 4006
n.0 4,76060)Zens » =4 e 771648Fsn4
209.0 B b B30E3HE+nA ' =& .673004F 404
Gontl

=750.0 5 ,3508718Een4 -4, 7B5TRIF+04
1.0 - Re]BATAY s S, 124507FE+04
230.0 4 342993 Ee 04 ~5.336704F +04
TEtwh v ATURE STRESS OH MemENT PER INCH OF THICKNESS

(DFGoF) (LBF/ZIN O L8F)
-21340 Se3BNTIHES G -4  TRGTINIF+046
D40 B, 18567975 e a ~5,124%n75ens
eyl tona29% 3% ens =5,336704F 08
 epftat 4.653435E6n4 ~GoBa4HSEF NG
el 4,750401ke%s 4ol T184TF 406

BESSRIRY" L G.n3RAISTene b OTRIBET 404
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p3.6. Listing
The Fortran IV computer listing is shown overleaf.

The programme was processed on a CDC '6400' digital computer.


http:4~!:J.ng

aNakalaNaNaka¥alakaEeEal

N =
MAX
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PROGRAM TST (INPUT’OUTPUT’TAPE5=1NPUT’TAPE6=UUTPUT)

COMMON THETA(SU)9N,TM(3’3),LPP,LLspCNU(39b092),RB(3950o2)9PCNT(3lb
1Us2) sPCNTR(395Us2) sPCMO(395092) s PCMT(395092) sPCMTR{395092) s RC (3950
1’2),PCT(3’5092)9RS(392)9RD(392),XA(50),5(50)9XP(50)9YA(50)’YP(bO)o
1CV5(4)9CVP(4)9CT5(4)9NM9SUL(4950’2)’T(SO)sSIGMX(Z)sSIGMY(Z)9JQUAU(
14,5U$2)vPHB(3a50)9CNO(395U)9CNTR(395O);CNT(3’5O)’PRC(3’50)9CT(3050
1) o TITLE(1U) 9 JKsZ(55)

DIMENSION ALPHA(3950)9H(50)9A(3’3)95(393)90(313)9C(393’50),H5(50)’
IHC(5U) sAN(396) 9X(353) s ASTAR(393) sBSTAR(393) sHOTAR(393)sLSTAR(3 93]
IUPRI(3;3);ﬁPKI(B’B)9APRI(393)’bUM(395U)9TSUM(3)9TADD(3)¢KNT(3)9RNT
1(3) 9SASR(3) sDSUMI3355) s CSUMI(395092) s TC(353) sUNIALP(2)

NO+OF LAYERS _

IMUM VALUE OF N IS N = 50

THTA 15 ANGLE IN DEGREES FOR HEADINGSNEEDED ONLY FOR ANGLE PLY

LPP
LPP
JJ=

= 1 IMPLIES PRESSURE VESSEL OR CYLINDER
= 2 IMPLIES PLATE
1IMPLIES CROSSG-PLY

JJ=2 IMPLIES ANGLE=-PLY

JJ=3 IMPLIES GENERAL LAMINATE

RMM=CROSS-PLY RATIO |
NENG=1 IMPLIES ENGINEERING CUNSTANTS OF ONE  UNIDIRECTIONAL PLY

ARE INPUT DATA

NENG=U IMPLIES ELASTIC CONSTANTS OF EACH LAYER ARE INPUT DATA

1u
101

READ(59101) NsTHTAILPPsJJsRMMINENG ‘
FORMAT{I29F5.U92119F12s0s11)

READ (5e1u3) (THETA{(K) sK=19N)

IFI{NENGsEGeU) GO TO 8

READ(591U3) ELETsGLTsVLT

READ(5+103) (UNIALP(J)YsJ=192)

VTIL=VLT*ET/7EL

TEMP=14U~VLT*VTL

TC(le1l)=EL/TEMP

TC(1le2)=VLT*ET/TEMP

TC{193)1=0e0

TC(2911=TC(1s2)

TC(292)=ET/TEMP

TC(293)=0e0

TC(391)=0e0C

TC(342)=0eU

TC(3,43)=06LT

DO 6 K=lsd

RM=COS{-THETA(K))

RN=SIN(~-THETA(K))

