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THE HUBER CONCEPT IN DEVICE MODELING, CIRCUIT DIAGNOSIS 
AND DE~IGN CENTERING 

Abstract 

' 

We present exciting applications of the Huber concept in circuit modeling and optimization. 

By combining the desirable properties of thel t1 and ~ norms, the Huber function is robust against 

gross errors and smooth w.r.t. small variat~ons in the data. We extend the Huber concept by 

introducing a one-sided Huber function tailored to design optimization with upper and lower 
I 

specifications. We demonstrate the advanta~es of Huber optimization in the presence of faults, 

large and small measurement errors, bad starting points and statistical uncertainties through 

meaningful circuit applications, including multicavity filter parameter identification and design 

optimization, FET statistical modeling and apalog fault location. Furthermore, we present a new 

one-sided Huber approach to yield optimization of linear and nonlinear circuits. Comparisons are 

made, where appropriate, with optimizatio• using t1, one-sided l 1, ~ and minimax objective 

functions. 
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Exte,ded Summary 

INTRODUCTION 

Realistic circuit optimization must taike into account model/measurement/statistical errors, 
! 

variations and uncertainties. Least-squares(~) solutions are notoriously susceptible to the influence 

of gross errors: just a few "wild" data point$ can alter the results significantly. The t1 method is 

robust against gross errors [ 1-3 ]. However. ! there may also be many small variations in the data, 

in addition to and distinct from gross errors,, which should be included in statistical models and/or 

accommodated as design tolerances. The l 1 method inappropriately treats such small variations in 

the same category as gross errors. In other words, neither the l 1 nor ~ alone is capable of 

providing solutions which are robust againsl large (catastrophic) errors and flexible w.r.t. small 

(deterministic or statistical) variations in the1 data. 

The Huber function [4-7] is a hybri~ of the l 1 and la norms. It separates large and small 

errors w.r.t. an appropriately chosen threshol~. The large errors are treated in the l 1 sense and the 

small errors are measured in terms of least squares. Consequently. the Huber solution can provide 

a smooth model from data which contains 111any small variations and such a model is also robust 

against gross errors. We demonstrate the: benefits of this approach through applications to 

multicavity filter parameter identification, f]ET statistical modeling and analog fault location. 

We extend the Huber concept by iqtroducing a "one-sided" Huber function for design 

optimization where the specifications are on~-sided (i.e., upper and/or lower specifications). The 

minimax method is often chosen to achieve an equal-ripple design. However, the success of 

minimax optimization may depend on the st~rting point. Given a "bad" starting point, a minimax 

optimizer can be trapped by the initial large
1 
errors. To overcome a bad starting point, the one­

sided Huber function can be employed in a !'preprocessing" optimization. We have demonstrated 
I 

this approach to large-scale multiplexer opti~ization problems (7). In this paper, we expand our 

investigation by comparing minimax optimiwion of multicavity filters with and without one-sided 

Huber preprocessing from randomly generat~d starting points. 
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Yield optimization takes into accou~t assumed random variations in the manufacturing 
i 

process to maximize design yield in order t1 reduce the manufacturing cost. We present. for the 

first time, a one-sided Huber approach to y~eld optimization of linear and nonlinear circuits. 

Our approach is implemented in the qAo system OSA90/hope111 [8] which is used to produce 

the examples in this presentation. 

THEORY 

The Huber function is defined as [3,~. 7] 

{ 

/ 2/2 
p,J.f) = 

klll - k 2/2 

if Ill i~ k 
i 

if Ill I> k 

where k is a positive constant threshold val~e and / represents an error function. 

(I) 

Pk is a hybrid of the ~ (when Ill ~ k)i and the l 1 (when Ill > k) norms. as illustrated in Fig. 

1. The definition of Pk ensures a smooth tr~nsition between ~ and l 1 at Ill = k. The threshold k 

separates "large" and "small" errors. With a !sufficiently large k. Pk becomes least squares. As k 
i 

approaches zero. Pk approaches the l 1 norm .• By changing k, we can alter the proportion of error 
! 

functions to be treated in the l 1 or l 2 sense. , 

We define the "one-sided" Huber fu~ction as 

0 if I ~iO 
I 

if O <I/~ k (2) 

kf - k 2/2 if I> k 

This definition is tailored to one-sided (upper(lower) specifications. A negative value of/ indicates 

that the corresponding specification is satisf iled and is therefore truncated. 
I 

We have implemented dedicated. efficfent algorithms for minimizing the one- and two-sided 

Huber objective functions, as described in! [4,5, 7]. The basic algorithm is derived from the 
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framework of Madsen [9] and consists of t'to stages. The first stage is a Gauss-Newton method 
I 

which solves a linearized subproblem withinj a trust region. The algorithm may switch to a quasi-
' i 

Newton stage when close to a solution to acfelerate the convergence. 

