FULLY AUTOMATED SPACE MAPPING OPTIMIZATION OF 3D STRUCTURES

J.W. Bandler, R.M. Biernacki and S.H. Chen

OSA-96-MT-13-V

June 6, 1996

[©] Optimization Systems Associates Inc. 1996

FULLY AUTOMATED SPACE MAPPING OPTIMIZATION OF 3D STRUCTURES

J.W. Bandler, R.M. Biernacki and S.H. Chen

Optimization Systems Associates Inc. P.O. Box 8083, Dundas, Ontario Canada L9H 5E7

Email osa@osacad.com URL http://www.osacad.com

presented at

1996 IEEE MTT-S International Microwave Symposium, San Francisco, June 18-20, 1996

Overview of the Presentation

overview of Aggressive Space MappingTM
generic SM update loop
model-specific parameter extraction loop
two-level DatapipeTM architecture
automated SM optimization of an HTS filter
automated SM optimization of waveguide transformers
EM optimization with the HFSS 3D simulator
multi-point parameter extraction procedure

Introduction

Space Mapping combines the computational expediency of empirical engineering models and the acclaimed accuracy of EM simulators

aggressive SM progressively refines the mapping using the Broyden update

implementation of SM requires two nested iterative loops parameter extraction is a crucial step in SM optimization

we investigate the impact of its uniqueness on the convergence of aggressive SM

we consider a multi-point technique

The Space Mapping Concept

consider models in two distinct spaces

the optimization space X_{OS} (fast/coarse models)

the EM space X_{EM} (accurate/fine models)

SM exploits a mapping P between X_{OS} and X_{EM}

$$x_{OS} = P(x_{EM})$$

such that the respective model responses match

$$R_{OS}(P(x_{EM})) \approx R_{EM}(x_{EM})$$

we perform optimization in X_{OS} to obtain x_{OS}^*

the SM solution is determined as

$$\bar{x}_{EM} = P^{-1}(x_{OS}^*)$$

P is found iteratively starting from $x_{EM}^1 = x_{OS}^*$

Generic Aggressive Space Mapping Loop

the next iterate is found by a quasi-Newton step

$$x_{EM}^{i+1} = x_{EM}^{i} + (B^{i})^{-1}(x_{OS}^{*} - x_{OS}^{i})$$

using an approximate Jacobian B^i

 B^i is subsequently updated using the Broyden formula

Parameter Extraction Optimization Loop

at the *i*th step, the X_{EM} model is simulated at the current parameter values x_{EM}^{i}

if the X_{EM} model is not satisfactory we perform parameter extraction of the X_{OS} model to find x_{OS}^i which minimizes

$$\parallel R_{OS}(x_{OS}^i) - R_{EM}(x_{EM}^i) \parallel$$

Implementation of Aggressive Space Mapping

we fully automate the aggressive SM strategy using a two-level Datapipe architecture

two iterative loops with different sets of variables

the outer loop updates x_{EM}

the inner loop performs parameter extraction of the x_{OS} model (x_{EM}^i is held constant)

explicitly depends on the specific models involved

Datapipe is utilized here to connect external simulators (models) to the optimization environment

Datapipe facilitates the nested loops in separate processes and maintains a functional link between their results

Automated Aggressive Space Mapping

HTS Filter Design by SM Optimization (Bandler et al., 1994)

the empirical microstrip coupled-line model (the X_{OS} model) is not accurate for the high dielectric constant of the lanthanum aluminate substrate (more than 23)

Sonnet's em used as the X_{EM} model

approximately 1 CPU hour on a Sun SPARCstation 10 is needed to simulate the filter at a single frequency with fine resolution

aggressive SM applied to optimize the filter

six optimization variables

the coupled-line section lengths L_1 , L_2 and L_3

the section spacings S_1 , S_2 and S_3

the automated SM optimization confirms earlier results

SM Trace for the HTS Filter

trace of the steps taken by x_{EM} projected onto minimax contours in the S_2 - S_3 plane (spacings between the lines)

