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Introduction

simulation of linear/nonlinear circuits requires accurate
linear/nonlinear device models

both deterministic and statistical models are needed to
address increasing sophistication of design methodology

deterministic

performance-driven design

cost functions

variable tolerance worst-case design
statistical

fixed tolerance yield-driven design

correlated tolerances

variable tolerance cost-driven design

CAD goal: first-pass success design

examples for this presentation were produced by OSA’s
software system HarPE™
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Overview
nonlinear device characterization
device modeling
parameter extraction
¢; and Huber data fitting
Space Mapping™ model alignment
statistical modeling
multi-device parameter extraction
¢, and Huber statistical postprocessing
direct CPD fitting

model verification
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Device Models

local vs. global models

equivalent circuit models (ECMs)
high computational efficiency

interpolation models

physics-based models (PBMs)

relate the circuit elements to the device physics based on
the simplified analytical solution of device equations

slower but, in general, more accurate than ECMs
physical models (PMs)

based on the numerical solution of fundamental device
equations

the most accurate but computationally intensive

both PBMs and PMs are capable of performance prediction,
permitting device optimization



@ Optimization Systems Associates Inc.

Measurement/Simulation Setup for Parameter Extraction
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Sequential Parameter Extraction

conventional methods for parameter extraction are based on
DC and small-signal measurement data fitting

model parameters are determined from DC, cold and hot
device measurements in a sequential manner

the already extracted parameters are fixed when identifying
the remaining parameters

specific measurements, approaches, deembeding formulas,
etc., are highly model dependent
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R

Integrated DC/Small-Signal Parameter Extraction
(Bandler et al., 1988)

taking into account the relationship between the DC and
small-signal parameters

combining DC and small-signal data into one optimization
problem using multi-bias and multi-frequency measurements

substantial improvement of uniqueness and reliability

Multi-Bias S-Parameter Data for Parameter Extraction

PARAMETER VG =0 VD =4

FORMAT FREQ(GHZ) MS11  PS11 MS21 PS21
2.0 0.9546 -46.72 4.0405 145.54
3.0 0.9392 -66.98 3.6149 129.27

PARAMETER VG =-1.74 VD =4
FORMAT FREQ(GHZ) MS11  PS11 MS21 PS21
2.0 0.9585 -36.75 3.1389 150.53

PARAMETER VG = -3.1 VD =4
FORMAT FREQ(GHZ) MS11  PS11 MS21  PS21
2.0 0.9614 -32.46 2.5494 152.25

FORMAT VG VD ID
0.0 40 0.177
-1.74 40 0.092
-3.10 4.0 0.037
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DC and S-Parameter Match After Optimization
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Large-Signal Device Parameter Extraction Using

Harmonics: Spectrum Data Fitting
(Bandler et al., 1989)

device is excited under practical (large-signal) working
conditions

spectrum measurements are taken at different bias, input
power and fundamental frequency combinations

parameters are extracted by optimizing the model response
to match the spectrum measurements

harmonic balance simulation technique for nonlinear circuit
simulation in the frequency domain is used

nonlinear adjoint sensitivity analysis for gradient
computation of nonlinear circuit responses (FAST)

the first true nonlinear large-signal device model parameter
extraction approach

extended to large-signal waveform data fitting (Werthof, van
Raay and Kompa, 1993)
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Harmonic Data for Parameter Extraction
(Texas Instruments, 1989)

PARAMETER VG = -0.372 VD = 2 FREQ = 6GHZ
FORMAT PIN(DBM) POUT1 (DBM) POUT2(DBM) POUT3(DBM) IDO(MA)

+10.0 +15.1 +2.4 5.7 38.9

+5.0 +13.0 5.2 11.9 42.3

0.0 +9.6 19.5 27.3 44.3

5.0 +4.9 -32.4 -45.6 44.7

-10.0 0.0 42,7 -60.1 44.9

-15.0 5.2 -52.8 -99.9 45.1

PARAMETER VG = -0.673 VD = 4 FREQ = 6GHZ

FORMAT PIN(DBM) POUT1(DBM) POUT2(DBM) POUT3(DBM) IDO(MA)

+10.0 +18.1 1.5 7.3 42.8

+5.0 +13.9 -10.7 221 34.0

0.0 +9.5 21.2 -36.1 31.0

5.0 +4.6 -31.5 -49.9 30.2

-10.0 -0.3 -41.4 -62.1 30.0

-15.0 55 -54.4 -99.9 30.0

PARAMETER VG = -1.073 VD = 6 FREQ = 6GHZ

FORMAT PIN(DBM) POUT1(DBM) POUT2(DBM) POUT3(DBM) IDO(MA)

+10.0 +16.1 +1.9 -10.2 31.2

+5.0 +11.7 5.8 -20.6 21.3

0.0 +7.3 14.8 -33.5 17.1

5.0 +2.4 24,6 -47.8 15.6

-10.0 2.6 -34.4 -61.1 15.1

-15.0 7.8 -46.9 -99.9 15.0
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Power Spectruin Match After Optimization
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model used: Curtice symmetrical cubic formulas

implemented as a user-defined model
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The ¢; Norm

