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THE HUBER CONCEPT IN DEVICE MODELING, CIRCUIT DIAGNOSIS
AND DES“TIGN CENTERING

| Abstract

We present exciting applications of tﬂe Huber concept in circuit modeling and optimization.
By combining the desirable properties of the‘;1 ¢, and £, norms, the Huber function is robust against
gross errors and smooth w.r.t. small variations in the data. We extend the Huber concept by
introducing a one-sided Huber function ta%ilored to design optimization with upper and lower
specifications. We demonstrate the advantages of Huber optimization in the presence of faults,
large and small measurement errors, bad starting points and statistical uncertainties through
meaningful circuit applications, including nf}ulticavity filter parameter identification and design
optimization, FET statistical modeling and apalog fault location. Furthermore, we present a new
one-sided Huber approach to yield optimization of linear and nonlinear circuits. Comparisons are
made, where appropriate, with optimizatio# using £;, one-sided £;, £ and minimax objective

functions.




Extended Summary
INTRODUCTION

Realistic circuit optimization must tqke into account model/measurement/statistical errors,
variations and uncertainties. Least-squares (42) solutions are notoriously susceptible to the influence
of gross errors: just a few "wild" data point§ can alter the results significantly. The £, method is
robust against gross errors [1-3]. However, there may also be many small variations in the data,
in addition to and distinct from gross errors, which should be included in statistical models and/or
accommodated as design tolerances. The £, %nethod inappropriately treats such small variations in
the same category as gross errors. In other words, neither the ¢, nor £, alone is capable of
providing solutions which are robust againsF large (catastrophic) errors and flexible w.r.t. small
(deterministic or statistical) variations in the data.

The Huber function [4-7] is a hybrid of the ¢, and £, norms. It separates large and small
errors w.r.t. an appropriately chosen thresholp. The large errors are treated in the £, sense and the
small errors are measured in terms of least squares. Consequently, the Huber solution can provide
a smooth model from data which contains many small variations and such a model is also robust
against gross errors. We demonstrate the; benefits of this approach through applications to
multicavity filter parameter identification, FET statistical modeling and analog fault location.

We extend the Huber concept by introducing a "one-sided" Huber function for design
optimization where the specifications are one-sided (i.e., upper and/or lower specifications). The
minimax method is often chosen to achievé an equal-ripple design. However, the success of
minimax optimization may depend on the stqrting point. Given a "bad" starting point, a minimax
optimizer can be trapped by the initial largei errors. To overcome a bad starting point, the one-
sided Huber function can be employed in a rpreprocessing" optimization. We have demonstrated
this approach to large-scale multiplexer optimization problems [7]. In this paper, we expand our
investigation by comparing minimax optimiz#ion of multicavity filters with and without one-sided

Huber preprocessing from randomly generated starting points.




Yield optimization takes into accouipt assumed random variations in the manufacturing
process to maximize design yield in order t(i reduce the manufacturing cost. We present, for the
first time, a one-sided Huber approach to yﬁeld optimization of linear and nonlinear circuits.

Our approach is implemented in the (IiAD system OSA90/hope™ [8] which is used to produce
the examples in this presentation. |
THEORY

The Huber function is defined as [3,4,7]
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where k is a positive constant threshold vah{e and f represents an error function.
Px is a hybrid of the £, (when |f] < k)iand the ¢, (when |f] > k) norms, as illustrated in Fig.
1. The definition of p, ensures a smooth trqnsition between &, and ¢, at |f] = k. The threshold k
separates "large" and "small" errors. With a ;sufficiently large k, p, becomes least squares. As k
approaches zero, p, approaches the ¢, norm. By changing k, we can alter the proportion of error
functions to be treated in the ¢, or £, sense.

We define the "one-sided" Huber fuqction as

r
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This definition is tailored to one-sided (upper'(lower) specifications. A negative value of f indicates

that the corresponding specification is satisf ijed and is therefore truncated.

