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Abstract

This thesis describes the use of a micropipette deflection technique to measure the

viscous forces experienced by the millimeter sized undulatory swimmer and model

organism C. elegans. Using a specialized pipette, we are able to simultaneously mea-

sure both the lateral and propulsive forces acting on the worm. We find that the

measured force curves are well described by Resistive Force Theory, which is a low

Reynolds number hydrodynamic model. This work constitutes the first justification

of its applicability at Reynolds numbers of this magnitude (roughly 0.1). Through

our comparison with Resistive Force Theory, we extract the worm’s drag coefficients,

which are in agreement with an existing theoretical prediction. Through a simple

scaling argument, we obtain a relationship between the size of the worm and the

typical viscous forces, which is in good agreement with our data.

We also present a study aimed at measuring how the hydrodynamic forces on the

worm change in proximity to solid boundaries. Using micropipette deflection, forces

are measured at controlled distances from a single planar boundary and midway in

between two parallel boundaries. We find the viscous forces and drag coefficients to

increase significantly as the worm approaches a boundary. We find a constant value

for the ratio of normal to tangential drag coefficients at all distances from a single

boundary, but measure it to increase significantly as the worm is confined between two

boundaries. In addition, the worm is seen to undergo a continuous gait modulation,

primarily characterized by a decreased swimming amplitude, as it is subject to larger

drag forces in confinement.

Finally, the interactions between two worms swimming nearby one another are

probed. Worms are held adjacent to one another using micropipettes, and are found

to tangle with each other, rather than interact hydrodynamically. We develop simple

models that well capture the onset and probability of tangles as a function of the

separation distance between the worms.
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Preface

This is a “sandwich” thesis based on the papers published or submitted during

my Master’s, which have contributions from work I have done. The first chapter

comprises an introduction to the relevant concepts necessary to understand the fea-

tured studies. The second chapter contains a detailed description of the experimental

details, including methods and data analysis, pertinent to the papers. This chapter

is also intended to aid those who are interested in utilizing some of the same method-

ologies or techniques that I have applied during my studies. Chapter 3 summarizes

the main findings of each of the papers, and specifies the contributions I have made

in the development of each. Finally, the conclusions of the thesis are presented in

Chapter 4.
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Chapter 1

Introduction

Locomotion through a fluid environment is seen for organisms covering a vast range of

length scales. However, the relevant physics describing the swimming of microscopic

swimmers, or “microswimmers”, differs considerably from that applicable to macro-

scopic swimmers. Macroscopic swimmers dwell in a fluid environment in which the

flow is dominated by inertia, and viscous forces can be neglected. On the other hand,

microswimmers are subjected to enormous viscous forces, and experience negligible

inertial forces [1]. Since our intuition is derived from experiences with inertial macro-

scopic locomotion, the highly viscous environment of microswimmers is often found to

be counterintuitive. However, over the last century, studies of all sorts (theoretical,

experimental, and computational) have elucidated many of the properties of small

scale swimming. Indeed, much remains to be learned in this subject, and it continues

to be an active field of research. Although this research is important from a fundamen-

tal standpoint, it is also promising in terms of the potential applications it can offer,

such as collective motion of bacteria to induce mixing in microfluidic devices [2, 3],

fluid pumping [4–6], and microscopic robotic swimmers capable of towing loads for

biomedical purposes such as robotic surgery and advanced drug targeting [7, 8].

Studying microswimming is not only interesting from physicist’s point of view, but

also highly relevant to biologists. In particular, bacteria, sperm, and other microor-

ganisms often occupy fluid environments. To attain a full understanding of these

systems, it is crucial that the physics is well understood. In particular, there are

several questions that are of interest to both biologists and physicists. How do mi-
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croswimmers attain propulsion in various environments? Can the propulsion strategy

be optimized as the environment is changed? How do microscopic swimmers inter-

act with nearby boundaries? What are the interactions between nearby swimmers?

What type of collective effects can emerge from hydrodynamic and steric interactions

within groups of swimmers? How well do current theoretical models describe the

kinematics and forces of microswimmers?

A tremendous amount of experimental work has been done to begin to answer some

of the questions above. Rapidly improving experimental techniques have allowed for

direct imaging of microswimmers and the flow around them. However, to gain insight

into the physics at work in these systems, it is often necessary to measure the forces

that are involved in the swimming. In the last decade, direct force measurements

of motile unicellular organisms have been achieved using optical traps [9, 10]. Such

direct force measurements are often crucial for evaluating the success of theoretical

models.

In this thesis, we present direct measurements on the undulatory swimmer Caenorhab-

ditis elegans which probe the hydrodynamics forces involved in its swimming, as well

as the interactions between two nearby worms. The experiments have been designed

to shed light on some of the questions I have presented above. The outline of the

thesis is as follows. In Chapter 1, a brief overview of the relevant concepts to this re-

search is presented. The equations governing fluid flow will be presented, followed by

a more in-depth look at the highly viscous regime, and the constraints microswimmers

are faced with upon designing an effective propulsion strategy. Next, some milestone

theoretical treatments of microswimmers are reviewed, including an introduction to

Resistive Force Theory (RFT). Finally, there is a review on C. elegans, with a focus

on its undulatory locomotion. In Chapter 2, the experimental methods employed

in our experiments are described, including micropipette deflection, maintenance of

C. elegans cultures, and image analysis. In Chapter 3, three manuscripts in which I

have been a contributing author are presented. Paper I contains the first direct force

measurement of swimming C. elegans, with a comparison to RFT as well as a simple

scaling argument. Paper II takes a close look at the effects of nearby solid boundaries

on the forces, drag coefficients, and swimming form of the worm. Paper III is a bit

of a digression, in which the tangling between two adjacent worms is investigated.

2



M.Sc. Thesis - R.D. Schulman McMaster University - Physics and Astronomy

1.0.1 Stopping distance of a bacterium

As will be explained in more detail later in this thesis, the physics governing swim-

ming at length scales relevant to microscopic organisms is vastly different from that

applicable to, for instance, humans swimming. To illustrate this point, I would like

to work through a simple example. Consider a spherical bacterium of radius Rb,

propelling itself through water with speed v0,b. At time t = 0, the bacterium ceases

to propel itself. At this time, it will continue moving forward due to its inertia, but

will experience a viscous drag force causing it to decelerate and eventually come to

rest after some distance d, which is the quantity we wish to compute. We can apply

Newton’s second law to this problem

mbab = Fd, (1.1)

where mb is the mass of the bacterium, ab is the acceleration of the bacterium, and

Fd is the viscous drag force on a sphere, given by Stokes law

Fd = −6πµRv, (1.2)

in which µ is the viscosity of the fluid, R is the radius of the sphere, and v is the

speed of the sphere [11]. Therefore, Eq. 1.1 becomes

mbab = −6πµRbvb, (1.3)

where vb is the speed of the bacterium over time. We can roughly approximate the

bacterium as a sphere of constant density ρb. Therefore,

4

3
πR3

bρbab = −6πµRbvb. (1.4)

Now we can apply the chain rule to the acceleration

ab ≡
dvb
dt

=
dvb
dxb

dxb
dt

= vb
dvb
dxb

, (1.5)

3
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where xb is the position of the bacterium and we have used the fact that vb ≡ dxb
dt

.

Inserting Eq. 1.5 into Eq. 1.4 yields the differential equation

4

3
R2

bρb
dvb
dxb

= −6µ, (1.6)

which is readily integrated ∫ 0

v0,b

− 2

9µ
R2

bρbdvb =

∫ d

0

dxb. (1.7)

Therefore, the stopping distance is given by

d =
2

9µ
R2

bρbv0,b. (1.8)

Now we can substitute in reasonable values for all parameters to estimate the stopping

distance. The viscosity of water is µ ∼ 1 · 10−3 Pa· s, the radius of a bacterium

is roughly Rb ∼ 2 µm, the typical speed is roughly v0,b ∼ 30 µm/s, and we can

approximate the density to be roughly equal to that of water ρb ∼ 1 · 103 kg/m3 [6].

Inserting these values into Eq. 1.8 gives d ∼ 0.3 Å. This is truly a mind boggling

result, as this distance is many orders of magnitude smaller than the size of the

bacterium, and is even smaller than a typical atomic radius. In comparison, a human

swimming could typically coast on the order of a body length after a typical breast

stroke. Essentially, the bacterium stops instantaneously as if it had no inertia. In the

next few sections, I will explore the equations governing fluid flow to illustrate why

this striking result comes about and what it implies.

1.1 The Navier-Stokes equations

The term “fluid” categorizes matter which continuously deforms (or flows) when

subjected to a shearing stress [12]. Although the definition seems specific, it is a

fairly broad category which includes gases, liquids, and even entire galaxies. Despite

the apparent breadth and dissimilarity within this category, there is a single set

of equations that governs the flow of all fluids. These equations are known as the

Navier-Stokes equations

4
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ρ

(
du

dt
+ u · ∇u

)
= −∇p+ µ∇2u + f , (1.9)

where u = (u, v, w) is the velocity field of the fluid with u, v, w as the x, y, z compo-

nents of this field, ρ is the density of the fluid, p is the pressure field, and f represents

any body forces acting on the fluid [11]. Since the fluid velocity is a field, the quan-

tities u, v, w, p, and f are functions of position x = (x, y, z). In addition, if the fluid

is incompressible, the following condition is also included

∇ · u = 0 . (1.10)

These equations comprise a system of four coupled partial differential equations, which

are non-linear (u · ∇u term) and second order (∇2u term). For these reasons, these

equations are notoriously difficult to solve. In fact, the equations are so difficult that

the Clay Mathematics Intitute has offered $1,000,000 for the one capable of proving

whether, for a given set of boundary conditions, solutions to the equations exist and

are unique [13]. Exact analytical solutions can only be obtained under special circum-

stances in which either symmetries or appropriate approximations permit enormous

simplifications to the governing equations [11,14].

Although complicated, the Navier-Stokes equations are simply a statement of

Newton’s second law for a unit fluid volume. The left hand side of Eq. 1.9 corresponds

to ma in Newton’s second law, and as such, the left hand terms are often termed the

“inertial terms” [11]. The right hand side of Eq. 1.9 represent the sum of all forces

acting on a fluid volume, such as pressure gradients (−∇p), viscous drag (µ∇2u), and

body forces such as gravity.

As with any partial differential equation including spatial derivatives, appropri-

ate boundary conditions are necessary to completely solve a problem at hand. For

instance, a hydrodynamic boundary condition is needed to dictate how the velocity

field behaves at a fluid-solid boundary. In this case, the relevant boundary condition

is typically the no-slip condition [11, 14]. This boundary condition fixes the fluid ve-

locity at the fluid-solid interface to be equal to that of the solid (velocity continuity).

Therefore, if the boundary is at rest, the fluid at the interface must also be at rest.

5
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1.2 The Reynolds number

In many cases, some of the terms in Eq. 1.9 are negligible and can effectively be

removed from the equation. For instance, we often deal with flows in which any body

forces are small compared to the other relevant forces, so f can be ignored (and will

be for the remainder of this section). In particular, finding a regime in which the

inertial term can be ignored would be beneficial, as this would render Eq. 1.9 linear,

and hence much more tractable. To gain insight into the circumstances in which such

an approximation can be made, we can non-dimensionalize the inertial term. We

let u = V ũ, where V is the typical velocity scale of the flow and a tilde indicates a

non-dimensionalized variable. In addition, we can set x = Lx̃ and t = L
V
t̃, where L is

a typcal length scale of the flow. Derivatives can be handled using the chain rule

d

dt
=

dt̃

dt

d

dt̃
=
V

L

d

dt̃
, (1.11)

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
=

(
∂x̃

∂x

∂

∂x̃
,
∂ỹ

∂y

∂

∂ỹ
,
∂z̃

∂z

∂

∂z̃

)
=

1

L

(
∂

∂x̃
,
∂

∂ỹ
,
∂

∂z̃

)
=

1

L
∇̃ (1.12)

Thus, the inertial term becomes

ρ

(
du

dt
+ u · ∇u

)
= ρ

(
V

L

d(V ũ)

dt̃
+ (V ũ) · 1

L
∇̃(V ũ)

)
=
ρV 2

L

(
dũ

dt̃
+ ũ · ∇̃ũ

)
. (1.13)

As seen in Eq. 1.13, the typical magnitude of the inertial term scales as ρV 2/L. We

can perform the same analysis on the viscous term

µ∇2u = µ
1

L2
∇̃2(V ũ) =

µV

L2
∇̃2ũ, (1.14)

and as seen, the typical magnitude of this term scales as µV/L2. We can now define

a quantity referred to as the Reynolds number (Re) as the ratio of typical inertial to

6
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viscous forces [11,14]

Re =
ρLV

µ
. (1.15)

For flows of large length scales, high speeds, and/or in low viscosity fluids, Re >>

1 and the inertia of the flow dominates the viscous forces present. In this high Re

regime, the viscous term may be removed from Eq. 1.9, rendering the equations first

order. However, the non-linear term is intact, which poses difficulties. In particular,

in this regime, one is faced with complicated behaviours such as turbulence, chaotic

eddies, and vortices [11]. The chaotic nature of this regime imposes difficulties for

generating accurate weather predictions, for instance. In predicting the weather,

these equations must be solved numerically given some initial conditions. However,

due to the presence of chaos, slight variations in the initial conditions may lead to

vastly different outcomes [15].

The focus of this thesis will be on the low Re regime, in which viscous forces

dominate, and the equations governing the fluid dynamics become linear, making

them more tractable

0 = −∇p+ µ∇2u. (1.16)

This regime is characteristic of flows of small length scales, low speeds, and/or in

high viscosity fluids. In this regime, the flow is laminar (fluid flows in parallel layers),

smooth and steady [11,14].

To address the reason behind the vastly different stopping distances for a bac-

terium swimming in comparison to a human swimming, we can compute the Reynolds

number for each case. For the example of the bacterium swimming in water, a charac-

teristic length scale of the flow will be on the order of Rb ∼ 2 µm, and a characteristic

velocity of the flow will be on the order of v0,b ∼ 30 µm/s. Inputting these values

into Eq. 1.15 gives Re ∼ 6·10−5. Evidently, a bacterium lives in a world in which

viscous forces are nearly a million times stronger than inertial forces. For this reason,

a microscopic swimmer, or microswimmer, can be well approximated as having no

7
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inertia [1,6]. On the other hand, a human swimming in water may involve flow length

scales of L ∼ 1 m and velocity scales of V ∼ 1 m/s, such that Re ∼ 1·106. Humans

experience swimming that is inertia-dominated, and viscous forces can justifiably be

ignored. Therefore, since Re differs by roughly 11 orders of magnitude, it is not sur-

prising that the physics describing swimming of microscopic organisms is so different

from that applicable to humans. It is these enormous viscous forces that cause the

bacterium described in the beginning of this chapter to come to rest so abruptly,

whereas the inertial flow that humans experience allows for coasting.

1.3 Time reversibility: the Scallop Theorem

There are some interesting consequences associated with living in the low Re regime.

In the opening example of this chapter, we saw that the motion of the bacterium

ceased essentially instantaneously once the bacterium stopped propelling itself. That

is, in the low Re regime, since inertia does not exist, flow is instantaneously gener-

ated in response to a force, and vanishes equally quickly once the force is removed.

Similarly, due to the absence of inertia, an unbalanced force on a low Re swimmer,

will produce an infinite acceleration. Consequently, the swimmer’s speed will change

infinitely quickly, until it moves at such a speed that the viscous drag force acting

on it perfectly cancels the unbalanced force, and hence there is no net force on the

swimmer and it moves with a constant speed [16]. For this reason, the instantaneous

speed (and therefore displacement) of the object itself, is solely determined by the

forces acting on it in that instant of time, and independent of any events of the past.

This time-independence at low Re is clear upon inspection of Eq. 1.16, from the ab-

sence of t [1,16,17]. Another important property of Eq. 1.16 is that it is linear. This

linearity, along with the time-independence, has an important consequence: namely,

the scallop theorem. The scallop theorem states that if a low Re swimmer’s sequence

of body motions is invariant under time-reversal, the swimmer will attain no net

propulsion. This striking point was made by Nobel Prize winner Edward Purcell in

his famous 1976 lecture “Life at low Reynolds number” [1].

To understand the implications of this notion, let us think about what an organism

must do to swim. To move in a fluid, an organism must change its body shape in

8
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some way that will generate propulsion. Of course, the sequence of deformations

performed by the organism must in some way be cyclical, in order to keep swimming.

During these derformations, the only forces acting on the body are those exerted by

the fluid, and for each cycle, the swimmer aims to experience a net displacement

in some direction. Now, let us consider a type of swimming cycle which involves

“reciprocal motion”, defined to be a cycle of body motions in which the body first

performs a sequence of motions to deform itself in a particular way, and then follows

by an exact reversal of the shape changing motions (although potentially done at

different rates). In other words, the sequence of body motions is invariant under

time-reversal. Reciprocal motion is exemplified by the scallop, which lives at high

Re. It simply opens and closes its hinge. As seen in the first column of Fig 1.1, it

opens its shell very slowly, as such does not push against the water appreciably, and

does not gain much momentum towards the left. To complete the cycle, it quickly

closes its shell, and in doing so, pushes water towards the left, and attains momentum

towards the right, coasting a distance in that direction. However, at low Re, according

to the scallop theorem, the displacements attained from some set of motions will be

perfectly cancelled by the displacements attained during the reversal of those motions.

Therefore, if a scallop lived at low Re, where the relevant forces are viscous and not

inertial, it would make no net progress. As seen in the second column of Fig. 1.1,

when it opens its shell slowly, it generates a small viscous force towards the left but

over a long time. However, when the shell closes quickly, the larger viscous force

propels the scallop towards the right over a shorter time, finally attaining no net

displacement. That is the essence of the scallop theorem.

