IMPLEMENTATION OF AN HBT MODEL

OSA-94-OS-31-R

November 2, 1994

[©] Optimization Systems Associates Inc. 1994

IMPLEMENTATION OF AN HBT MODEL

I. INTRODUCTION

A heterojunction bipolar transistor (HBT) model is implemented in HarPE [1] and OSA90/hope [2]. The HBT model is a modification of our BJT model by introducing the temperature effect following the thermal-electrical model of HBTs presented in [3]. A thermal circuit [4] is used to evaluate the device temperature and is integrated into DC, small-signal and large-signal harmonic balance (HB) simulations.

We performed DC, small-signal and large-signal simulations with this HBT model using the parameter values given in [5]. Very similar results to those presented in [5] are observed.

II. MODEL EQUATIONS

The HBT model is implemented according to the model equations given in [3] and [6]. The intrinsic circuit of the model is shown in Fig. 1.

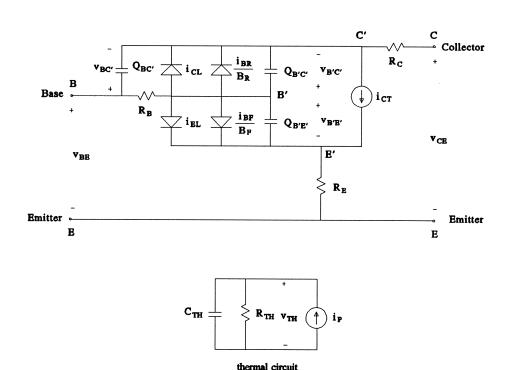


Fig. 1 The intrinsic equivalent circuit of the HBT model.

The model equations for computing the nonlinear currents are as follows.

$$i_{CL} = I_{SC} \left[\exp \left(\frac{v_{B'C'}}{N_C V_T} \right) - 1 \right]$$
 (1)

$$i_{EL} = I_{SE} \left[\exp \left(\frac{v_{B'E'}}{N_E V_T} \right) - 1 \right]$$
 (2)

$$i_{BR} = I_S \left[\exp \left(\frac{v_{B'C'}}{N_R V_T} \right) - 1 \right]$$
 (3)

$$i_{BF} = I_S \left[\exp \left(\frac{v_{B'E'}}{N_F V_T} \right) - 1 \right]$$
 (4)

$$i_{CT} = \frac{i_{BF} - i_{BR}}{K_{ab}} \tag{5}$$

$$i_P = i_B v_{BE} + i_C v_{CE} \tag{6}$$

where

$$V_T = \frac{kT}{q} \tag{7}$$

$$T = T_0 + v_{TH} \tag{8}$$

$$I_S = I_{S0} \left(\frac{T}{T_0} \right)^{X_{TI}} \exp \left(\frac{E_G}{kT_0} - \frac{E_G}{kT} \right)$$
 (9)

$$I_{SE} = I_{SE0} \frac{B_{F0}}{B_F} \left(\frac{I_S}{I_{S0}} \right)^{\frac{1}{N_E}}$$
 (10)

$$I_{SC} = I_{SC0} \frac{B_{F0}}{B_F} \left(\frac{I_S}{I_{S0}} \right)^{\frac{1}{N_C}} \tag{11}$$

$$B_F = B_{F0} \left(\frac{T}{T_0} \right)^P \exp \left(\frac{E_{INF}}{kT} - \frac{E_{INF}}{kT_0} \right)$$
 (12)

$$K_{qb} = \frac{K_{q1}(1 + \sqrt{1 + 4K_{q2}})}{2}$$
 (13)

$$K_{q1} = \frac{1}{1 - \frac{v_{B'C'}}{V_{AF}} - \frac{v_{B'E'}}{V_{AR}}}$$
 (14)

$$K_{q2} = \frac{i_{BF}}{I_{KF}} + \frac{i_{BR}}{I_{KR}} \tag{15}$$

k is the Boltzman constant, q the electron charge, T_0 the room temperature, v_{TH} the temperature increment, and N_E , N_C , N_R , N_F , E_G , E_{INF} , X_{TI} , P, I_{S0} , I_{SE0} , I_{SC0} , B_{F0} , V_{AF} , V_{AR} , I_{KF} and I_{KR} are model parameters.