We have implemented dedicated, efficient algorithms for minimizing the one- and two-sided

Huber objective functions, as described ini [4,5,7]). The basic algorithm is derived from the




framework of Madsen [9] and consists of two stages. The first stage is a Gauss-Newton method

which solves a linearized subproblem within a trust region. The algorithm may switch to a quasi-

Newton stage when close to a solution to ac‘f:elerate the convergence.

MULTICAVITY FILTER PARAMETER IDENTIFICATION
!

We consider a 6th-order multicavityifilter represented by the equivalent circuit shown in
Fig. 2 [2,10]). The filter has a 40 MHz banc*width centered at 4000 MHz.

The input reflection coefficient of th:e filter is used as simulated measurement. Two large
errors are deliberately introduced at two o% the frequency points. The task is to identify the
parameters from the contaminated data [2]. (

Our investigation is organized into sm different cases. In Case A, the two large errors are
the only errors contained in the data. The re%sults in Table I shows that the £, solution is hopelessly
corrupted by the gross errors, whereas the tll and Huber solutions are equally robust. This is also
illustrated in Fig. 3. |

In Cases B to D, the data is truncatied to the first two significant digits to emulate the
limited accuracy of measurement equipmenzt. In these three cases, the numbers of frequencies
considered are 26, 51 and 101, respectively.‘ The truncation errors are small relative to the two
gross errors. We choose a threshold value é:ommensurate with the magnitude of the truncation

errors so that they are treated in the £, sense| by the Huber method. Consequently, we expect the

Huber solution to be less affected than the corresponding £, solution. Our expectation is confirmed

by the results in Table 1. |

In Case E, we introduced into the da#a small errors randomly generated from the uniform
distribution [-0.01 0.01]. Again, the Huber E;;;olution is better in comparison with the ¢, solution,
as shown in Table 1. |

In Case F, the data is perturbed by 4}0.005 and -0.005 at alternate frequency points. As
depicted in Fig. 4, the £, solution is dictatecli by a subset of the data points which correspond to

a subset of zero residual functions at the solqtion, in accordance with the ¢, optimality condition.
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The Huber solution, on the other hand, proviipes a smooth interpolation of all the data points except
the two large errors, as shown in Fig. 4. Thi;p case dramatizes the advantage of the Huber function
over the ¢, norm in accommodating small diata variations.
FET STATISTICAL MODELING |

One approach to statistical modeling]of devices [11-13] is to extract the model parameters

from a sample of device measurements and tPen postprocessing the sample of model parameters to

estimate their statistics (means, standard dev[iations and correlations).

To estimate the mean of a parametett by optimization, we define the error functions as
@) =¢ -4, =12 N 3)
where ¢f is the extracted parameter value f OF the jth device and N is the total number of devices.
Similarly, to estimate the variances, we defipe
[0 =V -@ =97 jrl2,.,N (4)
where ¥, denotes the estimated variance frd|m which we can calculate the standard deviation oy.

The model parameters we use are extracted from the measurements of 80 FETs [14].

Fig. 5 shows the run chart of an extracted model parameter, namely the FET gate
inductance Lg. Clearly, the sample contains a few wild points (likely due to faulty devices) which
will severely degrade a least-squares estimat?. In our earlier work [11,12] using the £, estimator,
the wild points were manually excluded.

The Huber function can be used as an automatic robust statistical estimator. Table II lists
the means and standard deviations of a selepted number of model parameters we have obtained
using the £, and the Huber estimators. For q;omparison, we also list the results obtained using the
£, estimator after the abnormal data sets are:& manually excluded.

The threshold value k is chosen to rehect the normal spread of the parameter values (e.g.,

we chose k = 0.015 for Lg).