1.3.1 Circumventing the Scallop Theorem

Of course, there are numerous ways of escaping the constraints posed by the scallop

theorem and attaining propulsion at low Re. For instance, due to hydrodynamic

interactions, two swimmers undergoing time-reversible motion in proximity to one

another can actually attain net displacements [17,18]. In the same way, if a reciprocal

swimmer interacts with a nearby flexible boundary, propulsion may be attained [17].

Furthermore, if the fluid is non-Newtonian, the scallop theorem is no longer valid, and

the reciprocal swimmer can attain propulsion [17]. This case is particularly relevant

9
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 t = 0

 t = 1

 t = 2

 t = 3
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Figure 1.1: Schematic of scallop propulsion at high and low Re at equally spaced
snapshots (down a column). At high Re (left column), the scallop can open its
shell slowly and deliver little momentum to the fluid, and in turn, move very little
towards the left. Upon quickly shutting its shell, it pushes water towards the left and
experiences a large force, coasting towards the right. At the end of the sequence, the
scallop has attained a net displacement towards the right. At low Re (right column),
the scallop opens its shell slowly and experiences a small viscous force towards the
left, albeit over a long time, and moves a considerable distance towards the left. Upon
quickly closing its shell, it experiences a large viscous force towards the right, but over
a short time, and returns to its original position, indicated by the vertical dotted line.

for biological swimmers, since those often swim through complex fluids. However,

to ensure propulsion at low Re, microscopic swimmers have developed a variety of

propulsion strategies in which the swimming motions are not time reversible.

A familiar non-reciprocal propulsion mechanism of microswimmers is the helical

rotation of flagella [19]. This mechanism is commonly used by bacteria, such as E.

coli. If a single cell has several flagella, the flagella tend to form bundles which move

in unison [19]. In the case of E. coli, the flagellar bundle forms a stiff helix that

is rotated by a motor within in the cell wall, reminiscent of a corkscrew. Another

interesting mechanism is utilized by Chlamydomonos reinhardtii, an alga cell which

has two flagella [20,21]. This organism is capable of bending its two flagella in unison,

to generate motion akin to that of a human breast stroke. Other organisms, such as

10



M.Sc. Thesis - R.D. Schulman McMaster University - Physics and Astronomy

Paramecium generate propulsion through the periodic, coordinated, beating of short,

thin filaments which cover the cell body, called cilia [22].

Another popular mechanism of propulsion is undulatory locomotion, in which

travelling waves are propagated down the length of the swimmer. This form of loco-

motion is known to be efficient, and is most popular among organisms which are long

and slender [23]. For instance, sperm of many species actuate an undulatory beating

of a single flagellum using molecular motors distributed along the flagellum [6]. Un-

dulatory locomotion is also the propulsion strategy of most nematodes [24]. In fact,

the nematode and model organism Caenorhabditis elegans undergoes undulatory lo-

comotion, and is commonly employed as the subject of studies concerning this form

of locomotion. Since undulatory locomotion is straightforward to describe mathemat-

ically, it is a popular choice of theoretical studies focusing on low Re swimming.

1.4 Theoretical treatments of microswimmers

In this section, I will briefly present some milestone theoretical works aimed at de-

scribing the hydrodynamics associated with undulatory swimming at low Re. Of

course, there is a sufficient volume of excellent theoretical studies that I will only be

scratching the surface. We will begin with the first and simplest treatment- Taylor’s

swimming sheet.

1.4.1 Taylor’s swimming sheet

Taylor pioneered the theoretical treatments of microswimmers in his 1951 work, where

he aimed to learn how microorganisms can attain propulsion using viscous forces

rather than imparting momentum to the surrounding fluid [25]. To answer this ques-

tion, he considered the viscous flow generated by propagating transverse travelling

waves down a sheet, as seen in Fig 1.2. The sheet is infinite in extent in the y-

direction, thereby rendering the problem 2-dimensional. It produces travelling waves

of speed vwave with a given amplitude (b), wavenumber (k = 2π/λ), and angular fre-

quency (ω). To simplify the problem, only small amplitudes (in comparison to the

wavelength) are considered, such that kb << 1. In Taylor’s work, Eq. 1.16 is solved

given the no-slip boundary condition at the surface of the sheet, and the boundary

11
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2b

λ

vwaveU

x

y
z

Figure 1.2: Taylor’s swimming sheet propagating travelling waves of speed vwave in
the positive x-direction. The waves have an amplitude of b which is much smaller than
the wavelength λ. The resultant propulsion speed of the sheet is U in the opposite
direction as of the travelling wave velocity. The sheet is considered to be infinite in
the y-direction.

condition that the flow must vanish at infinity [25]. Taylor finds that the sheet does

attain a propulsion velocity (U)

U = −1

2
ωkb2 = −1

2
vwave(kb)

2, (1.17)

which is in the opposite direction as the velocity of the travelling wave. The propulsion

speed of the sheet is much smaller than the wave speed, since kb << 1. An interesting

point to be made here is that U does not depend on the viscosity of the fluid. Although

it seems odd at first glance, it can be simply understood. The propulsive force

(FP), which is derived from viscous forces, scales linearly with the viscosity (FP =

µ f(ω, k, b) in general). The waving sheet will have a forward speed that generates

a resistive drag force (Fd). This drag force scales linearly with µ as well as U (in

general, Fd = Uµ g(ω, k, b)). However, as discussed in Sec. 1.3, low Re swimmers

must experience a zero net force: FP + Fd = 0. Then it follows that U = −f/g, and

is independent of the viscosity.

Thus, Taylor showed that by propagating transverse waves down a sheet with

only viscous forces present, a net propulsion can be attained in the direction opposite

to the travelling waves. Further work has extended Taylor’s waving sheet result, by

for instance including the effects of a nearby boundary [26]. In this work, it was

found that if the waveform of the sheet is fixed, the propulsion speed increases as

12
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it approaches the boundary. On the other hand, if the power the sheet can exert

is constant (and the waveform is allowed to change), the propulsion speed decreases

upon approaching the boundary.

1.4.2 Stokeslets and moving slender rods

Since Eq. 1.16 is linear, the method of Greens functions may be used to solve problems.

In this method, the flow and pressure fields are found for a point driving term (in

this case represented by a point force in the fluid Fδ(x− x′), localized at some point

x′). The flow field from the singular force is termed a “stokeslet”. Subsequently, the

flow from an extended object exerting a force on the fluid may be solved by a linear

superposition of stokeslets spaced along the object [6, 27,28].

Let us consider a slender cylinder of length Lc and radius rc (rc/Lc << 1) being

pushed by some force (Fc) to move either tangential to its central axis (Fc,T) or

normal to it (Fc,N) at low Re [6]. Slender cylinders are relevant, because undulatory

swimmers and flagella are typically very long and thin. Since the cylinder is slender,

the flow around it can be simply represented by a line of N stokeslets along its axis,

each of strength Fc,T/N or Fc,N/N . Thereafter, several approximations can be made,

such as only keeping terms which are leading order in ln(rc/Lc). In addition, end

effects can be ignored by looking only at the flow induced at segments far from the

ends (near the center). Subsequently, the expression for the flow as a function of

the driving force is inverted. In this way, the final result yields the force needed to

keep the cylinder in motion (alternatively, the drag force acting on the cylinder) at

some speed. The result is that the drag force per unit length (fc,T or fc,N) is linearly

proportional to the speed

fT = −cc,Tvc,Tµ (1.18)

fN = −cc,Nvc,Nµ, (1.19)

where vc,T and vc,N are the speeds of the cylinder in motion tangential and normal to

its central axis, and cc,T and cc,N are tangential and normal drag coefficients per unit

length of the cylinder [6]. From the calculation, the drag coefficients can be evaluated

13
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to be

cc,N = 2cc,T =
4π

ln(Lc/rc)
. (1.20)

There are two important messages to learn from this calculation. First of all, a

straight slender cylinder in motion tangential or normal to its axis experiences a drag

force which is linearly proportional to its translation speed. Second, the tangential

and normal constants of proportionality are different. As we will see, this anisotropy

in the drag coefficients is critical for an undulatory microswimmer (and in fact, for

any undulator) to attain propulsion [6,16]. The results of the calculation above form

the basis of Resistive Force Theory (RFT).

1.4.3 Resistive Force Theory (RFT)

In RFT, a slender swimmer moving at some velocity can be broken down into in-

finitesimal body segments (dl), each moving relative to the fluid with a velocity

that can be decomposed into a component tangential (vT) and normal (vN) to the

body [6, 16, 24, 27–30]. Each segment velocity induces an opposing drag force (dF ),

given by

dFT = −cTvTµ dl, dFN = −cNvNµ dl, (1.21)

where cT and cN are the tangential and normal drag coefficients, which are constants

over the length of the slender swimmer. The drag coefficients can either be determined

experimentally or calculated for a particular geometry (as done previously for case

of the straight cylinder, for instance). Once the drag coefficients are known, it is

possible to determine the propulsive force and speed of the swimmer given simply

the motion sequence of its body. Therefore, RFT is a simplistic model to apply

in practice, and is lucrative when complex hydrodynamic calculations wish to be

avoided. RFT has recently been tested and validated using high-speed imaging of

sperm and bacteria [31–33]. RFT has also proven successful when compared with

direct force measurements of E. coli using optical traps [10]. In addition, our work
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vwave =  ω/kv
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Figure 1.3: A sinusoidal undulatory microswimmer propagating travelling waves
in the positive x-direction. The velocity of the undulator’s body, v, can be decom-
posed into components normal (vN) and tangential (vT) to the body. These velocities
generate drag forces in the opposite directions (FN and FT). The force FN always
has a component in the negative x-direction (positive propulsive direction), whereas
the force FT always has a component in the positive x-direction (negative propulsive
direction). In all cases, the angle arc represents the angle θ.

in Paper I and Paper II provide direct quantitative verification of RFT in terms of

predicting the hydrodynamic forces involved in the swimming of C. elegans.

As an illustration of RFT, let us examine the case of a simple undulator prop-

agating travelling waves of the form y(x, t) = A sin (kx− ωt) down its body. The

velocity of the body will be v = ẏ = −Aω cos (kx− ωt). As seen in Fig. 1.3, we

can decompose the velocity into the normal and tangential components vN = v sin θ,

vT = v cos θ, where θ is the angle between the tangential velocity component and the

vertical. Using Eq. 1.21, we must then have

dFT = −cTµv cos θ dl, dFN = −cNµv sin θ dl. (1.22)

As seen in Fig. 1.3, at all points on the undulator’s body, the normal component of

the drag force has a component along the negative x-direction (positive propulsive
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direction), whereas the tangential component of the drag force has a component along

the positive x-direction (negative propulsive direction). Therefore, the net propulsive

viscous force for each segment is

dFP = |dFN,x| − |dFT,x| = |dFN cos θ| − |dFT sin θ|, (1.23)

dFP = (cN − cT)Aµω| cos (kx− ωt) sin θ cos θ| dl (1.24)

along the negative x-direction (positive propulsive direction), that is, in the opposite

direction as the travelling wave. To find the total propulsive force, Eq. 1.24 must be

integrated over the body of the undulator. However, the important point has already

been made, the propulsive force of an undulator is simply proportional to (cN − cT)

according to RFT. Thus, if we define K = cN/cT, we see that if K > 1, an undulatory

swimmer will propel itself in the opposite direction as its travelling wave. If K < 1,

we are faced with the curious case of the undulator moving in the same direction as

its travelling wave. Importantly, if K = 1, the swimmer can attain no net propulsion,

which raises the important point that a microswimmer must have an anisotropy in

its drag coefficients in order to propel itself forward [6, 16,28,29].

Luckily, for a non-spherical object, there is usually an inherent anistropy in the

drag coefficients. For an infinite cylinder, K approaches a limiting value of 2. For

most undulatory microswimmers, such as nematodes, this value is typically within

the range of 1-2 [6, 16, 24].

To attain theoretical estimates of the drag coefficients for a slender low Re undu-

lator, Gray and Hancock performed a similar analysis as we did in Sec. 1.4.3 [27,29].

However, in their calculation, they consider the flow around a cylinder (of radius rc)

that is propagating travelling sinusoidal waves (of wavelength λ) down its length. In

their work, they also include higher order flow singularities, to better approximate the

velocity field around the cylinder. Finally, the average drag coefficients they derive

are different from the straight cylinder (Eq. 1.20):

cN = 2cT =
4π

ln(2λ/rc)− 1
2

, (1.25)
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where there is now a dependence on the wavelength of the undulator, rather than

the length of the cylinder. On the other hand, the value of K is still exactly equal

to 2. In addition, by applying a similar analysis to the propulsive force calculation

from earlier in this section, and balancing this propulsive force with the resistive

drag felt during forward propulsion, Gray and Hancock developed a prediction for

the swimming speed of an undulatory microswimmer

U = 2π2fλ

(
A
λ

)2
(K − 1)

1 + 2π2K
(
A
λ

)2 , (1.26)

where A and f are the amplitude and undulation frequency of the undulatory swim-

mer, and a positive value of U denotes the swimmer moving in the opposite direction

of its travelling waves [24,29]. Once again, we see that if K=1, the swimmer attains

no net propulsion. However, Gray and Lissman found that using K = 2, Eq. 1.26

yields predictions of swimming speeds that are larger than those they had observed

for several species of swimming nematodes [24]. In fact, their estimates of K ranged

between 1.5 and 2. In the same set of experiments, they dropped thin wires into highly

viscous solutions and measured their fall speeds. In doing so, they found K ∼ 1.5,

smaller than the expected value of 2.

In an attempt to refine the drag coefficient estimates of Gray and Hancock (Eq. 1.25),

Lighthill performed a more careful analysis, in which hydrodynamic interactions be-

tween different segments of the undulator’s body are accounted for in more detail [28].

Lighthill’s derivation is carried out for the helical rotation of a filament; however, it is

also applicable to undulatory locomotion of small amplitude (although Lighthill does

state that he would expect the results to apply even for undulatory waves of arbitrary

amplitude). The drag coefficients are given by

cN =
4π

ln(0.18Λ/rc) + 1
2

, cT =
2π

ln(0.18Λ/rc)
, (1.27)
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and their ratio is

K = 2
ln(0.18Λ/rc)

ln(0.18Λ/rc) + 1
2

, (1.28)

where Λ is the wavelength of the undulator as measured along its body (as opposed

to along its central axis). Lighthill’s study does include a slenderness approximation,

and thus, one should only consider cases where Λ >> rc. Indeed, for a real undulatory

swimmer, the wavelength is much larger than the radius, so the assumption is valid

(for example, Λ/rc ∼ 40 for the nematode C. elegans). Eq. 1.28 produces a K value

between 1 and 2, when Λ/rc & 9, and increases asymptotically towards 2 as Λ/rc →∞
(the limit of a straight cylinder).

1.5 Swimming near a boundary

Up until now, we have focused on the case in which the microswimmer is moving in

an effectively infinite, or unbounded, fluid, in which boundary effects can be ignored.

However, boundary effects are important to consider due to their biological relevance.

There are several systems in which microorganisms move near an interface, such as

in biofilm formation [34, 35], sperm locomotion in the female reproductive tract [36],

and in bacterial infections which are surface-associated [37, 38]. In order to fully

comprehend the dynamics within these systems, it is necessary to understand how

the physics of a single microswimmer is modified by the presence of a nearby boundary.

The nature of viscous forces is that they oppose gradients in the fluid velocity

field [11]. For instance, in laminar flow, the difference in velocity between adjacent

layers leads to a friction force (or a dissipation of momentum) between the layers.

As an example, for a unidirectional laminar flow pointing in the x-direction which

only contains a velocity gradient in the y-direction (u = u(y)x̂), the magnitude of

the viscous shear stress (τ) is given by

τ = µ
∂u

∂y
, (1.29)

and is thus proportional to the gradient in the fluid velocity field [11]. Now, instead,

imagine the flow below a cylinder moving perpendicular to its axis in the positive
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Figure 1.4: Approximate velocity field (blue arrows) below a cylinder (looking edge
on) translating normal to its axis with velocity V (black arrow) in the positive x-
direction in (a) an infinite fluid and (b) near a solid boundary located at y0. In
an infinite fluid, the velocity below the cylinder is equal to V at the fluid-cylinder
interface and equal to 0 at infinity. When a solid boundary is placed at y = y0, the
velocity must equal zero at the fluid-solid boundary, thereby increasing the velocity
gradient in the fluid near the cylinder.

x-direction in an unbounded fluid, with some velocity V , as seen in Fig. 1.4(a). Due

to the no-slip condition (mentioned in Sec. 1.1), the fluid velocity at the cylinder-

fluid interface must be equal to V . On the other hand, the fluid must be at rest

infinitely far from the cylinder. Interpolating the rest of the field, we see that there

is a velocity gradient in the y-direction, which will generate a viscous force on the

cylinder. Now imagine that a solid planar surface is placed below the cylinder, as

seen in Fig. 1.4(b). As dictated by the no-slip boundary condition, the fluid velocity

field at this planar interface must be zero, while still fulfilling that the fluid velocity

at the cylinder surface be V . Interpolating the rest of the field, the net result is

that the gradient in the fluid velocity below the cylinder is greater in the presence

of the boundary than it was in an infinite fluid. Therefore, a translating cylinder (or

a microswimmer), will experience larger viscous forces near a solid boundary due to

the increased velocity gradient.

Some theoretical studies have investigated the effects of the increased viscous

19



M.Sc. Thesis - R.D. Schulman McMaster University - Physics and Astronomy

forces due to nearby boundaries on the propulsion and trajectories of low Re swim-

mers [26, 39–41]. If the swimmer operates at a constant power output, its waveform

is often subject to change due to the presence of a boundary [26, 39, 41]. On the

other hand, if the waveform is held constant, propulsion increases near a boundary,

albeit so does the power output required by the swimmer [26, 39, 41]. Experiments

have confirmed changes in both propulsion, trajectories, and swimmer waveform near

solid boundaries [42–44]. In one study, bull spermatozoa swam faster and with a

different waveform and frequency, while in proximity to a boundary [42]. However,

there is a need for more detailed observations, including direct force measurements,

of microswimmers at controlled distances from boundaries to test many of the pre-

dictions made by theoretical studies. In Paper II, we perform such measurements

on C. elegans, and measure significant increases in the viscous forces, and observe a

modification to the swimming waveform at close proximity to boundaries.

