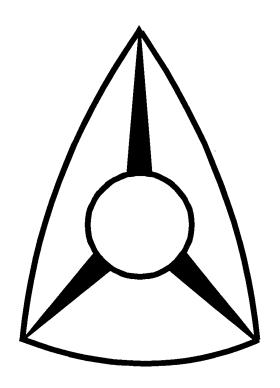
INTELLIGENT DRIVERS AND INTERFACES TO ELECTROMAGNETIC SIMULATORS FOR DESIGN OPTIMIZATION

J.W. Bandler

OSA-96-DA-20-V


September 26, 1996

INTELLIGENT DRIVERS AND INTERFACES TO ELECTROMAGNETIC SIMULATORS FOR DESIGN OPTIMIZATION

J.W. Bandler

Optimization Systems Associates Inc. P.O. Box 8083, Dundas, Ontario Canada L9H 5E7

Email osa@osacad.com URL http://www.osacad.com

presented at

DARPA ETO Technical Interchange Meeting for Common Standards for Interfacing TCAD Modeling and Analysis Tools Arlington, VA, September 26, 1996

Introduction

microwave CAD systems must link geometry, layout, physical and process parameters with performance, yield and system specifications

hierarchically structured CAD systems must integrate electromagnetic (EM) theory, circuit theory and system theory

fast, predictable, physics-based modeling and simulation of devices and circuits are important aspects of manufacturable mm-wave designs

CAD technology must account for statistical uncertainties and parameter spreads

CAD modules must facilitate an effective path from process, physical or geometrical description to a yield-driven, optimization-oriented design environment

First-Pass Success Approach

performance and cost specifications

automated optimization

accurate simulation models taking into account

material and dimensional constraints

operating environment

production tolerances

Situations Needing Better Simulation Methodology

satellite system environmental temperature variations

cutting cost by lowering machining precision requirement

self-heating in high-density circuits

modulated and transient high-frequency signals

EM proximity couplings

Milestones VI

Space MappingTM - a fundamental new theory for design with CPU intensive simulators (1994)

"CAD review: the 7 GHz doubler circuit" by MEE (1994)

optimization of planar structures with arbitrary geometry (1994)

breakthrough Geometry CaptureTM technique (1995)

aggressive Space MappingTM for EM design (1995)

cost-driven physics-based large-signal simultaneous device and circuit design (1995)

integrated harmonic balance and EM optimization (1995)

novel heterogeneous parallel yield-driven EM CAD (1995)

mixed-domain multi-simulator statistical parameter extraction and yield-driven design (1995)

full-day MTT-S workshop on Automated Circuit Design Using Electromagnetic Simulators (Arndt, Bandler, Chen, Hoefer, Jain, Jansen, Pavio, Pucel, Sorrentino, Swanson, 1995)

Milestones VII

explosion of development and use of optimization-based technology for automated circuit design with EM simulators (1994, 1995)

Network DatapipeTM connection of OSA90/hopeTM with Hoefer's TLM electromagnetic field simulators on massively parallel computers (1995)

DatapipeTM connections of OSA90/hopeTM with Sorrentino's mode-matching electromagnetic field simulators with adjoint sensitivities (1995)

Datapipe[™] connection of OSA90/hope[™] with Arndt's waveguide component library (1995)

parameterization of arbitrary geometrical structures (1996)

fully-automated Space Mapping[™] optimization of 3D structures (1996)

Empipe3DTM connection of OSA90/hopeTM with Hewlett-Packard's HFSS and Ansoft's Maxwell® Eminence 3D full-wave simulators (1996)

