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Abstract 

Ever faster data transmission in wireless communication is desired to satisfy 

emerging markets for various media services, such as voice , picture and video 

calls, multimedia messaging, music and video downloads, and even television. 

With the explosive increase in the use of mobile devices such as cellular phones, 

PDAs, GPS, and laptop computers , power consumption has become a prime 

consideration in the design of mobile communication systems. In order to re­

liably maintain a high rate of transmission and low power consumption, it is 

imperative that the receiver obtains as much knowledge as possible about the 

current state of the channel. A more accurate model of wireless communication 

channels will indisputably help in obtaining more knowledge about the tran­

sient channel state, providing a more accurate and efficient reproduction of the 

transmitted signal, and decreased power consumption by the receiver. With 

careful choice and consideration of the channel model, systemic optimization 

based on the selected channel model will improve the system performance of 

the transmitter and receiver through better encoding and decoding, as well 

as through better control of transmitted signal's power level. This thesis fo­

cuses on understanding the physical and statistical characteristics of wireless 
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channels , and investigates how to represent wireless channels using simple 

mathematical models. 

This thesis initially studied a simple time-varying stationary channel, i.e. 

a multipath fiat fading channel without terminal motion, which is typically 

used for indoor wireless communication. With an introduction of stochastic 

differential equations, we derived a first-order AR stochastic process to rep­

resent this stationary channel. For a general mult ipath fiat fading channel 

with terminal motion, the traditional Clarke's model was then extended by in­

corporating the effects of fluctuations in the component phases and analyzed 

statistically. 

The resulting theoretical power spectrum was shown to fit practical mea­

sured spectra, in contrast to the traditional theoretical fiat fading channel 

spectra (Jakes' spectrum in [19]) . 

Finally, we developed a state-space model that represents a wireless channel 

using these modified spectral characteristics. This was achieved by developing 

a relationship between the state-space model and the theory of a rational 

transfer function. A novel method for designing a rational transfer function 

for linear systems was then proposed. In this method, the rational transfer 

function is represented via the Observable Canonical Form (OCF) to obtain 

the state-space model, which can be used to represent and simulate a fiat 

fading wireless channel. The presented state-space approach is simple and 

provides rapid computation. The present AR and state-space models provide 

valuable contributions that can be integrated with other algorithms for better 

system optimization of wireless communication networks. 

lV 



Acknowledgment 

Completing my Ph.D. has been a special period in my life. I have experienced 

trials and tribulations, along with success and happiness. Writing a disser­

tation would obviously not be possible without the personal and practical 

support of many people. 

Firstly, I would like to express my gratitude to my supervisor, Dr. Tim 

Field, for his support and belief in my abilities. With his enthusiasm, his 

inspiration, and his exceptional clarity of explanation, he helped my research 

become first-class publications. He provided encouragement, sound advice, 

good teaching, good company, and plenty of good ideas. I would also like to 

thank my co-supervisor, Dr. Simon Haykin , for his financial and intellectual 

support. With his pat ient and insightful guidance, I have learned how to think 

carefully as a researcher. 

I would like to thank my committee members, Dr. Sui Feng and Dr. T . 

Kiruba, for their helpful comments on my research and thesis, and Dr. Jian­

Kang Zhang for his helpful suggestions on my research path and pleasant com­

pany on the badminton court. I am also grateful for the friendship extended 

by Ke (Kevin) Zhang, Yu Wu, Yanbo Xue. 

v 



Ph.D. Thesis - T. Feng McMaster University - Electrical Engineering 

Lastly, and most importantly, I wish to thank my parents, Ru-An Feng 

and Dao-Qing Xu. They bore me, raised me, supported me, taught me, and 

loved me. To them I dedicate this thesis. 

Vl 



Contents 

1 Introduction 

1.1 Motivation for The Problem 

1. 2 Overview of Channel models 

1.3 Thesis Overview ... . .. . 

2 Wireless Channel Propagation and Noise 

2.1 Introduction ..... . 

2.2 Large-Scale Path Loss 

2.3 Small-Scale Fading and Multipath . 

2.3.1 Flat & Frequency Selective Fading 

2.4 Statistical Models for Multipath Fading Channels 

2.5 Summary .. ................... . 

3 Stochastic Differential Equations 

3.1 Introduction ... 

3.2 Brownian Motion 

3.2.1 Mathematics Definition of Brownian Motion 

3.3 Ito's Calculus . . . . . . . . . . . . . . . . . . . . . 

Vll 

1 

1 

4 

7 

10 

10 

12 

12 

13 

14 

18 

20 

20 

21 

22 

25 



Ph.D. Thesis - T. Feng McMaster University - Electrical Engineering 

3.3.1 Ito's Stochastic Integration . . . . . . . . . . . . . . 25 

3.3.2 Stochastic Differential Equation and Ito's Formula . 34 

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

4 Multipath Flat Fading Channel Without Doppler Frequency 37 

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

4.2 Statistical Analysis of a Wireless Flat Channel Without Doppler 

Frequency .......... . 

4.2.1 Basic dynamic model . 

4.2.2 Autocorrelation .... 

4.3 Dynamic Modeling of a Wireless Flat Channel Without Doppler 

Frequency .... . .. . . ......... . 

4.3.1 Modeling of a Wireless Flat Channel 

40 

40 

42 

46 

46 

4.3.2 Solution of a Wireless Channel SDE Model . 48 

4.3.3 The Wireless Channel SDE Model in Polar Form 49 

4.4 AR Model for Wireless Flat Channel and Zero Doppler Frequency 51 

4.4.1 Derivation of AR model . . . . . . . . . . . . . 51 

4.4.2 Verifying the AR Model Using Simulated Data . 54 

4.5 Summary 56 

4.6 Appendix 57 

4.6. l Proof of the stationarity for "multipath reception" Et in 

( 4.3) ................ . 

4.6.2 Appendix: Proof of the SDE ( 4.12) 

4.6.3 Appendix: Proof of the SDE (4.13) 

4.6.4 Appendix: Variance of Channel's envelope Et 

viii 

57 

57 

59 

63 



Ph.D. Thesis - T. Feng McMaster University - Electrical Engineering 

5 Multipath Flat Fading Channel With Doppler Frequency 65 

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

5.2 Statistical Analysis of A Wireless Flat Channel With Doppler 

Frequency .... .. ... ... .... . . . .. . 

5.2.1 Fading Model For Mobile Radio Reception 

5.2.2 Statistical Analysis of Fading Model 

5.2.3 Simulation and Verification ... . . 

5.2.4 The Implications of Modified Clarke's model to Wireless 

System Design 

5.3 Dynamic Modeling of A Wireless Flat Channel With Doppler 

68 

71 

73 

86 

87 

Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

5.3.1 State Space Model of Wireless Flat Fading Channel 93 

5.3.2 Verification & Simulations . . . . . 99 

5.4 Approaches of Fading Channel Simulation 

5.5 Appendix . . . . . . . . . . . . . . . . . . 

109 

111 

5.5 .1 Appendix: Verify the relative phase <p~k) a Wiener processlll 

5.5.2 Appendix: Approach of the square-error function Q in 

(5.63) by Q in (5.64) . . . . . . . . . . . . . . . . . . . 112 

5.5.3 Appendix: Proof of Gaussian process for Et in the ex­

tended Clarke's model (5.4) . . . . . . . . . . . . . . . 113 

5.5.4 Appendix: The Approximation of a PSD Function by a 

Rational Even Function . . . . . . . . 

5.5.5 Appendix: Rational Transfer Function 

5.6 Summary . . . . . . . . . . . . . . . . . . .. 

lX 

114 

121 

123 



Ph.D. Thesis - T. Feng McMaster University - Electrical Engineering 

6 Conclusion 126 

x 



List of Figures 

1.1 Wireless communication system . . . . . . . . . . . . . . . . . 3 

2.1 Autocorrelation of channel from Clarke's model with P0 = 1 

and fDr = ro . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

2.2 Model of power spectrum for a mobile radio channel based on 

Clarke's model . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

3.1 trajectory of a 2-dimension Brownian motion . 24 

4.1 Autocorrelation of the multipath fading channel without Doppler 

frequency shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

4.2 Comparison of the difference process from simulated channel 

data with the expected theoretical Gaussian distribution . Sim­

ulated channel data is generated with N= 50, B= 202 sec-1, sam­

pling time M= lOE-6 sec., 0'2 = 0.32. (cf. eq. (4.2), (4.3) , (4.33) , 

(4.34)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

5.1 Autocorrelation of the complex envelope of the received signal 

according to the proposed extended Clarke's model . . . . . . 78 

Xl 



Ph.D. Thesis - T. Feng McMaster University - Electrical Engineering 

5.2 Power spectrum of the fading process for the proposed model 

(Traditional power spectrum for Clarke's model is also plotted 

as a special case for B ---? 0.) . . . . . . . . . . . . . . . . . . . 81 

5.3 Measured Doppler Spectrum at 1800 MHz. Source: Research 

group of Prof. Paul Walter Baier, U. of Kaiserslautern , Ger-

many (cf. [36]) 

5.4 Comparing the theoretical power spectrum density with the 

measured power spectrum density. Theoretical spectrum: B/ JD= 

0.2, P0 / JD = 0.27r. Source of measured spectrum: Research 

group of Prof. Paul Walter Baier, U. of Kaiserslautern, Ger-

many (cf. [36]) 

5.5 Comparing the theoretical power spectrum density with the 

measured power spectrum density. Theoretical spectrum: B /JD = 

82 

83 

0.25, Po/JD= 7f. Source of measured spectrum: cf. [29] . . . . 84 

5.6 Verification of the close form autocorrelation in (5.19) from the 

simulated channel data with B = lOOHz, N = 200, JD = lOOHz, 

b..T = 10-3s, and 4 · 106 samplings. . . . . . . . . . . . . . . . 87 

5.7 Comparing the theoretical PSD with the measured PSD. The­

oretical spectrum:B /JD = 0.2, Po/ f D = 0.27f. Source of mea­

sured spectrum: Research group of Prof. Paul Walter Baier, U. 

of Kaiserslautern, Germany (cf. [36]) . . . . . . . . . . . . . . 91 

5.8 The theoretical PSD function Sc(!) vs the rational even func-

tion R(s)ls=j21rf • where B/ JD = 1, Po/ fD = 37r, with various 

order of (n , m) . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 

XU 



Ph.D. Thesis - T. Feng McMaster University - Electrical Engineering 

5.9 The theoretical PSD function Sc(!) vs the rational even func­

tion S(s)ls=j2trf, where B/JD = 1, Po/JD = 37f (peak area 

magnified) , with various order of (n, m). . . . . . . . . . 102 

5.10 The computed PSD of the simulated fading channel from the 

state-space model (5.40-5 .41) , where the theoretical PSD, Sc(J) 

and the approximated rational even function R( s I 2, 4) I s=j2tr f are 

also provided for comparison. B/JD = 0.5 , P0 /JD = 31f,jD = 

lOOHz, ot = l e - 5s. . . . . . . . . . . . . . . . . . . . . . . . 105 

5 .11 The average of 100 trials of the computed PSD of simulated fad­

ing channel from the state-space model (5.40-5.41) , where the 

theoretical PSD, Sc(J) and the approximated rational function 

R(sl2, 4)ls=j2trf are also provided for comparison. B/ JD= 0.5, 

Po/ JD= 37r, JD = lOOHz, ot = l e - 5s. . . . . . . . . . . . . . 106 

5.12 The computed PSD of the simulated fading channel from the 

state-space model with the theoretical PSD - Sc(J) and the 

approximated rational even function R(sl2, 4) ls=j2trf· B /JD = 

0.8, Po/ JD = 31f,f D = 133.3Hz (i.e. mobile receiver speed v = 

80Km/h), ot = l e - 5s. . . . . . . . . . . . . . . . . . . . . . . 107 

5.13 The computed PSD of the simulated fading channel from the 

state-space model with the theoretical PSD - Sc(J) and the 

approximated rational even function R(sl2,6)ls=j2trf· B/JD = 

0.3, Po/ JD = 31f,f D = 166.7Hz (i.e. mobile receiver speed v = 

lOOKm/ h), Ot = le - 5s. . . . . . . . . . . . . . . . . . . . . . 108 

Xlll 



Preface 

Portions of this thesis relate to published material co-authored by the candi­

date, as listed below: 

• T. Feng, T.R. Field, and S. Haykin, Stochastic Differential Equation 

Theory Applied To Wireless Channels, IEEE Trans. on Communication, 

Volume 55, Issue 8, Aug. 2007, pp. 1478 - 1483 . 

• T. Feng, T.R. Field, Statistical Analysis of Mobile Radio Reception - an 

Extension of Clarke 's Model, IEEE Trans. Comm., accepted for publi­

cation, August 2007 (in production) 

• T. Feng, T .R. Field, A State-Space Model for Flat Fading Channels with 

a Novel Method of Rational Function Filter Design, submitted to IEEE 

Trans. Wireless Comm. (accepted for publishing with minor revision) 

• T . Feng, T.R. Field, Novel PSD Function for Multipath Flat Fading 

Channels, accepted for PIERS 2008 in Cambridge, USA. (presentation) 

• T. Feng, T.R. Field, State-space Model for Multipath Flat Fading Chan­

nels, accepted for PIERS 2008 in Cambridge, USA. (presentation) 

XlV 



Chapter 1 

Introduction 

1.1 Motivation for The Problem 

The term wireless normally refers to any type of electrical or electronic op­

eration accomplished in space without the use of a "hard wired 11 connection, 

though this may be accomplished using wires if desired. Wireless communi­

cation is the transfer of information over a distance using wireless methods , 

i.e. without "wires"; often, is simply shortened to 11 wireless 1
'. The distances 

involved may be short (a few meters, such as a television remote control) or 

very long (thousands or millions of kilometers for radio communications). As a 

branch of telecommunications, wireless communications is rapidly developing 

and intimately connected with every day life. 

Wireless technology is ubiquitous in daily life, such as cellular telephones, 

personal digital assistants (PD As), and wireless local area networking (wireless 

LAN), bluetooth networking (mice, keyboards, headsets, etc), global position-

1 
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ing systems (GPS), satellite television , cordless telephones , keyless entry, and 

many others. In effect , there too many wireless applications to list here. 

Generally speaking, wireless communication involves three types of com­

munication: 

* radio frequency communication 

* microwave communication, for example long-range line-of-sight via highly 

directional antennas, or short-range communication 

* infrared (IR) short-range communication, for example from remote con­

trols. 

Applications may involve point-to-point communication, point-to-multipoint 

communication, broadcasting, cellular networks, and other wireless networks. 

Sometimes the term "cordless" is confused with the term "wireless"; while 

the former terminology generally refers to powered electrical or electronic de­

vices that operate from a portable power source (e.g., a battery pack) without 

cables to limit their mobility, such as cordless telephones, these devices are 

also wireless in the sense that information is transferred from the device to a 

base unit via some type of wireless communication link. 

With the developments of semiconductor technology, information theory, 

signal processing, practical electromagnetism, computer software, and oth­

ers, wireless communication is now becoming more complicated and powerful. 

Faster data transmission in wireless communication is required to satisfy the 

demands of emerging media markets, such as video calls, multimedia mes­

saging, music and video downloads, and even television. Whether market 

driven or technology pushed, current trends in our society incite people to de-

2 
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Figure 1.1: Wireless communication system 

sire instantaneous information delivery, regardless of time or location. These 

demands necessitate continually improving performance from wireless commu-

nication networks . 

A typical wireless communications system is shown in Figure 1.1. Com-

pared to wired communication, the design of wireless communications system 

is considerably more complicated, and requires much more effort to reliably 

transmit data in noisy wireless environments. As the core of wireless commu-

nication systems, the channel coder/ decoder and channel estimator have to be 

well designed and implemented to compensate for random interference from 

wireless channels and to be able to restore transmitted information. A more 

accurate representation, or model, of a wireless communication channel will 

3 
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lead to more appropriate transmitter and receiver designs for encoding and de­

coding data, as well as better control over the power level of the transmitted 

signal and choice in the transmission rate and modulation schemes. Transmis­

sion rates and power consumption are very important factors designing mobile 

receivers for consumers. With due consideration and careful selection of the 

channel model, as well as optimization of other channel model dependent com­

ponents of the wireless system, more accurate and efficient reproduction of the 

transmitted signal by the receiver will be possible. 

For most everyday applications, wireless communication is a multiuser en­

vironment, such that the signals transmitted by users could interfere each 

other. Known as jammers, or inter-symbol interference technically, this must 

be accounted for in the system design . If the receiver knows the channel 

characteristics of the other users and has information about their transmit­

ted signals, these signals can be subtracted from the total signal to improve 

the performance of the estimated transmitted data intended for that receiver . 

Thus, better characterization and modeling of the wireless channel may help 

to minimize inter-symbol interference from other users. 

1. 2 Overview of Channel models 

From a simple introduction of wireless communication, it's clear that modeling 

a wireless communication channel is one of the most fundamental components 

on which transmitters and receivers are designed and optimized. The transmit­

ted signal arrives at a receiver from different directions, having traveled via 

4 
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different paths and undergone different attenuations, phase shifts and time 

delays, leading to random fluctuations in the signal strength. As well, the 

strength of the received signal decreases as the distance from the transmitter 

increases. 

Reductions in the power of the received signal , which experiences time­

variation caused by changes in the transmission medium or path (channel) , 

is referred to as fading. Based on different fading environments, two chan­

nel models are classified for characterizing the statistical properties of the 

received signal. One is short-term fading, also called multipath fading, which 

corresponds to severe signal envelope fluctuations that occur in densely built­

up areas over short distances or periods of time. The other is the so called 

Log-normal shadowing, or large-scale fading, corresponding to less severe mean 

signal envelope fluctuations that occur in larger and less populated suburban 

areas, where transmitter-receiver separation distances are larger (several hun­

dred or thousands of meters). 

