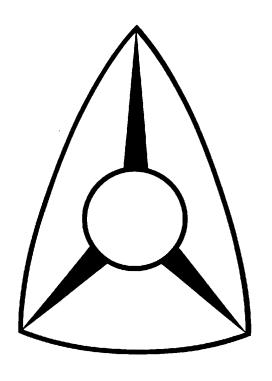
A ROBUST PHYSICS-ORIENTED STATISTICAL GaAs MESFET MODEL

J.W. Bandler, R.M. Biernacki, Q. Cai and S.H. Chen

OSA-94-OS-11-V


April 20, 1994

[©] Optimization Systems Associates Inc. 1994

A ROBUST PHYSICS-ORIENTED STATISTICAL GaAs MESFET MODEL

J.W. Bandler, R.M. Biernacki, Q. Cai and S.H. Chen

Optimization Systems Associates Inc. P.O. Box 8083, Dundas, Ontario Canada L9H 5E7

Introduction

random variations in the manufacturing environment result in complicated distributions and correlations of device responses

statistical modeling is a prerequisite for statistical analysis and yield optimization

statistical models:

equivalent circuit models (ECMs) abstract models data bases physics-based models (PBMs)

a novel robust GaAs MESFET statistical PBM for smallsignal applications which combines the advantages of the Khatibzadeh and Trew model and the Ladbrooke model (KTL) while overcoming their respective shortcomings

data alignment to adjust the measured data to meet the requirement of consistent measurement conditions for statistical modeling

multi-device parameter extraction and statistical postprocessing for statistical modeling

statistical model verification using Monte Carlo simulation

Abstract

We present a robust physics-oriented statistical GaAs

MESFET model. Our model integrates the DC Khatibzadeh

and Trew model for DC simulation with the Ladbrooke

formulas for small-signal analysis (KTL). Accuracy of the

statistical KTL model is verified by Monte Carlo simulations

using device measurements. Statistical extraction and

postprocessing of device physical parameters are carried out

by HarPE.

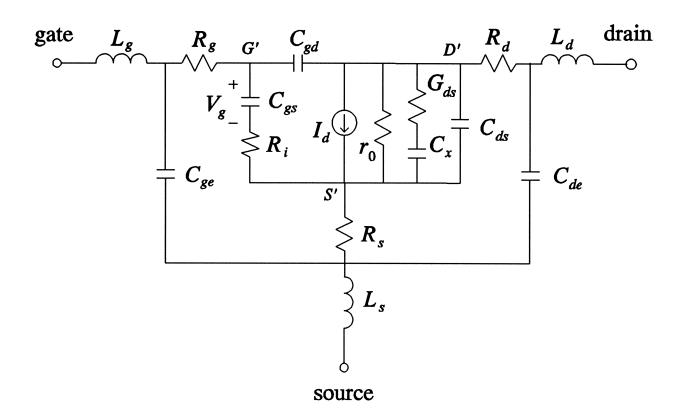
The KTL Model for GaAs MESFETs

the Ladbrooke model:

equivalent circuit model (ECM)
suitable for small-signal applications
elements values derived from physical parameters
attractive statistical properties
DC operating point must be determined separately

the Khatibzadeh and Trew model:

analytical physics-based model (PBM) suitable for large-signal (or global) applications capable of providing accurate DC solutions not accurate enough for small-signal statistical modeling


the KTL model:

complete and accurate DC/small-signal modeling the Ladbrooke model for small-signal simulation the Khatibzadeh and Trew model for DC simulation same physical parameters shared by both models integrated and consistently defined statistical model

Small-Signal Equivalent Circuit

the KTL small-signal equivalent circuit follows the Ladbrooke model

the current I_d is calculated by

$$I_d = g_m V_g e^{-j\omega\tau}$$

 g_{m} , C_{gs} , C_{gd} , R_{i} , L_{g} , r_{0} and τ are bias-dependent parameters