RPMN = RM * RN

RMZ=RM*RM

RN2=RN#RN

RM&4=RM* ¥4

RN4=RN**4

RPMN2 =RPMN#RPMN

RM3N=RM##*IXKN

RN3M=RN¥**3¥RKM

ClloloK)=2e *RPMNZ2¥(TC(102)42e0%TC(393) )+RM4*TC(Lel)+RNGX*TCH292)
Cl1l929K)=RPMN2¥ (TC(L1ol)+TC(292)=4eO0%¥TC(393) )+ (RMA+RNGI¥TC(192)
C(1’3’K)=RM3N*(-TC(l:l)+TC(l92)+2.0*TC(393))+RN3M*(-TC(1,Z)*200*TL
103e3)+TC(292))

ClerlsK)=Clle29K)
C(ZoZ,K)=RN4*TC(l,l)+2.U*HPMNZ*TC(192)+KM4*TL(Z,Z)+4-U*RPNN*kPMN*I
1C(3+3) ‘ o
C(ZoB,Kl=RN3M*(-TC(l’l)+TC(192)+2.O*TC(393))+RM3N*(;TC(1,Z)’2.O*TC
1{3+3)+TCL292)) :


http:TC<2t2)=ET/TE:.MP

122.

C(393’K)=RPMN2*(TC(lol)+TC(292)‘2.O*TC(l,2))+(RM*HM—RN*RN)**2*TC(3
1+3)
ALPHA{ 1 oK) =RMZ%*UNTALP{1)+RN2¥UNTALP(2)
ALPHA{ 23K ) =RN2¥UNTALP (1) +RM2¥UNTALP(2)

6 ALPHA{3 9K ) =26 UHRRPMN® (UNTALP (2)=UNTALP(1))
GO TO 9

8 READ (591U3) ((ALPHA(IsK)9I=193)9eK=1sN)
READ (5+103) (ClLlsloR)eClLa29K)sC(2529K)9sCl3919K)sC(3929K)9C{3930n
1)9K=1sN) '

103 FORMAT (6E1246)
DO 7 K=1sN
Cl2919K) Clls29¢K)
Cl1l93sK) C(3s1sK)
C{2939K) = C(3+29K)

7 CONT I NUE

9 READ (5s102) (H(K)sK=1sN)

102 FORMAT (6F12ev)
TOTAL = UaU
DG 2v K = 1N

20 TOTAL = TOTAL + HI(K)

Z{1) = - TOTAL / 2.0
MM = N + 1

DO 30 K = 2+MM

KM = K - 1

30 2(K) = Z(KM) + H(KM)
IF(JJeEQe2) GO TO 40
IF(JJeEQe3) GO TO 60
WRITE(691ub4) RMMsNsN
104 FORMAT (1H1»37Xs9HCRUSS-PLY s4Xs3HM =sF5439s17HALL LAYERS INTACT/5UX
1512s1Xs12HLAYERS (N = 91291H))
GO 'TO 70
40 WRITE (651U5) THTAsNsN
105 FORMAT (1H1s33Xs9HANGLE-PLY s4Xs8HTHETA = »sF5e291X3s 7THDEGREES»4Xs17H
1ALL LAYERS INTACT/52Xs12s1Xs12HLAYERS (N = 51291H))
GO TQ 70 :
60 WRITE (65107) NsN
107 FORMAT (1H1s41Xsl6HGENEKAL LAMINATEs4Xsl7HALL LAYERS INTACT/50Xsl¢
191Xs12HLAYERS (N = 912s1H) )
70 IF(NENGeEQel) WRITE(6399) ELsETsGLT VLT s (UNTALP(J)sJ=1s2)

99 FORMAT(1H=9///34UXs37H PRUPERTIES OF A UNIDIRECTIONAL LAYERs///9iuU
1Xs4H EL=9ElletslUH LBF/SQeINsb4Xsa4H ET=9ElLledslOH LBF/5QeINs4XsbH O

ILT=sEllelslUH LBF/5QeINs&4XsbH VLT=9F5e29///32uX210H ALPPAIL)=scile
149 1UH PER UEGeFs8XelUH ALPHA(T)=9btllebslUH PLR DEGeF s/ ////7//248Xrc
1UH LAMINATE PROPERTIES)
WRITE (65108)

