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Abstract

This paper presents a new electromagnetic (EM) design methodology which combines two
powerful techniques: space mapping and decomposition, in a coherent strategy. An accurate but
computationally intensive fine-resolution EM model is used sparingly only to calibrate a less
accurate, but computationally much more efficient "coarse model". Applying this new approach to
interdigital filter design, we exploit structural decomposition to construct a highly efficient coarse
model using a combination of EM models with a coarse grid and empirical models for the non-
critical substructures. We employ the aggressive space mapping optimization technique to obtain
a rapidly improved design after each fine model simulation while the bulk of the computation is
carried out using the coarse model. To avoid possible oscillation in the iterative process, a penalty
function is introduced. Fast and stable convergence to a desirable interdigital filter design is

achieved after only three EM fine model simulations.
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I. INTRODUCTION

Interdigital filters have the advantage of compact size and adaptability to narrow- and wide-
band applications. Pioneering work [1-3] in this field first focused on synthesis techniques.
Tapped lines were later introduced [4,5] at the input and output resonators to offer both space and
cost savings over the earlier designs by eliminating the first and the last end sections. An additional
advantage is that the tapped structure can realize very weak couplings when the traditional structure
becomes impractical. Unfortunately, exact synthesis of tapped line filters is not straightforward.
Available techniques are not directly applicable to microstrip configurations. Final validation using
rigorous models is considered necessary.

The Method of Moments (MoM) [6,7] and the Finite Element Method (FEM) [8] have been
used successfully for EM field analysis in 2D and 3D structures. They offer excellent accuracy if
critical areas are meshed with a sufficiently small grid. One major disadvantage with these
numerical techniques is their heavy demand on computer resources. It is commonly perceived that
iterative optimizatioh methods would require too many EM simulations and consequently consume
excessive CPU time. For this reason, the practical utilization of EM simulators is often limited to
design validation.

This paper presents a new design methodology which combines two powerful techniques:
space mapping (SM) and decomposition, in a coherent strategy. The decomposition technique
partitions a complex structure into a few smaller substructures [9-11]. Each of them is analyzed
separately and the results are combined to obtain the response of the overall structure. More
efficiently, 2D analytical methods or even empirical formulas can be used for the calculation of
some non-critical regions while full-wave 3D models are adopted for the analysis of the key
substructures. Couplings between the decomposed substructures are neglected, therefore some loss
of accuracy is expected.

The other cornerstone of our methodology is the SM concept which has aroused excitement
and increasing attention as a fundamental new theory in engineering-oriented optimization practice

[12-14]. An accurate but computationally intensive fine-resolution EM model is used sparingly only



to calibrate a less accurate, but computationally much more efficient coarse model. A mapping is
established between two spaces, namely, between the coarse model and the fine model. The
aggressive SM algorithm incorporates a quasi-Newton iteration with first-order derivative updates
using the classic Broyden formula [15]. We expect to obtain a rapidly improved design after each
fine model simulation while the bulk of the computation involved in optimization is carried out in
the coarse model space. This is much more efficient than a "brute force" optimization directly
driving fine model EM simulations.

Parameter extraction is a crucial step in the SM algorithm. If the parameter extraction
result is not unique, it can lead to oscillation in the iterative process. To avoid such a possibility,
a penalty function is introduced in conjunction with the Huber or ¢; objective function [16,17].

Our new approach is applied to the design optimization of an interdigital filter, driving a
well-recognized EM simulator (em [18]). Fast and stable convergence to a desirable filter design

is achieved after only three EM fine model simulations.

II. AGGRESSIVE SPACE MAPPING

A. Basic concept

Consider models in two distinct spaces: the EM space, denoted by X,,,, and the optimization
space, denoted by X, . We call the X,, model a fine model, assuming that it is rigorous and
accurate, but its simulation is CPU intensive. In comparison, the X,; model is less accurate but
faster to compute, hence we call it a coarse model. For instance, the X, model can be a mode-
matching model with an adequately large number of modes or a FEM model with a sufficiently
small mesh size. The models in X, may include empirical models, equivalent circuits and EM
models with a coarse grid size.