To derive the RFT drag coefficients for a slender object near a boundary is more

difficult than in an infinite fluid. In particular, the slender object cannot simply be

replaced by a sequence of stokeslets (and higher order singularities), but an appropri-

ate image system of flow singularities (including stokeslets oriented in the opposite

direction) is also needed in order to satisfy the no-slip boundary condition at the sur-

face [40]. Thus, it is not surprising that a full derivation for the drag coefficients of an

undulating cylinder near a boundary has not been carried out. The most applicable

study has been carried out by Katz et al., in which the case of a slender cylinder

moving parallel to a planar solid boundary is considered [40]. In their analysis, they

restrict the calculation to an intermediate regime in which rc << h << Lc/2, where

h is the distance from the center of the cylinder to the boundary. By considering

the cylinder moving both tangential and normal to its axis, Katz et al. derive the

resistance coefficients

cN = 2cT =
4π

ln(2h/rc)
, (1.30)

and, once again, K=2 in this case and does not vary with h. As we see, the drag

coefficients are similar to those for a cylinder in an infinite fluid (Eq. 1.20), but here,

h replaces Lc as the relevant length scale in the logarithm. In the same study, Katz et
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al. consider the same cylinder located midway between two parallel planar boundaries

(a distance h away from each), and, once again, moving in directions parallel to the

boundaries. The analysis is still restricted to the regime rc << h << Lc/2. In this

case, the drag coefficients are

cN =
4π

ln(2h/rc)− 1.609
, cT =

2π

ln(2h/rc)− 0.453
, (1.31)

and their ratio is

K = 2
ln(2h/rc)− 0.453

ln(2h/rc)− 1.609
. (1.32)

Therefore, in confinement between two boundaries, the value of K does vary with h.

Specifically, both cN and cT increase as the cylinder approaches the bounday; however

cN increases faster, causing K to increase in proximity to a boundary. Surprisingly,

for h/rc >> 1 (as assumed in the derivation) but still finite, K is larger than 2!

Specifically, K → ∞ at h/rc ∼ 2.5 and decreases monotonically towards K = 2 as

h/rc →∞. This case comprises the first time we have seen the value of K exceeding

the typical limiting value of 2. Thus, we might anticipate that slender undulatory

swimmers will also experience a value of K > 2 in such channel confinement. As a

result, undulatory microswimmers confined in a channel would attain a larger propul-

sive force (which scales with cN − cT, as seen in Eq. 1.24) and a greater propulsion

speed, in accordance with Eq. 1.26. Direct measurements of microswimmers at con-

trolled distances from boundaries are needed in order to quantitatively test these

predictions. In Paper II, the drag coefficients of C. elegans are measured and quanti-

tatively compared with the predictions of Katz et al. In particular, Eq. 1.30 compares

well to the experimental values, and indeed, a value of K > 2 is measured in channel

confinement.

1.6 Interactions between swimmers

When a microswimmer moves through a viscous fluid, it induces a flow field sur-

rounding itself. Therefore, it is expected that if several microswimmers are moving in
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proximity to one another, they might interact hydrodynamically. These interactions

can lead to emergent collective effects. For instance, dense bacterial suspensions ex-

hibit intermittent formation of swirls and jets with length scales much larger than

that of a single bacterium [45, 46]. Even for smaller number of cells, hydrodynamic

interactions are thought to play an important role. For instance, the spermatozoa of

wood mice, opposums, and fishflies are seen to experience a favourable interaction (in

terms of propulsion speed and efficiency) when swimming nearby neighbours [47–49].

In particular, the fishfly sperm have been observed to exhibit in-phase beating of their

flagella, a phenomenon termed “phase-locking” [49]. Phase-locking has also been ex-

perimentally studied by holding two flagellated cells at controlled separations using

micropipettes [50]. In fact, in his 1951 paper, Taylor also studies two sheets swim-

ming parallel to one another, and finds that in-phase swimming leads to the smallest

amount of energy dissipation [25]. In addition, if the two sheets are swimming out

of phase initially, viscous stresses tend to force the swimmers to be in phase over

time. The same result has been found computationally in a later study including

higher amplitude swimming [51]. Moreover, hydrodynamic interactions are thought

to play a role in the bundling of bacterial flagella; a phenomenon which is important

for bacterial locomotion [6, 52].

The larger organism C. elegans is also seen to experience collective motion when

swimming in thin liquid layers due to a combination of steric and surface tension

forces [53]. In addition, phase-locking has been observed for the nematode when

placed in a confined fluid space [54]. However, in this case, steric interactions be-

tween the nematodes were deemed more important than hydrodynamic interactions.

Studying the collective motion between these nematodes served as the motivation

for Paper III. However, rather than finding evidence for collective motion when held

adjacent to one another, the worms are seen to tangle. This tangling behaviour is

investigated in detail in Paper III.

1.7 Caenorhabditis elegans

C. elegans (Fig. 1.5) is a millimeter sized, transparent nematode, which is considered

to be one of the most well understood multicellular organisms [55, 56]. Interestingly,
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Figure 1.5: An optical microscopy image of an adult C. elegans, roughly 1 mm long
and 60 µm in diameter. The head of the worm is in the lower left corner. The scale
bar represents 100 µm.

C. elegans was the first multicellular organism to have its entire genome sequenced. In

fact, this simple worm has served as a model organism in biology for several decades.

In part, this is due to its simple anatomy. It contains roughly 1000 cells, and lacks a

respiratory and circulatory system [55,56]. During its lifetime, it progresses through

several life stages, each with a well defined body length, from L1 (∼250 µm) to L2

(∼380 µm), L3 (∼500 µm), L4 (∼640 µm), young adult (∼900 µm), and finally

adult (∼1100 µm) [57]. On the other hand, it is one of the simplest organisms which

has a nervous system (consisting of approximately 300 neurons). For this reason, it is

often employed as the subject of studies researching neurological behaviour, functions,

and development. In recent years, the worm has also become a popular subject of

biophysical research. Some studies focus on determining the material properties of

the worm [58,59]. However, the larger effort from biophysicists has been on studying

the undulatory locomotion of C. elegans.

1.7.1 The undulatory locomotion of C. elegans

C. elegans is long and slender, and well suited for implementing undulatory propul-

sion. Amazingly, this simple organism is able to propel itself through a wide variety

23



M.Sc. Thesis - R.D. Schulman McMaster University - Physics and Astronomy

of environments. Its native environment is thought to be moist soil, and as such,

the organism has been studied while swimming in mono- and polydisperse wet gran-

ular media [60, 61]. However, the worm is also able to move on the surface of (and

within) agar [62], and swim through viscoleastic fluids and fluids with polymer net-

works [63,64]. In addition, C. elegans has been studied while swimming in structured

environments, in which there is a pattern of regularly spaced pillars [65,66]. Finally,

the worm can also swim through a simple liquid buffer, called M9 [55,67,68]. To learn

about the fundamental hydrodynamics involved in this undulator’s motion, placing

it in M9 is the simplest starting point.

In a buffer, C. elegans swims with a reproducible waveform. Its typical propulsion

speed is U ∼ 0.3 mm/s, and its undulation parameters are roughly f ∼ 2 Hz, λ ∼ 1-2

mm, and amplitude of approximately 0.25 mm [62, 67–69]. Thus, one can calculate

the Reynolds number of the adult worm given Eq. 1.15, with L ∼ 1 mm, V ∼ 0.3

mm/s, µ ∼ 1 mPa·s and ρ ∼ 1000 kg/m3 (since the buffer has a similar viscosity

and density as water), giving Re ∼ 0.3. The smaller worms have lower values of

Re. Still, we see here that young adult and adult worms are not firmly in the low

Reynolds number regime, and inertial forces may not be entirely negligible. However,

in one study, it was found that the flow field around the worm is consistent with

predictions made by low Re theories [67]. Despite this, RFT is used in studies of

C. elegans without proper justification of its applicability at this high of a Reynolds

number [62,67,68]. The ideal way to verify RFT’s applicability would be to perform

direct force measurements which can be compared to the predictions made by the

theory.

1.7.2 Force measurements on C. elegans

Although scarce, there have been some force measurements on the undulating nema-

tode. In two separate studies, arrays of force sensing pillars were constructed for the

worms to move in between while on agar [70, 71]. In one of these studies, the pillars

were made of an elastic material, and could deflect when subjected to a force [70]. By

using some elastic theory, the authors could calculate a theoretical force-deflection

relationship for the pillars. Thus, by observing the displacements of the pillars as

the worms pushed against them while moving through the agar, the authors could
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compute forces. In the other study, the pillars were connected to strain gauges [71].

From the output of the strain gauges, the forces required to deflect the pillars were

calculated. Both of these experiments found the forces involved to be on the order

of micronewtons. However, in both of these studies, the worm is crawling atop a gel,

and not swimming in a liquid. Therefore, these experiments have measured contact

pushing forces of C. elegans while moving on a gel surface, rather than hydrodynamic,

or viscous, forces involved in swimming.

Another study undertook a more indirect approach towards measuring the hy-

drodynamic forces of the worm swimming in a buffer. In this study, the flow fields

surrounding the worm were visualized using particle tracking and velocimetry tech-

niques [67]. Using this flow field, the authors could integrate the fluid stresses around

the worm’s body, to compute the viscous forces acting on the worm. In this way,

lateral and propulsive forces of the worm were attained. The typical viscous forces

were estimated to be on the order of nanonewtons. However, the flow fields were only

visualized in the plane of swimming of the worm, and as such, contributions from

viscous stresses acting on the upper and lower surfaces of the worm were neglected.

In the same study, kinematic properties of the swimming worm were measured, and

subsequently, Eq. 1.26 was used to estimate the value of K to be 1.4.

To estimate the theoretical predictions of cN and cT for C. elegans, we can use λ ∼
1 mm, Λ ∼ 1.2 mm, and rc = rw ∼ 30 µm for an adult worm, where rw is the radius

of the worm. Then, Gray and Hancock’s coefficients (Eq. 1.25) are cN ∼ 3.4 and

cT ∼ 1.7 (K = 2), and Lighthills coefficients (Eq. 1.27) are cN ∼ 5.1 and cT ∼ 3.2 (K

∼ 1.6). However, as mentioned previously, RFT has not been verified for a Reynolds

number this high. If verified, experimental measurements are necessary to test the

theoretical drag coefficient predictions. Testing RFT for C. elegans and extracting

the nematode’s drag coefficients is the purpose of Paper I.

1.7.3 The gait modulation of C. elegans

The motion of C. elegans atop agar is qualitatively different from that in a buffer [62].

In particular, the two forms of motion appear so different that they are given different

names: C. elegans crawls on agar and swims in a buffer. Crawling is associated with

undulations of smaller wavelength, frequency, and amplitude [62,67–69,72]. However,
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several experiments have shown that C. elegans is able to continuously modulate its

gait, or type of motion, from swimming to crawling, and that the modulation occurs

in response to increasing environmental resistance [62, 67, 68, 72]. In practice, the

environmental resistance on the worm has been increased by raising the viscosity

of the buffer (by several orders of magnitude) [67, 68], and by pressing the worm

down onto a gel surface using a glass plate [72]. The gait modulation is adaptive,

because maintaining the same frequency and amplitude of undulations over orders of

magnitude increases in resistance would demand an enormous power output of the

worm.
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Chapter 2

Experimental Details

and Data Analysis

In the following description of experimental details and data analysis, I will limit

my discussion to the two studies in which I have been the primary author (Paper I

and Paper II). The majority of the methods for Paper III are similar to that being

described in this section, although more detail can be found in the supplementary

information of that paper.

2.1 Micropipette deflection

Micropipette deflection is a technique that is perfectly suited for measuring forces in

the range of µN- nN, and for objects of size µm-mm [59,73,74]. In this regime, force

measurements are difficult to attain using other popular instruments, such as Atomic

Force Microscopes. The technique involves a very thin glass capillary (∼ 1000 times

longer than it is thin), which, due to its high aspect ratio, is very flexible. Therefore,

if a force is applied to the end of the capillary (or micropipette), it will deflect. For

small deformations, the micropipettes are hookean. Thus, if the micropipettes are

calibrated such that their spring constants are known, forces can be measured by

multiplying the measured deflections with the spring constant.

Furthermore, the micropipettes are hollow, and by connecting a syringe to one end,

suction can be applied through the opening of the pipette. Therefore, it is possible to
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capture and hold on to appropriately sized object. If the object somehow experiences

a force while being held, this will cause the micropipette to deflect, thereby allowing

the force to be determined.

During an experiment, a pipette is observed under an optical microscope, so

that µm deflections can be detected. The deflections are analyzed using an in-house

cross-correlation script in MATLAB. Using an interpolation scheme within the cross-

correlation script, sub-pixel deflections can be measured.

2.1.1 Micropipette fabrication

Micropipettes are made by stretching glass capillary tubes with an inner diameter

of 0.7 mm and an outer diameter of 1 mm (World Precision Instruments Inc., item

1B100-6) with a pipette puller (Narishige PN-30) over a hot filament. Once pulled,

the micropipettes are extremely thin (outer diameter of ∼ 20 µm and inner diameter

of ∼ 10 µm), long (2-4 cm) and flexible. However, these thin pipettes have ends that

tend to be jagged, which is undesirable for holding worms. To get a clean cut, the ends

of the micropipettes must first be coiled around a hot (enough to soften the glass but

not melt it) platinum iridium wire, whose temperature is controlled by a DC power

supply. Subsequently, the power supply is rapidly turned off, causing the wire and

coiled pipette tip to cool. As the glass pipette cools, it contracts, and is subject to

large internal stresses. These stresses finally cause the coiled portion of the pipette to

snap off, leaving behind the long, straight, and thin portion of the micropipette, with a

straight cut at its end. While viewed under a microscope, these straight micropipettes

are then bent into a desired configuration using a small hand-held tool over a hot

platinum iridium wire. Two types of pipettes were used in Paper I and Paper II. One

of these is a straight pipette with no bends. Such a pipette can only be measured to

deflect side-to-side, and as such, can only measure forces along one direction. The

other pipette is straight, but at its end contains a a small L-shaped bend in the plane

normal to the straight portion, as seen in Fig. 2.1. If such a pipette is observed

from below (as seen in the schematic), deflections in two perpendicular directions

can be observed. Thus, two orthogonal forces can simultaneously be measured by

observing the displacements of each side of the L-shape. The L-shaped bend is very

rigid compared to the long straight portion, which is the only part that deflects
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Figure 2.1: A schematic of a pipette with an L-shaped bend at its end, being observed
from below with a microscope. By observing the L-shaped bend, deflections in the
x- and y-directions can be measured independently, allowing perpendicular forces Fx

and Fy to be measured simultaneously. The straight portion is roughly 3 cm long,
while each bend is approximately 300-600 µm in length.

considerably. Each side of the L-shape is roughly 300-600 µm long and the straight

part of the pipette is typically ∼ 3 cm long. If a pipette is too short, its spring

constants will be higher than what is desired for most worm experiments. If a pipette

is too long, the spring constant will be very small, and its opening will be narrow,

making it difficult to attain an adequate suction force.

2.1.2 Micropipette calibration

To calibrate a micropipette, it is first connected to a syringe at the thick opening, and

subsequently filled with water. The pipette is then held horizontally using an xyz-

translation stage over a microscope stage, as seen in Fig. 2.2(a). To calibrate a pipette

with an L-shaped bend, the pipette is oriented such that the tip faces downward. A

mirror tilted at 45◦ is placed in front of the L-shape, and a light source is placed on

the other side of the L-shape. The pipette is then positioned close to the mirror. In

this configuration, one can place the microscope objective so that it focuses on the

mirror image of the L-shape, rather than on the L-shape itself. Using this scheme,

the view in the microscope is equivalent to viewing the system along the y-axis, in
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Figure 2.2: (a) A schematic illustrating the calibration of a pipette with an L-shaped
bend at its end. The gray rectangle represents the mirror, which allows the system
to be viewed along the y-axis. The light bulb represents the light source, and is
positioned on the opposite side of the droplet as the mirror. The weight of the
droplet causes the flexible portion of the pipette to deflect downwards. (b) An image
of the L-shaped bend with a water droplet. As pressure is applied at the syringe, the
water droplet grows, causing the L-shaped bend to move downwards. The scale bar
represents 100 µm.

Fig. 2.2(a).

Sufficient pressure is then applied to the syringe to create a droplet of water at the

end of the pipette (Figs. 2.2(a) and 2.2(b)). The added weight of the droplet causes

a downwards (negative z-direction) deflection of the flexible portion of the pipette

(Fig. 2.2(a)), which in turn causes the L-shaped bend to move downwards in the

field of view (Fig. 2.2(b)). Images are snapped regularly as the droplet is filled with

more water and the pipette continues to deflect in response (Figs. 2.3(a) and 2.3(b)

show this deflection for a straight pipette). The deflections are subsequently analyzed

using the aforementioned cross-correlation script to evaluate the displacement of the

horizontal portion of the L-shape, as seen in Fig. 2.2(b). The images of the droplet are

processed using another in-house code, which detects the circumference of the droplet,

fits the shape to an ellipsoid, and extracts the volume of water from the ellipsoidal

fit. The weight of the droplet, and hence the force on the pipette, can then simply

be found by multiplying the volume with the density of water and the gravitational

constant. As seen in Fig. 2.3(c), plotting the droplet weight as a function deflection

(∆d) yields a linear relationship with slope equal to the pipette’s spring constant, kb.
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Figure 2.3: An example of the calibration of a straight pipette. Image of a straight
pipette with a (a) small and (b) large droplet. The deflection (∆d) of the pipette
between the two images is labelled. The scale bars represent 100 µm. (c) A plot
of droplet weight as a function of deflection. The slope of the line is equal to the
spring constant of the pipette. The micropipette is hookean over the entire force
range covered in the calibration.

