INTERCONNECTING SPICE-PAC
WITH OSA90/hope™
0OSA-92-0S-5-R

May 27, 1992

© Optimization Systems Associates Inc. 1992

I. INTRODUCTION

Complex engineering problems may require us to combine circuit simulation with other
software tools supporting optimization, statistical analysis, higher or lower level simulations. This
report describes Spicepipe™, a pipe-ready executable child for OSA90/hope™. Spicepipe allows the
user to explore SPICE-PAC simulation capabilities from within the OSA90/hope circuit design
environment.

We introduce OSA90/hope [1] and SPICE-PAC [2]. We describe how we have used the high
speed Datapipe™ technology [1, 3] featured in OSA90/hope to interconnect SPICE-PAC to
OSA90/hope. We provide illustrative examples of the utilization of Spicepipe. We assume that the
reader is familiar with OSA90/hope and that he or she understands the SPICE-PAC input file
language. Detailed understanding of the Datapipe technology is not necessary.

Spicepipe, connecting SPICE-PAC to the OSA90/hope design environment augments
OSA90/hope’s circuit design capabilities of simulation and modelling with those available in
SPICE-PAC. OSA90/hope, as a circuit design environment, provides the user with harmonic-balance
frequency-domain simulation, statistical analysis and most importantly, very flexible and versatile
optimization. SPICE-PAC, being an optimization-structured version of the popular circuit simulator
SPICE [4] contributes time-domain simulation, noise analysis and additional device models. As a
result, Spicepipe creates a mixed frequency-time-domain design environment. This environment
features versatile simulation and optimization, statistical analysis and yield-driven design in both
domains.

To interconnect SPICE-PAC with OSA90/hope we have used the OSA90/hope Datapipe
technology and the Datapipe Server implemented with the help of the IPPC library for inter-program
pipe communication [3]. The IPPC library employs the concept of UNIX pipes [5] which are fast
interprocess communication channels. The channels interconnect OSA90/hope, called the parent
process, with processes born from OSA90/hope, called its children. Spicepipe is simply an

OSA90/hope child designed to organize and control the exchange of information between

OSA90/hope and SPICE-PAC. The Datapipe Server and the IPPC library are integral parts of
OSA90/hope.

In Sections II and III we provide a short introduction to OSA90/hope and SPICE-PAC,
respectively. Section IV describes the general structure of the interconnection. In Section V we
discuss our implementation of the SPICE-PAC driver. Such a driver is required by SPICE-PAC in
any application. Section VI includes three circuit examples. We optimize an LC transformer circuit
to illustrate the communication between OSA90/hope and SPICE-PAC. An NMOS inverter circuit
problem explores production yield estimation with time-domain specifications. The last example uses
a second-order RLC circuit to demonstrate mixed frequency-time-domain analysis. Here, we first
perform optimization of the nominal circuit and then continue with yield optimization. We used a
Sun SPARCstation 1 running UNIX as the platform to perform the experiments. Qur conclusions and

acknowledgments are in Sections VI and VII, respectively.

II. OSA90/hope [1]

OSA90/hope - Optimization Shell Assembly/harmonic optimization personal environment is
a Computer-Aided Design (CAD) system developed by Optimization System Associates Inc.
OSA90/hope contains general purpose simulators for DC, AC and large-signal harmonic-balance
analyses and several state-of -the-art optimizers. It features statistical Monte Carlo analysis and yield
optimization capabilities. OSA90/hope is also equipped with the Datapipe Server [1, 3, 5]. The
Datapipe Server can connect several external programs with the OSA90/hope internal simulators
and/or optimizers (see Fig. 1). The external programs are then called child programs. We have used
the Datapipe technology and the Datapipe Server to interconnect SPICE-PAC with OSA90/hope.

The user communicates with OSA90/hope by means of an input file. The input file describes
the circuit under consideration as well as the operations requested by the user. The Datapipe
connections are also defined in the input file. OSA90/hope contains a set of predefined Datapipe

protocols [1]. The protocols are ready-to-use and the user does not need to access the OSA90/hope

source code. Furthermore, the internal organization of the Datapipe transfer mechanism is
transparent to the user. The only thing the user has to do is to define the input and output for the

Datapipe in the corresponding Datapipe statement.

IT1. SPICE-PAC [2]

SPICE-PAC was developed by W.M. Zuberek of the Department of Computer Science,
Memorial University, Newfoundland. It is a simulation package that is upwardly compatible with the
popular SPICE circuit simulator [4]. SPICE-PAC accepts the same circuit description language as
SPICE (with only a few minor exceptions) and provides the same circuit analyses. It also supports a
number of extensions and refinements which are not available in the original SPICE program.

The main difference between SPICE and SPICE-PAC lies in the internal organization of the
programs. While SPICE is a program with a fixed flow of operation, SPICE-PAC is a collection of
loosely coupled simulation primitives. The simulation primitives can be composed in many different
ways, according to a particular application. The user has to build a driver, using the primitives,
which organizes the flow of operation so that the behaviour of the system meets the specifications.
A description of the primitives and their functions is given in [6].

The modular structure of SPICE-PAC makes the package very attractive, especially for
specific applications. SPICE-PAC is particularly useful in optimization-oriented applications, where
its modular structure may significantly increase the efficiency of the system. While creating a driver
for SPICE-PAC, the user can include in it any additional tasks, e.g., statistical post-processing or
graphical output facilities.

