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Abstract

When researchers work on time series or sequence, certain fundamental questions

will naturally arise. One of them will be whether the series or sequence exhibits a

gradual trend over time. In this thesis, we propose a test statistic based on moving

order statistics and establish an exact procedure to test for the presence of monotone

trends. We show that the test statistic under the null hypothesis that there is no

trend follows the closed skew normal distribution. An efficient algorithm is then

developed to generate realizations from this null distribution. A simulation study is

conducted to evaluate the proposed test under the alternative hypotheses with linear,

logarithmic and quadratic trend functions. Finally, a practical example is provided

to illustrate the proposed test procedure.

KEY WORDS: Parametric test, Moving order statistics, Time series; Monotone

trends, Hypothesis, Closed skew normal distribution, Efficient algorithm, Simulation
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Chapter 1

Introduction

1.1 What is Trend?

One of the main features of many time series or sequences is trend. Trend cap-

tures a slow and gradual change in a time series, which could be characterized by

some property of the series over time. “Trend may be loosely defined as ‘long-term

change in the mean level’ ”(Chatfield, 2003). A key concept in traditional time series

analysis is the decomposition of a series into trend, seasonal or periodic, and irregular

components. Although such routine decomposition rarely occurs in modern analysis,

a separate investigation of trend is still often needed in many practical situations

(Meko, 2013). In particular, it is important to detect if there is a monotone trend in

a sequence of observations.

1
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1.2 What is the Typical Form of Trend?

We consider a model with a trend function

Xi = βt(i) + εi, i = 1, 2, ...,m, β ∈ R, (1.1)

where εi ∼ i.i.d N(0, 1) and t(i) is a strictly increasing function. Then, β = 0

corresponds to the null hypothesis of no trend, and β > 0 (β < 0) marks an increasing

(decreasing) trend in location. The trend function t(i) can have different shapes.

Linear, logarithmic and polynomial trends are the most commonly considered ones

(Hofmann and Balakrishnan, 2006).

1.3 Problem of Interest

Our goal is to test for the presence of trend and determine if it is statistically

significantly different from randomness. Thus, the hypotheses testing problem we are

interested in is

H0 : β = 0 vs. H1 : β > 0 (β < 0). (1.2)

The null hypothesis means no trend or simply randomness, i.e., the hypothesis that

X1, ..., Xm are independent and identically distributed (i.i.d.). The alternative hy-

pothesis represents that there is an increasing (decreasing) trend. In this study, we

establish an exact procedure to test the above hypotheses. In particular, we are

interested in constructing a test statistic based on moving order statistics.

2



Chapter 2

The Closed Skew Normal

Distribution

The closed skew normal (CSN) distribution is a superset of the normal family,

which allows skewness features in the distribution. It was introduced by Domı́nguez-

Molina et al. (2003) and González-Faŕıas et al. (2004a) as a generalization of the

multivariate skew normal distribution defined by Gupta et al. (2004). This distribu-

tion does preserve some important properties of the normal distribution. It is closed

under full rank linear transformations, marginalization, sums, the conditional and

joint distribution. Thus, it is more similar to the normal family than any other.

In this chapter, we introduce the definition of CSN distribution and discuss some

of its properties and relationships to other distributions as well.

3
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2.1 Definition of the CSN Distribution

In this section, we introduce the probability density function (pdf), cumulative

distribution function (cdf) and the moment generating function (mgf) of the CSN

distribution. The relevant proofs are given in Domı́nguez-Molina et al. (2003).

2.1.1 The pdf of the CSN Distribution

A p-dimensional random vector Y is said to have a CSN distribution, with pa-

rameters µ,Σ, D,ν and ∆, if its pdf is of the form

fp,q(y;µ,Σ, D,ν,∆) = Cφp(y;µ,Σ)Φq(D(y − µ);ν,∆), y ∈ Rp, (2.1)

with

C−1 = Φq(0;ν,∆ +DΣD′), (2.2)

where φp(·;η,Ψ) and Φp(·;η,Ψ) are the pdf and cdf, respectively, of a p-dimensional

normal distribution with mean vector η and covariance matrix Ψ, p ≥ 1, q ≥ 1,

µ ∈ Rp and ν ∈ Rq are location parameters, Σ ∈ Rp×p and ∆ ∈ Rq×q are scale

parameters, and D ∈ Rq×p are skewness parameters. If D = 0, the pdf in (2.1)

reduces to the usual multivariate normal one. We denote this distribution simply by

Y ∼ CSNp,q(µ,Σ, D,ν,∆).

4
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2.1.2 The cdf of the CSN Distribution

The cdf corresponding to the pdf in (2.1) is given by

Fp,q(y;µ,Σ, D,ν,∆) = CΦp+q


 y

0

 ;

 µ

ν

 ,

 Σ −ΣD
′

−DΣ ∆ +DΣD
′


 ,

where C is as given in (2.2).

2.1.3 The mgf of the CSN Distribution

If Y ∼ CSNp,q(µ,Σ, D,ν,∆), then the mgf of Y is

My(t) =
Φq(DΣt;ν,∆ +DΣD

′
)

Φq(0;ν,∆ +DΣD′)
et

′
µ+ 1

2
t
′
Σt, t ∈ Rp, (2.3)

which is the product of the mgf of a p-dimensional Gaussian vector with mean µ and

covariance matrix Σ and the cdf of q dimensional normal distribution with mean ν

and covariance matrix ∆ +DΣD
′
.

2.2 Construction of the CSN Distribution

In this section, we give a derivation of the CSN distribution based on a partitioned-

conditional method due to Domı́nguez-Molina et al. (2003). This procedure is useful

for simulating random vectors from this distribution.

5
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2.2.1 Some Results on the Multivariate Normal Distribution

Let us first recall some results concerning the marginal and conditional distribu-

tions of the multivariate normal distribution.

Let X ∼ Nq+p(µ,Σ). If we partition X, its mean vector µ, and its covariance

matrix Σ as

X(q+p)×1 =

 X1 q×1

X2 p×1

 , µ(q+p)×1 =

 µ1 q×1

µ2 p×1

 ,

and

Σ(q+p)×(q+p) =

 Σ11 q×q Σ12 q×p

Σ21 p×q Σ22 p×p

 ,

then the following results are known:

1. the marginal distributions are X1 ∼ Nq(µ1,Σ11) and X2 ∼ Np(µ2,Σ22);

2. the conditional distribution of X1, given X2, is

X1 |X2 = x2 ∼ Nq(µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 Σ21) (2.4)

assuming Σ22 to be positive definite (Johnson and Wichern, 2007).

2.2.2 The Partitioned-Conditional Method

Domı́nguez-Molina et al. (2003) obtained the CSN distribution by considering

some components of a normal random vector conditionally on other components being

non-negative.

6
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Consider two random vectors

W = µ+E1

Z = −ν +DE1 +E2,

where E1 ∼ Np(0,Σ) and E2 ∼ Nq(0,∆) are independent random vectors, D(q × p)

is an arbitrary matrix, µ ∈ Rp, ν ∈ Rq and ∆(q × q) > 0.

Consider the joint distribution of Z and W . Clearly,

 Z

W

 ∼ Nq+p


 −ν

µ

 ,

 ∆ +DΣD′ DΣ

ΣD′ Σ


 .

Then, Bayes theorem readily yields

fW |Z≥0(w|Z ≥ 0) =
fW (w)

P (Z ≥ 0)
P (Z ≥ 0|W = w).

By using (2.4), the conditional distribution of Z, given W = w, is obtained to be

Z|(W = w) ∼ Nq(−ν +D(w − µ),∆).

Thus,

fW |Z≥0(w|Z ≥ 0) =
φp(w;µ,Σ)

P (−Z < 0)
P (−Z < 0|W = w)

=
φp(w;µ,Σ)

Φq(0;ν,∆ +DΣD′)
Φq(0;ν −D(w − µ),∆)

=
φp(w;µ,Σ)

Φq(0;ν,∆ +DΣD′)
Φq(D(w − µ);ν,∆)

7
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which is the same as in (2.1).

2.3 Some Properties of the CSN Distribution

2.3.1 Moments of the CSN Distribution

Domı́nguez-Molina et al. (2003) obtained the first and second moments of the CSN

distribution by taking the derivatives of the mgf in (2.3) at 0.

Let Y ∼ CSNp,q(µ,Σ, D,ν,∆). Then, the mean and variance of Y are given by

E(Y ) = µ+ ΣD′
[∇sΦq(s;ν,∆ +DΣD′)]′

Φq(0;ν,∆ +DΣD′)

∣∣∣∣
s=0

and

V (Y ) = Σ + ΣD′
∇s∇′sΦq(s;ν,∆ +DΣD′)

Φq(0;ν,∆ +DΣD′)

∣∣∣∣
s=0

DΣ

− ΣD′
[∇sΦq(s;ν,∆ +DΣD′)]′

Φq(0;ν,∆ +DΣD′)

∣∣∣∣
s=0

{
[∇sΦq(s;ν,∆ +DΣD′)]′

Φq(0;ν,∆ +DΣD′)

∣∣∣∣
s=0

}′
DΣ,

where

∇s =

(
∂

∂s1

,
∂

∂s2

, . . . ,
∂

∂sq

)′
is the gradient operator.

2.3.2 Linear Transformations

The CSN distribution has some desirable properties under linear tranformations.