The designable model parameters in X, and X, are denoted by x,, and x,,, respectively.
Typically, gradient-based optimization élgorithms assume that the variables are continuous. To
reconcile this assumption with an EM simulator which discretizes geometrical dimensions, we apply

linear and quadratic interpolation techniques [19].



We wish to find a mapping P between the two spaces

Xos = P(Xgp) (1)
such that
R, ((P(x)) = Reop(Xer) (2)
or precisely,
IR o (Xo5) = Ry (Xerm) || < € 3)

where || denotes the Huber or £; norm and ¢ is a small positive constant. R, (x,,) and R,(x,,)
represent the responses of the fine model and the coarse model, respectively.

Our aim is to avoid direct optimization in the CPU-intensive X, space. Instead, the bulk
of the computation involved in optimization is carried out in the X, space. The optimal solution
in X, can then be mapped to X, using an inverse mapping P! derived from (1).

In the aggressive SM procedure, the mapping function is updated through a quasi-Newton
iteration with first-order derivative approximations based on the classic Broyden formula [15]. The
detailed description of this algorithm can be found in [13].

B. Parameter extraction and penalty function
Denoting the optimized solution in X,, by x,, we start with x{2) = x*. At the ith

iteration, we simulate the X,,, model at x')

em and obtain x(’) by parameter extraction:

(2}

mini(rjx)lize "Ros(xg)) - Rem(xg,),)" )
l
X,

os

Then, the mapping P; is updated by the Broyden formula and used to produce the next iterate:
| Al < P )
The uniqueness of the parameter extraction is crucial. If the solution of (4) is not unique,
the SM process may be slow to converge, oscillate, or fail to converge at all.

To address this problem, we introduce a penalty function and modify (4) as

minimize HOS, w) = [Ros () - Rey ) |+ w |6 - x5, | ©6)
0

where w is a non-negative weighting factor.



The convergence of the SM process can be characterized as

x5 = x5, ™
P 8)

where X, represents the desired SM solution in X,,,.

In effect, we are using the penalty terms in (6) to force its solution towards satisfying (7).
In situations where multiple solutions for the original parameter extraction problem (4) exist, we
favor the solution which is closest to satisfying (7).

With the penalty terms, the mapping derived from the solution of (6) is likely to be
different from the mapping derived from the solution of (4). In this respect, the weighting factor
w in (6) merits careful consideration. If w is too large, the result of the parameter extraction may
not be very accurate in the sense that it may produce a poor agreement between Ros(x,(,?) and
Re,n(ng}, . Ifwis too small, it may not achieve the intended purpose of forcing (7).

We can also see that as xt(,'s) converges to X, the effect of the penalty terms gradually
diminishes. In other words, the role of the penalty terms is most significant in the initial stage of
the SM process, when non-unique parameter extraction results are most likely to occur. We found
that a suitable value for w is between 0.05 and 0.2 for our interdigital filter design.

C. Automated SM optimization

The fully automated aggressive SM strategy is illustrated by the flow chart in Fig. 1. We

express (5) as
AR REC RNy AY %)
where ) is the incremental vector computed by the SM algorithm in the ith iteration.

Since we use an EM simulator with a fixed discretization grid, the X, model parameters
need to be snapped to the grid. Assuming that 2 is the incremental vector calculated by the SM
algorithm, we denote by 19’ the vector after snapping to the grid. It can be expressed as

K < (kOax,, iaxy, ... kAx,] (10)
where
hgi) 1

@ _ J o427, j-
kj floor[ A)9' + 2], j=1,2, .., n, (11)



n is the number of the model parameters, AX; is the grid size of the jth parameter and h}i) is the
Jjth component of h(i).

