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SPACE MAPPING OPTIMIZATION FOR 

ENGINEERING DESIGN 

J.W. BANDLER, R.M. BIERNACKI, S.H. CHEN, R.H. HEMMERS and K. MADSEN 

Abstract. This contribution describes a novel theory called Space Mapping (SM) which is 
relevant to engineering optimization. Two approaches are presented: SM and aggressive SM. The 
SM technique utilizes a transformation between the input parameter spaces of different models of 
the same physical object. The aggressive SM technique employs a quasi-Newton iteration where 
approximations to the Jacobian matrix are updated by the classic Broyden formula. The SM 
technique has been successfully applied in the area of microwave circuit design. It is, however, 
applicable to a wide variety of problems where models of different complexity and computational 
intensity are available. 

1. Introduction

This chapter describes a novel concept called Space Mapping (SM) [1-6]. The SM technique

exploits a mathematical link between input parameters of different engineering models of the same 

physical object. Traditionally, there exists a number of engineering models of different types and 

levels of complexity to choose from. In the field of electronic circuits this may include equivalent 

circuit models, ideal and detailed empirical models, electromagnetic (EM) field theory based models, 

hybrid models [7], and even computational utilization of actual hardware measurements. 

The SM concept is based on the alignment of two models: (I) a computationally efficient (fast) 

model which may lack the desired accuracy, and (2) an accurate but CPU-intensive model. This 

merger facilitates the demanding requirements of otherwise CPU-prohibitive design optimization 

within a practical time frame. This is accomplished by redirecting the optimization-related 

calculations to the first model while preserving the accuracy and confidence offered by a few well­

targeted evaluations of the second model. 

There are two phases in SM. In Phase 1, optimization is performed using the fast model to 

obtain its optimal performance. In Phase 2, a mapping between the input parameter spaces of the 

two models considered is iteratively established. Techniques such as least-squares or quasi-Newton 

steps are used to accomplish this. A distinct auxiliary optimization (parameter extraction) must be 

invoked in each iteration of Phase 2. This parameter extraction is used to determine the parameters 

of the fast model such that its response(s) match those of the reference response(s) obtained from 



an evaluation of the accurate model. The uniqueness of the parameter extraction process is of 

utmost importance to the success of SM. 

Our presentation describes the theoretical formulation of SM followed by a practical engineering 

example. First, we review the SM theory followed the aggressive SM strategy. As applied to 

electronic circuit design, we consider an equivalent empirical circuit model as the fast model. As 

the accurate model, we employ an extremely CPU-intensive model based on solving electromagnetic 

field equations. For illustration, we consider the design of a high-temperature superconducting 

(HTS) microstrip filter. 

2. Space Mapping Optimization 

Theory 

Let the behaviour of a system be described by models in two spaces: the optimization space, 

denoted by X 0 s, and the EM (or validation) space, denoted by Xem. We represent the optimizable 

model parameters in these spaces by the vectors Xos and Xem, respectively. We assume that X 0 s and 

Xem have the same dimensionality, i.e., x0 s E lR.n and Xem E lR.n, but may not represent the same 

parameters. We assume that the X0s-space model responses, denoted by R0 s(x0 s), are much faster 

to calculate but less accurate than the Xem-space model responses, denoted by Rem(Xem). 

The key idea behind SM optimization is the generation of an appropriate mapping, P, from the 

Xem-space to the X 0 s-space, 

(2.1) 

such that 

(2.2) 

We assume that such a mapping exists and is one-to-one within some local modeling region 

encompassing our SM solution. We also assume that, based on (2.2), for a given xem its image x 0 s 

in (2.1) can be found by a suitable parameter extraction procedure, and that this process is unique. 

We initially perform optimization entirely in X0s to obtain the optimal solution x;s, for instance 

in the minimax sense [8], and subsequently use SM to find the mapped solution xem in Xem as 
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- p-1( *) Xem = Xos (2.3) 

once the mapping (2.1) is established. We designate xem as the SM solution instead of x:m since 

the mapped solution represents only an approximation to the true optimum in Xem. 