Model Parameters

the model consists of intrinsic and extrinsic parameters including physical parameters, fitting coefficients and linear elements

intrinsic FET parameters:

$$L, Z, a, N_d, V_{b0}, v_{sat}, \mu_0, \epsilon, L_{G0}, a_0, r_{01}, r_{02}, r_{03}$$

extrinsic linear elements:

$$L_g$$
, R_g , L_d , R_d , L_s , R_s , G_{ds} , C_{ds} , C_{ge} , C_{de}

 $L, Z, a \ N_d, V_{b0} \ v_{sat} \ \mu_0, \epsilon \ L_{G0} \ a_0, r_{01}, r_{02}, r_{03}$

gate length, gate width, channel thickness doping density, zero-bias barrier potential saturation electron drift velocity low-field mobility, dielectric constant inductance from gate bond wires and pads fitting coefficients

Model Equations

DC operating point is determined using the Khatibzadeh and Trew model

the bias-dependent small-signal parameters are then determined using the modified Ladbrooke formulas

$$g_{m} = \varepsilon v_{sat} Z/d$$

$$\tau = [0.5X - 2dL/(L + 2X)]/v_{sat}$$

$$R_{i} = L/[Z\mu_{0}qN_{d}(a-d)]$$

$$C_{gd} = 2\varepsilon Z/(1 + 2X/L)$$

$$r_{0} = r_{01}V_{D'S'}(r_{02} - V_{G'S'}) + r_{03}$$

where $V_{D'S'}$ and $V_{G'S'}$ are DC intrinsic voltages, d and X are the equivalent depletion depth and the space-charge layer extension defined by

$$d = [2\varepsilon(-V_{G'S'} + V_{b0})/(qN_d)]^{0.5}$$

$$X = a_0 \{2\varepsilon/[qN_d(-V_{G'S'} + V_{b0})]\}^{0.5}(V_{D'G'} + V_{b0})$$

Measurement Data Alignment

statistical modeling requires data for different, but supposedly identical, devices to be taken under identical measurement conditions

the measurement conditions for different devices may not be identical due to the variations in measurement environment

measurement data need to be preprocessed to align data for statistical modeling

measurements on 0.5 µm GaAs MESFETs were chosen for statistical modeling from the Plessey data

34 individual devices from Wafer B and 35 individual devices from Wafer D with a variation of gate bias voltages of about 6 % (standard deviation)

the Materka and Kacprzak model was used for data alignment because of its excellent single device fitting accuracy for these devices

the data, aligned at two bias points (gate bias voltages -0.5 V and -0.7 V, drain bias voltage 5 V), include DC responses and S parameters from 1 GHz to 21 GHz with 2 GHz step

Statistical Modeling

our statistical modeling technique consists of two stages: multi-device parameter extraction and statistical postprocessing

multi-device parameter extraction:

the KTL model parameters were extracted for each device by fitting the model responses to the corresponding *S*-parameter data and DC responses

statistical postprocessing:

the deterministic models obtained by multi-device parameter extraction were postprocessed to obtain the parameter statistics

the resulting concise statistical model:

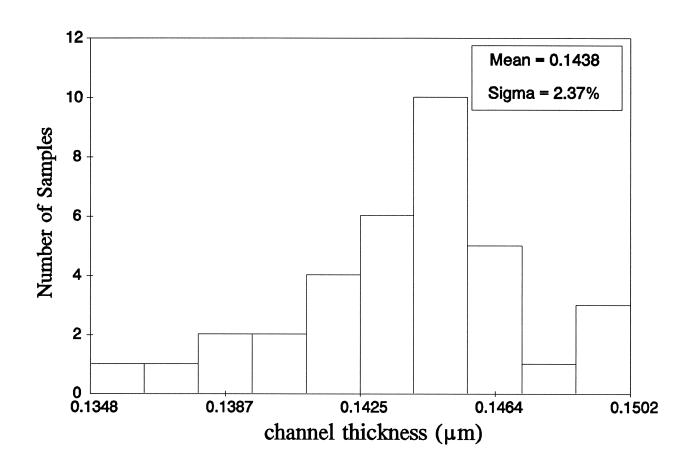
the mean values, standard deviations, correlation matrix and discrete distribution functions (DDFs)