For example, it is closed under translations, scalar multiplications and full row rank

linear transformations (González-Faŕıas et al., 2004a). Specifically, if

8
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Y ∼ CSNp,q(µ,Σ, D,ν,∆), then

1. for an arbitrary vector b ∈ Rp, Y + b ∼ CSNp,q(µ+ b,Σ, D,ν,∆);

2. for a constant c ∈ R, cY ∼ CSNp,q(cµ,Σc
2, Dc−1,ν,∆);

3. for a matrix A ∈ Rn×p(n ≤ p) of rank n,

AY ∼ CSNn,q(µA,ΣA, DA,ν,∆A),

where µA = Aµ, ΣA = AΣA
′
, DA = DΣA

′
ΣA
−1 and ∆A = ∆+DΣD

′−DΣA
′
ΣA
−1AΣD

′
;

4. for an arbitrary vector a ∈ Rp(a 6= 0),

a
′
Y ∼ CSN1,q(µa,Σa, Da,ν,∆a),

where µa = a
′
µ, Σa = a

′
Σa, Da = DΣaΣa

−1 and ∆a = ∆+DΣD
′−DΣaa

′
ΣD

′
Σa
−1.

2.4 Connections with Other Distributions

The CSN distribution is a superset of the skew normal family. The univariate and

multivariate skew normal distributions can be expressed as special cases of the CSN

distribution.

2.4.1 Connection with Univariate Skew Normal Distribution

The univariate skew normal (SN) distribution was introduced by Azzalini (1985)

. Let λ, z ∈ R, φ(·) and Φ(·) be the pdf and cdf of N(0, 1). We denote Z ∼ SN(λ) if

9
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its pdf is

φ(z;λ) = 2φ(z)Φ(λz)

= 2φ(z; 0, 1)Φ(λz; 0, 1);

that is, Z ∼ CSN1,1(0, 1, λ, 0, 1).

2.4.2 Connection with Multivariate Skew Normal Distribu-

tion

Azzalini and Dalla Valle (1996) proposed the multivariate version of the above

SN distribution by conditioning on one random variable being positive. Let α, z ∈

Rk, Ω ∈ Rk×k a positive definite matrix, and φk(z; Ω) be the k-dimensional normal

density with zero mean and covariance matrix Ω. Then, a k dimensional random

vector Z follows the multivariate skew normal distribution according to Azzalini and

Dalla Valle (1996), if its density function is of the form

fk(z) = 2φk(z; Ω)Φ(α′z)

= 2φk(z; 0,Ω)Φ(α′z; 0, 1);

that is, Z ∼ CSNk,1(0,Ω,α′, 0, 1).

Gupta et al. (2004) obtained a multivariate skew normal distribution by condi-

tioning on the same number of random variables being positive. Let µ,Y ∈ Rp,

Σ(p× p) > 0, D(p× p) be an arbitrary matrix, and φp(·;η,Ψ) and Φp(·;η,Ψ) denote

10
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the p.d.f. and the c.d.f. of p dimensional normal distribution with mean µ and covari-

ance matrix Σ. Then, a random vector Y (p× 1) is distributed as CSNp,p, according

to Gupta et al. (2004), if its pdf is given by

fp(y;µ,Σ, D) =
1

Φp(0; I +DΣD′)
φp(y;µ,Σ)Φp(D(y − µ))

=
1

Φp(0; 0, I +DΣD′)
φp(y;µ,Σ)Φp(D(y − µ); 0, Ip);

that is, Y ∼ CSNp,p(y,µ,Σ, D,0, Ip).

Compared to the multivariate skew normal distribution, the CSN distribution

is a closed family as it contains its conditional densities by including an additional

parameter ν, marginal densities by adding an extra parameter ∆, and the sum and

joint distribution of independent CSN random vectors by introducing Φq(·) for q ≥ 1

among its members (González-Faŕıas et al., 2004b).

11



Chapter 3

Moving Order Statistics and a Test

Procedure

3.1 Order Statistics

Order statistics and functions of order statistics play an important role in many

fields of both statistical theory and practice. In this section, we introduce briefly the

pdf, cdf and Markov property of order statistics.

3.1.1 The pdf of Order Statistics

Let X1, X2, ..., Xn be independent, absolutely continuous random variables with

common pdf f(x) and cdf F (x), and let X1:n ≤ X2:n · · · ≤ Xn:n denote the order

statistics obtained by arranging the n random variables in a nondecreasing order of

magnitude.

12
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Considering that there are n! equally likely orderings of the Xi’s, by the multi-

nomial method (Balakrishnan and Cohen, 1991), we could derive the joint density of

all n order statistics to be

fX1:n,...,Xn:n(x1, . . . , xn) = n!
n∏

i=1

f(xi), −∞ < x1 < · · · < xn <∞. (3.1)

From (3.1), upon integrating out the variables

(X1:n, . . . , Xi−1:n), (Xi+1:n, . . . , Xn:n)

or by the binomial method, we could derive the marginal density function of Xi:n as

fXi:n
(x) =

n!

(i− 1)!(n− i)!
f(x){F (x)}i−1{1− F (x)}n−i,−∞ < x <∞. (3.2)

Similarly, from (3.1), upon integrating out the variables

(X1:n, . . . , Xi−1:n), (Xi+1:n, . . . , Xj−1:n), (Xj+1:n, . . . , Xn:n)

or by the multinomial method (Balakrishnan and Cohen, 1991), we could obtain the

joint pdf of Xi:n and Xj:n (1 ≤ i < j ≤ n) as

fXi:n,Xj:n
(x, y) =

n!

(i− 1)!(j − i− 1)!(n− j)!
f(x)f(y)

× {F (x)}i−1{F (y)− F (x)}j−i−1{1− F (y)}n−j,

−∞ < x < y <∞. (3.3)

13
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3.1.2 The cdf of Order Statistics

The cdf of a single order statistic Xi:n corresponding to the pdf in (3.2) could be

obtained in the following manner. For any 1 ≤ i ≤ n and any x ∈ R,

FXi:n
(x) = P {Xi:n ≤ x}

= P {at least i of X1, . . . , Xn ≤ x}

=
n∑

r=i

P {exactly r of X1, . . . , Xn ≤ x}

=
n∑

r=i

n!

r!(n− r)!
{F (x)}r{1− F (x)}n−r.

The joint cdf of Xi:n and Xj:n corresponding to the pdf in (3.3) could be obtained

by a direct argument (David and Nagaraja, 2003). For any 1 ≤ i < j ≤ n and any

x, y ∈ R(x < y),

FXi:n,Xj:n
(x, y) = P {at least i of X1, . . . , Xn ≤ x, at least j of X1, . . . , Xn ≤ y}

=
n∑

s=j

j∑
r=i

P {exactly r of X1, . . . , Xn ≤ x, exactly s of X1, . . . , Xn ≤ y}

=
n∑

s=j

j∑
r=i

n!

r!(s− r)!(n− s)!
{F (x)}r{F (y)− F (x)}s−r{1− F (y)}n−s.

3.1.3 The Markov Property of Order Statistics

The order statistics in a sample from an absolutely continuous population form a

Markov chain.

Consider the conditional density of Xj:n, given (X1:n = x1, . . . , Xi:n = xi), given

14
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by

fXj:n|X1:n=x1,...,Xi:n=xi
(xj|x1, . . . , xi)

=
fX1:n,...,Xi:n,Xj:n

(x1, . . . , xi, xj)

fX1:n,...,Xi:n
(x1, . . . , xi)

=
(n− i)!

(j − i− 1)!(n− j)!
× f(xj){F (xj)− F (xi)}j−i−1{1− F (xj)}n−j

{1− F (xi)}n−i
,

xi < xj, 1 ≤ i < j ≤ n. (3.4)

Since Eq. (3.4) does not depend on x1, . . . , xi−1 but depends only on xi, we conclude

the Markov dependence property of order statistics.

3.2 Moving Order Statistics

Order statistics or functions of order statistics in overlapping samples arise natu-

rally in a number of contexts, with one principal area of application being to moving

samples. “Moving samples have a long history in quality control and time series anal-

ysis” (David and Nagaraja, 2003). For example, the moving average control chart

is used to assess the stability of a process. Order statistics in moving samples can

be applied to indicate location and dispersion changes in a time series (Cleveland

and Kleiner, 1975). “Moving order statistics are of interest primarily in graphical

displays”(David and Rogers, 1983).

Let Xi (i = 1, 2, ...,m) be a sequence of independent random variables with com-

mon pdf f(x) and cdf F (x). Let S
(l)
n =(Xl, ..., Xl+n−1)(l = 1, 2, ...,m − n + 1) be the

moving samples. Let X l
r:n denote the rth order statistic in S

(l)
n . Then, the first moving

sample is S
(1)
n =(X1, ..., Xn) and the last moving sample is S

(m−n+1)
n =(Xm−n+1, ..., Xm).

15
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Suppose there is no overlapping between the first and last moving samples. Then,

under H0, they are identically distributed. Moreover, their order statistics are also

identically distributed since they have the same sample size n. One may refer to Ina-

gaki (1980), David and Rogers (1983) and David and Nagaraja (2003) for discussions

on the distributions of order statistics in overlapping samples.

3.3 Proposed Test Statistic

The linear function of moving order statistics of the last moving sample

I =
n∑

j=1

cjX
m−n+1
j:n =

n∑
j=1

cjYj (j = 1, 2, ..., n), cj ∈ R,

is a potential test statistic to test the trend in a sequence. Here, let Yj = Xm−n+1
j:n (j =

1, 2, ..., n), just for convenience. Then, under H0,
∑n

j=1 cjX
1
j:n and

∑n
j=1 cjX

m−n+1
j:n

are identically distributed if there is no overlapping between them.

3.4 Exact Null distribution

In this section, we introduce L-statistics and difference matrix and then derive the

exact distribution of the proposed test statistic.