108 FORMAT (1HU//2Xs5HLAYER$2Xs GHTHICKNESS92X914HCOORDINATES OF /73X 93N

104 93X s9HOF LAYERS#2X914HLAYER SURFACES»15X926HCOEFSs OF STIFFNESS
IMATRIX314X9s2THCOEFSe OF THERMAL EXPANSIUN/9X»8H(INCHES) »6XsoHUINCH
1ES) 922Xs 1 THL1U+6 LBe/INeSWwe)922X921H(10-6 INe/INe/DEGeFe)//4XslHNy
16X s 4HHIK) 35X s 4HZ (K ) 94X s 6HLIK+1) 93X96HC(191) s3X96HC(192)93Xs6HC(Lre
1)’JX9()H(.(69L)93X96HC(692)’JXobHL(ésﬁ)iZX’bHALPHA(l)lesBHALPhA(Z) ’
11Xs8HALPHA(H)/ /) .
DC 75 K = lsN
KP = K + 1
75 WRITE (64109) ’H(k)’Z(K)’Z(KP)9C(l91’K);C(1’2’K);C(ZsZyK)¢C(301’K
1)’C(39£9k)9L’5940K)’ALPHA(ly\)’ALPHA(29<)’ALPHA(3’K) ‘
109 FORMAT (3X91Z233XsF9eltsFPelrsFIelts~6PFIels~6PFYets~b6PFTebs~6PFIe 4y~6
1PF a4 9s=0PFYed416PFIeb436PFIe436PFYe)
DO 80 K = 1N


http:IF(NENG.EQ.ll
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8C

U

100

200
210

220

230

235
110

240

260
270

280
111

290

300

123,

HCUK) = (Z(KP) %% 3) = (Z(K) ** 3)

DO 1UU I = 193

DO 100 J = 143

AllsJ) = Ul

B(lsJd) = UelU

D(lsJ) = UeU

DO 90 K = 1N

Alledy = AlLesd) + (Cl1eJdsK) * HIK))
B{IsJ) = B(IesJ) + (ClIsJdeKk) * HS(K))
D(IsJd) = D(Ilsd) + (ClIsJsK) #* HC(K))
Biled) = BtIed) /7 26U

D{IsJ) = D(lsed) / 3eU

CONTINUE

L = v

DO 200 I = 193

DO 200 J = 143

AN(TsJ) = A(IsU)

DO 220 I = 193

DO 220 J = 46

AN{IsJ) = Ueb

0O 23u I = 193

J=14+3

AN(TsJ) = leu

IF (L «EQe 1) GO TO 270

CALL MATS (ANsXe393sMATERK)

IF (MATERR) 24U»24U9235

WRITE (6511U) ((A(IsJ)sl=193)sJ=193)
FORMAT (1HUs 2UHMATRIX A IS SINGULAR//(3(-6PF8e4)))
GO TO 11U ’
CALL MATMPY (X+BsBS5TAR»393+3)

CO 250 I = 143

DO 250 U = 193

ASTAR(TIsJ) = X(IsJ)

BSTAR(IsJ) = ~ BSTAR(I»J)

CALL MATMPY (BsXsHSTAR393,3)

CALL MATMPY (HSTARsBILSTAR939343)

CALL MATSBT (DsDSTAR3+3)

DO 260 1 =193 ‘

DO 260 4 = 193

AN(1sd) = DOSTAR(IsJ)

L =1

GO T0 210 _

CALL MATS (ANsDPRI»393sMATERR)

IF (MATERR) 29092909280

WRITE (69111) {((DSTAR{IsJ)slI=193)sJ=193)
FORMAT (1HUs 24HMATRIX DSTAR IS5 SINGULAR//(3(-6PF8s41)))
GO T0O 10

CALL MATMPY (BSTARIDPKIsBPRI®393+3)

CALL MATMPY (BFRISHSTARIAPRI»3+3+3)

CALL MATSBT (ASTARWAPRI393)