This procedure is repeated several times to find a mean value for kb. A 10% error

is typically assigned in the calibration which accounts for variability in kb between

trials, as well as other potential sources of error.

The procedure for calibrating a straight pipette is exactly analogous to the above

procedure. In this case, the mirror is placed parallel to the end of the straight portion

of the pipette (to view the system along the x-axis) and the light source is once again

positioned on the opposite side of the droplet.
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2.2 Worm handling

2.2.1 Maintenance of worm cultures

To begin our stock of C. elegans, wild-type worms (N2) were obtained from the

Caenorhabditis Genetics Center. The worm populations have henceforth been grown

on Escherichia coli OP50 NGM plates at 20 ◦C in an incubator (Thermo Scientific,

Heratherm Inc 18). Worms can be kept on a single plate without dying for several

months, as they enter an inactive state (Dauer) when food is scarce. However, to

ensure that active and healthy worms are present on the NGM plates, it is necessary

to regularly transfer worms to fresh plates in a process termed “chunking”. To chunk,

a tool is sterilized using an ethanol burner, and is then used to cut out a roughly 1 cm

x 1 cm square of agar from a C. elegans populated plate. Next, the piece of agar is

placed onto a new plate which has been stored in a refrigerator prior to chunking. The

worms present in the transferred chunk of agar move into the rest of the fresh plate,

which contains an abundance food. As those worms reproduce, a new population

will grow that covers the plate. To have a large selection of healthy worms for an

experiment, plates should be chunked 2-3 days prior. When not in use, the sides

of the NGM plates are wrapped in parafilm to avoid mould contamination. For the

same reason, the interior of the incubator should be cleaned with ethanol monthly.

2.2.2 Picking worms

To collect worms for an experiment, a Pasteur pipette with a thin metal wire attached

to its end is used as a picker. The agar plate containing worms is placed underneath a

microscope, and the wire picker is sterilized using an ethanol burner. While observing

through the ocular, a desirable worm is located. Worms should be seemingly healthy,

undulating through the agar, and of the desired size for the experiment in question.

Next, the picker is brought down towards the agar. With a very gentle scooping

motion, the worms can be picked up, as they tend to adhere to the wire. If the picker

is handled too vigorously, the worm may be injured or even killed. Once the worm has

been picked up, the picker is quickly dipped into an M9 buffer. In doing so, the worm

is transferred into the M9, where it is able to survive for roughly 2-3 hours. The picker

is once again sterilized, and the above procedure is repeated until a sufficient number
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Figure 2.4: Top and side view of the chamber with an internal thin channel (neither
schematic drawn to scale). Melted parafilm is used to afix the channel to the lower
surface of the chamber. A chosen number of melted Parafilm layers are used to space
the channel. In this case, the channel is spaced by a single stretched layer of Parafilm.
The rubber spacers and clips which hold the entire chamber together are not shown.

of worms have been transferred into the M9. In a typical experiment, a selection of

20 worms is appropriate.

2.3 Experimental setup

2.3.1 Types of chambers

Two types of chambers were used in Paper I and Paper II. The first chamber consists

of a hollow cylinder (cut from tubing) glued upright onto a thick glass microscope

slide. The cylinder is clear and approximately 1 cm in diameter. The cylinder is filled

with M9 in which the worms are placed. In this chamber, a pipette with an L-shaped

bend (Fig. 2.1) is used and enters the chamber from above, such that the L-shape is

in a plane parallel to the bottom glass surface.

The second chamber contains a thin channel that is mounted within it, as seen

in Fig. 2.4. The chamber is constructed as follows. A thin glass slide (∼ 150 µm

thickness) forms the bottom surface of the chamber. Next, small rectangular pieces

are cut out of other thin glass slides, and will form the upper and lower surfaces of

the internal channel. The bottom surface of the channel is affixed to the glass slide

(or the bottom surface of the chamber) by placing strips of parafilm between the
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rectangular piece and the slide at either end, and subsequently melting the Parafilm

by placing the slide on a heating stage at 90 ◦C. Next, the upper surface of the channel

is mounted atop the now affixed lower surface. This is once again done by placing

layers of Parafilm between the ends of the pieces, and then placing the chamber on the

heating stage. A single sheet of Parafilm is ∼ 100 µm thick. Thus, channel heights

can be modified by choosing the number of layers of Parafilm to space the channel, as

well as stretching the sheets of Parafilm, which can decrease their thickness to ∼ 60

µm. For instance, in Fig. 2.4, the channel is spaced by a single stretched sheet of

Parafilm, and is thus roughly ∼ 60 µm. Now the internal channel of desired spacing

has been constructed atop the lower glass surface of the chamber. At this point, a

droplet of M9 is placed on the glass surface, and worms are picked and transferred

into the sessile droplet. The chamber is then completed by placing rubber spacers (∼
3 mm thick) on the lower glass slide beside the droplet, laying a second glass slide

on top, and using two small clips to hold the chamber together. The entirety of the

chamber is filled with the M9 buffer, which remains held within the chamber due to

surface tension. For this chamber, a straight pipette is inserted from the side of the

chamber, such that it can enter the internal channel as well.

In both chambers, the pipettes are inserted deep enough that their flexible portions

are completely immersed in the fluid. This precautionary measure is taken to prevent

capillary forces at the buffer meniscus from disturbing the force measurements.

2.3.2 Catching worms and performing experiments

In the buffer-filled chambers, the worms are seen to swim nearby, and in the same

plane as, the bottom glass surface. The pipette is moved using a translation stage

until it is within the field of view. Then, the microscope stage is translated to position

the pipette close to the tail of a swimming worm. Once sufficiently close, suction is

applied through a syringe to capture a swimming worm by its tail. Worms are never

sucked in by more than 15% of their total length. Upon capture, worms perform a

reproducible sequence of swimming motions. The majority of the swimming is in the

plane of focus, which is parallel to the bottom surface, as worms are caught whilst

swimming in this plane. For experiments in both chambers, the system is observed

from below with a microscope. Images of the swimming are snapped with a high-
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Figure 2.5: (a) Experimental setup for a pipette with an L-shaped bend. In this
geometry, forces can be measured at controlled distances (or infinitely far away from)
a single planar boundary. (b) An image taken of a young adult worm being held by
the tip of a pipette with an L-shaped bend. By observing the motion of the L-shape,
both lateral and propulsive forces can be measured. The scale bar represents 200
µm. (c) Experimental setup for a straight pipette holding a worm in the internal
channel of a chamber. In this geometry, lateral forces are measured when the worm
is swimming in the x− y plane, at a distance h from either surface.

speed camera (Allied Vision Technologies, Model: GT1660) at 56 fps. Any data in

which the worms are swimming out of plane, and hence move in and out of focus, are

discarded.

As the worm swims, it experiences viscous forces parallel to its swimming axis,

called propulsive forces FP, but also generates forces perpendicular to this axis, called

lateral forces FL. If a worm is held by the tip of a pipette that contains an L-shaped

bend, as seen in Fig. 2.5(a), the long flexible portion is free to deflect in both lateral

and propulsive directions. Therefore, in observing the L-shaped bend from below

(Fig. 2.5(b)), FL and FP can be measured simultaneously by measuring the motion

of the L-shape in either direction. In Paper I, a pipette with an L-shaped bend is

used, and the forces are measured as the distance from the boundary (h) is essentially

infinite (h/rw > 100). In Paper II, the distance h is monitored and adjusted using

a digital actuator. The distance can be precisely measured by moving the pipette

until it is seen to be in contact with the bottom surface, and then raising it while
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tracking the change in height using the actuator. Forces can not only be measured at

controlled distances from a single planar boundary (Fig. 2.5(a)), but also midway in

between two planar boundaries (Fig. 2.5(b)). The chamber with an internal channel

is used to study the latter geometry. In such an experiment, worms are captured from

anywhere within the chamber, and subsequently, the pipette and worm are positioned

within the thin internal channel as shown in Fig. 2.5(c). In this confining geometry,

one is restricted to use a straight pipette which can only be used to measure the

lateral forces acting on the worm.

2.4 Data analysis

As mentioned previously, an in-house cross correlation script is used to precisely

measure pipette deflections. To attain the zero force (or equilibrium) position of the

pipette deflections, we wait for the worm to perform an Ω-turn. These are events

in which the worm curls up into a ball and remains in that position for some time

(on the order of a second). Since there is very little movement during this time, the

viscous forces acting on the worm are small. Therefore, the pipette’s position at this

point in time allows us to determine the position of zero deflection. Releasing the

worm may also be used to find the zero position when a straight pipette is used.

In order to attain kinematic information regarding the worm’s swimming, and be

able to apply RFT, it is necessary to perform some processing on the worm’s body

within each image.

2.4.1 Image processing of the worm’s body

The image processing is done using a code I have written in MATLAB. The first step

of the image processing is to threshold the image of the worm (Fig. 2.6(a)) into a

binary (black or white) image. The threshold intensity is set manually and depends

on the light intensity and contrast of the particular experiment. In the binary image,

the worm is black on a white background (Fig. 2.6(b)). Next, a series of binary

morphological operations on the thresholded image are performed. These operations

include inverting the colour scheme so that the worm is white, filling in any holes in

the worm, and dilating the worm to smooth out edges. The modified binary image
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Figure 2.6: (a) Original image of the worm (b) Thesholded binary image (c) Modified
binary image after numerous morphological operations (d) Centerline curve of the
worm (e) Centerline curve (yellow) superimposed on the original image.

(Fig. 2.6(c)) is then thinned out so that a one pixel thick curve representing the worm’s

centerline remains. This centerline curve is parametrized by the x- and y-positions

of the pixels. The x and y parametrizations of the centerline are independently

smoothed and interpolated using spline fits, such that 1000 points are finally used to

represent the centerline of the worm’s body (Fig. 2.6(d)). 1000 points are chosen as

this number of data points reasonably represents the worm’s centerline to within our

experimental resolution. Furthermore, increasing the number of points implies longer

computational times for future calculations. As seen in Fig. 2.6(e), the resultant

curve well approximates the centerline of the worm’s body. From the centerline, it is

straightforward to calculate various quantities of interest, such as the curvature and

arclength of the worm.

2.4.2 Applying RFT

Since the 1000 points forming the worm’s centerline are known at each point in

time that an image is taken, it is possible to calculate the velocity of each of these

points over time. To calculate the velocity of a body point in a frame, the position

of the point in the previous frame is subtracted from the position of the point in

the subsequent frame, and then the difference in position is divided by the total

time between those frames. By comparing the direction of the velocity of a point

with the orientation of the body at the same point, it is possible to deconstruct the

velocity into a component tangential (vT) and normal (vN) to the body. Note that

at this juncture, it is not yet possible to calculate any forces because cN and cT are
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not known. However, since they are constant along the entire worm, we can leave

these factors out of the calculation until the end. Thus, drawing from Eq. 1.21, the

quantities

dF̃T = −vTµ dl, dF̃N = −vNµ dl. (2.1)

are calculated for every point, where dF̃ denotes the force on the segment less the

factor of the drag coefficient, and dl is equal to the spacing between points (one

thousandth of the worm’s arclength) . Next, each of these forces are further decom-

posed into components along the lateral (dF̃T,L and dF̃N,L) and propulsive (dF̃T,P and

dF̃N,P) directions. These force contributions from all segments are summed together,

such that F̃T,L, F̃N,L, F̃T,P, and F̃N,P are all known over time. Therefore, the RFT

predictions of the lateral and propulsive forces are

FL = cTF̃T,L + cNF̃N,L, FP = cTF̃T,P + cNF̃N,P. (2.2)

Since FL and FP are known from pipette deflections, the RFT predictions for these

forces can be simultaneously fit to the data, while treating the drag coefficients as

free parameters. An additional free parameter is employed which allows for a small

horizontal time shift between the RFT and measured force curves. Such a phase shift

can, for instance, be caused by damping of the force transducer, inertial effects of

the worm, and various imaging artifacts. These phase shifts are always smaller than

T/20, where T is the period of the worm’s motion. Note, in Paper I, K = cN/cT was

fixed at 1.5 to reduce the number of free parameters. In Paper II, in the section in

which a straight pipette was used, RFT fits were only performed on the lateral force

data.
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Chapter 3

Featured papers

We present a micropipette deflecton technique for directly studying the hydrodynamic

forces involved in the swimming of C. elegans as well as for investigating the tangling

of two adjacent worms. Using suction, we catch worms by their tails such that their

tails serve as fixed nodes during swimming. The hydrodynamic forces generated

by the worms during swimming cause the micropipette to deflect. Using calibrated

micropipettes of known spring constant makes it possible to compute forces from

deflections. Paper I encompasses the first description of our experiment and the

first directly measured hydrodynamic forces of C. elegans swimming. In this study,

the success of Resistive Force Theory in capturing our force curves is demonstrated,

thereby evidencing its applicability at a Reynolds number as high as ∼ 0.1 . Paper II

involves a similar experimental set up, but in these experiments, the effects of nearby

solid boundaries are investigated. This study comprises the first force measurements

on microswimmers with the inclusion of boundary effects. Resistive Force Theory

is applied to determine how the worms’ drag coefficients depend on the distance

from a boundary. In addition, this paper quantifies a gait modulation that the worms

undergo upon being subjected to high confinements. Paper III focuses on the tangling

between two worms that occurs when they are held adjacent to one another. Although

no forces are measured in this work, the deflections of the pipettes are used to identify

and count tangling events. Simple theoretical models are applied to describe the

observed tangling behaviour.
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3.1 Paper I

Dynamic force patterns of an undulatory microswimmer

R.D. Schulman, M. Backholm, W.S. Ryu and K. Dalnoki-Veress, Phys. Rev. E,

89, 050701(R) (2014).

In this work, we perform direct force measurements of C. elegans swimming in

a buffer. Using a micropipette with an L-shaped bend at its end, we catch worms

at different life stages by their tail. As the worms swim, they experience lateral and

propulsive viscous forces, which are simultaneously measured. We find that the lateral

and propulsive force curves are reproducible over time as well as between worms.

By performing image analysis on our high speed image sequences of the swimming

worm, we extract data describing the position and velocity of its centerline over

time. Using this data, we are able to apply the equations of RFT. Letting the drag

coefficients be free parameters (but fixing their ratio at K = 1.5), we fit the RFT

curves to our experimental data. In doing so, we witness an excellent agreement

between RFT and our data, thereby demonstrating the success of RFT even at a

Reynolds number this high (Re ∼ 0.1) . From our fits, we extract the drag coefficients

of the worm, which are in agreement with the predictions of Lighthill (Eq. 1.27) within

experimental error [28].

Assuming that the swimming of the worms of various sizes is self-similar (a good

assumption), a scaling argument shows that the rms lateral force and mean propulsive

force should scale as L2
out, where Lout is the worm length found outside of the pipette.

This scaling argument captures the rms lateral force data, but deviates from the mean

propulsive force data at small worm sizes. In particular, the small worms generate

smaller mean propulsive forces than expected, which is attributed to the small worms

performing more “hooklike” motions that violate the self-similarity assumption.

In this study, the experiment was designed in collaboration with Matilda Back-

holm and Kari Dalnoki-Veress. I conducted the experiments and performed all data

analysis. The image analysis script for the worm’s body was written by me. I com-

posed the drafts of the manuscript, which were in turn edited by Matilda Backholm,

Kari Dalnoki-Veress, and William Ryu.
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We probe the viscous forces involved in the undulatory swimming of the model organism C. elegans. Using
micropipette deflection, we attain direct measurements of lateral and propulsive forces produced in response to
the motion of the worm. We observe excellent agreement of the results with resistive force theory, through which
we determine the drag coefficients of this organism. The drag coefficients are in accordance with theoretical
predictions. Using a simple scaling argument, we obtain a relationship between the size of the worm and the
forces that we measure, which well describes our data.

DOI: 10.1103/PhysRevE.89.050701 PACS number(s): 87.19.ru, 47.63.Gd, 47.15.G−

Locomotion through a fluid environment is common to
organisms over a wide range of length scales, from whales
and humans to primitive algae and bacteria. However, the
physics of “microswimming,” which is the propulsion at very
small length scales, differs vastly from that applicable to
macroscopic swimmers. Studying the principles of locomotion
in this regime is crucial for our fundamental understanding
of a diverse collection of organisms, including bacteria,
sperm, and a variety of other microorganisms. Furthermore,
microswimmers offer a wide variety of applications including
robotic microswimmers capable of cargo towing for biomedi-
cal purposes, such as advanced drug targeting [1,2], collective
swimming of bacteria to induce mixing in microfluidic devices
[3,4], and fluid pumping [5–7].

The Reynolds number is a quantity that measures the
relative magnitude of viscous and inertial forces in a fluid.
At small length scales, the Reynolds number is typically less
than unity, which implies that viscous forces are dominant and
inertia can be neglected. In addition, to achieve propulsion in
this regime, it is obligatory to perform a motion that is not
time reversible, according to the scallop theorem [8]. This
theorem asserts that if a swimmer performs a sequence of
motions that is unchanged when played in reverse, such as a
scallop, which simply opens and closes, it will not acquire any
net displacement. There are numerous ways of breaking this
symmetry, such as the helical beating of a flagellum [8–10],
and motions similar to a human breast stroke, as is performed
by the simple alga cell Chlamydomonas reinhardtii [11,12].
Another common way to break this symmetry is to propagate
traveling waves down a body, which is successfully achieved
by undulatory swimmers [13–16].

