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Abstract
For the first time, we apply aggressive space mapping to automatically aligning electro-
magnetic models based on hybrid mode-matching/network theory simulations with models based
on finite-element (FEM) simulations in the design optimization of microwave circuits. Statistical
parameter extraction involving £; and penalty concepts facilitates a key requirement by space
mapping for uniqueness and consistency. EM optimization of an H-plane resonator filter with
rounded corners illustrates the advantages as well as the challenges of our approach. The effects

of manufacturing tolerances are rapidly estimated for the first time with FEM accuracy.
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SUMMARY
Introduction

Direct exploitation of electromagnetic (EM) simulators in the optimization of arbitrarily
shaped 3D structures at high frequencies is crucial for first-pass success CAD. Recently, we
reported successful automated design optimization of 3D structures using FEM simulations [1].

In this paper, we apply for the first time, aggressive space mapping optimization [1,2]
through automatic alignment of the results of two separate EM simulation systems. The objective
of space mapping is to avoid direct optimization of computationally intensive models. The so-called
optimization space (OS) in the present case is represented by a library of waveguide models based
on mode matching (MM) connected by network theory: we use the RWGMM program developed
by Arndt and his colleagues [3,4]. For the so-called EM space (EM) or "fine" model we have
selected Maxwell Eminence [5].

Both simulation approaches provide accurate EM analysis. RWGMM is computationally
efficient in its treatment of a variety of predefined geometries. It is ideally suited for modeling
complex waveguide structures that can be decomposed into the available library building blocks.
FEM-based simulators such as Maxwell Eminence [5] are able to analyze arbitrary shapes, but they
are computationally very intensive.

We demonstrate aggressive space mapping optimization of an H-plane resonator filter with
rounded corners. Subsequent Monte Carlo analysis of manufacturing tolerances exploits the FEM-
based space mapped model with the speed of the MM/network theory simulator. We also
successfully optimized waveguide transformers using space mapping that aligns hybrid MM/network
theory simulations with a few modes (coarse model) and hybrid MM/network theory simulations
using many modes to represent the discontinuities (fine model).

Particularly challenging in the present work is the parameter extraction phase, key to
effective implementation of space mapping optimization. The space mapping methodology has been
shown to be sensitive to nonunique solutions or local minima inconsistent with the design
optimization solution we are aiming at. In this paper we present an in-depth study of this

phenomenon and how it may be addressed. We offer a solution based on statistical parameter



extraction involving a powerful ¢, algorithm and penalty function concepts. We show that we can
satisfy the requirement for uniqueness and consistency.

The software systems used to produce the results presented in this paper include the
RWGMM library [3] linked with the network theory optimizers of OSA90/hope [6]. Maxwell
Eminence was interfaced through Empipe3D [6]. The space mapping procedure executes all these

systems concurrently.

Space Mapping Optimization Using MM /Network Theory and FEM

The space mapping optimization using the MM waveguide library serves as the OS model
and the FEM simulator as the EM model. The flow diagram of our space mapping procedure is
outlined in Fig. 1. We address the design of the H-plane resonator filter shown in Fig. 2. The
waveguide cross-section is 15.8 x 7.9 mm, while the thickness of the irises is £ = 0.4 mm. The
radius of the corners is R = 1 mm. The iris and resonator dimensions d,, d,, /,, I, are selected as
the optimization variables.

First, minimax optimization of the OS model (Fig. 2(a)) is performed exploring the
waveguide MM library with the following specifications provided by Arndt [7]

IS5l (dB) < -35 for 13.5 < f < 13.6 GHz

IS4l (dB) < -20 for 14.0 < f < 14.2 GHz

|S5] (dB) < -35 for 14.6 < f < 14.8 GHz
where f represents the frequency.

The minimax solution xw*, which yields the target response for space mapping, is d, =
6.04541, d, = 3.21811, I, = 13.06880, /, = 13.8841. The responses of the two models at this point
are shown in Fig. 3.

Focusing on the passband, we treat responses in the region 13.96 < f < 14.24 GHz. The
responses of both models at the point xos* are shown in Fig. 4. Fifteen sample points were used
with Maxwell Eminence. Tables I, II and III summarize the steps of the successful space mapping

optimization using the statistical parameter extraction procedure outlined in the next section. The



optimized response shown in Fig. 5 was obtained after only 4 simulations by Maxwell Eminence.
We verified the space mapping results by directly optimizing the H-plane filter using
Empipe3D [6] driving the FEM solver Maxwell Eminence [5]. The direct optimization results

confirmed that our space mapping solution is indeed optimal.

Statistical Parameter Extraction

Space mapping has been shown to be sensitive to nonunique solutions [1] or local minima
which are inconsistent with the design optimization solution we are aiming at. Here, we propose
an automated statistical parameter extraction procedure to overcome potential pitfalls arising out
of inaccurate or nonunique solutions.