MULTICA VITY FILTER PARAMETER IDf:NTIFICATION 
I 

We consider a 6th-order multicavityl filter represented by the equivalent circuit shown in 
I 

Fig. 2 [2,10]. The filter has a 40 MHz ban4width centered at 4000 MHz. 

The input reflection coefficient of ttje filter is used as simulated measurement. Two large 

errors are deliberately introduced at two of the frequency points. The task is to identify the 

parameters from the contaminated data [2]. 

Our investigation is organized into sik different cases. In Case A, the two large errors are 
! 

' 
the only errors contained in the data. The re~ults in Table I shows that the ~ solution is hopelessly 

: 

corrupted by the gross errors, whereas the l~ and Huber solutions are equally robust. This is also 

illustrated in Fig. 3. 

In Cases B to D, the data is trunca~ed to the first two significant digits to emulate the 
I 

limited accuracy of measurement equipment. In these three cases, the numbers of frequencies 

i 
considered are 26, 51 and 101, respectively.! The truncation errors are small relative to the two 

! 

gross errors. We choose a threshold value fommensurate with the magnitude of the truncation 

errors so that they are treated in the ~ sense! by the Huber method. Consequently, we expect the 

Huber solution to be less affected than the cotresponding l 1 solution. Our expectation is confirmed 

by the results in Table I. 

In Case E, we introduced into the dafa small errors randomly generated from the uniform 

i 
distribution [ -0.01 0.01 ]. Again, the Huber fOlution is better in comparison with the l 1 solution, 

as shown in Table I. 

In Case F, the data is perturbed by t0.005 and -0.005 at alternate frequency points. As 

depicted in Fig. 4, the l 1 solution is dictate~ by a subset of the data points which correspond to 
i 

a subset of zero residual functions at the solittion, in accordance with the l 1 optimality condition. 
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The Huber solution, on the other hand, prov'1es a smooth interpolation of all the data points except 
I 
! 

the two large errors, as shown in Fig. 4. Thif case dramatizes the advantage of the Huber function 

over the t1 norm in accommodating small d~ta variations. 
i 

FET STATISTICAL MODELING 

One approach to statistical modeling1of devices (11-13] is to extract the model parameters 

from a sample of device measurements and t~en postprocessing the sample of model parameters to 

estimate their statistics (means, standard de~iations and correlations). 

To estimate the mean of a paramete~ by optimization, we define the error functions as 

j = I, 2, .~., N (3) 

where q,i is the extracted parameter value foll' the jth device and N is the total number of devices. 
I 

Similarly, to estimate the variances, we defipe 

. -2 
lj (~) = ~ - ( <J,1 - <I>) ' j != I, 2, ... , N (4) 

where ~ denotes the estimated variance fr~m which we can calculate the standard deviation ",· 

The model parameters we use are extracted from the measurements of 80 FETs [14]. 

Fig. 5 shows the run chart of an I extracted model parameter, namely the FET gate 

inductance La, Clearly, the sample contains~ few wild points (likely due to faulty devices) which 

will severely degrade a least-squares estimat~. In our earlier work (11,12] using the~ estimator, 

the wild points were manually excluded. 

The Huber function can be used as ap automatic robust statistical estimator. Table II lists 

the means and standard deviations of a seleFted number of model parameters we have obtained 

using the ~ and the Huber estimators. For qomparison, we also list the results obtained using the 

~ estimator after the abnormal data sets are: manually excluded. 

The threshold value k is chosen to reflect the normal spread of the parameter values (e.g., 
I 

we chose k = 0.0 I 5 for La), 
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ANALOG FAULT LOCATION 

Consider the resistive mesh network• shown in Fig. 6, which has been used to demonstrate

the t1 approach to analog fault location [2,l�,16]. We have reported successful application of the

Huber function to this problem (7].

In this paper, we present new resu11ts which take into account data truncation errors to

represent the limited accuracy of measuremtnt equipment.

