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Assessment of the Additions with Respect to the Digest Paper

(D) The gradients and Hessians of the Huber objective functions (one- and two-sided) are
presented in Section II. We compare the Huber gradients and Hessians with those of the
£, to further our insight into the robustness of Huber optimization.

2) We present a dedicated algorithm for Huber optimization in Section III, including a precise
step-by-step description of the algorithm.

3) The effectiveness and efficiency of our dedicated algorithm are demonstrated through a
comparison with three generic minimization algorithms in Section VIII.

4) Section V is significantly expanded to illustrate the influence of the threshold value k on
the solutions of Huber optimization.
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Abstract

We introduce a novel approach to "robustizing" circuit optimization using Huber functions:
both two-sided and one-sided. Advantages of the Huber functions for optimization in the presence
of faults, large and small measurement errors, bad starting points and statistical uncertainties are
described. In this context, comparisons are made with optimization using. ¢,, £, and minimax
objective functions. The gradients and Hessians of the Huber objective functions are formulated.
We contribute a dedicated, efficient algorithm for Huber optimization and show, by comparison,
that generic optimization methods are not adequate for Huber optimization. A wide range of
significant applications is illustrated, including FET statistical modeling, multiplexer optimization,
analog fault location and data fitting. The Huber concept, with its simplicity and far—reaching

applicability, will have a profound impact on analog circuit CAD.
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I. INTRODUCTION

Engineering designers are often concerned with the robustness of numerical optimization
techniques, and rightly so, knowing that engineering data is, with few exceptions, contaminated by
model/measurement/statistical errors.

The classical least-squares (£,) method is well known for its vulnerability to gross errors:
a few wild data points can alter the least squares solution significantly. The £, method is robust
against gross errors [1,2]. We will show, however, that when the data contains many small errors
(such as statistical variations), the £, solution can be undesirably biased toward a subset of the data
points. This indicates that £; is not suitable, in general, as a statistical estimator.

Neither the £, nor the ¢, method has flexible discriminatory power to recognize and treat
differently large (catastrophic) errors and small (soft) errors. We introduce the Huber function [3-
5], which appears to be a hybrid of the ¢, and £, measures. Compared with £,, the Huber solution
is more robust w.r.t. large errors. Compared with £,, the Huber solution can provide a smoother,
less biased estimate from data which contains many small deterministic or statistical variations. We
demonstrate the benefits of this novel approach in FET statistical modeling, analog fault location
and data fitting.

We extend the Huber concept by introducing a "one-sided" Huber function for large-scale
optimization. For large-scale problems, systematic decomposition techniques have been proposed
(e.g., [6,7]) to reduce computational time and prevent potential convergence problems. In practice,
the designer often attempts, by intuition, a "preliminary" optimization with a small number of
dominant variables. The full-scale optimization is performed if and when a reasonably good point
is obtained.

With a reduced number of variables, the optimizer may not be able to reduce all the error
functions at the same time. For instance, the specification may be violated more severely at some
sample points (such as frequencies) than at the others. In such situations, the minimax method is
preoccupied with the worst-case errors and therefore becomes ineffective or inefficient. We

demonstrate, through microwave multiplexer optimization, that the one-sided Huber function can



be more effective and efficient than minimax in overcoming a bad starting point.

We present a dedicated, efficient, gradient-based algorithm for Huber optimization and
show, by comparison, that generic optimization methods, such as quasi-Newton, conjugate gradient
and simplex algorithms, are not adequate when directly applied to minimizing the Huber objective
functions. The gradients and Hessians of the Huber objective functions are derived and their

significance is discussed.

II. THEORETICAL FORMULATION OF HUBER FUNCTIONS
The Huber optimization problem is defined as [3,4]
3 3 . m .
minimize F(x) & Y p(f; (x)) )
X j=1

where x = [x; X, ... x,]7 is the set of variables and p, is the Huber function defined as

122 ifIN<k
pf) = ()

kI - k%2 if 1N >k

where k is a positive constant and fj, j=1,2, .., m, are error functions.

The Huber function p, is a hybrid of the least-squares (£,) (when |f] < k) and the ¢, (when
I > k) functions. As illustrated in Figs. 1 and 2, the definition of p, ensures a smooth transition
between £, and ¢, at |f] = k. This means that the first derivative of p, w.r.t. f is continuous.