EmpipeExpressTM connection of OSA90/hopeTM with Sonnet's Software's *em*TM field simulator (1996)

general nonlinear circuit simulation and optimization

comprehensive optimization/nonlinear modeling

statistical analysis and design

automated Space Mapping optimization

3D visualization, global optimization

Datapipe connection to user's in-house simulators

device characterization, simulation and optimization

FET, bipolar, HEMT, HBT, thermal modeling

parameter extraction, statistical modeling

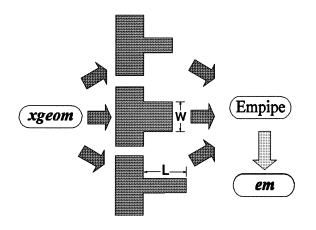
cold and hot measurements

Huber optimization, Monte Carlo analysis

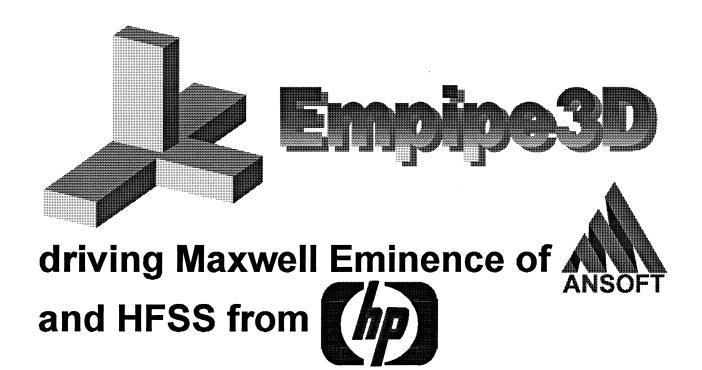
can be invoked from OSA90[™] as a child process

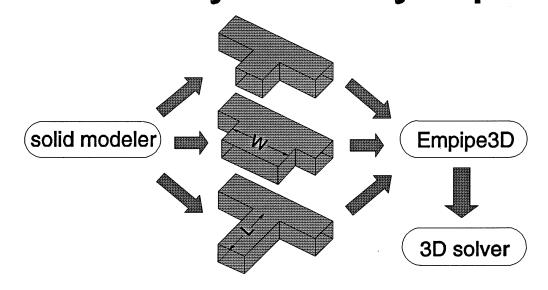
merges OSA90[™] and Sonnet's em[™] for direct EM optimization

integrates EM analysis into circuit-level optimization


captures and optimizes arbitrary geometries


a library of built-in microstrip elements


intelligent and efficient interpolation and database


driving Sonnet's em
consolidated optimization features
concise, intuitive user interface
Geometry Capture

automated, efficient optimization parameterization of arbitrary 3D structures by Geometry Capture

Overview of Presentation

design centering; yield optimization; cost-driven design integration through DatapipeTM

EM optimization

parameterization through Geometry CaptureTM

parallel computation

Space MappingTM optimization

OSA's DatapipeTM

encapsulating simulators as black-box executables with alphanumeric inputs and outputs

built-in support for network and parallel computing preprocessing and postprocessing of data

preprocessing of x1, x2, ...;

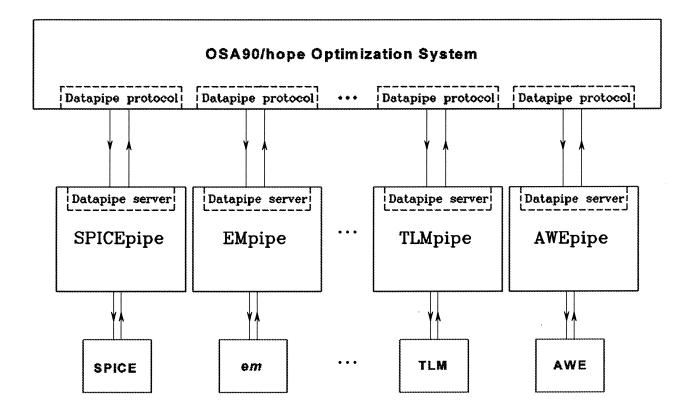
FILE="simulator"

INPUT=(*text*, *x1*, *x2*, ...)

