#### NOVEL SPACE MAPPING OPTIMIZATION TECHNIQUE FOR ELECTROMAGNETIC DESIGN

J.W. Bandler

OSA-95-ES-26-V

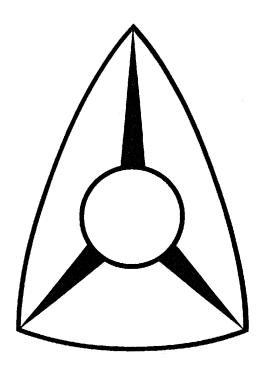
November 6, 1995

|  |  | * |
|--|--|---|
|  |  | • |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  | • |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  | • |
|  |  | - |
|  |  |   |
|  |  |   |
|  |  |   |

# NOVEL SPACE MAPPING OPTIMIZATION TECHNIQUE FOR ELECTROMAGNETIC DESIGN

#### J.W. Bandler

Optimization Systems Associates Inc. P.O. Box 8083, Dundas, Ontario Canada L9H 5E7



presented at

European Space Agency Workshop "Advanced CAD for Microwave Filters and Passive Devices" ESTEC, Noordwijk, The Netherlands, November 6-8, 1995



#### **Background**

assume that  $X_{os}$  (optimization space) and  $X_{em}$  (EM space) have the same dimensionality, i.e.,

$$x_{os} \in \mathbb{R}^n$$
 and  $x_{em} \in \mathbb{R}^n$ ,

but may not represent the same parameters

the  $X_{os}$ -space model can be comprised of empirical models, or an efficient coarse-grid EM model

the  $X_{em}$ -space model is typically a fine-grid EM model but, ultimately, can represent actual hardware prototypes

we assume that the  $X_{os}$ -space model responses,  $R_{os}(x_{os})$ , are much faster to calculate but less accurate than the  $X_{em}$ -space model responses,  $R_{em}(x_{em})$ 

we initially perform optimization in  $X_{os}$  to obtain the optimal design  $x_{os}^*$ , for instance in the minimax sense

subsequently, apply SM to find the mapped solution  $\bar{x}_{em}$  in  $X_{em}$  to reproduce the optimal performance predicted by the empirical model



#### The Concept of Space Mapping

(Bandler, Biernacki, Chen, Grobelny and Hemmers, 1994)

our aim is to find an appropriate mapping, P, from the  $X_{em}$ -space to the  $X_{os}$ -space, i.e.,

$$x_{os} = P(x_{em})$$

such that

$$R_{os}(P(x_{em})) \approx R_{em}(x_{em})$$

we assume that such a mapping exists and is one-to-one within some local modeling region encompassing our SM solution

once the mapping is established, the SM solution is

$$\bar{x}_{em} = P^{-1}(x_{os}^*)$$



#### **Original Space Mapping Method**

the mapping is established through an iterative process

to obtain the initial approximation to the mapping,  $P^{(0)}$ , we perform EM analyses at a preselected set of base points in  $X_{em}$  around the starting point

as the first base point we may select the starting point, i.e.,

$$x_{em}^{(1)} = x_{os}^*$$

assuming  $x_{em}$  and  $x_{os}$  represent the same physical parameters, followed by additional base points chosen by perturbation as

$$x_{em}^{(i)} = x_{em}^{(1)} + \Delta x_{em}^{(i-1)}, \quad i = 2, 3, ..., m$$

this is followed by parameter extraction optimization in  $X_{os}$  to obtain the set of corresponding base points  $x_{os}^{(i)}$  according to

minimize 
$$\|R_{os}(x_{os}^{(i)}) - R_{em}(x_{em}^{(i)})\|$$
  
 $x_{os}^{(i)}$ 

for i = 1, 2, ..., m, where  $\|\cdot\|$  indicates a suitable norm



#### **Original Space Mapping Method (continued)**

at the jth iteration, both sets may be expanded to contain  $m_i$  points which are used to establish the updated mapping  $P^{(j)}$ 

the current approximation  $P^{(j)}$  is used to estimate  $\bar{x}_{em}$  as

$$x_{em}^{(m_j+1)} = P^{(j)^{-1}}(x_{os}^*)$$

the process continues until the termination condition

$$||R_{os}(x_{os}^*) - R_{em}(x_{em}^{(m_j+1)})|| \le \epsilon$$

is satisfied, where  $\epsilon$  is a small positive constant, then  $P^{(j)}$  is our desired P

if not, the set of base points in  $X_{em}$  is augmented by  $x_{em}^{(m_j+1)}$  and correspondingly,  $x_{os}^{(m_j+1)}$  determined by parameter extraction augments the set of base points in  $X_{os}$ 

