.

John W. Bandler

OSA-93-OS-5-V

April 27, 1993

© Optimization Systems Associates Inc. 1993

Presented at the 1993 MTT-S Workshop "Critical Issues in Experimental Validation" Atlanta, GA, June 14, 1993

Introduction

questions (Rautio, 1992)

design of experiments error analysis sensitivity analysis experimental significance experimental objective

our aim

to find answers in microwave CAD technology to find answers in analog fault diagnosis to suggest software solutions now available to suggest some open areas for investigation

Background (Rautio, 1991)

no sensitivity evaluation

no error analysis

measurements made at a difficult frequency (data with large scatter)

too many "confounding" variables

the experimenter has a desired outcome in mind

incorrect objective

Optimization Systems Associates Inc.

Our Points of View

we could take the view that the feature being measured is a "fault" to be diagnosed

or we could take the view that the feature being measured is obscured by elements which may be uncertain or "faulty"

in validation a fluctuation or uncertainty is often under investigation; the experiment must be designed so that the effect is not obscured

examine <u>common denominators</u> of experimental validation, device characterization, parameter extraction and network testing such as approach, objectives, accuracy, uniqueness

soft (faults) deviations

the (faulty) element deviates from its nominal value without reaching its extreme bounds

result from manufacturing tolerances, aging, parasitic effects

Relevant Approaches from Fault Analysis

fault dictionary approach

dictionary construction selecting an optimal set of measurements dealing with ambiguity sets fault isolation techniques efficient methods of fault simulation

parameter identification techniques

DC or time-domain testing of nonlinear networks multifrequency testing of linear networks select test frequencies to optimize a measure of the solvability of the diagnosis equations? how solvable are the equations given an optimal choice of test frequencies? linear techniques for element value determination

fault verification techniques (consistency checking)

techniques to determine the most likely faults

CAT Techniques

computer-aided analog testing

fault detection fault location parameter identification postproduction tuning

uniqueness often essential

sensitivity to changes, fluctuations and uncertainties should be exposed

some challenges

robustness against deviations of other elements robustness against measurement uncertainties establish a measure of testability how to use the minimum number of tests insufficient data (degree of diagnosability)

Analog Circuit Theory

1. Circuit Analysis and Simulation

component values assumed <u>all</u> possible solutions of interest relevant to experimental validation

2. Circuit Design and Optimization

component values optimizable good solutions of interest more relevant to experimental validation

3. Circuit Diagnosis and Testing

components under investigation <u>unique</u> solutions of interest most relevant to experimental validation

(Bandler and Salama, "Fault diagnosis of analog circuits", Proc. IEEE, 1985, pp. 1279-1325)

Analog Diagnosis Problem

resistive mesh circuit

only external nodes are available for excitation and measurements

Optimization Systems Associates Inc.

Analog Diagnosis Using l_1 Optimization

$$\begin{array}{cc} \text{minimize} & \sum_{i=1}^{n} |\Delta x_{i}/x_{i}^{0}| \\ \mathbf{x} & \end{array}$$

subject to

where

 $x = [x_1 x_2 \dots x_n]^T$ circuit parameters x^0 nominal or assumed parameter values $\Delta x_i = x_i \cdot x_i^0$ deviations from the nominal or
assumed values V_1^m, \dots, V_K^m measurements on the circuit under
test $V_1^c(x), \dots, V_K^c(x)$ calculated circuit responses

Optimization Systems Associates Inc.