The mapping is established through an iterative process. We begin with a set of m Xem-space 

model base points 

_ (1) (2) (m) 
Bem - { Xem , Xem , ... , Xem } . (2.4) 

These initial m base points are selected in the vicinity of a reasonable candidate for the Xem-space 

model solution. For example, if Xem and x 0 s consist of the same physical parameters, then the set Bem 

can be chosen as 

(2.5) 

with the remaining m -1 base points chosen arbitrarily by perturbation as 

(i) (1) (i-1) 
Xem = Xem + D.Xem , i = 2, 3, ... , m. (2.6) 

Once the set Bem is chosen, we perform EM analyses at each base point to obtain the Xem-space 

model responses Rem(xth for i = 1, 2, ... , m. This is followed by parameter extraction optimization 

in X 0 s to obtain the corresponding set of m X0s-space model base points 

_ (1) (2) (m) 8 os - { Xos , Xos , ···, Xos } · 

The parameter extraction process is carried out by the following optimization: 

minimize 
(i) 

xas 

(2.7) 

(2.8) 

for i = 1, 2, ... , m where 11 · 11 indicates a suitable norm. The additional m -1 points apart from xJ;l 

are required merely to establish full-rank conditions leading to the initial approximation of the 

mapping {denoted by P0 - its exact construction is explained later). 

At the jth iteration, both sets may be expanded to contain, in general, mi points which are used 

to establish the updated mapping lj. Since the analytical form of P is not available, we use the 

current approximation ~ to estimate xem in (2.3), i.e., 
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(2.9) 

The process continues iteratively until the termination condition 

(2.10) 

is satisfied, where € is a small positive constant. If so, lj is our desired P. If not, the set of base 

(m-+1) (m-+1) 
points in Bern is augmented by xern' and correspondingly, x 0 s' determined by (2.8) augments 

h f b . . B U . . - (mj+l) P-1( * ) h SM 1 . t e set o ase pomts m os. pon termmatton, we set Xern = Xern = i X0 s as t e so utton. 

This process is illustrated graphically in Fig. I 

We define each of the transformations lj as a linear combination of some predefined and fixed 

fundamental functions 

A A A 

f1(Xern), f2(Xern), /3(Xern), ... , ft(Xern) (2.11) 

such that 

t ,. 

Xos. = L aisfs(Xern) 
i S=l 

(2.12) 

or, in matrix form 

(2.13) 

where Ai is an x t matrix, f (xern) is at-dimensional column vector of fundamental functions and 

Consider the mapping lj for all points in the sets Bern and B0 s. Expanding (2.13) gives 

[ 
(1) (2) (mj)] _ [ ... (1) ... (2) ... (mj) ] 

Xos Xos ··· Xos - Ai f (Xern) f (xern) ··· f(Xern ) · (2.14) 

For a linear mapping, f(xern) contains the n+l linear functions: 1, x1 , x 2, ... , xn. Hence, (2.14) 

can be written as 

[ 
(1) 

Xos 

(2.15) 

where Qi is an n x n matrix and bi is an n x I column vector. Let us define 
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[ 

1 
_ • ( 1) • ( 2) • ( mj) T _ 

D - [ / (xem) / (xem) ... / (xem ) ] - (l) 
Xem 

and 

Then (2.14) can be rewritten as 

and transposing both sides gives 

T 
DAj = C. 

1 

(2) 
Xem 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

Augmenting (2.20) by some weighting factors defined by an mj x mj diagonal matrix W, where 

W = diag{wj} (2.21) 

gives 

T 
WDAj = WC. (2.22) 

The least-squares solution to this system is 

(2.23) 

Larger/smaller weighting factors emphasize/deemphasize the influence of the corresponding base 

points on the SM transformation. 

