PRACTICAL, HIGH SPEED GRADIENT COMPUTATION FOR HARMONIC BALANCE SIMULATORS

OSA-89-MT-27-V

October 17, 1989

Presented at the 1989 MTT-S Symposium, Long Beach, CA, June 13-15, 1989

PRACTICAL, HIGH SPEED GRADIENT COMPUTATION FOR HARMONIC BALANCE SIMULATORS

J.W. Bandler, Q.J. Zhang and R.M. Biernacki

Optimization Systems Associates Inc. P.O. Box 8083 Dundas, Ontario, Canada L9H 5E7

Introduction

resurgence of interest in harmonic balance (HB) simulation

extensive number crunching required by available HB simulators inhibits fast optimization of nonlinear circuits

inaccurate sensitivity and gradient calculations

Improving HB Efficiency and Robustness

Kundert and Sangiovanni-Vincentelli and Rizzoli et al. suggested exact Jacobian approach

Rizzoli et al. combined both optimization and solving nonlinear equations - disadvantage - incompatibility with established yield optimization formulations

Bandler, Zhang and Biernacki developed the exact adjoint sensitivity technique (EAST) for the HB method

Our Research

implementation aspects of the adjoint sensitivity approach impact on general purpose CAD programs

Summary

FAST - the future adjoint sensitivity technique

powerful computational concept

combines efficiency of exact adjoint sensitivities with simplicity of conventional perturbations

concept carries over to practically implementable Jacobians for fast harmonic balance simulation

our results promise high speed gradient evaluation essential for yield optimization of nonlinear MMIC circuits by general purpose software

FAST - The Future Adjoint Sensitivity Technique

performs adjoint sensitivities

retains most of the efficiency and accuracy of the EAST (exact adjoint sensitivity technique)

accommodates the simplicity of the conventional perturbation method, which we name PAST (perturbation approximate sensitivity technique)

directly applicable to both the node/port formulation and the state variable formulation

suitable for implementation within the framework of general purpose software

extends to the computation of Jacobians for high speed HB simulation

the features of FAST and its Jacobian extensions are illustrated by a mixer example and a frequency doubler example

Notation and Definitions

the overall nonlinear circuit is divided into linear and nonlinear parts

v(t) and i(t) voltage and current waveforms at the

linear-nonlinear connection ports

V(k) or I(k) kth harmonic of voltage and current spectrum

bar denotes the split real and imaginary parts of complex quantities

 \overline{V} or \overline{I} real vectors containing the real and the

imaginary parts of V(k) or I(k) for all

harmonics k, k = 0, 1, ..., H

hat distinguishes quantities of the adjoint system

 $\hat{\overline{\mathbf{V}}}$ real vector containing the real and the

imaginary parts of adjoint voltages for

all harmonics k, k = 0, 1, ..., H

Basics of the HB Technique

suppose the harmonic balance equation is

$$\mathbf{\bar{F}}(\mathbf{\bar{V}}) = \mathbf{0}$$

a simple Newton's update for the equation is

$$\overline{\mathbf{V}}_{\text{new}} = \overline{\mathbf{V}}_{\text{old}} - \overline{\mathbf{J}}^{-1} \overline{\mathbf{F}} (\overline{\mathbf{V}}_{\text{old}})$$

where $\overline{\mathbf{J}}$ is the Jacobian matrix

Gradient Analysis Using FAST

suppose the output voltage \overline{V}_{out} can be computed from \overline{V} as

$$\overline{\mathbf{V}}_{\text{out}} = \overline{\mathbf{e}}^{\mathrm{T}} \overline{\mathbf{V}}$$

the approximate sensitivity of output voltage \overline{V}_{out} w.r.t. variable ϕ can be computed as

$$\partial \overline{\mathbf{V}}_{\text{out}} / \partial \phi = - \hat{\overline{\mathbf{V}}}^{\text{T}} \overline{\mathbf{F}} (\phi + \Delta \phi, \overline{\mathbf{V}}_{\text{solution}}) / \Delta \phi$$

where

 $ar{\mathbf{V}}_{ ext{solution}}$ solution of the harmonic balance equations

 $\hat{\overline{\mathbf{V}}}$ adjoint voltages obtained from solving the linear equations:

$$\overline{\mathbf{J}}^{\mathrm{T}} \, \widehat{\overline{\mathbf{V}}} = \overline{\mathbf{e}}$$

the adjoint linear equations are easy to solve since the LU factors of the Jacobian matrix are available from solving the harmonic balance equations

Comparison of FAST with PAST

consider 10 design variables in a nonlinear circuit

PAST analysis

the circuit has to be perturbed 10 times 10 nonlinear circuits have to be solved

FAST analysis

the circuit has to be perturbed 10 times no nonlinear circuits have to be solved only 10 errors need to be evaluated

the best possible situation for PAST is that all 10 simulations use the same Jacobian and all converge in one iteration

FAST always requires less computation than that of the best possible situation of PAST since error evaluation takes a fraction of time needed for simulation

FAST is more accurate than PAST

Comparison of FAST with EAST

EAST

commonly accepted as the most powerful tool a need to keep track of variable locations expensive to implement