Undulatory locomotion is known to be a very efficient
mechanism of propulsion and is effective over a large range of
length scales [17]. Extensive theoretical efforts have been put
forth in understanding the locomotion of a slender undulator,
in which the length of the swimmer is much larger than its
width [10,15,16,18,19]. Among these, resistive force theory
(RFT) is a simple model in which the viscous force on a
body segment moving through a low Reynolds number fluid

*dalnoki@mcmaster.ca

can be decomposed into a component tangential and normal
to that segment [10,15,16,18,20]. Each of these components
is linearly proportional to the speed of the segment in
that direction and related through the normal and tangential
drag coefficients, cN and cT. The ratio cN/cT has important
implications in the propulsion of the swimmer. Namely, if
cN/cT > 1, propulsion is directed contrary to the direction of
the traveling wave. If cN/cT < 1, we are faced with the curious
case of the undulator moving in the same direction as its
traveling wave, while the swimmer can attain no net propulsion
if cN/cT = 1. In RFT, the difficulty lies in determining the
drag coefficients. Several theoretical studies have derived
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FIG. 1. (Color online) (a) C. elegans. The scale bar represents
100 μm. (b) Time lapse of the worm’s centerline over one period
(T ), with colors representing time. A sample centerline is overlaid on
the worm in black. Arrows indicate motion of the end of the pipette
as a result of the two orthogonal forces. The scale bar represents
150 μm. (c) Schematic of the micropipette used in our experiments
with a worm held at the end (not to scale). (d) Curvature color plot
for the swimming. BC (body coordinate) denotes the distance along
the worm, where 0 represents the head and 1 represents the portion
of the worm nearest the pipette. Positive curvatures are indicated by
lighter color and denote the convex side to the left.
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values for the coefficients; however, assumptions regarding the
swimming and approximations must be made [10,15,18,20].
Indeed, experimental measurements are crucial in order to
evaluate the validity of RFT and to determine the magnitude
of the drag coefficients. There have been experiments which
have evaluated RFT for a variety of single-celled organisms
using kinematic data from high-speed imaging [21–23]. Other
experiments have performed average force measurements
of nonundulatory microorganisms in optical traps [24,25].
However, to date, direct and time-resolved measurements of
drag forces on an undulating microswimmer are still lacking.
Furthermore, direct verification of the applicability of RFT for
swimmers at length scales where the Reynolds number may
not be much less than unity is still needed.

Many experiments on undulatory microswimmers have
focused on the model organism Caenorhabditis elegans
[Fig. 1(a)], a millimeter sized hermaphroditic nematode [26].
These studies have characterized the kinematics of C. elegans
in various environments, including swimming in a buffer of
various viscosities [27,28], viscoelastic media [29], crawling
on agar [30], structured environments [31,32], and through
complex environments such as granular materials [33,34].
Attempts have been made to measure crawling forces using
pillars as force transducers for C. elegans crawling on agar
[35,36]. In another work, the viscous forces of swimming
C. elegans were inferred from particle tracking and particle
image velocimetry [28]. However, these studies, though
insightful, have not succeeded in performing direct measure-
ments of forces and drag coefficients in fluid.

Here we present a method to directly measure the time-
varying propulsive and lateral forces of C. elegans. A com-
parison between our experimentally determined forces and
the calculated forces from RFT demonstrates an excellent
agreement. The experimental and theoretical force curves are
used to deduce values for the drag coefficients of C. elegans
swimming. Finally, a simple scaling argument is presented
which postulates a relationship between the size of the worm
and the mean propulsive and rms lateral force. We find our
experimental data to be well described by the scaling argument.

We use a micropipette deflection technique to measure the
forces generated by the undulatory microswimmer [37–39]. In
this technique, a flexible glass micropipette that is more than
three orders of magnitude thinner than its length deflects when
subjected to an external force. Since the bending stiffness of the
pipette has been determined through calibration, forces can be
computed from deflections of the pipette. We catch worms by
their tail end by applying suction, and hold them with the end of
our pipettes. The micropipettes are capable of deflecting along
the worm’s swimming axis, as well as along the corresponding
in-plane perpendicular direction. Thus, we can measure forces
in two orthogonal directions [Figs. 1(b) and 1(c)] [39]. As the
nematodes move, they generate forces in their propulsive and
lateral directions, which we independently measure using the
micropipette as a force transducer [Fig. 1(c)]. The deflections
of the pipette are much smaller than length scales associated
with the motion of the worms [39].

Upon capture, the worms perform a highly reproducible
and periodic sequence of body movements, in which traveling
waves are propagated down the body, which is akin to free
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FIG. 2. (Color online) (a) Snapshots of a young adult worm at
different stages of one swimming cycle. The labels refer to the
markers in the graphs below and the arrows indicate the main velocity
of the body. The scale bar represents 100 μm. (b) The lateral force
experienced by the worm over one period, where a positive force
denotes a force directed to the left. The peak negative force (red
circle) corresponds to the worm moving directly left, generating a
drag force to the right (negative direction). Secondary peaks (blue
diamond) correspond to turning points in the swimming cycle, when
an extra push in the lateral direction is instigated. This point roughly
coincides with a zero in the propulsive force. (c) The propulsive force
on the worm over one period, where a positive force denotes a force
directed up (in the swimming direction). The maximum propulsive
force (orange square) corresponds to the worm pushing fluid behind
itself, generating a drag force forward. This point roughly coincides
with a maximum in the curvature. (d) The mean curvature of the
worm over one period.

swimming of C. elegans [Fig. 1(b)] [27,28]. However, when
held fixed at one end, the traveling waves are of larger
amplitude than in free swimming and have a node at the fixed
end. The temporal oscillations of the curvature of the worm
exhibit a well defined frequency, which remains constant at
2.4 ± 0.2 Hz for worms of various lengths [Fig. 1(d)]. The
spatial and temporal oscillations in the curvature compare well
with what has been measured for free swimming [27,28,31].

Figure 2 shows direct simultaneous measurements of the
force generated in the lateral and propulsive directions as
well as images of the motion that caused specific forces [39].
Microswimmers inhabit a low Reynolds number environment,
and as such, the net forces involved in swimming are domi-
nated by viscous drag forces. The estimated Reynolds numbers
for the worms in these experiment lie within the range 0.05–0.5
[39]. Thus, we are in a regime where inertial effects may not
be negligible. However, it is known from previous work that
C. elegans swimming in a buffer can indeed be treated as a
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low Reynolds number swimmer, which suggests that viscous
effects may dominate in our system [28]. Using this reasoning,
the peak lateral forces (FL) occur when the worm is moving
with the greatest speed in the lateral direction [Fig. 2(b)].
Conversely, the largest propulsive forces (FP) are generated
when the worms push the greatest amount of fluid behind
themselves [Fig. 2(c)]. Small secondary peaks can be found in
the lateral force curve corresponding to turning points in the
worm’s cycle, in which the lateral motion experiences a small
spike, and there is minimal motion in the propulsive direction.
The maximum propulsive forces approximately coincide with
the points of highest mean worm curvature 〈κ〉 [Fig. 2(d)].

In the low Reynolds number regime, drag forces are simply
linearly proportional to velocities. According to RFT, one can
deconstruct the drag force (dF ) acting on each length segment
(dl) of a slender body into forces in two orthogonal directions,

dFT = −cTvTμdl, dFN = −cNvNμdl, (1)

where μ and v denote the dynamic viscosity and speed respec-
tively, c is the drag coefficient per unit length, and T and N
denote directions tangential and normal to the length segment
[15]. Since a slender body has little variation in thickness, cN

and cT can be approximated as constants over the entire length
of the swimmer. Although an experimental measurement of
these two drag coefficients individually for this microscopic
undulator is still needed, the ratio cN/cT has been determined
through theory and experiment to be approximately 1.5 for
body and swimming parameters characteristic of C. elegans
[10,16,28]. If cN and cT are known, using this prescription,
and given the speed of each segment of the undulator’s body,
it is possible to calculate the total drag force the swimmer
experiences. Since our experiment is performed in conjunction
with high-speed imaging, we can extract the velocities of the
worm body. Using numerical integration, we generate the
RFT prediction for the lateral and propulsive force curves.
Subsequently, using two free parameters, we fit the RFT
prediction of the two force curves to our lateral and propulsive
data (Fig. 3). In our analysis, we fix cN/cT at 1.5 because
our fits are not sensitive enough given the experimental error
in the data to accurately determine this ratio. Thus, the first
free parameter in our fitting controls the magnitude of the
two drag coefficients, and functions as a vertical stretch on
the curves. We find these drag coefficients to vary little for
worms of all sizes ranging from ∼400 to ∼1200 μm (this
agrees with the theoretical prediction of a weak logarithmic
dependence on geometry, in which there is no dependence
if the swimmer is self-similar for all sizes [10,15,18]), and
measure cN = 5.1 ± 0.3, and cT = 3.4 ± 0.2. We have thus
made an experimental quantification of the magnitude of the
drag coefficients for C. elegans swimming in a fluid.

The second fitting parameter allows for a small horizontal
time shift in the data. A phase shift is to be expected for
several reasons, including damping of the force transducer,
inertial effects of the worm, and imaging artifacts such as
overexposure in the body’s direction of travel. The observed
phase shifts were always smaller than T/20, with T the period
of the motion. Deviations between data and theory may be
attributed to various sources of error [39].

Although other studies have generated predictions of the
forces and powers involved in undulatory microswimming at
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FIG. 3. (Color online) (a) The lateral and (b) propulsive force
plotted as a function of time over several periods. The blue circular
markers denote the experimental data which contain a systematic
error of roughly 10% from uncertainty in the spring constant of the
micropipette. The red solid curve represents the prediction from RFT
which has been fit to the data. The error in the RFT curve is estimated
to be 5%.

larger length scales, they are reliant on theoretical models,
including RFT [27,28]. The close agreement between the
predictions of RFT and our experimental data demonstrates
the applicability of this model in generating quantitative
predictions in undulatory systems (Fig. 3). For the purposes
of comparing our measured drag coefficients with theoretical
predictions by Lighthill [10], we can use 1.0 ± 0.2 mm
as an estimated wavelength, and 45 ± 5 μm as the typical
thickness of a young adult. Substituting these parameters
into Lighthill’s expressions, we get cN = 4.9 ± 0.4, and cT =
3.0 ± 0.3, which fall within the error of our experimental
values.

Slender body theory (SBT) is a more general model of
microswimming, on which the simpler RFT is based [40].
SBT is expected to generate accurate predictions over a wider
range of swimming parameters than RFT. However, since RFT
captures our data within experimental error, it follows that it
is in also in agreement with SBT [39].

Using simple scaling arguments, one can determine the
dependence of the magnitudes of typical propulsive and lateral
forces upon the worm size. In our experiments, we find that
the drag coefficients are largely independent of the size of the
worm. Thus, once the forces in Eq. (1) have been integrated
over the worm’s body, the forces will scale as F ∝ vLout,
where v is a typical speed and Lout is the length of the worm
outside of the pipette. The typical speed depends on the product
of the amplitude (A) of the oscillations and the frequency (f ) of
the swimming. Therefore, the forces will scale as F ∝ Af Lout.
We make the approximation that the swimming of the worm is
self-similar for all life stages, which implies that A will scale
linearly with Lout. This assumption is influenced by previous
measurements which showed that mechanical properties of the
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FIG. 4. (Color online) (a) The root-mean-squared lateral force
and (b) the mean propulsive force as a function of the square worm
length outside of the pipette. The mean and rms are taken over
many cycles.

worms can be treated as self-similar [38]. In our experiments,
we find that f does not depend on the worm size. Thus,
we see that the typical viscous forces generated should scale
as F ∝ L2

out. A plot of the root-mean-squared (rms) lateral
force as a function of L2

out yields approximately a straight
line passing through the origin, in accordance with the scaling
argument [Fig. 4(a)]. Since the worms are attempting to swim
forward, one would expect there to be no net force in the lateral

direction over one period. Indeed, for the worms, we measure a
mean lateral force of 0.1 ± 0.7 nN. Consistent with the scaling
argument we find that the mean propulsive force 〈FP〉 also
scales with L2

out at large worm lengths [Fig. 4(b)]. However,
at small worm lengths (�800 μm), the mean force drops. We
attribute this to the fact that small worms undergo motions that
are quite different from traveling waves and more “hooklike.”
This type of motion does not yield appreciable propulsion. The
mean propulsive forces of larger worms we measure here are
comparable to other estimates for C. elegans [28].

Here we report a direct measurement of the forces expe-
rienced by an undulatory microswimmer. Using micropipette
deflection, we attain a high-resolution time sequence of drag
forces felt by C. elegans while swimming in a buffer. By
using these force measurements in conjunction with the low
Reynolds number model resistive force theory, we demonstrate
the success of this simple model in describing the locomotion
of slender microswimmers. This direct verification of the
theory, which has previously been assumed to apply at
this Reynolds number, provides a better understanding of
undulatory microswimming at length scales larger than of
unicellular organisms. Furthermore, using RFT to describe
our data, we extract measured values of drag coefficients for
C. elegans, a highly studied model organism and microswim-
mer. These coefficients are in congruence with theoretical val-
ues, and will allow future studies to perform direct calculations
of the forces generated by free swimmers simply by using high-
speed imaging. Finally, simple scaling arguments successfully
explain how the magnitude of lateral and propulsive forces
scale with the size of the swimmer.
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3.2 Paper II

Undulatory microswimming near solid boundaries

R.D. Schulman, M. Backholm, W.S. Ryu and K. Dalnoki-Veress, submitted to Physics

of Fluids.

In this study, we investigate the effects of nearby solid boundaries on the viscous

forces experienced by C. elegans swimming in a buffer. As discussed in Sec. 1.5

due to the nearby no-slip boundary condition in the fluid, the worm experiences

larger viscous drag forces in proximity to a boundary. Once again using micropipette

deflection, we study the forces at controlled distances from a single planar boundary,

as well as two parallel planar boundaries (channel confinement).

Near a single solid boundary, the lateral and propulsive force curves appear ver-

tically stretched compared to the corresponding force curves in an infinite fluid. In

fact, the rms lateral forces and mean propulsive forces are approximately 2 to 3 times

larger at the closest approaches to the single boundary than in the unbounded fluid.

Using the same image analysis techniques as in Paper I, we successfully apply RFT

to describe the forces produced in response to the swimming worms. However, in

this work, we allow both c
N

and c
T

to be free parameters, thereby permitting us to

extract both of these quantities independently. These drag coefficients decrease as a

function of the distance away from the boundary, and compare well with the values

determined in Paper I far from the boundary. We compare the drag coefficients with

the predictions of Lighthill and Katz et al., and find that the data is in agreement

with the models in certain regimes [28, 40]. From our data, we find that K = 1.5 ±
0.1(5) at all distances from the single boundary.

In between two parallel solid boundaries, the forces experienced by the nematode

increased substantially from the single boundary case. Once again, the drag coeffi-

cients are seen to decrease as the boundaries are placed further from the worm. In

this geometry, we measure K to increase significantly as the worm is highly confined.

In very wide channels, the worm swims in an effectively infinite fluid, and the drag

coefficients measured are in agreement with Lighthill’s predictions and the values

determined in Paper I [28].
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In high confinement, the worm is seen to modulate its gait. Included in this gait

modulation is a large decrease in the swimming amplitude and a smaller decrease in

the frequency. This modulation occurs as a response to the increased viscous forces

present during confinement, and is analogous to that seen in studies in which the

viscosity has been modified [67,68].

In this study, I designed and conducted the experiments, as well as all data anal-

ysis. I wrote the drafts of the manuscript, which were subject to editing by Matilda

Backholm, Kari Dalnoki-Veress, and Wlliam Ryu.
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Undulatory microswimming near solid boundaries
R. D. Schulman,1 M. Backholm,1 W. S. Ryu,2 and K. Dalnoki-Veress1, 3, a)
1)Department of Physics & Astronomy and the Brockhouse Institute for Materials Research, McMaster University,
Hamilton, ON, L8S 4M1, Canada
2)Department of Physics and the Donnelly Centre, University of Toronto, Toronto, ON, M5S 1A7,
Canada
3)Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI, Paris,
France

(Dated: 23 June 2014)

The hydrodynamic forces involved in the undulatory microswimming of the model organism C. elegans are
studied in proximity to solid boundaries. Using a micropipette deflection technique, we attain direct and
time-resolved force measurements of the viscous forces acting on the worm near a single planar boundary as
well as confined between two planar boundaries. We observe a monotonic increase in the lateral and propulsive
forces with increasing proximity to the solid interface. We determine normal and tangential drag coefficients
for the worm, and find these to increase with confinement. The measured drag coefficients are compared to
existing theoretical models. The ratio of normal to tangential drag coefficients is found to assume a constant
value of 1.5 ± 0.1(5) at all distances from a single boundary, but increases significantly as the worm is confined
between two boundaries. In response to the increased drag due to confinement, we observe a gait modulation
of the nematode, which is primarily characterized by a decrease in the swimming amplitude.

PACS numbers: 47.63.Gd, 47.15.G-, 87.19.ru
Keywords: Locomotion, Microswimming, C. elegans

I. INTRODUCTION

Locomotion through a fluid environment at small
length scales, or “microswimming”, is interesting because
the relevant physics differs considerably from that appli-
cable to macroscopic swimmers. Microorganisms dwell
in a regime where viscous forces dominate and swimmers
have negligible inertia1. That is, the Reynolds number
(Re), which is a measure quantifying the ratio of inertial
to viscous forces in a fluid, is typically much smaller than
unity for microscopic swimmers. The activity within this
field has increased substantially in recent years. This
growth is, in part, due to rapidly improving experimen-
tal techniques capable of performing measurements of
motile microorganisms, as well as more developed an-
alytical and computational treatments of these systems.
Beyond studies which have succeeded in providing pre-
cise kinematic observations of small swimmers, in the last
decade, there have been direct force measurements of uni-
cellular organisms using optical traps2,3. This large drive
towards developing a better understanding of low Re lo-
comotion is warranted, as it offers exciting application
and research avenues, such as fluid pumping4–6, collec-
tive motion of bacteria to generate mixing in microflu-
idic devices7,8, and microscopic artificial swimmers ca-
pable of transporting loads for biomedical purposes such
as advanced drug targeting and robotic surgery9,10. Fur-
thermore, enhancing our ability to describe the relevant
physics is a crucial step towards developing a more com-
plete picture of the behaviours, capabilities, and interac-
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tions of bacteria, sperm, and other microorganisms.