Analog Diagnosis Using Huber Optimization

penalty function approach

$$\min_{\mathbf{x}} \sum_{j=1}^{n+K} \rho_k(f_j(\mathbf{x}))$$

where

$$f_i(x) = \Delta x_i / x_i^0, \quad i = 1, 2, ..., n$$

$$f_{n+i}(x) = \beta_i (V_i^c(x) - V_i^m), \quad i = 1, 2, ..., K$$

 β_i are appropriate multipliers for the penalty terms

Huber Functions

$$\rho_{k}(f) = \begin{cases} f^{2}/2 & \text{if } |f| \leq k \\ \\ k|f| - k^{2}/2 & \text{if } |f| > k \end{cases}$$

where k is a positive constant

the Huber function ρ_k is a hybrid of the least-squares (ℓ_2) (when $|f| \le k$) and the ℓ_1 (when |f| > k)

Huber Optimization

$$\begin{array}{ll} \text{minimize} \quad F(x) \triangleq \sum_{j=1}^{m} \rho_k(f_j(x)) \\ x \end{array}$$

where $\mathbf{x} = [x_1 x_2 \dots x_n]^T$ is the set of variables

 f_j , j = 1, 2, ..., m, are error functions

Huber Function as a Hybrid ℓ_1 / ℓ_2

the Huber, ℓ_1 and ℓ_2 objective functions in the onedimensional case

the strikes represent the discrete points on the l_1 curve

the dots represent the discrete points on the l_2 curve

the continuous curve indicates the Huber objective function

Data Containing Wild Points

run chart of the FET time-delay τ

extracted from multi-device measurements

Huber Solution of Analog Diagnosis Problem

FAULT LOCATION OF THE RESISTIVE MESH CIRCUIT

Element	Nominal Value	Actual Value	Percentage Deviation		
			Actual	<i>ℓ</i> ₁	Huber
G ₁	1.0	0.98	-2.0	0.00	-0.11
G,	1.0	0.50	-50.0*	-48.89	-47.28
G.	1.0	1.04	4.0	0.00	-2.46
G,	1.0	0.97	-3.0	0.00	-1.18
G.	1.0	0.95	-5.0	-2.70	-3.16
G,	1.0	0.99	-1.0	0.00	-0.06
G_{n}	1.0	1.02	2.0	0.00	-0.19
G,	1.0	1.05	5.0	0.00	-0.41
Ĝ	1.0	1.02	2.0	2.41	3.75
G.o.	1.0	0.98	-2.0	0.00	0.39
G.,	1.0	1.04	4.0	0.00	-0.37
G	1.0	1.01	1.0	2.73	1.32
G.,	1.0	0.99	-1.0	0.00	-0.26
G.,	1.0	0.98	-2.0	0.00	-0.50
G.,	1.0	1.02	2.0	0.00	-0.05
G15	1.0	0.96	-4.0	-3.36	-2.67
G 16	1.0	1.02	2.0	0.00	-0.61
G 17	1.0	0.50	-50.0*	-50.09	-47.33
G18	1.0	0.98	-2.0	-1.41	-3.81
G_{20}^{19}	1.0	0.96	-4.0	-4.40	-4.72

* Faults

Relevant Optimization and Analog Diagnosis Benchmarks

"A nonlinear programming approach to optimal design centering, tolerancing and tuning," (*IEEE Trans. CAS*, 1976)

"An interactive optimal post-production tuning technique utilizing simulated sensitivities and response measurements," (*MTT-S Symp., 1981*)

"Fault isolation in linear analog circuits using the L1 norm," (CAS Symp., 1982)

"Integrated approach to microwave post production tuning," (*MTT-S Symp., 1983*)

"Microwave device modelling using efficient ℓ_1 optimization: a novel approach," (*MTT-S Symp.*, 1986)

"Robustizing circuit optimization using Huber functions," (*MTT-S Symp.*, 1993)

Optimization Systems Associates Inc.

Experimental Validation of Microstrip Filter Designs

conventional use of EM simulation to validate designs

low-pass microstrip filter: microstrip components derived from a synthesized LC prototype (Swanson, 1991)

common sense judgement used to "validate" the design

sophisticated validation algorithms could enhance the common sense judgement approach

A Low-Pass Microstrip Filter (Swanson, 1991)

built on a 25 mil thick alumina substrate with a relative dielectric constant of 9.8

the rectangular inductors utilize air bridges with vias

EM Simulation of the Low-Pass Microstrip Filter (Swanson, 1991)

for simulation the whole structure is partitioned into individual components

approximate simulation times per one frequency point:

100 seconds for the inductor10 seconds for the center capacitor8 seconds for the end capacitor

the resulting S parameters of individual components are combined to determine the S parameters of the overall filter

symmetry of the filter is utilized by simulating only one inductor and one end capacitor

additional pieces of transmission lines are added for each component and de-embedded for better accuracy and to account for discontinuities at both sides of each capacitor

EM-Simulation and Measurements of the Low-Pass Filter (Swanson, 1991)

electromagnetic simulation using em[™]

very good approximation of filter behaviour, in particular around the cut-off frequency

Optimization Technology for Automated CAD

parameterized models based on physics, fields, circuits, experiments

circuit theory for interconnection

numerical algorithms for simulation and optimization

objectives

meet parameter constraints exceed performance specifications tolerance optimization yield maximization cost minimization

uniqueness not essential

sensitivity to changes, fluctuations and uncertainties should be considered but their effects minimized

Integrated Approach to Microwave Design (Bandler Liu and Tromp, 1975)

benchmark considerations of the integrated approach

optimal design centering optimal design tolerancing optimal design tuning parasitic effects uncertainties in models and reference plane mismatched terminations

we now need an <u>integrated approach</u> to experimental validation to address some of Rautio's questions

Optimization Systems Associates Inc.

Three-Section 3:1 Microstrip Impedance Transformer

designed on a 0.635 mm thick substrate with relative dielectric constant of 9.7

the source and load impedances are 50 and 150 ohms

design specification set for the input reflection coefficient

 $|S_{11}| \le 0.12$, from 5 GHz to 15 GHz

normal distributions with 2% standard deviations assumed for W_1 , W_2 and W_3 and 1% standard deviations assumed for L_1 , L_2 and L_3

EM Simulation of the Microstrip Transformer

decomposed into three components simulated as two-ports

the first two sections simulated as step discontinuities

the last section simulated as a microstrip line

data base of simulated results

three component level Q-models established for each section of the transformer at the nominal point using em^{TM}

the entire transformer structure also simulated as one piece

simulation results by the two approaches were practically identical

Optimization Systems Associates Inc.

Yield-Driven Electromagnetic Optimization of the Microstrip Transformer

yield optimization started from the solution of a nominal minimax design

single vs. multilevel modeling - two experiments:

yield optimization using single-level (component) modeling

yield optimization using two-level (component and circuit response) modeling

the Q-models were updated during optimization whenever necessary

selection of optimization variables - two experiments:

all six variables W_1, W_2, W_3, L_1, L_2 and L_3 selected

only three variables W_1 , W_2 and W_3 selected

Three-Section Microstrip Transformer After Yield Optimization

modulus of the reflection coefficient vs. frequency optimization using single-level (component) Q-models 100 statistical outcomes used for yield optimization yield is increased to 86%

three-section 3:1 microstrip transformer

sensitivity analysis performed at the solution of yield optimization with all six optimization variables

seven experiments:

- the specification is swept from 0.10 to 0.13
- each of the six optimization variables is individually swept

yield is very sensitive to the widths of all the sections and is quite insensitive to the lengths

250 Monte Carlo outcomes used for yield estimation

the results were obtained with little additional computational effort

Yield Sensitivity of the Microstrip Transformer

yield vs. specification on $|S_{11}|$

high sensitivity of yield w.r.t. the specification

yield varies from 0% to 100% over a very small range of the specification

yield vs. W_1

relatively high sensitivity of yield w.r.t. W_1

yield estimated with 250 Monte Carlo outcomes

Yield Sensitivity of the Microstrip Transformer

yield vs. W_2

high sensitivity of yield w.r.t. W_2

yield vs. W_3

high sensitivity of yield w.r.t. W_3

yield estimated with 250 Monte Carlo outcomes

Yield Sensitivity of the Microstrip Transformer

yield vs. L_1

low sensitivity of yield w.r.t. L_1

low sensitivity of yield w.r.t. L_2

yield estimated with 250 Monte Carlo outcomes

Yield Sensitivity of the Microstrip Transformer

yield vs. L_3

low sensitivity of yield w.r.t. L_3

Software Implementing Statistical/Diagnosis Concepts

RoMPE[™] (1988) FET parameter extraction (DC data, S parameters)