Implementation 

We now present a straightforward implementation of the SM algorithm. First, begin with a 

point, x;s ~ arg min{H(x0 s)}, representing the optimal solution in X 0 s where H(x0 s) is some 

appropriate objective function. Then, the algorithm proceeds as follows: 

Step 0. Initi~lize x;;;l = x;s. If II R0s<x;s) - Rem(x;;;l) II ~ E, stop. Otherwise, initialize 
(z-1) f . _ ll.xem or 1 - 2, 3, ... , m. 
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Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Step 7. 

Step 8. 

Step 9. 

Comments 

Select m -1 additional base points in Xem by perturbation, i.e.,x~ = x~ + ~x!/,;
1

) 

for i = 2, 3, ... , m . 

Perform parameter extraction optimization to obtain x!;) for i = 1, 2, ... , m. 

Initialize j = 0, mi = m. 

Compute Af = (»rwTw »t1»TwTwc and extract the matrix Qi and the vector 

bi according to Ai = [ bi Qi]. 

(mj+l) -1 * 
Set xem = Qi (x0 s - bi). 

II 
* (mj+l) 

If R0 s(X0 s) - Rem(Xem ) II ~ €, stop. 

P f 
. . . . b . (mi+ 1) 

er orm parameter extraction opttm1zatton to o tam x0 s • 

(m-+1) (m-+1) 
Augment the matrix C with x 0s' and the matrix D with xem' . 

Set j = j + l, mi = mj + 1; go to Step 4. 

Note, that in Steps 2 and 7 an auxiliary optimization (parameter extraction) is invoked. In 

Step 5, x!:i+l) may be snapped to the closest grid point if the EM simulator uses a fixed-grid 

meshing scheme. 

3. Aggressive Space Mapping Optimization 

Theory 

Consider an important property of the termination condition in (2.10). When approaching the 

(m-+ 1) 
SM solution, the Xem-space model response Rem(xem' ) will closely match the optimal X0s-space 

model response R0s(x;s), within some tolerance€. Hence, after performing an additional parameter 

(m-+1) (m-+ 1) * 
extraction optimization in X 0 s, the resulting point x 0 s' = P(xem' ) approaches the point x 0 s. 

(mi+l) * 
Stated more precise I y, as j-+ M, x0 s -+ X 0 s, or 

as j-+M (3.1) 

where f'/ is a small positive constant and Mis the number of iterations needed to converge to an SM 

solution. 

6 



Based on this observation, we can now formulate the aggressive SM approach. From (2.1 ), we 

assume that the vector of X08-space model parameters is a nonlinear vector function, P, of the Xem­

space model parameters. We define our goal by setting r, to O in (3.1). Hence, we consider the set 

of n nonlinear equations 

f(xem) = 0 (3.2) 

where 

(3.3) 

and x~s is a given vector (optimal solution in X08). 

Let x~ be the jth approximation to the solution of (3.2) and jCi) written for f(x¼h. The 

next iterate x¼i+l) is found by a quasi-Newton iteration 

(3.4) 

where h(j) solves the linear system 

(3.5) 

sU) is an approximation to the Jacobian matrix 

(3.6) 

and is established based on the results from all previous iterations. In our implementation,B(l) 

is set to the identity matrix. The approximation to the Jacobian matrix is updated by the classic 

Broyden formula [9] 

(3.7) 

Incorporating (3.5) into (3. 7) gives a simplified updating formula 

(3.8) 
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where /(j+l) is obtained by evaluating (3.3) at xt+l) using the parameter extraction optimization 

described in (2.8). This process is illustrated graphically in Fig. 2. 

This approach is significantly more efficient than the original SM algorithm. We avert from 

performing time-consuming and possibly unproductive EM analyses at the perturbed points around 

the starting point. Instead, we begin with a straightforward initial estimate and attempt to improve 

the EM solution in a systematic manner. 