DC 20U I = 143

DO 3uukK = 1N

SUMITeK) = Uael

DO 346U J = 13

SUM(IeK) = SUMITK) + (ClIaJeK) * ALPHA(JsK))
DO 320 1 = 193 '
TSUM(L) = OeU

TADD(I) = Vel

DO 310 K = 1N

TCiivA e v e T MAE T Y g L IiME T LY s HIK Y



RNT(I) = TSUMIT)
320 RMT{I) = TADL(I) / 20
IF (LPP +EGe 2} GO TO 370
DO 330 K = 1N
DO 33U 1 = 193
CNO(I’K) = UeW
CNT(1sK) = UeU
CNTR{TsK) = UeU
DO 330 J = 13
CNO(TsK) = CNO(TIsK) + (C(laJdsK) * ASTAR(Js1))
CNTEIsK) = CNT(IsK) + (Cllsdsik) * ASTAR(Js2))
3340 CNTR(IsK) = CNTR(IsK) + (C{IsJsK) * ASTAR(J»3))
DO 340 1 = 13
SASR(I) = Ual
DO 340 J = 13
340 SASR(I) = SASR(I) + (ASTAR(Isd) * RNT(J))
DO 360 K = 1sN
DO 360 1 = 193
CT(IsK) = GeO
DO 350 J = 193
350 CT(IsK) = CT(IsK) + (C(IsJsK) ¥SASR(J))
360 CT(IsK) = CT(IsK) =~ SUM(IK)
GC TO 420
370 DO 375 K = 1sN
DO 375 1 = 143
DO 375 LR = 192
PCNO(IsKsLR) = GeU
PCNT(I+KslR) = UeU
PCNTR(TsKsLR) = GeO
PCMOU] sKsLR) = Ue0
PCMT(I sKsLR) = Uel
375 PCMTR(IsKsLR) = UeU
DO 380 K = 1N
DO 380 1 = 13
DO 380 J = 13
DC 380 LR = 192
KP = K
IF (LK eEQe 2) KP = KP + 1
PCNUIT sKsLR) = PCNULIsRsLK) + (CUIsdeK) * (APRI(Js1) + (Z(KP) * BP
1IRI(Js 1)) '
PCNT(T oKeLR) = PCNT(IsKsLR) + (C(IsJsK) * (APRI(Js2) + (Z(KP) * BP
IRI(Js21)))
PCNTRUT sJsLR) = PCNTR{IsKsLR) + (ClIsdeK) * (APRI(Js3) + (Z(KP) *
1BPRI(U93)1))
DCMO(T sKoliR) = PCMO(IsKoLR) + (C(IsJdsK) # (BPRI(Js1) + (L(xP) * DP
IRI(Js 1)) ‘
PCMT{I oKslLK) = PCHMT(IsKsLR) + (ClIsJsK) * (BPRI(Js2) + (Z(KP) * LP
IRI(Js2))))
38U PCMTR(IsJsblit) = PCMTR(TIsKsLR) + (ClIsJdsK) * (BPRI(Js3) + (Z(KP) *
1DPR1(Js3) 1))
MM = N + 1
DO 390 K = 1sMM
DO 39u | = 193
DSUMITsK) = Vel
DO 390 J = 13
390 DSUM(TK) = DSUMIIsK) + ((APRI(IsJd) + (Z(K) * BPRI(IsJ))) ¥ RNT(J)
1) + ((BPRI(Isu) + (2(K) 3% DPRI(IsJ))) # RMT(J)) .
DO 410 K = 1N
DO 410 | 193

COIMIT aK a1l =

IREPS]
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125.

DO 4G4uu J o= 13
CHUA (T atel) = CouMiTakal) + (ClIsJdaK) ¥ ULUMIOIKY))
K = &+ 1

HUU CoUiitlakel) = COUuM{IsrsZ2) + (ClIsJdek) # DOUMIJIKRE))

PCTEIsKsl) = CoUmlTakel) = SHUM(IsK)

Gl PCT(Teked) = CSUMMITIRs2) — SuM{lsK)

G20 WRITE (6seild)

1le FoukrmAT (lﬁl////lukslﬁA’JlA;cﬁA* ETXsTHA PRIMEs TXKel2HCULFe uF TrbK
1AL FURCE/IUuXe14H{1U+6 LiBe/lNe) s 18X 14H(10U~6 IN-/LDO)!leaIQh(;u 6
1 A’\./l_bo)!il)\ 16H{Ltle/ LiNe /DLGere)//)

wRITE (6sL13) (ACisl)lsAllsZ2)sAlls3) sASTARII s1) sASTAR(LsZ)sALTAR(TY
13) o APRIGI oL ) s APRICI92) 9 APRI (1 93) s IoRkKNT(1)sI=195) '