ANALOG FAULT LOCATION

Consider the resistive mesh networkE shown in Fig. 6, which has been used to demonstrate
the ¢, approach to analog fault location [2,l§,l6]. We have reported successful application of the
Huber function to this problem [7]. )

In this paper, we present new resuﬂts which take into account data truncation errors to
represent the limited accuracy of measuremént equipment.

The parameter values of the mesh ne?twork are listed in Table III. Two faults are assumed,
namely G, and G;3. A single excitation (a l])C current source) is applied to node 1. Nodes 4, 5,
8 and 9 are assumed to be inaccessible for:[ measurement. The voltages at the other nodes are
calculated, truncated to the first two signifiq;;ant digits and used as simulated measurement.

The nominal parameter values are usl‘pd as the starting point for optimization. The results
listed in Table III show that the ¢, optimizaqiion failed to isolate the faults.

The data truncation may translate i;into deviations in the network parameter values, in
addition to the faults and tolerances already i!considered. The ¢, optimization attempts to suppress
as many parameter deviations as possible to i¢;xactly zero, which may lead to an incorrect solution,
as demonstrated in this case. By allowing fﬁ;)r many small deviations, the Huber solution is more
robust w.r.t. data truncation and measurement errors.

ONE-SIDED HUBER FORMULATION FOl?i YIELD OPTIMIZATION

In Monte Carlo analysis, we consider a number of statistical outcomes of circuit parameters
denoted by #. The design yield can be estimated as the percentage of acceptable outcomes out of
the total number of outcomes considered.

Following the generalized £, centering approach of Bandler and Chen [1], for each outcome
we create a generalized tp function v(¢) which has a positive value if the outcome violates the
design specifications or a zero or negative vai;lue if the specifications are satisfied.

In our earlier work [1,17,18], we have formulated yield optimization as a one-sided ¢,

problem in which the objective function is defined as
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U@$% = Y o; u(¢) | (5)
i€l
where ¢° represents the nominal circuit parameters to be centered, o; is a positive multiplier

associated with the ith outcome, and

I={i|w$)>0} | (6)
is an index set defined over all the outcomes.

In this paper, we formulate yield oqtimization as one-sided Huber problem in which the

objective function is defined as

= ot (g | (7)
U@4°) = Y pela; v(4Y) .
i=1
where N is the total number of outcomes anp pr is the one-sided Huber function defined in (2).

We consider the linear LC filter [19]i depicted in Fig. 7. During the yield optimization a
multidimensional Q-model is utilized to redugce the statistical circuit simulation time [17]. The yield
optimization results using our new one-sided Huber approach are summarized in Table IV. The
one-sided Huber approach proved to be a qompetitive alternative to the one-sided ¢, centering
approach.

Also, consider the nonlinear frequency doubler depicted in Fig. 8 [20]. Uniform tolerances
are assumed for the linear matching circuit}s and multidimensional Gaussian distributions with
correlations are assumed for the intrinsic FET parameters. The yield at the nominal design is 28%
(all the yield figures reported in this paper| are estimated by Monte Carlo simulation with 500
outcomes). The yield at the centered desig@ obtained using one-sided ¢, centering is 76%, after
17 iterations and 337 CPU seconds on a SPARCstation 10. The yield after one-sided Huber
optimization is 77%, after 29 iterations and 574 CPU seconds.

ONE-SIDED HUBER PREPROCESSING OF ARBITRARY STARTING POINTS
We have exploited the potential of uging one-sided Huber preprocessing to overcome bad

starting points in large-scale multiplexer optjmization [71




In this paper, we expand our investigiption by testing randomly generated starting points for
multicavity filter optimization. The same 6:Fh—order multicavity filter shown in Fig. 2 is used.

Two sets of random starting points \vq;rere generated. Each set consists of 30 starting points
of uniform distribution centered at a "good"istarting point. The spread of the parameter values is
+30% for the first set and +40% for the secoind set. The input return loss of the filter at the first
set of starting points is shown in Fig. 9. W\e can see that some of the starting points are indeed
very bad (the return loss response is always symmetrical w.r.t. the center frequency due to the filter
configuration considered, hence only one ha!f of the frequency band needs to be simulated during
optimization).