The model equations for computing the nonlinear charges are as follows.

$$Q_{B'E'} = Q(v_{B'E'}, V_{JE}, M_{JE}, C_{JE}, F_C) + T_F i_{BF}$$
(16)

$$Q_{B'C'} = Q(v_{B'C'}, V_{JC}, M_{JC}, C_{JC}, F_C) + T_R i_{BR}$$
(17)

$$Q_{BC'} = (1 - X_{CJC})Q(v_{BC'}, V_{JC}, M_{JC}, C_{JC}, F_C)$$
(18)

where

$$Q(v, v_{j}, m_{j}, c_{j}, f_{c}) = \begin{cases} -\frac{c_{j}v_{j}}{1 - m_{j}} \left[\left(1 - \frac{v}{v_{j}}\right)^{(1 - m_{j})} - 1 \right] & \text{for } v \leq f_{c}v_{j} \\ -\frac{c_{j}v_{j}}{1 - m_{j}} \left[\left(1 - f_{c}\right)^{(1 - m_{j})} - 1 \right] + \frac{c_{j}}{(1 - f_{c})^{(1 + m_{j})}} & \\ \left[\left[1 - f_{c}(1 + m_{j})\right](v - f_{c}v_{j}) + \frac{m_{j}}{2v_{j}} \left[v^{2} - (f_{c}v_{j})^{2} \right] & \text{otherwise} \end{cases}$$

 $V_{J\!E},\,M_{J\!E},\,C_{J\!E},\,F_C,\,V_{J\!C},\,M_{J\!C},\,C_{J\!C},\,T_F,\,T_R$ and $X_{C\!J\!C}$ are model parameters.

In addition to the model parameters described above there are another six parameters including R_B , R_C , R_E , R_{TH} , C_{TH} and B_R , as shown in Fig. 1, to complete the model.

The thermal circuit shown in Fig. 1 is used to calculate the temperature increment represented by v_{TH} . v_{TH} is considered as a state variable and integrated into DC, small-signal and large-signal HB simulations.

III. MODEL RESPONSES

The HBT model implemented is a large-signal model. It can be used for DC, small-signal and large-signal analysis.

We carried out DC, small-signal and large-signal simulations using the parameter values given in [5]. The extrinsic circuit of the model is shown in Fig. 2. The parameter values are listed in Table I. The DC characteristics, small-signal S parameters and the output power versus input power are plotted in Fig. 3, 4 and 5, respectively. The results are similar to those presented in [5].

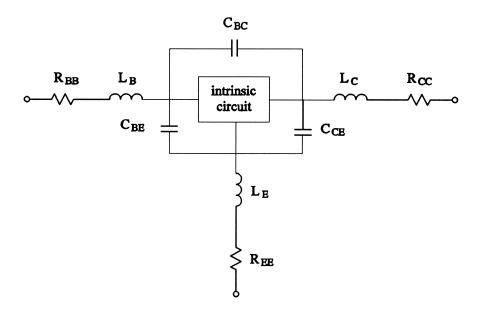


Fig. 2 The extrinsic circuit of the HBT model.

TABLE I PARAMETER VALUES FOR HBT MODEL

Intrinsic		Extrinsic	
$I_{SC0}(A)$	3.2573E-14	$L_B(nH)$	0.0623
$I_{SE0}(A)$	1.2017E-18	$L_{C}(nH)$	0.054
$I_{S0}(A)$	2.0224E-22	$L_E(nH)$	0.0023
N_E	1.5741	$R_{BB}(\Omega)$	0.1*
N_C	1.7664	$R_{CC}(\Omega)$	0.1*
N_R	1.1204	$R_{EE}(\Omega)$	0.1*
N_F	1.1473	$C_{BE}(pF)$	0.1339
$R_B(\Omega)$	1.6952	$C_{\it CE}(pF)$	0.0974
$R_E(\Omega)$	1.0796	$C_{BC}(pF)$	0.1333
$R_{C}(\Omega)$	1.1884		
B_{F0}	46.39		
B_R	0.168		
X_{TI}	6.4961		
P	-1.2252		
E_G	1.4162E-19		
E_{INF}	0.0545E-19		
$R_{TH}(^{\circ}/\mathrm{W})$	182		
C_{TH}	$1E-6/R_{TH}$		
$C_{JE}(pF)$	0.4002		
$V_{JE}(V)$	2.0452		
M_{JE}	0.3333		
$C_{JC}(pF)$	0.197		
$V_{JC}(V)$	1.524		
M_{JC}	0.5		
$T_F(pS)$	8.2152		

^{*} Parameter values are assumed for these parameters.