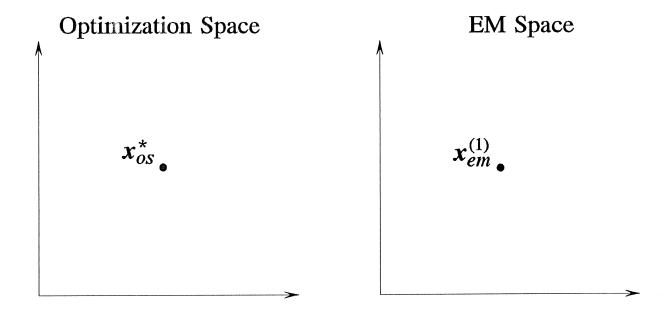
upon termination, we set  $\bar{x}_{em} = x_{em}^{(m_j+1)} = P^{(j)^{-1}}(x_{os}^*)$  as the SM solution



Step 0

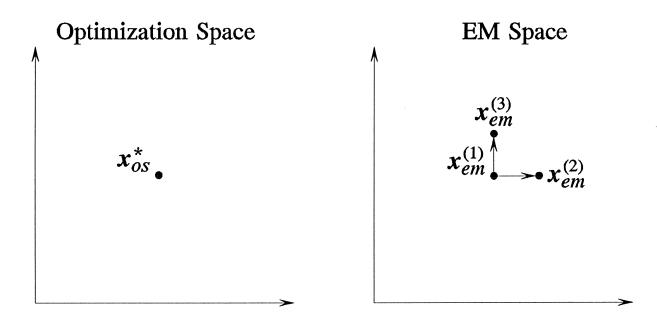
find the optimal design  $x_{os}^*$  in Optimization Space

Step 1



set  $x_{em}^{(1)} = x_{os}^*$  assuming  $x_{em}$  and  $x_{os}$  represent the same physical parameters

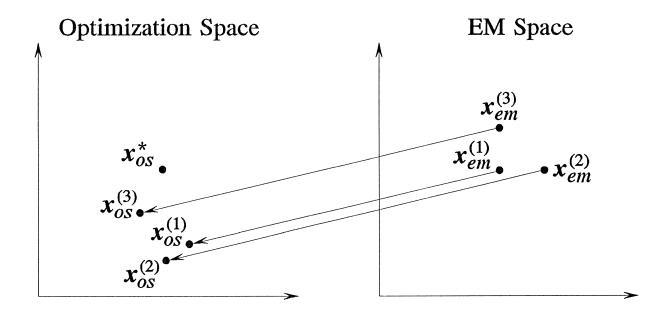
Step 2



generate additional base points around  $x_{em}^{(1)}$ 



Step 3

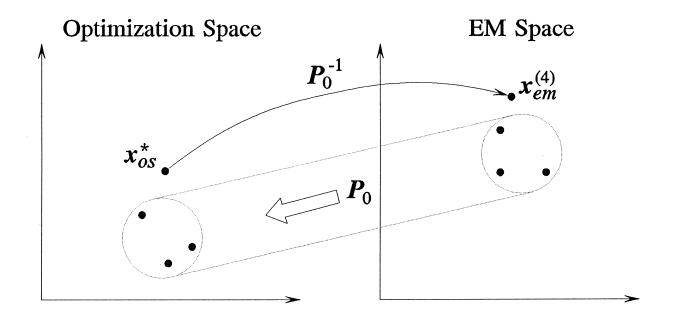


perform  $X_{os}$ -space model parameter extraction for each of the base points to match the EM and OS responses

