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Abstract 

Powerful multilevel multidimensional quadratic modeling has 

been developed for efficient yield-driven design. This 

approach makes it possible, for the first time, to perform 

direct yield optimization of circuits with components 

simulated by an electromagnetic simulator. Efficiency and 

accuracy of our technique are demonstrated by yield 

optimization of a small-signal amplifier. 
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Introduction 

we extend our highly efficient quadratic approximation 
technique to multilevel modeling 

it is particularly suitable for circuits containing complex 
subcircuits or components whose simulation requires 
significant computational effort 

direct utilization of electromagnetic (EM) simulation for 
yield optimization might seem to be computationally 
prohibitive 

our approach makes it possible to perform yield optimization 
of circuits with microstrip structures simulated by an EM 
simulator 

by constructing local quadratic models for each component 
simulated by an EM simulator we effectively overcome the 
computational burden of repeated EM simulations 

when the multilevel quadratic modeling technique is used 
together with expensive, but more accurate simulations at the 
component level, the results are more reliable than those 
obtained from traditional empirical component simulations 

efficiency and accuracy of our technique are demonstrated 
by yield optimization of a small-signal amplifier 
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Yield Optimization 

the problem of yield optimization can be formulated as 

where 

<JP nominal circuit parameters 
</> actual circuit outcome parameters 
Y( ¢0) design yield 

f 4i ¢0, </>) probability density function of</> around <1>0 

I ( <P) = { 1 if </> E A 
a O if </> fE A 

A acceptability region 

in practice, the int~gral is approximated using K Monte Carlo 
circuit outcomes </)1 and yield is estimated by 

the outcomes <J>i are generated by a random number 
generator according to f </J( ¢0, <J>) 
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Error and Objective Functions 

to estimate yield we create a set of multi-circuit error 
functions e( ¢1 ), e( ¢2), ... , e( <Ji<) 

the error functions e( <fl) are derived from the circuit 
responses Rj and lower specifications (S1) and upper 
specifications (Su) as 

ei( </>i) = Rj( </>i) - Sui or ei( </>i) = S1i -~( </>i) 

for yield optimization we use the one-sided ~1 objective 
function 

U(<J>o) = L a.iv(<J>i) 
iEJ 

where 

J = { i I v ( <Pl) > 0 } 

a.i suitably chosen positive multipliers 
v ( <J>i) generalized ~1 function 

consequently, U( ¢ 0) becomes an approximation to the 
percentage of outcomes violating design specifications and 
minimization of U( ¢ 0) leads to yield improvement 
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Efficient Q-Modeling- Concept 
(Biernacki et al., 1989) 

the Q-model to approximate a generic response/(x) is a 
multidimensional quadratic polynomial of the form 

n n 

q ( x) = a O + L a i (xi - ri) + L a ij (xi - ri) ( x j - ri) 
i=l i=l 

where 

x = [x1 Xz ... xn]T 

r = [r 1 r 2 ... r n1 T 

] ~ l 

vector of generic circuit parameters 

chosen reference point 

to build the model we use n + 1 < m 5: 2n + 1 base points at 
which the function/(x) is evaluated 

the reference point r is selected as the first base point x1 

the remaining m-1 base points are selected by perturbing one 
variable at a time around r with a predetermined 
perturbation /Ji 

xi+ 1 = r + [O ... 0 {Ji O ... O]T, i = 1, 2, ... , n 

xn+l+i = r + [O ... 0 -/3i O ... O]T, i = 1, 2, ... , m-(n+ 1) 
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Efficient Q-Modeling - Formulas 

applying the Maximally Flat Quadratic Interpolation 
(MFQI) technique to the set of base points yields 

m-(n+l) 
q ( x) = f( r) + L { [f ( xi + 1 ) - f ( xn + 1 + i) + (f( xi + l ) 

i=l 

+ f(xn+l+i) - 2f(r))(xi -ri)l/3J(xi -ri)/(2/Ji)} 
n 

+ . L { [f( xi+ 1) - f( r)] ( xi - ri) I /Ji} 
i=m-n 

to apply a gradient-based optimizer we need the gradient of 
q(x) 

aq(x)/axi = [(f(xi+ 1 )-f(xn+ 1 +i) )/2+ (f(xi+ 1) +f(xn+ 1 +i) 

-2f(r) )(xrri)I /Jill /3b i = 1, ... , m-(n + 1) 

and, if m<2n+ 1, 

. 
z=m-n, ... , n 

the simplicity of these formulas results in unsurpassed 
efficiency 
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Multilevel Modeling 

Circuit outcomes 

Circuit Model 

······ 
···--:~--- ·-.. 