HarPE[™] (1989) statistical FET parameter extraction (DC, SS, HB)

OSA90[™] (1990) friendly optimization engine for performance- and yielddriven design

OSA90/hope[™] (1991) OSA90 integrated with unified DC/SS/HB

these CAD tools merge multi-circuit/device/domain/bias modeling principles with novel l_1 objectives to enhance precision and uniqueness

robustized modeling and design using Huber functions are coming

Етріре™ (1992)

smart connection of OSA90/hope[™] with Sonnet's *em*[™] field simulator for interprocessing circuit/field/measurement data

a significant step towards the required <u>integrated approach</u> offering

simulation, modeling, parameter extraction optimization, sensitivity analysis, statistical analysis error analysis (probability of satisfying error specs) automated processing of circuit/field/measurement data fixed or optimizable geometries simulated by *em*TM

recent applications include

EM microstrip filter design yield-driven direct EM optimization EM statistical sensitivity analyses

more relevant experimental validation applications to come!

Parameterized (Optimizable) Microstrip Library of Empipe[™]

bend cross junction double patch capacitors interdigital capacitors line mitered bend open stub overlay double patch capacitors rectangular structure spiral inductors step junction symmetrical and asymmetrical folded double stubs symmetrical and asymmetrical gaps symmetrical and asymmetrical double stubs T junction

Conclusions

sensitivity evaluation well-understood in analysis, design and testing

error analysis already part of statistical modeling/design systems

measurements made at a difficult frequency see work on multifrequency testing

too many "confounding" variables similar treatment as for "soft faults"

the experimenter has a desired outcome in mind quite an opposite outcome in fault diagnosis!

incorrect objective answered by diagnosability and testability theory

CAD software frameworks available for immediate exploitation

John W. Bandler

Optimization Systems Associates Inc. P.O. Box 8083, Dundas, Ontario Canada L9H 5E7

John W. Bandler

OSA-93-OS-5-V

April 27, 1993

[©] Optimization Systems Associates Inc. 1993

Presented at the 1993 MTT-S Workshop "Critical Issues in Experimental Validation" Atlanta, GA, June 14, 1993

John W. Bandler

Optimization Systems Associates Inc. P.O. Box 8083, Dundas, Ontario Canada L9H 5E7

Introduction

questions (Rautio, 1992)

design of experiments error analysis sensitivity analysis experimental significance experimental objective

our aim

to find answers in microwave CAD technology to find answers in analog fault diagnosis to suggest software solutions now available to suggest some open areas for investigation

Background (Rautio, 1991)

no sensitivity evaluation

no error analysis

measurements made at a difficult frequency (data with large scatter)

too many "confounding" variables

the experimenter has a desired outcome in mind

incorrect objective

Our Points of View

we could take the view that the feature being measured is a "fault" to be diagnosed

or we could take the view that the feature being measured is obscured by elements which may be uncertain or "faulty"

in validation a fluctuation or uncertainty is often under investigation; the experiment must be designed so that the effect is not obscured

examine <u>common denominators</u> of experimental validation, device characterization, parameter extraction and network testing such as approach, objectives, accuracy, uniqueness

soft (faults) deviations

the (faulty) element deviates from its nominal value without reaching its extreme bounds

result from manufacturing tolerances, aging, parasitic effects

Relevant Approaches from Fault Analysis

fault dictionary approach

dictionary construction selecting an optimal set of measurements dealing with ambiguity sets fault isolation techniques efficient methods of fault simulation

parameter identification techniques

DC or time-domain testing of nonlinear networks multifrequency testing of linear networks select test frequencies to optimize a measure of the solvability of the diagnosis equations? how solvable are the equations given an optimal choice of test frequencies? linear techniques for element value determination

fault verification techniques (consistency checking)

techniques to determine the most likely faults

CAT Techniques

computer-aided analog testing

fault detection fault location parameter identification postproduction tuning

uniqueness often essential

sensitivity to changes, fluctuations and uncertainties should be exposed

some challenges

robustness against deviations of other elements robustness against measurement uncertainties establish a measure of testability how to use the minimum number of tests insufficient data (degree of diagnosability)