In the flow chart of Fig. 1, the vector 1® is calculated by the "SM update" block. The
calculation of h()’ by (10) and (11) is implemented in the "x,,, snapping" block, with further details
shown in Fig. 2. With the consideration of snapping parameters to the grid, in our implementation
(9) is replaced by

xg;l) = X gl (12)

If the X, model has been simulated previously at xg,fl) , then the results are retrieved from

the database. Otherwise a full-wave EM analysis is performed at x(m).

em

Fig. 3 shows the details of the parameter extraction step.

III. THE FILTER MODELS AND DECOMPOSITION

A five-pole interdigital filter is shown in Fig. 4. The filter consists of five quarter-
wavelength resonators, as well as input and output microstrip T-junctions within a shielded box.
Each resonator is formed by one quarter-wavelength microstrip line section, shorted by a via at one
end and opened at the other end. The arrows in Fig. 4 indicate the input and output reference
planes, and the triangles symbolize the grounded vias. Some relevant material parameters and
geometrical dimensions are listed in Table I.
A. The fine model

For an accurate analysis of the interdigital filter using the full-wave MoM simulator em
[18], a fine grid is needed to model the geometry precisely.

For the fine model in the SM process, we choose to simulate the complete filter structure
as a whole with the grid size of 1 x 1 mil. With this grid size, the EM simulation time is about 1.5
CPU hours per frequency point on a Sun SPARCstation 10 (longer if losses are included). This
means that a "brute force" approach of directly driving the fine model EM simulation within an

iterative optimization process would require an excessive amount of CPU time.



B. Decomposition and the coarse model

We use decomposition to construct an efficient coarse model for the SM optimization. As
shown in Fig. 5, the filter is decomposed into a 12-port center piece, the vias, the microstrip line
sections and the open ends. Referring to Fig. 5, the center shaded 12-port is analyzed by em with
a very coarse grid: 5 x 10 mil. Off-grid responses, when needed during optimization, are obtained
by linear or quadratic interpolation. The via is analyzed by em with a grid of 1 x 1 mil. All the
other parts including the microstrip line sections and the open ends are analyzed using the empirical
models in OSA90/hope [19]. The results are then connected through circuit theory to obtain the
responses of the overall filter. Some relevant parameters of the coarse model are summarized in
Table 1.

Since the coarse model retains most of the adjacent and non-adjacent couplings, it provides
reasonably accurate results at dramatically faster speed: the coarse model simulation takes less than
1 CPU minute per frequency point on a Sun SPARCstation 10. Furthermore, by using a very
coarse grid instead of a fine grid, we need much fewer full-wave EM simulations during the
optimization. The overall CPU time required for optimizing the coarse model is about 2 hours,
which is of the same magnitude as the fine model EM simulation at a single frequency point.

C. Optimization variables

Using the Geometry Capture feature of Empipe [19], we define 6 optimization variables for
the interdigital filter, shown in Fig. 5 as x;, x5, ..., Xg. These include the gaps between the
resonators and lengths of the microstrip lines. The tapped positions of the input and output
resonators are controlled indirectly by variables x, and x,.

For the 12-port in the coarse model, the length / of each parallel microstrip section is fixed
at 180 mil (about 70 percent of a quarter wavelength). The actual overall lengths of the resonators
are determined by / and the variables x,, x,, x3 and x,. The gaps between the resonators are
optimizable and the initial values are détermined by synthesis. We also impose reasonable bounds
on the gaps during optimization: 20 mil < x5 < 30 mil and 25 mil < xg < 35 mil

The dimensions of the vias are fixed.



IV. SM OPTIMIZATION OF THE INTERDIGITAL FILTER
A. Coarse model synthesis and optimization
The interdigital filter design specifications are as follows.
Center frequency: 5.1 GHz
Bandwidth: 0.4 GHz
Passband ripple: 0.1 dB
Isolation: 30 dB
Isolation bandwidth: 0.95 GHz

Following well-established synthesis techniques [20], the order of the filter is determined
to be 5. We choose 15 mil thick alumina substrate with ¢, = 9.8. The width of each microstrip is
chosen to be 10 mil for a good quality factor. The length of each resonator is initially set to a
quarter wavelength. The gaps and the positions of the tapped lines are designed using synthesis
techniques.