There are numerous biologically relevant systems in
which microorganisms move near a boundary, such as
in surface-associated bacterial infections11,12, sperm lo-
comotion in the female reproductive tract13, and biofilm
formation14,15. To attain a complete picture of these sys-
tems, it is imperative to understand how the physics of
a microswimmer differs upon proximity to an interface.
However, microswimmers are typically studied whilst
swimming in an effectively infinite fluid and few studies
have investigated the effects of a nearby interface. In par-
ticular, due to the nearby no-slip boundary condition at a
fluid-solid interface, there will be an increase in the shear
of the velocity field near such a boundary. This increase
in shear will cause an increase in viscous forces, which
will influence the motility of organisms. Experiments
have verified changes in both propulsion and trajectories
of swimmers near solid boundaries at low Re6,16–19.

A unique aspect of low Re locomotion is that, accord-
ing to the Scallop Theorem, to achieve propulsion it is
necessary to undergo a sequence of motions that is not
time-reversible1. Microorganisms have developed various
swimming mechanisms that satisfy this constraint, such
as motions akin to a human breast stroke, as charac-
terized by the alga cell Chlamydomonas reinhardtii20,21,
or the helical rotation of a bacterium’s flagellum1,22,23.
Undulatory locomotion, in which a swimmer propagates
travelling waves down the length of its body, is another
non-time-reversible mechanism, and is often employed by
nematodes and sperm24–27.

Undulatory locomotion has proved to be a highly effi-
cient means of propulsion which is present over a length
scales ranging from microns to tens of meters28. The lo-
comotion of slender undulatory swimmers has been inves-
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tigated by a multitude of theoretical studies23,26,27,29,30.
A common approach is to derive resistance coefficients
for the swimmer, such that given the velocity of the seg-
ments of the swimmer’s body, it is possible to compute
the force. Such a framework is called resistive force the-
ory (RFT). In this model, one can decompose the force
acting on each body segment into a component tangential
and normal to the body, each of which is proportional to
the speed of the segment along the corresponding direc-
tion, and related by the normal and tangential drag co-
efficients, cN and cT . In particular, the ratio K = cN/cT
is a quantity of interest, as it determines the magnitude
and direction of propulsion of the swimmer. These drag
coefficients have been derived for a slender undulator in
an unbounded fluid23,26 and for slender cylinders near
boundaries31,32. In particular, the results of Katz et
al. predict K=2 for a cylinder moving parallel to a nearby
fluid-solid interface, and also predict K to increase past
a value of 2 when the cylinder is confined between par-
allel solid plates31. Recently, the drag coefficients of an
undulatory microswimmer in an infinite fluid were found
using direct force measurements, and compared well with
the theoretical result33. However, there have been no di-
rect force or drag coefficient measurements for undula-
tory swimmers in proximity to a solid boundary, which
is the focus of this study.

Experiments focusing on undulatory locomotion often
employ the model organism Caenorhabditis elegans34, a
millimeter sized nematode, as its subject. The viscoelas-
tic material properties of this worm have been deter-
mined35, as well as its kinematic properties in a wide
variety of media36–44. In addition, there has been much
interest in the gait modulation of C. elegans from swim-
ming to crawling, which involves a decrease in frequency
and wavelength of undulatory motion36–38. The gait
modulation is known to occur in response to changing
environmental resistance, which has been realized in ex-
periments by changing viscosity36,37, and by pressing the
worm down onto an agar surface with a glass plate45.
Direct force measurements have been attained for C. el-
egans crawling on agar46,47 and recently for C. elegans
swimming in a buffer33. Although there have been some
studies which have involved confining the worm45,48, no
experiments have measured swimming forces in proxim-
ity to an interface, nor have the kinematics been studied
for confinement of the worm near solid boundaries. De-
spite this, many studies of free swimming C. elegans em-
ploy experimental designs in which the worm swims near
a solid boundary, even though the effects of the boundary,
in terms of changing drag coefficients and modulations
in kinematics of the worm, are not properly understood.
Studying the behaviour and forces experienced by C. el-
egans in confinement provides insight into the impact of
the physical constraints that nematodes face in their true
habitats (e.g. soils and other materials with small inter-
stitial spaces).

In this paper, we perform direct force measurements
using micropipette deflection33,35,49,50 on the undulatory

microswimmer and model organism C. elegans at con-
trolled distances from a singe solid boundary and between
two solid boundaries. The structure of the manuscript is
as follows. In Sec. II we describe the experimental meth-
ods, including details of micropipette deflection and im-
age analysis. In Sec. III A, we present measurements of
forces and drag coefficients of the worm at varying dis-
tances from a single planar solid boundary, and compare
these to existing theoretical models. In Sec. III B, we
determine drag coefficients for the worm swimming mid-
way between two planar solid boundaries with different
spacings, and compare the measurements to theory. We
discuss and present evidence of a gait modulation of the
worm in response to increasing drag coefficients in con-
finement in Sec. III C. Finally, we provide a summary
and conclusions in Sec. IV. We find that for increasing
confinement, the drag coefficients and viscous forces gen-
erated by C. elegans increase monotonically. The drag
coefficients are compared to theoretical models and ex-
hibit partial agreement. We determine the drag coeffi-
cient ratio K, and find that it is constant at all distances
from the single boundary, but find it to increase as the
worm is confined between two boundaries. In addition, as
the drag coefficients increase, the worm is seen to exhibit
a gait modulation.

II. EXPERIMENTAL METHODS

A. Micropipette Deflection

As in previous work, we employ a micropipette de-
flection technique to measure time-resolved forces in dy-
namic, microscale systems33,35,49,50. In this experimental
technique, a flexible glass micropipette that is more than
three orders of magnitude thinner than it is long, deflects
when subjected to an external force. Since the spring
constant of the pipette has been determined through cal-
ibration, forces can be computed from measured pipette
deflections50. In this study, two types of pipettes are em-
ployed. In the first part of the study, a straight pipette
with an L-shaped bend at its end is used (Fig. 1(a)).
The L-shaped bend, in which each length is about 300-
600 µm, is highly rigid compared to the long straight
portion of the pipette, which is roughly 3 cm long. For
this reason, only the long straight portion exhibits appre-
ciable deflection. Therefore, this micropipette is capable
of deflecting in two perpendicular directions: along the
worm’s swimming axis, as well as along the corresponding
in-plane perpendicular direction (Fig. 1(b)). Thus, using
this pipette, we can measure both the propulsive and lat-
eral hydrodynamic forces generated by the worm, by sim-
ply observing the L-shaped bend from below (the same
approach has previously been employed33). In the second
part of the study, a completely straight pipette which is
roughly 3 cm long is used (Fig. 1(c)). Such a pipette
can only deflect side-to-side, and can thus only measure
the lateral forces generated by the worm. All pipettes
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FIG. 1. (a) Experimental set up for the single boundary ex-
periments. A straight pipette with an L-shaped bend at its
end is used to measure forces of the worm swimming at a dis-
tance h from the boundary. The blue horizontal line repre-
sents the location of the buffer meniscus. (b) An image taken
of a young adult worm swimming as it is being held with the
L-shaped bend of a pipette. By observing the L-shaped bend
move, we can measure both lateral (FL) and propulsive (FP)
forces. The scalebar represents 200 µm. (c) Experimental
set up for the channel confinement experiments. A straight
pipette is used to measure lateral forces of the worm swim-
ming in the x-y plane at a distance h from each boundary.

in this study have an outer diameter of ∼20 µm and an
inner diameter of ∼10 µm. The spring constants of all
pipettes are within the range of 2.7 - 8.9 nN/µm, with no
more than 10% uncertainty in each spring constant. The
deflections of the pipettes in these experiments are much
smaller than length scales associated with swimming of
the worms (i.e. pipettes can be treated as linear springs).

B. Experimental Design

In this study, force measurements are performed on L4,
young adult, and adult worms. Wild-type worms (N2)
were obtained from the Caenorhabditis Genetics Center
and cultivated according to standard procedures34. The
worms are picked off NGM plates and placed inside a
chamber filled with M9 for the force measurements (see
Fig. 1). Worms are captured by positioning the end of
the micropipette in proximity to the worm’s tail and ap-
plying suction through a syringe connected to the mi-
cropipette. Worms are never sucked in by more than
15% of their total length. Upon capture, the z-position
of the pipette is adjusted and monitored using a digital
actuator. The nematodes perform a highly reproducible
undulatory motion when being held by the micropipettes.
Worms are seen to swim in the plane of focus (parallel
to the plane of the boundaries) during the majority of
the experiments, as they are captured while swimming
parallel to this plane. In each type of experiment, the
system is observed from below with a microscope. Im-
ages of the swimming are taken with a high-speed camera
(Allied Vision Technologies, Model: GT1660) at 56 fps.
Data in which there is out of plane swimming results in a

portion of the swimming cycle being out of focus – such
data is discarded.

Worms are studied in two types of confinement: near
a single planar boundary and inside a channel. For the
single planar boundary experiment, a transparent cylin-
drical container is used33. In this case, the micropipette
with the L-shaped bend is inserted into the chamber from
above such that the thin flexible portion is fully immersed
in the fluid, as seen in Fig. 1(a), where the horizontal line
indicates the location of the buffer meniscus. By letting
the thick stiff portion of the pipette pass through the
meniscus, we prevent capillary forces at the contact line
from disturbing the force measurements. The L-shaped
bend is in a plane parallel to the bottom boundary. For
the measurements, the worm is positioned to be at a de-
sirable h away from the bottom boundary. The distance
h is measured by moving the pipette until it is in con-
tact with the bottom surface, and subsequently raising
the pipette while keeping track of the relative change in
height using the digital actuator.

For the channel confinement experiment, the channel
is composed of two parallel glass slides spaced and held
together by a chosen number of layers of melted Parafilm
to achieve a desired channel height, 2h (Fig. 1(c)). The
channel heights range from 58 µm to 1700 µm. This
channel is mounted within a larger chamber filled with
buffer in which the worms are placed, composed of two
horizontal glass slides separated by rubber spacers. The
buffer remains in the chamber due to surface tension.
In these experiments, the straight pipette is inserted into
the larger chamber from the side. For the measurements,
the worm is captured from the larger chamber and posi-
tioned such that it is equidistant from the top and bot-
tom plates of the internal channel, at a distance h from
either plate. The flexible portion of the pipette is mainly
in the larger chamber, and only a small portion at the
end (containing the worm) is placed within the channel.
Again, we ensure that the meniscus of the buffer is only
in contact with the thicker portion of the pipette. The
height of the channel 2h and the corresponding midpoint
position are determined using the same technique as for
the single boundary.

C. Image Analysis

The deflections of the micropipettes are analyzed using
a cross-correlation technique, which, given the magnifica-
tion of the microscope used in the experiment, is able to
resolve deflections to a precision of ∼0.1 µm. This trans-
lates into a sub nN precision in our force measurements
for the range of pipette spring constants used.

The nematode’s motion during swimming is ana-
lyzed as follows. First, each snapshot of the swim-
ming is thresholded into a binary image. Subsequently,
each binary image is processed to attain a centerline
of the worm’s body. The raw data of each centerline
is smoothed using a spline curve. From the resultant



Undulatory microswimming near solid boundaries 4

smoothed centerline, it is possible to compute quantities
such as the velocities of all points along the body (used
for the RFT computations), body curvatures, and the
amplitude of the swimming. All above analysis was done
using inhouse code written in MATLAB. The worm’s ra-
dius is measured near its vulva using ImageJ.

III. RESULTS AND DISCUSSION

A. Single Planar Boundary

1. Force measurements

At any distance from the boundary, lateral and propul-
sive force curves over a swimming cycle of the worm were
obtained. The force curves were reproducible over time
as well as from worm to worm. Examples of force curves
for a single period of swimming at a distance close and
far from the boundary are shown in Figs. 2(a) and 2(b).
The Reynold’s number of this system is in the range of
0.05-0.533, and previous studies have demonstrated that
the physics describing the locomotion of C. elegans is
compatible with that of a low Re swimmer33,37. For such
low Re swimmers, the forces we measure are dominated
by viscous forces33. As such, a maximum in the lateral
force, for instance, roughly corresponds to the point in
the worm’s swimming cycle in which it moves with max-
imal velocity in the negative lateral direction (defined to
be right in our experiments). Using the same logic, when
the worm has a maximal velocity component in the neg-
ative propulsive direction, we measure a maximum force
in the forwards swimming direction.

At close distances to the planar boundary, we observe
significant increases in the forces generated by the worms.
As seen in Figs. 2(a) and 2(b), the lateral and propulsive
force curves are plotted as a function of time over one
swimming period . Near the boundary, the force curves
appear vertically stretched in comparison to the corre-
sponding force curves of the same worm far from the
boundary. At large distances from the planar boundary
(roughly h ∼ 3000 µm, or h/rw > 100, where rw is the
radius of the worm), we observe the swimming of the
worms to be similar in form and frequency as in previous
work in an unbounded fluid33. Furthermore, at large dis-
tances, the magnitudes of the forces we measure compare
well with past work. In Fig. 2(c), the normalized root-
mean-square (rms) lateral force is plotted as a function of
h/rw. The rms lateral force increases continuously as the
worms are brought closer to the boundary. The rms lat-
eral force increases most significantly below h/rw ∼ 10,
and at very close approaches to the boundary it can be
more than 3 times larger than in an unbounded fluid.
For the mean propulsive force, we measure 〈F

P
〉 = 3 ± 1

nN at h/rw = 1.8 ± 0.3 for worms with Lout = 880 ± 60
µm, where Lout is the length of the worm found outside
of the pipette. In comparison, for worms of similar size
in an unbounded fluid, 〈F

P
〉 = 0.8 ± 0.2 nN33. Thus,
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FIG. 2. The (a) lateral (FL) and (b) propulsive (FP) forces
over one period of a young adult worm’s swimming, close (h
= 35 ± 4 µm) and far (h = 2524 ± 4 µm) from a single
boundary. (c) The rms lateral force normalized to its value
at infinity (h/rw > 100) as a function of the distance to the
boundary (h) normalized by the worm radius (rw), for young
adult worms. The vertical error bars come from uncertainties
in the spring constant of the pipette and temporal variations
of the forces. The horizontal error bars stem from uncer-
tainties in determining the distance from the boundary and
measuring the worm’s radius. (a) Lateral and (b) propulsive
forces (blue circle markers) for a young adult worm swimming
near a single boundary (h/rw ∼ 2.8) plotted as a function of
time over several periods. The solid red curves correspond
to simultaneous RFT fits to the lateral and propulsive force
data. In this case, cN = 7.8 ± 1.2 and cT = 5.1 ± 0.8.

in our experiments, the worms attain significantly larger
mean propulsive forces when they swim near the bound-
ary. Near the boundary, viscous drag forces are larger
due to the nearby no-slip interface. Since the propul-
sion of microswimmers is derived from viscous forces, the
propulsive forces are expected to increase near the solid
boundary because of the increasing velocity gradient.
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2. Drag coefficients

For a swimmer moving through a fluid, the velocity of
each infinitesimal segment of the swimmer’s body can be
decomposed into two perpendicular directions, a compo-
nent tangential (vT) and normal (vN) to the body. In
RFT, these velocities generate infinitesimal drag forces
(dF ) on the corresponding body segment (dl), which are
given by

dF
T

= −c
T
v
T
µ dl and dF

N
= −c

N
v
N
µ dl, (1)

where µ is the dynamic viscosity, c represents the drag
coefficient per unit length, and T and N denote directions
tangential and normal to the body segment26. The ratio
cN/cT has been estimated through theoretical as well as
experimental studies to be approximately 1.5 for C. el-
egans in an infinite fluid medium23,27,37. We previously
measured these drag coefficients for C. elegans in an un-
bounded fluid to be cN = 5.1 ± 0.3, and cT = 3.4 ± 0.2,
where the ratio of the drag coefficients, K, was fixed to
be 1.533. However, these coefficients have not been ex-
perimentally determined in the proximity to a boundary.

If c
N

and c
T

as well as the speed of each segment of
the worm’s body are known, one may integrate Eq. 1
to find the total viscous force acting on the undulator.
From image analysis of our high speed image sequences
attained during experiments, we can extract kinematic
data, including body segment speeds, for the worm’s
swimming. Since c

N
and c

T
are not known in the presence

of a solid boundary, we can treat these as free parame-
ters, in calculating RFT’s prediction of the lateral and
propulsive forces. Using this procedure, we can fit the
RFT force curves to the experimental force curves, and
as such, extract best fit values for c

N
and c

T
. A third

free parameter is employed in our fits which allows for a
relative phase shift between the theoretical and experi-
mental force curves. This horizontal time shift may be
present for several reasons, including viscous damping of
the micropipette, inertial effects of the worm, and various
imaging artifacts. These phase shifts are always smaller
than T/20, where T is the period of the worm’s motion.
Examples of RFT fits to lateral and propulsive force data
for a young adult worm swimming near a boundary are
shown in Figs. 2(d) and 2(e), where the data is plotted
alongside the RFT prediction. As seen in these figures,
the RFT fit describes the data within experimental error.
In addition, as seen in Figs. 2(d) and 2(e), the experi-
mental force curves are reproducible over time.

The fits are performed at several values of h/rw for
L4, young adult, and adult worms. The swimming of
these worms is observed to be approximately self-similar,
meaning that the swimming motions and waveforms all
scale with the size of the worm. The resultant values of
c
N

and c
T

are plotted as a function of h/rw in Figs. 3(a)
and 3(b). As demonstrated in these plots, the data col-
lapses for a large range of values of h/rw, since both h
and rw (∼ 14 µm to ∼ 35 µm) are varied, this suggests
that this ratio is an important controlling parameter.
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FIG. 3. (a) cN and (b) cT plotted against the normalized
distance from the boundary for adult, young adult, and L4
worms. The vertical error bars come from uncertainty in the
spring constant of the pipette and the fitting procedure. The
solid and dashed curves correspond to the predictions of Katz
et al. and Lighthill23,31. The grey area denotes the uncer-
tainty range in evaluating Lighthill’s drag coefficients. (c)
Binned values of cN and cT from (a) and (b) respectively,
demonstrating that a linear correlation (solid line) with a
slope of 1.5 ± 0.1(5) describes the data within error. The
dashed lines correspond to lines given by the upper and lower
bounds of the slope. The error bars of the data points come
from the scatter in the binning of (a) and (b).