112 FOREAT (1Xe—6FPFluetr»—6PFlustts~6PF1lUed4s OPFlUe4 06PFlUea s bPFLlUe%s
1 6PFluelstFF idelotbPriUed s Xs IHN s T 19 3H~1 _leyUPFlU.L}) ‘
WRITE (69114)

114 FoitiAal (QiHU/ /16X e iHB 31 Xs cHE* 9 2TX o THE PRIME, TX923HCUEF e UF THERMA
1L surend /732X siuHllu+d LBe)s22XslUr( LU+l [lNe)scdiXoicritiv—06 L/Lbelsi
14A9i2riilBe/UiLGeFa)/ /)

WRITE (69110) (BLIal)aBl1s2)s3(193)sBOTAR(IsL)sBOTARIIs ) spol AR
13)9PKICEe1) sRPRIUTI o) o BPRIMT o3 YsokmT(1)sl=103)

115 FORMAT ({1 X9-6PFlUeshis=6RFluebs=0PF1lUel UPFlveGsUPFlUsasulPFilueay
1 OFFiluebsOlPFiluebsoPFluefsibXslhmelloZdH=T sliXsuPFloed)

WRITE (beidlb}

116 FulidAT (1Ru/7 /743X 2rH*/ 4aX s LUHTIu+D LiNe)/ /)

Wl Te (61l 7) (HOTAR(T9L) sHHTAR(Is2) sHSTAR( T e3)sl=193)

117 FORMAT (33Xe3F1Ce#)

WRITe (6eild)

118 FORMAT (1HU//10XKs 1HD s 31X s 2HU* 927X THD PRIME/LUXslH{LIU+E Llelivel) ol

19K L3HI1I0U+6 LibelNe)sl8Xsi1vHIU-6 1/ Belive}/ /)
winITE (&elily) (DCLel ) ol Tosyol(los)sOTARII«1)sUOTAKILIs 2 suolARIL
131 oDPRICI 1) sDPRICIsZ2) s DPRICLI3)9l=103)

P19 Fuikial (1K s=6PF Luelbs—GRF Llusts=0RPFived sl ks=—0RFiUe4s~bPFluels—0OPFlue

1 e XosGPF lueasOPFlUeb4sbPF lued) '
[v (LPF «lus 1) GU TU 45u
ARITE (Hel20v)

(20 FUrGAT (iH1//TX s 1l s8Xs0HoTikboose3Ks11HCUEF e OF NlscdXsilriCubFe UF N
1792K9 L1HCUEF o« UF N622Xs 11HCUEFe CF Mle2Xs L1IHCUEFS OF ridesXs llnCutF
le WF MbescXsidhHCUEFS UF 1EMP-/DX95H(Iwo)’+XQVHLUmPUutNT’4A’7H(l/IN-
‘)sb)(s/H('/uu.)sb)(a?'ri(i./'l\.)’4}\~1Jh /l.\&.;:u-)9J’leut‘i(l/{l\.uuo)".")X’.L

/H( S liven wu)*)/"J,)1\L,L,./.\Ji.\)u./§'o)//)
'n)'.,-:' G330 KN = Loein

Kbos oo+

WiRITTE (bel2l) K

121 FORMAT (5 oXs9ti== LAYER sl2e3H =—//)

WRTTE (69172) ZIKR) s {PCRUCTIsKs1) s PCHT I aNs1) o PCHTIR{T R} srPCinulTony
11D o CiiT (ool sPCHTRIToRaL) sPCT(IoKallal=lo3)sZ (AP ) s (PCNUITRel) P
TORT (T ool ol CRTRITI ok 92) sFCoib (T ot ) sPCHT (Lo 92) aPCinTR(Tains o PCitl
leansd)ol=1s0)

127 FOURMAT (3Kal CackodAs IHUTIOMA l1sbaAsFGehs9FlBetsbXoFGet/2iXsiticraXsFCoe
L4k L_S.‘nb' sF e +/¢5,<9H1U9'u\a[~o. LaOF 1 3ebsXoFBe4/) :