The £, is robust against gross errors in the data [1,2]. Since the Huber function treats errors
above the threshold (i.e., |f] > k) in the £, sense, it is robust against those errors, i.e., the solution
is not sensitive to those errors. The choice of k defines the threshold between "large" and "small"
errors. By varying k, we can alter the proportion of error functions to be treated in the ¢ or ¢,
sense. Huber gave a look-up table [3] from which k can be determined according to the percentage
of gross errors in the data. If k is set to a sufficiently large value, the optimization problem (1)

becomes least squares. On the other hand, as k approaches zero, p, will approach the £, function.



Gradient and Hessian
To further our insight into the properties of the Huber formulation, we derive the gradients
and Hessians of the Huber objective function as follows.

The gradient vector of the Huber objective function F w.r.t. x is given by

<
e
0
M=
-~

, f].' . (3)
where

A Opdf(x) [ S V< K

a T 4)
f*) sk if 10 > k
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The structure of (3) is very similar to the gradient of £, (least squares), which is
m
VF,, = ngj 5 ff 6)

By comparing (3) with (6), we can see that Vs namely the first derivative of p, w.r.t. fj,
serves as a weighting factor in the Huber gradient. For |f11 < k, v; is defined in (4) as f,-, which is
the same as in the £, gradient given by (6). For | fJ{ > k, v; is held constant at the value of f] at the
threshold. In other words, the Huber gradient can be thought of as a modified ¢, gradient where
the gross errors are reduced to the threshold value.

The Hessian matrix of the Huber objective function F w.r.t. x can be expressed as

“ T
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Comparing (7) to the £, Hessian matrix given by
m
He, = BU T+ f 10)
we can see that vj serves as a weighting factor to reduce the contribution of gross errors in the data
to the Hessian matrix.
One-sided Huber Function
We present an extension of the Huber concept by introducing the "one-sided" Huber

optimization defined as

minimize F(x) & Y o (X)) an
b4 j=1
where
(0 if <0
pe(f) = 4 %2 if0<f<k (12)

kf -k%2 iff>k
This one-sided Huber function is tailored for design optimization with upper and/or lower specifi-

cations. f is truncated when negative because the corresponding design specification is satisfied.

The gradient vector of the one-sided Huber objective function F w.r.t. x is given by

m
VF =E1}-+ fj’ (13)
j=1
where
0 iff}-sO
p,
+ A k < ;
k iffj>k




The Hessian matrix of the one-sided Huber objective function is given by

m
H=Y 14" f; ;7 +% f}] (15)
j=1
where
0 if fj <0
%o
d’ - Pe L1 ifo<f<k (16)
2
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III. A DEDICATED ALGORITHM FOR HUBER OPTIMIZATION

We present a dedicated, efficient algorithm for minimizing the Huber objective functions,
both one- and two-sided. We have implemented this algorithm in the CAD system OSA90/hope™
[8] as a new standard feature and used it to generate the numerical results presented in this paper.

The numerical algorithms proposed for solving (1) are of the trust region type. We calculate
a sequence of points {xp} intended to converge to a local minimum of F. At each iterate x,, a
linear function lj is used to approximate the nonlinear function f]-, j=1,2, .. m, and thus a
linearized model Lp of F is constructed. This model is a good approximation to F within a
specified neighbourhood N, of the pth iterate Xp- This neighbourhood N, is intended to reflect the
domain in which the Ij approximations of the fJ are valid.

Assume a tentative step h is being searched at the pth iterate X If the search is successful,

we go on to the next iteration, i.e., Xpi1 = Xp + h. The problem is formulated as

mini}:nize Ly(h) & L(h, x,) = Y pilli(h, xp)) (17)
j=1

where
Ly, x,) & fi(x,) + [f/(x,)]"h (18)

subject to the constraint A € Np, where



N, & {xl|x-x]<8,)} (19)

and where |- | denotes the Euclidean (least-squares) norm.
The difference between the Hessians of the true Huber objective function (7) and this
linearized model is the term
d ”
2 Jj

This error in approximating the true Hessian (7) is smaller than in the £, case, namely,

2517
Jj=1

We solve the foregoing problem (17) using an algorithm similar to that of Madsen and
Nielsen for the linear Huber problem [9]. This method is based on the fact that L, is a combination
of quadratic functions which are linked together in a smooth manner. Therefore, a Newton
iteration is very efficient, and can be proved to find the solution after a finite number of steps.
The solution to this linear problem is denoted by hp.