3.4.1 L-statistics

Let Y = (Y1, ..., Yn)′ be the vector of order statistics corresponding to the data

X = (X1, ..., Xn)′, and let I = ΩY be a generic vector of L-statistics. The linear

operator Ω maps Y onto L and is called the weight matrix of L.
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3.4.2 Difference Matrix

The matrix ∆ = {dij} is said to be a difference matrix of size (n − 1) × n if

dii = −1, dii+1 = 1 for i = 1, ..., n− 1 and 0 elsewhere.

3.4.3 The Distribution of I

First, we show that I
d
= [ΩX | ∆X ≥ 0]. Let X = (X1, ..., Xn)′ be a random

vector whose components are i.i.d., and let I = (L1, ..., Lp)
′ be the corresponding

vector of L-statistics with weight matrix Ω. Then,

I
d
= [ΩX | ∆X ≥ 0]. (3.5)

Proof Crocetta and Loperfido (2005) obtained the distribution of I in the proof of

their Theorem 1.

First, consider the n! permutations of X1, ..., Xn, assign a progressive number to

each permutation, and denote by Xi = (Xi:1, ..., Xi:n) the i-th permutation of the

elements of X = (X1, ..., Xn). Apply now the theorem of total probabilities to get

fI(a) =
n!∑
i=1

fΩXi
(a | Xi:1 ≤ ... ≤ Xi:n)P (Xi:1 ≤ ... ≤ Xi:n).

By assumption, X1, ..., Xn are independent and identically distributed. So, it follows

that

fΩXi
(a | Xi:1 ≤ ... ≤ Xi:n) = fΩX(a | X1 ≤ ... ≤ Xn),

P (Xi:1 ≤ ... ≤ Xi:n) =
1

n!
,

17
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and consequently

fI(a) =
1

n!

n!∑
i=1

fΩXi
(a | Xi:1 ≤ ... ≤ Xi:n) = fΩX(a | X1 ≤ ... ≤ Xn).

Inequalities X1 ≤ ... ≤ Xn and X2 −X1 ≥ 0, ..., Xn −Xn−1 ≥ 0 are equivalent, and

therefore

fI(a) = fΩX(a | X2 −X1 ≥ 0, ..., Xn −Xn−1 ≥ 0).

By definition, ∆ is the difference matrix of size n− 1× n. Then,

∆X =



−1 1 0 . . . . . .

0 −1 1 . . . . . .

0 0 −1 1 . . .

. . . . . . . . . . . . . . .

. . . . . . 0 −1 1





X1

X2

X3

. . .

Xn


=



X2 −X1

X3 −X2

X4 −X3

. . .

Xn −Xn−1


.

The inequality X2 −X1 ≥ 0, ..., Xn −Xn−1 ≥ 0 and ∆X ≥ 0 are equivalent. Thus,

fI(a) = fΩX(a | ∆X ≥ 0)

so that

I
d
= [ΩX | ∆X ≥ 0],

which completes the proof.

Now we derive the exact distribution of I. Let X = (X1, ..., Xn)′ be a random

sample from a standard normal distribution and let I = (L1, ..., Lp)
′ be the corre-

sponding vector of L-statistics with weight matrix Ω ∈ Rp×n. Then, the pdf of I
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is

fI(a) = n!φp(a; ΩΩ′)Φn−1

[
∆Ω′(ΩΩ′)−1a; ∆∆′ −∆Ω′(ΩΩ′)−1Ω∆′

]
,

i.e.,

I ∼ CSNp,n−1(0,ΩΩ′,∆Ω′(ΩΩ′)−1,0,∆∆′ −∆Ω′(ΩΩ′)−1Ω∆′), (3.6)

where ∆ is the difference matrix of dimension (n− 1)× n.

Proof Given that ∆X ∼ Nn−1(0,∆∆′) and ΩX ∼ Np(0,ΩΩ′), the joint distribu-

tion of ∆X and ΩX is ∆X

ΩX

 ∼ N(n−1)+p


 0

0

 ,

 ∆∆′ ∆Ω′

Ω∆′ ΩΩ′


 . (3.7)

By (2.4), the conditional distribution of ∆X, given ΩX = a, is then

∆X|ΩX = a ∼ Nn−1(∆Ω′(ΩΩ′)−1a,∆∆′ −∆Ω′(ΩΩ′)−1Ω∆′).

Thus, the conditional density of ΩX, given ∆X ≥ 0, is obtained as

fΩX|∆X≥0(a|∆X ≥ 0)

=
fΩX(a)

P (∆X ≥ 0)
P (∆X ≥ 0|ΩX = a)

=
fΩX(a)

P (∆X ≥ 0)
P (−∆X < 0|ΩX = a)

= Kφp(a; 0,ΩΩ′)Φn−1(0;−∆Ω′(ΩΩ′)−1a,∆∆′ −∆Ω′(ΩΩ′)−1Ω∆′)

= Kφp(a; 0,ΩΩ′)Φn−1(∆Ω′(ΩΩ′)−1a; 0,∆∆′ −∆Ω′(ΩΩ′)−1Ω∆′),
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where

K =
1

P (∆X ≥ 0)
=

1

n!
=

1

Φp(0; 0,∆∆′)
.

Thus,

I ∼ CSNp,n−1(0,ΩΩ′,∆Ω′(ΩΩ′)−1,0,∆∆′ −∆Ω′(ΩΩ′)−1Ω∆′).

Finally, we find the exact distribution of the proposed test statistic. Recall that

the proposed test statistic

I =
n∑

j=1

cjX
m−n+1
j:n =

n∑
j=1

cjYj (j = 1, 2, ..., n), cj ∈ R,

is a linear function of moving order statistics. Its distribution, under the null hypoth-

esis, is the case of Eq. (3.6) with p = 1 and Ω = c′ = (c1, c2, . . . , cn). Then,

fI(a) = n!φ(a; c′c)Φn−1

[
∆c(c′c)−1a; ∆∆′ −∆c(c′c)−1c′∆′

]
,

i.e.,

I ∼ CSN1,n−1(0, c′c,∆c(c′c)−1,0,∆∆′ −∆c(c′c)−1c′∆′), (3.8)

where ∆ is the difference matrix of dimension (n− 1)× n. If c1 = c2 = . . . = cn = 1,

then ∆c = 0 and c′c = n, and in this case

fI(a) = n!φ(a;n)Φn−1 [0; ∆∆′] = n!φ(a;n)
1

n!
= φ(a;n),

i.e.,

I ∼ CSN1,n−1(0, n,0,0,∆∆′) (3.9)

or simply N(0, n).
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3.5 Proposed Test Procedure

Recall the hypotheses testing problem we are interested in is

H0 : β = 0 vs. H1 : β > 0.

The null hypothesis means no trend and the alternative hypothesis represents that

there is an increasing trend.

Under H0,
∑n

j=1 cjX
1
j:n and

∑n
j=1 cjX

m−n+1
j:n are identically distributed if there is

no overlapping between the first and last moving samples. Let I =
∑n

j=1 cjX
m−n+1
j:n .

Then, by (3.8), the test statistic I ∼ CSN1,n−1(0, c′c,∆c(c′c)−1,0,∆∆′−∆c(c′c)−1c′∆′).

Evidently, large values of I lead to the rejection of H0 and in favor of H1. For

specified values of m,n, the weights c′ = (c1, c2, . . . , cn), and the level of significance

α, the critical region will be of the form

{
(xm−n+1, xm−n+2, . . . , xm) :

n∑
j=1

cjx
m−n+1
j:n ≥ s

}
,

where

α = P (I ≥ s|H0 : β = 0) = P

(
n∑

j=1

cjX
m−n+1
j:n ≥ s|H0 : β = 0

)
.

We find the critical value s by Monte Carlo simulations since it is computationally

hard to determine it directly from the density .
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Chapter 4

Empirical Evaluation

4.1 Introduction

In this chapter we use Monte Carlo simulations to find the critical values of the

CSN distribution and then evaluate the performance of the proposed test by means

of a power study.

In order to determine the critical value s, we need to do simulations since it is

computationally hard to find it directly from the density. We also need to carry out a

simulation study to examine the power performance of the proposed test for various

alternatives.

Consider the observations z1, ..., zN as independent realizations of the CSN ran-

dom variable. For any given significance level α, the critical value s is determined by

the following equation

α = P (reject H0|H0 is true) = P (I ≥ s|H0 : β = 0) =
1

N

N∑
i=1

Is {zi ≥ s} ,
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where Is(·) is an indicator function given by

Is(zi) =

 1 zi ≥ s

0 zi < s
, i = 1, . . . , N.

Then, consider the observations x1, ..., xm as independent realizations of the time

series model in (1.1):

Xi = βt(i) + εi, i = 1, 2, ...,m,

where εi ∼ i.i.d. N(0, 1) and β > 0 which marks an increasing trend in location. The

trend function t(i) takes linear, logarithmic and quadratic forms, respectively. Let

S
(l)
n = (xl, ..., xl+n−1) (l = 1, 2, ...,m−n+1) be the l-th moving sample. Let xlr:n denote

the r-th order statistic in S
(l)
n . The last moving sample is S

(m−n+1)
n =(xm−n+1, ..., xm).

Then, the power of the test is

π = P (reject H0|H1 is true) = P

(
n∑

j=1

cjx
m−n+1
j:n ≥ s|H1 : β = β1

)
,

where β1 > 0.

4.2 Algorithms

In this section, two algorithms are presented for the purpose of generating random

numbers from the CSN distribution.
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4.2.1 The Decomposition of I

Allard and Naveau (2007) introduced a decomposition of the CSN random vector,

which forms the direct theoretical foundation for our simulation. Let us decompose

I in (3.6).