Katz et al. incorporated the effects of a nearby solid
planar boundary into the calculation of the drag coeffi-
cients for a straight cylinder31. Their values of c

N
and c

T
,

which contain no free parameters, are plotted along with
the data in Figs. 3(a) and 3(b), represented by the solid
curves. In their analysis, the resultant resistance coeffi-
cients are derived in the regime r0 << h << l/2, where
r0 and l are the radius and length of the cylinder re-
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spectively. For a young adult worm in our experiments,
rw ∼ 24 µm and Lout/2 ∼ 450 µm. Evidently, there
is no value of h which is much larger than the worm
radius, and simultaneously much smaller than half the
worm length. Thus, C. elegans falls outside of the ideal
regime for which the derivation by Katz et al. is appli-
cable. However, there are no studies which incorporate
boundary effects into a calculation for the drag coeffi-
cients of an undulating cylinder. Thus, although limited
in its applicability to our system, the study of Katz et
al. provides the most relevant comparison near a bound-
ary. Despite this, as seen in Fig. 3(a), their predictions
describe the cN data well for h/rw . 4. On the other
hand, one can see in Fig. 3(b) that there is a consis-
tent underestimate of c

T
compared to our measurements

for all h/rw. In the limit h >> rw, the worm can be
well approximated as swimming in an unbounded fluid,
where the theoretical predictions of drag coefficients for
an undulatory swimmer become applicable23,26. In this
regime, the wavelength of the swimming is a more rele-
vant length scale than the distance from the boundary,
and the prediction of Katz et al., which does not take
into account the effects of undulations, is expected to
fail. Since Lighthill’s resistance coefficients have been
shown to exhibit excellent agreement with experimental
values in an unbounded fluid23,33, we expect the data
for c

N
and c

T
to match this theoretical prediction in the

h >> rw regime. Indeed, as seen in Figs. 3(a) and 3(b),
Lighthill’s resistance coefficients, given by c

N
= 4.9 ± 0.4,

and c
T

= 3.0 ± 0.323, represented by dashed lines, agree
with the data for h/rw & 10. In generating this pre-
diction, we have used parameters characteristic of young
adult worms: 1.0 ± 0.2 mm as an estimated wavelength,
and rw = 45 ± 5 µm, but since the swimming can be
approximated as self-similar33, the theoretical drag coef-
ficients for adults and L4’s are within error of the values
above.

In Fig. 3(c), binned averaged values of cN are plotted as
a function of binned averaged values of cT . The binning
is performed evenly as a function of log10(h/rw) with bin
sizes of 0.15, large enough to have sufficient data in each
bin. An average value within each bin is subsequently
computed. We see that this data is well represented by
a single line of slope K = 1.5 ± 0.1(5). Thus, the ra-
tio K = c

N
/c

T
assumes a constant, distance-independent

value of 1.5 ± 0.1(5) for undulatory swimming in a plane
parallel to a solid planar boundary. In the straight cylin-
der calculation of Katz et al., a constant value of K = 2
is derived. Lighthill’s calculation yields K = 1.6 ± 0.2,
which is in agreement with our experimental value for
all h/rw. Interestingly, theoretical and experimental es-
timates which have suggested that K ∼ 1.5 have been
carried out for an infinite fluid medium23,27,37, yet our
results imply that this ratio remains valid in the proxim-
ity of a solid planar boundary.

As a consistency check, it is worthwhile comparing to
see that the increase in the magnitude of the forces we
measure close to a boundary, scale with the increase in

drag coefficients. Nearby the boundary (h/rw = 1.8 ±
0.3), where we found 〈F

P
〉 = 3 ± 1 nN, c

N
and c

T
are

both roughly 2.5 times larger than in an unbounded fluid,
where 〈F

P
〉 = 0.8 ± 0.2 nN33. The mean propulsive

force and rms lateral forces should scale linearly with
the magnitude of the drag coefficients. Thus, we would
expect 〈F

P
〉 near the boundary to be roughly 2.5 times

larger than in an unbounded fluid, or 〈FP〉 ∼ 2 nN, which
agrees with the measured value within experimental er-
ror. Furthermore, the rms lateral force near the bound-
ary is found to be 2.3 ± 0.2 times larger than in an un-
bounded fluid. This increase is roughly consistent with
the 2.5 times increase in the drag coefficients.

B. Channel Confinement

For the studies of a worm confined between two solid
boundaries (Fig. 1(c)), the confining geometry restricted
us to a straight pipette and only lateral forces could be
measured. Thus, our resistive force theory curves are, in
this case, only fit to lateral force data51. In the same
way as before, we can extract the values of cN and cT
from our free fits. The results are shown as a function of
h/rw in Figs. 4(a) and 4(b) for adult, young adult, and
L4 worms. For the smallest channel, the drag coefficients
are more than an order of magnitude larger compared to
in an unbounded fluid. Thus, we see that the effect of a
second solid boundary, is not simply additive in terms of
the increase in the drag coefficients experienced by the
worm. Instead, the second boundary imposes a signifi-
cant restriction on the fluid flow surrounding the worm’s
body compared to in the single boundary case, causing
this large increase in viscous drag.

In their study, Katz et al. also investigate the case of
parallel plate confinement of a straight cylinder moving
in the central plane of the channel31. Once again, the
derivation is carried out for a straight cylinder in the
r0 << h << l/2 limit, and is thus limited in its applica-
bility to our system. Nevertheless, for comparison, this
theoretical prediction for the drag coefficients, as well
as Lighthill’s results, are plotted alongside the data in
Figs. 4(a) and 4(b). Here we see that the predictions
of Katz et al. are in agreement with data near the in-
tersection with Lighthill’s drag coefficients. For larger
h/rw, Lighthill’s results capture our data within error.
For smaller h/rw, the results of Katz et al. overestimate
cN and underestimate cT . The failure is not a failure
of the theory, rather it is to be expected since C. ele-
gans falls outside of the regime in which the derivation
of Katz et al. is carried out. Despite this, as mentioned
previously, the study of Katz et al. provides the most rel-
evant theoretical comparison of drag coefficients near a
boundary.

The data of c
T

contains more scatter than the data
for c

N
. We believe that this can in part be attributed

to c
T

being more influenced by changes in geometry of
the experiment. The thin chambers that we use may not
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FIG. 4. (a) cN and (b) cT as a function of the normalized
distance to each boundary in channel confinement for adult,
young adult, and L4 worms. The predictions of Katz et al.
and Lighthill are plotted as solid and dashed curves. The
black triangle markers correspond to three measurements on
the same worm at three separate y-positions (Fig. 1(c)). This
translation affects cT more significantly than cN .

be perfectly parallel (± 0.5◦) and the swimming plane of
the worm may also be subject to a tilt (± 2◦), such that
the swimming of the worm is not exactly in plane with
the chamber walls. Furthermore, there is an inherent er-
ror in determining the midpoint of the chamber (± 2 µm)
These sources of scatter would be more significant for ex-
periments with higher confinement. To demonstrate the
possibility of scatter due to uncertainties in geometry, we
performed an experiment in which we placed the worm
at the center of a very thin chamber, and measured the
drag coefficients at three separate y-positions (Fig. 1(c)),
each a few hundred microns apart. These three measure-
ments are represented by the black triangle markers in
Fig. 4. As seen in the figure, this procedure resulted in
significant scatter in the value of cT , yet relatively little
scatter in the value of cN , where two of the data points
are so close that they are indistinguishable in the plot.
Another source of scatter may stem from the RFT fitting.
Since the final contribution of tangential body motion to
the lateral force is smaller than the contribution from
normal body motion, our fits will be more sensitive to
determining c

N
precisely.

Interestingly, the predictions of Katz et al. involve
a monotonically increasing value of K upon increasing
the confinement within the channel, in contrast with the
case of the single boundary. In our experiments, we find
that for very large channels (at h/rw = 35 ± 6), K =

1.8 ± 0.7, which is in agreement with the results for an
essentially unbounded fluid (i.e. far from the single plane
boundary). On the other hand, for very narrow channels
(at h/rw = 1.3 ± 0.1), we find K = 5 ± 2. Thus, when
confined between two plates there is an increase in K
for highly confined worms, whereas we obtain a constant
value of K for an undulatory swimmer near a single plane
boundary.

C. Gait Modulation

For very wide channels, or at large distances from a
single boundary, the same swimming is seen as for an
unbounded fluid33. However, as the worm is placed into
channels of high confinement, there is a significant dif-
ference in the swimming of the worm (see movies in the
supplemental information51). Most noticeably, the am-
plitude of the motion is greatly reduced compared to that
seen in an unbounded fluid. Time-lapses of the nema-
tode’s centerline over one period of motion are shown in
Figs. 5(a) and 5(b), for h/rw = 28 ± 4 and h/rw = 1.1
± 0.3. For the highly confined worm, the shape of the
worm’s body is more akin to a sinusoid about the swim-
ming axis, and more similar to the free swimming wave-
form of C. elegans36,37. In Fig. 5(c), the lateral position
of the head of the worm (xhead) is plotted as a function of
time for the worm in low and high channel confinements,
corresponding to Figs. 5(a) and 5(b). As seen, the am-
plitude of the worm’s head motion is much larger when
it is not confined (red open circle markers) compared to
under high confinement (blue filled circle markers). In
addition, the confined worm is seen to swim with a re-
duced frequency.

To quantify the change of amplitude discussed above,
experienced by the worm as it modulates its gait, we mea-
sure the mean angular amplitude, Aθ, which is defined
as half the angle swept out by the worm’s head during
swimming. As seen in Figs. 5(a) and 5(b), the angular
amplitude is significantly smaller for the confined worm.
Since it is known that C. elegans experiences a gait modu-
lation in response to increasing environmental resistance
(such as increasing viscosity), it is not surprising that the
swimming form will change with increasing values of cN
and cT . In our system, we quantify the amount of envi-
ronmental resistance by the sum cN +cT , which increases
by a factor of 20 from an unbounded fluid to the most
confined worms studied (analogous to a 20-fold increase
in viscosity from that of a buffer, as seen in Eq. 1). The
angular amplitude is plotted as a function of c

N
+ c

T
in

Fig. 5(d) for worms swimming in channel confinement as
well as in the presence of a single boundary. The angu-
lar amplitude decreases as a function of c

N
+ c

T
. This

decrease is most rapid for c
N

+ c
T

. 30. In addition,
since the worm simply modulates its gait in response to
changing resistance, the results for the single boundary
and for the channel confinement fall on the same curve.
Included in this gait modulation is a slight decrease in
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the swimming frequency from 2.4 ± 0.2 Hz for an un-
bounded fluid33, to 2.07 ± 0.13 Hz for c

N
+ c

T
= 108 ±

9.
The significant difference in swimming amplitude that

we measure by confining the worm has not been seen over
the same range of increasing environmental resistance in
studies of gait modulation in which the fluid viscosity
has been changed36,37. In these studies, the amplitude
of free swimming worms was found to remain relatively
constant over a 20-fold increase in the viscosity from that
of a buffer. However, the fact that our worm is teth-
ered at the tail is a crucial difference, and the swimming
amplitude we measure in the unbounded buffer differs
from that of a free swimming worm. Therefore, it is
not surprising that some kinematic parameters, such as
the amplitude, may exhibit different behaviours in the
gait modulation of our system. Studies on gait modula-
tion in C. elegans measure a decrease in the swimming
frequency of roughly 10-20% from that in a buffer36,37,
which is consistent with our findings. In studying gait
modulation by changing the viscosity, the chemical com-
position of the fluid is altered, which may have impli-
cations on the behaviour of the worm. In addition, the
osmotic pressure of the solution is changed, which may
upset the ionic balance of the nematode. Therefore, our
results indicate that confinement near solid boundaries
is another complimentary way in which gait modulation
can be investigated without changing composition of the
fluid.

IV. SUMMARY AND CONCLUSIONS

In this study, we present an experimental investiga-
tion into drag forces acting on an undulatory microswim-
mer in proximity to solid boundaries. We employ mi-
cropipette deflection to directly measure the viscous
forces during the swimming of the model organism C.
elegans in a plane parallel to nearby boundaries. This
represents the first direct force measurement of a mi-
croswimmer in which boundary effects have been inves-
tigated. We witness large increases in the lateral and
propulsive forces of the worm as it approaches a single
boundary. Using kinematic data from the high speed im-
age sequences of the swimming in conjunction with our
force measurements, we are able to extract the normal
and tangential drag coefficients for the worm. The drag
coefficients decrease as a function of the distance away
from the solid boundary. Despite the study being lim-
ited in its applicability to our experimental system, the
predictions of Katz et al. capture the general trends of
c
N

and c
T

near the boundary, but with some deviations.
Lighthill’s results for c

N
and c

T
are successful at large

separations from the boundary. We find K = c
N
/c

T
=

1.5 ± 0.1(5) at all distances from the boundary. This
is an interesting result, as it suggests that a propulsive
force increase of an undulator swimming in plane with
a nearby boundary cannot be attributed to a changing
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FIG. 5. Time-lapses of the worm’s centerline over one swim-
ming period for (a) very low (h/rw = 28 ± 4) and (b) very
high (h/rw = 1.1 ± 0.3) confinement, in which only every
other centerline in the image sequence is plotted. The colour-
bar indicates the temporal progression along the single period
(from t=0 to t=T ) and the scalebar represents 200 µm. (c)
The lateral position of the head (xhead) of the worm in high
and low channel confinement as a function of time for several
swimming periods. The red open circles and the blue filled
circles correspond to the worms in (a) and (b). (d) The an-
gular amplitude as a function of cN + cT for young adult and
adult worms swimming near a single boundary (blue squares)
and in channel confinement (red circles).

ratio of the drag coefficients.

For confinement between two planar boundaries, the
drag coefficients increase by a factor of 20 for the highest
confinements compared to in an unbounded fluid, and we
observe an increase in K for high confinements. In this
geometry, Lighthill’s results are still in agreement with
our data for very large channels. Our results suggest that
the analytical results for the drag coefficients in proxim-
ity to a boundary are not entirely suitable for this system,
and require reconsideration by further theoretical stud-
ies. For both channel and single boundary geometries,
as the drag coefficients increase, the nematode is seen to
undergo a gait modulation characterized by a large de-
crease in the amplitude of its swimming. This gait mod-
ulation is independent of whether the worm is swimming
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near one or two boundaries, and is only a function of the
drag coefficients it is experiencing. These results offer
a promising new means of investigating the gait modu-
lation of C. elegans by confining the worm, rather than
changing the viscosity and hence altering the chemical
composition of the fluid.
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Tangling of tethered swimmers: Interactions between two nematodes

M. Backholm, R.D. Schulman, W.S. Ryu and K. Dalnoki-Veress, Phys. Rev. Lett.,

113, 138101 (2014).

To study the interactions between two adjacent worms, we perform experiments

in which two worms are held nearby one another by micropipettes at controlled sep-

arations while swimming in the same plane. Although no appreciable hydrodynamic

interactions are witnessed, a striking consequence of steric interactions arises: tan-

gling. The tangling events between the worms generate much larger pipette deflections

compared to those associated with ordinary swimming, and thus, tangling events can

be detected and counted by closely inspecting the deflection curves. In these exper-

iments, two types of tangles, called 2 and 3 tangles, are identified to reproducibly

occur. The name of the tangle is derived from the number of overlapping points

present between the worms during a tangle. 3 tangles are found to be more stable

and more likely to occur at small separations, compared with 2 tangles.

When the worms are separated by a large distance, no tangles occur. In fact,

there is a critical separation within which tangles start to form. By considering

the worms’ heads as moving laterally in a sinusoidal fashion, a model is derived to

predict the onsets of 2 and 3 tangles. The model’s predictions are in agreement with

the experimental onsets within error.

We find that the experimental probability for the occurence of tangles increases

very sharply after the onset. We are able to develop a model to predict how this

experimental probability should scale with the separation distance of the worms.

Once again, our model’s prediction for the probability are in excellent agreement

with the expermental data.

Matilda Backholm designed and performed the experiments for this study. I con-

tributed to developing the model to describe the tangling onsets and probabilities.

Matilda Backholm composed the drafts, which were subject to editing from me, Kari-

Dalnoki-Veress, and William Ryu.
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The tangling of two tethered microswimming worms serving as the ends of “active strings” is
investigated experimentally and modeled analytically. C. elegans nematodes of similar size are caught by
their tails using micropipettes and left to swim and interact at different separations over long times. The
worms are found to tangle in a reproducible and statistically predictable manner, which is modeled based
on the relative motion of the worm heads. Our results provide insight into the intricate tangling interactions
present in active biological systems.