Ossanna [55] was the pioneer who characterized the statistical properties 

(waveforms, power spectra, frequency power spectra, etc.) of the received sig­

nal produced by a set of interfering waves reflected from the planar surfaces 

of buildings and houses in the vicinity of a mobile station. His model was 

better suited to describing fading occurring mainly in suburban areas. Clarke 

[26] produced a model that characterized interfering signals as a set of random 

azimuthal waves, each having a random phase and arbitrary azimuth. This 

scattering model was the first comprehensive scattering model to predict time 

and frequency domain channel characteristics, which was suited to describing 

5 
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the short-term fading that occurs mainly in urban areas (see also [57, 56]). The 

short-term models can provide various distributions for the received signal am­

plitude (Rayleigh, Ricean , etc.) , as well as information on the power spectrum 

(Doppler spectral density) of the wireless channel. The log-normal shadowing 

model can predict the average power loss due to distance and power loss due 

to signal reflection from surfaces. When measured in dB , the power loss coef­

ficient fits a log-normally distribution, from which the log-normal shadowing 

model is named (see also [58, 59, 60]). Besides the large-scale and small-scale 

fading phenomena, the channel may contain impulsive noise occurring in short 

bursts originating from e.g. car engines, jet engines, machines in factories etc .. 

In this thesis, the impulsive noise will be ignored in the modeling of wireless 

channels. 

For small-scale / multipath fading channels, the amplitude of the received 

signal can be viewed as a continuous-time stochastic process in terms of its 

rapid fluctuations. Stochastic differential equations (SDEs) have been applied 

in the study of radio communications in the literature, dating back to the 

work of Stratonovich [1] and Rytov [2, 3]. The SDE approach was further 

applied to the system analysis for synchronization problems by Lindsey in [4]. 

Recently, Primak and Kontorovich published a series of results (in English) 

on the application of SDEs to the synthesis of a stochastic process with given 

statistical characteristics [5, 6]. The results developed by Primak et al. are 

applied to the modelling of various communication channels, radar signals , 

etc. [5 , 7, 8]. Comparing with these SDE applications, most of the research 

work described in the current thesis deals with the constructive approach, 

6 
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i.e. that of deriving an SDE for the dynamics of the multipath channel, from 

first principles, from which all of its statistical characteristics can be deduced 

[27, 28]. 

This thesis is primarily concerned with the short-time statistical charac­

teristics and modeling of wireless channels (i .e. multipath fading channel), 

which are closely interconnected with the techniques implemented in wireless 

systems, such as channel coding / decoding, channel estimation, channel equal­

ization, etc. These techniques are used to remove the effects of noisy channels 

on the performance of transmission. The original contributions in this work 

may be found in the presentation of an advanced statistical analysis (stochas­

tic differential equation) of the traditional Clarke's model, in the provision of 

a new scattering multipath model as an extension of Clarke's work , and in 

a state-space dynamic representation of an arbitrary flat fading channel that 

provides very good performance. 

1.3 Thesis Overview 

This thesis includes six chapters, organized as follows. The thesis begins with 

a review of previous work and provides an introduction. Chapter 2 of this 

thesis provides a background in wireless channel propagation, including various 

channel models, giving some basic conception and necessary information for 

subsequent discussions of more advanced channel models . 

Chapter 3 introduces stochastic differential equations (SDE) as a very use­

ful mathematical tool in statistical analysis. Readers are assumed to have 

7 
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basic knowledge of statistics, such as probability, distribution, random vari­

ables , stochastic process , etc. The contents of this chapter are not intended to 

provide a complete discussion of the associated mathematical theory and anal­

ysis, though a t utorial is provided for use of SDEs in solving simple research 

problems, as well as to facilitate comprehension in the ensuing chapters. 

Chapter 4 reviews a simple scattering model for a wireless multipath chan­

nel without Doppler frequency shift. The novelty of this simple scattering 

model focuses on fluctuations in the component phases, which are often treated 

as a time-invariant random variable in the literature; however, it has been pre­

sented in [12, 13] for a discussion of statistical characteristics of sea-clutter. 

Advanced mathematics (SDE) is used for a strict analysis of the presented scat­

tering model , as well as to provide a solution of the simple dynamic model. 

While long assumed to be true in the literature with minimal reasoning, the 

first-order AR process as a discrete SDE was proven to be an appropriate 

model for the presented scattering model. 

Chapter 5 adopts the same fluctuation considerations in the component 

phases for Clarke's well known scattering model. With further statistical 

analysis of this extended Clarke's model, we obtained a novel autocorrela­

tion expression and the power spectrum for a fiat wireless fading channel. 

The traditional Jakes' spectrum, which results from Clarke's model , is unlim­

ited when frequency components are near the positive or negative maximum 

Doppler shift, and is zero when the frequency component is larger than the 

maximum positive Doppler shift or smaller than maximum negative shift. For 

any measured power spectral density, its curve always reaches a vertex around 

8 
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the maximum Doppler shift and rapidly decreases to zero. Compared with 

the traditional Jakes ' U-shape spectrum, the presented novel power spectrum 

curve more closely approximates the measured power spectrum for a real wire­

less channel, and is more flexible in shape control. To build a dynamic model 

for an arbitrary measured power spectrum, or the presented theoretical spec­

trum, we used knowledge of linear systems to design a transfer function with a 

standard Gaussian noise input to achieve the desired output power spectrum. 

As a special rational function (filter) design , this novel method is fast and 

stable. Correspondingly, state-space models can be used to describe the linear 

system with an arbitrary rational transfer function. One of these state-space 

models is called Observable Canonical Form (OCF), which was used to gen­

erate wireless channel data in the time domain with desired power spectrum. 

The presented state-space model approached the desired power spectrum with 

very small relative error (see also on page 103), providing a fast and sim­

ple channel simulator that can be easily implemented in both software and 

hardware. 

Chapter 6 summarizes the work contained in this thesis and discusses po­

tential future lines of investigation. 

9 



Chapter 2 

Wireless Channel Propagation and 

Noise 

2.1 Introduction 

The mobile radio channels1 are an important factor in the performance of 

wireless communication systems, making it necessary to have a firm under-

standing of their functioning. The transmission path between the transmitter 

and the receiver can vary from a small distance (simple line-of-sight) to a large 

distance , such as one severely obstructed by buildings, mountains, and foliage. 

Unlike stationary wired channels, radio channels are extremely random and 

cannot be easily analyzed mathematically; even the speed of relative motion 

between the transmitter and receiver impacts how rapidly signal level changes. 

Modeling radio channels has historically been one of the most difficult parts 

1 A channel refers to the impulse response between the transmitted and the received 
signal. 

10 
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of mobile radio system design, and is traditionally done in a statistical fashion 

based on measurements made specifically for an intended communication sys-

tern or spectrum allocation.[39]Some novel methods of modeling channels are 

based on advanced mathematical analysis and reasoning, including stochastic 

differential equations.[27, 28] 

The mechanisms behind electromagnetic wave propagation are diverse , but 

can generally be attributed to reflection2
, diffraction3 , and scattering4 . [39] 

Most current cellular radio systems operate in urban areas where there is no 

direct line-of-sight path between the transmitter and the receiver, and where 

the presence of high-rise buildings causes severe diffraction loss. Due to mul­

tiple reflections from various objects, the electromagnetic waves have to travel 

along numerous paths of varying length before arriving at the receiver. The 

total effect of the interaction between these waves causes multipath fading at 

a specific location, and the strength of the received signal waves decreases as 

the distance between the transmitter and receiver increases.[39] 

2 Reflections occur when an electromagnetic wave impinges on a surface with dimensions 
larger compared to the wavelength of the propagating wave. 

3 Diffraction is due to the initiation and propagation of secondary wavelets from the 
main wavefront in the presence of an obstacle or an obstruction. These secondary wavelets 
combine to form a new wave front allowing the main wave to propagate in shadowed regions 
or behind obstructions. The field strength of such wave decreases rapidly as the receiver 
moves further into the shadowed regions. 

4 Scattering (where the term is borrowed from the particle theory of light) occurs when 
an electromagnetic wave impinges on a surface with dimensions smaller compared to the 
wavelength of the propagating wave. 

11 
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2.2 Large-Scale Path Loss 

The general term fading is used to describe fluctuations (mostly irregular) in 

the envelope of a radio signal arriving at the receiver. When such fluctuations 

are discussed , it must be considered whether a short observation interval (or 

small distance) , or a long observation interval (or large distance) has been 

taken. Different propagation models apply to different distances of propagation 

from the transmitter to the receiver. 

In the literature, two classes of modes are used for radio propagation. 

Propagation models that characterize signal strength over large transmitter­

receiver (T-R) separation distances (hundreds or thousands of meters), known 

as large-scale propagation models , are useful in estimating the radio coverage 

area of a transmitter. On the other hand, propagation models that characterize 

the rapid fluctuations (mostly irregular) of the received signal strength over 

very short travel distances (a few wavelengths) or short time durations (on the 

order of seconds) are called small-scale or fading models.[39] 

2.3 Small-Scale Fading and Multipath 

For wireless communication, the amplitude of a radio signal changes rapidly 

over a short period of time or travel distance. This is known as small-scale 

f ading. Radio signals travel through two or more paths to arrive at the receiver 

at slightly different times, resulting in a combined signal at the receiver with 

random fluctuations in amplitude and phase. This phenomenon is referred to 

as multipath propagation / fading. 

12 
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Radio waves coming from different directions with different propagation 

delays causes the received signal by a mobile at any point in space to con­

tain a large number of plane waves having randomly distributed amplitudes, 

phases, and angles of arrival. These multipath components cause the signal 

at the mobile receiver to distort or fade. When the mobile receiver is moving, 

each multipath radio wave experiences a shift in frequency due to the Doppler 

effect, called Doppler shift, which is proportional to the velocity of the re­

ceiver and the angle between the mobile receiver 's direction and the arrival 

direction of the received multipath wave. At any instant in time, radio waves 

travelling over different multipaths have different Doppler shifts with different 

amplitudes, creating a random-like total received signal wave. Even when the 

mobile receiver is stationary, i.e. no Doppler shift on the multipath wave, 

the received signal still fluctuates due to the motion of scatterers within the 

channel (i.e. the scattering properties of the radio propagation medium) . The 

mathematical descriptions of these fluctuations in radio (flat) channels for a 

stationary or non-stationary receiver are discussed in chapters 4 & 5. 

2.3.1 Flat & Frequency Selective Fading 

If a mobile radio channel has a constant gain and linear phase response over 

a bandwidth that is greater than the bandwidth of the transmitted signal, 

then the received signal will undergo flat fading , i.e. a channel passes all 

spectral components of transmitted signal with approximately equal gain and 

linear phase.[39]When a transmitted signal passes through a flat channel, the 

13 
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received signal is represented as: 

r(t) = h(t)s(t), (2.1) 

where r(t) is the received signal, s(t) is the transmitted signal, and h(t) is a 

flat channel, which is a stationary stochastic process. 

If the channel possesses a constant-gain and linear phase response over a 

bandwidth that is smaller than the bandwidth of transmitted signal, then the 

received signal will undergo frequency selective fading . [39] For such a channel, 

the received signal includes multiple copies of the transmitted waveform that 

are attenuated (faded) in amplitude and delayed in time. When a transmitted 

signal passes through a flat channel, the received signal is represented as: 

L 

r(t) = L hn(t)s(t - n), 
n=l W 

where s(t) is the transmitted signal , r(t) is the received signal, Lis the number 

of copies of the transmitted waveform at receiver, w is the bandwidth of the 

transmitted signal, and {hn(t)} are stationary stochastic processes. 

2.4 Statistical Models for Multipath Fading Chan-

nels 

In the literature, several multipath models have been suggested to explain the 

observed statistical nature of a wireless communication channel. One model 
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in particular, Clarke's model based on scattering, is the most widely applied. 

In 1968, Clarke developed a mathematical model to represent a channel 

fading from scattering. The model assumes a fixed transmitter and N incident 

multipath waves with arbitrary relative phases, arbitrary azimuthal angles of 

arrival , and equal average amplitude. 

For the kth path signal wave arriving at an angle '1/Jk (measured by the 

direction of wave radiation and the terminal motion) , the component Doppler 

shift is given by: 

v 
fk = >: cos'l/Jk (2.2) 

where v is the speed of the receiver, and >. is the wavelength of the incident 

wave. With a relative phase c.p(k) assumed as uniformly distributed on the 

interval [O , 27r) and an amplitude Xk for the kth path signal wave, Clarke's 

model is defined as follows: 

N 

ct= L Xk exp[j(27r fkt + c.p(k})]. (2.3) 
k=I 

The autocorrelation of the envelop ct at the receiver is given by [26] : 

(2.4) 

where fD is the maximum Doppler frequency shift (equal to v/>.), Po is the 

average amplitude ( = E[xk]), and 10 () is a zeroth-order Bessel function of 

the first kind. The channel autocorrelation defined in Eq. (2.4) is plotted in 
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Figure 2.1: Autocorrelation of channel from Clarke's model with Po = 1 and 
fvT =To 

Figure 2.1. We know that for a stationary channel, the power spectrum can 

be obtained from the Fourier transform of the autocorrelation function: 

SE:(!) F {RE:(T)} 

= PoF {lo(27rivT)} 

{ •foy'l~(J/!ol' Iii< iv 
(2 .5) 

Iii> i v 

where F {-} is the Fourier transform operator. A plot of the power spectrum 
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Figure 2.2: Model of power spectrum for a mobile radio channel based on 
Clarke's model 

for a mobile radio channel, represented as Sro(f) in Eq. (2.5), is shown in 

Figure 2.2. 

The power spectrum in Eq. (2.5) was initially developed by Gans [41] as a 

spectrum analysis for Clarke's model. In 1974, W. C. Jakes, J r. [19] published 

his book, "Microwave Mobile Communications", in which he included Clarke's 

model and Gan 's results. Since Jake 's book became famous, Clarke's fading 

channel model and Gan's results on power spectrum are also referred to as 

Jakes ' model or Jakes ' spectrum in the literature. 
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Although Clarke 's model and Jakes' spectrum are suggested for many 

international communication standards, such as International Mobile Tele­

communications-2000 (IMT-2000), the global standard for third generation 

(3G) wireless communications, it has some limitations in representing the 

measured flat fading channel, such that the Clarke's model cannot describe 

channel fluctuation when the mobile receiver is stat ionary. Similarly, Jakes ' 

spectrum cannot specify the peak value and has a fixed spectral width, 2f D , 

whereas the real measured spectrum will reach a peak near the maximum 

Doppler frequency and then decay to zero (see Figure 5.3 in section 5.2.2). 

These shortcomings in Clarke's model and Jakes ' power spectrum can be over­

come by introducing fluctuations in the relative component phases , i.e . <p(k) 

in Clarke 's original model (2.3). A comprehensive discussion of extending 

Clarke's model , including detailed mathematical reasoning, can be found in 

section 5.2, Chapter 5. 

2.5 Summary 

The objective of this chapter is to introduce general knowledge of wireless 

channels, and their characteristics and associated models, so that the read­

ers will possess sufficient background knowledge to read and understand the 

remainder of this thesis. 

In this chapter, we discussed wireless radio propagation , focusing on mul­

tipath and small-scale fading, and the statistical modeling of multipath fading 

channels . With the exception of the last paragraph of the final section, this 
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knowledge can be traced back more than thirty years in the literature. How­

ever, research on radio propagation continues to develop, benefitting from ad­

vanced mathematical knowledge such as stochastic differential equations and 

new statistical channel models . My contribution to the radio propagation is 

discussed in chapter 5. Comparing to the traditional Clarke's channel model , 

the new channel model approximates more closely the real measured wireless 

channels in both the t ime and frequency domains (power spectrum). 
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Chapter 3 

Stochastic Differential Equations 

3.1 Introduction 

A stochastic differential equation (SDE) is a differential equation in which one 

or more of the terms is a stochastic process. The solution of SDE is also a 

stochastic process. In mathematics, an equation of the form 

dxt = b(t , Xt)dt + CJ(t, Xt)dBt (3.1) 

is called a stochastic differential equation (SDE), where Xt denotes a stochastic 

process, b(t, Xt) and CJ(t, Xt) are functions oft and Xt, Bt denotes a Wiener 

process (standard Brownian motion, see 3.2). The Wiener process is non­

differentiable and requires its own rules of calculus. Thus the interpretation of 

the SDE expression in (3 .1) requires additional background of mathematics, 

which is to be introduced in the following sections. 

The SDE theory is traditionally used in physical science and financial math-
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ematics. Recently, more researcher has been conducted in the application of 

SDE theory to various areas of engineering. SDEs have been successfully used 

to model and analyze K-distributed electromagnetic scattering in [12]. A first­

order stochastic autoregressive model for a flat stationary wireless channel 

based on SDE theory is introduced in [27] . Stochastic channel models based 

on SDEs for cellular networks have been presented in [15]. 

This chapter is organized as follows. Firstly in section 3.2, we introduce 

the concept of Brownian Motion, which is fundamental to the SDE theory. 

Then, in section 3.3, we explain the Ito 's calculus, relating it to the traditional 

Riemann integral, which is more familiar to engineers . The notion of stochastic 

differential equation is based on the Ito's calculus. Finally, we summarize the 

tools of Ito calculus in section 3.4. 

3.2 Brownian Motion 

Brownian motion, named after the botanist Robert Brown, refers to either the 

random movement of particles suspended in a fluid or the mathematical model 

used to describe such random movements, often called a Wiener process. 

Brownian motion is among the simplest continuous-time stochastic pro­

cesses, and it limits both simpler and more complicated stochastic processes. 

This universality is closely related to the universality of the normal distribu­

tion. In both cases, it is often mathematical convenience rather than model 

accuracy that motivates their use. 

In mathematics , the Wiener process is a continuous-time stochastic pro-
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cess named in honour of orbert Wiener, an American theoretical and applied 

mathematician. He was a pioneer in the study of stochastic and noise pro­

cesses, contributing work relevant to electronic engineering, electronic com­

munication, and control systems. The Wiener process plays an important role 

both in pure and applied mathematics. Specifically, it plays a vital role in 

stochastic calculus, diffusion processes, and even potential theory. In applied 

mathematics , the Wiener process is used to represent the integral of a white 

noise process, and so is useful as a model of noise in electronics engineering, 

instrument errors in filtering theory, and unknown forces in control theory. 