Recall ∆X ∼ Nn−1(0,∆∆′) in Eq. (3.5). We consider the augmented Gaussian

vector ((∆X)′, U ′)′ such that

 ∆X

U

 ∼ N(n−1)+p


 0

0

 ,

 ∆∆′ 0

0 Ip


 ,

where U ∼ Np (0, Ip), ∆X and U are independent.

Now, recall that I
d
= [ΩX | ∆X ≥ 0] in (3.6). Note that the Gaussian vector

ΩX ∼ Np(0,ΩΩ′) can be expressed as

ΩX = F∆X +G1/2U,

where F = Ω∆′(∆∆′)−1, G = ΩΩ′ − Ω∆′(∆∆′)−1∆Ω′, G1/2 is lower-triangular and

the Cholesky factorization of G, a symmetric and positive definite matrix, and G =

G1/2(G1/2)′.

It is easy to verify that ΩX
d
= F∆X + G1/2U , since E(F∆X + G1/2U) =
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F∆E(X) +G1/2E(U) = 0 and

V ar(F∆X +G1/2U)

= V ar(F∆X) + V ar(G1/2U)

= F∆V ar(X)(F∆)′ +G1/2V ar(U)(G1/2)′

= Ω∆′(∆∆′)−1∆I(Ω∆′(∆∆′)−1∆)′ +G1/2I(G1/2)′

= Ω∆′(∆∆′)−1∆Ω′ + ΩΩ′ − Ω∆′(∆∆′)−1∆Ω′

= ΩΩ′.

Therefore, it follows that

I = F [∆X | ∆X ≥ 0] +G1/2U. (4.1)

4.2.2 Algorithm 1

This is an algorithm used by Iversen (2010), which he wrote in matlab. We

generate the CSN random variable in (3.6). Let us denote (3.7) by

 v

t

 ∼ N(n−1)+p


 0

0

 ,

 Σv Γvt

Γtv Σt


 ,

where v , ∆X, t , ΩX, Σv , ∆∆′, Γvt , ∆Ω′, Γtv , Ω∆′ and Γt , ΩΩ′. These

notations are used in the description of the algorithm as well as in our R program.

Step 1 Generate n − 1 independent N(0, 1) observations to get a vector z1 of

dimension n− 1;
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Step 2 Set v = A1z1, where A1 is lower-triangular and the Cholesky factorization

of ∆∆′ such that A1A
′
1 = ∆∆′ , Σv;

Step 3 If any element vi < 0 (vi ∈ v, i = 1, . . . , n − 1), repeat Steps 1 and 2 until

v ≥ 0;

Step 4 Generate p N(0, 1) observations to get a vector z2 of dimension p;

Step 5 By (4.1), we set I = Fv + A2z2. We have ∆Ω′ , Γvt, and then F =

Γvt
′Σv
−1 = Ω∆′(∆∆′)−1. A2 is lower-triangular, which is the Cholesky factorization

of G = Σt − Γvt
′Σv
−1Γvt = ΩΩ′ − Ω∆′(∆∆′)−1∆Ω′ such that A2A

′
2 = G.

Then, I is the required sample from the CSNp,n−1(0,ΩΩ′,∆Ω′(ΩΩ′)−1,0,∆∆′ −

∆Ω′(ΩΩ′)−1Ω∆′) distribution.

4.2.3 Algorithm 2

The disadvantage of Algorithm 1 is that it requires the element vi ≥ 0 for all i

simultaneously, which involves Steps 1 to 3. This process, generating a random vector

from a normal distribution till all its elements are bigger than 0, is time-consuming,

and it becomes almost impossible when v is high-dimensional. So as n increases, the

algorithm becomes very slow. In order to overcome this drawback, in Algorithm 2,

v is generated from a multivariate left truncated normal distribution truncated at 0.

This algorithm turns out to be quite efficient.

So, we just replace Steps 1 to 3 in Algorithm 1 by the following Step 1:

Step 1 Generate 1 vector v from a multivariate left truncated normal distribution

based on v ∼ Nn−1 (0,∆∆′) truncated at 0 to get v ≥ 0 (we use R command
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“tmvtnorm”);

Step 2 same as Step 4 in Algorithm 1;

Step 3 same as Step 5 in Algorithm 1.

4.2.4 Comparison

1. Time Efficiency Comparison

To compare the time efficiency of the two algorithms, we carried out 1000 simula-

tions. In our setup, p = 1, Ω = c′ = (1, 2, . . . , n), and by (3.8) I ∼ CSN1,n−1(0, c′c,

∆c(c′c)−1,0,∆∆′ −∆c(c′c)−1c′∆′).

As seen in Table 4.1, for n = 2(1)4, the two algorithms are very close. Algorithm

1 is slightly faster than Algorithm 2. For n ≥ 5, Algorithm 2 becomes more and more

efficient than Algorithm 1. For n = 9, the running time of Algorithm 1 is about 1

hour, while that of Algorithm 2 is just 1 second. From Figure 4.1, we can see the

difference in runtime increases dramatically since the running time of Algorithm 1

grows exponentially. The simulations are performed in the R statistical computing

environment. A computer with Intel Core i5-2430 2.4GHz Dual-Core Processor and

8GB DDR3 RAM was used.
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Table 4.1: Runtime in seconds (s) for the algorithms in 1000 simulations

n Algorithm 1 Algorithm 2 Difference
2 0.04 0.45 0.41
3 0.08 0.61 0.53
4 0.25 0.64 0.39
5 1.20 0.71 -0.49
6 6.85 0.80 -6.05
7 48.54 0.86 -47.68
8 397.20 0.92 -396.28
9 3556.71 1.00 -3555.71
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Figure 4.1: Runtime in seconds (s) for Algorithm 1 (represented by the solid red

line) and Algorithm 2 (represented by the dashed blue line) in 1000 simulations for

n = 2(1)9

28



M.Sc. Thesis - Tao Tan McMaster - Statistics

2. Distribution Comparison

For a specific sample size n, the realizations generated by the two algorithms indeed

come from the same distribution. The plots of overlapping density curves of I for

n = 2(1)9 are provided in Figures 4.2 and 4.3. In each plot, we observe that the

two density curves are quite close. The corresponding results of Kolmogorov-Smirnov

tests are given in Table 4.2. This test does not reject that the realizations generated

by the two algorithms come from the same distribution as the distance between the

empirical c.d.f’s is insignificantly small. Indeed, the p-values in the last column show

no evidence against the null hypothesis.

Table 4.2: Results of the Kolmogorov-Smirnov test for n = 2(1)9

Kolmogorov-Smirnov test
n test statistic values p-values
2 0.031 0.7226
3 0.027 0.8593
4 0.024 0.9356
5 0.035 0.5727
6 0.022 0.9689
7 0.037 0.5004
8 0.038 0.4658
9 0.024 0.9356
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Figure 4.2: Overlapping density curves of the CSN distribution generated by Al-

gorithm 1 (represented by the solid red line) and Algorithm 2 (represented by the

dashed blue line) in 1000 simulations for n = 2, 3, 4, 5
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Figure 4.3: Overlapping density curves of the CSN distribution generated by Al-

gorithm 1 (represented by the solid red line) and Algorithm 2 (represented by the

dashed blue line) in 1000 simulations for n = 6, 7, 8, 9
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4.3 Empirical Type I Error Rate

Before conducting the power study, we need to evaluate the empirical level with

the nominal α set as 0.05. Empirical Type I error rate can be calculated as the

proportion of significant test statistics under the null hypothesis of no trend among

the replicates.

Table 4.3: Average Empirical Type I Error Rate

Average Empirical
m Weight α
10 c(1:n) 0.050048
10 rep(1,n) 0.049947
100 c(1:n) 0.050142
100 rep(1,n) 0.050305
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Figure 4.4: Empirical Type I Error Rate for m=100 with weights c(1:n) (represented
by the round red points) and weights rep(1,n) (represented by the triangle blue points)
in 58,000 simulations
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The average empirical Type I error results for m = 10 of 1,000,000 simulations

and for m = 100 of 58,000 simulations are given in Table 4.3. Although three of

them are slightly larger than 0.05, they are not statistically significant. The average

empirical α for m = 10 with weights rep(1,n) is below 0.05. Empirical Type I Error

Rates for m=100 with both type of weights are plotted in Figure 4.4. We can see

that they are randomly distributed around 0.05.

4.4 Power Study

This study aims to evaluate the proposed test by examining the rejection rates

under H1 : β > 0.

4.4.1 Setup

To assess the performance of the proposed test and compare it with those of the

tests presented earlier in Hofmann and Balakrishnan (2006), we use the similar sim-

ulation setup.

An initial simulation under H0 : β = 0 determines the critical values at the

α = 0.05 level of significance. Two types of weights, c′ = (1, 2, . . . , n) denoted by

c(1:n) and c′ = (1, 1, . . . , 1) denoted by rep(1,n), are used in construction of the

test statistic and the corresponding critical values are determined. We then simulate

the power under the alternative hypotheses with different trend functions. For the

purpose of comparison, the trend coefficient β is so chosen that the power of Kendall’s

Q falls between 0.5 and 0.6.

For m = 10 and n = 2(1)5 , we carry out 1,000,000 simulations by Algorithm 1
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and Algorithm 2, respectively. To find the power values, we generate independent

realizations from the following time series models:

Linear trend: Xi = 0.25i+ εi,

Log trend: Xi = 1.2log(i) + εi,

Quadratic trend: Xi = 0.023(i2 + 0.023i) + εi,

where εi ∼ i.i.d. N(0, 1), i = 1, 2, ..., 10.