The availability of SPICE-PAC is described in Appendix A.

IV. GENERAL STRUCTURE OF THE INTERCONNECTION

While interconnecting SPICE-PAC with OSA90/hope we concentrated our effort on designing
the system in such a way that the user would not be required to do any programming. Furthermore,
we assumed that the user should be able to invoke SPICE-PAC from OSA90/hope in a completely
"invisible" manner. To this end we created a version of the SPICE-PAC driver which is linked,
together with SPICE-PAC, to a short interfacing driver forming altogether Spicepipe: a pipe-ready
executable child for OSA90/hope. The structure of connection between OSA90/hope and SPICE-PAC
is shown in Fig. 2. The interfacing driver, see Fig. 2, was created on the basis of the general child
template described in [1]. We extended that template by adding some error checking and dynamical
memory allocation. The program is able to detect and report most common errors, e.g., Syntax errors
in the SPICE-PAC input file, unknown analysis types passed to SPICE-PAC, etc. The interfacing
driver also performs necessary data type conversions.

The second Datapipe channel in Fig.2, is employed to help the user in dealing with two input
files, one for SPICE-PAC and another one for OSA90/hope. Each of the systems requires its own
input file. Having two input files is then necessary, but more importantly, to synchronise the
activities of the systems the files have to be consistent. To allow the user to work with one input file
only we created a separate pipe-ready executable child program for OSA90/hope, which we named
create_ file. create_file, if called from OSA90/hope through the Datapipe mechanism, will create
a disk file, e.g., an input file for SPICE-PAC. The name of the file as well as its contents are both
character string type arguments for the second Datapipe in Fig. 2. In other words, the user can define
his or her SPICE-PAC input file inside the OSA90/hope input file as a character string.

For a detailed description of the Spicepipe and create_file pipe-ready executable child

programs the user is referred to Biernacki et al. [7].

Y. SPICE-PAC DRIVER

Here we discuss the structure of our version of the SPICE-PAC driver, introduced in Section
III, and the analysis types available through this driver.

The structure of the driver is shown in Fig. 3. The two paths of operation flow in Fig. 3.
correspond to the first and subsequent calls to SPICE-PAC. If the user wants to simulate a circuit
using SPICE-PAC, there will be only one call to SPICE-PAC and the operation will follow the path
for the first entry to SPICE-PAC. If the user wants to perform optimization or multiple simulations
of a circuit, the second and all subsequent calls will skip the initialization operations of SPICE-PAC.
Such organization significantly saves CPU time.

During initialization, SPICE-PAC first tries to open its input and output files. If the files
have been successfully opened, SPICE-PAC will proceed to read the input file. Next, the program
checks if the input data from OSA90/hope is consistent with definitions in the SPICE-PAC input file.
The input data, if it exists, consists mainly of sweep or optimization variables. If the information is
consistent, corresponding SPICE-PAC variables are defined and internal identifiers are assigned to
them. Defining the temperature for subsequent analysis completes the initialization process.

The successive SPICE-PAC processing is performed in every call. First, the values of sweep
or optimization variables are updated and then the requested analysis is performed. Before returning
control to the connecting driver and then to OSA90/hope, SPICE-PAC saves the results of analysis
in its output file. This takes place, however, only if the user requested SPICE-PAC to do so by
setting an additional flag in the OSA90/hope input file.

Each action undertaken by the SPICE-PAC driver is performed by a call to an appropriate
SPICE-PAC simulation primitive constituting a subroutine. If an error is detected upon a call to any
of the invoked subroutines, SPICE-PAC sets the error flag and returns control to the interfacing
driver immediately. The SPICE-PAC driver is intended to serve as general use of SPICE-PAC. The
user, however, can extend this driver or adjust it to a particular application.

Our implementation of the SPICE-PAC driver allows the user to request one type of analysis

at a time, out of the following: DC transfer curve analysis, TRANSIENT analysis, AC analysis,
NOISE analysis, DISTORTION analysis or FOURIER analysis.

If two or more analyses are required the user has to create a separate Datapipe communication
channel for each of the analysis types.

For a more detailed description of the SPICE-PAC driver used here refer to Biernacki et al.

(7.

VI. APPLICATIONS
A. Optimization of an LC transformer

An LC transformer optimization is chosen to demonstrate the communication between
OSA90/hope and SPICE-PAC. We want to optimize the modulus of the input reflection coefficient
|S1,] for the transformer in Fig. 4. We use 21 equally spaced points in the frequency range from
0.079578Hz to 0.187644Hz. All L and C elements in the circuit are optimizable. Input resistance
R;,=30 and output resistance R, =1.

We use the create_file child to create the input file for SPICE-PAC. We use the expression
processing capability of OSA90/hope to calculate reflection coefficient, providing relevant formulas
in the input file. The maximum value of |S,| before optimization was 0.66. After 62 iterations, using
the minimax optimizer it decreased to 0.076. The values of the L and C elements before and after
optimization are listed in Table I. The diagrams of |S,,| as a function of frequency before and after
optimization are shown in Fig. 5.

