# NOVEL ELECTROMAGNETIC OPTIMIZATION TECHNIQUES, INCLUDING SPACE MAPPING

J.W. Bandler

OSA-95-IM-20-V

July 17, 1995

<sup>©</sup> Optimization Systems Associates Inc. 1995

|  |  |  | 8 |
|--|--|--|---|
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  | 6 |
|  |  |  | * |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  | • |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |

# NOVEL ELECTROMAGNETIC OPTIMIZATION TECHNIQUES, INCLUDING SPACE MAPPING

#### J.W. Bandler

Optimization Systems Associates Inc. P.O. Box 8083, Dundas, Ontario Canada L9H 5E7



presented at

WORKSHOP ON LARGE SCALE OPTIMIZATION
Institute for Mathematics and its Applications, Minneapolis, MN, July 17-21, 1995



### **Background**

assume that  $X_{os}$  (optimization space) and  $X_{em}$  (EM space) have the same dimensionality, i.e.,

$$x_{os} \in \mathbb{R}^n$$
 and  $x_{em} \in \mathbb{R}^n$ ,

but may not represent the same parameters

the  $X_{os}$ -space model can be comprised of empirical models, or an efficient coarse-grid EM model

the  $X_{em}$ -space model is typically a fine-grid EM model but, ultimately, can represent actual hardware prototypes

we assume that the  $X_{os}$ -space model responses,  $R_{os}(x_{os})$ , are much faster to calculate but less accurate than the  $X_{em}$ -space model responses,  $R_{em}(x_{em})$ 

we initially perform optimization in  $X_{os}$  to obtain the optimal design  $x_{os}^*$ , for instance in the minimax sense

subsequently, apply SM to find the mapped solution  $\bar{x}_{em}$  in  $X_{em}$  to reproduce the optimal performance predicted by the empirical model



# Optimization Systems Associates Inc.

# The Concept of Space Mapping

(Bandler, Biernacki, Chen, Grobelny and Hemmers, 1994)

our aim is to find an appropriate mapping, P, from the  $X_{em}$ -space to the  $X_{os}$ -space, i.e.,

$$x_{os} = P(x_{em})$$

such that

$$R_{os}(P(x_{em})) \approx R_{em}(x_{em})$$

we assume that such a mapping exists and is one-to-one within some local modeling region encompassing our SM solution

once the mapping is established, the SM solution is

$$\bar{x}_{em} = P^{-1}(x_{os}^*)$$



### **Original Space Mapping Method**

the mapping is established through an iterative process

to obtain the initial approximation to the mapping,  $P^{(0)}$ , we perform EM analyses at a preselected set of base points in  $X_{em}$  around the starting point

as the first base point we may select the starting point, i.e.,

$$x_{em}^{(1)} = x_{os}^*$$

assuming  $x_{em}$  and  $x_{os}$  represent the same physical parameters, followed by additional base points chosen by perturbation as

$$x_{em}^{(i)} = x_{em}^{(1)} + \Delta x_{em}^{(i-1)}, \quad i = 2, 3, ..., m$$

this is followed by parameter extraction optimization in  $X_{os}$  to obtain the set of corresponding base points  $x_{os}^{(i)}$  according to

minimize 
$$\|R_{os}(x_{os}^{(i)}) - R_{em}(x_{em}^{(i)})\|$$
  
 $x_{os}^{(i)}$ 

for i = 1, 2, ..., m, where  $\|\cdot\|$  indicates a suitable norm



## **Original Space Mapping Method (continued)**

at the jth iteration, both sets may be expanded to contain  $m_j$  points which are used to establish the updated mapping  $P^{(j)}$ 

the current approximation  $P^{(j)}$  is used to estimate  $\bar{x}_{em}$  as

$$x_{em}^{(m_j+1)} = P^{(j)^{-1}}(x_{os}^*)$$

the process continues until the termination condition

$$||R_{os}(x_{os}^*) - R_{em}(x_{em}^{(m_j+1)})|| \le \epsilon$$

is satisfied, where  $\epsilon$  is a small positive constant, then  $P^{(j)}$  is our desired P