For m = 100 and n = 2(1)50, we performed 58,000 simulations by Algorithm 2

(due to the time inefficiency of Algorithm 1, it was not used when n was large). To

calculate the power values, we generated independent realizations from the following

time series models:

Linear trend: Xi = 0.006i+ εi,

Log trend: Xi = 0.23log(i) + εi,

Quadratic trend: Xi = 0.00006(i2 + 0.00006i) + εi,

where εi ∼ i.i.d. N(0, 1), i = 1, 2, ..., 100.

4.4.2 Results and Comments

For α = 0.05, m = 10, and n = 2(1)5, the results of 1,000,000 simulations are

given in Table 4.4 . In this scenario, the test can detect the trends with large power

values. As n increases, the power increases as well. For example, in the column of

linear trend of Algorithm 1, the power with weights rep(1,2) is 0.958 while the power

with rep(1,5) is 0.998. The power values with weights rep(1,n) are slightly larger

than those with weights c(1:n). For example, in the column of quadratic trend of

34



M.Sc. Thesis - Tao Tan McMaster - Statistics

Algorithm 2, the power with weights rep(1,2) is 0.905 while that with weight c(1:2)

is 0.896. There’s almost no difference between Algorithms 1 and 2 in terms of power

values.

Table 4.4: Power of the proposed test in 1, 000, 000 simulations when α = 0.05 and
m = 10

Algorithm 1
Power

n Weights Critical value Linear Log Quadratic
2 c(1:2) 4.124 0.951 0.982 0.896

rep(1,2) 2.324 0.958 0.985 0.904
3 c(1:3) 7.577 0.984 0.997 0.939

rep(1,3) 2.848 0.988 0.998 0.947
4 c(1:4) 11.972 0.993 0.999 0.954

rep(1,4) 3.296 0.995 1.000 0.960
5 c(1:5) 17.235 0.996 1.000 0.957

rep(1,5) 3.686 0.998 1.000 0.960
Algorithm 2

Power
n Weights Critical value Linear Log Quadratic
2 c(1:2) 4.125 0.951 0.982 0.896

rep(1,2) 2.323 0.957 0.985 0.905
3 c(1:3) 7.599 0.984 0.997 0.939

rep(1,3) 2.849 0.988 0.998 0.947
4 c(1:4) 11.952 0.993 1.000 0.954

rep(1,4) 3.293 0.995 1.000 0.960
5 c(1:5) 17.219 0.996 1.000 0.957

rep(1,5) 3.677 0.998 1.000 0.961

For α = 0.05, m = 100 and n = 2(1)50, the results of 58,000 simulations are

showed in Figures 4.5 and 4.6 and in Table 4.5. The power increases is seen to

increase with n. In Figure 4.5, the power curve with weights rep(1,n) is above that

with weights c(1:n). As seen in Table 4.5, the power values with weights rep(1,n)
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are slightly larger than those with weights c(1:n). For instance, in the column of

linear trend, the power with weights rep(1,25) is 0.845 while that with weight c(1:25)

is 0.796. Figure 4.6 shows, for both sets of weights, the proposed test performs

consistently best under log trend and worst under quadratic trend.

Compared with the nonparametric test statistics in Hofmann and Balakrishnan

(2006) (see Appendix B TableB.1), which require the whole data set, the proposed

test achieves much higher power by using only one-quarter of the full data set under

the normal distribution assumption.
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Figure 4.5: Power of the proposed test in 58, 000 simulations by trends when α = 0.05

and m = 100
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and m = 100
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Table 4.5: Power of the proposed test in 58, 000 simula-

tions when α = 0.05 and m = 100

Algorithm 2

Power
n Weights Critical value Linear Log Quadratic

2 c(1:2) 4.129 0.205 0.423 0.202
rep(1,2) 2.338 0.208 0.437 0.206

3 c(1:3) 7.582 0.260 0.545 0.256
rep(1,3) 2.844 0.267 0.574 0.268

4 c(1:4) 11.921 0.307 0.653 0.300
rep(1,4) 3.282 0.323 0.681 0.316

5 c(1:5) 17.238 0.344 0.724 0.338
rep(1,5) 3.699 0.366 0.759 0.356

6 c(1:6) 23.306 0.390 0.789 0.377
rep(1,6) 3.982 0.424 0.829 0.408

7 c(1:7) 30.233 0.427 0.838 0.408
rep(1,7) 4.361 0.454 0.873 0.438

8 c(1:8) 37.949 0.459 0.877 0.437
rep(1,8) 4.644 0.499 0.908 0.471

9 c(1:9) 46.243 0.498 0.910 0.472
rep(1,9) 4.965 0.528 0.934 0.504

10 c(1:10) 56.038 0.520 0.931 0.488
rep(1,10) 5.213 0.563 0.952 0.536

11 c(1:11) 65.709 0.552 0.948 0.520
rep(1,11) 5.450 0.598 0.968 0.560

12 c(1:12) 76.426 0.585 0.961 0.544
rep(1,12) 5.671 0.627 0.978 0.587

13 c(1:13) 88.160 0.605 0.970 0.560
rep(1,13) 5.886 0.655 0.984 0.613

14 c(1:14) 100.838 0.623 0.979 0.575
rep(1,14) 6.184 0.673 0.988 0.626

15 c(1:15) 113.362 0.649 0.985 0.600
rep(1,15) 6.391 0.694 0.992 0.644

16 c(1:16) 127.418 0.664 0.988 0.615
rep(1,16) 6.613 0.714 0.994 0.657

17 c(1:17) 141.517 0.689 0.992 0.633
Continued
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Algorithm 2

Power
n Weights Critical value Linear Log Quadratic

rep(1,17) 6.803 0.735 0.996 0.673
18 c(1:18) 156.583 0.706 0.994 0.645

rep(1,18) 6.967 0.756 0.997 0.690
19 c(1:19) 172.858 0.720 0.995 0.650

rep(1,19) 7.167 0.769 0.998 0.698
20 c(1:20) 189.306 0.738 0.997 0.669

rep(1,20) 7.373 0.781 0.999 0.712
21 c(1:21) 207.243 0.748 0.997 0.677

rep(1,21) 7.586 0.792 0.999 0.720
22 c(1:22) 224.638 0.766 0.998 0.688

rep(1,22) 7.669 0.813 0.999 0.734
23 c(1:23) 245.186 0.768 0.998 0.684

rep(1,23) 7.855 0.822 0.999 0.747
24 c(1:24) 263.494 0.784 0.999 0.699

rep(1,24) 8.054 0.830 1.000 0.750
25 c(1:25) 284.035 0.796 0.999 0.708

rep(1,25) 8.173 0.845 1.000 0.759
26 c(1:26) 305.435 0.800 0.999 0.710

rep(1,26) 8.386 0.848 1.000 0.766
27 c(1:27) 326.062 0.813 1.000 0.722

rep(1,27) 8.553 0.855 1.000 0.768
28 c(1:28) 349.506 0.819 1.000 0.724

rep(1,28) 8.666 0.868 1.000 0.776
29 c(1:29) 373.453 0.823 1.000 0.724

rep(1,29) 8.842 0.872 1.000 0.781
30 c(1:30) 394.562 0.838 1.000 0.738

rep(1,30) 8.946 0.880 1.000 0.789
31 c(1:31) 418.801 0.843 1.000 0.742

rep(1,31) 9.136 0.885 1.000 0.789
32 c(1:32) 443.617 0.851 1.000 0.748

rep(1,32) 9.331 0.888 1.000 0.787
33 c(1:33) 469.796 0.857 1.000 0.745

rep(1,33) 9.408 0.895 1.000 0.795
34 c(1:34) 497.823 0.860 1.000 0.745

rep(1,34) 9.581 0.898 1.000 0.796
Continued

39



M.Sc. Thesis - Tao Tan McMaster - Statistics

Algorithm 2

Power
n Weights Critical value Linear Log Quadratic

35 c(1:35) 524.230 0.864 1.000 0.750
rep(1,35) 9.691 0.903 1.000 0.801

36 c(1:36) 549.232 0.875 1.000 0.760
rep(1,36) 9.900 0.908 1.000 0.798

37 c(1:37) 579.489 0.875 1.000 0.757
rep(1,37) 10.048 0.909 1.000 0.803

38 c(1:38) 608.407 0.884 1.000 0.759
rep(1,38) 10.057 0.917 1.000 0.808

39 c(1:39) 638.066 0.885 1.000 0.761
rep(1,39) 10.233 0.917 1.000 0.805

40 c(1:40) 668.788 0.886 1.000 0.762
rep(1,40) 10.407 0.920 1.000 0.806

41 c(1:41) 701.636 0.887 1.000 0.760
rep(1,41) 10.516 0.926 1.000 0.806

42 c(1:42) 731.158 0.894 1.000 0.763
rep(1,42) 10.587 0.927 1.000 0.809

43 c(1:43) 764.307 0.896 1.000 0.766
rep(1,43) 10.828 0.929 1.000 0.808

44 c(1:44) 799.082 0.896 1.000 0.761
rep(1,44) 10.875 0.933 1.000 0.807

45 c(1:45) 831.269 0.900 1.000 0.766
rep(1,45) 11.018 0.933 1.000 0.811

46 c(1:46) 865.438 0.904 1.000 0.766
rep(1,46) 11.140 0.935 1.000 0.806

47 c(1:47) 902.158 0.904 1.000 0.758
rep(1,47) 11.275 0.935 1.000 0.809

48 c(1:48) 935.650 0.911 1.000 0.766
rep(1,48) 11.377 0.937 1.000 0.808

49 c(1:49) 974.517 0.908 1.000 0.761
rep(1,49) 11.496 0.938 1.000 0.804

50 c(1:50) 1010.099 0.911 1.000 0.763
rep(1,50) 11.640 0.940 1.000 0.807
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Chapter 5

Illustrative Example

In this chapter, we present a real-life example to illustrate the proposed test pro-

cedure.

