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ABSTRACT

Powerful multilevel multidimensional quadratic modeling
has been developed for efficient yield-driven design. This
approach makes it possible, for the first time, to perform direct
yield optimization of circuits with components simulated by an
electromagnetic simulator. Efficiency and accuracy of our
technique are demonstrated by yield optimization of a small-
signal amplifier.

INTRODUCTION

A new multilevel multidimensional modeling technique is
presented for effective and efficient yield-driven design. This
approach makes it possible, for the first time, to perform yield
optimization of circuits with microstrip structures simulated by
an electromagnetic (EM) simulator.

Yield optimization is now recognized as effective, not
only for massively manufactured circuits but also to ensure first-
pass success in any design where the prototype development is
lengthy and expensive. Complexity of calculations involved in
yield optimization requires special numerical techniques, e.g., [1-
4). In this paper we extend our previously published [2,4],
highly efficient quadratic approximation technique to multilevel
modeling. It is particularly suitable for circuits containing
complex subcircuits or components whose simulation requires
significant computational effort.

With the increasing availability of EM simulators [5-7] it
is very tempting to include them into performance-driven and
even vyield-driven circuit optimization. However, direct
utilization of EM simulation for yield optimization might seem
to be computationally prohibitive. By constructing local
quadratic models for each component simulated by an EM
simulator we effectively overcome the computational burden of
repeated EM simulations, which would otherwise be invoked for
many statistical circuit outcomes throughout all yield
optimization iterations. ‘
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When the proposed multilevel quadratic modeling
technique is used together with expensive, but more accurate
simulations at the component level, the results are more reliable
than those obtained from traditional empirical component
simulations.

Efficiency and accuracy of our technique are
demonstrated by yield optimization of a small-signal amplifier.
Optimization was performed within the OSA90/hope™ [8]
simulation and optimization environment with Empipe™ [9]
driving em™ [7].

YIELD OPTIMIZATION

Formally, the problem of yield optimization can be
formulated as :

maximize {Y(4°) = [1,(8)/4(¢°, $)d$ ) M
¢ R

where ¢° and ¢ are vectors in R" and represent the nominal
circuit parameters and the actual circuit outcome parameters,
respectively, Y(¢°) is the design yield and f,(¢°, ¢) is the
probability density function of ¢ around ¢°. I($)=1ifge A
and I,(¢) = 0, otherwise, where A is the acceptability region in
which all design specifications are met. In practice, the integral
in (1) is approximated using K Monte Carlo circuit outcomes ¢’
and yield is estimated by
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The outcomes ¢' are generated by a random number generator
according to /¢(¢°, ¢). To estimate yield we create a set of
multi-circuit error functions e(¢l), e(¢?), ..., e(¢X). The error
functions e(¢') are derived from the circuit responses R; and
lower specifications (S)) and upper specifications (S,) as

¢(#) = Ri(#) - S,; or ¢(d) =5 - Ri($) 3)

Notice that a positive (negative) error function indicates that the
corresponding specification is violated (satisfied).

For yield optimization we use the one-sided ¢, objective
function [1,10]

U(¢®) = Y opv(¢)) ()

ielJ

where .
J ={i|v(¢") > 0} (5)



@; are suitably chosen positive multipliers and v(¢¥) is the
generalized ¢, function having the property that it is positive if
at least one specification is violated, i.e., ¢’ & A, and it is
negative if all specifications are satisfied. Consequently, U(¢°)
becomes an approximation to the percentage of outcomes
violating design specifications and minimization of U(¢°) leads
to yield improvement.

EFFICIENT QUADRATIC MODELING [2,3,4]

The Q-model to approximate a generic response f(x), i.e.,
any response or gradient function at any level (see Fig.l) for
which we want to build and utilize the model, is a
multidimensional quadratic polynomial of the form

n n
a(x) =ag + ¥ ai(x;-r) + ¥ ay(x;-r)(x;-5)  (6)
i=1 i=l

izi

where x = [x; x, ... x,,]T is the vector of generic parameters in
terms of which the response is defined, and r = [ryrg .. r,,]T is
a chosen reference point in the parameter space.