The trust region radius 8p is updated in each iteration. We propose the usual updating

scheme for trust region methods (e.g., see More [10]). This is based on the ratio

) F(xp) - F(xp + hp)

20
(R () Iy A 20

i.e., the ratio between the decrease in the nonlinear function and the decrease in the local
approximation. If I is close to 1 then we can afford a larger trust region in the next iteration.
On the other hand, if I is too small then the trust region must be decreased.

The new point x, + hp is only accepted if the objective function F decreases. Otherwise,
another tentative step is calculated from X, using a decreased trust region.

A more precise step-by-step description of the algorithm follows.
Step 1 Given x, and 65 > 0. Let 0 < s, < 1 < s5. (These constants are chosen according to our

experience. The algorithm is not sensitive to small changes in these constants.) Set the

iteration count p = 1.



Step 2 Solve the trust region linearized sub-problem to find the minimizer hp of (17) subject to
(19).

Step 3 If F(xp + hp) < F(xp), let Xpp1 = Xp + hp; otherwise let Xpir1 = Xp.

Step 4 If rp < 0.25, reduce the size of the trust region by letting bpr1 = 8p8q; or if rp 2 0.75,
increase the size of the trust region by letting Sps1 = 8pS3; otherwise keep the trust region
size unchanged by letting bps1 = 8p

Step 5 If the convergence criteria are satisfied, stop; otherwise update the iteration count by letting
p = p + 1 and repeat from Step 2.

It has been proved in [4] that this algorithm obeys the usual convergence theory for trust

region methods.

IV. COMPARISON OF ¢,, £, AND HUBER METHODS IN DATA FITTING

To illustrate the characteristics of the £;, £, and Huber solutions for data fitting problems
in the presence of large and small errors, we consider the approximation of \/7 by the rational
function

Xt + xpt?

F(x,t) = (21)

I + xgt + x4t2
for 0 <t<1[2] ﬁ is uniformly sampled at 0.02, 0.04, ..., 1. We deliberately introduced large

errors at 5 of the sample points and small variations to the remaining data. The £,, £, and Huber
solutions are obtained by optimizing the coefficients x,, x,, x3 and x, in (21) to match the sampled
data using the respective objective functions. The results are shown in Fig. 3. A portion of Fig.
3 is enlarged in Fig. 4 for a clearer view of the details.

As expected, the least-squares solution suffers significantly from the presence of the 5
erroneous points. On the other hand, the ¢, solution, according to the optimality condition, is
dictated by a subset of residual functions which have zero values at the solution. In a sense, all

the nonzero residuals are viewed as large errors. This tendency towards a biased ¢ solution,' as



dramatized in our example, is undesirable if we wish to model the small variations in the data.
The Huber solution features a flexible combination of the robustness of the ¢, and the

unbiasedness of the £,. In fact, the Huber solution is equivalent to an £, solution with the gross

errors reduced to the threshold value k. In our example, k is chosen as 0.04 according to the

magnitude of the small variations in the data.

V. HUBER ESTIMATOR FOR STATISTICAL MODELING OF DEVICES
One approach to statistical modeling of devices [11-13] is to extract the model parameters
from a sample of device measurements and then postprocessing the sample of model parameters to
estimate their statistics (means, standard deviations and correlations).

To estimate the mean of a parameter by optimization, we define the error functions as
f;'(¢) = ¢ - ¢}a j = 1’ 25 LXXTY N (22)
where ¢j is the extracted parameter value for the jth device and N is the total number of devices.

Similarly, to estimate the variances, we define

[0V =V, - (¢ -9, j=1,2, . N (23)
where V;, denotes the estimated variance from which we can calculate the standard deviation Oy

The model parameters we use are extracted from the measurements of 80 FETs [14].

When the postprocessing is done using a least-squares estimator, problems will arise if the
measurements contain gross measurement errors and/or involve faulty devices. For example,
consider the run chart shown in Fig. 5 of an extracted model parameter, namely the FET time-
delay .