OUTPUT=(y1, y2, ...);

postprocessing of y1, y2, ...;

hierarchy of variables


multiple simulators can be combined (serial and parallel)

simultaneous specifications in different domains

symbolic algebra and gradients

OSA's Datapipe™ System

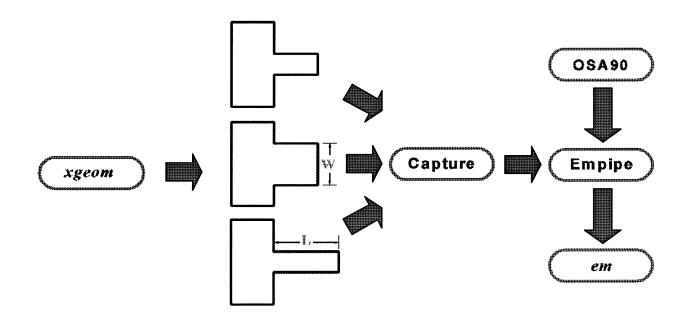
Challenges of Automated EM Optimization

(Bandler et al., 1993, 1994)

drastically increased analysis time

discrete nature of some EM solvers

continuity of optimization variables


gradient information

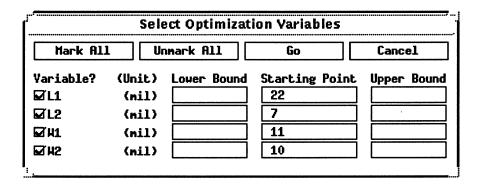
interpolation and modeling

integrated data bases

Implementation of Geometry CaptureTM

employs a sophisticated algorithm in a manner completely transparent to the user

extremely easy to use



Empipe Geometry Capture™ Form Editor

	Empipe V3.1							
	Load New File		Save To File	Sinulate Optinize		Quit		
昼	Nominal Geo File: tpad0.geo							
	DC S-par File:		tpad.an					
			-Qdn					
	Paraneter Nane		File lane	Nominal Yalue	Perturbed Value	# of Grids	Unit Nane	
雪	L1			22	24	1	nil	
雪	L2			7	8	1	nil	
雪	H1	W1 tpad3.geo		11	13	1	nil	
a	H2	H2 tpad4.geo		10	12	1	nil	

Select Optimization Variables Windows

Specifications for Optimization Windows

Specifications for Optimization						
Add a new specification defined as follows						
FREQ (GHz) from: 2 to: 18 step: 4						
MS11_dB ▼ < ▼						
Specifications Currently Defined						
FREQ: from 2GHz to 18GHz step=4GHz MS21_dB < -9 W=5						
FREQ: from 2GHz to 18GHz step=4GHz MS21_dB > -11 W=5						
FREQ: from 2GHz to 18GHz step=4GHz MS11_dB < -10						
•						

Organization of Parallel Computing

organized by Empipe from one of the networked computers (master host)

using standard UNIX protocols (remote shell and equivalent hosts) an EM analysis is started on each of the available hosts

when the analysis is finished on a host, the next job, if any, is dispatched to that host

EM simulation results are gathered from all the hosts and stored in a data base created on the master host

no platform specific mechanisms

applicable to both local and wide area networks of heterogeneous workstations

Parallel Computing Options

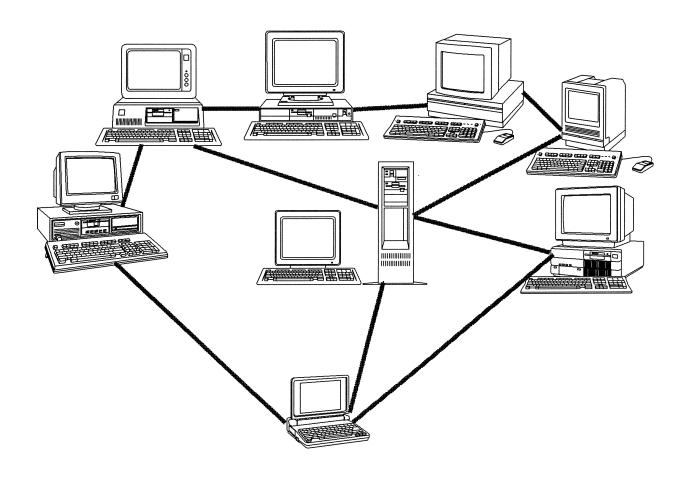
multiprocessor computers and specialized compilers vs. distributing EM analyses over a computer network