a set of OS points corresponding to the EM base points is established



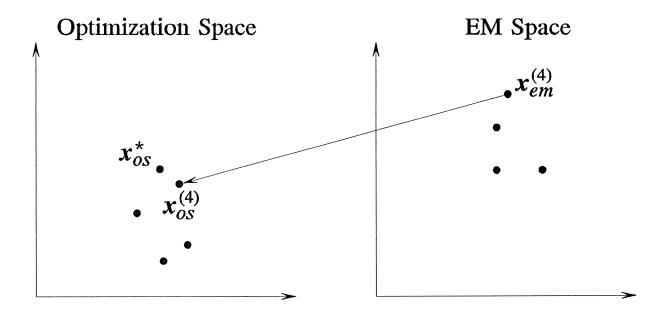
## Step 4



determine the initial mapping  $P_0$  use the inverse mapping to obtain  $x_{em}^{(4)}$ 



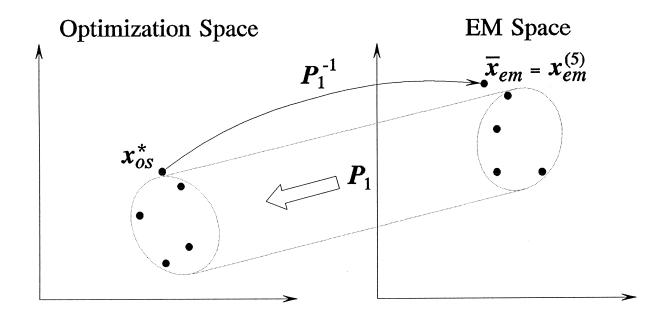
Step 5



perform  $X_{os}$ -space model parameter extraction to obtain  $x_{os}^{(4)}$ 



Step 6



use the additional pair of points to update the mapping to  $P_1$  apply the updated inverse mapping to obtain  $x_{em}^{(5)}$  if  $\|R_{os}(x_{os}^*) - R_{em}(x_{em}^{(5)})\| \le \epsilon$  then  $\bar{x}_{em} = x_{em}^{(5)}$  is considered as the SM solution



#### **Aggressive Approach to Space Mapping**

(Bandler, Biernacki, Chen, Hemmers and Madsen, 1995)

at the SM solution,  $R_{em}(x_{em}^{(M)})$  will closely match  $R_{os}(x_{os}^*)$ ,

$$||R_{os}(x_{os}^*) - R_{em}(x_{em}^{(M)})|| \le \epsilon$$

where M is the number of iterations needed to converge to an SM solution

hence, after an additional parameter extraction optimization in  $X_{os}$ , the resulting point

$$x_{os}^{(M)} = P(x_{em}^{(M)})$$

approaches the point  $x_{os}^*$  (optimal solution in  $X_{os}$ ), or

$$\|x_{os}^{(M)} - x_{os}^*\| \le \eta$$
 as  $j \to M$ 

where  $\eta$  is a small positive constant

by setting  $\eta$  to 0, we consider the set of n nonlinear equations

$$f(x_{em}) = \mathbf{0}$$

of the form

$$f(x_{em}) = P(x_{em}) - x_{os}^*$$

where  $x_{os}^*$  is a given vector



#### **Aggressive Space Mapping - Quasi-Newton Iteration**

let  $x_{em}^{(j)}$  be the jth approximation to the solution and  $f^{(j)}$  written for  $f(x_{em}^{(j)})$ 

the next iterate is found by a quasi-Newton iteration

$$x_{em}^{(j+1)} = x_{em}^{(j)} + h^{(j)}$$

by solving the linear system

$$\boldsymbol{B}^{(j)}\boldsymbol{h}^{(j)} = -\boldsymbol{f}^{(j)}$$

 $\boldsymbol{B}^{(j)}$  is an approximation to the Jacobian matrix

$$J(x_{em}^{(j)}) = \left(\frac{\partial f^{T}(x_{em})}{\partial x_{em}}\right)^{T} \begin{vmatrix} x_{em} & x_{em} \\ x_{em} & x_{em} \end{vmatrix}$$

in our implementation,  $B^{(1)}$  is set to the identity matrix

the approximation to the Jacobian matrix is updated by the classic Broyden formula (*Broyden*, 1965)

$$B^{(j+1)} = B^{(j)} + \frac{f(x_{em}^{(j)} + h^{(j)}) - f(x_{em}^{(j)}) - B^{(j)}h^{(j)}}{h^{(j)}h^{(j)}}h^{(j)}^{T}$$