From each starting point, we performed two experiments: (1) direct minimax optimization
and (2) one-sided Huber optimization (preq’rocessing) followed by minimax optimization. The
optimized responses are shown in Fig. 10 for the first set of starting points and in Fig. 11 for the
second set. Although the one-sided Huberipreprocessing did not guarantee convergence to the
optimal solution from all the starting points, Ft produced more focused results by eliminating many
spurious local minima.

CONCLUSIONS

We have presented exciting breakthropghs in applying a novel Huber approach to modeling,
parameter identification, fault diagnosis and design centering of linear and nonlinear circuits.
Compared with ¢, £, and minimax methods, ?tthe Huber approach has demonstrated robustness and
consistency in the presence of large and smal} errors, deterministic and statistical variations, which
are critical considerations for practical CAD% in an engineering environment.

The numerical results reported in this paper were obtained using a research-oriented
implementation of the algorithms. We are 1confident that the computational efficiency can be

further improved in a more polished implementation.
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TABLE I
MULTICAVITY FILTER PARAMETER IDENTIFICATION RESULTS

Couplings M, My My, My Mse Mg Mg

Actual Values 0.859956 0.526602 0.791894 0.526602 0.859956 0.087293 -0.393685
Starting Point 0.819006 0.511264 0.824890 0.511264 0.819006 0.093863 -0.357895

Case A: 4 -11% 6.5%  -D.76% 7.3% -10% 278% 31%
I3 0.05%  0.06%  0.00% -0.06%  -0.05%  -0.01%  0.00%

Huber 0.02%  0.01%  -0.02%  001%  0.02%  -12%  -0.16%

Case B: 4 047%  0.07%  -0.69%  0.36%  0.59%  -33%  -5.1%
Huber 0.34% 03%  -0.5% 03%  0.34% -19%  -3.3%

Case C: £, 0.86% 1.8%  0.78%  -3.1%  -0.42% -12%  0.47%
Huber 0.19%  -0.1%  0.00%  -0.1%  0.19%  -8.9% 1%

Case D: ¢, 0.51% 18%  051%  -29%  -0.22% -14%  -0.33%
Huber 0.15%  0.00% -0.11% -0.01%  0.15%  -83%  -1.2%

Case E: £ 1.8% 24%  0.6%  -41%  -0.53% -43%  -3.1%
Huber 041%  0.04%  -0.52%  0.04%  0.41% -27% -4%

Case F: ¢, 15%  3.8%  023%  -42%  -13%  -25%  -2.5%
Huber 0.05%  0.15% -0.24%  0.15%  005%  -49%  -1.1%

The percentage entries represent the relative differences between the identified parameter values
and the actual parameter values.

The data contains two large errors in all cases.

Case A: the data is not truncated.

Case B: the data is truncated to two significant digits; 26 frequencies.

Case C: the data is truncated to two significant digits; 51 frequencies.

Case D: the data is truncated to two significant digits; 101 frequencies.

Case E: the data contains random deviates from uniform distribution [-0.01 +0.01].
Case F: the data is perturbed by +/-0.005 at alternate frequencies.
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TABLE II

ESTIMATED STATISTICS pF SELECTED FET PARAMETERS

Parameter ¢ (&) ¢ (Huberj rRCY) LAY

o4 (Huber) 0,
Lg{(nH) 0.04387 0.03464  0.03429 94.6% 21.8% 17.4%
Gps(1/K0) 1.840 1.820  1.839 28.6% 6.3% 4.9%
Ipgs(mA) 47.36 47.53 47.85 14.0% 12.7% 11.3%
7(ps) 2.018 2154  2.187 26.3% 5.8% 3.4%
C15(PF) 0.3618 0.3658 = 0.3696 8.2% 4.6% 3.5%
K, 1.2328 1231 1233 15.5% 10.8% 8.7%