if not, the set of base points in  $X_{em}$  is augmented by  $x_{em}^{(m_j+1)}$  and correspondingly,  $x_{os}^{(m_j+1)}$  determined by parameter extraction augments the set of base points in  $X_{os}$ 

upon termination, we set  $\bar{x}_{em} = x_{em}^{(m_j+1)} = P^{(j)^{-1}}(x_{os}^*)$  as the SM solution



#### Aggressive Approach to Space Mapping

(Bandler, Biernacki, Chen, Hemmers and Madsen, 1995)

at the SM solution,  $R_{em}(x_{em}^{(M)})$  will closely match  $R_{os}(x_{os}^*)$ ,

$$||R_{os}(x_{os}^*) - R_{em}(x_{em}^{(M)})|| \le \epsilon$$

where M is the number of iterations needed to converge to an SM solution

hence, after an additional parameter extraction optimization in  $X_{os}$ , the resulting point

$$x_{os}^{(M)} = P(x_{em}^{(M)})$$

approaches the point  $x_{os}^*$  (optimal solution in  $X_{os}$ ), or

$$\|x_{os}^{(M)} - x_{os}^*\| \le \eta \text{ as } j \to M$$

where  $\eta$  is a small positive constant

by setting  $\eta$  to 0, we consider the set of n nonlinear equations

$$f(x_{em}) = 0$$

of the form

$$f(x_{em}) = P(x_{em}) - x_{os}^*$$

where  $x_{os}^*$  is a given vector



# **Aggressive Space Mapping - Quasi-Newton Iteration**

let  $x_{em}^{(j)}$  be the jth approximation to the solution and  $f^{(j)}$  written for  $f(x_{em}^{(j)})$ 

the next iterate is found by a quasi-Newton iteration

$$x_{em}^{(j+1)} = x_{em}^{(j)} + h^{(j)}$$

by solving the linear system

$$B^{(j)}h^{(j)} = -f^{(j)}$$

 $\boldsymbol{B}^{(j)}$  is an approximation to the Jacobian matrix

$$J(x_{em}^{(j)}) = \left(\frac{\partial f^{T}(x_{em})}{\partial x_{em}}\right)^{T} \begin{vmatrix} x_{em} & x_{em}^{(j)} \\ x_{em} & x_{em}^{(j)} \end{vmatrix}$$

in our implementation,  $B^{(1)}$  is set to the identity matrix

the approximation to the Jacobian matrix is updated by the classic Broyden formula (*Broyden*, 1965)

$$B^{(j+1)} = B^{(j)} + \frac{f(x_{em}^{(j)} + h^{(j)}) - f(x_{em}^{(j)}) - B^{(j)}h^{(j)}}{h^{(j)}h^{(j)}}h^{(j)}^{T}$$



## **Aggressive Space Mapping - Implementation**

begin with a point,  $x_{os}^* \triangleq arg min\{H(x_{os})\}\$ , representing the optimal design in  $X_{os}$  where  $H(x_{os})$  is some appropriate objective function

Step 0. initialize 
$$x_{em}^{(1)} = x_{os}^*$$
,  $B^{(1)} = 1$ ,  $f^{(1)} = P(x_{em}^{(1)}) - x_{os}^*$ ,  $j = 1$ ; stop if  $||f^{(1)}|| \le \eta$ 

Step 1. solve 
$$B^{(j)}h^{(j)} = -f^{(j)}$$
 for  $h^{(j)}$ 

Step 2. set 
$$x_{em}^{(j+1)} = x_{em}^{(j)} + h^{(j)}$$

Step 3. evaluate 
$$P(x_{em}^{(j+1)})$$

Step 4. compute 
$$f^{(j+1)} = P(x_{em}^{(j+1)}) - x_{os}^*$$
; if  $||f^{(j+1)}|| \le \eta$ , stop