DOI: 10.1103/PhysRevLett.113.138101 PACS numbers: 87.85.gj, 46.70.Hg, 47.63.Gd

Entanglements are ubiquitous in our everyday lives with
headphone cords forming braids and knots in our pockets,
collections of small items like staples arranging into large
tangled networks [1], and hair strands knotting into dis-
ordered snarls [2]. A less common example is the knotting
of the umbilical cord which occurs at birth for about 1% of
the population [3]. At smaller scales, like in the case of
DNA, knots occur naturally in the recombination and
replication cycles and are thought to contribute to gene
regulation [4–6]. Tangling in polymers [7], proteins [3],
and the flagella in groups of spermatozoa [8,9] as well as
bacteria are further examples. Flagellar entanglements
have been shown to stabilize bacterial networks in biofilms
[10,11] and also give rise to the well-studied run-and-
tumble motion of bacteria, where several flagella are
tangled into a propellerlike bundle, allowing for propulsion
in a specific direction [12–14].
Over recent years, active networks of, e.g., highly

packed bacteria [15,16], cilia [17–20], nematodes
[21,22], sperm cells [23], self-locomoting slender rods
[24], microtubule filaments [25,26], and colloidal particles
[27] have been studied for the purpose of bioengineering
applications [28] and understanding the complex, collective
interactions present in these living or active liquids [29,30].
In addition to hydrodynamic coupling and collisions,
entanglements play a vital role in determining the final
physical properties and biological function of the active
material. In the case of cilia, for example, the synchronized
beating enables locomotion of a variety of microorganisms
as well as the transport of mucus from our lungs. Any
tangling of the cilium strands would certainly have severe
biological consequences.
Mathematicians and physicists have taken a keen interest

in understanding the formation and topology of knots and
tangles. To spontaneously form a knot, a long and flexible
string with a certain excluded volume and bending stiffness

has to be given enough energy to move around and explore
its surroundings [31]. For very small strings, like polymer
chains, thermal energy is sufficient to reptate and entangle
the molecules [7]. For larger objects, however, extra energy
input is needed, as in the case of the driven helical rotation
of bacterial flagella [12–14] or for vigorously shaken ball
chains and strings [32–35]. Independent of the formation
strategy, the tangle topology can be defined by the Conway
notation [36–40].
The formation, lifetime, and untying of knots has been

investigated experimentally in macroscopic systems con-
sisting of single strings, chains, and ropes of different
lengths and stiffnesses [32–35]. Upon shaking these pas-
sive strings, self-induced knots of different types were
found, and the knotting probability was theoretically
modeled. Most knots form and disappear due to the string
ends moving in and out of chain loops and around straight
segments of the chain. To the best of our knowledge, this
intricate chain end motion has not been closely studied, nor
has the interaction between two chain ends.
Here we present a time-resolved experimental system

illustrated in Fig. 1(a), probing the dynamic tangling of two

d
(a) (b)

FIG. 1 (color online). (a) Schematic illustration of the exper-
imental setup where two worms were held by Z-shaped micro-
pipettes. (b) Optical microscopy image of two young adult
C. elegans worms swimming at a separation d. Scale bar 200 μm.
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small worms serving as active, i.e., self-driven, strings on
a millimetric scale. The nematode Caenorhabditis elegans
is a millimeter-sized microswimmer used as a model
organism to probe undulatory locomotion experimentally
[41–45]. When tail anchored, C. elegans has been shown to
move in a highly reproducible, undulatory fashion with a
well-defined frequency and amplitude [43]. In our experi-
ments, the nematodes were placed in a buffer solution and
held by their tails with long (∼2 cm) and thin (∼20 μm)
micropipettes made as described in Refs. [46,47], and
carefully placed side by side at a separation d as shown in
Fig. 1(b) (see the Supplemental Material for more exper-
imental details [48]). The motion of the worms was
monitored with a camera (56 fps) as shown in the time-
lapse snapshots of Fig. 2(a) (see the Supplemental Material
movie SM1.avi [48]). The lateral positions of the worm
heads were tracked and are plotted as a function of time in
Fig. 2(b), where sinusoidal functions have been fit to the
three first noninteracting periods of both worms, showing
the smooth, undulatory motion of the swimmers.
At close enough distances, the worms were seen to

frequently overlap and form temporary tangles. A typical
example of the formation of such a tangle is shown by the
head positions in Fig. 2(b). The undulatory motion of the
slender bodies remains unchanged throughout a tangle,
deeming the attempt frequency to untangle the same as
the swimming frequency of the worms, which finally exit
the locked configuration by moving their heads apart. The
undoing of the tangle is sometimes driven by the motion of
only one of the worms.

Here, two different types of tangles shown in Figs. 2(c)
and 2(d) were found to occur frequently and in a repro-
ducible manner. These could be recognized by the number
of overlapping points and are here defined as a 2- and 3-
tangle, respectively (in the Conway notation, these tangles
would correspond to vertical rational tangles of type 1=2
and 1=3 [36]). To understand the formation of these specific
tangles, the worms were modeled as strings with an average
length L ∼ Lleft ∼ Lright and radius R. Consistent with our
observations, the lateral position of the string ends (worm
heads) were defined as sinusoidal functions with a maxi-
mum amplitude of A ¼ kL, where k is an experimentally
determinable constant. The left and right string end
positions could, thus, be written as xL ¼ A sinðtþ ϕÞ
and xR ¼ A sin tþ d, respectively, where ϕ ∈ ½0; π� is
the phase shift between the active strings, and d > 0 is
the distance between their anchors.
The probability of these strings entangling will vanish

at large distances and become increasingly probable as
the string ends start to overlap, i.e., at some point in
time, xL ≥ xR. This results in a critical ratio between the
distance and amplitude for any overlap to be possible:
d=A ≤ sinðtþ ϕÞ − sin t. For an entanglement to be physi-
cally possible, it is not sufficient for only the string ends to
overlap. Instead, a certain fraction (Lc=L) of each string
needs to be available to form a full tangle with a minimum
length of Lc. We, therefore, consider that both worms must
have a swimming amplitude such that they reach a distance
greater than Lc beyond the symmetry plane [exemplified by
the left worm in the second frame of Fig. 2(a)]. Thus, we

x
x

t

R

(a)

(b)

(c) (d)

(e)

FIG. 2 (color online). (a) Snapshots (0.054 s between each image) showing the tangling of two worms swimming at a distance
d ¼ 370 μm apart. (b) The lateral position of the heads of the same worms. The worms slowly shift from in-phase to out-of-phase
swimming, allowing the heads to overlap and the worms to wrap around each other’s bodies and form a tangle. Subsequently, they exit
the tangle in phase with the same sinusoidal motion as prior to the tangling event. The gray zone in the graph denotes the time frame of
the snapshots in (a) (image of every third data point shown). The solid lines are sinusoidal fits to the head positions of both of the worms.
(c),(d) Two worms at different separations forming a 2- and 3-tangle, respectively. (e) A schematic illustration of a 2 tangle modeled as a
helix with radius R, twist π, and arc length L2. All scale bars represent 200 μm.
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can state that for a tangle to occur, A ≥ d=2þ Lc, which
yields

L
d
≥
�
2

�
k −

Lc

L

��
−1
: ð1Þ

This equation corresponds to an upper bound to the critical
ratio between the chain length and distance for an entan-
glement to be theoretically possible.
The lowest-order tangle seen in our system is the

2 rational tangle [Fig. 2(c)] illustrated schematically in
Fig. 2(e). This tangle can be described as a helix with a
radius R (the same as the worm radius), curvature κ, and
twist π. The arc length (minimum string length required for
this tangle) then is Lc ¼ L2 ¼ π

ffiffiffiffiffiffiffiffi
R=κ

p
. The proportionality

constant relating the maximum swimming amplitude
(see the Supplemental Material [48]) to the worm length
has been measured as k ¼ 0.8� 0.05 for single worms.
By measuring the mean radius and length of the worms
used in this study (young adults and adults, R ¼ 29� 2 μm
and L ¼ 1080� 70 μm) and the mean of the absolute
curvature of the first (anterior) half of their bodies in a
state of normal swimming (κ ¼ 3.3� 0.2 mm−1), an esti-
mate of L2=L ¼ 0.27� 0.02 could, thus, be made. By
applying the helix model to Eq. (1), the predicted critical
ratio between the worm length and distance for any
entanglement to be possible is ðL=dÞ2 ≥ 0.95� 0.10.
Following the same approach, the critical ratio for a 3
tangle modeled as a helix with a twist of 2π is calculated
as ðL=dÞ3 ¼ 2.0� 0.3.
The experiments were performed at different distances

with several pairs of worms of similar size. In a particular
experiment, the presence of 2- and 3-tangles were noted. In
Fig. 3(a), we plot if a tangle could be observed at a given ratio
L=d and also indicate the type of tangle. The two vertical
lines in the graph denote the theoretically predicted critical
ratios ðL=dÞ2 and ðL=dÞ3, and the experimental onsets are,
within error, in excellent agreement with the model.
Note that 2 tangles were always present in experiments in
which 3 tangles were observed.
In Figs. 3(b) and 3(c), the distributions of entanglement

lifetimes are shown for several experiments performed in
the two extreme cases of large (L=d ¼ 1.0� 0.2) and small
(L=d ¼ 5.7� 2.8) separations, respectively (for further
details, see the Supplemental Material [48]). At the larger
separation, only 2 tangles are possible and have an average
lifetime of τ2 ¼ 0.18� 0.03 s. However, for the shorter
separation, both 2- and 3-tangles were possible, and this is
clearly seen in Fig. 3(c) where a shoulder around τ3 ≈
0.4 s ≈ 2τ2 has formed due to the occurrence of the more
long-lived 3 tangle stabilized by an additional crossing
which requires extra time to become undone. Note that,
as one might expect, even for short distances, the 3 tangles
are much less probable than 2 tangles. A slight shift and
widening of the 2 peak at close distances is also apparent

when comparing the two distributions [see vertical dashed
lines in Figs. 3(b) and 3(c)], indicating more variations in
the tangling events as the worms are brought closer
together. A few 3 tangles remained stable for around
10 s, which corresponds to over 20 full swimming cycles
(untangling attempts). These dynamic tangles were beating
and rotating reminiscent of bacterial bundles (see the
Supplemental Material movie SM2.avi [48]). Variables
that affect the tangle stability are the length, thickness,
and bending stiffness of the worms, the attempt frequency
to untangle, the friction between the worms [49], as well
as contact between the worms eliciting mechanosensory
responses [50]. The latter of these has previously been
shown not to affect the collective swimming of C. elegans
[21] and did not seem to strongly affect the tangling
dynamics in our experiments either.
To investigate the entanglement probability as L=d

increases above the critical ratios derived above, we now
follow the lateral motion of the point (xc) on the worm
body located at a distance of Lc from the head. Since the
worm propagates traveling waves down its body, xcðtÞ
can also be modeled as a sinusoidal function with an
amplitude Ac ¼ kcL, where kc is an experimentally deter-
minable constant. For the left and right worms, we
thereby have xc;L ¼ Ac sinðtþ ϕÞ and xc;R ¼ Ac sin tþ
d, respectively. At a given separation distance, these
sinusoidal functions intersect at a range of phase shifts
above some critical value. For an entanglement to be possi-
ble, the maximum value of the difference Δ ¼ xc;L − xc;R
needs to be greater than zero. Using a trigonometric

L d

(a)

(b)

(c)

FIG. 3 (color online). (a) The experimental onset of 2- and
3-tangles (filled circles) with horizontal error bars as a function
of the worm length-distance ratio. The vertical lines are the
theoretical crossover predictions ðL=dÞ2 ¼ 0.95� 0.10 and
ðL=dÞ3 ¼ 2.0� 0.3. (b),(c) Histograms of the entanglement
lifetimes of several worm pairs far apart [L=d ¼ 1.0� 0.2,
(b)] and close together [L=d ¼ 5.7� 2.8, (c)]. The count has
been normalized with the total number of tangles. The vertical
dashed lines indicate the peak position of the other histogram.
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identity, xc;L − xc;R ¼ 2Ac cos½ð2tþ ϕÞ=2� sinðϕ=2Þ − d.
Maximizing this difference with respect to time yields
Δ ¼ 2Ac sinðϕ=2Þ − d ≥ 0 and, thus,

ϕ ≥ ϕc ¼ 2sin−1
�

d
2Ac

�
: ð2Þ

This is the critical phase shift needed to form a tangle at a
specific L=d ratio. In other words, the farther apart the
worms are, the more out of phase they have to swim in
order to intersect and the smaller is the range of phase shifts
which yield intersections.
Although the worms have very similar average frequen-

cies (f ¼ 2.1� 0.2 Hz), small temporal variations in this
quantity allow the worms to explore all relative phase
shifts, as exemplified in Fig. 2(b). Since the worms explore
all relative phase shifts over time, and since a certain
fraction of intersection events between the worm ends will
lead to entanglements, it is reasonable to hypothesize that
the entanglement probability will be proportional to the
fraction of relative phase shifts which contain an inter-
section at the separation distance d. However, we also
expect that entanglement events will be more likely to
occur if the worm heads have more space (and time) to
wrap around each other’s bodies. Thus, we make the
first-order assumption that the probability of entanglements
at a given separation distance is proportional to the
fraction of relative phase shifts which contain an inter-
section but where each phase shift is linearly weighted
by the maximum separation between the worm heads,
giving

p ∝
Z

π

ϕc

Δ
L
dϕ; ð3Þ

where L is used to nondimensionalize the weighting.
Evaluating this integral and substituting Ac ¼ kcL gives

p ∝ 2kc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 −

�
d
kcL

�
2

s
−
d
L

�
π − 2sin−1

�
d

2kcL

��
; ð4Þ

which shows how the entanglement probability scales with
the worm length-distance ratio.
The number of worm entanglements were counted, and

the experimental entanglement probability was calculated
as the ratio between the number of entanglements and
entanglement attempts (the sum of the number of swim-
ming cycles and successful tangling events). The proba-
bility is plotted as a function of L=d in Fig. 4 for all
experiments performed with different worm pairs at differ-
ent distances. The entanglement probability increases
sharply at a worm separation close to one worm length.
Equation (4) is successfully fit to the data, and the model
is clearly in excellent agreement with the experimental
observations. Two fitting parameters were used to fit the

data in Fig. 4. The first is a compressing factor
(0.11� 0.03) in the y direction, which corresponds to
the proportionality prefactor of Eq. (4). Any mechanosen-
sory interactions present between the worms would enter
into this factor. The second fitting parameter defines the
horizontal shift of the theoretical curve and is given by
kc ¼ 0.64� 0.10. Comparing this value to that derivable
from the helix model giving Ac;helix=L ¼ k − L2=L ¼
0.53� 0.05, we find the two models to be, within error,
in excellent agreement.
To form a tangle in our experiments, the worms were

forced to deviate from their otherwise planar swimming
motion to form a three-dimensional helix. If significant
out-of-plane swimming occurred, the entanglement prob-
ability was seen to vastly decrease, as easily explained by
our geometric model. The clear entanglement difference
between the nearly 2D versus a complete 3D motion could,
thus, be a significant factor in, e.g., how arrays of cilia
avoid tangling due to their sophisticated 3D motion [51].
The aspect ratio of cilia can be as high as L=D ¼ 100
(versus 19 for our worms), where D is the diameter. Since
cilia are typically arranged at distances 0.27–0.4 μm apart
[52], ðL=dÞcilia ¼ 75. The lack of ciliar entanglements is,
thus, surprising when compared to our experimental find-
ings in planar swimming and highlights the importance
of the specific motion patterns used to avoid or achieve a
tangled network. Strong hydrodynamic interactions could
also act to modify ciliar entanglements at close distances.
Hydrodynamic interactions were not discovered between
the worms in our experiments, consistent with the findings
of others [21].
Here we have presented a time-resolved, dynamic study

of the tangling of active stringlike worms. By describing
the system with a simple model based on the overlap
probability of the worm heads during their undulatory
swimming, the critical ratio between the worm length
and distance for any entanglement to be possible was

p

L d

FIG. 4 (color online). The entanglement probability as a
function of L=d. The different markers denote experiments with
different worm pairs. The solid line is the analytical fit of Eq. (4)
to the data.
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quantitatively predicted and shown to be in excellent
agreement with experimental observations. Furthermore,
the entanglement probability was analytically derived and
successfully fit to the data. It is clear that the tangling of the
active strings is far from random but a statistically pre-
dictable process based on the relative motion of their ends.
These experiments provide an interesting model system to
understand the intricate interactions present in active matter
such as cilia and bacterial flagella.
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Chapter 4

Conclusions

In the work presented in this thesis, we have aimed to understand the hydrodynamics

associated with the swimming of the model organism C. elegans using a micropipette

deflection technique to measure forces. Although the nematode lives at a Reynolds

number for which inertial effects may be important, it appears that viscous forces are

able to fully describe the relevant hydrodynamics. In particular, although RFT is

derived in the limit of Re = 0, it exactly captures the worm’s lateral and propulsive

forces, which we have measured. By fitting the predictions of RFT to experimental

data, we have extracted the worm’s drag coefficients, for which we have fixed K = 1.5.

The measured drag coefficients are in agrement with Lighthill’s predictions (Eq. 1.27)

within error. Lighthill’s study contains the most sophisticated derivation of cT and

cN, so it is not surprising that our measured values are in better agreement with his

results rather than those of Gray and Hancock (Eq. 1.25). This work comprises the

first experimental determination of the drag coefficients of C. elegans.

Furthermore, we have investigated the effects of nearby solid boundaries on the

swimming of the worm. In particular, we have found that the drag forces experienced

by the nematode increase near the interfaces, as we may have anticipated from the

discussion in Sec. 1.5. Once again, RFT captures the measured force curves well at

all distances from the boundary. In the RFT fits of this work, we have treated both

cT and cN (K free to vary) as free parameters. The drag coefficients increase upon

approaching solid boundaries. However, we have found that K assumes a constant

value of 1.5 ± 0.1(5) at all distances from a single boundary, whereas K increases

65



M.Sc. Thesis - R.D. Schulman McMaster University - Physics and Astronomy

beyond a value of 2 in channel confinement. This comprises the first experimental

evidence of K increasing beyond the limiting value of 2 near solid boundaries, and

is consistent with the prediction made by Katz et al. in their study. We have also

observed the worm to modulate its gait as it is subjected to higher confinements,

and thus, larger drag forces. This gait modulation is typically studied by altering the

viscosity of the buffer solution. However, confinement offers a lucrative alternative for

studying the transition, as it avoids altering the chemical composition of the worm’s

environment.

Lastly, we have studied the tangling events between two worms swimming ad-

jacent to one another at controlled separations. In this work, there is no evidence

of hydrodynamic interactions between the worms. Simple geometric models produce

predictions for the onset and probability of tangles as a function of separation, and

are in good agreement with the experimental results.

In all this work, we have aimed to address some of the questions posed in the intro-

duction to this thesis. In particular, how well do current theoretical models describe

the forces of microswimmers? How do microscopic swimmers interact with nearby

boundaries? And, what are the interactions between nearby swimmers? Although

much research remains to be done to fully answer these questions and others of similar

kind, I hope that this thesis work will supplement the current understanding within

the field as a whole.
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