MICROWAVE CIRCUIT CAD, INCLUDING EM OPTIMIZATION AND MODELING OF ARBITRARY STRUCTURES

J.W. Bandler
OSA-96-MT-11-V

June 10, 1996

© Optimization Systems Associates Inc. 1996

No part of this document, related documentation and data may be acquired, copied, reproduced, duplicated, executed, lent, disclosed, circulated, translated, transcribed or entered in any form into any machine without written permission from Optimization Systems Associates Inc. Neither Optimization Systems Associates Inc. nor any other person, company, agency or institution make any warranty, express or implied, or assume any legal responsibility for the accuracy, completeness or usefulness of the material presented herein, or represent that its use would not infringe upon privately owned rights. This title page and original cover may not be separated from the contents of this document. It is understood that full acknowledgement of source will accompany any disclosure or publication of the results of use of this material by any person or party.

MICROWAVE CIRCUIT CAD, INCLUDING EM OPTIMIZATION AND MODELING OF ARBITRARY STRUCTURES

J.W. Bandler

Optimization Systems Associates Inc. P.O. Box 8083, Dundas, Ontario Canada L9H 5E7

Email osa@osacad.com URL http://www.osacad.com

presented at

APS - Microwave Application & Product Seminars 1996 IEEE MTT-S Int. Microwave Symposium, San Francisco, CA, June 20, 1996

general nonlinear circuit simulation and optimization

comprehensive optimization/nonlinear modeling

statistical analysis and design

automated Space Mapping optimization

3D visualization, global optimization

Datapipe connection to user's in-house simulators

device characterization, simulation and optimization

FET, bipolar, HEMT, HBT, thermal modeling

parameter extraction, statistical modeling

cold and hot measurements

Huber optimization, Monte Carlo analysis

can be invoked from OSA90[™] as a child process

merges OSA90[™] and Sonnet's em[™] for direct EM optimization

integrates EM analysis into circuit-level optimization

captures and optimizes arbitrary geometries

a library of built-in microstrip elements

intelligent and efficient interpolation and database

driving Sonnet's *em*consolidated optimization features
concise, intuitive user interface
Geometry Capture

automated, efficient optimization parameterization of arbitrary 3D structures by Geometry Capture

Illustration of Indirect Statistical Modeling

Direct Statistical Modeling Using CPD fitting

CPDs Before and After Optimization

Histograms Before and After Optimization

Nonlinear FET Class B Frequency Doubler

(Microwave Engineering Europe, 1994)

CAD benchmark example

a single FET (NE71000) and a number of microstrip elements including two radial stubs and two large bias pads

significant couplings between the microstrip elements

Comparison of Simulated and Measured results

Detail around 7 GHz

The benchmark circuit is a 7 GHz frequency doubler

Microwave Engineering Europe, May 1994

Spectral Purity Before and After Optimization

Conversion Gain Before and After Optimization

3D View of Conversion Gain Before and After Optimization

Critical Issues of Automated EM Optimization

interfaces between gradient-based optimizers and discretized EM field solvers: interpolation and database

integration of EM analysis with circuit simulation, including harmonic balance simulation of nonlinear circuits

Geometry CaptureTM: user-defined optimizable structures of arbitrary geometry

Space MappingTM optimization: intelligent correlation between engineering models: EM models, empirical models and equivalent circuit models

smoothness and continuity of response interpolation

robustness of optimization algorithms and uniqueness of the solutions

parallel and massively parallel EM analyses

EM Optimization Environment

Simulation of the Interdigital Bandpass Filter After Optimization

a typical minimax equal-ripple response of the filter was achieved after a series of consecutive optimizations with different subsets of optimization variables and frequency points

the resulting geometrical dimensions were rounded to 0.1 mil resolution

The HTS Quarter-Wave Parallel Coupled-Line Filter (Westinghouse, 1993)

20 mil thick lanthanum aluminate substrate

the dielectric constant is 23.4

the x and y grid sizes for em simulation are 1.0 and 1.75 mil

100 elapsed minutes are needed for *em* analysis at a single frequency on a Sun SPARCstation 10

design specifications

$$S_{21} < 0.05$$
 for $f < 3.967$ GHz and $f > 4.099$ GHz

$$S_{21} > 0.95$$
 for 4.008 GHz $< f < 4.058$ GHz

Space MappingTM (Bandler et al., 1994)

Starting Point of EM Optimization: Design Using Empirical Circuit Model

Solution by Aggressive Space Mapping After 3 Iterations

Solution by Aggressive Space Mapping Fine Frequency Sweep

WR-75 Waveguide Bend

(only half of the structure is shown due to symmetry)

Two Design Variables

Empipe3D Geometry Capture

gateway to HFSS and Maxwell® Eminence

Geometries Representing the Parameters "L1" and "L2"

$$L1 = 0.3889$$
 inch $L2 = 0.3889$ inch

$$L1 = 0.4596$$
 inch $L2 = 0.3889$ inch

$$L1 = 0.3889$$
 inch $L2 = 0.3182$ inch

Automated Minimax Optimization

specification: return loss 40 dB from 9 to 15 GHz

starting point: L1 = 0.3889 inch

L2 = 0.3889 inch

solution: L1 = 0.343185 inch

L2 = 0.330018 inch

12 minimax iterations, 18 simulations by Maxwell Eminence

The Optimized Bend

this solution is virtually identical to the two-face bend optimized solution