all the aforementioned processes were carried out by HarPE

TABLE I KTL MODEL PARAMETERS FOR WAFER B

Parameter	Mean	Std. Dev. (%)		
<u>L(μm)</u>	0.5237	2.84		
$a(\mu m)$	0.1438	2.37		
$N_{cl}(\mathrm{m}^{-3})$	2.1857×10 ²³	1.88		
<i>v_{sat}</i> (m/s)	10.6416×10 ⁴	2.85		
ν _{sat} (m/s) μ ₀ (m²/Vns)	5.8309×10 ⁻¹⁰	2.26		
L_{G0} (nH)	0.0355	15.0		
$r_{01}(\Omega/V^2)$	0.3525	0.277		
$r_{02}(\Omega)$	2014.5	0.276		
a_0	0.9978	1.19		
$R_{cl}(\Omega)$	1.0169	1.27		
$R_{s}^{\circ}(\Omega)$	3.5209	3.46		
$R_{g}(\Omega)$	6.5181	0.22		
$L_d^{\circ}(nH)$	0.0766	9.58		
$L_s^{\circ}(nH)$	0.0382	3.75		
$G_{ds}(1/\Omega)$	3.7406×10 ⁻³	1.63		
$C_{ds}^{ac}(pF)$	0.0505	1.57		
$C_{qe}^{ab}(pF)$	0.0669	5.84		
$C_{ge}^{ge}(pF)$ $C_{de}^{ge}(pF)$	0.0104	2.16		
$C_x^{(pF)}$	3.2699	1.69		

 $Z=300~\mu \text{m},~\epsilon=12.9, V_{b0}=0.6~\text{V}$ and $r_{03}=7.0~\text{V}$ are fixed parameters. The biasdependent linear extrinsic element L_g is computed using the Ladbrooke formula.


TABLE II KTL MODEL PARAMETERS FOR WAFER D

Parameter	Mean	Std. Dev. (%)
	0.5055	3.93
$a(\mu m)$	0.1337	2.49
$N_{d}({\rm m}^{-3})$	2.2885×10 ²³	2.19
v_{sat} (m/s)	9.8251×10^4	5.22
$L_{G0}^{at}(nH)$	0.0375	15.4
$r_{01}(\Omega/V^2)$	0.3463	2.15
$r_{02}(\Omega)$	1979.0	2.15
a_0	0.9337	5.71
$R_{d}(\Omega)$	1.0416	1.70
$R_s^{-}(\Omega)$	3.8814	4.77
$R_{\alpha}^{\circ}(\Omega)$	6.5256	0.41
$L_d^{\mathfrak{g}}(nH)$	0.0499	12.7
$L_{\rm s}^{\rm s}({\rm nH})$	0.0359	8.10
$G_{ds}(1/\Omega)$	3.6315×10 ⁻³	3.71
$C_{ds}(pF)$	0.0517	1.92
$C_{qe}^{(pF)}$	0.0733	7.74
$C_{ge}^{G}(pF)$ $C_{de}^{G}(pF)$	0.0106	2.75
$C_x(pF)$	3.7355	12.1

 $Z=300~\mu m$, $\varepsilon=12.9$, $V_{b0}=0.6~\rm V$, $r_{03}=7.0~\rm V$ and $\mu_0=6.0\times10^{-10}~\rm m^2/Vns$ are fixed parameters. The bias-dependent linear extrinsic element L_g is computed using the Ladbrooke formula.

Histogram of Channel Thickness for Wafer B

Histogram of Channel Thickness for Wafer D

Model Verification

for accurate statistical model the statistics of the simulated responses should match the statistics of the data

statistical model verification using Monte Carlo simulation

400 Monte Carlo outcomes were generated using the statistical KTL model

the statistics of the simulated S parameters and DC drain currents for those 400 outcomes were compared with the statistics of the data