L represents the FET gate lead mductance Gps the drain-source conductance, I DSS the
drain saturation current, 7 the time- delay, C,o and K, are parameters in the definition of

the gate nonlinear capacitor.

tz* denotes £, estimates after 11 abnormal data sets are manually excluded [11].
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TABLE III
FAULT LOCATION OF THE RESISTIVE

MESH CIRCUIT

Percentage Deviation

Element Nominal Actual

Value Value Actual ¢,  Huber
G, 1.0 095 -50 -6.98 -15.14
G, 1.0 050 -50.0* -47.55 -54.40
Gy 1.0 1.05 50 -2545 -3.68
G, 1.0 095 -5.0 0.00 -0.63
Gy 1.0 095 -5.0 0.00 -4.07
Gg 1.0 095 -5.0 0.00 -0.05
G, 1.0 1.05 5.0 0.00 -1.06
Gy 1.0 1.05 5.0 0.00 -0.94
G, 10 105 50 000 3.69
Gio 1.0 095 -5.0 0.00 0.48
Gy, 10 105 50 000 067
G, 10 105 50 000 600
Gis 10 095 -50 000 -0.32
Gy, 1.0 095 -5.0 0.00 -0.68
Gis 1.0 1.05 5.0 0.00 0.18
Gie 1.0 095 -50 -20.24 -3.53
17 1.0 1.05 5.0 0.00 -0.81
18 1.0 0.50 -50.0* -8.90 -49.97
19 1.0 095 -50 -2532 -4.74
20 1.0 095 -50 -20.73 -5.98
* Faults.

The simulated voltage measurement was truncated

to two significant digits.
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DESIGN CENTERING OF THE LC FILTER

TABLE IV

Yield Number of Iterations CPU Time (Seconds)

Nominal Design 52%

One-Sided ¢, 75% 11 160
One-Sided Huber, k=0.05 76% 22 336
One-Sided Huber, k=0.10 75% 19 265
One-Sided Huber, k=0.20 75% 9 123
One-Sided Huber, k=0.25 74% 21 260
One-Sided Huber, k=0.30 74% 12 160
One-Sided Huber, k=0.40 72% 12 149

The yield figures were estimated by Monte Carlo simulation using 500 outcomes.

The CPU time were measured on a SPARCstation 10.

k is the threshold value for the one-sided Huber function.
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Fig. 1 The Huber, ¢, and £, objective functions in the one-dimensional case. The strikes and dots
represent points on the £, and £, curves, respectively. The solid line represents the Huber
function.

15



Fig. 2 Equivalent circuit for an unterminated multicavity filter.
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Fig. 3 Comparison of the results from parameter identification using £,, £, and Huber objective
functions. The circles represent the data with two large errors. The solid line represents
the responses after £, and Huber optimization (they are indistinguishable). The dotted line
represents the £, solution.
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Fig. 6 The resistive mesh circuit.
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Fig. 7 The LC filter.
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Fig. 10

10

20

N/

Return Loss (dB)

30

VS

—

/

2
\

40
3870 3880

3890

4000

Frequency (MHz)

4010

4020 4030

10

Return Loss (dB)

30

I VAN
N

40
3870 3880

Frequenc

3990 4000 4010

y (MHz)

4020 4030

The return loss of the multicavity filter at the solutions from the 30 randomly generated
starting points with a +30% parameter spread. The top figure shows the results after
direct minimax optimization. The bottom figure shows the results obtained from one-
sided Huber preprocessing followed by minimax optimization.
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Fig. 11
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The return loss of the multicavity filter at the solutions from the 30 randomly generated
starting points with a +40% parameter spread. The top figure shows the results after
direct minimax optimization. The bottom figure shows the results obtained from one-
sided Huber preprocessing followed by minimax optimization.
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