#### **Aggressive Space Mapping - Implementation**

begin with a point,  $x_{os}^* \triangleq arg min \{H(x_{os})\}$ , representing the optimal design in  $X_{os}$  where  $H(x_{os})$  is some appropriate objective function

Step 0. initialize 
$$x_{em}^{(1)} = x_{os}^*$$
,  $B^{(1)} = 1$ ,  $f^{(1)} = P(x_{em}^{(1)}) - x_{os}^*$ ,  $j = 1$ ; stop if  $||f^{(1)}|| \le \eta$ 

Step 1. solve 
$$B^{(j)}h^{(j)} = -f^{(j)}$$
 for  $h^{(j)}$ 

Step 2. set 
$$x_{em}^{(j+1)} = x_{em}^{(j)} + h^{(j)}$$

Step 3. evaluate 
$$P(x_{em}^{(j+1)})$$

Step 4. compute 
$$f^{(j+1)} = P(x_{em}^{(j+1)}) - x_{os}^*$$
; if  $||f^{(j+1)}|| \le \eta$ , stop

Step 5. update 
$$B^{(j)}$$
 to  $B^{(j+1)}$ 

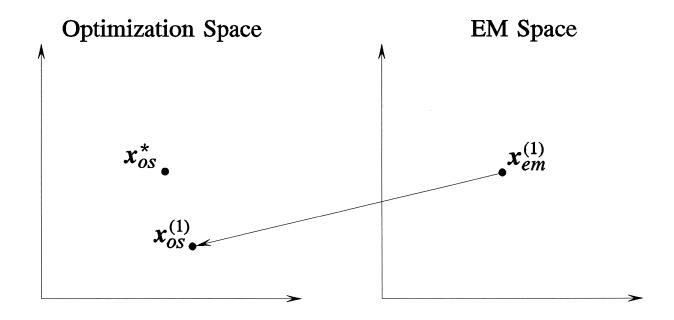
Step 6. set 
$$j = j + 1$$
; go to Step 1

| • |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

## Optimization Systems Associates Inc.

## Illustration of Aggressive Space Mapping Optimization

Step 2



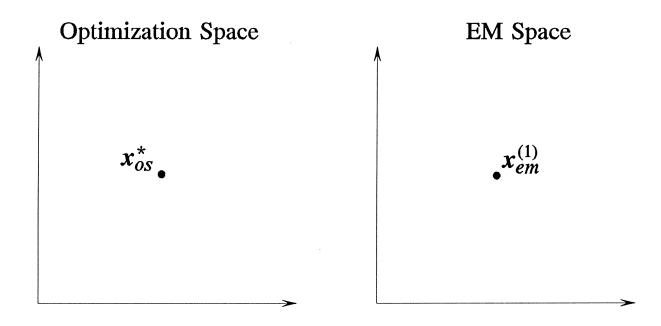
perform  $X_{os}$ -space model parameter extraction



Step 0

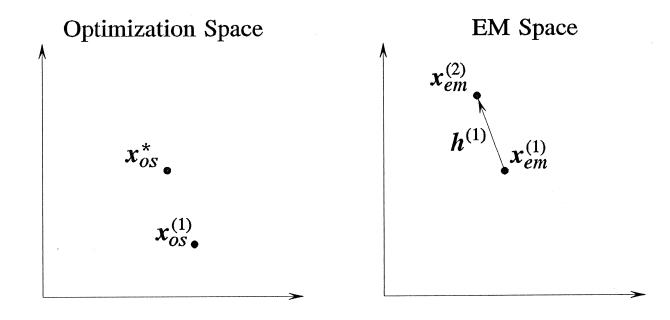
find the optimal design  $x_{os}^*$  in Optimization Space

Step 1



set  $x_{em}^{(1)} = x_{os}^*$  assuming  $x_{em}$  and  $x_{os}$  represent the same physical parameters