3.2.1 Mathematics Definition of Brownian Motion 

A stochastic process is a phenomenon which evolves over t ime in a random 

way. Thus, a stochastic process is a family of random variables Xt, indexed by 

time (or in a more general framework by a set T ). A realization of a sample 

function of a stochastic process X = (Xt; t ET) is an assignment , where t E T 

, of a possible value of Xt. Thus, we obtain a random 11 curve 11 referred to as the 

trajectory or path of X. A basic but very important example of a stochastic 

process is the Brownian motion process. 

A one-dimensional standard Brownian motion or Wiener process is a real­

valued stochastic process { Bt ; t ~ 0}, satisfying the following: 

1. Bo= 0. 

2. For any to < t 1 < · · · < tn, the random variables B o, B t, - Bt0 , 

Btn - Btn-i are independent variables. 
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3. For any t 1 < t2 , the probability distribution of Bt2 - Bt1 is a Gaussian 

distribution with zero mean and a variance of (t2 - ti) , i.e., Bt2 - Bt1 

N(O , t2 - t1). 

4. Bt is almost surely continuous. 

These properties stipulate that the motion is continuous but nowhere differen­

tiable . Intuitively, the displacement Bt2 - Bt1 over the time interval t2 - ti can 

be regarded as the sum of a large number of small independent displacements. 

The central limit theorem is applicable, and it is reasonable to assume that 

Bt2 -Bt1 is normally distributed (in fact , it is also necessary to assume the con­

tinuity of the trajectories). Similarly, it seems reasonable to assume that the 

distributions of Bt2 - Bt1 and Bt2 +h - Bt1 +h are the same for any h > 0, if we 

assume the medium to be in equilibrium. Finally, the displacement Bt2 - Bt1 

should clearly depend only on the length t2 - t 1 and not on the time at which 

the observation begins. A natural extension of B is the d-dimensional Brow­

nian motion defined by d independent copies B 1 , B 2
, · · · , Bd of B. Figure 3 .1 

shows a trajectory example for 2-dimensional Brownian motion. 
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Rgurc 1 ~Trajectory of a 2-D Brownian n10.tion 

Figure 3.1: trajectory of a 2-dimension Brownian motion 
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3.3 Ito's Calculus 

3.3.1 Ito's Stochastic Integration 

Supposing we have a function of Brownian motion (or Wiener process) f ( Bt), 

let 's check the change in this function after a brief period <5t : 

By Taylor's theorem, we have 

For Brownian motion Bt , we have (from the definition of Brownian motion, 

see 3.2.1) 

E(Bt+ot - Bt) 2 = <5t. 

If we define the following , 

S(t) = J (Bt) , (3 .3) 

Eq. (3.2) can be rewritten by introducing the above equation, 

I 1 II 

dSt = J (Bt)dBt + 2f (Bt)dt . (3 .4) 

Rewriting Eq. (3.4) in integrated form, we have: 

t t 

J I /1 II St - So= J (Bs)dBs + 2,J (Bs)ds, (3.5) 
0 0 
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where the first item in the right hand side of Eq. (3.5), i.e., J; f (B8 )dB8 , is 

called a stochastic integral. This integral is defined in 1950's by Ito (Kiyoshi 

Ito , (born September 7, 1915) , a Japanese mathematician whose work is now 

known as Ito calculus) : 

(3.6) 

where the integral time period [O , t] is separated into n slots, i.e., 0 = t0 < 

t1 < · · · < tn+l = t, with the property 

max {1Bti+ 1 - Btf l} ----t 0, when n ----too for 0 ~ j < n . (3.7) 

Moving the second item in the right side of Eq. (3.5), i.e., J; ~j'' (Bs)ds to the 

left side of Eq. (3.5) , and switching both sides of Eq. (3 .5), we have: 

t t 

f I f l II f (Bs)dBs =St - So - 2f (Bs)ds. (3.8) 

0 0 

Substituting Eq. (3.3) into the above Eq. (3 .8) , we obtain: 

t t 

f I fl II f (Bs)dBs = J(Bt) - J(Bo) - 2f (Bs)ds. (3.9) 

0 0 
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Now, using Eq. (3.9) , we can calculate some simple stochastic integrals . For 

example, let's calculate the integral below: 

(3.10) 

If we define the following: 

(3 .11) 

then we have 

J' (Bs) = Bs 

( (Bs) 1. (3.12) 

Substituting Eqs. (3.11) and (3.12) into (3.9), we obtain: 

t 

1 2 1 2 11 -B - - B0 - -ds 
2 t 2 2 

0 

1 ( 2 2 ) = 2 Bt - Bo - t 

= ~ (B2 
- t) 2 t . (3.13) 

With the result in (3.13), we thus obtain the solution of the stochastic integral 

in Eq. (3.10). 

To explain the stochastic integral , i.e. (3.10), we use an approach which ex­

presses the concept oflto's integral as (3.6). In the stochastic integral (3.10),we 

may express the integral as the limit of summation in a Riemann integral, such 
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as: 

(3 .14) 

and, 

(3 .15) 

where both above limitations satisfy the property of integral time period sep-

aration (Eq. (3.7)). 

For a general Riemann integral, the limits of summation, such as (3.14) 

and (3.15) , are the same. However, it must be considered whether or not they 

are the same for a stochastic process. The answer is revealed below. 

Firstly, let 's look at the right side of Eq. (3.14) and check the expectation : 

n 

j=O 
n 

L [E(Bt;}E(Bt;+1 - Bt;)]. (3 .16) 
j=O 

In the above we use the Wiener process property that the increment is inde-

pendent, i.e. Bti, (Bt;+i - Bti ) are independent. From the definition of Wiener 

process (cf. section 3.2.1 on page 22), we know that 
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Incorporating the above in Eq. (3.16), we have: 

(3.17) 

Including (3.14) into the above, we have 

(3.18) 

Now, looking at the right side of Eq. (3.15) and verifying the expectation: 

n 

=I: {E(Bt;+i - Bt;}2 + E [Bt;(Bt;+i - Bt; )]}. 
j=O 

(3.19) 

From the properties of the Wiener process, we know that 

Taking Eqs. (3.17) and (3 .20) into the above, we obtain: 
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Including (3. 15) into the above, we have 

(3 .22) 

Comparing Eqs. (3. 18) and (3.22), we conclude that the right side of (3.14) 

and (3.15) are not equal. Now, if we choose the limitation expression of the 

stochastic integral of J~ B 5 dBs as the right side of Eq. (3.14), we arrive at 

Ito 's integral. Generally, for a stochastic integral, Ito's integral is defined as: 

b n J f(t , Bt)dBt = Lf(tj,Btj)( B ti+ l -Btj), 
a j=O 

(3.23) 

where, 

a = to < ti < · · · < tn+l = b, 

with the property, 

max { IBtH 1 - Btil}---+ 0, when n---+ oo for 0 ~ j < n. 

Having now defined the Ito's integral in Eq. (3 .23), we have to verify that 

Ito's integral of J~ BsdBs has the same result as in Eq. (3 .13). If we define 

the following: 
n 

In= L Bti( B ti+ 1 - Bti ), 
j=O 

(3.24) 

thus {In} is a Cauchy sequence, which will be illustrated below. From Eqs. 
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(3.14) and (3 .24) , we have, 

t 

J BsdBs = Jim In 
n-+oo 

(3 .25) 

0 

We then attempt to identify a random variable I that satisfies the following: 

First, we know that 

var (In - I) app~ach 0. 

n 

L E(BtJE(Bt;+1 - BtJ 
j=O 

0, 

where in the above derivation we use property 2 of the Wiener process (see 

3.2.1). By introducing the equation, 

(a + b )2 - a2 - b2 

ab=-------
2 

into equation 3.24, we have 
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In t (Btj + Bti+i - BtJ
2

; Bf; - (BtH 1 - BtJ
2 

j=O t B~+i - B~ -
2
(Bti+1 - Bti)

2 

j=O 

From Eqs. (3.17), (3 .19) and (3.21), we obtain : 

Thus, 

ow, assuming the following: 

1 2 1 E(I) = -B - -t 
n 2 t 2 

1 2 1 
I=-B --t=E(I). 2 t 2 n 

Then, 

(3.26) 

Therefore, if we want to show {In} converges to I , we have to show that 
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? 
var(In - I) --.'...t 0: 

var(In - I) ~var [·t)Bt;+ i - Bt;}2 
- t] 

1=0 

1 n 

4 I: var [(B~;+ i - Bt; )2
] 

j=O 

= ~ t { E(Bt;+i - Bt; )4 
- [E(Bt;+i - Bt; )2]2} 

j=O 

~ t {3(tj+l - tj)2 - (tj+ l - tj)2} 
j=O 

1 n 

= 2 I:: (tj+l - t1)2 
j=O 

(3.27) 

In above derivation , we use the properties of a random variable x having a 

Gaussian distribution with zero mean and variance <72 . We then obtain: 

We also have, 

n 

2.)tj+l - tj)2 < 
j=O 

n 

max Jtj+l - tjl L (tJ+1 - tj) 
J j=O 

t · max ltJ+1 - tjl 
J 

- 0 

Substituting (3.28) into (3 .27), we instantly obtain: 

var (In - I) ---t 0, for n ---t oo. 
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From the above Eqs. (3.29), (3.26) and 3.25, we finally verify that : 

This is the same result as that obtained with Eq. (3.13. From the above 

discussion of a detailed calculation of a special stochastic integral defined by 

Ito, we can see that the Taylor 's expansion is applicable to Ito's integral. 

3.3.2 Stochastic Differential Equation and Ito's Formula 

After we simply explain the stochastic integration (Ito 's integral), we can now 

define the essence of a stochastic differential equation (SDE) . 

If a stochastic process x(t) satisfies the following Ito's stochastic integral 

equation as 
t t 

Xt - Xo = J b(t, Xt)dt + J <J(t, Xt)dBt, 
0 0 

then we say the stochastic process x(t) obeys the Ito's stochastic differential 

equation, 

dxt = b(t, Xt)dt + <J(t, Xt)dBt. (3.30) 

Note: In the following part of this thesis, we use Wt to represent Wiener 

process, which is to replace Bt as a Brownian motion in previous part of this 

thesis. 

An informal sketch of the proof of Ito's formula is provided here. Suppose 

Xt is an Ito stochastic process that obeys a stochastic differential equation 
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(Ref. (3.30)): 

dxt = b · dt + a · dwt (3.31) 

Let f(t, Xt) be a function oft and Xt, and consider the differential of Ft(t, Xt). 

Observe (cf. Taylor's theorem): 

a J a J 1 a2 J 2 1 a2 J 2 a2 J 
dFt= -·dt+-·dxt+--·dx +--·dt +-- · dxtdt+··· (3.32) 

at 8xt 2 8xr t 2 8t2 8xt8t 

We also know (Ref. Oksendal [14]) , 

dw 2 = dt t 

dt2 = 0. 

(3.33) 

Substituting (3 .31) into (3.32) with (3.33) yields only the first three non-zero 

terms of (3 .32) : 

(3.34) 

In essence, we only take the first three terms on the right hand side of (3.32) 

to obtain this result , i.e. (3.34) , since dwl = dt, and terms of 0 (dtOt) , a> 1 , 

contribute nothing to stochastic integrals (Ref. Oksendal [14]). Substituting 

(3.31) into (3.34) with (3.33) yields Ito's formula: 

(3.35) 
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3.4 Summary 

This chapter provides sufficient mathematical background knowledge for the 

readers understand the remainder of this thesis. Here, we are not in pursuit 

of the completeness and rigour of the mathematical theory of Ito>s calculus, 

and we focus on the elucidation of the essential difference of Ito's integral and 

the traditional Riemann integral and corresponding the statement of rules and 

formula of Ito's calculus (SDE theory) so that readers are able to apply the 

knowledge stated in this chapter to the practical application at hand and solve 

the related problems. The next two chapters are examples of applying SDE 

theory to the traditional multipath wireless channels, where some novel results 

are presented. 
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Chapter 4 

Multipath Flat Fading Channel 

Without Doppler Frequency 

4 .1 Introduction 

Modeling wireless channels is essential to wireless communication systems. An 

auto-recursive (AR) process of order one for wireless fiat fading channel has 

long been assumed, but without a rigorous mathematical/physical basis. In 

this chapter, we firstly analyze the statistics of the fiat fading wireless channel 

for a stationary receiver; then we derive a stochastic differential equation as 

a dynamic model for such channel through rigorous mathematical reasoning; 

finally we obtain a first-order stochastic AR model for the fiat fading wireless 

channel with stationary receiver from discretizing the dynamic SDE. The re­

sulting AR model describes more of the origin of multi-path fading channels 

than traditional AR models in literature and it can efficiently model and gener-
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ate Rayleigh-distributed stationary fading channels. The Markovian property 

of the AR model is inherited through the SDE approach. 

Experiments with mobile communication at VHF frequency began in the 

I920s. Results of these experiments show that signal quality varies from "ex­

cellent" to "no signal". The signal incoming to the receiver contains a large 

number of reflected radio waves, which are characterized by "multipath recep­

tion". Thus, the wireless channel behaves in a random-like fashion . 

The purpose of this chapter is to develop a dynamic model of a station­

ary wireless channel, in the case that the receiver is not moving, thus zero 

Doppler shift. Jakes ' description pertains to a wireless channel with Doppler 

shift and random component phases, but with deterministic temporal evolu­

tion. In contrast we are concerned with the case that the component phases 

fluctuate in time, whereas in Jakes ' model they are assumed to be constant in 

time. For a stationary (i.e. zero Doppler shift) channel, Jakes ' model results 

in a constant (one) as the autocorrelation, that is inappropriate for long time 

periods because the stationary channel is still time-varying due to the relative 

phase fluctuations. This article presents an SDE / AR-I model to describe the 

dynamical behavior of such stationary channels. The SDE / AR-I model is ob­

tained through systematic mathematical reasoning starting from the (random 

walk) scattered electric field model with multi-path fading characterization, 

i.e. Eq. 4.3. We are not concerned with non-stationary channels with Doppler 

shift. 

The random behavior of a wireless channel can be viewed as a stochastic 

process. Stochastic differential equations (SDEs) are a powerful mathemat-
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ical tool to analyze such processes. Traditional statistical analysis of p.d.f. , 

autocorrelation, etc. of stochastic processes cannot describe the random be­

havior of these in the time domain, in contrast to SDEs which capture all the 

continuous time statistical properties. 

Several papers have been presented on the application of SDEs to the 

research of Radar scattering and wireless communications. Field & Tough 

([12, 13]) have successfully used SDEs to analyze K-distributed noise in elec­

tromagnetic scattering. Charalambous & Menemenlis ([17]) addressed SD Es to 

model multipath fading channels. In this chapter, we will derive a simple SDE 

dynamical equation for the time variation of Rayleigh distributed stationary 

wireless channels (cf. [12]). The underlying assumptions for our SDE model 

require Rayleigh distributed, stationary, first-order Markovian, multi-path fad­

ing wireless channels. An extended dynamical description of electromagnetic 

propagation including line of sight (LoS) reception, for which the received en­

velope consists of a superposition of specular and scattered components with 

resulting Ricean distribution, is provided inter alia in Field & Tough (2005) 

[25]. Rigorous mathematical analysis and computer simulation verify our SDE 

model. A first-order stochastic AR model is derived directly by discretizing 

the SDE model in the time-variable. 

There are two view points that are traditionally taken in the literature. One 

is concerned with mathematical tractability in the models of wireless propaga­

tion. Another is concerned with the experimental accuracy and design aspects 

of the problem for which a higher-order of AR model may be more appropriate. 

In this chapter, we adopt the former point of view, thus preserving the Markov 
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property and retaining mathematical simplicity and tractability. We derive a 

first-order AR process for a Rayleigh-distributed stationary wireless channel 

based on the SDE analysis of multi-path Rayleigh fading. In section 4.2, we 

discuss the statistical properties of a flat wireless channel without Doppler 

shift effect. The SDE analysis and a resultant SDE model for multi-path sta­

tionary Rayleigh fading channels is presented in section 4.3. A first-order AR 

model as a discretization of the SDE is discussed in section 4.4. The summary 

and conclusions for this chapter are drawn in section 4.5. 

4.2 Statistical Analysis of a Wireless Flat Chan­

nel Without Doppler Frequency 

In this section, we will firstly introduce the very basic model based on physics 

assumption for the multipath flat fading channel without Doppler frequency 

shift, then we make a rigorous statistical analysis, such as auto-correlation, 

power spectral density, for such a wireless channel. 

4.2 .1 Basic dynamic model 

The signal incoming to the receiver behaves fluctuations due to the multipath 

propagation. The Rayleigh distribution has been used for a long time to 

describe such a received signal, which results in a so-called "Rayleigh distributed 

channel". 

The random walk model for the scattered electric field was developed in the 

1980s (see [ 9]-[11]). These references give statistical description and correlation 
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functions, while no time dependent models were provided. This was extended 

in [[12, 13]] to a continuous time description in which the scattered electric 

field is modeled according to 

N 

E:t = L exp[jcp~k)], ( 4.1) 
k=l 

The phase factors exp[jcp~k)] are independent and uniformly distributed on the 

unit circle {izl = 1, z EC} ( C is the set of all complex numbers) and cp~k) has 

uniform random initialization on the interval [O, 271') and satisfies 

(4.2) 

in which dw represents infinitesimal increments in a Wiener process w (see 

e.g. Ref. [14]). Here, B is a constant with the dimension of frequency, which 

determines the correlation timescale for the component phase process cp~k). 

Considering a general wireless channel, the received signal on each path 

is random. Thus we consider the following extended time description of the 

scattered electric field at the stationary receiver for a wireless channel with 

"multipath reception" characterization: 

N 

E:t = L Xk exp[jcp~k)], 
k=l 

(4.3) 

where the "form factor" Xk is the amplitude of the received signal on kth path . 