Analog Circuit Theory

1. Circuit Analysis and Simulation

component values assumed <u>all</u> possible solutions of interest relevant to experimental validation

2. Circuit Design and Optimization

component values optimizable good solutions of interest more relevant to experimental validation

3. Circuit Diagnosis and Testing

components under investigation <u>unique</u> solutions of interest most relevant to experimental validation

(Bandler and Salama, "Fault diagnosis of analog circuits", Proc. IEEE, 1985, pp. 1279-1325)

Analog Diagnosis Problem

resistive mesh circuit

only external nodes are available for excitation and measurements

Analog Diagnosis Using l_1 Optimization

$$\begin{array}{cc} minimize \\ \mathbf{x} \end{array} \sum_{i=1}^{n} |\Delta x_i / x_i^0|$$

subject to

$$V_1^c(x) - V_1^m = 0$$

.
.
.
 $V_K^c(x) - V_K^m = 0$

where

 $x = [x_1 x_2 \dots x_n]^T$ circuit parameters x^0 nominal or assumed parameter values $\Delta x_i = x_i - x_i^0$ deviations from the nominal or
assumed values V_1^m, \dots, V_K^m measurements on the circuit under
test $V_1^c(\mathbf{x}), \dots, V_K^c(\mathbf{x})$ calculated circuit responses

Analog Diagnosis Using Huber Optimization

penalty function approach

$$\begin{array}{c} \text{minimize} \\ \mathbf{x} \end{array} \sum_{j=1}^{n+K} \rho_k(f_j(\mathbf{x})) \end{array}$$

where

$$f_i(\mathbf{x}) = \Delta x_i / x_i^0, \quad i = 1, 2, ..., n$$
$$f_{n+i}(\mathbf{x}) = \beta_i (V_i^c(\mathbf{x}) - V_i^m), \quad i = 1, 2, ..., K$$

 β_i are appropriate multipliers for the penalty terms

Huber Functions

$$\rho_k(f) = \begin{cases} f^2/2 & \text{if } |f| \le k \\ \\ k|f| - k^2/2 & \text{if } |f| > k \end{cases}$$

where k is a positive constant

the Huber function ρ_k is a hybrid of the least-squares (ℓ_2) (when $|f| \le k$) and the ℓ_1 (when |f| > k)

Huber Optimization

$$\begin{array}{ll} \text{minimize} & F(x) \triangleq \sum_{j=1}^{m} \rho_k(f_j(x)) \\ x \end{array}$$