G330 ConNt UL

440 CALL PAKTWO
QO TG 476

450 WRITE {Helco)

123 FUSMAT (IMI//31Ke0HLIRESOs3 A9 11HCUEF e OF iNLsdXellHCUEFe OF nNdodXod
JIHCUEF o UF v 92X e iatCUEFe OF TemP e/ 29K s FHCUMPUNENT s4XsTh(L/1iie)sbA
la?h(}/iﬂ.),bA,YH(l/iN.)94A91)H(Loo/1woquo/F.)//)

U0 A0 K= LN ‘
WRITE (6el24) =

[P o [T ERERY: N




126.

125 FORMAT (3UXsTHSIGMA 1e4XsFB8e412F13e426X3FBeb /36X 1HLZs4XsFBe4s2F1l3,
14 96X 9FBoeb /36X 1HE»4X9FBe492F l3e496X9F8e4/)
460 CONTINUE
GO TO 440
470 CONTINUE
STOP
END



127.

SUBROUTINE MATS (AsXsNsMsMATERR)
DIMENSION A(336)9X(3s3)

MATERR = U
MM = N + M
DO 50 [ = 2sN
It =1 -1

DO 50 J = 1911
IF (A(lsJ) «EQe UaU) GO TO 50U ,
1F ({(ABS(A(JsJd)) = ABS{A(IsJ))) ebLTe UeW) GO TU 10
R = A(lsd) / AlJsd) '
GO TO 30U
10 R = AlJsJdy /7 Allsd)
DO 20 K = 1«MM

B = A{JsK)
AlJsK) = A(IsK)
20 A(I«K) = B

30 JJd = J + 1
DO 40 K = JJsiMM
40 A(IsK) = A(JsK) = (R *A(JsK))
5C CONTINUE
IF ((ABS(A(NSN)) = 1eUE=1U) «GTe 0OeU) GO TO 7V
60 WRITE (6+101) NsN ‘
1061 FORMAT (26HU ELEMENT (91291Hss12s1H)s38H VERY SMALL
1o CASE DELETED BY MATS )
MATERR = 1
GC TO 100
70 DO 9U J = 1lsoM
KKk = N + J
X{NsJ) = AINsSKK) 7 AIN9N)
DO YU 1 = 2sN '
JJ = N -1+ 1
B = 040
1T = N -1 + 2
DO 80 K = II,4N
BG B = B + (A(JJsK) ¥ X(KsJ))
IF ((ABS(A(JJsJJ)) = 1eUE=10) eLEe UeU) GO TO 60
QU X{JJdsd) = (A(JJIsKK) = B) /7 AlJJsJJ)
10C RETURN
END



1

2

0
0

SUBROUTINE MATMPY (AsBsCslLasMaN)
CIMENSION A{3293)9B(393)sC(353)

DO 20 I = 1sL
DO 20 J = 1sN
SUM = (.0

DO 1u LL = 1M

SUM = SUM +
CllsJ) = SUM
RETURN

END

(ACTsLL)

#* BlLled))

128.



10

SUBROUT INE MATSBT {(AsBsMsN)
DIMENSION A(393)s8(393)

DO 10 1 = 1M

DO 1V J = 1N

C =8Bl
Bllsd) = Allsd) = C
RETURN

END

129.
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Cusvinidin THETATSU ) slve Tril 3o ) sl aiarCivul3ousd) sk losbusclaruni{osn
lu;;')9PC4\T(\'(,*‘9":J’£)9PC»“;)(’~"‘>\}sl) 9P"~nl'(‘<9bf)9.i)9PCI.H\'(;9‘;\),-_') sinC {5900
1o dalrCT (3950020 aikSI3920sku(392)9XA(DU) 9005 GYsAP (S U s YALS S aYE (DG
lgvu\@)9LVV‘4)sC?V(Q)swu,qug(47Ju9¢)9T(bb)’JanA(Z)tvluv\(Z)’IuUAu(
JasnusrtebPiigl iUl sCNUl B0l sCTR I3 s0U s CinT (3o aPRCls LU Cil3900
LyeTIHLEC(LUYedrnsl(nd)