The relative phase cp~k) satisfies the SDE (4.2). Comparing with Jakes' model 

(see [19]), Eq. (4.3) introduces temporal relative phase fluctuations without 
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considering Doppler shift . The Chapter 5 will discuss the model of the wireless 

flat channel considering Doppler frequency shift and temporal relative phase 

fluctuations. With the assumption of phase fluctuations according to (4.2) , 

Field & Tough [12] successfully applied a random walk model (where Doppler 

shift is fixed independent of the path/ scatterer) to the analysis of radar sea 

clutter in Ref. [13]. The "multipath reception" Et will be a stationary process 

based on the the assumption of the phase fluctuation properties (cf. ( 4.2)) and 

initial condition (cf. Appendix 4.6.1). 

4.2.2 Autocorrelation 

Given Eq. (4.3) for a multipath flat channel, the autocorrelation of the complex 

envelope Et of the received signal at receiver is written as 

(4.4) 

where the asterisk denotes complex conjugation and T is a time lag. Before 

we compute the autocorrelation of the channel, we begin by computing the 

cross-correlation between a pair of signal rays, which is given by 

{ 

0
( (k ) (k ) ) E[xk] · E[eJ 'Pt -cpt+r J if m = k 

if m =!= k 
( 4.5) 
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in which we neglect the effects of small changes in distance/ time-delay on the 

amplitude { xk} of the component signal rayst and assume that any pair of 

signal rays are independent with each other. 

Taking the basic channel model ( 4.3) and the cross-correlation of any pair 

of signal rays (4 .5) into Eq. (4.4), we obtain 

Here, we let 

N N 
~ "( {k ) ) ~ "( (=) ) E[L Xke1 'Pt L Xme-J 'Pt+r ] 

k=l m=l 

N 
~ "( {k) {k ) ) L E[x~]E[e1 'Pt -cpt+r l 
k=l 

N 

Po = LE[x~] 
k=l 

which is the average received power. 

(4.6) 

(4.7) 

Based on our essential modification that the component phases are Wiener 

processes, governed by ( 4.2) rather than mere constants as in the traditional 

Jakes ' model, we obtain 

(k) (k) 
'Pt - 'Pt+r 

(4.8) 

where wik) is a standard Wiener process as mentioned before. Thus, wi~.,.-wik) 

1 Within a tiny period, the phase { cp~k) } behaves fast changes due to high frequency 
characteristics, while the amplitude {xk} behaves very slow changes because the paths of 
the radio incoming to the receiver are relatively constant within a tiny period, i.e. the 
diffusion of the energy is relatively slow than the phase variation. 
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is Gaussian distributed random variable with zero mean and variance of !Tl , 
i.e. 

(k) (k) 1 x2 

wt+.,. - Wt ,...., J2;r;=T exp(-
2171

) (4.9) 

Using (4.8) and (4.9) , we derive that 

( 4.10) 

. (k ) ( k ) 
From Eq. ( 4.10) , we see that the expectation of two phase factors E[eJ('Pt - 'Pt+Tl] 

is uncorrelated with the index, i.e. k, of corresponding signal path. Substitut-

ing ( 4.10) into ( 4.6) and referring the definition of the average received power 

(4.7) , we obtain 

N 

L E[x~]e-Blrl/2 
k=l 

Poe-Blrl/2 . (4.11) 

Eq. ( 4.11) is the final close form expression for the autocorrelation of the 

multipath fading channel without Doppler frequency shift. It is obvious that 

the autocorrelation of the multipath fiat fading channel is an exponential­

decaying function, which is plotted in Figure 4.1. 
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Autocorrelation of the multipath flat fading channel 
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Figure 4. 1: Autocorrelation of the multipath fading channel without Doppler 
frequency shift. 
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4.3 Dynamic Modeling of a Wireless Flat Chan-

nel Without Doppler Frequency 

Discussions on the modeling of multi-path fading for stationary wireless chan­

nels to date tend to be limited in that no systematic analysis of a dynamic 

model is provided. Indeed, Jakes' model ([19] cf. Eq. (5 .1)) does not describe 

the dynamics of a stationary channel, viewing its auto-correlation in the ab-

sence of Doppler as a constant , i.e. a time-invariant channel. In contrast , in 

what follows we develop the time-dynamic model of a wireless channel for a 

stationary receiver and obtain a first order AR model representation based 

on systematic mathematical reasoning starting from the well-known scattered 

electric field model with component phase fluctuations and mult i-path fading 

characterization as presented in Eq. ( 4.3) . 

4.3.1 Modeling of a Wireless Flat Channel 

We start from the fundamental multipath characteristic equation of wireless 

fl.at channel ( 4.3) as the basis for the following mathematical reasoning. 

From equation (3.35) (Ito's formula, cf. section 3.3), the Ito differential of 

(4.3) is (see Appendix 4.6.2) 

(4. 12) 

When N-+ oo, if we introduce Eq. (4.2) into (4.12), after invoking use of Ito 
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calculus ([14]), we arrive at (see Appendix 4.6.3) 

(4.13) 

N 
where O"; = Ex~, which is the variance of dN) (see Appendix 4.6.4). An 

k=l 

alternative derivation of the variance involves computation of autocorrelation 

functions of in-phase and quadrature components that are computed at zero 

lag to give variance ([[23]]), but yield the same result. We will show that the 

variance of in-phase / quadrature components is ~O"; in the next section (see 

Eq. (4.19)). The quantity ~tis a complex Wiener process with properties (see 

Appendix 4.6.3) 

ld~l 2 = dt ,de = O , d~ · dt = 0. (4.14) 

For a real received signal E:~N), the variance of E:~N) is always finite for any N, 

so O"x < +oo when N--> oo. If we define 

W £ lim E:(N) 
t N-+oo t ' 

(4.15) 

then we can rewrite equation (4.13) as 

(4.16) 

where the random variable O"x is the square root of variance of Wt. Thus, (4.16) 

is our SDE model for a flat wireless channel without Doppler frequency. 
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4.3.2 Solution of a Wireless Channel SDE Model 

We have presented a simple SDE model for a wireless channel as characterized 

by (4.3). In this subsection, we will give some mathematical analysis of the 

SDE model (4.16), and explore the relationship with the Rayleigh distribution. 

Let the amplitude process of ( 4.16) be expressed in terms of its in-phase 

and quadrature-phase components I and Q: 

( 4.17) 

where i the square root of -1. Then It and Qt can be described as two 

independent Ornstein-Uhlenbeck processes e.g. ([14]) with SD Es 

1 V2 I (I) 
--Bitdt + -B20" dw 2 2 x t 

1 V2 l (Q) 
--BQtdt + -B20" dw 2 2 x t 

(4.18) 

The probability density functions (p.d.f) of It and Qt have the same stationary 

forms, namely, 

1 [ y2] p(y) =--exp - 2 yf1rO"x O"x 
(4.19) 

Thus It and Qt are asymptotically Gaussian variables with mean zero and 

variance !<J";. From (4.17) and (4.19), we find that the p.d.f of l'lltl(defined as 
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Z) will be a Rayleigh distribution as 

2z •2 

p(z) = -e-~ 
(/2 

x 

(4 .20) 

Here, the knowledge that the square root of the sum of two squared Gaussian 

variable is a Rayleigh distributed random variable has been used for ( 4.20) . 

4.3.3 The Wireless Channel SDE Model in Polar Form 

In this subsection, we will explore the polar representation of the process Wt 

since it is useful to compute the AR parameter in Eq. (4.27) (cf. section 4.4). 

In this polar representation the resultant phase fluctuations ( 4.26) provide a 

method to calculate the quantity B of ( 4.16) that is an essential ingredient in 

these AR parameters. 

The complex amplitude process can alternatively be expressed in polar 

form 

(4.21) 

T hus 

iBt = log(-Wt/ Rt) , (4.22) 

so from Ito's formula (cf. section 3.3) we have 

( 4.23) 

Since the left hand side of Eq. (4.23) is purely imaginary, we can express in 
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terms of alone as (see [12]) 

dB,~ ;i [ ( d:,, - ~ ( d:,,) ') - ( d::; - ~ ( d::;) ') l · (4.24) 

From (4.14) and (4.16), we have 

(4.25) 

Notice that we have ( d:tt) 2 

= 0 because of (4 .14) and (4.16).Thus, substituting 

( 4.25) into ( 4.24), we get 

de= ~ dw(o) 
(

B 2) i/2 
t 2Zt t , (4.26) 

as resultant phase fluctuations, where Zt = J'lltJ 2
, which is the intensity process 

introduced above, and dw~o) is a new Wiener process 

Thus, the angular process et has zero drift part for stationary, Rayleigh 

distributed wireless channel. 

50 



Ph.D. Thesis - T. Feng McMaster University - Electrical Engineering 

4.4 AR Model for Wireless Flat Channel and 

Zero Doppler Frequency 

In this section, we will explore the close relationship between the presented 

SDE and an AR stochastic process. 

4.4.1 Derivation of AR model 

Let's consider discrete-time samplings for the SDE process in ( 4.16) with equal 

distance time series, t 0, t 1 , · · · , tk , · · · , where tk+I - tk = i5t. After replacing 

the continuous time differential d'I!t in (4.16) with the discrete-time difference 

(\I! tk+i - \I! t.J, replacing 'I!t with the arithmetic average ( 'I!tk+i + \I! tk) /22
, and 

replacing the Wiener process d~t with a complex discrete Gaussian process 

8t112 ·ii (k), we obtain 

1 - lB. fJt B4(} . 15t1/2 
\I! 4 \I! x - (k) 

tk+1 = 1 + l B . fJt tk + 1 + l B . fJt . n , 
4 4 

( 4.27) 

where is ii (k) a standard complex Gaussian process with zero mean and unit 

variance. Equation ( 4. 27) is a first-order AR process for the wireless channel. 

The AR coefficients are functions of the constant B, the sampling time interval 

flt, and the square root of variance of channel (Jx· 

The multi-path Rayleigh scattering model [19], i. e. Eq. (4.3), has been 

used for stationary multi-path fading wireless channels for a long time. Tradi-

2Here, we use the "midpoint" corresponding to a Stratonovich integral for the numerical 
stability, in contrast to Ito's integral which uses the "left point". In the SDE (4.16), the 
constant nature of the volatility yields equivalence between the Stratonovich and Ito integrals 
- which justifies the ''midpoint" discretization. 
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tionally, an AR process of order one has been assumed in Rayleigh scattering 

model. However, in the literature to date, there has not been a rigorous sys­

tematic derivation of the dynamics, which is where the proposed SDE theory 

becomes an essential extra ingredient. For the traditional AR model , there is 

no account given of the direct relationship between the AR coefficients and the 

underlying physical characteristics of multi-path wireless channels, namely a 

resultant amplitude arising as a superposition of a number of random phasors 

each evolving on a suitable time-scale. The AR model developed here is de­

rived from these basic physical principles , using techniques from SDE theory to 

describe the continuous time evolution, and then passing to discrete time. Our 

development makes transparent the relations between the AR coefficients and 

the physical [correlation timescale] parameter B , the variance of the channel , 

and the discrete sampling interval , as demonstrated in ( 4.27). The physi­

cal origins of the AR coefficients are thus determined. By comparison, the 

AR coefficients can also be obtained (see [21]) statistically using Yule-Walker 

equations and autocorrelation of the process. 

To simulate a Rayleigh distributed channel, Eq. (4.3) requires large N 

(thousands or more) paths , which results in a lot of computation. Instead of 

simulated these large N paths, we model the total behavior of all these paths 

by one stochastic process Wt. To generate a single value of channel data at 

instant time t, we need to produce N random number <p~k) and Xk from ( 4.3) , 

while only one complex random number 8~t (two real random numbers) from 

(4.27) . Thus the computation complexity of the SDE model (4.16) is about 1 

of N (see (4 .3)). Considering the large, the SDE model provides a very simple 
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way to simulate Rayleigh distributed wireless channel more efficiently. 

Wong & Chang (1996) verified the first-order Markovian model for a Rayleigh 

fading channel in [16] . This reference concludes that the first-order Markovian 

chain is sufficient to model a Rayleigh fading channel for any application. The 

first-order Markovian assumption implies that, given the information of current 

state, any future state should be independent of the previous state. Our first­

order AR model (discrete-time SDE) (4.27) derived from the essential scat­

tered electrical field (multi-path) equation (4.3) complies with the first-order 

Markovian assumption. There is evidence, though not conclusive, for improv­

ing the model accuracy by increasing the model order [20]. Here we restrict 

ourselves to an AR model of order one. The rationale behind this is as follows. 

The SDE theory favors the dynamical description of a wireless channel for a 

stationary receiver, as developed in section 4.3. Moreover, its discretization is 

automatically an AR model of order one, and it preserves the Markovian prop­

erty since the underlying SDE is Markov in this case. Jakes' model overlooks 

the statistical analysis of stationary channels (i.e. channels without Doppler 

shift). The familiar Bessel function autocorrelation 10 (27r f DT) obtained from 

Jakes' model results in a constant (one) for a stationary channel; thus Jakes' 

model is inappropriate to describe a stochastic process that we consider here 

in which the temporal channel behavior is due to the relative phase fluctu­

ations. Although second or higher order AR models may be appropriate to 

obtain closer approximation to the autocorrelation of a wireless channel with 

a particular Doppler frequency, we are not concerned with such non-stationary 

wireless channels here. We present a novel approach to obtaining a first-order 
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AR model for a stationary wireless channel through systematic mathematical 

reasoning from first principles beginning with the well accepted multi-path 

scattered electric field model, i.e. Eq. ( 4.3). Simulated data will be shown to 

verify our AR model in the next part of this section. 

4.4.2 Verifying the AR Model Using Simulated D ata 

With computer generated channel data Wtk from (4.3) and (4.2), we define a 

difference process as 

where 
1 - .!.B·8t 

- 4 a - 1 . 
1+-B·6t 4 

( 4.28) 

( 4.29) 

If we can verify that the difference process 6.a w tk is a complex Gaussian process 

with zero mean and {32 variance, where 

( 4.30) 

then the AR process for wireless channel ( 4.27) will be confirmed. 

Figure 4.2 confirms that the real and imaginary parts of the difference 

process 6.a Wtk are Gaussian processes that we expected. Thus, our derived 

AR process described in ( 4. 27) is well verified. 
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Figure 4.2: Comparison of the difference process from simulated channel data 
with the expected theoretical Gaussian distribution. Simulated channel data 
is generated with N= 50, B= 202 sec-1, sampling time M= lOE-6 sec., a 2= 0.32. 
(cf. eq. (4.2) , (4.3) , (4 .33), (4.34)) . 
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4.5 Summary 

In this chapter, we have presented a first-order stochastic AR model for a wire­

less channel which is based on SDE modeling of stationary Rayleigh fading 

wireless channels with "multipath reception" characterization. A rigorous and 

principled mathematical derivation of the origin of our stochastic AR model 

has been provided in detail. The AR model provides more channel information 

than previous AR models for stationary wireless channels. Moreover, simu­

lated wireless channel data lend strong support to our first-order stochastic 

AR model. The essential features of the proposed stochastic AR model can 

be summarized as follows: 

1. It can model stationary Rayleigh-distributed fading channels effectively. 

2. It can efficiently generate synthetic Rayleigh-distributed channel data. 

3. It is an instance of a first-order Markov chain. 

4. The model developed follows from SDE theory under assumptions con­

cerning the nature of multi-path fading channels. 

5. The AR parameters express physical meanings. 
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4 .6 Appendix 

4 .6.1 Proof of the stationarity for "multipath recept ion" 

Et in ( 4 .3) 

Since the relative phase cp~k) is based on a Wiener process as in (cf. (4.2)), 

cp~k) is a Markov process. Thus, exp [icp~k)J is also a Markov process. When 

cp~k) is chosen as random variable uniformly distributed upon [O, 27r), the initial 

distribution of exp [icp~k)J will be uniformly distibuted on the unit circle {lzl = 

1, z EC}, which is also the asymptotic distribution of exp [icp~k)J. Under such 

initial conditions, the distribution of exp [icp~k)J does not .change with time, 

so it is a (strict sense) stationary process. Thus, as a summation of scaled 

exp [ icp~k) J , Et is also a stationary Markov process if cp~k) is uniformly chosen 

on [O, 27r). 

4.6.2 Appendix: Proof of the SDE ( 4.12) 

We provide a proof of the SDE (4.12). Corresponding to (3 .31) and Ito's 

formula (3.35), the notations used in the section 4.3 are as follows. The phase 

cp~k) in Eq. (4.2) corresponds to in (3.31). Thus, comparing Eqs. (4.2) and 

(3.31) we have b--+ 0 and CJ--+ B 112 . The Et in Eq. (4.3) corresponds to Ft in 

(3.34) and identifying Et with Ft = J(t, Xt) we identify: 
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dxt d (k) <fJt 

af 
0 

at 

af a(L: Xk exp [ i<.p~k) J) 
ixk exp [i<p~k}J (4.31) 

axt a (k) <pt 

a2 f a(ixkexp [i<.p~k)J) 
-xk exp [i<p~k}J 

ax; a (k) = 
<pt 

Notice that the index k contributes to the summation in (4.3); thus (3.34) is 

extended to the multi-variate formula for the collect ion of component phases 

<.p~k), k = 1, 2, · · · , as 

_ af '"°' a1 (k) i '"°' a
2 J (k) 2 

dFt - -a · dt + L ------W ·de.pt + - L (k) ·(de.pt ) 
t ac.pt 2 a( <fJt )2 

( 4.32) 

Now, substituting all the relations in (El) into the above equation, yields 

dE:t L ixk exp [i<p~k)J · d<.pik) - ~ L Xk exp [i<pik)J · (dc.pik)) 2 

L Xk (id<.pik) - ~(d<.pik)) 2) exp[j<pik)] 

and thus Eq. (4.12) is obtained. 