Step 3



initialize Jacobian approximation  $B^{(1)} = 1$ 

obtain  $x_{em}^{(2)}$  by solving

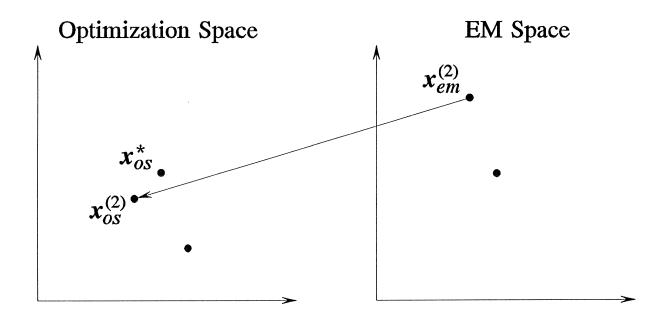
$$B^{(1)}h^{(1)} = -f^{(1)}$$

where

$$f^{(1)} = x_{os}^{(1)} - x_{os}^*$$



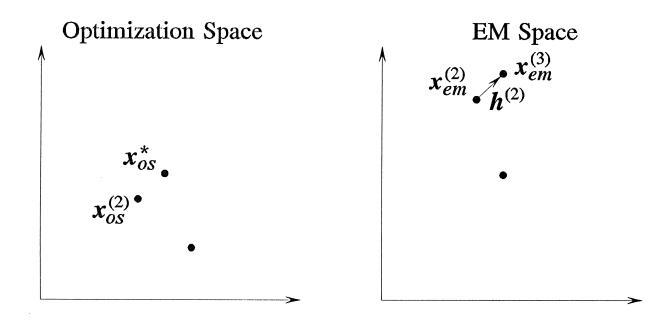
Step 4



perform  $X_{os}$ -space model parameter extraction



Step 5



update Jacobian approximation from  $B^{(1)}$  to  $B^{(2)}$ 

obtain  $x_{em}^{(3)}$  by solving

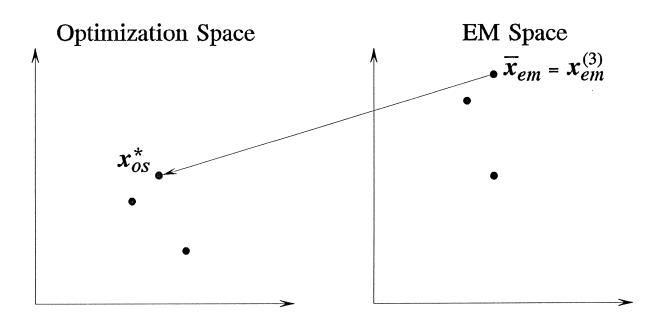
$$B^{(2)}h^{(2)} = -f^{(2)}$$

where

$$f^{(2)} = x_{os}^{(2)} - x_{os}^*$$



Step 6



perform  $X_{os}$ -space model parameter extraction

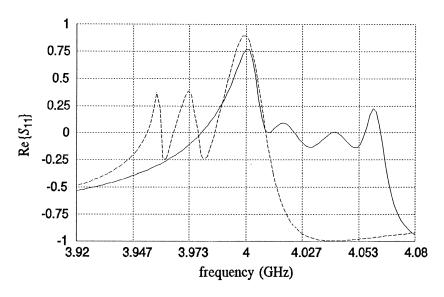
if  $\|x_{os}^{(3)} - x_{os}^*\| \le \epsilon$  then  $\bar{x}_{em} = x_{em}^{(3)}$  is considered as the SM solution



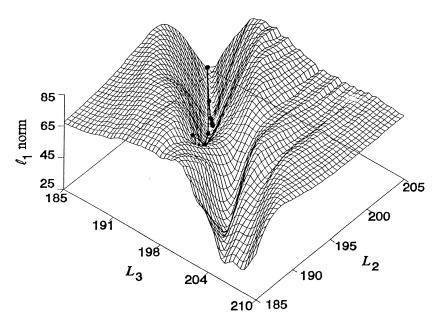
#### **Frequency Space Mapping for Parameter Extraction**

parameter extraction can be a serious challenge, especially at the starting point, if the model responses are misaligned