5.1 Ozone Data

For the purpose of comparison, we use the data set presented in Hofmann and

Balakrishnan (2006), which is originally from Box et al. (1994). Figure 5.1 presents

the data set of monthly averages of hourly ozone readings in downtown Los Angeles

during the period 1955-1972. It exhibits an overall decreasing trend obscured by

seasonal effects. The complete data set is given in Appendix B.

When using the complete data set, all test statistics in Hofmann and Balakrishnan

(2006) detected the trend with p-values < 0.001. The same thing happens to the test

statistic proposed here. So it is hard to compare these procedures in this case. In

order to make a clear comparison, it is necessary to assess the performance of the

tests on the shorter intervals of consecutive observations where the trend is harder
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to identify. Then, the consecutive k -year intervals (k = 4, . . . , 10) are used from

the 18 years of data, each starting in January. Thus there are 19 − k such intervals

starting in years 1955, 1956, . . . ,1973− k.
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Figure 5.1: Monthly averages of hourly ozone readings in downtown Los Angeles from
1955 to 1972.

5.2 Data Transformation

Before applying the test procedure, we need to make an adjustment to the raw

data in accordance with the null distribution by the following standardization.

42



M.Sc. Thesis - Tao Tan McMaster - Statistics

For every k (k = 4, 5, ..., 10) and each interval, we transform the data by

yji
∗ =

yji −mean1i

sdi
, for n = 12, (5.1)

and

yji
∗∗ =

yji − (mean1i + mean2i)/2

sdi
, for n = 24, (5.2)

respectively, where i = 1, 2, ..., 19 − k, j = 1, 2, ..., 12k, yji is the j-th observation of

the i-th interval, mean1i and mean2i are the means of the first year and the second

year of the i-th interval, respectively, sdi is the standard deviation of the i-th interval.

Thus, for each interval, the observations are adjusted to have a standard deviation of

1; if we choose n = 12, the observations of the first year are adjusted to have a mean

of 0 by (5.1); if we choose n = 24, the observations of the first and second years are

adjusted to have a mean of 0 by (5.2).

5.3 Median p-values

We use the weights c′ = (1, 1, . . . , 1) and the adjusted observations of last one

and two years in each interval to construct our test statistics. For each k, we get the

median test statistic value over all intervals after calculating the test statistic values

in each interval, which is the summation of the last 12 or 24 standardized values

depending on the sample size we choose. Then, we obtain the median p-value over all

intervals by finding P (I < the median test statistic value) in 25, 000 simulations using

Algorithm 2. The median p-value is a robust measure which can clearly describe the

behavior of the test statistic in shorter intervals.
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For each k (k = 4, 5, ..., 10), all the median test statistic values and the median

p-values are summarized in Table 5.1. These results do not reject a strong decreasing

trend in the data. The median p-values are less than 0.05 except for the cases of k=4

and 5 when n = 12 and the case of k=4 when n = 24.

Compared with the tests in Hofmann and Balakrishnan (2006) (see Appendix B

Table B.3), the proposed test statistic shows smaller p values in 4 out of 7 cases for

n = 12 and smaller p values in all the cases for n = 24, and hence appears to be

better able to detect the trend in the latter case for this data set. Note that we only

use at most one-quarter of the data for n = 12 and one-half of the data for n = 24 in

each interval to calculate the values of the test statistic.

Table 5.1: Median p-values for the 19− k possibilities of consecutive k -year intervals

Subset Number of Number
length ozone of k -year
in years readings intervals Median test statistic values Median p-values
(k) (n = 12k) (19− k) n = 12 n = 24 n = 12 n = 24
4 48 15 -4.8539 -6.8757 0.0823 0.0807
5 60 14 -5.4488 -12.1526 0.0601 0.0065
6 72 13 -6.9073 -15.6992 0.0227 0.0006
7 84 12 -7.6832 -15.7419 0.0130 0.0005
8 96 11 -8.6225 -15.8332 0.0060 0.0005
9 108 10 -7.5134 -12.8800 0.0150 0.0044
10 120 9 -9.8368 -15.2024 0.0023 0.0010
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Chapter 6

Concluding Remarks

6.1 Summary

The investigation of trends is an important issue in many applications. We are

interested in testing for the presence of monotone trends in a time series model . The

observation in the model is considered to be the sum of two independent components:

the trend and the Gaussian white noise. The trend component is the multiplication

of a trend coefficient and a trend function. A positive (negative) trend coefficient

represents an increasing (decreasing ) trend.

We propose an exact test procedure. The test statistic we propose is the linear

combination of order statistics of last moving sample. Our derivation shows that

such test statistic follows the closed skew normal (CSN) distribution under the null

hypothesis. The partitioned-conditional method shows that a CSN random vector

is distributionally equivalent to a normal random vector with several components

that are greater than a given vector. Furthermore, the CSN vector can be decom-

posed into a combination of two independent components: a truncated normal vector
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and a standard normal vector. Based on the decomposition, two algorithms are pre-

sented and compared. By generating the truncated normal vector directly from a

multivariate truncated distribution, the second algorithm is found to be much more

efficient in terms of time than the first algorithm when the sample size increases.

After examining the empirical Type I error rates, we evaluate the constructed test

procedure with linear, logarithmic and quadratic trend, respectively, by an empirical

power study. The test can detect the trends with large power values for a small data

set. When dealing with a big data set, the test performs consistently best with log

trend and worst under quadratic trend. Compared with the nonparametric tests in

Hofmann and Balakrishnan (2006), which require the whole data set, the proposed

test can achieve much higher power by using only one-quarter of the full data set

when the normal distribution assumption is satisfied. Note that, if we don’t know

what distribution we are working with, or we are dealing with non normal data, it

will be more beneficial to use the distribution-free tests in Hofmann and Balakrishnan

(2006), which can work for any type of distribution.

6.2 Future Work

We may consider the robustness of the test in two ways. Firstly, we could explore

the performance of the test under different distributions, such as skew normal and

elliptical distribution. Secondly, we could examine the performance of the test in

presence of outliers or correlation.

The exact distribution under the alternative hypothesis will be of interest to study.

Another problem of interest will be to determine an optimal test statistic in the

situation considered here rather than fixing the coefficients of the L-statistic in an
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ad-hoc way. We hope to consider these issues for further study.
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Appendix A

R code

A.1 R code for Algorithm 1

A.1.1 R code for runtime of Algorithm 1 in Table 4.1

CSN <- function(Mu,Sigma,Gamma,Nu,Delta,num){

n2=length(Mu)

n1=length(Nu)

Gamma_vt=Gamma%*%Sigma

Sigma_v=Delta+Gamma%*%Sigma%*%t(Gamma)

Fm=t(Gamma_vt)%*%solve(Sigma_v)

Gm=Sigma-Fm%*%Gamma_vt

Sigma_v_chol=t(chol(Sigma_v))

Gm_chol=t(chol(Gm))

res=matrix(0,num,n2)

i=0

k=0
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while (i < num) {

i=i+1

z1=matrix(rnorm(n1),ncol=1)

v=Sigma_v_chol%*%z1-Nu

while (any(v<0)) {

k=k+1

z1=matrix(rnorm(n1),ncol=1)

v=Sigma_v_chol%*%z1-Nu

}

z2=matrix(rnorm(n2),ncol=1)

res[i,]=Mu+Fm%*%(v+Nu)+Gm_chol%*%z2

}

return(res)

}

for (n in 2:9){

W=1

Mu=(c(0))

a=c(1:n)

A=W*a

Sigma=t(A)%*%A

B=matrix(0,n-1,n)

B[1,]=c(-1,1,rep(0,n-2))

for (i in 2:n-1) {

B[i,]=c(rep(0,i-1),-1,1,rep(0,n-i-1))

}

Gamma=B%*%A%*%solve(t(A)%*%A)
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Nu=rep(0,n-1)

Delta=B%*%t(B)-B%*%A%*%solve(t(A)%*%A)%*%t(A)%*%t(B)

print(system.time(myCSN<-CSN(Mu,Sigma,Gamma,Nu,Delta,1000)))

}

A.1.2 R code for critical values and power values by Algo-

rithm 1 in Table 4.4

CSN <- function(Mu,Sigma,Gamma,Nu,Delta,num){

n2=length(Mu)

n1=length(Nu)

Gamma_vt=Gamma%*%Sigma

Sigma_v=Delta+Gamma%*%Sigma%*%t(Gamma)

Fm=t(Gamma_vt)%*%solve(Sigma_v)

Gm=Sigma-Fm%*%Gamma_vt

Sigma_v_chol=t(chol(Sigma_v))

Gm_chol=t(chol(Gm))

res=matrix(0,num,n2)

i=0

k=0

while (i < num) {

i=i+1

z1=matrix(rnorm(n1),ncol=1)

v=Sigma_v_chol%*%z1-Nu

while (any(v<0)) {

k=k+1
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z1=matrix(rnorm(n1),ncol=1)

v=Sigma_v_chol%*%z1-Nu

}

z2=matrix(rnorm(n2),ncol=1)

res[i,]=Mu+Fm%*%(v+Nu)+Gm_chol%*%z2

}

w=0.95*num

return(sort(res)[w])