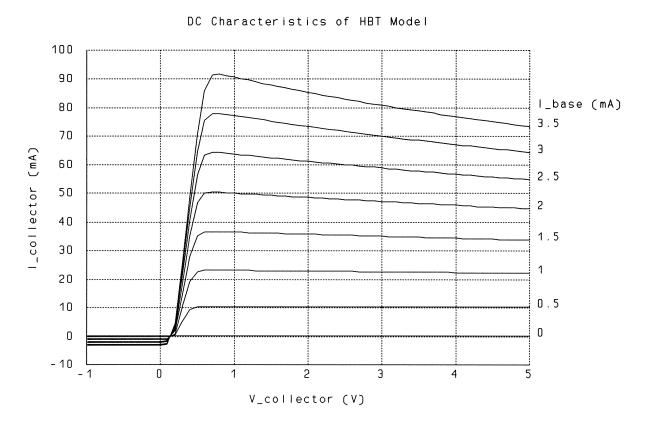


Fig. 3 DC characteristics of the HBT model.

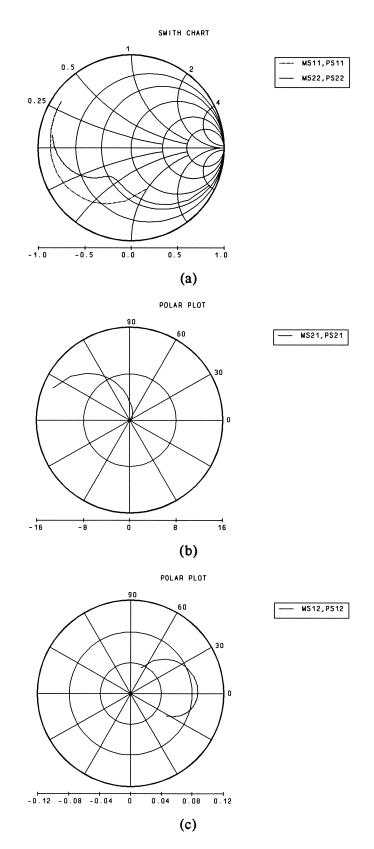


Fig. 4 S parameters at bias point: $I_{\rm B}$ = 0.5 mA and $V_{\rm C}$ = 2.0 V, (a) S_{11} and S_{22} , (b) S_{21} and (c) S_{12} .

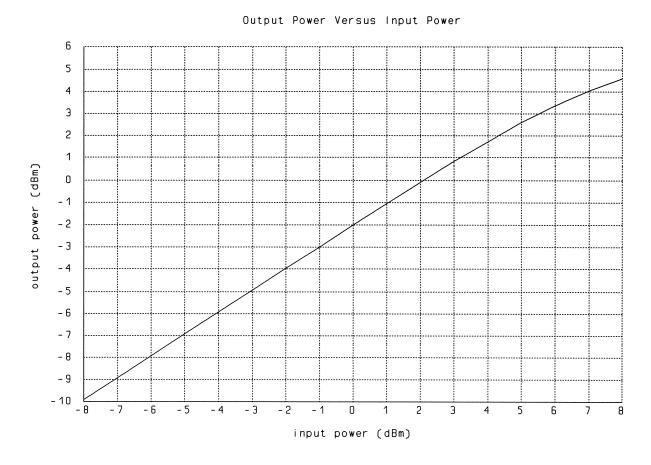


Fig. 5 Output power versus input power at bias: $I_B = 0.6$ mA and $V_C = 5$ V.

VI. CONCLUSIONS

A temperature dependent HBT model has been implemented in HarPE and OSA90/hope. Promising results have been observed. The model can be used for DC, small-signal and large-signal simulations. A further model verification should be carried out if we have measurements on HBTs.

V. REFERENCES

- [1] HarPE[™], Optimization Systems Associates Inc., P.O. Box 8083, Dundas, Ontario, Canada L9H 5E7, 1994.
- [2] OSA90/hope[™], Optimization Systems Associates Inc., P.O. Box 8083, Dundas, Ontario, Canada L9H 5E7, 1994.
- [3] H. Wang, C. Algani, A. Konczykowska and W. Zuberek, "Temperature dependence of DC currents in HBT," *IEEE MTT-S Int. Microwave Symp. Digest* (Albuquerque, NM), 1992, pp. 731-734.
- [4] P.C. Grossman and J. Choma, "Large signal modeling of HBT's including self-heating and transit time effects," *IEEE Trans. Microwave Theory Tech.*, vol. 40, 1992, pp. 449-464.
- [5] H. Do-Ky, T. Laneve, S. Sychaleun, M. Stubbs and J.S. Wight, "Linear and non-linear modelling verification of power HBTs," 1994.
- [6] P. Antognetti and G. Massobrio, Semiconductor Device Modeling with SPICE, New York: McGraw-Hill, 1988.