Most of the extracted values of 7 are between 2 ps - 2.5 ps, but there are a few abnormal
values due to faulty devices and/or gross measurement errors. These wild points will severely
affect the £, estimator. In fact, the other model parameters extracted from those faulty devices
also have abnormal values. In our earlier work [11,12] using the £, estimator, the abnormal data

sets were manually excluded from the statistical modeling process.



The Huber function can be used as an automatic robust statistical estimator. The threshold

value k is chosen to reflect the normal spread of the parameter values (e.g., we chose k = 0.25 for

7).

Table I lists the means and standard deviations of a selected number of model parameters
we have obtained using the £, and the Huber estimators (the Materka and Kacprzak FET model
[15] is used). For comparison, we also list the results obtained using the £, estimator after the
abnormal data sets are manually excluded.

The impact of the abnormal data points on the £, estimates of the standard deviationé is
especially severe. Compared with e;, the Huber estimator does not require manual manipulation
of the data and is more appropriate when there are data points which cannot be clearly classified
as normal or abnormal.

It should also be noted that although £, is effective for individual device parameter
extraction, it is not, in general, suitable for statistical postprocessing. The £; estimate (median)
depends on the order rather than the actual values of the sample.

To illustrate the dependence of the Huber estimates on the threshold k, we list in Table II
the estimated statistics of the parameter 7 for different values of k. We can also define N as the
number of "small errors", i.e., the size of the set {fjl Ifjl < k), at the solution of Huber optimization
for each value of k. Fig. 6 depicts N, versus k, where N is expressed as a percentage of the total
number of devices N. The "knee" on the curve corresponds to a solution which includes a major'ity
of functions as "small errors". The value of k at the "knee" is consistent with our choice. Figs. 7

and 8 depict N; for two other parameters, namely L and C,,, respectively.

VI. APPLICATION TO ANALOG FAULT LOCATION
The £, method has been applied successfully to the problem of fault location in analog
circuits [1,16,17]. Typically, a faulty circuit contains only a few catastrophic faults and possibly
many small tolerances for the other elements. Also, the measurements taken on the faulty circuit

are usually insufficient for complete parameter identification and, therefore, a robust optimization
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procedure is needed.

The fault location problem can be formulated as the £, optimization [1]

n
minimize E|Axi/xi°| (24)
x i=1
subject to
Vi-vi=0
Vg -Vg =0

where x = [x; x, ... x,,]T is a vector of circuit parameters, x° represents the nominal parameter
values, Ax; = x; - x,-0 represents the deviation of the ith parameter from its nominal value. Vl'”,
.., V" are K measurements on the circuit under test (e.g., voltages measured at accessible nodes
under one or more excitations). ¥V, ..., V¢ are the calculated circuit responses.
Instead of the constrained optimization problem (24) we use the Huber method to minimize
the following penalty function
n+K

minimize '} pilf; (x)) (25)
x j=1

where
fix) = Ax,-/x,-o, i=1,2,..,n
(26)
fpsdX)=BVE-V™, i=1,2,.,K
and B;, i = 1, 2, ..., K, are appropriate multipliers for the penalty terms.

Consider the resistive mesh network shown in Fig. 9 [1,16]. The nominal element values
are G; = 1.0 with tolerances ¢; = +0.05, i = 1, 2, ..., 20. Node 12 is taken as the reference node, and
nodes 4, 5, 8 and 9 are assumed to be internal and inaccessible for measurement. The voltage
measurements at the other nodes are used for fault location.

The actual parameter values of a faulty network are listed in Table III. Two faults are

assumed in the circuit, namely G, and G,5. A single excitation (a DC current source) is applied to

11



node 1. Simulated voltage measurement data is obtained by circuit simulation using the actual
parameter values. The nominal parameter values are used as the starting point for optimization.
The results from the £, and Huber optimizations are compared in Table III. The threshold k for
the Huber function is chosen as 0.05, commensurate with the tolerances of the elements. The
penalty multipliers (8; in (26)) are set to 1000, sufficiently large to ensure that the nonlinear
constraints (circuit equations) are satisfied.

We tested this example for 4 other different starting points. The Huber approach correctly
located the faults in all the cases. The £, method was successful in 3 of the cases, but failed in one

of the cases (trapped in a different local minimum).