First, we perform standard ¢, parameter extraction [8] starting from xos*. If the optimized
response matches well the EM model response (the £, objective is small enough) we continue with
the space mapping iterations. Otherwise we turn to statistical exploration of the OS model.

The key to statistical parameter extraction is to establish the exploration region. Unlike a
general purpose random/global optimization approach we want to carry out local statistical
exploration as deemed suitable for space mapping. To this end we need to realize that in the
process of space mapping the desired parameter extraction solutions, that is the points in the OS
space, gradually approach x,,s* (see [2]). Furthermore, we may consider the concept of the
consistency of the parameter extraction process w.r.t. the existing mapping.

Consider the kth space mapping step. When the existing mapping (x,, =P (k'l)(xem)) is
applied to the current point in the EM model space we arrive at xos*, since that point has been
determined by the inverse mapping (xl:m =p k-1 _l(x;s), see [2]) . The fact that the new point (to
be extracted) will be different from xos* is not only the basis for modifying the mapping, but also
quantitatively establishes the degree of inconsistency w.r.t. the existing mapping. This allows us
to define an appropriate exploration region. For example, for the kth step, if we define the
multidimensional interval § as

§=x,51 - x," ()



the statistical exploration may be limited to the region defined by
Xi=[ Xosi = 2181 Xoq +216811] 3)
A set of N, starting points is then statistically generated within the region (3) and N;
parameter extraction optimizations are carried out. These parameter extractions are further aided
by a penalty function [9] of the form
Axk - x )
augmenting the £; objective function. The resulting solutions (expected to be multiple) are then
categorized into clusters and ranked according to the achieved values of the objective function.
Finally, the penalty term is removed and the process repeated in order to focus the clustered
solution(s). The aforementioned steps are briefly summarized by the following algorithm and
illustrated in the flow chart shown in Fig. 6.
Algorithm
Step 1 Initialize the exploration region. If this is the first space mapping iteration this
initialization is arbitrary; otherwise use (3).
Step 2 Generate N, starting points.
Step 3 Perform Ng parameter extractions from the N starting points including the penalty
function (4).
Step 4 Categorize the solutions. Select one or more best clusters of the solutions.
Step 5 Focus the clusters by reoptimizing without the penalty term.
This approach has been automated using a three-level Datapipe architecture, similar to [1].
Furthermore, it can be parallelized since the N, parameter extractions considered are carried out

independently.

Parameter Extraction of the H-Plane Filter
Fig. 7 presents the variation of the MM/network theory model response in the vicinity of
the starting point. Responses are computed along the direction of the first aggressive space

mapping step, defined by points xos* and xosl. Fig. 8 shows the variation of the £, objective in the



vicinity of the starting point w.r.t. two sensitive parameters: the iris openings d, and d,. Obviously,
the £, objective function has multiple minima, hence the optimizer may terminate at an undesirable
solution.

We apply the statistical extraction procedure outlined in the preceding section. A set of 100
starting points is statistically generated, using a uniform random number generator, within the range
(3). The ¢, parameter extraction optimization with the penalty term (4) is performed from these
points. The distances of the random starting points and corresponding solutions from the point xw*
are depicted in Fig. 9. The solutions are scattered, confirming our observation that the £, objective
function has many local minima as illustrated in Fig. 8. Among the 100 solutions a cluster of 15
points is detected in Fig. 9(b). Removing the penalty term and restarting the parameter extraction
process from all the points further sharpens the solution, as shown in Fig. 9(b). All the points
within the cluster converge to the same solution, as depicted in Fig. 9(c). Figs. 10 and 11 show the
responses of the 100 points before and after the parameter extraction, respectively. Fig. 12 displays
the responses corresponding to the cluster of 15 points which converged to the same solution,

validating successful parameter extraction.

Space Mapping Optimization Using Coarse MM Model and Fine MM Model

The RWGMM library allows a designer to take into a large number of higher-order modes
to model waveguide transition components. Increasing the number of modes improves accuracy at
the expense of higher computational cost. Space mapping may enhance the efficiency of the MM-
based optimization by aligning the response of the fine model (including many modes) with the
response of a coarse model (using one or a few modes).

We apply this strategy to the optimization of three-section and seven-section transformers
described in [10]. For the coarse model, we used just one mode. For the fine model, we included
all the modes below the cut-off frequency. The actual number of modes included in the fine
model is automatically determined by the RWGMM program. As the lengths and heights of the

waveguide sections are optimized, the number of modes included in the fine model varies from 49



to 198. The space mapping optimization reached a solution in 4 steps.

Tolerance Simulation Using Space Mapping

Space mapping provides not only the optimized parameter values, but also an efficient
means of statistical tolerance analysis. We can map parameter tolerances in the EM space to the
corresponding incremental changes in the OS space. Consequently, we will be able to rapidly
estimate the effects of manufacturing tolerances, benefitting at the same time from the accuracy
of the FEM model and the speed of the hybrid MM/network theory simulations.