> 1fi(9)]
j=1

j;- represent error functions

The Huber Function (Huber, 1951)

o2 if If] <k
p(f) =
kIfl -&72 if |fl >k

k > 0 is a threshold separating "large" and "small" errors

the definition of p, ensures a smooth transition at k

The Huber Norm

Y. (i (9))
j=1

a hybrid of the ¢, and the ¢; norms
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Huber Function as a Hybrid of ¢, and (,

the Huber, ¢; and ¢, objective functions in the one-
dimensional case

AF

the large errors are treated in the ¢; sense and the small
errors are measured in terms of least squares

by selecting k we can control the proportion of errors treated
in the {; or ¢, sense
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015 & and Huber Data Fitting

0y, & and Huber solutions for data fitting in the presence of
large and small errors
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Space Mapping for Physical Models
using PBMs for fast optimization

using PMs for accurate validation
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Statistical Device Modeling

random variations in the manufacturing environment result
in complicated distributions and correlations of device
responses

statistical modeling is a prerequisite for statistical analysis
and yield optimization (design centering)

device model types for statistical modeling
equivalent circuit models
physics-based and physical models

measurement databases

statistical models are determined from multi-device
measurements

indirect statistical modeling
parameter extraction/postprocessing
direct statistical modeling

cumulative probability distribution (CPD) fitting
histogram fitting



Optimization Systems Associates Inc.

Indirect Statistical Modeling

multi-device sample of models
measurements ) )
T multi-device

,\\ parameter extraction

>

parameter

statistics statistical

postprocessing

first, we extract model parameters for individual devices

then the sample of model parameters is postprocessed to
estimate the statistics
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Sample of Device Models

SAMPLE

FORMAT

INDEX T(PS)
3.63999
3.55698
3.58932
3.62658

HPOWON=

100 3.46184
END

GM
0.050866
0.0486995
0.0497634
0.0489517

0.049053

C1(PF)
0.0514826
0.045284
0.0479207
0.0481039

0.0452641

Consolidated Statistical Model

T: 3.50406PS

CDG(PF)
0.0490503
0.0485504
0.0483223
0.0498116

0.0464511

GDS
0.00754406
0.00666363
0.00730487
0.00665159

0.00727283

{Normal Sigma=2.69% Correlation=CORMAT[1]

DDF=55614181016127 7}
GM: 0.0490743 {Normal Sigma=2.28% Correlation=CORMAT|2]
DDF=1313151714121852}
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Statistical Estimation

the error functions to estimate mean values
£(@) =6~ ¢
the error functions to estimate standard deviations
] T2
S0 = V- (& - )

where

¢’ the extracted value of a parameter of the jth device
j 1L2,.,N

N the total number of devices

V¢ the estimated variance from which we can calculate

the standard deviation A

we normally apply least-squares estimators
wild points severely degrade the least-squares estimates

the Huber function can be used as an automatic robust
statistical estimator in place of least-squares estimators
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Data Containing Wild Points
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run chart of the extracted FET time-delay t; a few abnormal
values in the data due to faulty devices and/or gross
measurement €rrors

in our work using the ¢, estimator these wild points had to be
manually excluded

applying Huber estimators to the same data we obtain
similar results but without excluding any points



& Optimization Systems Associales Inc.

Statistical Modeling Using Huber Estimator

ESTIMATED STATISTICS OF SELECTED FET PARAMETERS

Parameter P PE) D) 04k 0uH) T45)
Ls(nH) 0.04387 003464 0.03429 94.6% 21.8% 17.4%
Gps(1/KQ) 1.840 1820 1.839 28.6% 63% 49%
Ipgs(mA) 4736 4753 4785  14.0% 12.7% 11.3%
t(ps) 2018 2154 2187 263% 58% 3.4%
C1o(pF) 03618 03658 03696 82%  46% 3.5%
K, 12328 1231 1233  155% 108% 8.7%

¢ denotes the mean and O o the standard deviation
H denotes Huber estimates
*
8, denotes {, estimates after 11 abnormal data sets are manually excluded

0, and Huber estimates of the statistics for selected model
parameters

Huber estimator does not require manual manipulation of
the data and is more appropriate when there are data points
which cannot be clearly classified as abnormal



Optimization Systems Associates Inc.

Direct Statistical Modeling

initial
multi-device parameter
measurements statistics
| Monte Carlo
simulation
CPDs of sample of
measurements model responses

ﬁtatistical ..... ~ CPDs of
\matching model responses
) S

o

I

optimized
parameter
statistics

parameter statistics are determined directly by optimization
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CPD Match Before and After Optimization
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Data Alignment and Model Verification
data alignment

the measurement conditions may vary for different
device outcomes

statistical modeling requires identical measurement
conditions for all device outcomes

measurement data may need to be preprocessed and
aligned for statistical modeling

statistical model verification

comparing the statistics of the model responses
generated by Monte Carlo simulation with the statistics
of the measurement data

checking consistency between the yield predicted by the
statistical model and the yield estimated from the
measurement data
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Concluding Remarks

deficiencies in parameter extraction techniques may include
nonuniqueness, wild solution values

nonlinear device characterization needs to address the
intended operation of the device

nondestructive device measurements and corresponding
techniques must address characterization of difficuit to
model phenomena

the Huber approach is worth to be promoted for beth
parameter extraction and robust statistical modeling

Space Mapping technique promises practicality of exploiting
physical models in circuit-level CAD

uniqueness of parameter extraction in indirect statistical
modeling must be carefully monitored

direct statistical modeling needs to be extended to handle
nonstandard distributions and correlations