the overhead of parallelization is negligible as compared to the CPU-intensive EM analyses

splitting at the component/subcircuit level

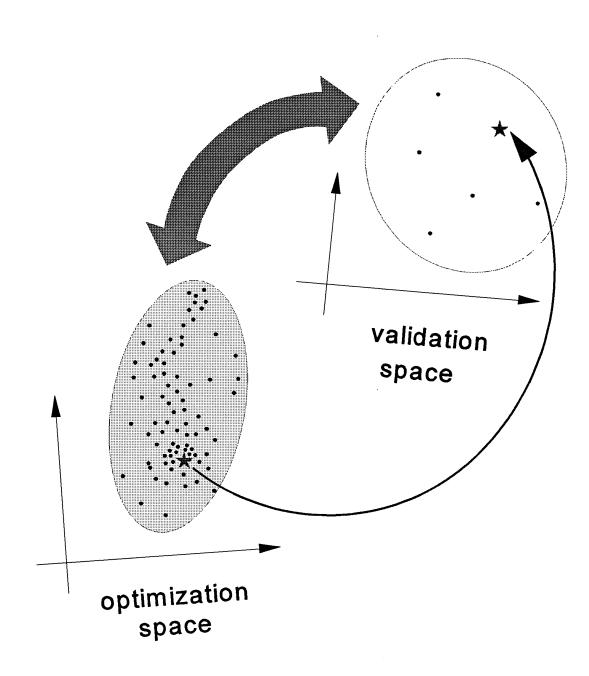
suitable when several EM simulation results are needed simultaneously

off-grid interpolation

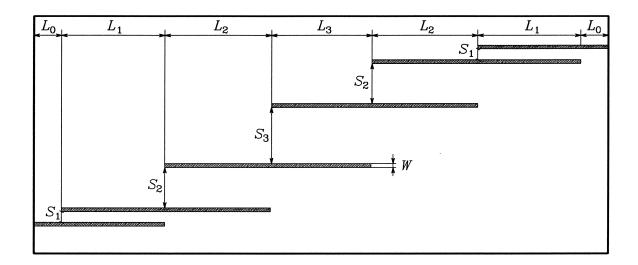

numerical gradient estimation

multiple outcomes in statistical analysis

suits best the operational flow of interpolation, optimization and statistical analysis



Heterogeneous Network of Computers



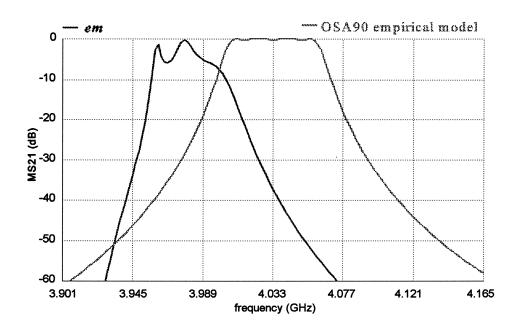
Space MappingTM (Bandler et al., 1994)

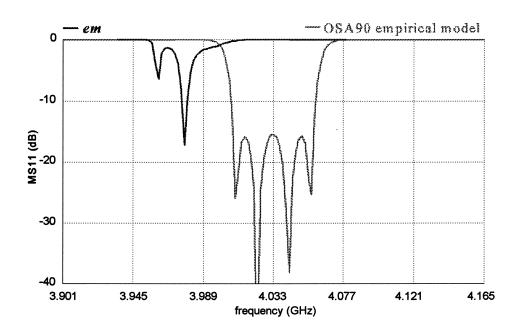
The HTS Quarter-Wave Parallel Coupled-Line Filter (Westinghouse, 1993)