As an illustration, we consider Monte Carlo analysis of the H-plane filter. We assign
normally distributed tolerances to all parameter values, with a standard deviation of 0.0333% (in
the order of 1 pm). The Monte Carlo simulation results are shown in Fig. 13. Assuming a
specification of |S,| (dB) < -15 in the passband, the estimated yield is 88.5% out of 200 outcomes.
Then, we increased the standard deviations of the parameter tolerances to 0.1%. This time the yield
dropped to 19% out of 200 outcomes.

By using the space mapping model, the CPU time required for the Monte Carlo analysis is

comparable to just a single full FEM simulation.

Conclusions

We have presented new applications of aggressive space mapping to filter optimization using
network theory, mode-matching and finite element simulation techniques. A statistical approach
to parameter extraction incorporating the £, objective and penalty function concepts has effectively
addressed the requirement of a unique and consistent solution. We have also demonstrated space
mapping optimization based on coarse and fine MM models with different numbers of modes. We
have shown that the space mapping model provides a highly efficient means for rapid Monte Carlo

analysis of microwave circuits with the accuracy of FEM simulation.
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TABLE 1
SPACE MAPPING OPTIMIZATION OF THE H-PLANE FILTER

Point d, d, I I,

Ko 6.04541 3.21811 13.06880 13.8841
Ko 6.19267 3.32269 12.98759 1387521
Xom 6.17017 3.29692 13.05362 1388117
Xom® 6.17557 3.29058 13.02820 13.88411

Values of all optimization variables are in mm.

TABLE 1II
PARAMETER EXTRACTION RESULTS FOR SPACE MAPPING OPTIMIZATION

Point d, d, I I,

Xost 5.89815 3.11353 13.1500 13.8930
Xos 6.07714 3.25445 12.9757 13.8757
Xos 6.03531 3.22421 13.1119 13.8806
Xos 6.04634 3.22042 13.0618 13.8831

Values of all optimization variables are in mm.

TABLE III
PARAMETER EXTRACTION - DISTANCES FROM )cm’t

*

Step Ix, - x,/1
1 0.198234
2 0.105192
3 0.044823
4 0.007497

Values are in mm.




MM optimization
*

SM starting point: X, = Xos

EM model:
FEM simulation R em (Xem)

SM update: X,

OS model:
parameter extraction

Fig. 1. Flow diagram of the space mapping optimization (SM) procedure concurrently exploiting
the hybrid MM/network theory and FEM techniques and statistical parameter extraction.
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Fig. 2. Structures for space mapping optimization: (a) optimization space model, for hybrid
MM/network theory; (b) fine model, for analysis by FEM. The waveguide cross-section
is 15.8 x 7.9 mm, the thickness of the irises is = 0.4 mm. Optimization variables are iris
openings d,, d, and resonator lengths [, /.
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Fig. 3. Responses from both simulations of the H-plane filter based on the hybrid MM/network
theory optimization solution before space mapping optimization.
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Fig. 4. Responses from both simulations of the H-plane filter before space mapping optimization,
focusing on the passband.
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Fig. 5. Space mapping optimized FEM response of the H-plane filter compared with the optimal
OS response target. Optimal results have been obtained after only 4 simulations by
Maxwell Eminence.
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OS model:
parameter extmcti?n
starting from X,
parameter
extraction 1o
successfi /Jl ‘
initialize the exploration region
generate starting points
parameter extraction
including penalty term
categorize the solutions
select one or more best clusters
reoptimize
without the penalty term
OS model
Xoss R (X5)

Fig. 6. Flow diagram of the statistical parameter extraction procedure.
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Fig. 7. Variation of responses w.r. t. each parameter, with total changes defined by the first space
mapping step. \; =0 at x,,s and ); =1 at xosl. Variation of: (a) opening of the first iris
d,; (b) opening of the second iris, dy; (c) length of the first resonator; (d) length of the
second resonator.
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Fig. 8.  Variation of ¢, objective w.r.t. iris openings d, and d,. Other parameters were held fixed
at values corresponding to xw .
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Statistical parameter extraction: (a) Euclidean distances of the starting points generated
randomly; (») Euclidean distances of converged point after the first step; (¢) Euclidean
distances of converged point after the second stage of statistic*al parameter extraction.
All distances are measured from the standard starting point x, .

16



— 184l 4B s

139 14 14.1 142 143
frequency (GHz)

Fig. 10. Statistical parameter extraction: responses at 100 starting points generated randomly by
perturbing parameters of the standard starting point.
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Fig. 11. Statistical parameter extraction: responses at 100 parameter extraction solution points.
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Fig. 12. MM responses corresponding to a cluster of 15 converged points obtained after statistical
parameter extraction. The match to the FEM response is very good. The 15 responses
are indistinguishable from each other.
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Fig. 13. Monte Carlo analysis of the H-plane filter. The parameter tolerances were statistically
generated with a standard deviation of 0.0333%. The estimated yield is 88.5% out of 200
outcomes.
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