We also solved the problem entirely by OSA90/hope. The results are practically the same.
Small differences are most likely due to different numerical algorithms used in both simulators. The
CPU times used running OSA90/hope with the Spicepipe connection to SPICE-PAC and OSA90/hope

stand-alone were approximately the same.

B. Time-domain response and Monte Carlo analysis of an NMOS inverter

An NMOS inverter with depletion load [8], shown in Fig. 6, is used to illustrate the utilisation
of Spicepipe to perform a Monte Carlo analysis with time-domain specifications. The Monte Carlo
analysis is organized within the OSA90/hope design environment but the actual circuit simulations
are performed by the SPICE-PAC time-domain simulator. We used the level 1 option of the
SPICE-PAC MOS transistor model [4, 8] to model the transistors. We selected: channel length,
channel width, threshold voltage and transconductance of both load and inverter transistors as the
statistical parameters. In reality, production variations of the threshold voltage and transconductance
are the most notable ones. We assumed normal distributions of the parameters and identity correlation
matrix for simplicity. See Table II for transistor model parameters and statistical distributions
assumed for statistical variables. We selected the inverter’s propagation time tp < 2.5ns as the
acceptability criterion. The propagation time ¢p was computed by an additional child program. The
inverter was excited by a trapezoidal signal and its output was connected to another inverter of the
same type to simulate a more realistic load. We did not include statistical variations in the load
inverter. We also did not include the interconnection capacitances. The production yield, estimated
using 200 outcomes, was 79.5%. The time-domain response of the nominal circuit as well as the
Monte Carlo sweep results are presented in Fig. 7.
C. Mixed frequency-time-domain optimization of an RLC circuit

This example demonstrates the mixed domain optimization capability available through
Spicepipe. We want to find a second-order model, with the schematic of Fig. 8, of a fourth-order
system when the input to the system is an impulse. We consider the time interval from 0 to 10

seconds. The fourth-order system time-domain response is given analytically by

Vo =2e*+ Les - 1 o-2(35in2 + 11cos20). (1)

20 52 65

The diagram of this response is shown in Fig. 9. In addition, we impose a frequency-domain

specification on the insertion loss INSL of the modelling circuit. We want INSL to be less than 20dB

in the frequency range from 0.1Hz to 0.4Hz. C,, R, and R, are optimizable variables; R;,, R,,, and
L, are fixed.

We used the OSA90/hope £, optimizer to perform optimization of the nominal circuit. The
time-domain response of the second-order circuit was matched to (1). The maximum difference
between the desired response (1) and the model response was reduced from 0.15 to 0.01, which
satisfied our specifications. INSL satisfied the 20dB specification in the whole frequency range of
interest.

Having found the optimum £, solution to the problem we performed statistical analysis of the
circuit. The Monte Carlo estimate of the production yield at the solution of the nominal problem was
50%. After 30 yield optimization iterations the yield was increased to 90.5%. We used the
OSA90/hope yield optimizer with 50 outcomes to optimize yield. To estimate yield, before and after
optimization, we used 200 outcomes. Table III lists the values of the optimization variables and
assumed standard deviations for statistical variables. Fig. 10 shows the results of Monte Carlo analysis
performed before yield optimization. The error between the time-domain response of the
second-order circuit and the desired response (1) as well as INSL are plotted. The corresponding
curves generated after yield optimization are plotted in Fig. 11.

The listings of the OSA90/hope input files for all three examples are provided in Appendices

B through D.

VIII. CONCLUSIONS
We have described Spicepipe, a new child for OSA90/hope. Spicepipe, integrating
OSA90/hope with SPICE-PAC, provides the user with all the features of OSA90/hope extended by
the time-domain and noise analyses contributed by SPICE-PAC. Spicepipe augments the OSA90/hope
modelling capabilities by the device models featured in SPICE-PAC. On the other hand, exploiting
SPICE-PAC simulators through the OSA90/hope design environment is more flexible and efficient.

The expression processing capability of OSA90/hope can be utilized to perform necessary calculations,

just as in the LC transformer example in Section VI. Expression processing makes it also possible to
impose algebraic relations among SPICE-PAC circuit parameters. Probably the most important
feature of Spicepipe, however, is that by combining tools working in different domains it provides
the user with the unique capability of simulating and optimizing a circuit in the frequency and time
domains simultaneously.

We have used OSA90/hope’s Datapipe technology as the means of the communication between
OSA90/hope and SPICE-PAC. We have employed Datapipes again to execute the create_file,
OSA90/hope’s executable child, described in Section IV. We used create_file to create SPICE-PAC
input files but it can be used to create any other file or files. The execution times obtained using the
Spicepipe connection to SPICE-PAC and stand-alone OSA90/hope were similar, with differences
smaller than 5%. This kind of comparison is possible only for problems that can be solved by
OSA90/hope and Spicepipe independently. Spicepipe proves that the Datapipe technology can be used
efficiently to functionally interconnect otherwise independent functional blocks. The OSA90/hope
input file is then used to organize the flow of operation among the blocks. This can be done without
having to link the separate blocks together. More importantly, the source code information of the
functional blocks is not necessary.

To combine OSA90/hope with SPICE-PAC no additional reprogramming of OSA90/hope was
required. For SPICE-PAC we had to create the driver organizing SPICE-PAC simulation primitives,
but such a driver has to be written for SPICE-PAC anyway. Having to write such a driver requires
that the user possess some programming knowledge as well as a good understanding of SPICE-PAC

simulation primitives.