58 



Ph.D. Thesis - T. Feng McMaster University - Electrical Engineering 

4.6.3 Appendix: Proof of the SDE (4.13) 

Assuming dwii) and dwik) for any j, k (j -=/= k) are independent. Introducing 

equation ( 4.2) into ( 4. 12) and applying 

we have 

where 

d (N) 
Et 

N f;, Xj ( id<pfl - ~( d<pjil )') exp[j<pflj 

N 

~ ~ x; (iB'i' dwf1 - ~ Bdt) exp[i<pji1] 

N N 

L XjiB 112dwii) exp[jcp~j) ] - ~ B dt L Xj exp[jcp~j) ] 
j=l j=l 

V - ~Bc(N) dt (4.33) 
2 t ' 

N 

V = L XjiB 1 12 dw~j) exp[j cp~j) ] . ( 4.34) 
j=l 

Furthermore, we decompose V into real and imaginary parts as 

V B 112 [t, x;i cos ( <ppi) dwiil - t, x; sin ( <ppi) dw)i1] 

B1i' [i t, x; cos ( <pjil) dw)il - t, x; sin ( <piil ) dw)i1] ( 4.35) 
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The quantities f xi cos ( <p~i)) dwf) and f Xj sin ( <p~i)) dw~i) in the r.h.s. of 
1=1 J=l 

( 4.35) appearing above are scaled Wiener processes. We have 

N 

L Xj COS ( <p~j)) dwij ) = O"cdwic) ( 4.36) 
j=l 

where 
N 

a-~ = L x] cos2 
( <p~i) ) , 

j=l 

and 
N 

L Xj sin ( <p~i) ) dwf) = o-8 dwis) ( 4.37) 
j=l 

where 
N 

a-; = L x] sin2 
( <p~i)) . ( 4.38) 

j=l 

In ( 4.36) and ( 4.37), we claim that and are independent Wiener processes. 

Proof of independence follows. 

Proof: From (4.35) and (4.36), (4.37) , we have 

( 4.39) 

where 

( 4.40) 
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We have 

where 

( 4.42) 

and 

( 4.43) 

For N ~ oo, aj ~ 0+, let { cp~p(j)) } be a permutation of { cp~) } so that 

O ~ cp~p(l)) < cp~P(2 )) < ... < cp~p(N)) ~ 27r . Then in (4.41) we have 

N 

L D'.j sin ( 2cp~j)) 
j=l 

From (4.41) and (4 .44), we have 

N 

L D'.j sin ( 2cp~p(j)) ) 
j=l 

21f 

_!_ j sin(2x )dx 
27r 

0 

== 0, ( 4.44) 

Thus, dwic) and dwis) are independent. Here, we use the fact that if 

dwic) · dwis) = 0, dwic), dwis) are independent (Ref. Karatzas & Shreve 
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[18]). 

End 

Furthermore, we have 

1 N 

CJ2 ~ xJ cos2 
( cp~j)) 

x J=l 

N 

= L aj cos2 
( cp~j) ) 

j=l 

N 

1 1 """' ( (j)) 2 + 2 ~ O'.jCOS 2cpt 
j=l 

1 
-N~oo 2 . 

In the above, we use the fact that 

N 

:z= Ctj cos ( 2cp~j)) 
j=l 

Similarly, we have 

N-+oo 

27!" 

2~ J cos(2x)dx 
0 

== 0. 

Introducing ( 4.46) and ( 4.48) into ( 4.39), we have 

v 
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where 

dC = -
1- [idw(c) - dw(s)] <,,t ./2 t t . (4 .50) 

Since dw~c) and dw~s) are independent Wiener processes , det is a complex 

Wiener process. From ( 4.50) , we deduce the following properties of det : 

ow from (4.33) and (4.49), and for above et in (4.51), we have shown 

dc;(N) = -~Bc(N)dt + B~(J dC 
t 2 '-t x <,,t , 

i.e. (4.13). 

4.6.4 Appendix: Variance of Channel's envelope Et 

From the definition of in (4.3), we have 

Var (c:~N)) = E (lc:~N) - E (c:t)) 12) 
E ( c:t) · ( c:~N)) *) 

N N 

(4.51) 

( 4.52) 

L L XJXk E (exp [i<p~J) - i<p~k)]). (4 .53) 
k=l j=l 

For j-:/= k, 

( 4.54) 

63 



Ph.D. Thesis - T. Feng McMaster University - Electrical Engineering 

The above (4.53) is thus simplified as 

N 

Var (c~N)) = L xJ. (4.55) 
j=l 

From (4.40) and (4.55), we have 

(4.56) 

(See main text under (4 .13)) 
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Chapter 5 

Multipath Flat Fading Channel 

With Doppler Frequency 

5.1 Introduction 

In chapter 4, we have discussed the statistical analysis the multipath flat fad­

ing channel without Doppler frequency shift, and successfully derive / obtain 

a first-order AR model to represent such channel. In this chapter, we will 

consider a more general case, i.e. wireless flat fading channel with Doppler 

frequency shift. 

Analysis and modeling such channels are essential to wireless communi­

cation systems. The traditional statistical analysis, such as autocorrelation 

and power spectrum, based on Clarke's model [26] is not appropriate to de­

scribe real multipath flat channels. In this chapter, we will extend the tradi­

tional Clarke's model incorporating the effect of fluctuations in the component 
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phases, and perform the statistical analysis. For a general fiat fading channel 

with Doppler frequency, a first order AR model is not a appropriate, while we 

use a state-space model to represent the fiat fading channel very well. 

Statistical analysis and modeling of wireless channels is essential to wireless 

communication systems. Clarke's model [26] and the corresponding statistical 

analysis of mobile radio reception has been widely accepted in numerous wire­

less applications. Since the component phases in Clarke's model are assumed 

to be constant in time, the well-known results of statistical analysis based on 

this model, such as the autocorrelation and Doppler power spectrum (Jake's 

spectrum [19]) , are not appropriate to describe real wireless channels for which 

the random environments (radio propagation paths) are time-varying and ac­

cordingly for which the channel is non-constant in the absence of Doppler 

frequency shift. In comparison with measured spectra, Jakes ' spectrum has 

limitations - it is unbounded and does not incorporate the effect of temporal 

phase fluctuations. 

In the section 5.2 of this chapter, we extend the traditional Clarke's model 

incorporating the effect of fluctuations in the component phases, and perform 

the statistical analysis which results in a closed-form expression of the autocor­

relation of the fading . The theoretical power spectral density function, which 

is the Fourier transform of the resultant autocorrelation of the fading , is shown 

to fit the practical measured spectra, which is in contrast to the traditional 

theoretical fiat fading channel spectra (Jakes' spectrum) . The proposed model 

and statistical results should have important implications for detailed spectral 

analysis and channel simulations for real wireless communications systems in 
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random fluctuating electromagnetic propagation environments. 

Section 5.3 discusses the dynamic modeling of a general multipath flat 

channel. We develop here a state-space model (SDEs) that represents a wire­

less channel with these modified spectral characteristics. This is achieved by 

developing the relationship between a continuous-time state-space model and 

the theory of the rational transfer function . A novel method for the design of a 

rational transfer functlon of a linear system is proposed. The system input is a 

Gaussian white noise process, which generates a wireless channel with a desired 

arbitrary power spectrum. We represent the rational transfer function via the 

Observable Canonical Form (OCF) to obtain the continuous-time state-space 

model. A discrete-time version of the state-space model is then provided to 

represent and simulate a discrete-time flat fading wireless channel. 

Section 5.4 introduces some other approaches to multipath fading channel 

simulation. One is based on Clarke's scattering model and operated in the 

time-domains; the second is based on transforming the frequency domain to 

the time domain with IFFT realization , the third is based on a filtering-method 

in the time-domain. Comparing with these available approaches, the presented 

state-space approach in section 5.3 is simplest to realize. The summary and 

conclusions for this chapter are drawn in section 5.6. 
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5.2 Statistical Analysis of A Wireless Flat Chan-

nel With Doppler Frequency 

In a wireless mobile communication system, the signal incoming to the re-

ceiver contains a large number of reflected radio waves - this phenomenon is 

referred to as multipath propagation. The received signal has randomness in 

its amplitude, phase, and angle of arrival, giving rise to the multipath fading 

for the resultant received envelope or amplitude. In this section, we integrates 

the dynamics of phase ft uctuations and terminal motion into the modeling of 

wireless mobile channels and discusses the resultant effect on the channel's 

autocorrelation and power spectrum. 

For a time-varying channel with terminal motion, it has been traditionally 

assumed that when there is no relative motion between the receiver and trans-

mitter, the entirety of all reflected radio waves generate a "stationary" channel , 

i.e. the received signal is constant in time, so that the channel appears to be 

time-invariant. For a deeper perspective of such assumptions in mathematical 

terms, we firstly revisit the familiar traditional Clarke's model for a wireless 

fl.at fading channel (ref:[26]), expressed as 

N 

€t = LXnexp[j(27rfnt + <p(n))J, (5. 1) 
n=l 

where the Xn is the electric field strength of the nth path, the f n are the 

Doppler shift components corresponding to nth path and the relative compo­

nent phases { <p(n)} are assumed to be constant in time. The quantity Et rep-
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resents the complex envelop of N signal rays with assuming that all rays are 

arriving from a horizontal direction and come from arbitrary angles surround-

ing the receiver. (Notice that the carrier frequency, i.e. w0 , has been removed 

in (5.1). Eq. (5.1) is implicit in both Clarke's and Jakes ' models .) From 

Clarke's model, i.e. (5.1), it is clear that the complex envelope Et is constant 

when f n = 0, i.e. when there is no relative motion between the receiver and 

the transmitter. Thus, the model accords with the traditional assumptions . 

Based on Clarke's model , i.e. (5.1), the autocorrelation is derived in terms of 

the zeroth-order Bessel function of the first kind ( cf.[26]), i.e. P0J0 (27r f DT) ( P0 

is the average power of the received signal, and f D is the maximum Doppler 

frequency shift). Correspondingly, according to the Wiener-Khintchine theo­

rem, the power spectral density (PSD) of the fiat channel in Clarke's model is 

equal to the Fourier transform of the aforementioned autocorrelation , thus 

Ill< fD 

Ill> JD 
(5.2) 

which is traditionally referred to as Jakes' spectrum. The maximum Doppler 

frequency arises as 

v 
fD = - . f c, 

c 
(5.3) 

where vis the speed of the mobile receiver, c is the (constant) speed of light 

in air, and fc is the carrier frequency of the transmitted signal. Observe that , 

despite the divergence of Jakes' spectrum as the frequency f tends to ±f D , 

the spectrum has finite energy. 

However , in a real mobile radio communication environment, even without 
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relative motion, the received signal still fluctuates in time, i.e . the channel 

is time-varying because the electromagnetic propagation environment is still 

time-varying. This implies that the relative component phases of reflected 

radio waves { <p(n)} are also time-varying. Therefore, the traditional Clarke's 

model is not sufficient to describe such situations, and the results of the statis­

tical analysis based on the traditional Clarke's model (5.1) must be modified 

to include the effect of explicit time dependence in the component phases. For 

example, the autocorrelation of the fading (cf. [26]) , which is the zeroth-order 

Bessel function of the first kind, i.e. J0(27rfDT) (JD is the maximum Doppler 

frequency shift) reduces to a constant when the maximum Doppler frequency 

shift is zero, so it is inappropriate to provide a reasonable statistical descrip­

tion for a wireless channel which is still time-varying even without Doppler 

frequency shift (no motion between transmitter and receiver). 

The traditional U-shape theoretical Doppler power spectrum (Jakes' spec­

trum) , the Fourier transform of the Bessel function J0 (27r fDT), has limitations 

in terms of representing a practically measured spectra. For example, the tra­

ditional U-shape theoretical spectrum cannot specify the peak value and has 

a fixed spectral width, i.e. 2fD (JD is the maximum Doppler frequency shift), 

whereas the real measured spectrum will reach a peak near the maximum 

Doppler frequency and then decay to zero (see Figure 5.3 in section 5.2.2). 

Based on the above discussion, we see that it is meaningful to develop an 

extended Clarke's multipath model for fiat fading channels such that it allows 

the relative phases to fluctuate in time and accordingly generates a new the­

oretical power spectrum closer to the practical measurement than the Jakes' 
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spectra. The scat tered electric field model with dynamic relative phases and 

a fixed Doppler frequency shift, independent of signal ray Un= f 0 , for all n) , 

is presented in [12], where statistical analysis of the model, such as the auto­

correlation and power spectrum, is also discussed. The multipath model with 

dynamic phases and zero Doppler shift for fiat channel is presented in [27] , 

where a stochastic differential equation (SDE) and a first-order autoregressive 

(AR) process are obtained to describe the dynamics of the channel. In this 

section 5.2 , we shall focus on a novel multipath fiat fading channel model, intro­

ducing fluctuating component phases into the tradit ional Clarke's model, and 

provide a rigorous statistical analysis of the proposed fading model. We argue 

that this extended channel model and its statistical properties are essential for 

accurate spectral analysis and channel simulations in wireless communications. 

This section 5.2 is organized as follows . Firstly in subsection 5.2.1 , we 

present a channel model extended from the traditional Clarke's model [26], al­

lowing the relative component phases to fluctuate in time. Then, in subsection 

5.2.2, statistical analysis is applied to the model, obtaining closed-form expres­

sions for the autocorrelation of fading and the corresponding power spectral 

density. Simulation of discrete channel data is provided in subsection 5.2.3. 

5.2.1 Fading Model For Mobile Radio Reception 

In this subsection, we extend Clarke's model [26] for mobile radio reception, 

by considering explicitly time-varying component phases. Similarly to the 
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mathematical embodiment of Clarke's model in the form of Eq. (5.1) , we let 

N 

Ct = L Xn exp(j(27r fnt + <p~n))] (5 .4) 
n=l 

represent the complex envelope of N signal rays arriving at a moving receiver, 

where Xn is the strength of the nth signal ray which has a relative Doppler 

shift f n and a relative component phase <p~n) where the subscript indicates 

the time variation. All rays are assumed to arrive from a horizontal direction 

(cf. [26]). In the original Clarke's model, the component phases { <p~n)} are 

assumed to be time-invariant and i.i.d . random variables uniformly distributed 

over (0, 27r) (i.e. <p~n) is written simply as <p(n)). Here, we relax the assumption 

on the component phases such that they are time-dependent , and { <p~n) } is a 

collection of independent Wiener processes (see Appendix 5.5.1 on page 111) 

with uniform random initialization on the interval [O , 27r), with the dynamical 

property that (cf. [12]) 

(5.5) 

in which dwt represents the infinitesimal increments in a Wiener process Wt 

(Ref. [14]) and d<p~n) represents the infinitesimal increments in the relative 

phases <p~n). Here, B is a positive constant with the dimension of frequency, 

which determines the correlation time scale of the component phase process 

(see Eq. (5.18)). Note that, for any instant of time t, the amplitude of the 

complex envelope ct is still Rayleigh distributed due to the independence 

assumption amongst the component phases { <p~n) } . With the assumption 

of phase fluctuations according to (5.5), Field & Tough [12] successfully ap-
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plied a random walk model (where Doppler shift is fixed independent of the 

path/ scatterer) to the analysis of radar sea clutter in Ref. [13] . 

The proposed dynamical model for mobile radio reception should be ap-

plicable to a broad range of wireless communication environments, such as 

GSM/ CDMA, satellite communication, etc. 

5.2.2 Statistical Analysis of Fading Model 

In this subsection, we focus on the statistical analysis of the fading phe-

nomenon based on the model presented in section 5.2.1. The autocorrelation 

of the fading will be discussed first , followed by the power spectrum. 

Autocorrelation 

The autocorrelation of the complex envelope Et is written as 

(5.6) 

where the asterisk denotes complex conjugation, E[·] denotes the statistical 

expectation, and Tis a time lag. We begin by computing the cross-correlation 

between a pair of signal rays, which is given by 

E [xnei(27r fnt+l"in)) . Xme- j(27r f,,.(t+r)+cpi~;)] 

'2 J t '2 J (t+ ) · (n) · (=) = E [e1 7r n . e-J 7r "' T ]E [xne11"t . Xme-Jl"t+ ... J (5.7) 
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in which we can assume that the Doppler shift (determined by the angle of 

the propagation relative to the direction of motion, see (5.12) below) is in­

dependent of the component phase and amplitude in the component paths 

or 'signal rays ' because the motion of the terminal has no statistical relation 

with that of the scatterer motion. So, the Doppler envelope is independent of 

phase. We also neglect the effects of small changes in distance/ time-delay on 

the amplitude { xn} of the component signal rays (cf. footnote on p. 43). Due 

to the assumption of independence of any pair of signal rays, we have 

0 if mf n 
(5.8) 

'( (n) (n)) 
E[x~] · E [e1 cp, -cp,+,. ] if m = n 

Substitut ing (5 .8) into (5.7) , we arrive at 

~{ 0 if mf n 
(5.9) 

2 ·2 J J '( (n) (n) } -if E[xnJ E[e-J 71' n T E[e1 cp , -cp,+,. l " m=n 

Using the result of (5.9) with (5.4) substituted into (5.6), we obtain the auto-

correlation of the complex envelope as 

n=l m=l 

(5.10) 
n=l 
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Here, we let 
N 

Po= 2::E[x~] (5.11) 
n=l 

which is the average received power. 

If the direction of radiation of nth signal path and the terminal motion are 

at angle 7/Jn, based on the knowledge of the physics the component Doppler 

shift for a component propagation path is given by 

Jn= JD COS 7/Jn (5.12) 

where f D is the maximum Doppler shift, which occurs for signal rays that are 

in the same direction as the motion of the terminal (cf. Eq. (5.3)). With the 

assumption that 7/Jn are uniformly distributed over the interval [O, 27r), we see 

that the average Doppler frequency shift will be zero, i.e. 

1 r27r 

E[f n] = 27r lo f D COS 7/Jd'ljJ = 0. (5.13) 

Substituting (5.11) and (5.12) into (5.10), finally we obtain 

(5.14) 

The first expectation expression on the right hand side of (5.14), i.e. E[e-i27rfvTcos .Pn], 

has a simple closed-form derived previously by R.H. Clarke [26], namely 

__!__ f 27r e-j27r fvT COS ,P d'ljJ 
27r lo 
Jo(27rfDT) 
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where 10 ( x) is the zeroth-order Bessel function of the first kind . The right hand 

side of (5.15) is the traditional expression of autocorrelation of t he fading in 

time with unit average power. 