" 

··--....... . 
···--....... ·----.... ··- ··-. ··--... ·•. 

····--.::::::::=, •• 

Subcircuit Model • • • Subcircuit Model 

··-... 

Component Model • • • Component Model 

a Q-model can be established at any level for some or all 
subcircuits and components 

the models are built from the results of exact simulations of 
the corresponding component, subcircuit, or the overall 
circuit 

once the Q-model is established, it is used in place of the 
corresponding simulator 

many Q-models may exist changing the path of calculations 
as indicated by different links in the figure 
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Model Variables 

the vector x of circuit, subcircuit or component model 
variables may contain different combinations of designable 
xv, statistical xs, or discrete xa parameters 

the discrete parameters xa are those for which simulation 
can only be performed at discrete values located on the grid 
as in EM simulation 

i I : : 
+---+---+---!---+, -a-----. -t----t----+---t 

i i 
+-----+---+---!---+ --t----t----+---t 

---------------------- ----------------------
--- _______ ,p _______ , --! _Q _____ i --iQ __ i _________ -

the reference vector and other base points are likely to be 
off-the-grid 

local interpolation involving several simulations on the grid 
in the vicinity of each of the base points must then be 
performed 

in order to avoid excessive simulations the base points are 
modified to snap to the grid 
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Optimization of a Small-Signal Amplifier 

inp~ 
I o~tput 

I I 

the specifications for yield optimization of the amplifier are 

7 dB ~ IS 21 I ~ 8 dB for 6 GHz < f < 18 GHz 

the gate and drain circuit microstrip T-junctions and the 
feedback microstrip line are built on a 10 mil thick substrate 
with relative dielectric constant 9.9 

the microstrip components of the amplifier are simulated 
using component level Q-models built from EM simulations 

we used em TM from Sonnet Software for EM simulations 
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Optimization Variables 

~ 1, Lg1, ~ 2, Lg_2 of the gate circuit T-junction and Wd1, Ld1, 
wd2, Ld2 ot the drain circuit T-junction are the optimization 
variables 

~ 3, Lg3, ~ 3 and Ld3 of the T-junctions, Wand L of the 
feedback microstrip line, as well as the FET parameters are 
not optimized 

parameters of the microstrip line (a) and the T-junctions (b) 

X 

(a) (b) 

we assumed 0.5 mil tolerance and uniform distribution for all 
geometrical parameters of the microstrip components 

the statistics of the small-signal FET model were extracted 
from measurement data 
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Small-Signal Amplifier Yield Before Optimization 

the starting point for yield optimization was obtained by 
nominal minimax optimization using analytical/empirical 
microstrip component models 
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Monte Carlo simulation 

250 outcomes 

55% yield 
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Small-Signal Amplifier Yield After Optimization 

the component level Q-models were used in yield 
optimization 

8 · 5 ·······················T····················---r-······················r······················r······················r······················T······················T··············•········1 
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yield estimated by 250 Monte Carlo simulations increased to 
82% 

optimization was performed by OSA90/hopeTM with 
Empipe TM driving em TM 
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Optimization Results 

MICROSTRIP PARAMETERS OF THE AMPLIFIER 

Parameters Nominal design 

Yield (250 outcomes) 

17.45 
35.54 
9.01 

30.97 
3.o* 

101.0* 
8.562 
4.668 
3.926 
9.902 
3.s* 

so.a* 
2.0* 

10.0* 

55% 

* Parameters not optimized. 

Centered design 

19.0 
34.53 

8.611 
32.0 
3.o* 

101.0* 
7.0 
6.0 
3.628 

11.0 
3.5* 

so.a* 
2.0* 

10.0* 

82% 

Dimensions of the parameters are in mils. 50 outcomes were 
used for yield optimization. 0.5 mil tolerance and uniform 
distribution were assumed for all the parameters. 
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Conclusions 

we have presented a new multilevel quadratic modeling 
technique suitable for effective and efficient yield-driven 
design optimization 

this approach is particularly useful for circuits containing 
complex subcircuits or components whose simulation 
requires significant computational effort 

the efficiency of this technique allowed us to perform yield­
driven design of circuits containing microstrip structures 
accurately simulated by em TM 

our approach, illustrated by yield optimization of a 
small-signal amplifier, significantly extends the microwave 
CAD applicability of yield optimization techniques 