where $\mathbf{x} = [x_1 x_2 ... x_n]^T$ is the set of variables

$$f_j$$
, $j = 1, 2, ..., m$, are error functions

Huber Function as a Hybrid ℓ_1 / ℓ_2

the Huber, ℓ_1 and ℓ_2 objective functions in the onedimensional case

the strikes represent the discrete points on the l_1 curve

the dots represent the discrete points on the l_2 curve

the continuous curve indicates the Huber objective function

Data Containing Wild Points

run chart of the FET time-delay $\boldsymbol{\tau}$

extracted from multi-device measurements

Huber Solution of Analog Diagnosis Problem

Element	Nominal Value	Actual Value	Percentage Deviation		
			Actual	ℓ_1	Huber
G ₁	1.0	0.98	-2.0	0.00	-0.11
G,	1.0	0.50	-50.0*	-48.89	-47.28
G,	1.0	1.04	4.0	0.00	-2.46
G,	1.0	0.97	-3.0	0.00	-1.18
G _r	1.0	0.95	-5.0	-2.70	-3.16
G _a	1.0	0.99	-1.0	0.00	-0.06
G	1.0	1.02	2.0	0.00	-0.19
G_{α}	1.0	1.05	5.0	0.00	-0.41
G G	1.0	1.02	2.0	2.41	3.75
G	1.0	0.98	-2.0	0.00	0.39
G_{10}	1.0	1.04	4.0	0.00	-0.37
G_{11}	1.0	1.01	1.0	2.73	1.32
G_{12}	1.0	0.99	-1.0	0.00	-0.26
G_{13}	1.0	0.98	-2.0	0.00	-0.50
G_{14}	1.0	1.02	2.0	0.00	-0.05
G_{15}	1.0	0.96	-4.0	-3.36	-2.67
G_{16}	1.0	1.02	2.0	0.00	-0.61
G_{17}	1.0	0.50	-50.0*	-50.09	-47.33
G_{18}	1.0	0.98	-2.0	-1.41	-3.81
C 19	1.0	0.96	-4.0	-4.40	-4.72

FAULT LOCATION OF THE RESISTIVE MESH CIRCUIT

* Faults

Relevant Optimization and Analog Diagnosis Benchmarks

"A nonlinear programming approach to optimal design centering, tolerancing and tuning," (*IEEE Trans. CAS, 1976*)

"An interactive optimal post-production tuning technique utilizing simulated sensitivities and response measurements," (*MTT-S Symp., 1981*)

"Fault isolation in linear analog circuits using the L1 norm," (CAS Symp., 1982)

"Integrated approach to microwave post production tuning," (MTT-S Symp., 1983)

"Microwave device modelling using efficient l_1 optimization: a novel approach," (*MTT-S Symp.*, 1986)

"Robustizing circuit optimization using Huber functions," (MTT-S Symp., 1993)

Experimental Validation of Microstrip Filter Designs

conventional use of EM simulation to validate designs

low-pass microstrip filter: microstrip components derived from a synthesized LC prototype (Swanson, 1991)

common sense judgement used to "validate" the design

sophisticated validation algorithms could enhance the common sense judgement approach

A Low-Pass Microstrip Filter

(Swanson, 1991)

built on a 25 mil thick alumina substrate with a relative dielectric constant of 9.8

the rectangular inductors utilize air bridges with vias

EM Simulation of the Low-Pass Microstrip Filter (Swanson, 1991)

for simulation the whole structure is partitioned into individual components

approximate simulation times per one frequency point:

100 seconds for the inductor10 seconds for the center capacitor8 seconds for the end capacitor

the resulting S parameters of individual components are combined to determine the S parameters of the overall filter

symmetry of the filter is utilized by simulating only one inductor and one end capacitor

additional pieces of transmission lines are added for each component and de-embedded for better accuracy and to account for discontinuities at both sides of each capacitor

EM Simulation and Measurements of the Low-Pass Filter (Swanson, 1991)

electromagnetic simulation using em^{TM}

very good approximation of filter behaviour, in particular around the cut-off frequency

Optimization Technology for Automated CAD

parameterized models

based on physics, fields, circuits, experiments

circuit theory for interconnection

numerical algorithms for simulation and optimization

objectives

meet parameter constraints exceed performance specifications tolerance optimization yield maximization cost minimization

uniqueness not essential

sensitivity to changes, fluctuations and uncertainties should be considered but their effects minimized

Integrated Approach to Microwave Design (*Bandler Liu and Tromp, 1975*)

benchmark considerations of the integrated approach

optimal design centering optimal design tolerancing optimal design tuning parasitic effects uncertainties in models and reference plane mismatched terminations

we now need an <u>integrated approach</u> to experimental validation to address some of Rautio's questions

Three-Section 3:1 Microstrip Impedance Transformer

designed on a 0.635 mm thick substrate with relative dielectric constant of 9.7

the source and load impedances are 50 and 150 ohms

design specification set for the input reflection coefficient

 $|S_{11}| \le 0.12$, from 5 GHz to 15 GHz

normal distributions with 2% standard deviations assumed for W_1 , W_2 and W_3 and 1% standard deviations assumed for L_1 , L_2 and L_3