Using the synthesized design as a starting point, we perform minimax optimization on the
coarse model. The optimized responses shown in Fig. 6 satisfy the specifications very well. The
passband ripples are less than 0.1 dB. In the coarse model simulation, the 12-port substructure and
the vias are analyzed by em with 51 frequency points.

B. Fine model SM optimization for the lossless case

Using the optimized coarse model responses as our target, we wish to find the SM solution

in the fine model space. Initially, we consider the fine model without losses.

Denoting the optimized coarse model by x.., we start the aggressive SM process with

os ?

xgn) = x,,. The fine model EM simulation results at the starting point are shown in Fig. 7. Not
surprisingly, the fine model responses deviate significantly from the optimized coarse model
responses. The passband return loss is only about 11 dB. Also, notice that in the lower stopband
near 4.7 GHz the insertion loss is about 7.5 dB, which means the bandwidth is widened. This is

most likely due to the fact that some of the couplings between resonators are not taken into account

by the coarse model.



Our next step is to find a point in the X, space, denoted by x((,i), to match the responses

of x((,,l,,) by parameter extraction with the penalty terms as defined in (6). The weighting factor for
the penalty terms is chosen to be 0.15. The parameter extraction results are shown in Fig. 8. This
process does not require any additional EM simulation of the fine model. Only the coarse model
simulations are involved.

Based on the parameter values of xg,l,,) and xg) , the mapping function is updated (the initial
mapping is set to the identity matrix). Details of the updating formulas can be found in [13]. The
inverse mapping of x;s leads to a new point in the X, space: xg,). This completes one iteration
of the aggressive SM strategy.

The fine model EM simulation results of xg;,) are shown in Fig. 9. It shows significant
improvement over the starting point. We have achieved two major accomplishments in this one
iteration. The scattered points of the return loss have been improved and the bandwidth has been
reduced on the lower frequency side.

Another SM iteration is performed. The fine model EM simulation results are shown in Fig.

10. It shows further improvement over the results of the first iteration.
Table II tracks the points in the X, space, showing the Euclidian distance between the point x,‘,?
and the optimal point x;s. Table III shows the progress in the X, space. Notice that in the step
from xg,) to xgi,), only one variable, namely x4, has changed by just 1 mil. It indicates a rapid
convergence, demonstrating the benefits of the penalty function approach.

As described in (10) and (11), the fine model parameter values are snapped to the nearest
on-grid point during the SM process in order to avoid extra EM simulations of the fine model.
This is illustrated in Fig. 11.

C. Selection of frequency points

In the coarse model simulation, the 12-port substructure and the vias are analyzed by em

with 51 frequency points. For the fine model EM simulation, we obviously wish to use as few

frequency points as possible to save CPU time. The selected frequency points should provide us

with enough information for aligning the models and establishing the mapping between X, and



X, Generally, this requires much fewer frequency points than would be needed for producing
a smooth plot of the responses over the whole frequency band. In Figs. 7 - 10, for the fine model
EM simulation we choose 11 frequency points in the passband, one frequency point in the upper
stopband and another one in the lower stopband.

To verify the SM solution obtained using the selected few frequency points, we perform EM

simulation of the fine model at x(s)

em With 43 frequency points. The results are shown in Fig. 12.

The passband return loss is better than 18.5 dB and the insertion loss ripples are less than 0.1 dB.
D. Consideration of losses

We wish to include dielectric and conductor losses in EM simulation and at the same time
keep the increase in CPU time to a minimum. To this end, we try to simplify the geometry by
cutting away any redundant metal which does not contribute to the EM simulation result. Swanson
[11] has shown that the current density plots produced by em and emvu [18] can provide useful
information in this regard. Figs. 13 and 14 show the current distribution of the interdigital filter
at two different frequency points in the lower stopband and the passband, respectively. The color
red symbolizes high current density and the color blue indicates low current density. It can be seen
that the current density on the outside edges of the vias is nearly zero. We can speed up the EM
simulation by cutting off those areas, as shown in Fig. 15. Fig. 16 compares the filter responses
before and after this modification and shows only minor differences.