To build the model we use n+1 < m < 2n+1 base points at
which the function f(x) is evaluated. The reference point r is
selected as the first base point x!. The remaining m-1 base
points are selected by perturbing one variable at a time around
r with a predetermined perturbation g;.

= r40..080..07, i=1,2 ..n (M
X 2 4 0..0-8,0..017, i=1,2, .. m-(n+l) (8)

If a variable is perturbed twice the second perturbation is located
symmetrically w.r.t. . We have applied the Maximally Flat
Quadratic Interpolation (MFQI) technique [3] to such a set of
base points (see [2] for details). MFQI builds the Q-model by
minimizing in the least-squares sense all the second-order
coefficients in (6). It is intuitively equivalent to constructing an
approximation which has the smallest deviation from the linear
approximation. Applying MFQI to the base points defined by r,
(7) and (8) yields the following formula for g(x).

me(ne1) i . ;
WD =0+ T U = )« () <
=20(r)(x; = 1) /8% - 1) /(28,)}
DR VEAO BN O ERIAYN ©)

To apply a gradient-based optimizer we need to provide
the gradient of functions g(x) which are actually used by the
optimizer. Differentiating (9) w.r.t. X; results in

8q(x)/8x; = [(f(x™1)-f(x™14))/24(f(x ™1 )a f(xm*14)
=2f()(x=r)/BY/ By i =1, ..., m-(n+1) (10a)
and
89(x)/0x; = [f(x™*1) - f(DV/B;, i=m-n, ... n, m#2n+1 (10b)
The simplicity of (9) and (10) results in unsurpassed
efficiency of the approach. Note that the computational effort
increases only linearly with the number of variables n. Also, a

variable number of base points m offers a trade-off between
accuracy and cost of circuit analysis.

MULTILEVEL MODELING

Multilevel simulation and modeling is depicted in Fig. 1.
The circuit under consideration is divided into subcircuits,
possibly in a hierarchical manner. At the lowest level we have
circuit components which are the smallest entities that can be
handled by the available simulators, e.g., a lumped capacitor or
a microstrip structure. For EM simulators the definition of a
component is not as straightforward and typically the components
are defined by the user to encompass parts of the structure that
can be isolated from other parts.

Circuit |—— Model

Subcircuit —— Model ¢ o e Subcircuit —— Model

Component —— Model ¢ o 0 Component Model

Fig. 1 Schematic diagram illustrating multilevel modeling for
yield-driven optimization.  Solid and dotted lines
distinguish between exact and approximate responses.

A Q-model can be established and subsequently utilized
at any level for some or all subcircuits and components. The
models are built from the results of exact simulations of the
corresponding component, subcircuit, or the overall circuit.
Once the Q-model is established, it is used in place of the
corresponding simulator. For particular problems many
Q-models may exist changing the path of calculations as
indicated by different links in Fig. 1.

A number of experiments were conducted on a 3-section
3:1 microstrip impedance transformer to investigate advantages
of multilevel quadratic modeling. First, from results of em [71
simulations we established the component level Q-models for
each section of the transformer. Utilizing these Q-models we
performed yield optimization using (1) single-level (component)
modeling, and (2) two-level (component and circuit response)
modeling. We also used em [7] to create just one Q-model for
the entire microstrip transformer structure. Similarly, we
performed yield optimization employing both single- and two-
level modeling. The solutions in all cases were almost identical.
However, the CPU time was significantly reduced when two-
level modeling was used.

The circuit, subcircuit, or component parameters can be,
in general, categorized as: designable xp, statistical xg, or discrete
Xg. All other parameters are fixed. In (6)-(10), the vector x of
model variables may contain different combinations of xp, xg
and xg, depending on the capabilities of the corresponding
simulator. For example, as proposed in [4] the Q-models at the
circuit level can be built for both response and gradient
functions in terms of xg only.