10

(1]

[2]

(3]

[4]

[31

(6]

(7]

(81

REFERENCES

OSA90/hope™ User’s Manual, Optimization Systems Associates Inc., P.O. Box 8083, Dundas,
Ontario, Canada L9H 5E7, 1991.

W.M. Zuberek, "SPICE-PAC version 2G6c an overview," Department of Computer Science,
Memorial University of Newfoundland, St. John’s, Newfoundland, Canada AIC 5S7,
Technical Report 8903, 1989.

J.W Bandler, Q.J. Zhang, G. Simpson and S.H. Chen, "IPPC: a library for inter-program pipe
communication," Department of Electricaland Computer Engineering, McMaster University,
Hamilton, Canada, Report SOS-90-10-U, 1990.

A. Vladimirescu, K. Zhang, A.R. Newton, D.O. Pederson and A.L. Sangiovanni-Vincentelli,
"SPICE Version 2G - User’s guide," Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley CA 94720, 1981.

Programming Utilities and Libraries, SPARCstation 1 Users Manual, Sun Microsystems Inc.,
2550 Garcia Ave., Mountain View, CA 94043, pp. 21-26, 1988.

W.M. Zuberek, "SPICE-PAC version 2G6¢ user’s guide", Department of Computer Science,
Memorial University of Newfoundland, St. John’s, Newfoundland, Canada A1C 5S7,
Technical Report 8902, 1989.

R.M. Biernacki, J.W. Bandler, S.H. Chen and P.A. Grobelny, "Integrating the SPICE-PAC
simulator with the OSA90/hope design environment", Department of Electrical and Computer
Engineering, McMaster University, Hamilton, Canada, SOS Report, 1992, in preparation.

D.A. Hodges and H.G. Jackson, Analysis and Design of Digital Integrated Circuits. New York:
McGraw-Hill, Inc., 1988.

11

LC TRANSFORMER CIRCUIT:

TABLE I

L AND C ELEMENT VALUES BEFORE AND AFTER OPTIMIZATION

Element L, (H) C, (F) Lg (H) C, (F) Lg (H) Cs (F)
Value Before

Optimization 1 1 1 1 1 1
Value After 1.041 0.979 2.340 0.780 2.937 0.347

Optimization

12

TABLE II

NMOS INVERTER:
MODEL PARAMETERS AND DISTRIBUTIONS ASSUMED

Name SPICE-PAC Mean Standard
Variable Value Deviation (%)

Both transistors:
Transcondugtance* KP (A/V?) 20.0 6.0
Body factor”, GAMMA (V1/2) 0.37 -
Body doping . NSUB (cm™3) 5.0x1014 -
Gate oxide thickness TOX (m) 0.1x10°6 -
Junction depth” XJ (m) 1.0x1078 -
Lateral diffusion LD (m) 1.0x1076 -
Zero-bias bulk capacitance* . CJ (F/m?) 70.0x1076 -
Zero-bias perimeter capacitance. CJSW (F/m) 220.0x10712 -
Gate-drain overlap capacitance* CGDO (F/m) 345.0x10712 -
Gate-source overlap capacitance” CGSO (F/m) 345.0x10712 -
The load transistor:
Threshold voltage VTO (V) -3.0 12.0
Gate width W (m) 5.0x107® 2.0
Gate length L (m) 12.0x1078 2.0
Drain diffusion area AD (m?) 100.0x10712 -
Source diffusion area AS (m?) 25.0x10712 -
Drain area perimeter PD (m) 40.0x1078 -
Source area perimeter PS (m) 15.0x10°¢ -
The inverter transistor:
Threshold voltage VTO (V) 1.0 12.0
Gate width W (m) 10.0x107¢ 2.0
Gate length L (m) 7.0x1078 2.0
Drain diffusion area AD (m?) 100.0x10712 -
Source diffusion area AS (m?) 100.0x10712 -
Drain area perimeter PD (m) 35.0x107°® -
Source area perimeter PS (m) 40.0x10°6 -

* The values for these parameters are the same for the load and inverter transistors.

13

TABLE III

YIELD OPTIMIZATION OF THE RLC CIRCUIT

Element Before After £, After Yield Standard
Optimization Optimization Optimization Deviation (%)
R;, () 1.00 1.00 1.00 *
R, () 0.50 0.92 1.00 5
C,(F) 0.50 0.43 0.44 5
L, (H) 1.00 1.00 1.00 5
R, () 2.00 0.28 0.26 5
R, () 1.00 1.00 1.00 *

* Elements assumed fixed (non-statistical).

OSA90 /hope
Datapipe Protocol C Datapipe Protocol
1 A Y A
Datapipe Server Datapipe Server
child program - child program

Fig. 1. OSA90/hope Datapipe schematic. Several child programs can be connected to OSA90/hope
using the Datapipe technology.

14

OSA90/hope

Datapipe Protocol

Datapipe Protocol

Datapipe Server

Interfacing Driver

Datapipe Server

create_file child

SPICE—PAC Driver

< input disk file

SPICE—-PAC

output disk file

|
Spicepipe |
| |

Fig. 2. Integrating SPICE-PAC to OSA90/hope via Spicepipe. Spicepipe consists of the interfacing
and SPICE-PAC drivers. They use the IPPC and SPICE-PAC libraries, respectively. The
create_ file child creates the SPICE-PAC input file.