SM Optimization of Waveguide Transformers

a typical two-section waveguide transformer

two cases of Space Mapping used to align

- (a) an ideal empirical model and a non-ideal empirical model (*Bandler*, 1969)
- (b) an empirical model and HFSS simulations

three designs: 2, 3 and 7 sections

the variables are the heights and lengths of the waveguide sections

SM Design of a Two-Section Waveguide Transformer

SM between two empirical models (Bandler, 1969)

an ideal model which neglects the junction discontinuity (coarse)

a non-ideal model which includes the junction discontinuity (fine)

VSWR responses of the fine model before and after SM optimization

the response after 7 SM iterations is indistinguishable from the optimal ideal response

SM Design of a Three-Section Waveguide Transformer

SM between two empirical models (Bandler, 1969)

an ideal model which neglects the junction discontinuity (coarse)

a non-ideal model which includes the junction discontinuity (fine)

VSWR responses of the fine model before and after SM optimization

the response after 6 SM iterations is indistinguishable from the optimal ideal response

SM Design of a Seven-Section Waveguide Transformer

SM between two empirical models (Bandler, 1969)

an ideal model which neglects the junction discontinuity (coarse)

a non-ideal model which includes the junction discontinuity (fine)

VSWR responses of the fine model before and after SM optimization

the response after 5 SM iterations is indistinguishable from the optimal ideal response

SM Design of a Two-Section Transformer Using HFSS

SM between an empirical model and HFSS simulations an ideal empirical model (coarse) (*Bandler*, 1969) the 3D structure simulator HFSS (fine model)

VSWR responses simulated by HFSS before and after SM optimization

SM required 10 iterations (10 HFSS simulations) the solution is very close to the target ideal response

Impact of Parameter Extraction Uniqueness

a two-section waveguide transformer

the ℓ_1 contours of the parameter extraction problem with respect to the two section lengths L_1 and L_2

there are two local minima

consequently parameter extraction is not unique

SM Oscillations Due to Non-Unique Parameter Extraction

a two-section waveguide transformer

the minimax contours in the L_1 - L_2 plane of the fine model

trace of the SM steps of the two-section waveguide transformer

non-unique parameter extraction leads to the SM steps oscillating around the solution

Multi-Point Parameter Extraction

to improve the uniqueness of parameter extraction instead of minimizing

$$\parallel R_{OS}(x_{OS}^i) - R_{EM}(x_{EM}^i) \parallel$$

at a single point, we find x_{OS}^{i} by minimizing

$$\parallel R_{OS}(x_{OS}^i + \Delta x) - R_{EM}(x_{EM}^i + \Delta x) \parallel$$

a few perturbations Δx are simultaneously considered

conceptually, we attempt to match not only the responses, but also first-order changes

we have exploited a similar concept in multi-circuit modeling (Bandler, Chen and Daijavad, 1986)

Improved Uniqueness of Parameter Extraction

the ℓ_1 contours for three-point parameter extraction

a unique solution is achieved

the price may be an increased number of EM simulations

more EM simulations are needed in parameter extraction

however, the overall number of iterations may be reduced

Improved Convergence of SM Iterations

SM trace corresponding the multi-point parameter extraction method

the minimax contours in the L_1 - L_2 plane

the convergence of the SM iterations is dramatically improved

Conclusions

Space Mapping promises the accuracy of EM simulation and the speed of circuit-level optimization

new results of automating the steps in aggressive SM

we extend the automated SM optimization to waveguide structures

for the first time - results of driving HFSS to optimize 3D structures

we have demonstrated the importance of unique parameter extraction in the SM process

the multi-point approach enhances the prospect of a unique solution

we believe that the automation will make the benefits of the SM approach more tangible

For Live Software Demonstration Visit OSA's Booth 1111 in the Exhibition Hall