}

cr=rep(0,n-1)

for (n in 2:5){

W=1

Mu=(c(0))

a=c(1:n)##change the weight to "a=rep(1,n)"

A=W*a

Sigma=t(A)%*%A

B=matrix(0,n-1,n)

B[1,]=c(-1,1,rep(0,n-2))

for (i in 2:n-1) {

B[i,]=c(rep(0,i-1),-1,1,rep(0,n-i-1))

}

Gamma=B%*%A%*%solve(t(A)%*%A)

Nu=rep(0,n-1)

Delta=B%*%t(B)-B%*%A%*%solve(t(A)%*%A)%*%t(A)%*%t(B)

cr[n-1]=CSN(Mu,Sigma,Gamma,Nu,Delta,1000000)

}
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print(cr)

alpha=function(n,W,beta,cr,m,asim) {

a=c(1:n)##change the weight to "a=rep(1,n)"

A=W*a

y=array(0,c(m,asim))

M=array(0,c(n,asim))

MS=array(0,c(n,asim))

MM=array(0,c(asim))

Time=c(1:m)

Trend=beta*Time##change the form of trend to "Trend=beta*log(Time)"

## and "Trend=beta*(Time^2+beta*Time)", respectively.

for(j in 1:asim){

y[,j]=rnorm(m)+Trend

}

M=y[(m-n+1):m,]

MS=apply(M, 2, sort)

MM=A%*%MS

power=length(MM[MM >= cr ])/asim

return(power)

}

beta=0.25##change the value of beta to 1.2 and 0.023, respectively

power=rep(0,n-1)

for (n in 2:5){

power[n-1]=alpha(n,1,beta,cr[n-1],10,1000000)

}

print(power)
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A.2 R code for Algorithm 2

A.2.1 R code for runtime of Algorithm 2 in Table 4.1

library("tmvtnorm")

CSN <- function(Mu,Sigma,Gamma,Nu,Delta,num){

n2=length(Mu)

n1=length(Nu)

Gamma_vt=Gamma%*%Sigma

Sigma_v=Delta+Gamma%*%Sigma%*%t(Gamma)

Fm=t(Gamma_vt)%*%solve(Sigma_v)

Gm=Sigma-Fm%*%Gamma_vt

Gm_chol=t(chol(Gm))

res=matrix(0,num,n2)

i=0

while (i < num) {

i=i+1

v <- rtmvnorm(n=1, mean=rep(0,n1),sigma=Sigma_v, lower=rep(0,n1),

algorithm="gibbs", burn.in.samples=100)

##need to change "sigma=Sigma_v" to "sigma=(Sigma_v)^{1/2}" when n=2

u=matrix(rnorm(n2),ncol=1)

res[i,]=Mu+Fm%*%(t(v)+Nu)+Gm_chol%*%u

}

return(res)

}

for (n in 2:9){

W=1
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Mu=(c(0))

a=c(1:n)

A=W*a

Sigma=t(A)%*%A

B=matrix(0,n-1,n)

B[1,]=c(-1,1,rep(0,n-2))

for (i in 2:n-1) {

B[i,]=c(rep(0,i-1),-1,1,rep(0,n-i-1))

}

Gamma=B%*%A%*%solve(t(A)%*%A)

Nu=rep(0,n-1)

Delta=B%*%t(B)-B%*%A%*%solve(t(A)%*%A)%*%t(A)%*%t(B)

print(system.time(myCSN<-CSN(Mu,Sigma,Gamma,Nu,Delta,1000)))

}

A.2.2 R code for critical values and power values by Algo-

rithm 2 in Table 4.4

library("tmvtnorm")

CSN <- function(Mu,Sigma,Gamma,Nu,Delta,num){

n2=length(Mu)

n1=length(Nu)

Gamma_vt=Gamma%*%Sigma

Sigma_v=Delta+Gamma%*%Sigma%*%t(Gamma)

Fm=t(Gamma_vt)%*%solve(Sigma_v)

Gm=Sigma-Fm%*%Gamma_vt
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Gm_chol=t(chol(Gm))

res=matrix(0,num,n2)

i=0

while (i < num) {

i=i+1

v <- rtmvnorm(n=1, mean=rep(0,n1),sigma=Sigma_v, lower=rep(0,n1),

algorithm="gibbs", burn.in.samples=100)

##need to change "sigma=Sigma_v" to "sigma=(Sigma_v)^{1/2}" when n=2

u=matrix(rnorm(n2),ncol=1)

res[i,]=Mu+Fm%*%(t(v)+Nu)+Gm_chol%*%u

}

w=0.95*num

return(sort(res)[w])

}

cr=rep(0,n-1)

for (n in 2:5){

W=1

Mu=(c(0))

a=c(1:n)##change the weight to "a=rep(1,n)"

A=W*a

Sigma=t(A)%*%A

B=matrix(0,n-1,n)

B[1,]=c(-1,1,rep(0,n-2))

for (i in 2:n-1) {

B[i,]=c(rep(0,i-1),-1,1,rep(0,n-i-1))

}
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Gamma=B%*%A%*%solve(t(A)%*%A)

Nu=rep(0,n-1)

Delta=B%*%t(B)-B%*%A%*%solve(t(A)%*%A)%*%t(A)%*%t(B)

cr[n-1]=CSN(Mu,Sigma,Gamma,Nu,Delta,1000000)

}

print(cr)

alpha=function(n,W,beta,cr,m,asim) {

a=c(1:n)##change the weight to "a=rep(1,n)"

A=W*a

y=array(0,c(m,asim))

M=array(0,c(n,asim))

MS=array(0,c(n,asim))

MM=array(0,c(asim))

Time=c(1:m)

Trend=beta*Time##change the form of trend to "Trend=beta*log(Time)"

## and "Trend=beta*(Time^2+beta*Time)", respectively.

for(j in 1:asim){

y[,j]=rnorm(m)+Trend

}

M=y[(m-n+1):m,]

MS=apply(M, 2, sort)

MM=A%*%MS

power=length(MM[MM >= cr ])/asim

return(power)

}

beta=0.25##change the value of beta to 1.2 and 0.023, respectively
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power=rep(0,n-1)

for (n in 2:5){

power[n-1]=alpha(n,1,beta,cr[n-1],10,1000000)

}

print(power)

A.2.3 R code for critical values and power values by Algo-

rithm 2 in Table 4.5

CSN.sim<-function(Mu,Sigma,Gamma,Nu,Delta,n.samples=58000,n.bis=100,

max.iter=n.samples*10){

require(tmvtnorm,quietly=TRUE)

n2 <- length(Mu)

n1 <- length(Nu)

Gamma_vt <- Gamma%*%Sigma

Sigma_v <- Delta+Gamma%*%Sigma%*%t(Gamma)

Fm <- t(Gamma_vt)%*%solve(Sigma_v)

Gm <- Sigma-Fm%*%Gamma_vt

Gm_chol <- t(chol(Gm))

res <- matrix(0,n.samples,n2)

i<-0;j<-0

while (i < n.samples&j<max.iter){

v <- rtmvnorm(n=1, mean=rep(0,n1),sigma=Sigma_v, lower=rep(0,n1),

algorithm="gibbs", burn.in.samples=n.bis)

##need to change "sigma=Sigma_v" to "sigma=(Sigma_v)^{1/2}" when n=2

if(!any(is.na(v))){
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i<-i+1

u=matrix(rnorm(n2),ncol=1)

res[i,]<- Mu+Fm%*%(t(v)+Nu)+Gm_chol%*%u

}

j<-j+1

}

if(j==max.iter&i<n.samples){print("Required number of samples not achieved")}

print(c(i,j))

w=0.95*n.samples

return(sort(res)[w])

}

cr=rep(0,n-1)

for (n in 2:50){

W=1

Mu=(c(0))

a=c(1:n)##change the weight to "a=rep(1,n)"

A=W*a

Sigma=t(A)%*%A

B=matrix(0,n-1,n)

B[1,]=c(-1,1,rep(0,n-2))

for (i in 2:n-1) {

B[i,]=c(rep(0,i-1),-1,1,rep(0,n-i-1))

}

Gamma=B%*%A%*%solve(t(A)%*%A)

Nu=rep(0,n-1)

Delta=B%*%t(B)-B%*%A%*%solve(t(A)%*%A)%*%t(A)%*%t(B)

58



M.Sc. Thesis - Tao Tan McMaster - Statistics

cr[n-1]=CSN.sim(Mu,Sigma,Gamma,Nu,Delta,n.samples=58000,n.bis=100)

}

print(cr)

alpha=function(n,W,beta,cr,m,asim) {

a=c(1:n)##change the weight to "a=rep(1,n)"

A=W*a

y=array(0,c(m,asim))

M=array(0,c(n,asim))

MS=array(0,c(n,asim))

MM=array(0,c(asim))

Time=c(1:m)

Trend=beta*Time##change the form of trend to "Trend=beta*log(Time)"

## and "Trend=beta*(Time^2+beta*Time)", respectively.

for(j in 1:asim){

y[,j]=rnorm(m)+Trend

}

M=y[(m-n+1):m,]

MS=apply(M, 2, sort)

MM=A%*%MS

power=length(MM[MM >= cr ])/asim

return(power)

}

beta=0.006##change the value of beta to 0.23 and 0.00006, respectively

power=rep(0,n-1)

for (n in 2:50){

power[n-1]=alpha(n,1,beta,cr[n-1],100,58000)
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}

print(power)

A.2.4 R code for median p-values by Algorithm 2 in Table

5.1

mtest=c(-4.853903,-5.448766,-6.907302,-7.683202,-8.622535,-7.513401,-9.836821)

library("tmvtnorm")