Based on our essential modification that the component phases are Wiener 

processes , governed by (5.5) rather than mere constants, we obtain 

(n) (n) 
<pt - 'Pt+r 

(5.16) 

where w~n) is a standard Wiener process as before. Thus , w~:~ - w~n) is 

Gaussian distributed random variable with zero mean and variance of ITI, i.e. 

1 x2 
w(n) - w(n) "' exp( ) 

t+r t ~ -2ITI (5.17) 

where "' indicates the distribution of a random variable according to some 

probability density function. Observe that, according to this description , the 

component phase differences are unbounded. However, via exponentiation ac-

cording to (5.4), it is the phase wrapped processes that determine the received 

envelope, and in this respect each (wrapped) phase difference is uniformly 

distributed on the unit circle in the complex plane (cf. discussion above Eq. 

(5.5). Using (5.16) and (5.17), we derive that 

(5.18) 
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Substituting (5 .15) and (5 .18) into (5 .14) , we finally obtain the close form 

expression for the autocorrelation of the fading as 

(5 .19) 

Comparing this result with the traditional expression for the autocorrelation 

of the fading , our expression derived from our extended Clarke's model, i.e. 

multipath radio reception with component phase fluctuations, has an extra 

exponential decaying term, whose exponential index is proportional to the 

time delay. Thus, we observe that the combined autocorrelation of complex 

radio reception consists of two terms, one is the familiar Bessel function , i.e. 

J0 (27rfDr), resulting from Doppler shift, and the additional term arising from 

our extended model is the. exponential decay function , i.e. e-Bl7 l/ 2 , arising 

from the component phase fluctuations and which exists independently of the 

motion of the receiver. In the case that B --+ 0, i.e. absence of fluctua­

tions in component phases, the exponential term e-Bl7 l/2 approaches unity, 

so that the presented closed-form expression of autocorrelation of the fading 

(5.19) approaches the traditional autocorrelation for Clarke's model. Figure 

5.1 plots the autocorrelation function of the complex envelope as a function of 

the normalized parameters Br and fDT appearing in (5 .19). 

As a special case, when the maximum Doppler shift f D is zero, the auto­

correlation RE(r) in (5.19) reduces to an exponential decaying function. Ref. 

[27] discusses this special case mathematically in terms of a first-order autore­

gressive (AR) model. It is well known that a first-order AR process has an 
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Figure 5.1: Autocorrelation of the complex envelope of the received signal 
according to the proposed extended Clarke's model 
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exponential decay property for its autocorrelation. In the case of real wire­

less applications, the time-varying electromagnetic propagation environment 

makes the channel fluctuate even if there is no relative motion between trans­

mitter/ receiver (i.e. zero maximum Doppler shift). The traditional Clarke's 

model is inappropriate for such cases because it implies that channels with 

zero Doppler are (random but) constant in time. Thus, our proposed multi­

path model embodied in Eqs. (5.4) and (5.5), together with the closed-form 

expression of the autocorrelation in (5.19), can be viewed as an extension of 

Clarke's work for more general cases of wireless channels. 

Power Spectrum 

The power spectrum of the fading process, denoted as SE(!), is determined , via 

the Wiener-Khintchin theorem, as the Fourier transform of the autocorrelation 

function of the complex envelope, thus 

SE(!) F{RE(T)} 

F { Poe-Blrl /2 lo(27r f nT)} 

P0F{ e-BITl/2 } ® F{ Jo(27r fnT)} (5.20) 

where F { ·} is the Fourier transform operator and the sign ® denotes convo-

lution defined as 

(5.21) 
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Specifically, we have 

and 

F{Jo(2n/DT)} = { 

B 
(B/ 2)2 + (27rf)2 

7r !v ..)1-(f I !v )2 

0 

B>O 

Ill< JD 

Ill> fD 

(5.22) 

(5 .23) 

Substituting (5.22) , (5 .23) and (5.21) into (5.20), we obtain the final expression 

for the power spectrum of the fading process as 

(5.24) 

Eq. (5 .23) is also the traditional representation of the power spectrum of 

the flat fading channel for unit average power, which is also referred to as 

Jakes ' spectrum. Similar to the discussion of autocorrelation above, in the 

limit B ---t 0, the power spectrum Sc: (!) will approach the traditional Jakes' 

power spectrum, as apparent from the expression for S0 (!) in (5.20) . Figure 

5.2 is a plot of the power spectrum expressed in (5.24) for unit average power, 

i.e. P0 = 1 with B > 0. 

From (5.23), we see that the traditional representation of the power spec­

trum for the flat channel (Jakes' spectrum) takes infinite value at the maximum 

Doppler shift f D in the frequency (!) axis and is zero outside of the interval 

[- fD, +JD]; thus it cannot specify the peak value near the maximum Doppler 

shift and at what frequency and how fast the spectrum decays beyond the 

peak value. Indeed, the spectra gathered from practical measurements are al-
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Figure 5.2: Power spectrum of the fading process for the proposed model 
(Traditional power spectrum for Clarke's model is also plotted as a special 
case for B -t 0.) 
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Figure 5.3: Measured Doppler Spectrum at 1800 MHz. Source: Research 
group of Prof. Paul Walter Baier, U. of Kaiserslautern , Germany (cf. [36]) 

ways finite and exhibit peaks near the maximum Doppler frequencies [34][35], 

decaying to zero as shown in figure 5.3 for a typical measured power spectrum 

for a fiat channel. The frequency (!-axis) in figure 5.3, although not addressed 

in the literature previously, incorporates the effects of both phase fluctuations 

and Doppler components fn, and so the terminology 'power spectrum' is more 

appropriate than 'Doppler spectrum'. By selecting the parameters B and P0 , 

we exhibit a specific t heoretical power spectrum as close as possible to the mea-

sured spectrum of figure 5.3, which is shown in figure 5.4 and indepedently in 

figure 5.5 . Comparing the theoretical spectra and the measured spectra in fig­

ure 5.4, it is apparent that our spectra Sf.(!) formed by (5.24) approaches more 

closely the measured spectra as compared to the U-shape Jakes ' spectrum. 
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Figure 5.4: Comparing the theoretical power spectrum density with the 
measured power spectrum density. Theoretical spectrum: B/ Jn = 0.2, 
P0 / Jn = 0.2n. Source of measured spectrum: Research group of Prof. Paul 
Walter Baier, U. of Kaiserslautern, Germany (cf. [36]) 
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Comparing the theoretical PSD with the measured PSD 
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Figure 5.5: Comparing the theoretical power spectrum density with the 
measured power spectrum density. Theoretical spectrum: B/ JD = 0.25 , 
P0/ JD= 1r. Source of measured spectrum: cf. [29] 
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From figure 5.2, we observe how the value of B affects the shape of the 

spectra 5£(!) in respect of the peak value and peak width. Here, the definition 

of peak width depends on the practical requirements; one possible definition 

is the widely used 3dB width familiar in engineering applications. 

In order to generate/simulate a power spectrum with a specified peak value 

and peak width based on our proposed multipath model we may firstly com­

pute the value of B to satisfy the peak width requirement, and then adjust 

t he value of P0 to achieve the desired peak value. Such procedure has been 

used to obtain the theoretical power spectrum density curve shown in figure 

5.4. Alternatively, estimation of the parameter B from measured data could 

be obtained by applying statistical information geometric techniques [38] . The 

Fisher information (geodesic) distance d( ·, ·) between the measured and theo­

retical spectra can be minimized (over B) according to 

(5.25) 

( w = 2nJ) in which the d(-, ·) is regarded as a functional of the spectra that 

depends on the parameter B and where A denotes normalization. The accurate 

setting of B obtained in this way should be of crucial importance in channel 

modeling. 

In most mobile communication systems, the technique of channel coding 

is used for better reproduction of transmitted signals in a channel noise envi­

ronment . For a wireless system with channel coding, it should be of interest 

to measure the performance of variant channel codings against the corrup-
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t ion of Rayleigh channels with different channel characteristics, i.e. , maximum 

Doppler shift JD, phase fluctuation parameter B, etc. Channel coding intro­

duces correlation within the blocked information sequence, thus the channel 

correlation property will affect the channel decoding procedure. Such research 

topics are not covered in this thesis, and will be explored in our future research. 

5.2.3 Simulation and Verification 

In this subsection, we verify the closed-form expression for the autocorrelation 

of the fading process, i.e. (5.19), through the simulated data generated from 

the fundamental fading model (5.4) with component phase fluctuations , i.e. 

(5.5), and physical relation between Doppler shift fn and angle of arrival 'lj;," 

i.e. (5.12). Our objective here is to verify our theoretical results, rather than 

provide a detailed channel generator/ simulator, and so we are not concerned 

with the precise choice of the angles 7/Jn in (5.12) and the number N of signal 

rays in (5.4) provided that their number N is large and the angles 7/Jn are 

chosen uniformly on [O, 27r). The routine of the computer simulation of discrete 

channel data is as follows: 

For k = 0, 1, 2, · · ·, with { 7/Jn} is uniformly chosen from [O, 27r], do 

Ek = JI E~=l exp[j(27rkfDb..Tcos 7/Jn + cpkn))] 

cpk~1 = cpkn) + (Bb.T)1/2gkn)) 9kn) "'N(O, 1) 

Initialization: cp6n) is uniformly chosen from [O, 27r]. 

Here, b.T is the sampling period, {gkn)} are i.i.d. normal distributed with zero 

mean and unit variance. 
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Figure 5.6: Verification of the close form autocorrelation in (5.19) from the 
simulated channel data with B = lOOHz, N = 200, f D = lOOHz, 6.T = 10- 3s, 
and 4 · 106 samplings. 

The autocorrelation calculated from the simulated discrete channel data 

is plotted in figure 5.6, which confirms our theoretical derivation of the close 

form expression of autocorrelation of the fading as in (5. 19) . 

5.2.4 The Implications of Modified Clarke's model to 

Wireless System Design 

We have discussed the statistical characteristics of the presented extended 

Clarke's model and compared the resultant theoretical PSD with the mea­

sured spectrum. The modified channel model provides not only help on more 

87 



Ph.D. Thesis - T. Feng McMaster University - Electrical Engineering 

accurate assessment of system design but also important reference to receiver 

design. With regard to modelling a channel, we can predict the performance 

of modulation and coding algorithms by analysis or simulation (cf. [24]) . 

Random FM 

In a communication system, discriminators function as the time derivative of 

t he phase of the received signal , one component of which is random FM, the 

derivative (more precisely, in the presence of phase fluctuations, the difference 

t ime series) of the phase of the complex gain, i.e. ct in (5.4), where it appears 

as an additive disturbance with respect to phase. The power spectrum of 

random FM that is given in the standard Jakes model [19] can be used to 

calculate the probability of error, corresponding to the bit-error-rate (BER), 

when neglecting the additive measurement noise. This probability of error 

induced by random FM is also termed "Error Floor" because it cannot reach 

zero for any signal-to-noise ratio (SNR), however large (provided the Doppler 

fD is non zero). When a more accurate channel model is introduced, such as 

the extended Clarke's model presented herein, we may produce more accurate 

theoretical power spectrum of random FM, resulting more accurate calculation 

of "Error Floor". This would be a very interesting topic in future research. 

The higher maximum Doppler frequency shift, the higher "Error Floor" will 

be. Thus, random FM is an important factor to receiver's design. 
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Level Crossing Rate 

The level crossing rate (LCR) is a measure of the rapidity of the fading. It 

quantifies how often the fading crosses some threshold. The LCR is very 

important for system and receiver design because it determines how to choose 

a burst error correcting code, how to verify the burst error correcting code, how 

to choose the depth of interleaving to break up bursts, etc. [24]. With our 

proposed extended Clarke's model , more accurate statistical characteristics, 

e.g. power spectral density function , are impled that will provide a more 

accurate LCR calculation. This will be another potential interesting topic in 

future research. 

5.3 Dynamic Modeling of A Wireless Flat Chan­

nel With Doppler Frequency 

Various multipath models have been proposed since the 1960s. The most 

common model is the one proposed by Clarke [26], where the statistical char­

acteristics of the signal at the mobile receiver are deduced from basic princi­

ples of electromagnetic scattering / propagation. Although Clarke's flat fad­

ing channel model and Jakes' classic spectrum have been widely used and 

accepted in many wireless communication standards (such as International 

Mobile Telecommunications-2000 (IMT-2000), which is the global standard 

for third generation (3G) wireless communications), they are nevertheless not 

sufficient to fully describe a wireless channel. In many cases of mobile radio 

communication, the received signal fluctuates in time even in the absence of 
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Doppler frequency shift (i.e. when there is no relative motion between the 

receiver and transmitter), resulting in a time-varying channel. This time vari­

ation is due to the fluctuations in the component phases that arise from the 

time-varying random propagation environments. This feature of the wireless 

channel cannot be accounted for by Clarke's model , which takes the chan­

nel to be constant if there is no relative motion between the receiver and the 

t ransmitter. The classic U-shape Jakes' power spectrum given in (5.2) is band 

limited and has infinite value at the maximum Doppler frequency f D and is 

zero outside of [- fD, JD]- This is quite distinct from the measured Doppler 

power spectrum of a fiat channel (see Figures 5.3 and 5.2). Since Jakes' spec­

trum cannot give a meaningful Doppler spread bandwidth and is unbounded, 

it is not appropriate as a theoretical basis for channel spectrum analysis and 

simulations where temporal phase fluctuations are significant (e.g. in applica­

tions to indoor wireless mobile communications). 

By introducing time-varying component relative phases, section 5.2 (Ref. 

[28]) presents an extended Clarke's model for the fiat channel. The extended 

Clarke's model (5.4) overcomes the deficiencies in the classic Clarke's model 

discussed above (section 5.2, also [28]). The process generated from the ex­

tended Clarke's model (5.4) is a (zero mean) Gaussian process (see Appendix 

5.5.3), i.e. the Rayleigh property. In section 5.2, a theoretical power spectrum 

is derived based on the extended Clarke's model, and it is shown to approach 

more accurately the real measured spectra, as compared to the classic Jakes' 

spectrum. This novel theoretical power spectrum of the fading channel is ex­

pressed in the integral form (cf. p. 80). The classic Jakes' spectrum arises 
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Figure 5. 7: Comparing the theoretical PSD with the measured PSD. Theo­
retical spectrum:B/ fD = 0.2, Po/ JD = 0.27r . Source of measured spectrum: 
Research group of Prof. Paul Walter Baier, U. of Kaiserslautern , Germany 
(cf. [36]) 

as a special case of the novel spectra in (5 .24) in the limit B --t 0, which 

is illustrated in Figure 5.2. By carefully selecting the parameters B and P0 , 

section 5.2 exhibits a specific theoretical power spectrum based on (5.24) to 

approach as closely as possible to the measured spectrum in figure 5.3, which 

is reproduced here in figure 5.7. It is evident that the spectra Sc(J) formed 

by (5.24) approximate the measured spectra more accurately as compared to 

t he U-shape Jakes ' spectrum. 

It is familiar that a zero-mean stationary Gaussian random process can be 

modeled as the output of a linear system with input W(t), a zero-mean white 

Gaussian noise with PSD equal to unity. Thus, to generate a Gaussian process 

(such as the one in (5 .4) ) for a flat fading channel , we need to find a linear 

system with transfer function H(jw) satisfying 
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(5 .26) 

where Sc(w) is the PSD of the flat fading channel being generated , which is 

assumed to be known from theory (typically of the form as derived in section 

5.2) or measurement. Since the Rayleigh channel process is Gaussian, the 

matching of power spectrum of the output of above system to the wanted 

spectrum (such as modified Clarke's spectrum) is sufficient to yield the desired 

Rayleigh channel. This follows from uniqueness - a (zero mean) Gaussian 

process is fully captured by its autocorrelation function or equivalently (via the 

Wiener-Khintchine theorem) by its power spectral density. Generally, the PSD 

of a wireless channel is a non-rational function and we wish to approximate 

it by a rational proper function, i.e. as a ratio of two polynomials. The 

standard method for achieving this requires a non-linear optimization process 

for a square-error function of coefficients of the rational function, such as the 

Steiglitz method [31]. In this section, we will present a novel simple method 

to transform this non-linear optimization problem to a linear-equation-solving 

problem and produce an analytical solution. 

There are numerous representations of a state space model corresponding 

to a rational transfer function, the OCF realization being a special instance 

that we study in this section (see 5.3.1). Concerning the model of the channel 

as the output of a linear system with a white Gaussian noise input, the state­

space approach will result in a dynamical model of the fading channel, which 

happens to be expressed in terms of stochastic differential equations (SDEs). 

Thus, in this section, we will introduce a stochastic process to obtain a state-
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space dynamical model (a set of SDEs) for the flat fading wireless channel. 

This section is organized as follows. Firstly, in subsection 5.3.1 , the state­

space approach is applied to the transfer function, obtaining a multi-variable 

set of SD Es as the time-dependent dynamical model of the flat fading channel , 

and a corresponding discrete-time state-space model is derived for the direct 

application in digital communications. Verification of the presented approxi­

mation method and the simulation of a fading channel based on the presented 

discrete-time state-space model are provided in subsect ion 5.3.2. Two appen­

dices are provided to explain in detail how to obtain the transfer funct ion that 

is employed in the state-space approach. Firstly in Appendix 5.5.4, a novel 

method is presented to obtain a rational even function .approximation to the 

power spectral density of a fl.at fading channel. Although this novel approach 

is used to approximate a PSD, with minor modification it can also be used as 

a general method for high-order recursive "shaping filter" design. Secondly, in 

Appendix 5.5.5, we discuss the relationship between a rational even function 

as a power spectral density and a corresponding linear transfer funct ion. 

5.3.1 State Space Model of Wireless Flat Fading Channel 

From the discussion of Appendix 5.5.4 and Appendix 5.5.5, we have learned 

that, given a (arbitrary) power spectral density for a fl.at fading channel, we 

can approximate the PSD function by a rational even function and obtain a 

minimum-phase stable rational transfer function through numerical factoriza­

tion. Thus, the fading channel can be modeled as the output of a corresponding 

linear system with an input of a white Gaussian noise with unit PSD. In this 
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subsection, we will present a state-space approach to modeling the flat fading 

channel. 

