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Abstract A comprehensive treatment of yield optimization of nonlinear microwave circuits with
statistically characterized devices is proposed. Yield-driven design for nonlinear microwave
circuits is formulated as a one-sided ¢, optimization problem. An advanced one-sided ¢
algorithm is fully exploited in the solution process. Effective gradient approximations make the
these difficult practical problems tractable. Attention is focused on microwave nonlinear circuits
suitable for simulation by the harmonic balance method. With exact Jacobian matrices, the
harmonic balance technique delivers fast and reliable solutions. The generation of statistical
outcomes for design involves various kinds of statistical distributions and correlations of circuit
elements. Multidimensional statistical distributions of the intrinsic and parasitic parameters of
FETs are fully handled. Our approach has been verified by two microwave circuit examples.
Yield is driven from 25% to 61% for a frequency doubler design having 34 statistically
toleranced parameters. By optimizing the bias conditions, yield of a small-signal amplifier is

increased from 31% to 71%.
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I. INTRODUCTION

Yield optimization [1-3] has been extensively explored in the literature. A number of
algorithms have been proposed for statistical design centering, e.g., by Director and Hachtel [4]
(simplicial approximation), Soin and Spence [5] (the center of gravity method), Bandler and
Abdel-Malek [6, 7] (updated approximations and cuts), Styblinski and Ruszczynski [8] (stochastic
approximation), Polak and Sangiovanni-Vincentelli [9] (outer approximation), Singhal and Pinel
[10] (parametric sampling). For linear circuits, it is currently finding its way into commercial
microwave CAD software.

Because of its special difficulties, yield optimization of practical nonlinear microwave
circuits remains unaddressed hitherto. Requirements essential to yield optimization of nonlinear
microwave circuits are: (a) effective approaches to design centering, (b) highly efficient
optimization techniques, (c) fast and reliable simulation, (d) flexibility of handling various
statistical representations of devices and elements, and (e) low design costs and short design
cycles.

The primary purpose of this paper is to describe general concepts related to yield
optimization of nonlinear microwave circuits with statistically characterized devices and to offer
an efficient approach for yield-driven optimization. We formulate the yield problem for
nonlinear circuits as a one-sided ¢, optimization problem. A powerful and robust one-sided
¢, algorithm proposed by Bandler et al. [11] is adopted. An effective gradient approximation
technique presented by Bandler et al. [12] is integrated with the one-sided ¢, algorithm to handle
inexact gradients. The harmonic balance method is implemented with exact Jacobian matrices
for fast convergence and improved robustness. Independent and/or correlated normal
distributions and uniform distributions describing large-signal FET model parameters and passive
elements are fully accommodated.

The yield optimization of a microwave frequency doubler with a large-signal excitation

and statistically simulated FET model is successfully carried out. The performance yield is



increased from 25% to 61%. We believe that this is the first demonstration of yield optimization
of nonlinear microwave circuits operating under large-signal steady-state periodic or almost
periodic conditions.

We also consider a small-signal amplifier. The harmonic balance method enables us to
simulate the small-signal linearized circuit under variable DC bias conditions and, consequently,
to study the effects of operating conditions on performance yield of the circuit. The yield of
the amplifier is increased from 31% to 71%.

In Section II we introduce the yield problem for nonlinear circuit design. Section III
gives the mathematical formulation of yield optimization [3], the one-sided £, optimization
algorithm [11], and the effective gradient approximation technique [12]. A brief description of
the harmonic balance method is provided in Section IV. In Section V we discuss the generation
of statistical outcomes for nonlinear circuits with large-signal FET models. In Sections VI and

VII two yield optimization examples of microwave circuits are presented.

II. THE YIELD PROBLEM FOR NONLINEAR CIRCUITS

Let ¢° be the nominal design. Parameters in ¢° can be lumped element values, device
model parameters, and dimensions of a physical realization. Manufactured outcomes are spread
over a region which can be described by ¢° along with statistical distributions of parameters.
In yield estimation and statistical circuit design, to simulate the realistic manufacturing
environment the circuit outcomes are generated according to the element statistics including

possible correlations. A set of N outcomes around ¢°, denoted by ¢', can be written as
$=¢"+ A, i=1,2,..,N, (1)
where A¢' is the deviation of the ith outcome from the nominal circuit and N is the number
of outcomes considered. In this paper, we assume that the element statistical properties are

known. If there are N statistical outcomes generated, then the production yield can be estimated

by



Y ~ N___ /N, (2)

pass/

where Npas is the number of acceptable circuits.