CSN <- function(Mu,Sigma,Gamma,Nu,Delta,num){

n2=length(Mu)

n1=length(Nu)

Gamma_vt=Gamma%*%Sigma

Sigma_v=Delta+Gamma%*%Sigma%*%t(Gamma)

Fm=t(Gamma_vt)%*%solve(Sigma_v)

Gm=Sigma-Fm%*%Gamma_vt

Gm_chol=t(chol(Gm))

res=matrix(0,num,n2)

i=0

while (i < num) {

i=i+1

v <- rtmvnorm(n=1, mean=rep(0,n1),sigma=Sigma_v, lower=rep(0,n1),

algorithm="gibbs", burn.in.samples=100)

u=matrix(rnorm(n2),ncol=1)

res[i,]=Mu+Fm%*%(t(v)+Nu)+Gm_chol%*%u

}

return(list(mean(res< mtest[1]),mean(res< mtest[2]),mean(res< mtest[3])
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, mean(res< mtest[4]), mean(res< mtest[5])

, mean(res< mtest[6]), mean(res< mtest[7])))

}

n=12 ##change n to 24 for n=24

W=1

Mu=(c(0))

a=rep(1,n)

A=W*a

Sigma=t(A)%*%A

B=matrix(0,n-1,n)

B[1,]=c(-1,1,rep(0,n-2))

for (i in 2:n-1) {

B[i,]=c(rep(0,i-1),-1,1,rep(0,n-i-1))

}

Gamma=B%*%A%*%solve(t(A)%*%A)

Nu=rep(0,n-1)

Delta=B%*%t(B)-B%*%A%*%solve(t(A)%*%A)%*%t(A)%*%t(B)

p=unlist(CSN(Mu,Sigma,Gamma,Nu,Delta,25000))

print(p)

A.3 R code for median test statistic values in Ta-

ble 5.1

ozone=c(2.63, 1.94, 3.38, 4.92, 6.29, 5.58, 5.50, 4.71, 6.04, 7.13, 7.79, 3.83,

3.83, 4.25, 5.29, 3.75, 4.67, 5.42, 6.04, 5.71, 8.13, 4.88, 5.42, 5.50,
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3.00, 3.42, 4.50, 4.25, 4.00, 5.33, 5.79, 6.58, 7.29, 5.04, 5.04, 4.48,

3.33, 2.88, 2.50, 3.83, 4.17, 4.42, 4.25, 4.08, 4.88, 4.54, 4.25, 4.21,

2.75, 2.42, 4.50, 5.21, 4.00, 7.54, 7.38, 5.96, 5.08, 5.46, 4.79, 2.67,

1.71, 1.92, 3.38, 3.98, 4.63, 4.88, 5.17, 4.83, 5.29, 3.71, 2.46, 2.17,

2.15, 2.44, 2.54, 3.25, 2.81, 4.21, 4.13, 4.17, 3.75, 3.83, 2.42, 2.17,

2.33, 2.00, 2.13, 4.46, 3.17, 3.25, 4.08, 5.42, 4.50, 4.88, 2.83, 2.75,

1.63, 3.04, 2.58, 2.92, 3.29, 3.71, 4.88, 4.63, 4.83, 3.42, 2.38, 2.33,

1.50, 2.25, 2.63, 2.96, 3.46, 4.33, 5.42, 4.79, 4.38, 4.54, 2.04, 1.33,

2.04, 2.81, 2.67, 4.08, 3.90, 3.96, 4.50, 5.58, 4.52, 5.88, 3.67, 1.79,

1.71, 1.92, 3.58, 4.40, 3.79, 5.52, 5.50, 5.00, 5.48, 4.81, 2.42, 1.46,

1.71, 2.46, 2.42, 1.79, 3.63, 3.54, 4.88, 4.96, 3.63, 5.46, 3.08, 1.75,

2.13, 2.58, 2.75, 3.15, 3.46, 3.33, 4.67, 4.13, 4.73, 3.42, 3.08, 1.79,

1.96, 1.63, 2.75, 3.06, 4.31, 3.31, 3.71, 5.25, 3.67, 3.10, 2.25, 2.29,

1.25, 2.25, 2.67, 3.23, 3.58, 3.04, 3.75, 4.54, 4.46, 2.83, 1.63, 1.17,

1.79, 1.92, 2.25, 2.96, 2.38, 3.38, 3.38, 3.21, 2.58, 2.42, 1.58, 1.21,

1.42, 1.96, 3.04, 2.92, 3.58, 3.33, 4.04, 3.92, 3.08, 2.00, 1.58, 1.21)

mean1=apply(matrix(ozone,12,18),2,mean)

mtest=array(0,7)

for (k in (4:10)){

ozone.k=array(0,c((12*k),(19-k),k))

ozone.k.s=array(0,c((12*k),(19-k),k))

for (i in 1:(19-k)){

ozone.k[,i,k]=ozone[(12*(i-1)+1):(12*(k+(i-1)))]

ozone.k.s[,i,k]=(ozone.k[,i,k]-mean1[i])/sd(ozone.k[,i,k])

##change the above equation to

##ozone.k.s[,i,k]=(ozone.k[,i,k]-mean1[i])/sd(ozone.k[,i,k]) for n=24
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}

fsum <- function(x) c(sum = sum(x[(12*(k-1)+1):(12*k)]))

##change the above function to

##fsum <- function(x) c(sum = sum(x[(12*(k-2)+1):(12*k)])) for n=24

test=array(0,19-k)

test=apply(ozone.k.s[,,k],2,fsum)

mtest[k-3]=median(test)

}

print(mtest)
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Tables

B.1 Tables

B.1.1 Power of the nonparametric tests in Hofmann and Bal-

akrishnan (2006)

B.1.2 Monthly averages of hourly readings of ozone in down-

town Los Angeles

B.1.3 Median p-values for the (19−k) possibilities of consec-

utive k-year intervals in Hofmann and Balakrishnan

(2006)
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Table B.1: Power of the nonparametric tests in Hofmann and Balakrishnan (2006)

Power
Q rS D B M G(0.995)

m Trend β 0.036 0.048 0.043 0.047 0.050 0.050
10 Linear 0.25 0.545 0.619 0.418 0.467 0.632 0.624

Log 1.2 0.586 0.649 0.502 0.47 0.666 0.674
Quadratic 0.023 0.539 0.612 0.415 0.455 0.626 0.62

Power
Q rS D B M G(0.995)

m Trend β 0.050 0.050 0.044 0.050 0.050 0.050
100 Linear 0.006 0.52 0.52 0.13 0.39 0.53 0.52

Log 0.23 0.58 0.58 0.2 0.44 0.59 0.6
Quadratic 0.00006 0.52 0.53 0.13 0.4 0.54 0.53

Note: Q,r,D,B,M and G are the nonparametric test statistics presented in Hofmann and Balakr-
ishnan (2006).
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Table B.2: Monthly averages of hourly readings of ozone in downtown Los Angeles.

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
1955 2.63 1.94 3.38 4.92 6.29 5.58 5.50 4.71 6.04 7.13 7.79 3.83
1956 3.83 4.25 5.29 3.75 4.67 5.42 6.04 5.71 8.13 4.88 5.42 5.50
1957 3.00 3.42 4.50 4.25 4.00 5.33 5.79 6.58 7.29 5.04 5.04 4.48
1958 3.33 2.88 2.50 3.83 4.17 4.42 4.25 4.08 4.88 4.54 4.25 4.21
1959 2.75 2.42 4.50 5.21 4.00 7.54 7.38 5.96 5.08 5.46 4.79 2.67
1960 1.71 1.92 3.38 3.98 4.63 4.88 5.17 4.83 5.29 3.71 2.46 2.17
1961 2.15 2.44 2.54 3.25 2.81 4.21 4.13 4.17 3.75 3.83 2.42 2.17
1962 2.33 2.00 2.13 4.46 3.17 3.25 4.08 5.42 4.50 4.88 2.83 2.75
1963 1.63 3.04 2.58 2.92 3.29 3.71 4.88 4.63 4.83 3.42 2.38 2.33
1964 1.50 2.25 2.63 2.96 3.46 4.33 5.42 4.79 4.38 4.54 2.04 1.33
1965 2.04 2.81 2.67 4.08 3.90 3.96 4.50 5.58 4.52 5.88 3.67 1.79
1966 1.71 1.92 3.58 4.40 3.79 5.52 5.50 5.00 5.48 4.81 2.42 1.46
1967 1.71 2.46 2.42 1.79 3.63 3.54 4.88 4.96 3.63 5.46 3.08 1.75
1968 2.13 2.58 2.75 3.15 3.46 3.33 4.67 4.13 4.73 3.42 3.08 1.79
1969 1.96 1.63 2.75 3.06 4.31 3.31 3.71 5.25 3.67 3.10 2.25 2.29
1970 1.25 2.25 2.67 3.23 3.58 3.04 3.75 4.54 4.46 2.83 1.63 1.17
1971 1.79 1.92 2.25 2.96 2.38 3.38 3.38 3.21 2.58 2.42 1.58 1.21
1972 1.42 1.96 3.04 2.92 3.58 3.33 4.04 3.92 3.08 2.00 1.58 1.21

Note: 216 observation; values are in pphm (Box et al., 1994).
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Domı́nguez-Molina, J. A., González-Faŕıas, G., and Gupta, A. K. (2003). The multi-

variate closed skew normal distribution. Technical Report No. 03-12, Department

of Mathematics and Statistics, Bowling Green State University, Bowling Green,

Ohio.
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