The parameter values of the mesh ne�work are listed in Table III. Two faults are assumed,

namely G2 and G18 •

A single excitation (a ipc current source) is applied to node l .  Nodes 4, 5,

8 and 9 are assumed to be inaccessible for! measurement. The voltages at the other nodes are

calculated, truncated to the first two signifi<i:ant digits and used as simulated measurement.

The nominal parameter values are usrd as the starting point for optimization. The results 

listed in Table III show that the l1 optimiza�ion failed to isolate the faults. 

The data truncation may translate �nto deviations in the network parameter values, in 

addition to the faults and tolerances already �onsidered. The l1 optimization attempts to suppress 
I 

as many parameter deviations as possible to ,xactly zero, which may lead to an incorrect solution, 

as demonstrated in this case. By allowing f<1>r many small deviations, the Huber solution is more 

robust w.r.t. data truncation and measuremeM errors. 

ONE-SIDED HUBER FORMULATION FO. YIELD OPTIMIZATION 

In Monte Carlo analysis, we consider � number of statistical outcomes of circuit parameters 

denoted by/. The design yield can be estinl.ated as the percentage of acceptable outcomes out of 

the total number of outcomes considered. 

Following the generalized � centerin� approach of Bandler and Chen [I), for each outcome 

we create a generalized � function 11(1) w)iich has a positive value if the outcome violates the 

design specifications or a zero or negative v.-lue if the specifications are satisfied. 

In our earlier work ( l ,  17, 18], we h�ve formulated yield optimization as a one-sided t1 

problem in which the objective function is qefined as 
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U(;o) = Ea; v(;i) 
iel 

(5) 

where ; 0 represents the nominal circuit p~rameters to be centered, a; is a positive multiplier 

associated with the ith outcome, and 

(6) 

is an index set defined over all the outcome~. 
; 

In this paper, we formulate yield OAtimization as one-sided Huber problem in which the 

objective function is defined as 

N 
U(;o) = L p;(a; v(;i)) 

i=l 

(7) 

where N is the total number of outcomes and p; is the one-sided Huber function defined in (2). 
i 

We consider the linear LC filter [I 9]1 depicted in Fig. 7. During the yield optimization a 

multidimensional Q-model is utilized to redu<te the statistical circuit simulation time ( 17]. The yield 

optimization results using our new one-sidecit Huber approach are summarized in Table IV. The 
i 

one-sided Huber approach proved to be a ~ompetitive alternative to the one-sided l.1 centering 

approach. 

Also, consider the nonlinear frequenc~ doubler depicted in Fig. 8 [20]. Uniform tolerances 

are assumed for the linear matching circuits and multidimensional Gaussian distributions with 

correlations are assumed for the intrinsic FET parameters. The yield at the nominal design is 28% 

(all the yield figures reported in this paperi are estimated by Monte Carlo simulation with 500 

outcomes). The yield at the centered desigq obtained using one-sided l.1 centering is 76%, after 

17 iterations and 337 CPU seconds on a Sf ARCstation 10. The yield after one-sided Huber 

optimization is 77%, after 29 iterations and $74 CPU seconds. 

ONE-SIDED HUBER PREPROCESSING Of ARBITRARY STARTING POINTS 

We have exploited the potential of U$ing one-sided Huber preprocessing to overcome bad 

starting points in large-scale multiplexer opttmization [7]. 
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In this paper, we expand our investig~tion by testing randomly generated starting points for 
! 

multicavity filter optimization. The same 6fh-order multicavity filter shown in Fig. 2 is used. 
' 

Two sets of random starting points "fere generated. Each set consists of 30 starting points 

of uniform distribution centered at a "good"istarting point. The spread of the parameter values is 

±30% for the first set and ±40% for the secqnd set. The input return loss of the filter at the first 
I 

set of starting points is shown in Fig. 9. ~ can see that some of the starting points are indeed 

very bad (the return loss response is always srmmetrical w.r.t. the center frequency due to the filter 

configuration considered, hence only one ha~f of the frequency band needs to be simulated during 
I 

optimization). 

From each starting point, we perfor~ed two experiments: ( l) direct minimax optimization 

and (2) one-sided Huber optimization (pre~rocessing) followed by minimax optimization. The 
I 

optimized responses are shown in Fig. l 0 fo~ the first set of starting points and in Fig. 11 for the 
I 

second set. Although the one-sided Huber! preprocessing did not guarantee convergence to the 

optimal solution from all the starting points, ft produced more focused results by eliminating many 

spurious local minima. 