s
We shall concentrate our attention on nonlinear circuits that are to be simulated by the
harmonic balance technique. Typically, multiple design specifications are imposed. For instance,
specifications may be applied to various responses for multiple design goals. Additionally, the
fundamental frequency may vary to cover a frequency band of interest. More importantly, for
nonlinear circuits under consideration, specifications can be imposed on DC levels and/or several
different harmonics. Suppose that the fundamental frequency is denoted by f and the
corresponding harmonic index vector is
h=1[h, h; h, .. hNh]T, 3)
where N, is the total number of harmonics. A single specification is imposed on a response
relating electrical quantities at different ports. Let the vector of port indices be
p=[p; Py byl (4)
where Np is the number of circuit ports. Now, the set of specifications can be expressed as
S(f, h, p). (5)
The subscripts u and / can be introduced to distinguish upper and lower specifications
S,(f, h, p), (62)
and
S; (f, h, p). (6b)
The corresponding set of circuit responses of the ith outcome, ¢!, is
F(4, f, h, p). (7
For this outcome, we can define error functions comprising components of
F(#, f, h, p) - Sy(f, h, p) (82)
and/or
S/f. h, p) - F(#, f, h, p). (8b)

For convenience we assemble the error functions systematically into vector e!, defined for the



ith outcome ¢i. If all entries of this vector are nonpositive, the ith outcome ¢i represents an
acceptable circuit.

For amplifier design a typical response of interest is power gain. In this case, h may
only have one entry which corresponds to the fundamental frequency. If we want to design a
frequency doubler with an expected conversion gain, h should include the fundamental harmonic
at the input and the desired harmonic at the output.

Production yield associated with a particular design can be predicted as follows. (1) For
a given nominal design and statistics of elements, generate statistical outcomes. (2) Simulate each
outcome. (3) Calculate error functions of responses with respect to the given specifications. (4)

Evaluate yield by counting the number of circuits whose error functions are nonpositive.

III. YIELD OPTIMIZATION
Yield optimization is a process where adjustments to element values will be made to
increase yield. The problem of yield optimization can be properly converted to a mathematical
programming one so that modern mathematical optimization techniques are applicable. In the
following the design variables are nominal values ¢°, because A¢i is assumed to be related to
¢' through known statistical relations.
A. Formulation of the Objective Function for Yield Optimization
In the previous section, the error vector e' for the ith outcome ¢ has been defined.
Here we rearrange it as
e = [e)(¢) exd) ... en@NT, ©
where M is the total number of errors considered.
The formulation of the objective function for our yield optimization approach consists
of two steps. First, we create the generalized ¢, function vl to indicate the status of the ith

outcome ¢'. The generalized ¢, function vl can be calculated from e' [3] as



T e(4), if J(¢') # o, (10a)
je 3¢)

M
RGO I i (CORE R (10b)
i=1

where J(¢") = {j |ej(¢i) > 0). In other words, v' is given by (10a) when at least one of the
entries in e' is nonnegative, or by (10b) when all the error functions are negative. The sign of
vl actually indicates whether the ith outcome ¢! satisfies all specifications.

The one-sided £, objective function for yield optimization [3] is defined by

U@¢Y) = = ovi, (11)
iel

where I = (i |vi > 0} and o, are properly chosen non-zero multipliers. It is clear that I
identifies all outcomes violating at least one specification. Only positive error functions of
individual outcomes contribute to the overall objective function. This mechanism of the one-
sided ¢; function naturally imitates the fact that only the unacceptable outcomes effect yield.

As suggested in [3], if we let

o = ——— (12)

then U(¢%) is the exact number of unacceptable circuits. From (2) and (11) we have
Y =1 - U($%/N. (13)
Thus, the task of maximizing yield Y is converted to one of minimizing U(¢°). That is

minimize U(¢°). (14)
¢0

In order to construct a well-behaved objective function, we fix the o; during the optimization
process.
Compared with other methods, our method is less dependent on conceptually heuristic

assumptions and more capable of handling arbitrary tolerance distributions.



B. The One-Sided £, Optimization Algorithm with Gradient Approximations

In the previous section we converted the problem of yield optimization for nonlinear
circuits into an abstract optimization problem. We now turn our attention to solving the abstract
problem stated in (14). A highly efficient one-sided ¢; optimization algorithm was recently
reported in [11]. We use this algorithm to minimize U(¢%). This algorithm is a two-stage
method combining a first order method with a second order method.