15

from 0OSA90/hope

yes no

first entry?

initialize

/

update circuit
variables

/

perform analysis

|

Y
to 0SA90/hope

Fig. 3. Block diagram of SPICE-PAC’s driver.

Rip Ls L L,
AN YL Y IS o WD

D CG — C4 - CZ _J_: § Rout

—O

Fig. 4. LC transformer circuit.

16

8.672

8.612 .
\
8.552 \
\,
\
b;: 3.492
- \
\
\\
\
\
8.432 \
\
8.372 \
\
2.312
9.8796 8.1012 8.1228 8.1444 0.166 8.1876
frequency (Hz)
(a)
8.83
/\\ .
S \ \x
/ .\ / \
8.864 \ \
8.848 \ \ "
\ ’ \ |
- i
=1
8.632 L
8.816 o \
\ / \
i}
¥ \
8
9.9796 9.1612 8.1228 8.14d4 9.166 0.1876
frequency (Hz)

Fig. 5. |S;| of an LC transformer (a) before and (b) after optimization.

(b)

17

ﬁ Vin *{>°~ Vout

V

out

=
=

Vin

i T
|

Fig. 6. NMOS inverter, depletion load [8].

18

5.4

4.5 - \

LN
, | |

8.9

Vins Vou (V)
i
/

] q 8 12 16 29
time (ns)
(a)
5.4
4.5 .
/4
/ //’,- .
978
3.6 G2,
S e
2.7 AL/ 7
3 / / } 7
1.8 /, //‘
]
8 4 8 12 16 20
time (ns)
(b)

Fig. 7. Time-domain responses of an NMOS inverter. (a) input and output waveforms and (b) Monte
Carlo output waveform sweep.

19

O

Fig. 8. RLC second order circuit.

8.864

8.848 \

8.832

Vou (V)

8.816

——

time (s)

Fig. 9. Response of the fourth-order system, given analytically by (1).

20

8.8124

8.8874

8.8824

error

-8.0026

~8.8876

-8.8176
8

time (s)

(a)

INSL (dB)

frequency (Hz)

(b)

Fig. 10. Monte Carlo sweep results for the RLC circuit before yield optimization: (a) time-domain
match error, and (b) insertion loss.

21

8.813

8.01

8.887

8.804

8.801

error

-8.882

-8.885

-8.688

-8.811

-8.814

time (s)

(a)

28.7

17.5 X \

15.9
=

14.3 \

INSL (dB)

0.1 .16 8.22 0.28 8.34 8.4
frequency (Hz)

(b)

Fig. 11. Monte Carlo sweep results for the RLC circuit after yield optimization: (a) time-domain
match error, and (b) insertion loss.

22

APPENDIX A
HOW TO OBTAIN SPICE-PAC

SPICE-PAC is a version of the public domain software circuit simulator SPICE. Anyone
interested can obtain SPICE-PAC free of charge.

To obtain SPICE-PAC you can use the UNIX ftp utility and connect to the garfield computer
at the Memorial University of Newfoundland, Canada. The command to invoke ftp is
ftp garfield.cs.mun.ca
or
fep 134.153.1.1
When the system responds with the login: prompt, login to the anonymous account providing your
electronic mail address as the password:

login: anonymous
password:

SPICE-PAC can be found in the pub/sppac subdirectory. The pub/sppac subdirectory contains the
following files:
Makefile Readme sppac.tar.Z — tr-8902.1ex.7 tr-8903.tex.Z
Makefile installs SPICE-PAC, Readme provides brief information about SPICE-PAC and sppac.tar.Z
is a compressed and "tared" version of SPICE-PAC. tr-8902.tex.Z and tr-8903.tex.Z are compressed
versions of [6] and [2], respectively written in LaTEX.
To copy the files to your local machine set the mode to binary and perform the following
commands:
get Readme
get Makefile
get sppac.tar.Z
get tr-8902.tex.Z
get tr-8903.tex.Z

or

mget *

23

This completes the process of obtaining SPICE-PAC.
Directions on how to install SPICE-PAC can be found in the Readme file.
To create Spicepipe change the very last line in makefile from
£77 -o sppac sppac-drv.f sppac.a
into the following sequence of commands:
cc -c -o Sppipe_c.o Sppipe c.c
£77 -c -o Sppipe f.o Sppipe_f.f
cc -o Spicepipe Sppipe c.o Sppipe_f.o ippev2.o sppac.a -1F77 -lc -1m
rm Sppipe_c.o Sppipe f.o
Sppipe_c.c and Sppipe_f.f are the interf acing driver and SPICE-PAC driver, respectively. ippcv2.o0

contains Datapipe functions used by Sppipe_c.c.