VII. ONE-SIDED HUBER OPTIMIZATION FOR CIRCUIT DESIGN

In a large-scale design problem, we often wish to optimize a small number of dominant
variables in order to obtain a good starting point for the following full-scale optimization.

We consider a 5-channel 12 GHz multiplexer with a total of 75 optimizable variables
including waveguide manifold spacings, channel filter coefficients and input/output couplings [18].
We know that the multiplexer responses are highly sensitive to the spacing lengths which are
initially set to half the wavelength corresponding to the channel center frequencies. The common
port return loss and individual channel insertion loss responses at the starting point are shown in
Fig. 10.

We first try to optimize a small number of dominant variables. We select the spacings and
the channel input transformer ratios (10 variables) and consider an upper specification of 20 dB on
the common port return loss. The minimax solution with these variables is shown in Fig. 11 and
the one-sided Huber solution is shown in Fig. 12. The worst-case errors in these two figures are
similar. Since the worst-case errors cannot be further reduced by changing the selected variables,
the minimax optimizer gains nothing from directing effort elsewhere. Using one-sided Huber
optimization, on the other hand, we were able to obtain a good starting point for subsequent

optimization. The one-sided Huber optimization took 28 minutes on a SPARCstation 1+.

12



From the solution shown in Fig. 12, we increase the number of variables from 10 to 45,
include a lower specification of 2dB on the channel insertion loss, and restart the one-sided Huber
optimization. Then a minimax optimization with the full set of 75 variables is performed, resulting

in the multiplexer responses shown in Fig. 13.

VIII. COMPARISON OF DEDICATED AND GENERIC ALGORITHMS

Since the Huber objective function is continuous and has a continuous gradient, it may be
tempting to conclude that it is a straightforward matter to formulate the objective function and
then minimize it by a generic algorithm, such as a quasi-Newton method or a direct search method.

We conducted a comparison between our dedicated algorithm (Section III) and three generic
algorithms available in the OSA90/hope system: quasi-Newton, conjugate gradient and simplex
search.

The first test case is to estimate the mean value of the FET parameter 7 as described in
Section V. Only one variable is involved in this case, and all the algorithms under test converged
to the correct solution. Table IV lists the number of function evaluations required by each
algorithm from four different starting points. It shows that our dedicated Huber algorithm is more
efficient than the generic ones.

We also attempted to apply the generic algorithms to the data fitting problem of Section IV,
which involves four variables. None of them is able to find the correct solution unless starting very
close to the solution. It attests the need for the dedicated algorithm for solving multidimensional
problems.

As derived in Section II, the Hessian of the Huber objective function is discontinuous
wherever one of the error functions (fj) crosses the threshold value. This may pose a serious

problem for generic algorithms that explicitly rely on the Hessian matrix.
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IX. CONCLUSIONS

We have introduced the unique Huber concept and presented novel results for analog circuit

CAD. We have demonstrated that the Huber concept is consistent with practical engineering

intuition. It should have a profound impact on modeling, design, fault diagnosis and statistical

processing of circuits and devices. We have exploited the robustness of Huber optimization,

supported by strong numerical evidence. The similarities and differences between the Huber and

¢,, £, and minimax objective functions have been discussed in a practical context. We have created

the one-sided Huber function as an extension to accommodate upper and lower specifications in

circuit optimization. A dedicated algorithm for Huber optimization has been presented. It has been

shown by comparison to be more effective and efficient than generic minimization algorithms.
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TABLE I
ESTIMATED STATISTICS OF SELECTED FET PARAMETERS

Parameter ¢ (L) ¢ (Huber) ¢ (&) 04(Ly) 04(Huber) 0,
L(nH) 0.04387 0.03464 0.03429 94.6% 21.8% 17.4%
Gps(1/KQ) 1.840 1.820 1.839 28.6% 6.3% 4.9%
Ipgs(mA) 47.36 47.53 47.85 14.0% 12.7% 11.3%
7(ps) 2.018 2.154 2.187 26.3% 5.8% 3.4%
C4(PF) 0.3618 0.3658 0.3696 8.2% 4.6% 3.5%
K, 1.2328 1.231 1.233 15.5% 10.8% 8.7%