20 mil thick lanthanum aluminate substrate

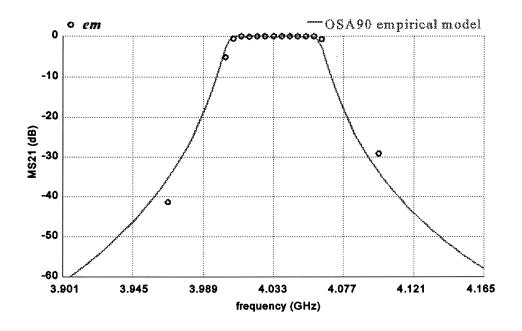
the dielectric constant is 23.4

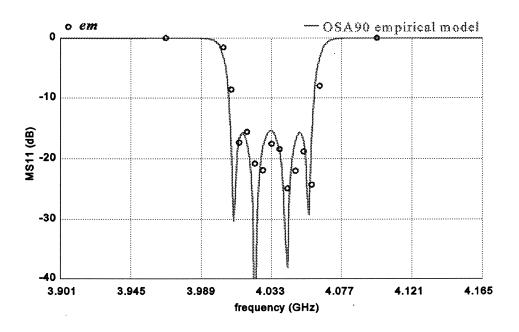
the x and y grid sizes for em simulation are 1.0 and 1.75 mil

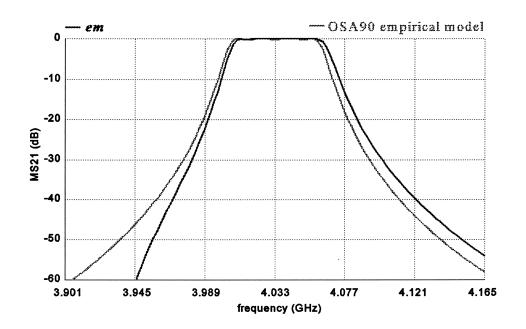

100 elapsed minutes are needed for *em* analysis at a single frequency on a Sun SPARCstation 10

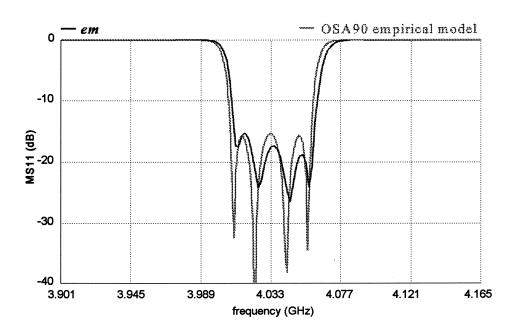

design specifications

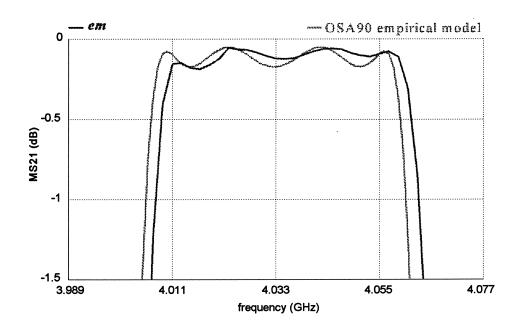
$$S_{21} < 0.05$$
 for $f < 3.967$ GHz and $f > 4.099$ GHz

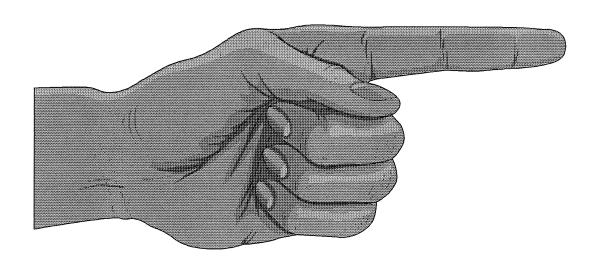

$$S_{21} > 0.95$$
 for $4.008 \text{ GHz} < f < 4.058 \text{ GHz}$


Starting Point of EM Optimization: Design Using Empirical Circuit Model


Solution by Aggressive Space Mapping After 3 Iterations




Solution by Aggressive Space Mapping Fine Frequency Sweep



Solution by Aggressive Space Mapping Detail of the Passband with Fine Frequency Sweep

visit OSA's

website

www.osacad.com