24

APPENDIX B

0SA90/hope INPUT FILE FOR THE LC TRANSFORMER CIRCUIT

#define DUMPON 1
#define DUMPOFF 0
Expression

char cir_contents[]=
AR R R R A A b s e e e e e ok

* TRANSFORMER SIMULATION *

Yo e Je e e Fe e e de e de e de e e Fe e de de e de v Ve de e

VG 10AC1
RIN 123
Cé 201
Cé4 301
c2 401
L5 231
L3 341
L1 451
ROUT 501

.PRINT AC VR(2) VI(2)
.AC LIN 21 0.079578H 0.187644H
.END/EXT
.VAR L1
.VAR L3
.VAR L5
.VAR C2
.VAR C4
.VAR C6
.END
char cir name[]="1lc6.cir";
char out_name([]="1c6.out";
char ac[]=".ac";
Datapipe: CoM FILE = "create_file"
N_INPUT = 2 INPUT = (cir_name, cir_contents)
N_OUTPUT = 1 OUTPUT = (char in_name[8]);
input[1:6]1=(?1?, ?1?, 717, 71?7, ?71?, 717];
Datapipe: coM FILE = "Spicepipe"
N_INPUT = 10 INPUT = (in_name, DUMPOFF, out_name, ac, input)
N_OUTPUT = 42 OUTPUT = (Vinr[1:21], Vini[1:21]);

! Calculate the reflection coefficient |Ref| using Ref=2*Vin/Vg-1 where Vg=1
Refr[1:21]=Vinr+Vinr-1;
Refi[1:21]=Vini+Vini;
Refm[1:21]=sqrt(Refr*Refr+Refi*Refi);

i=0;
End
Sweep
Title = "Reflection Coefficient" i: from 1 to 21 step 1 Refm[i];
End
Specification
Refm=0;
End

25

APPENDIX C

OSA90/hope INPUT FILE FOR THE NMOS INVERTER CIRCUIT

#define DUMPON
#define DUMPOFF
#define UP
f#idefine DOWN
#define Vmin
#define Vmax
#define TIMESTEP

oOCULOoOkrK OO
w

N

Expression
char cir_contents[] =
" dedededededededdedede el dedede

* MOS inverter *

e e e e de e e e e e Fe e e e e e ok
* SUBCIRCUIT DEFINITION, Nodes: Input, Output, VCC

.SUBCKT NOTGATE 1 2 3

M_INVER 2 1 0 0 NE W=10U L=7U AD=100P PD=35U AS=100P PS=40U
MIOAD 3 2 20 ND W=5U0 L=12U AD=100P PD=40U AS=25P PS=15U
-MODEL NE NMOS (VTO=1.0 KP=20U GAMMA=0.37 NSUB=5E14 TOX=0.1U XJ=1.0U
+ LD=1.0U CJ=70U CJSW=220P CGSO=345P CGDO=345P)
-MODEL ND NMOS (VTO=-3.0 KP=20U GAMMA=0.37 NSUB=5E14 TOX=0.1U XJ=1.0U
+ LD=1.0U CJ=70U CJSW=220P CGSO=345P CGDO=345P)
.ENDS NOTGATE
* NOMINAL CIRCUIT DEFINITION

VDD 4 0 5

VIN 1 0 PULSE(0.3 5 1N 3N 3N 8N 22N)

XNOT1 1 2 4 NOTGATE

XNOT2 2 3 4 NOTGATE

.PRINT TRAN V(2) V(1)

.OPTIONS LIMPTS=5001

.TRAN 0.2NS 20NS ON

.END/EXT
* INVER transistor variables

.VAR XNOT1.M_INVER’W

. VAR XNOT1
.VAR XNOT1
.VAR XNOT1
.VAR XNOT1
.VAR XNOT1

.VAR XNOT1.
XNOT1.
XNOT1.
.VAR XNOT1.
XNOT1.
XNOT1.
XNOT1.
XNOT1.
.VAR XNOT1.
XNOT1.
XNOT1.
LOAD transistor variables

.VAR
.VAR

.VAR
.VAR
.VAR
.VAR

.VAR
.VAR

.VAR XNOT1
.VAR XNOT1
.VAR XNOT1
. VAR XNOT1

. VAR XNOT1.
XNOT1.
.VAR XNOT1.
.VAR XNOT1.
XNOT1.
. VAR XNOT1.
XNOT1.
.VAR XNOT1.
.VAR XNOT1.
XNOT1.

.VAR

. VAR

. VAR

.VAR

.M_INVER'L
.M_INVER’AD
.M_INVER’PD
.M_INVER’AS
.M_INVER’PS
NE’VTO
NE’KP
NE’GAMMA
NE’NSUB
NE’ TOX
NE’'XJ
NE’LD
NE'CJ
NE’CJSW
NE’CGSO
NE’CGDO

.M_LOAD’'W
.M_LOAD’L
.M_LOAD'’AS
.M_LOAD’PS
ND’VTO
ND’KP
ND’GAMMA
ND'’NSUB
ND’ TOX
ND’XJ
ND'LD
ND'CJ
ND’CJSW
ND'’CGSO

26

.VAR XNOT1.ND’CGDO
.END

",

’

char cir_name[]="mos_inv.cir";

Datapipe:

XNOT1_M_INVER

XNOT1_M_INVER

XNOT1_NE_VTO
XNOT1_NE_KP
XNOT1_NE_NSUB
XNOT1_NE_TOX
XNOT1_NE_XJ
XNOT1_NE_LD

XNOT1_M _LOAD_W

XNOT1_M _LOAD_L
XNOT1_ND_VTO
XNOT1_ND_KP
XNOT1_ND_NSUB
XNOT1_ND_TOX
XNOT1_ND_XJ
XNOT1_ND_LD

XNOT1_NE_PB
XNOT1_ND_PB
XNOT1_NE_CJ
XNOT1_ND_CJ
XNOT1_NE_CJSW
XNOT1_ND_CJSW
XNOT1_NE_Cox
XNOT1_ND_Cox
XNOT1_NE_CGSO
XNOT1_NE_CGDO
XNOT1_ND_CGSO
XNOT1_ND_CGDO
XNOT1_NE_GAMMA=

coM
N_INPUT =

2

N_OUTPUT = 1

W = 10e-6

L 7e-6
1.0
20e-6

S5el4;

le-6;
= le-6;

S5e-6
12e-6
-3.0
20e-6
S5el4;

mon

le-6;
= le-6;

0.le-6;

0.le-6;

FILE = "create_file"
cir_contents)

INPUT = (cir_name,

OUTPUT = (char in_name[12]);

{Normal Sigma=2%7};
{Normal Sigma=2%7};
{Normal Sigma=12%};
{Normal Sigma=6%};

{Normal Sigma=2%};
{Normal Sigma=2%};
{Normal Sigma=122%};
{Normal Sigma=6%};

= 0.0259*10g (XNOT1_NE_NSUB/2.1);

0.0259*1og (XNOT1_ND_NSUB/2.1);
sqrt(1.6e-19*%11.7%8.85e-6*XNOT1_NE _NSUB/2/XNOT1_NE_PB);
sqrt(1.6e-19%11,7+%8, 85e-6%XNOT1_ND _NSUB/2/XNOT1_ND_PB);
XNOT1_NE_XJ*sqrt(10)*XNOT1_NE CJ

= XNOTl_ND_XJ*sqrt(10)*XNOT1~ND_CJ

XNOT1_ND_GAMMA=

3.97%8.85e-12/XNOT1_NE_TOX;
3.97%8.85e-12/XNOT1_ND_TOX;
XNOT1_NE_Cox*XNOT1_NE_LD;

XNOT1_NE_CGSO;
XNOT1_ND_Cox*XNOT1_ND_LD;
XNOT1_ND_CGSO;
Sqrt(2*11.7%8.85e-6%1.6e-19*XNOT1_NE_NSUB)/XNOT1_NE_Cox;
$qrt(2#%11.7+%8.85e-6%1.6e-19*XNOT1_ND_NSUB) /XNOT1_ND_Cox;

XNOT1_M INVER_AD=10e-6*XNOT1 _M_INVER W;
XNOT1 | M] INVER_PD=20e- 6+2*XNOT1 | M INVER W-XNOT1_M LOAD_W;

XNOT1 M INVER_ _AS=XNOT1 M_ INVER AD;

XNOTl M INVER_PS=20e- 6+2%XNOT1 | M INVER W;

XNOT1 M 1 LOAD_A!
XNOT1 M LOAD P,

char tr[]l=".tr";

char spp_out[]

S

=5e-6*XNOT1_M_LOAD_W;

S =10e-6+2*XNOT1_M_LOAD W;

="

="mos_inv.out";
input[1:32]=[XNOT1_| M INVER_W XNOT1_M_INVER_L XNOT1 _M INVER_AD XNOT1 M INVER_PD
XNOT1_M INVER_AS XNOT1 _M INVER_PS
XNOT1_| NE _VTO XNOT1_NE KP XNOT1_NE_GAMMA XNOT1_NE _NSUB XNOT1_NE_TOX
XNOT1_NE_XJ XNOT1 NE LD XNOT1_NE_CJ XNOT1_NE CJSW XNOT1_NE_CGSO XNOT1_NE_CGDO

XNOT1_M_LOAD_W XNOT1_M | LOAD_L XNOT1_M LOAD_AS XNOT1 _M LOAD_PS
XNOT1_| ND VTO XNOT1 ND _KP XNOTl ND GAMMA XNOT1 _ND_NSUB “XNOTL _ND_TOX
XNOT1_ND_XJ XNOT1_] ND _LD XNOT1 _ND_CJ XNOT1_ND_CJSW XNOT1 _ND CGSO XNOT1_ND_CGDO] ;
FILE = "Splceplpe

INPUT = (in_name, DUMPOFF, spp_out,

Datapipe:

Datapipe:

coM
N_INBUT =

N_OUTPUT = 202
! calculate the propagation time tp

SIM
N_INPUT =

N_OUTPUT =
Vmed=(Vmax-Vmin) /2+Vmin; !

104
2

2.65,

OUTPUT = (VOUT([1:101], VIN[1:101]);

FILE = "tp"

INPUT = (Vmin,
OUTPUT = (t21,

for Vmax=5 and Vmin=0.3;

t201=t21+1; t202=if(t22>0)(t22+1) else (101); t221=t202-1;
tp21h=TIMESTEP* (Vmed-VOUT[t21])/(VOUT[t21]- -VOUT[t201])+t21*TIMESTEP - 2.5;
tp2h1=TIMESTEP* (Vmed-VOUT[t221])/ (VOUT[t221] -VOUT(t202])+t221*TIMESTEP - 13.5;

27

Vmax, DOWN, VOUT)
t22);

’

tr, input)

tp=(tp2hl+tp21lh)/2;

i=0;
time=0.2*%(i-1);
End
Sweep
Title="VOUT and VIN" i: from 1 to 101 step 1 time VOUT[i] VIN[i];
End
MonteCarlo
N_outcomes=200 i: from 1 to 101 step 1 time tp<2.5 VOUT[il];
end

Listing of the additional pipe-ready child ¢p used to compute the propagation time.