L represents the FET gate lead inductance, Gpg the drain-source conductance, I the -
drain saturation current, 7 the time-delay, C,, and K, are parameters in the definition of
the gate nonlinear capacitor.

tz* denotes £, estimates after 11 abnormal data sets are manually excluded [11].
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TABLE 1I
ESTIMATED STATISTICS FOR
DIFFERENT VALUES OF k

0.15 2.168 4.4%
0.2 2.161 5.1%
0.225 2.157 5.4%
0.25 2.154 5.8%
0.275 2.150 6.2%
0.3 2.147 6.6%
0.5 2.122 9.6%
1 2.079 15.7%
0o 2.018 26.3%
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TABLE III
FAULT LOCATION OF THE RESISTIVE
MESH CIRCUIT

Percentage Deviation

Element Nominal Actual
Value Value Actual ¢, Huber

G, 1.0 0.98 -2.0 0.00 -0.11
G, 1.0 0.50 -50.0* -48.89 -47.28
G, 1.0 1.04 4.0 0.00 -2.46
G, 1.0 097 -3.0 0.00 -1.18
Gs 1.0 095 -5.0 -2.70 -3.16
G 1.0 099 -1.0 0.00 -0.06
G, 1.0 1.02 2.0 0.00 -0.19
Gy 1.0 1.05 5.0 0.00 -041
G, 1.0 1.02 2.0 2.41 3.75
Gio 1.0 0.98 -2.0 0.00 0.39
» 10 104 40 000 -0.37
12 1.0 1.01 1.0 2.73 1.32
15 1.0 099 -1.0 0.00 -0.26
14 1.0 098 -2.0 0.00 -0.50
15 1.0 1.02 2.0 0.00 -0.05
16 1.0 0.96 -40 -3.36 -2.67
7 1.0 1.02 2.0 0.00 -0.61
18 1.0 0.50 -50.0* -50.09 -47.33
1 1.0 098 -2.0 -141 -3.81
20 1.0 096 -4.0 -440 -4.72
* Faults

18



TABLE IV
NUMBER OF FUNCTION EVALUATIONS
REQUIRED BY DIFFERENT ALGORITHMS

Starting Point

Algorithm

1.5 2 225 3
Dedicated Huber 4 4 4 4
Quasi-Newton 8 5 5 7
Conjugate-Gradient 13 13 11 14
Simplex 26 16 16 24

The optimization problem is to estimate the mean
of FET parameter 7 using the Huber objective
function.
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Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10.

11.

12.

13.

Figure Captions

The ¢, and £, objective functions in the one-dimensional case. The £, function is
rescaled and shifted in accordance with the corresponding part in the Huber
function. It has the form F = |k|f - k?/2. The £, function has the form F = f2/2,
The Huber, £, and £, objective functions in the one-dimensional case. The strikes
and dots represent the discrete points on the £; and £, curves, respectively, in Fig
1. The continuous curve indicates the Huber objective function.

¢,, £, and Huber solutions for data fitting in the presence of errors.

An enlarged portion of Fig. 3.

Run chart of the extracted FET time-delay 7.

Percentage of "small errors" for the FET time-delay 7 versus the threshold k.

Percentage of "small errors" for the FET gate lead inductance L versus the
threshold k.

Percentage of "small errors" for the FET model parameter C,, versus the threshold
k.

The resistive mesh circuit.

Multiplexer responses at the starting point, showing the common port return loss
( ) and the individual channel insertion losses (------ ).

Multiplexer responses after the minimax optimization with 10 variables: spacings and
channel input transformer ratios; the common port return loss ( ) and the
individual channel insertion losses (------ ). This result hardly improved upon the
starting point shown in Fig. 10.

Multiplexer responses after the one-sided Huber optimization with 10 variables;
spacings and channel input transformer ratios; the common port return loss ( )
and the individual channel insertion losses (------ ). This result is significantly
better than the minimax solution of Fig. 11.

Multiplexer responses after the minimax optimization with the full set of 75
variables, showing the common port return loss ( ) and the individual channel
insertion losses (------ ).
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Bandler et al. "Huber optimization ...... ", Fig. 2
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Bandler et al. "Huber optimization ...... ", Fig. 7
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Bandler et al. "Huber optimization ...... ", Fig. 9
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