Step 5. update 
$$B^{(j)}$$
 to  $B^{(j+1)}$ 

Step 6. set 
$$j = j + 1$$
; go to Step 1



# **Frequency Space Mapping for Parameter Extraction**

parameter extraction can be a serious challenge, especially at the starting point, if the model responses are misaligned

Re $\{S_{11}\}$  using OSA90/hope (---) and em (---) at  $x_{os}^*$ 



straightforward optimization from such a starting point can lead to a local minimum





# Frequency Space Mapping - Mapping and Alignment

to better condition the parameter extraction subproblem first, we align  $R_{os}$  and  $R_{em}$  along the frequency axis using

$$\omega_{os} = P_{\omega}(\omega)$$

this frequency space mapping can be as simple as

$$\omega_{os} = \sigma \omega + \delta$$

at the starting point, we determine  $\sigma_0$  and  $\delta_0$  by

minimize 
$$\|R_{os}(x_{os}, \sigma_{o}, \delta_{o}) - R_{em}(x_{em})\|$$
  
 $\sigma_{o}, \delta_{o}$ 

where  $x_{os}$  and  $x_{em}$  are fixed and  $x_{os} = x_{em}$ 

resulting alignment between OSA90/hope (——) and em (---):





# Frequency Space Mapping: Sequential FSM (SFSM) Algorithm

we perform a sequence of optimizations to gradually achieve the identity Frequency Space Mapping

we optimize  $x_{os}$  to match  $R_{os}$  and  $R_{em}$ :

minimize 
$$\|R_{os}(x_{os}^{(j)}, \sigma^{(j)}, \delta^{(j)}) - R_{em}(x_{em})\|$$

the values  $\sigma^{(j)}$  and  $\delta^{(j)}$  are updated according to

$$\sigma^{(j)} = 1 + (\sigma_0 - 1) \frac{(K - j)}{K}$$

and

$$\boldsymbol{\delta}^{(j)} = \boldsymbol{\delta}_{0} \frac{(K-j)}{K},$$

respectively, for j = 0, 1, ..., K

K determines the number of steps in the sequence

larger values of K increase the probability of success in the parameter extraction subproblem at the expense of longer optimization time



# Frequency Space Mapping: Exact Penalty Function (EPF) Algorithm

we perform only one optimization to achieve the identity Frequency Space Mapping and optimize  $x_{os}$  to match  $R_{os}$  to  $R_{em}$ 

the  $\ell_1$  norm version of the EPF formulation is given by

minimize 
$$\{\|R_{os}(x_{os}, \sigma, \delta) - R_{em}(x_{em})\|_{1} + \alpha_{1} |\sigma - 1| + \alpha_{2} |\delta| \}$$

the minimax version is given by

minimize 
$$\max_{x_{os}, \sigma, \delta} \left\{ \max_{1 \le i \le 4} \left[ U(x_{os}, \sigma, \delta), \ U(x_{os}, \sigma, \delta) - \alpha_i g_i \right] \right\}$$

where

$$U(x_{os}, \sigma, \delta) = \|R_{os}(x_{os}, \sigma, \delta) - R_{em}(x_{em})\|$$

and

$$g(\sigma, \delta) = \begin{bmatrix} \sigma - 1 \\ 1 - \sigma \\ \delta \\ - \delta \end{bmatrix}$$

in both EPF formulations,  $\alpha_i$  are kept fixed and must be sufficiently large to obtain the identity mapping and hence the solution to the parameter extraction problem

# Optimization Systems Associates Inc.

# **Frequency Space Mapping - Results**

 $Re{S_{11}}$  using OSA90/hope (——) and em (---)



resulting match after applying the FSM algorithm

|  |  |  | i |
|--|--|--|---|
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  | • |
|  |  |  | ٠ |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  | t |
|  |  |  |   |
|  |  |  |   |