I mp/ ementation 

As before, begin with a point, x;s ~ arg min{H(x08 )}, representing the optimal solution in X08 

where H(x08 ) is some appropriate objective function. Then, the algorithm proceeds as follows: 

Step 0. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Comments 

Initialize x~ = x;8 , B(l) = 1, JC1) = P(x;;;h -x;8 , j = 1. Stop if II JC1
) II ~ r,. 

Solve B(j) h(i) = -J<il for h(i)_ 

Set x~+l) = x;/J + h(i)_ 

Perform parameter extraction optimization to get x!~ + l), i.e., evaluate P(x~+l)). 

Compute /(j+l) = P(x~+l)) - x;
8

• If 11 /(j+l) 11 ~ r,, stop. 

Update B(j) to B(j+l)_ 

Set j = j + 1; go to Step 1. 

In Steps O and 3, an auxiliary optimization (parameter extraction) is invoked to evaluate 

P(xt+l)). In Step 2, x¼i+l) may be snapped to the closest grid point if the EM simulator uses a 

fixed-grid meshing scheme. If this is the case, Step 5 should employ (3. 7) as the updating formula. 

In our previous work [5, 6], the Space Mapping concept has been applied to the parameter 

extraction process, overcoming severely misaligned responses induced by inadequate empirical 

models. Although not discussed here, that approach was used at the starting point for the 

optimization problem discussed in Section 4. 
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4. Design of a High-temperature Superconducting (HTS) Parallel Coupled-line Microstrip Filter 
Exploiting Aggressive Space Mapping 

The SM technique has been successfully applied to the design of an HTS filter. A detailed 

description of the filter (see Fig. 3) can be found in [2, 4-6]. This relatively small circuit 

exemplifies difficulties in directly using detailed EM simulations during optimization. To obtain 

an accurate and detailed circuit response, such as the one shown in Fig. 5, one needs more than a 

week of CPU time on a SPARCstation 10. To invoke such simulations many times during 

optimization is prohibitive. 

For this problem, we consider 6 optimization variables representing the geometrical dimensions 

of the filter. We employ two models: (I) a fast model, based on empirical formulas available in 

the OSA90/hope [10] software package, and (2) an accurate but extremely CPU-intensive model, 

based on solving electromagnetic field equations by the em simulator [ 11 ]. 

Following Phase I of SM, we optimize the HTS filter using the OSA90/hope empirical model. 

The optimization goal is formulated in terms of the so-called scattering parameters S. These S 

parameters quantify the filter behaviour in terms of the power transfer from the input to the output 

of the filter [12]. Of particular interest is the parameter IS211 and its dependence on frequency 

(frequency response). The filtering capabilities of the circuit considered are described by the 

design specifications: 

1S211 ~ 0.05 

1S211 2: 0.95 

in the stopband 

in the passband 

where the stopband includes frequencies below 3.967 GHz and above 4.099 GHz and the passband 

lies in the frequency range [4.008 GHz, 4.058 GHz]. An appropriate objective function for 

optimization is formulated from the design specifications [8]. 

Fig. 4 shows the 1S211 (and IS 111) empirical model responses after performing minimax 

optimization using OSA90/hope. The em simulated frequency response differs significantly from 

that of the empirical model, as shown in Fig. 5. 

In Phase 2 of SM, our aim is to establish a mapping in order to find a solution in the EM 

space which substantially reproduces the performance predicted by the optimal empirical model. 
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In this phase, in order to further reduce the CPU time of EM simulations, we do not consider as 

fine frequency sweeps as those shown in the figures. We use only 15 frequency points per sweep 

which turned out to be adequate. The SM solution emerges after only six such simplified EM 

analyses. Fig. 6 compares the filter responses of the optimal empirical model and the em simulated 

SM solution. Fig. 7 shows the progress of the aggressive SM algorithm as applied to the HTS filter 

design. 