10 RLAL (Delull suiksblsdn v
1vl FuiemidAl (21 1el&)

Ml = ou lePLIES suBruulIng [ Tu CuntTIndE READING
fwd = 1 TeiPLIES RETURMN Tu THE MAITN PRUGKRAM

LL ImPLIES CASE UNDER CONSlubirATION
FOR FLATE
Ll = 1 IMPLIES NI ROT EQUAL Tu vewu

LL o= 2 IsPLles N2 nol cubae Tu vew
Ll o= 3 ImPLicy e nul BOUAL TV wevu

LL = & fTwbPlicgos mi T bwUAL Tu veu

L = % ImPLiLa A2 RUT BWUAL Tu ved

L = & RIS MG NuT LWwUAL Tu Veu
For CY( IND‘TH

LU = 1 LRt les &1 ondT EWUAL TU Caev

LL = 2 IwPLlIibe N6 wUT bwdAl To vev

L 3 leiPuibs diwl = N .
few o= e wF Tinul VALUES OF ThimPbisalono

n

‘uﬁ)(lnb VALE Uk s = 5

IF (RWil ebwe L) Gu TU D7v
READ (S591u2) {TUKYsK=1ohid)
12 FORMAT (6Fldet)
KEAD (95e1lus) (XA(K)sR=19iv)
Lud FURMAT (btElceb)
READ (5elu3) (YAL(K)er=1i)
READ (S9lws) (KP(s)sR=1aen)
REAL (Deloes) (YR{RYsn=1Len)
READ (9elu3) (S{bar=19iv)
READ(S9104) TITLE
104 FORNSAT (12A6)
20 WRITE (6£41U5)
ivs Furieald (lﬂl9lK9lH£’$A923HnKIAL Teinslee STRENGTHI A9 26t1ARL L Cumrit
loolvE STEnuTH3Xs 27 RANOVEROD Towolol SlikEmuTris ZasolriixanoViitot
1CUbImESo v o hinveiGEH/ X 9 did P)euAeshirslyscashdiruidleaanssiilirolts
Lz6XeSlitPLl) /7
VG INE. RVER N _19!'3
WKITE (69iwi) LU ) s XAlRYsAPIR) s YALIR) o YP (1)
ivh FukinAl (Fleds iAot lretrel2XolllsewslbXoblienslAstlsed)
30 CONTINUE ‘
WRITE (6elui) oK) sn=1siv) ) :
1o7 Fulimal (invsold X L4HOMHEAR STRENOTHZDTAeori(kFOT I/ /{DcAsLidew]))
TEMP = =ue (7777 1TTr=1T
DO 560 K = Ll
Keg = COSETHETAIK))
]RN = OINCTHETAIKY)
Toidlel) = ke % 1AM
Thille2) = RN % KN
KPP = ®Jpeb ® RN
Ti(193) Zeie HFOKPMN
Tl d) Tei{lec)
Teilzel) Totisw)
Tinlle3) -~ fritls3)
TMO3e 1) = — it
Tl 3el) = Ko
Tiise3) = Trillel) = Trillec)

]

(A
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DU 55U U = 92
1F (LFP oklve 1) Gu TU 3uu
GU TO (50sTuePue2lUeld3Uedbu) sl
50 LG HU T = 193
60 RBIIsRsJ) = PCAUET R J)
GO TO 270
Ty LO 80 1 = 13
U RB(Isked) = PIRT(Iaks M)
GO Tu 27U
Y90 DO 1vu 1 = 193
100 RE(Isked) = PCNIRUIR )
G0 TO 270
21lu DU 240 1 = 193
22V RullsKed) = PCMUllKrJ)
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FIGURE 1  Principles of a continuous carbon fibre production process.
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FIGURE 9 Filament Wound Ribbed Cylinder
(courtesy of LMI. Ltd)



FIGURE 10 6 inch diameter carbon fibre rocket
(courtesy of Bristol Aerojet Ltd.)




FIGURE 11 Rolls-Royce R.B.211 turbo fan engine on test.
(courtesy of Rolls-Royce (Composite Materials) Ltd.)
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FIGURE 12 Typical



FIGURE 13 Carbon fibre reinforced plastic satellite structure
(courtesy of IMI Ltd.)
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