FAST

no need to keep track of variable locations only the output port has to be identified implementable in general CAD programs

FAST Analysis of a FET Mixer

the mixer circuit

LO frequency $f_{LO} = 11 \text{ GHz}$ RF frequency $f_{RF} = 12 \text{ GHz}$ IF frequency $f_{IF} = 1 \text{ GHz}$ DC bias voltages $V_{GS} = -0.9, V_{DS} = 3.0$ LO power $P_{LO} = 8 \text{ dBm}$ RF power $P_{RF} = -15 \text{ dBm}$ conversion gain 6.9 dB

compute sensitivities of the conversion gain w.r.t. all 26 variables

all parameters in the linear part all parameters in the nonlinear part DC bias, LO power, RF power IF, LO and RF terminations

excellent agreement between sensitivities computed using FAST, PAST and EAST

CPU times on VAX 8600

circuit simulation 22 seconds FAST sensitivity analysis 10.7 seconds EAST sensitivity analysis 3.7 seconds PAST sensitivity analysis 240 seconds

TABLE I

NUMERICAL VERIFICATION OF FAST
FOR THE MIXER EXAMPLE

Variable	Sensitivity from FAST	Sensitivity from EAST	Sensitivity from PAST	Difference between FAST and EAST (%)	Difference between FAST and PAST (%)
linear su	bnetwork				
Cda	-24.28082	-24.28081	-24.03669	0.00	1.01
C _{ds} C _{gd} C _{de} R _g R _d R _s	-32.16238	-32.16237	-32.33670	0.00	-0.54
C _{gd}	-8.8×10 ⁻¹³	1.7×10 ⁻¹³	0	120.21	100.00
R_	10.00754	10.00756	9.89609	-0.00	1.11
R ^g	11.71325	11.71327	11.71338	-0.00	-0.00
R	-4.98829	-4.98827	-4.98861	0.00	-0.01
R _{de}	-0.07171	-0.07171	-0.07115	0.00	0.79
T.	-0.30238	-0.30238	-0.30054	0.00	0.61
Lg Ld	-0.87824	-0.87824	-0.87247	0.00	0.66
L _s	-0.33527	-0.33527	-0.33191	0.00	1.00
	subnetwork	5 40440	5 00005		
$ au_{ m gs0}$	-5.43110	-5.43110	-5.38265	0.00	0.89
	1.52983	1.52984	1.56057	-0.00	-2.01
$\stackrel{ abla_{oldsymbol{\phi}}}{V_{-oldsymbol{\alpha}}}$	-20.84224	-20.84223	-20.84308	-0.00	-0.00
	-14.62206	-14.62206	-14.62469	0.00	-0.02
V _{dss}	0.30209	0.30209	0.30210	0.00	-0.00
I _{dsp}	9.39335	9.39335	9.39338	-0.00	-0.00
bias and	driving sourc	es			
v_{GS}	-4.94402	-4.94402	-4.94271	-0.00	0.03
v _{DS}	-0.67424	-0.67424	-0.67429	0.00	-0.01
P _{LO}	2.02886	2.02885	2.02882	0.00	0.00
P _{RF}	-0.09073	-0.09072	-0.09077	0.01	-0.05
terminati	ons				
R _g (f _{LO})	8.83598	8.83596	8.76244	0.00	0.83
X _g (f _{LO}) R _g (f _{RF})	2.20500	2.20496	2.16567	0.00	1.78
$R_a^b(f_{DE})$	0.71282	0.71281	0.70568	0.00	1.00
Xg(f _{RF}) Rd(f _{IF})	0.46410	0.46409	0.45702	0.00	1.53
g. Kr.			0.65272	-0.00	1.03
Rĭ(f _{re})	0.65950	0.65950	U. D3Z//:	-0.00	1.05

Simple and Efficient Computation of Jacobian

exact Jacobian for HB simulation is available but very expensive to implement

Kundert and Sangiovanni-Vincentelli (1986) Rizzoli et. al. (1986)

the perturbation (or incremental) approach is typically used in practice but is slow

FAST concept extends to Jacobian calculation by

computing time domain derivatives at the device level using perturbations

converting these derivatives to the frequency domain by a Fourier transform

assembling the resulting Fourier coefficients into the Jacobian matrix

Approximate Jacobian for a Frequency Doubler

the doubler circuit

input frequency 5 GHz output frequency 10 GHz

four harmonics were considered

the Jacobians were computed using our FAST approach and the conventional perturbation approach

the numerical results from the two approaches agreed very well

the corresponding CPU times on MicroVAX II

FAST 0.89 second perturbations 5.3 seconds

Conclusions

FAST is an expedient tool for gradient calculation in the HB environment

advantages of FAST over PAST are its unmatched speed and accuracy

advantage of FAST over EAST is its implementational simplicity

FAST is directly compatible with established formulations of yield optimization

FAST is particularly suitable for implementation in general purpose microwave CAD software

FAST provides a key to the new generation of yield optimizers for MMICs

the FAST technique is fully implemented in a new program $HarPE^{TM}$ for harmonic balance driven FET model simulation and parameter extraction

visit OSA booth #1714 for demonstration of HarPETM