Re $\{S_{11}\}$  using OSA90/hope (—) and em (---) at  $x_{os}^*$ 



straightforward optimization from such a starting point can lead to a local minimum





#### Frequency Space Mapping - Mapping and Alignment

to better condition the parameter extraction subproblem first, we align  $R_{os}$  and  $R_{em}$  along the frequency axis using

$$\omega_{os} = P_{\omega}(\omega)$$

this frequency space mapping can be as simple as

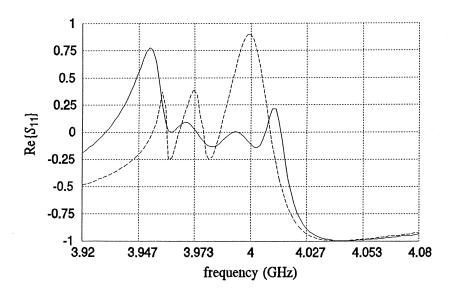
$$\omega_{os} = \sigma \omega + \delta$$

at the starting point, we determine  $\sigma_0$  and  $\delta_0$  by

minimize 
$$\|R_{os}(x_{os}, \sigma_{o}, \delta_{o}) - R_{em}(x_{em})\|$$

where  $x_{os}$  and  $x_{em}$  are fixed and  $x_{os} = x_{em}$ 

resulting alignment between OSA90/hope (——) and em (---):





#### Frequency Space Mapping: Sequential FSM (SFSM) Algorithm

we perform a sequence of optimizations to gradually achieve the identity Frequency Space Mapping

we optimize  $x_{os}$  to match  $R_{os}$  and  $R_{em}$ :

minimize 
$$\|R_{os}(x_{os}^{(j)}, \sigma^{(j)}, \delta^{(j)}) - R_{em}(x_{em})\|$$
  
 $x_{os}^{(j)}$ 

the values  $\sigma^{(j)}$  and  $\delta^{(j)}$  are updated according to

$$\sigma^{(j)} = 1 + (\sigma_0 - 1) \frac{(K - j)}{K}$$

and

$$\delta^{(j)} = \delta_{0} \frac{(K-j)}{K},$$

respectively, for j = 0, 1, ..., K

K determines the number of steps in the sequence

larger values of K increase the probability of success in the parameter extraction subproblem at the expense of longer optimization time



#### Frequency Space Mapping: Exact Penalty Function (EPF) Algorithm

we perform only one optimization to achieve the identity Frequency Space Mapping and optimize  $x_{os}$  to match  $R_{os}$  to  $R_{em}$ 

the  $\ell_1$  norm version of the EPF formulation is given by

minimize 
$$\{\|R_{os}(x_{os}, \sigma, \delta) - R_{em}(x_{em})\|_{1} + \alpha_{1} |\sigma - 1| + \alpha_{2} |\delta| \}$$

the minimax version is given by

minimize 
$$\left\{ \max_{x_{os}, \sigma, \delta} \left[ U(x_{os}, \sigma, \delta), \ U(x_{os}, \sigma, \delta) - \alpha_i g_i \right] \right\}$$

where

$$U(x_{os}, \sigma, \delta) = \|R_{os}(x_{os}, \sigma, \delta) - R_{em}(x_{em})\|$$

and

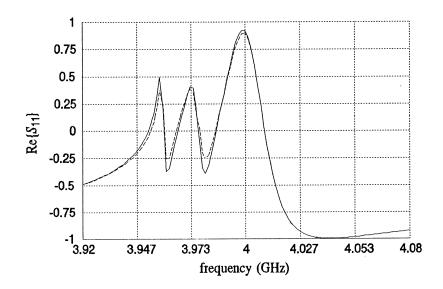
$$g(\sigma, \delta) = \begin{bmatrix} \sigma - 1 \\ 1 - \sigma \\ \delta \\ - \delta \end{bmatrix}$$

in both EPF formulations,  $\alpha_i$  are kept fixed and must be sufficiently large to obtain the identity mapping and hence the solution to the parameter extraction problem



## Frequency Space Mapping - Results

 $Re\{S_{11}\}$  using OSA90/hope (——) and em (---)



resulting match after applying the FSM algorithm