the statistics of the data and the KTL model responses are consistent

TABLE III MEAN VALUES AND STANDARD DEVIATIONS OF DATA AND KTL MODEL RESPONSES FOR WAFER B

	Bias 1			Bias 2			
Dat	a	KTL		Data	ì	KTL	
Mean	Dev. (%)	Mean	Dev. (%)	Mean	Dev. (%)	Mean	Dev. (%)
$ S_{11} $ 0.777 $\angle S_{11}$ -104.7 $ S_{21} $ 1.793 $\angle S_{21}$ 96.80 $ S_{12} $ 0.090 $\angle S_{12}$ 35.30 $ S_{22} $ 0.571 $\angle S_{22}$ -39.58 $ S_{21} $ 0.040	1.17 0.61 2.46 1.35	1.739 96.82 0.092 35.64 0.574	0.63 1.00 1.44 0.56 1.28 1.58 0.72 1.21 7.71	0.780 -101.3 1.703 97.78 0.095 35.95 0.572 -39.91 0.033	1.61 0.60 2.49	0.788 -102.7 1.700 98.54 0.096 34.80 0.576 -40.53 0.033	0.61 1.07 1.47 0.57 1.22 1.59 0.71 1.20 8.76

Bias 1: $V_{GS} = -0.5 \text{ V}$, $V_{DS} = 5 \text{ V}$. Bias 2: $V_{GS} = -0.7 \text{ V}$, $V_{DS} = 5 \text{ V}$. Frequency is 11 GHz for S parameters.

Data Mean		KTL Mean	Dev.	Data		KTL	99 have 114 may 2016 20 have 2
Mean		Mean	Dev	14000			
	(,,,		(%)	wean	Dev. (%)	Mean	Dev. (%)
$\angle S_{11}$ -103.9 $ S_{21} $ 1.725 $\angle S_{21}$ 97.06 $ S_{12} $ 0.096	0.44 2.24 2.14 0.99 3.35 1.78 1.18 0.97 9.54	0.785 -105.8 1.648 96.96 0.095 33.97 0.591 -40.40 0.031	0.59 1.81 2.88 0.82 3.11 1.99 1.01 0.92 9.73	0.787 -100.4 1.612 97.91 0.102 35.25 0.588 -40.47 0.025	2.37 3.0 0.94 3.45 1.76 1.09 0.84	0.794 -102.7 1.608 98.69 0.100 34.19 0.593 -40.88 0.025	0.59 1.91 2.95 0.84 3.07 2.08 1.00 0.92 11.0

Bias 1: $V_{GS} = -0.5 \text{ V}$, $V_{DS} = 5 \text{ V}$. Bias 2: $V_{GS} = -0.7 \text{ V}$, $V_{DS} = 5 \text{ V}$. Frequency is 11 GHz for S parameters.

Conclusions

we have presented the KTL model: a physics-oriented model for GaAs MESFETs particularly suitable for small-signal statistical device characterization

our experiments demonstrate its ability to accurately represent the statistical properties of MESFETs

we have described data interpolation to align the measurement data to identical conditions for statistical modeling

the statistical KTL model was verified using Monte Carlo simulation

KTL has been implemented in HarPE and OSA90/hope and is suitable for both nominal design and yield optimization of small-signal circuits

using KTL, exciting results have been achieved in yield optimization

References

- [1] M.A. Khatibzadeh and R.J. Trew, "A large-signal, analytic model for the GaAs MESFET," *IEEE Trans. Microwave Theory Tech.*, vol. 36, 1988, pp. 231-238.
- [2] P.H. Ladbrooke, *MMIC Design: GaAs FETs and HEMTs*, Norwood, MA: Artech House, 1989.
- [3] A. Materka and T. Kacprzak, "Computer calculation of large-signal GaAs FET amplifier characteristics," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-33, 1985, pp. 129-135.
- [4] J.W. Bandler, S. Ye, Q. Cai, R.M. Biernacki and S.H. Chen, "Predictable yield-driven circuit optimization," *IEEE Int. Microwave Symp. Dig.* (Albuquerque, NM), 1992, pp. 837-840.
- [5] *HarPE™*, Optimization Systems Associates Inc., P.O. Box 8083, Dundas, Ontario, Canada L9H 5E7, 1993.
- [6] Measurement data provided by Plessey Research Caswell Ltd., Caswell, Towcester, Northamptonshire, England NN12 8EQ, 1990.