The importance of bringing the discrete parameters XG
into the Q-model is illustrated in Fig. 2. The discrete parameters



are those for which simulation can only be performed at discrete
values located on the grid. For example, this is applicable in
numerical EM simulation. Normally, the reference vector r is
taken as the nominal point x. This is likely to be off-the-grid.
Similarly, the other base points x**! and x™*!*/ are likely to be
off-the-grid. Local interpolation involving several simulations
on the grid in the vicinity of each of the base points must then
be performed. In order to avoid these excessive simulations
those base points are modified to snap to the grid. Significant
computational savings can be achieved.

O

Fig. 2 Illustration of base points and discrete points. The large
circles represent possible location of base points w.r.t. a
grid. The solid dots indicate discrete simulation points
on the grid. If the base points are snapped to the grid,
the number of simulations can be significantly reduced.

YIELD OPTIMIZATION OF A SMALL-SIGNAL AMPLIFIER

The specification for a typical single-stage 6-18 GHz
small-signal amplifier shown in Fig. 3, is

7 dB < [S,,] < 8 dB, from 6 GHz to 18 GHz

The error functions for yield optimization are calculated at
frequencies from 6 GHz to 18 GHz with a 1 GHz step. The gate
and drain circuit microstrip T-junctions and the feedback
microstrip line are built on a 10 mil thick substrate with relative
dielectric constant 9.9.
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—
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Fig. 3 Circuit diagram of the 6-18 GHz small-signal amplifier.
We use em [7] to model the two T-junctions and the
microstrip line.

First, we performed nominal minimax optimization using
analytical/empirical microstrip component models. We1s Lg1s Wea,
Lg, of the gate circuit T-junction and W, Lgy; Wags Ly of the
drain circuit T-junction were selected as optimization variables.
Wes, Lgs, Wyg and Lgg of the T-junctions, W and L of the
feedback microstrip line, as well as the FET parameters were not
optimized. Fig. 4 shows the parameters of the T-junctions and

the microstrip line.

We assumed 0.5 mil tolerance and uniform distribution
for all geometrical parameters of the microstrip components.
The statistics of the small-signal FET model were extracted from
measurement data [11]. We built the component level Q-models
from em [7] simulations of all microstrip components. Monte
Carlo simulation with 250 outcomes performed at the nominal
solution reported 55% yield. Using the component level
Q-models we then performed yield optimization of the amplifier.
Yield estimated by 250 Monte Carlo simulations was increased to
82%. Monte Carlo sweeps before and after yield optimization
are shown in Fig. 5. The parameter values of the microstrip
components before and after optimization are given in Table I.
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Fig. 4 Parameters of (a) the feedback microstrip line and (b) the
microstrip T-junctions.
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Fig. 5 |Sy;| of the small-signal amplifier for 250 statistical
outcomes with microstrip components simulated by the
em [7] simulator: (a) at the nominal minimax solution,
and (b) after yield optimization.



TABLE 1
MICROSTRIP PARAMETERS OF THE AMPLIFIER

Parameters Nominal design Centered design
Wy 17.45 19
L, 35.54 34.53
W 9,01 8.611
L, 30.97 32
3 3
ng 107" 107"
a1 8.562 7
Ly 4.668 6
Wy 3.926 3.628
Ly, 9.902 1,
Wys 3.5 3.5
Ly 50 50
w 2 . 2 .
L 10 10
Yield (250 outcomes) 55% 82%

* Parameters not optimized.

Dimensions of the parameters are in mils. 50 outcomes were
used for yield optimization. 0.5 mil tolerance and uniform
distribution were assumed for all the parameters.

CONCLUSIONS

We have presented a new multilevel quadratic modeling
technique suitable for effective and efficient yield-driven design
optimization. This approach is particularly useful for circuits
containing complex subcircuits or components whose simulation
requires significant computational effort. The efficiency of this
technique allowed us to perform yield-driven design of circuits
containing microstrip structures accurately simulated by em [7].
Our approach, illustrated by yield optimization of a small-signal
amplifier, significantly extends the microwave CAD applicability
of yield optimization techniques.
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