Continuous-Time State-Space Model 

As remarked previously, there are various forms to represent a rational trans-

fer function in terms of a corresponding state-space model. We shall focus 

attention on the Observable Canonical Form (OCF) [33], others being related 

to OCF by a linear transformation. Given a general rational transfer function 

with input X(s) and output Z(s) in the Laplace s-domain (sis the transform 

variable) we express the transfer function as the ratio 

H(s) 

= 

m-1 + + 1 + Pm-1S · · · P1S Po 
sm + qm-lsm-l + ... + q1s1 + qo 
Z(s) 
X(s) ' 

(5.27) 

where the coefficients Pm-1, · · · , Pm-(m-n); m > n may be set to zero so that 

the rational transfer function (5.79) (cf. Appendix 121) is a special case of 

(5.27) . The OCF realization obtained from (5.27) is given by (see [33]) 

Y(t) 

z(t) 

C · Y(t) + dx(t) 

g · Y(t) 

(5.28) 

(5 .29) 

where x(t) and z(t) are the input and output in the time-domain of the given 

linear system. Y(t) is a new m x 1 auxiliary state vector introduced to math-
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ematically represent the output z(t) 

Y (t) (5.30) 

in which the dimension of the vector Y(t) is the same as the highest order of 

t he denominator of the transfer function (5.27). dis them x 1 vector 

d = [po ,P1 , · · · ,Pm-1J', (5.31) 

and C is the n x n matrix 

0 0 0 0 -qo 

1 0 0 0 -qi 

0 1 0 0 -q2 c (5.32) 

0 0 1 0 -qm-2 

0 0 0 1 -qm-1 

g = [0 , 0, · .. ,0,1]. (5.33) 

A fl.at fading channel can be viewed as the output of a linear system with 

transfer function H(s) with a white Gaussian noise input of unit power spectral 

density (see (5.82) in Appendix 121). ow, to use the OCF to model a fl.at 

fading channel with a power spectrum P(jw) satisfying 

P(jw) = jH(jw)l2 , (5.34) 
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(H(s) is given by (5.27)) we take the input x(t) in the OCF realization (5.28) 

to be W(t), a white Gaussian noise input with unit PSD, i.e . 

Y (t) = c . Y (t) + d . W(t) (5 .35) 

Eqs. (5.35) and (5.29) thus constitute our desired continuous-time state-space 

model for the fading channel. If we multiply both sides of (5.35) by dt, we 

obtain 

dY(t) = C · Y(t)dt + d · W(t)dt, (5.36) 

in which, from the SDE theory [14], 

W(t)dt = dw(t) , (5.37) 

where w(t) is a standard Brownian motion process [14]. Substituting (5.37) 

into (5.36) , and combining with (5.29) , we finally obtain the SDE representa­

tion of the fiat fading channel model as 

dY(t) 

z(t) 

C·Y(t) · dt + d · dw(t) 

g · Y(t) , 

(5.38) 

(5.39) 

where z(t) is the actual fading channel process, and Y(t) is an auxiliary state 

vector of the linear system defined as in (5.30). Notice that a closed form 

solution is not generally available for the stochastic differential equation (5.38), 

in contrast to the deterministic case. 
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Discrete-Time State-Space Model 

We now consider a sequence of discrete-time samplings for the SDE model 

in (5.38) and (5.39) with equal separation in time, t0 , ti,··· , tk, · · · , where 

tk+i - tk = 5t. For simplicity of notation, we replace sample time tk by 

k for all variables, i.e., Y(tk) -+ Y(k) , z(tk) -+ z(k). After replacing the 

continuous-time differential dY(t) in (5.38) with the discrete-time difference 

Y(k+ 1)-Y(k) , replacing Y(t) in (5.38) with the arithmetic average ~(Y(k+ 

1) + Y(k) ), and replacing the Wiener process dw(t) with a discrete Gaussian 

process 5t112 · n(k), we obtain 

Y(k + 1) 

z(k) 

21 +MC . Y(k) 2M1/2d . n(k) 
21 - MC + 21 - MC 

g · Y(k) , 

(5.40) 

(5.41) 

where l is am x m identity matrix, n(k) is a standard Gaussian process i.i.d. 

sequence with zero mean and unit variance, C , d , g are defined as before in 

(5.32), (5.31), and (5.33), and the matrix division in (5.40) is defined as (for 

square matrix A or vector d and square matrix B) 

A(d) ~ B -1 A(d) B . (5.42) 

Eqs. (5.40-5.41) thus constitute the discrete-time state-space model for the 

wireless fading channel corresponding to a transfer function H(s) as in (5.27). 

The most obvious application of the state-space model is to simulate wire-

less fiat fading channel. From (5.40-5.41), we can see that the computation 
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complexity increases linearly with the number of generated channel data, i.e., 

m2 · O(N) , where N is the total number of simulated data, and mis the high­

est order of the denominator of the transfer function (see (5 .27)). Thus the 

state-space model is an appropriate choice for real-time implementation of a 

channel simulator. 

It is worthwhile to observe that another direct application of the state­

space model of the wireless flat fading channel is to form a Kalman filter in 

association with the received signal. We may write the discrete-time signal at 

the receiver for the flat fading channel as 

r(k) = d(k)z(k) + nr(k) (5.43) 

where d(k) is the transmitted data, r(k) is the received data, nr(k) is additive 

Gaussian noise at the receiver, and z( k) is the channel state identical to that 

in (5.41). Substituting (5.41) into (5.43), we obtain 

r(k) = g(k) · Y(k) + nr(k) (5.44) 

where 

g(k) = [O, 0, · · · , 0, d(k)]. (5.45) 

Thus (5.40) and (5.44) constitute the respective process and measurement 

equations for the well known Kalman filter. 

In many of wireless transmission-receiver system, we know that the more 

accurate estimation of channel we have, the better recovery of transmitt ed sig-
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nal we obtain. Thus we often need a good selection channel model to approach 

the real channel so as to improve the estimation of channel state. Since the 

above state-space model can represent arbitrary fl.at fading Rayleigh channel 

with its PSD fitting into the desired PSD and it is easy to be integrated into 

algorithms for channel tracking and estimation, the presented accurate state­

space model will be an appropriate choice for the performance and robustness 

of system design. 

5.3.2 Verification & Simulations 

In this subsection, we will first approximate a theoretical power spectral den­

sity given in (5 .24) (cf. [28]) by a rational even function (5 .60) through the 

method presented in Appendix 5.5.4. It should be noted that the presented 

method can also be applied to an arbitrary power spectral density function, 

either theoretical or experimentally observed. In the second part, we sim­

ulate the wireless fiat fading channel via the discrete-time state-space model 

(5.40-5.41) developed from a system of SD Es. The PSD functions of simulated 

discrete channels are plotted in figure 5.12 and figure 5.13, which confirm our 

theoretical derivation of the close form expression of PSD function of the fading 

as in (5.24). 
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(Theoretical) Verification 

For generality, we introduce a relative frequency fr corresponding to a maxi­

mum Doppler frequency JD , as 

Jr= J / fD· (5.46) 

We choose a theoretical PSD of the fiat fading channel as in (5.24). Setting 

B/ JD = 1, Po/ JD = 37r, the power spectrum function ScUrfD) is thus de­

termined, which arises as the P(s)l s=i2.,,.fr!D in section 5.5.4, and is plotted in 

Figure 5.8. To obtain the square-error function (5.64), we set sampling points 

in the relative frequency fr = 0, 0.01, 0.02 , · · · , 1.3. The pair (n, m) is used 

to determine the order of the polynomials A(s)ls=i2.,,.frfD and B(s)ls=j27rfrfD 

in (5 .60-5.61). In the approximation of the power spectrum ScUrfD) for the 

above parameters, we firstly obtain the vector v (see (5 .77)) , i.e. the coef­

ficients of the polynomials A(s)ls=i2.,,.frfv and B(s)ls=j27rfrfv by the method 

provided in section 5.5.4; thus the rational even function is determined ac­

cording to (5 .61). To demonstrate the effect of the order of the rational even 

function R(s)ls=i2.,,.frfv on the approximation to the power spectral density 

ScUrfD), we set the pair (n, m) successively to be (1, 2), (2, 3) , and (3 , 4); 

for each pair (n , m), a rational even function R(sln, m)ls=j21rfrfv is obtained 

and plotted against the objective power spectral density ScUrfD), as shown 

in Figure 5.8. The neighborhood of the peak in Figure 5.8 is magnified for 

clarity in Figure 5.9 (with all parameters equal to those in Figure 5.8). More 

figures are provided in section 5.3.2 for the approach of rational even function 
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The theoretical PSD vs Rational Even Function Approximation 
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to variants of theoretical PSD curves. 

From Figures 5.8 and 5.9, it is evident that a higher order pair (n , m) for 

the rational even function R( s) achieves better approximation to the objec­

tive theoretical PSD function. For the order of pair (n, m) , we choose the 

corresponding rational even function R (sin, m) to satisfy 

(5 .47) 

where ep is a pre-defined error boundary, a constant in the interval (0 , 1) , and 

er is a relative error defined as 

er (n ,m) = Jtmax IR(j27rfln,m) -P(j27rf)ldf 

Jtmax IP(j27rf)I dj 
(5 .48) 

The interval [O , f max] is the frequency range Umax = 1.3f D here) in which we 

wish to approximate the PSD function P(s)l s=j21rf (cf. section 5.5.4). Thus we 

have provided a criterion (5.47-5.48) to find a minimal order of rational even 

function R( s) that is to approximate the power spectral density function P ( s). 

The computed values of er(n, m) are also shown in Figure 5.9; it is evident 

that er(2, 4) is much smaller than er(l, 2) and er(l, 3) in correspondence with 

the respective curves in Figure 5.9. 

Simulations 

We consider a wireless communication environment with carrier frequency 

fc = 1800MHz, mobile receiver speed v = 60Km/ h; thus the maximum 

Doppler frequency is JD= ~ Jc = lOOHz, and we set B/ JD= 0.5, Po / JD= 37r , 
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(n, m) = (2 , 4) , the sampling time interval to be Ot = l.OE - 5s, and the 

sampling points in the relative frequency fr = 0, 0.01 , 0.02 , · · · , 1.3. T he sim­

ulation process consists of the following five steps: first , the theoretical power 

spectral density Sc(!) is obtained from (5.24); second , the approximated ra­

tional even function R( s I 2, 4) I s=j27r f is calculated according to the method 

presented in section 5.5.4; third , the transfer function H(s) is obtained by fac­

torizing the rational even function R(s l2, 4)l s=j27rf (Eq. 5.79) in section 5.5.5; 

fourth, a discrete-time state-space model is generated based on the transfer 

function H(s) obtained (see (5 .40-5.41) in section 5.3.1); finally, the computed 

power spectra from the simulated fading channel process generated by (5.40-

5.41) are plotted in Figures 5.10 & 5.11 (both have the same parameters) . In 

Figure 5.10, the power spectral density of the state-space model is computed 

for one trial of the simulation (see (5.40-5.41)) ; in Figure 5.11, the average PSD 

of the state-space model is computed for 100 simulation trials. Both figures 

lend strong support to our presented methods - the rational even function ap­

proximation and the discrete-time state-space model of the fiat fading channel 

- and illustrate the convergence to the theoretical PSD for a large number of 

trials in the simulation. More simulations are shown in figure 5.12 and figure 

5.13 for different power spectral densities . 

The most general approach of Rayleigh channel simulators is based on 

variant scattering models ([28, 43, 44, 45, 46, 47]), which is the sum of a num­

ber of sinusoids with uniformly distributed random phases. This method has 

high computational load because a large number of sin() or cos() functions 
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Discrete-Time State-space Model of Fading channel 
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Figure 5.10: The computed PSD of the simulated fading channel from the 
state-space model (5.40-5.41), where the theoretical PSD, Sc(!) and the ap­
proximated rational even function R(sl2 ,4)ls=j21l'f are also provided for com­
parison. B/ fD = 0.5, Po/ JD= 31r,fD = lOOHz, 8t =le - 5s. 
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Figure 5.11: The average of 100 trials of the computed PSD of simulated 
fading channel from the state-space model (5.40-5.41) , where the theoretical 
PSD, Sc(!) and the approximated rational function R(sl2 , 4)ls=j27rf are also 
provided for comparison. B/ fn = 0.5 , Po / Jn= 37f , Jn= lOOHz, bt =le - 5s. 
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Figure 5.12: The computed PSD of the simulated fading channel from the 
state-space model with the theoretical PSD - Sc(!) and the approximated 
rational even function R(sl2 , 4) ls=j27rf · B/ fD = 0.8, Po/ fD = 37r,fD = 133.3Hz 
(i.e. mobile receiver speed v = 80Km/ h) , t5t = l e - 5s. 
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Figure 5.13: The computed PSD of the simulated fading channel from the 
state-space model with the theoretical PSD - Sc(!) and the approximated 
rational even function R(sj2, 6)ls=j27r/· B/ Jn= 0.3, Po/ Jn= 37r,fn = 166.7Hz 
(i.e. mobile receiver speed v = lOOKm/ h) , Ot = le - 5s. 
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are used in the simulation, so it is not ideal for real-time implementation 1. In 

application to channel simulation, the state-space model presented above has 

much better computational efficiency than the aforementioned variant scatter-

ing models, and our model can be easily realized for fast real-time application 

without need of large amounts of memory, and moreover it is versatile to gen-

erate any narrow-band Rayleigh fading channel with arbitrary desired Doppler 

/ power spectrum. 

5.4 Approaches of Fading Channel Simulation 

Currently, there are three main approach to simulate wireless multipath fading 

channels. The first approach is based on Clarke's scattering model as in Eq. 

(2.3), which is the sum of a number of sinusoids with uniformly distributed 

random phases. This approach was refined and improved in [43, 44, 45]. This 

method has much computational load because a large number of sin() or cos() 

are used in the simulation (see footnote on the current page). 

The second approach to generate discrete Gaussian process with the PSD 

in Eq. (2.5) was presented in [50] and [51]. The idea was to use a complex 

Gaussian random number generator to produce a baseband line spectrum / 

frequency components from - f m to f m, which is then multiplied with a dis­

crete frequency mask equal to the square root of the spectral shape in Eq. 

(2.5) . Both the baseband line spectrum as the noise source and the discrete 

frequency mask have the same number of points. The resulting multiplied 

1The function sin()or cos() has to be executed / called for every single value on demand 
which contains a number of real number multiplex operations because these two function 
has infinite values so that they cannot be stored in limited memory of computer system. 
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sequence takes an inverse fast Fourier transform (IFFT), which also produce a 

Gaussian random process by the virtue of the linearity of the IFFT, and obtain 

a desired power spectrum as in Eq. (2.5) , and hence also the autocorrelation of 

Eq. (2.4) . There is much less computational complexity in this approach than 

the first approach . IFFT is the heaviest effort in this approach , which costs 

only O(N log£ N) operations, where N is the number of independent complex 

Gaussian samples from line spectra / frequency components . A big disadvan­

tage of this approach is that it require all channel data to be generated one for 

all and stored before they are sent through the channel, which means that the 

channel data cannot be produced continuously and large amount of memory 

is necessary to generate a long series of channel data. 

The third approach adopts the filtering method in time-domain. A se­

quence of independent Gaussian random variables (flat PSD) in time domain 

pass through a linear filter with frequency response equal to the square root 

of the desired channel power spectrum, then the resulting output sequence 

remains Gaussian processes and has the desired power spectrum. The compu­

tational efficiency is in the same level as the second approach, which is about 

2N log2 N.[52][53]. The infinite impulse response (IIR) filter design is the core 

part of this approach, some complicated method, i.e., the Steiglitz method, is 

used, which makes this approach not easy for implementation of the real-time 

application. 

A new approach presented in this thesis use state-space model to generate 

any arbitrary fading channel data with a desired Doppler / power spectrum. 

Being a core part of this approach, a novel method is presented for a fast de-
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sign of a continuous-time IIR filter as the transfer function which is the square 

root of the desired power spectrum of the fading channel. The computational 

efficiency is the best among the available approaches, which increases linearly 

with the order of N, i.e. m 2 · O(N) , where m is the highest order of the de-

nominator of the transfer function. This approach does not need large amount 

of memory to store the temporary data as the second approach does. 

5.5 Appendix 

5.5.1 Appendix: Verify the relative phase cp~k) a Wiener 

process 

At any instant of time t, we assume that the relative phase cp~k) (see (5.4)) has 

an equal chance to increase or decrease by a fixed step size c: (where c: > 0), 

such that the increment of phase, i.e. 6cp~k) ( c5cp~k) :@: cp~~ot - cp~~ot) is a 

random variable, which takes values from the discrete set { c, -c:} with equal 

probability, and the increments from one time step to the next are independent. 

With this basic reasonable assumption, when considering the continuum limit 

that the step size c and the time increment c5t tend to zero, subject to the 

scaling relation c:2 = Bc5t, the relative phase cp~k) is thus a (scaled) Wiener 

process. 2 

2The construction of a Wiener process from a discrete random walk in this way follows by 
applying the central limit theorem to the displacement after n steps during some fixed time 
t, where n--+ oo, M--+ 0. The resulting displacement is N(O, t) normal distributed and, by 
construction, satisfies the independent increments property - thus, the limit of the discrete 
random walk corresponds to the standard (continuum) definition of the Wiener process [14). 
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5.5.2 Appendix: Approach of the square-error function 

Q in (5.63) by Q in (5.64) 

When the rational function R(s) in (5.61) represents a PSD, the denominator 

B(s) cannot not be zero for any s = j27rf, f E [O , +oo), so that for any finite 

positive f E [O, fmaxJ, 0 < !max < oo, the value of the function A(s)/ B(s) is 

finite. Thus , 

0 <a< IB(s)l2 < b, VJ E [O, fmax] (5.49) 

where a, b are positive constants. 