#define UP 0
#define DOWN 1
#include <stdio.h>
#include <math.h>
#include "ippcv2.h"

void main()

{
int input_no, /* number of input variables */
output_no, /* number of output variables ¥/
error=0;

float Vmin, Vmax, Dir, Vmed;

float input_data[512]; /* contains the input data */
float output_data[2]; /* will contain output data */
float diff=10;

int i;

for(;;)

{
pipe_initialize2();
pipe_read2(&input_no, sizeof(int), 1);
pipe_readZ(&output_no, sizeof(int), 1);
pipe_read2(&Vmin, sizeof(float), 1);
pipe_read2(&Vmax, sizeof(float), 1);
pipe_read2(&Dir, sizeof(float), 1);

input_no=input_no-3;

pipe_read2(input_data, sizeof(float), input_no);
Vmed=(Vmax-Vmin)/2.+Vmin;

output_data[0]=-1;

output_data[l]=-1;

for(i=0;i<(int)input_no;i++)

{
switch((int)Dir)
{
case UP ¢ if(input_datal[i]>=Vmed)
{
output_data[0]=i;
break;
I
break;
case DOWN : if(input_datalil<=Vmed)
{
output_data[0]=i;
break;
};
break;
};
if(output_data[0]>=0)break;
}
for(;i<(int)input_no;i++)
{

switch((int)Dir)

28

{
case UP : if(input_data[i]<=Vmed)
{

output_data[1l]=i;
break;
Y
break;
case DOWN : if(input_datalil>=Vmed)
{

output_datal[l]=i;
break;
1
break;
Y
if(output_data[1]1>=0)break;

pipe_write2(&error, sizeof(int), 1);

if(!error)
pipe_write2(output_data, sizeof(float), output_no);

29

APPENDIX D

OSA90/hope INPUT FILE FOR THE RLC SECOND-ORDER CIRCUIT

#define DUMPON
#define DUMPOFF 0

[

Expression
char cir_contents([]=
"o Fedede RN AR ReR R AN R A AN AN N

* RLC serial circuit *
Yo v e v e o ¥ Ve e v e e e e e e e e e e

VIN 1 0 PULSE(0 1 0 0 0 195 20S)
RIN 121

Rl 231

Cl 3 40.5

Ll 451

R2 501

ROUT 501

PRINT TRAN V(5)

.TRAN 0.25 10S 0S
.OPTIONS CPTIME=6000
.END/EXT

.VAR L1

.VAR C1

.VAR R1

.VAR R2

.END

L1=1
C1=70.5?

{Normal Sigma=5%};
{Normal Sigma=5%};
R1=70.5? {Normal Sigma=5%};
R2=727 {Normal Sigma=57};
char cir name(]="rlc.cir";

char spp out[]="rlc.out";

char tr[]=".tr";

Datapipe: coM
N_INPUT = 2
N_OUTPUT = 1
input[1:4]=[L1 C1 R1 R2];
DataPipe: coM
N_INPUT = 8
N_OUTPUT=51
t=1;
time[1:51]=[0.0 0.2 0.4 0.6 0.8 1.0 1
3.2 3.4 3.6 3.8 4.0 4
6.2 6.4 6.6 6.8 7.0 7
8.2 9.4 9.6 9.8 10.0];
S[1:51]=3/20%exp(-time)+1/52%exp(
E[1:51]=8S-F;
Error=E[t];
End
Model
RES 1 2 R=R1;
CAP 2 3 C=C1;
IND 3 4 L=L1;
RES 4 0 R=R2;

PORT 1 0 NAME=Vinput V=1 R=1;
PORT 4 0 NAME=Voutput R=1;
CIRCUIT;
End
Sweep
Title="Function, Specification, Error"
AC: Title="Gain"
End

[NI VI N
N

FILE = "create_file"
INPUT = (cir_name, cir_contents)
OUTPUT = (char in_name(8]);

FILE = "Spicepipe"
INPUT = (in_name, DUMPOFF, spp_out, tr, input)
OUTPUT = (F[1:51]);

EoE N Y
NS
@ oo
NS
® o o
o U N
coo
®un
ISESEY)
® u N
PSS
® u
o oo
NN
®®®
©ow
ocoo

-5*%time)-1/65%exp(-2*time)*(3*sin(2*time)+1l*cos(2*time));

t: from 1 to 51 step 1 time[t] S[t] F[t] E[t];
freq: from 0.1 to 0.4 n=10 INSL;

30

Specification
E< 0.01 E>-0.01;
AC: freq: from 0.1 to 0.4 n=10 INSL<20 w=10;

End
MonteCarlo
N_outcomes=200 t: from 1 to 51 step 1 Error<0.0l1 Error>-0.01 F[t];
AC: freq: from 0.1 to 0.4 n=10 INSL<20;
End

31