Fig. 17 shows the filter responses with the dielectric and conductor losses included in the
EM simulation and with the redundant metal cut off. The substrate loss tangent is set to 0.001 and
the copper conductivity is assumed to be 5.8 x 107, All the specifications are satisfied. The

passband return loss is better than 18.5 dB.

VI. CONCLUSIONS
We have presented a new design methodology for EM optimization. A coherent framework
has been developed to combine the power of the aggressive SM strategy and the decomposition

technique. An intelligent decomposition approach has enabled us to construct highly efficient

10



coarse models to cai'ry out the bulk of the computational loads speedily. With a few carefully
aligned fine model simulations, we were able to map the optimized solution from the coarse model
space into the fine model space.

A penalty function has been introduced in the parameter extraction process to improve the
uniqueness of the solution and the convergence of the SM process.

Our new approach has been demonstrated through the EM design optimization of an
interdigital filter. The results have shown that rapid and significant improvements have been
achieved after each iteration. A properly aligned design with desirable responses has been obtained
after just 3 fine model EM simulations. Furthermore, we have been able to select only 13
frequency points for the fine model simulation, far fewer than would have been needed for a direct
optimization of the fine model responses over the same frequency band. In fact, the total EM
simulation effort in our design is equivalent to a single fine model EM simulation with 39
frequency points. It means that with a proper strategy one can execute EM optimization of
practical designs with essentially the same magnitude of effort as that of a detailed EM simulation.

The SM concept can be extended to include as the "ultimate" fine model a production
prototype, the responses of which are obtained by measurement. A mapping established iteratively
between a coarse simulation model and the device under test will not only guide optimization of
the design but also provide invaluable insight into postproduction tuning and further refinement

of the simulation model.
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TABLE I

MATERIAL AND PHYSICAL PARAMETERS
FOR THE FINE AND COARSE MODELS

Model Parameter Fine Model Coarse Model
substrate dielectric constant 9.8 9.8
substrate dielectric loss tangent 0/0.001* 0
substrate thickness (mil) 15 15
shielding cover height (mil) 75 75
conducting metal thickness (mil) 0 0
conductivity of the metal (copper) 00/5.8x107" 00
width of each resonator (mil) 10 10
width of input and output lines (mil) 10 10
x-grid size (mil) (whole structure) 1 -
y-grid size (mil) (whole structure) 1 -
x-grid size (mil) (via) - 1
y-grid size (mil) (via) - 1
diameter (mil) (via) 13 13
pad dimensions (mil x mil) (via) 25 x 25 25 x 25
x-grid size (mil) (12-port network) - 5
y-grid size (mil) (12-port network) - 10
[ (mil) (12-port network) - 180

For the fine model, the values of loss tangent and conductivity are for simulations

without and with losses, respectively.

14



TABLE 1I
ITERATIONS IN THE X, SPACE

Xy Xy X3 X4 Xg Xxg (mil) Euclidian
Distance
x, 129745 269189 6.5706 27.6800 24.9709 30.2267
x) 133029 26.9011 6.6660 28.0791 22.2091 27.0548 4.28
x3) 131242 27.0223 67112 28.0204 24.7694 29.0795 1.17
x3) 130720 27.0985 6.7451 27.9848 24.7430 29.6345 0.76
TABLE III

ITERATIONS IN THE X, SPACE

Xy X, X3 X4 Xz  Xg(mil)
D13 27 7 28 25 30
B 13 27 7 28 28 33
£ 3 27 7 28 28 34
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Fig. 1. Flow chart of the automated aggressive SM strategy.
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Fig. 3. Detail of the parameter extraction loop of Fig. 1.
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Fig. 13. Current distribution of the filter at 4.2 GHz.
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Fig. 15. Filter after cutting off the metal areas with nearly zero current.
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Fig. 16. Comparison of the filter responses before (solid lines) and after (dotted lines) cutting off
the metal areas with nearly zero current.
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