From (5.64), we have 

(5.50) 

Comparing (5.49) and (5.50), we have 

Substituting (5.61) and (5.63) into (5.51), we obtain 

a· Q < Q < b· Q. (5.52) 

From (5 .52) it is evident that, when the quadratic square-error Q ---+ 0, the 

original square-error Q will also tend to zero. 
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5.5.3 Appendix: Proof of Gaussian process for ct in the 

extended Clarke's model (5.4) 

According to (5.4) , set 

<f>(n) 
t (5 .53) 

(5 .54) 

where the index n refers to the n-th path and {dn)} are random variables . 

Considering a time series {t1 , t2 , · · · , tk} for any k ~ 1, denote 

(5.55) 

where vn is column random vector. We also denote a sampled channel state 

as a vector, i.e. , 

(5.56) 

Based on (5.53) (5.54) and (5.4), we have 

N 

Et;= I:d;), (5 .57) 
n=l 

for i = 1, 2, · · · , k. If we vectorize (5 .57) with the index i = 1, 2, · · · , k and 

use (5.55) and (5.56), we obtain 

(5 .58) 
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where the vector random variables {vn} are independent of each other, due 

to the assumption of independence of each path. Then by the central limit 

theorem (for vectors) Y is a multivariate Gaussian, i.e., Et is a (zero mean) 

Gaussian process. 

5.5.4 Appendix: The Approximation of a PSD Function 

by a Rational Even Function 

In this section, we will discuss how to approximate a (arbitrary) power spectral 

density by a rational even function. The method provided in this section will 

produce an analytic solution which can easily be extended to a general method 

for the design of an arbitrary "shaping filter''. 

The Rational Even Function 

We know that the ideal power spectral density is a non-negative real even 

function. If we want to use the rational function to approach the PSD function, 

it has to be the form 

2n + 2n-2 + + 2 + Rw(w) = K2 W G'.n-1W · · · G'.1W G:o 

w2m + /3m-lw2m-2 + ... + /31w2 + /30' 
(5.59) 

where K =/= O,w = 27r f, the coefficients ak, /3ki k = 0, 1, · · ·, are all real and 

m>n. 

To simplify the discussion in what follows, we rewrite (5.59) replacing the 

variable w by - j s ( s being the parameter of the Laplace transform) and re-
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name the coefficients of the polynomial as 

R(s) 
ans

2
n + an-1S

2
n-

2 + · · · + ais2 + ao 

s2m + bm-ls2m-2 + ... + bis2 + bo 

A(s) 
B(s) ' 

(5 .60) 

(5.61) 

where the numerator A(s) and the denominator B(s) are both real even poly­

nomials. Eqs. (5.59) and (5.60) are called 'rational even functions '. 

The Traditional Method of Approximation 

From section 5.5.4, we know that a power spectral density function can be 

approximated by a rational even function R(s), which is expressed according 

to (5.60). We suppose that the power spectral density of the fading channel is 

P(jw) (or P( s) in the s-domain for the Laplace transform) which is obtained 

from measurement or known to us from theory (such as in (5.24) above) . We 

now choose L + 1 (arbitrary) frequency points within the interval [O, !max] 

(where 0 < !max < oo), Jo , Ji,··· , fL, E [O , fmaxL which correspond to the 

values of the variable si in the s-domain 

Si = j27r fi, i = 0, 1, ... ' L. (5.62) 

Notice that these frequency points, f 0 , Ji,··· , h are generally chosen to be 

equally-spaced, although we are not limited to such. At these L + 1 frequency 

points, we have L+ 1 values of the PSD P(j27rfo),P(j27rfi) ,· ·· , P(j27rfL) , 

and L + 1 values of the rational function R(j27r Jo), R(j27r Ji), · ·· , R(j27r fL). 
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For simplicity of notation , we represent the values of P(j27r fi) as Pi, i = 

0, 1, · · · , Land R(j27rfi) as R, i = 0, 1, · · · , L. 

Traditionally, to approximate the power spectral density function P(s) by 

a rational even function R( s) , we would define a square-error as 

L 

Q = I::(R - Pi)2
, (5.63) 

i=l 

and then minimize the value of Q corresponding to the coefficients of poly­

nomials of the numerator A(s) and the denominator B(s) for the rational 

function R(s), i.e., ao, a1, · · · , an; bo, b1 , · · · , bm-1 (see Eq. (5.60)) . Unfor-

tunately, this square-error is a highly non-linear function of the coefficients 

ai , i = 0, · · · , n; bi , i = 0, · · · , m - 1, which is difficult to analyze mathemati-

cally. Steiglitz [31] uses a numerical method presented by Fletcher and Powell 

[32] to solve a discretised version of the minimization problem of the square­

error akin to (5.63), where numerical iterative computation is required and 

the computation process is complex. Furthermore, the Steiglitz method for 

such a general optimization problem cannot guarantee a global solution. How-

ever, this particular non-linear optimization problem involving the square-

error function (5.63) can be transformed to a simple minimization problem of 

a corresponding quadratic square-error function, as discussed in detail in the 

following. 
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A Novel Method of Approximation 

The rational even function R( s) is a ratio of two polynomial functions A( s) 

and B(s) according to (5.60-5.61). Thus , if the rational function R(s) ap­

proaches the power spectral density P(s) , the polynomial A(s) will approach 

the product P(s) · B(s). Accordingly we define a square-error function 

L 

Q = L(A(si) - Pi· B(si)) 2
, (5 .64) 

i= l 

where si is defined previously in (5.62). If we define a vector v with components 

equal to the n + m + 1 unknown coefficients in the above square-error function 

(5.65) 

the square-error Q is a quadratic function of the vector v, i.e. Q(v). Although 

the minimization of the original square-error Q in (5.63) does not imply the 

minimization of Qin (5.64), observe that if Q in (5.64) tends to zero then Q 

in (5.63) also does (see Appendix) . The problem now is to find a best value of 

v, say v*, to minimize the quadratic function Q(v), which is mathematically 

tractable. 

Firstly, we take partial-derivatives of Q with respect to each individual 

component of v and set them to zero, i.e. 

0, k = 0, · · · ,n (5 .66) 

0, k = 0, · · · , m - 1. (5 .67) 
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Substituting (5.60) and (5.61) into (5.66), re-arranging and moving the con-

stant term to the right hand side yields a system of n + 1 equations 

L n L m-1 L 

LL a1si(l+k) - LR . L b1si(l+k) = L Rsi(m+k), (5.68) 
i=l l=O i=l l=l i=l 

where k = 0, 1, · · · , n. Similarly with (5.67) we obtain a system of m equations 

L n L m-1 L 

L pi L a1s~(l+k) + L ?;2 L b1s~(l+k) _ "'p.2 2(m+k) 
~ 's, ) (5.69) 

i=l l=O i=l l=l i=l 

where k = 0, 1, · · · , m - 1. 

Combining (5.68) and (5.69), we now have n+m+ 1 linear equations with 

n + m + 1 unknown coefficients represented as components of the vector v. 

For compactness we represent these n + m + 1 linear equations in the matrix 

form 

P·v =r, (5.70) 

where r is a ( n + m + 1) x 1 vector 

[ 

L L 
= "' n . 2m "'P.· 2(m+l) . . . "' n. 2(m+n) r ~ r ,s, , ~ ,s, , , ~ r,s, , 

i=l i=l 

L L L ] ' 
_ "'p2 2m _ "'p.2 2(m+l) . . . _ "'p.2 2(2m-l) 
~ ' s, ) ~ ' s, ) ) ~ t s, ) 
i=l i=l i=l 

(5.71) 

and v is also a (n + m + 1) x 1 vector defined as before in (5.65) . P is a 
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(n + m + 1) x (n + m + 1) matrix, which has a block form 

where P u is a (n + 1) x (n + 1) matrix 

P u = 

P 12 is a (n + 1) x m matrix 

L 

2=~ 
i=l 
L 

P 12 
L Pis? 
i=l 

P 21 is am x (n + 1) matrix 

L L 

I) 2=st 
i=l i=l 
L L 

L sf 2=sf 
i=l i=l 

L L 

L sfn 2= 2(n+ l ) Si 
i=l i=l 

L 

L Pisf 
i=l 
L 

L Pisf 
i=l 

L 
~D. 2(n+l) 
LF'Si 
i=l 
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L 

L sfn 
i=l 

L 
2= 2(n+l) Si 
i=l 

L 

Ls~(2n) 

i=l 

L 
~D. 2(m-l) L F,Si 
i=l 

L 

L Pis;m 
i=l 

L 
~ D . 2(m+n-l) Lr,Si 
i=l 

(5.72) 

, (5 .73) 

' (5 .74) 
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L L L 

Lpi L Pisf LPistn 
i= l i=l i=l 
L L L 

LPisf LPist LP 2(n+l) ,Si 
(5. 75) P 21 i=l i=l i= l ) 

L L L 
LP 2(m-1) ,si LPistm LP 2(n+m-1) ,si 
i=l i=l i=l 

P 22 is am x m matrix 

L L L 

LPl LP.2s2 • • 
_ LP.2s2(m-l) 

• • 
i=l i=l i= l 
L L L 

LP.2s2 LP.2s4 LP.2s2m 

P 22 
• • • • • • (5.76) i=l i= l i=l 

L L L 
Lp.2 i<m-1) 

• • LP2s2m • • 
2:P2s2{2m-2) 

• • 
i=l i= l i=l 

After obtaining the vector r and matrix P from the available values Pi and si , 

i = 1, · · · , L, we can solve the linear equation (5.70) and obtain the analytical 

solution for the vector v , which consists of all unknown coefficients of the 

rational even function R(s) in (5.60) , 

v = p - 1 · r . (5.77) 

We know that the quadratic function Q(v) m (5 .64) has a unique solution 

for its minimum; thus the matrix P is invertible (P is invertible also because 
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each sub-matrix by block form of P has the form of real Hermitian) . Having 

obtained the solution for the vector v, the desired rational even function R(s), 

which here is specifically designed to approach the power spectral density P(s), 

is finally obtained. 

5.5.5 Appendix: Rational Transfer Function 

A wireless fading channel can be viewed as the output of a linear system 

with input a white Gaussian noise process of unit power spectral density. In 

this section, we demonstrate how to obtain a rational transfer function of 

the corresponding linear system with a given power spectral density, which is 

ideally represented by a rational even function. 

From elementary complex variable theory, if z is a root of a real even 

polynomial, then z*, -z, - z*are also its roots. Thus, the rational function in 

(5.60) can be expressed as 

(5. 78) 

where Re(u1) > 0, Re(vk) > 0. Ifwe define 

(5.79) 

where C = ±K, and H(s) is thus a minimum-phase stable rational function , 

i.e. the system and its inverse are causal and stable. Then, comparing (5. 79) 

and (5.78), we have 

R(s) = H( s) · H( -s). (5.80) 
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Considering the properties of roots of the numerator and denominator in the 

rational function R(s), when we assigns= jw to (5.80), we obtain 

R(jw) H(jw) · H(-jw) 

IH(jw)l2 . (5.81) 

It is a familiar fact that, for a linear system with transfer function H ( s) , 

given a Gaussian wide-sense stationary (WSS) input process, the output is 

also a Gaussian WSS process with PSD 

(5.82) 

where P0 (jw) and Pi(jw) are PSDs of the respective output and input pro­

cesses. From (5.81) and (5.82), we see that, if R(jw) is the power spectral 

density of a wireless fading channel, such fading channel can be modeled as 

the output of a linear system with a white Gaussian noise input with unit PSD, 

and the transfer function of the linear system is H ( s) (the Fourier transform 

of the impulse response of the system). 

Provided the rational even function R(s) is known, we can obtain the 

transfer function H(s) after finding the roots of the polynomials A(s) and B(s) 

as in ( 5. 78-5 . 79). (This can be achieved through the available numerical root­

finding methods provided by numerous scientific computing software packages, 

such as MATLAB.) 
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5.6 Summary 

In this chapter we focus on the statistical analysis and dynamic modeling 

of general multipath fading channels with Doppler frequency shift and phase 

fluctuations with an introduction of some approaches to fading channel simu­

lation. 

We have proposed an extended Clarke's model through the consideration of 

fluctuations in the relative component phases. With rigorous statistical anal­

ysis , a closed-form expression for the autocorrelation of the fading is derived, 

which arises as the product of two terms, one is the exponential decay resulting 

from the fluctuations of the component phases due to the time-variation in the 

electromagnetic propagation environment, t he other is the zeroth-order Bessel 

function of the first kind that results from the Doppler frequency shift due to 

t he relative motion between the receiver and transmitter. By considering the 

fluctuations in the component phases, the power spectrum of the fading chan­

nel is quite distinct from the Doppler spectrum and it is our proposed model, 

as opposed to the traditional one, that accords with observed real experimen­

tal data. Simulated channel data also verify the autocorrelation derived from 

our extended Clarke's model. The peak value and width in the derived power 

spectrum can be adjusted to fit observed spectra, and we exhibited its shape 

to conform to the real experimentally measured spectra, in contrast to the 

situation for the traditional Jakes' spectrum. The statistical analysis and re­

sults should be essential to effective spectral analysis and channel simulation 

in real wireless communication systems immersed in time-varying propagation 

environments, e.g. in the design of a channel simulator based on the proposed 
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multipath channel model for obtaining a desired observed power spectrum. 

We have presented a novel method for the approximation of an arbitrary 

power spectral density function by a rational even function . Comparing with 

the traditional methods, our presented method does not require intensive com­

putation, and can guarantee a global solution (since the error function involved 

is quadratic), and has the advantage of an analytical solution determined by 

(5.77) . The performance of this method increases with the order of rational 

function. The solution for the rational even function of order (2 , 4) provides a 

very tight approximation to the power spectral density and thus higher orders 

are not essential. This novel method, which is applied here to the power spec­

t ral density approximation, could also be adapted to the problem of "shaping 

filter" design without significant change. 

Based on the success of the approximation of a rational function to the 

power spectral density of a fading channel, we obtained a corresponding trans­

fer function describing a linear system, which is used to generate a fading 

channel process as its output with a standard Gaussian white noise process as 

the input. A continuous-time state-space model, described in terms of stochas­

t ic differential equations, can be used to represent this linear system. With 

some manipulation upon time-discretization, we finally obtain a discrete-time 

state-space model for the flat fading channel, which is illustrated and verified 

by our simulation. As a simulator of a flat fading channel with an arbitrary 

power spectral density, the presented discrete-time state-space model based 

on the novel rational function approximation method is fast, accurate, sta­

ble and flexible to the adjustment of parameters, and so has potential for 
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application in various aspects of wireless communications, such as channel 

estimation/ tracking and channel coding, etc. The significance of the corre­

sponding state space model to channel simulation is that matching its spectral 

characteristics yields the desired channel uniquely. 

One direct application for the state-space model of a flat fading channel is 

as a channel simulator. There are several approaches for the design of chan­

nel simulators. One is based on Clarke's scattering model, while a second is 

based on transforming the frequency domain to the time domain with IFFT 

realization. Lastly, a third is based on a filtering-method in the time-domain. 

Among these available approaches, the presented state-space approach is sim­

ple to realize and fast in computation. 
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Chapter 6 

Conclusion 

This thesis is devoted to understanding the characteristics of multipath chan­

nels. It provides a novel extended channel model and associated statisti­

cal analysis, including the introduction of an advanced mathematical tool -

stochastic differential equation (SDE), to obtain a fast representation of a 

state-space model for an arbitrary flat fading channel using a novel linear 

transfer function design. 

The well-known Jakes' spectrum for a flat fading channel has been widely 

used in wireless communication for more than thirty years . Although used 

as a theoretical power spectrum in many industry standards, Jakes' spectrum 

deviates from the measured channel spectrum. Further, Jakes' spectrum can­

not adjust its U-shape, in which it has an infinite value around the maximum 

Doppler frequency. In contrast, the general measured channel spectrum has 

varying curve shapes and has a vertex around the maximum Doppler frequency. 

Thus, it is necessary and valuable to provide a new theoretical power spectrum 
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that more closely approaches the measured power spectrum. In considering 

t he fluct uations of the component phases through a random walk model , ab­

sent in the classic Clarke's scattering model, we present a new scattering model 

for fiat fading channel. In this model, the derived power spectrum is able to 

adjust its shape and vertex value through the control of one special parameter. 

The resultant power spectrum is more ideal than Jakes' U-shape spectrum as 

a theoretical power spectrum representing the power spectrum of a wireless 

channel. 

It has long been known that a simple and effective channel model is very 

important in wireless system design because it has a close relationship with 

other techniques used in the processes of wireless data transmission and re­

ception. A better channel model used in system design translates directly into 

better performance of the whole system. Based on the presented scattering 

model, we have proven that a first-order AR process is a suitable model for fiat 

fading channel without a Doppler frequency shift. Traditionally, an AR pro­

cess is also used as a dynamic model for a general fiat fading channel, while the 

order of the AR process generally has to be very high to approach the desired 

fading process. State-space models have recently been used to simulate and 

model wireless channels [17], though obtaining the coefficients of state-space 

models for an arbitrary fading channel remains key, as discussed in section 

5.3 (see also [30]) . This unique challenge in identifying suitable coefficients 

will remain an interesting topic for future research on the completeness of the 

mathematical solution to this problem. One of state-space's most valuable 

benefits is its ability to integrate with other algorithms, such as channel es-
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timation and pre-coding, for better performance or optimization. The most 

difficult part of the state-space approach to arbitrary flat fading channel is the 

rational transfer function design. This thesis presents a novel rational function 

designed for general purposes , which is used here specifically for power spec­

t rum approximation. With the relatively low order of the rational function, 

t he new method provides a satisfying accuracy with very fast realizat ion. 

This thesis discusses statistical characteristics and modeling for flat fading 

channel only. However , with appropriate expansion, the theory and methods 

mentioned in this thesis could be expanded to be used for frequency-selective 

channels, which are generally considered as a set of independent flat chan­

nels with possibly different statistical characteristics. Future work stemming 

from this thesis should continue to research the statistical characteristics and 

modeling of frequency-selective channels, as well as to introduce time-varying 

parameters in the state-space model for non-stationary fading channels. 
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