S. Conclusions 

This presentation has included a theoretical formulation of the Space Mapping technique and 

an improved aggressive Space Mapping approach. The aggressive Space Mapping theory has been 

illustrated by the design optimization of a high-temperature superconducting parallel coupled-line 

microstrip filter. 

Space Mapping optimization is a newly emerging and very promising approach. It exploits the 

speed of an efficient model and blends it with a few slow but highly accurate model evaluations 

to effectively perform design optimization within a practical time frame. A few recent publications 

in the engineering field exhibit some similarities to concepts found in Space Mapping [13-16]. 

In the near future we expect to see the Space Mapping concept applied to active devices. In 

this domain, physics-based models and physical models will be utilized [ 17]. Physics-based models 

relate the equivalent circuit elements to the device physics based on simplified analytical solutions 

of device equations. Physical models, based on the numerical solution of fundamental device 

equations are the most accurate. However, they require significantly more computation time than 

the physics-based models. Hence, Space Mapping may be the key to achieving the accuracy of 

physical simulation and the speed of circuit-level optimization. 

Surprisingly, the concept of Space Mapping is only now establishing itself in the domain of 

circuit optimization. This is despite the overwhelming array of engineering models of devices, 

circuits and systems. It should be noted that designers increasingly employ accurate CPU-intensive 
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simulators, yet extensive use of efficient simplified models is made to avoid time-consuming 

analyses. SM bridges the two approaches and takes advantage of their respective benefits. 

It is of interest to study concepts such as robustness, convergence and flexibility (using models 

with different physical parameters) in relation to Space Mapping optimization. 
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Fig. 1. 
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Illustration of Space Mapping optimization: (a) set x;;J = x;s, assuming Xem andx0s 

represent the same physical parameters, (b) generate additional base points around x!;J, 
(c) perform X0s-space model parameter extraction according to (2.8). 
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Fig. 1. 
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Illustration of Space Mapping optimization (cont.): (d) use the inverse mapping to obtain 

x~, (e) perform X0s-space model parameter extraction to obtain x£;>, (f) apply the 

updated inverse mapping to obtain the SM solution xem = x!!}, assuming 

II Ros(x;s) - Rem(x;!h II S € • 
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Fig. 2. 

Optimization Space 

* Xos • 

Optimization Space 

* Xos • 

X(l) 
OS 

Optimization Space 

* Xos • 

(a) 

(b) 

(c) 

EM Space 

X(l) 
• em 

EM Space 

X(l) 
em 

EM Space 

x<2> em 

h<~ <•l i'\xem 

Illustration of aggressive Space Mapping optimization: (a) set x~ = x;s (assumingxem 
and x0 s represent the same physical parameters) and B{l) = 1, (b) perform X 0 s-space 
model parameter extraction, (c) obtain x;!; by solving B{l) h{l) = -JC1). 
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Fig. 2. 
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Illustration of aggressive Space Mapping optimization (cont.): (d) perform X08-space 

model parameter extraction, (e) obtain x!;1 by solving B(2) h(2) = - jC2), (f) the SM 

solution is Xem = x;;: assuming II x£!) - x;s II ~ T/ • 
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Fig. 3. The structure of the HTS filter. 
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Fig. 4. 
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Fig. 5. 
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A comparison of (a) IS 211 and (b) IS nl between the empirical model (-) and em ( - - - ) 
at the empirical model minimax solution. 
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Fig. 6. 
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The em simulated IS211 response of the HTS filter at the SM solution obtained using the 
aggressive SM approach(-). The OSA90/hope empirical model solution(---) is shown 
for comparison. Responses are shown for (a) the overall frequency band and (b) the 
pass band in more detail. 
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Fig. 7. 
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Illustration of the progress of (a) II x~ +l) - x;s II and (b) II h(j) 11 2 corresponding to the 
2 

aggressive SM optimization of the HTS filter. 
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