EM Simulation of the Microstrip Transformer

decomposed into three components simulated as two-ports

the first two sections simulated as step discontinuities

the last section simulated as a microstrip line

data base of simulated results

three component level Q-models established for each section of the transformer at the nominal point using em^{TM}

the entire transformer structure also simulated as one piece

simulation results by the two approaches were practically identical

Yield-Driven Electromagnetic Optimization of the Microstrip Transformer

yield optimization started from the solution of a nominal minimax design

single vs. multilevel modeling - two experiments:

yield optimization using single-level (component) modeling

yield optimization using two-level (component and circuit response) modeling

the Q-models were updated during optimization whenever necessary

selection of optimization variables - two experiments:

all six variables W_1, W_2, W_3, L_1, L_2 and L_3 selected

only three variables W_1 , W_2 and W_3 selected

Three-Section Microstrip Transformer After Yield Optimization

modulus of the reflection coefficient vs. frequency

optimization using single-level (component) Q-models 100 statistical outcomes used for yield optimization yield is increased to 86%

three-section 3:1 microstrip transformer

sensitivity analysis performed at the solution of yield optimization with all six optimization variables

seven experiments:

the specification is swept from 0.10 to 0.13

each of the six optimization variables is individually swept

yield is very sensitive to the widths of all the sections and is quite insensitive to the lengths

250 Monte Carlo outcomes used for yield estimation

the results were obtained with little additional computational effort

yield vs. specification on $|S_{11}|$

high sensitivity of yield w.r.t. the specification

yield varies from 0% to 100% over a very small range of the specification

yield vs. W_1

relatively high sensitivity of yield w.r.t. W_1

yield vs. W_2

high sensitivity of yield w.r.t. W_2

yield vs. W_3

high sensitivity of yield w.r.t. W_3

yield vs. L_1

low sensitivity of yield w.r.t. L_1

yield vs. L_2

low sensitivity of yield w.r.t. L_2

yield vs. L_3

low sensitivity of yield w.r.t. L_3

Software Implementing Statistical/Diagnosis Concepts

RoMPE[™] (1988) FET parameter extraction (DC data, S parameters)

HarPE[™] (1989) statistical FET parameter extraction (DC, SS, HB)

OSA90[™] (1990) friendly optimization engine for performance- and yielddriven design

OSA90/hope[™] (1991) OSA90 integrated with unified DC/SS/HB

these CAD tools merge multi-circuit/device/domain/bias modeling principles with novel l_1 objectives to enhance precision and uniqueness

robustized modeling and design using Huber functions are coming

Етріре™ (1992)

smart connection of OSA90/hope[™] with Sonnet's *em*[™] field simulator for interprocessing circuit/field/measurement data

a significant step towards the required <u>integrated approach</u> offering

simulation, modeling, parameter extraction optimization, sensitivity analysis, statistical analysis error analysis (probability of satisfying error specs) automated processing of circuit/field/measurement data fixed or optimizable geometries simulated by *em*TM

recent applications include

EM microstrip filter design yield-driven direct EM optimization EM statistical sensitivity analyses

more relevant experimental validation applications to come!

Parameterized (Optimizable) Microstrip Library of EmpipeTM

bend cross junction double patch capacitors interdigital capacitors line mitered bend open stub overlay double patch capacitors rectangular structure spiral inductors step junction symmetrical and asymmetrical folded double stubs symmetrical and asymmetrical gaps symmetrical and asymmetrical double stubs T junction

Conclusions

sensitivity evaluation well-understood in analysis, design and testing

error analysis already part of statistical modeling/design systems

measurements made at a difficult frequency see work on multifrequency testing

too many "confounding" variables similar treatment as for "soft faults"

the experimenter has a desired outcome in mind quite an opposite outcome in fault diagnosis!

incorrect objective answered by diagnosability and testability theory

CAD software

frameworks available for immediate exploitation