CONCLUSIONS 

We have presented exciting breakthroµghs in applying a novel Huber approach to modeling, 

parameter identification, fault diagnosis and design centering of linear and nonlinear circuits. 

Compared with li, l 2 and minimax methods, :the Huber approach has demonstrated robustness and 

consistency in the presence of large and smalf errors, deterministic and statistical variations, which 

are critical considerations for practical CAD, in an engineering environment. 
! 

The numerical results reported in ~his paper were obtained using a research-oriented 

implementation of the algorithms. We are iconfident that the computational efficiency can be 
I 

further improved in a more polished impleOientation. 
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TABLE I 
MUL TICA VITY FILTER PAR~METER IDENTIFICATION RESULTS 

Couplings M12 M2s :Ms4 M45 Mr,a M1a M25 

Actual Values 0.859956 0.526602 0.f91894 0.526602 0.859956 0.087293 -0.393685 

Starting Point 0.819006 0.511264 0.$24890 0.511264 0.819006 0.093863 -0.357895 

Case A: la -11% 6.5% -p.76% 7.3% -10% 278% 31% 

l1 0.05% 0.06% 0.00% -0.06% -0.05% -0.01% 0.00% 

Huber 0.02% 0.01% -0.02% 0.01% 0.02% -1.2% -0.16% 

Case B: l1 0.47% 0.07% -0.69% 0.36% 0.59% -33% -5.1% 

Huber 0.34% 0.3% +-0.5% 0.3% 0.34% -19% -3.3% 

Case C: l1 0.86% 1.8% 0.78% -3.1% -0.42% -12% 0.47% 

Huber 0.19% -0.1% 0.00% -0.1% 0.19% -8.9% -1% 

Case D: l1 0.51% 1.8% ~.51% -2.9% -0.22% -14% -0.33% 

Huber 0.15% 0.00% -Q.11% -0.01% 0.15% -8.3% -1.2% 

Case E: l1 1.8% 2.4% .0.6% -4.1% -0.53% -43% -3.1% 

Huber 0.41% 0.04% -Q.52% 0.04% 0.41% -27% -4% 

Case F: l1 1.5% 3.8% ~.23% -4.2% -1.3% -25% -2.5% 

Huber 0.05% 0.15% -@.24% 0.15% 0.05% -4.9% -1.1% 

The percentage entries represent the relative, differences between the identified parameter values 
and the actual parameter values. 

The data contains two large errors in all cas,s. 

Case A: the data is not truncated. 
Case B: the data is truncated to two signific~nt digits; 26 frequencies. 
Case C: the data is truncated to two signific~mt digits; 51 frequencies. 
Case D: the data is truncated to two significirnt digits; 101 frequencies. 
Case E: the data contains random deviates f~om uniform distribution [-0.01 +0.01 ]. 
Case F: the data is perturbed by +/-0.005 at: alternate frequencies. 
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1fABLE II 
ESTIMATED STATISTICS pF SELECTED FET PARAMETERS 

Parameter 4> (~) ef, (Huber) ~ <~*) u;(~) u;(Huber) * u;(l..i.) 

La(nH) 0.04387 0.03464 0.03429 94.6% 21.8% 17.4% 
GnsO/KO) 1.840 1.820 1.839 28.6% 6.3% 4.9% 
lnss<mA) 47.36 47.53 47.85 14.0% 12.7% 11.3% 
r(ps) 2.018 2.154 2.187 26.3% 5.8% 3.4% 
C10(pF) 0.3618 0.3658 0.3696 8.2% 4.6% 3.5% 
K1 1.2328 1.231 1.233 15.5% 10.8% 8.7% 

' 
L 0 represents the FET gate lead induct$nce, Gns the drain-source conductance, lnss the 
drain saturation current, r the time-dela~, C10 and K1 are parameters in the definition of 
the gate nonlinear capacitor. 

~ * denotes ~ estimates after 11 abnorm~l data sets are manually excluded [ 11 ]. 
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TABLE III 
FAULT LOCATION OF THE RESISTIVE 

MESH CIRCUIT 

Percentage Deviation 

Element Nominal Actual 
Value Value Actual i1 Huber 

G1 1.0 0.95 -5.0 -6.98 -15.14 
G2 1.0 0.50 -50.0* -47.55 -54.40 
G3 1.0 l.05 5.0 -25.45 -3.68 
G4 1.0 0.95 -5.0 0.00 -0.63 
G5 1.0 0.95 -5.0 0.00 -4.07 
Ga 1.0 0.95 -5.0 0.00 -0.05 
G7 1.0 l.05 5.0 0.00 -l.06 
Ga 1.0 1.05 5.0 0.00 -0.94 
G9 1.0 l.05 5.0 0.00 3.69 
G10 1.0 0.95 -5.0 0.00 0.48 
G11 1.0 1.05 5.0 0.00 0.67 

G12 1.0 1.05 5.0 0.00 6.00 

G13 1.0 0.95 -5.0 0.00 -0.32 

G14 1.0 0.95 -5.0 0.00 -0.68 

G15 1.0 l.05 5.0 0.00 0.18 

G15 1.0 0i.95 -5.0 -20.24 -3.53 

G11 1.0 1 .. 05 5.0 0.00 -0.81 

G1s 1.0 0.50 -50.0* -8.90 -49.97 

G19 1.0 0i.95 -5.0 -25.32 -4.74 

G20 1.0 01.95 -5.0 -20.73 -5.98 

• Faults. 

The simulated voltage measurement was truncated 
to two significant digits. 
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TABLE IV 
DESIGN CENTE:ij.ING OF THE LC FILTER 

Yield Number of Iterations CPU Time (Seconds) 

Nominal Design 

One-Sided £1 

One-Sided Huber, k=0.05 

One-Sided Huber, k=0.10 

One-Sided Huber, k=0.20 

One-Sided Huber, k=0.25 

One-Sided Huber, k=0.30 

One-Sided Huber, k=0.40 

52% 

75% 

76% 

75% 

75% 

74% 

74% 

72% 

II 

22 

19 

9 

21 

12 

12 

The yield figures were estimated by Monte Carlo simulation using 500 outcomes. 

The CPU time were measured on a SPARCstation I 0. 

k is the threshold value for the one-sided Huber function. 
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160 

336 

265 

123 

260 

160 

149 
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• • 

• 

• 

·················k~ ...... . 

Fig. I The Huber, £1 and~ objective functions in the one-dimensional case. The strikes and dots 
represent points on the £1 and ~ curves, respectively. The solid line represents the Huber 
function. 
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Fig. 2 Equivalent circuit for an unterminated multicavity filter. 
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Fig. 4 Comparison of parameter identification from truncated data using t1 and Huber objective 
functions. A portion of the passband is shown, enlarged for detail. The circles represent 
the data. The solid line represents th.e response after optimization. The t1 solution (top) 
is dictated by a subset of data which corresponds to a subset of zero residual functions at 
the solution. The Huber solution (bottom) interpolates the data variations smoothly (in the 
t,, sense). 
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Fig. 5 Run chart of the FET statistical model parameter La (gate lead inductance). 
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Fig. 6 The resistive mesh circuit. 
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Fig. 7 The LC filter. 
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Fig. 8 The FET frequency doubler. 
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Fig. 9 The input return loss of the multicavity filter at the 30 starting points randomly generated 
from uniform distributions with a ±30% parameter spread. 
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The return loss of the multicavity filter at the solutions from the 30 randomly generated 
starting points with a ±30% paraIJ}eter spread. The top figure shows the results after 
direct minimax optimization. The bottom figure shows the results obtained from one­
sided Huber preprocessing follo~d by minimax optimization. 

24 



Fig. 11 

(II 
(II 

0 
...J 

r, 
CD 
"O 
V 

(II 
(II 

0 
...J 

I . . I I , 
10 ~ --.. -........ -... ---.. ---i-.. -.. ------.. -. --.. --... ~ 

20 ························· 

30 ·························-

40 
3970 3980 3990 4000 

Frequency (MHz) 

···.···································•··············1····················· 

. . 

l ! 

4010 4020 4030 

! ................ ····r·· r-s=:-c--, 

,, ························' r1·················1·········· 1 1 

20 

40 
3970 3980 3990 

----···--------· --- ---·····-················· 

·········· .. ·(·····················'·······················•·i 

4000 

Frequency (MHz) 

4010 4020 

l 

4030 

The return loss of the multicavity filter at the solutions from the 30 randomly generated 
starting points with a ±40% para11Deter spread. The top figure shows the results after 
direct minimax optimization. The bottom figure shows the results obtained from one­
sided Huber preprocessing followed by minimax optimization. 
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