The first order method is the trust region Gauss-Newton method. At the kth iteration,
we use 47 to denote the kth iterate of ¢” and v{ to denote the generalized ¢, error function for
the outcome ¢§(. The local bound, or trust region, is represented by A,. The trust region
Gauss-Newton method solves for r, the linearized subproblem of (14)

minimize U(¢), r,) = T o [V + (v )Tr,], (15)
. ie I,

subject to || 1y [0 < Ay

where I, = { i |o:i [vli( + (Vvi: )Trk] > 0} and Vvﬂ is the gradient of vli(. At the kth iteration,
the problem stated by (15) is equivalent to a linear programming problem with the constraint
A, on the variables r,. The trust region, in which the linearized problem is considered as a
good approximation to the original nonlinear problem, should be adjusted after each iteration
according to the accuracy of the linear approximation. This method is intended to be used to
provide the global convergence to a neighbourhood of a solution.

The second method is the quasi-Newton method, which solves a set of optimality
equations defined by

iel i€z

where Z = {i |aivli( = 0} and §; must satisfy 0 < § < 1. Equations of (16) result from applying
the Kuhn-Tucker conditions to the one-sided ¢, problem. The quasi-Newton method has fast

convergence when a local minimum is approached.



The switch between two methods is automatically made according to the judgment on the
convergence behaviour of the problem to best fit the methods.

In (15) and (16), the gradients of individual functions are required. However, analytical
gradients are traditionally not produced by general purpose large-scale simulators of nonlinear
circuits. They are often approximated by using perturbations. Since gradient evaluations from
perturbations are very expensive, especially for our application where multiple circuit outcomes
are considered, we employ the flexible and effective gradient approximation method proposed
in [12]. This gradient approximation technique incorporates normal (conventional) perturbations,
the Broyden update and special iterations. The initial gradient is approximated by applying the
normal perturbation. The Broyden update generates the gradient for the (k + 1)th iteration from
the gradient used in the kth iteration,

r - - VT,

Vvli(+1 = Vvli + e, (17)
T
I Iy

where r, is.the step from ¢?( to ¢?( +1- I ¢?( and ¢?( +1 are iterates of optimization, the updated
gradient can be obtained without additional circuit simulations. To improve gradient
approximations, special iterations may be applied to avoid possible convergence difficulties due
to a simple use of the Broyden update. Compared with the traditional perturbation method, this
gradient approximation algorithm provides excellent accuracy and significant computational
savings. In our application, all involved gradient evaluations are associated with outcomes
violating specifications. Thus, when a reasonable yield has been reached during optimization,
computational effort can be further reduced.

Several successive optimization procedures may be applied to further increase yield.

Each of these can use different numbers of statistical outcomes.



IV. SIMULATION OF NONLINEAR CIRCUITS USING HARMONIC BALANCE METHOD
Responses of nonlinear circuits operating in a periodic steady-state regime are calculated
by the harmonic balance method [13]. For a given circuit ¢!, this method solves the following
set of nonlinear algebraic equations
F(V, ¢) = Ty(V, ¢iy) + TV, ) = 0, (18)
where the vectors TNL and TL represent the currents into the nonlinear and linear subcircuit,
respectively, V contains the split real and imaginary parts of the voltages on the ports connecting
nonlinear and linear subcircuit, and ¢i is divided into two parts corresponding to the elements
in the nonlinear subcircuit, ¢iNL, and the elements in the linear subcircuit, ¢iL. The Newton-
type methods are commonly suggested to solve (18).

In statistical design, the circuit simulation accounts for an extremely large portion of the
overall computational effort, because of the large number of outcomes simulated individually.
To achieve fast convergence and reliable solutions, our program calculates exact Jacobian
matrices [13]

a'I';—T T
J = [——:] (19)
av

V. GENERATION OF STATISTICAL OUTCOMES
There are actually two possible ways to represent statistical properties of circuit elements
and devices. One is to use mathematical models which abstract the physical behaviour. The
other is to use actual measured data from physical devices. We use the first one in our
approach. Mathematical models to characterize statistical distributions of element values must
be available before yield optimization. Correlations among elements should also be taken into
account, because several equivalent circuit elements may be related to a group of

manufacturing/process parameters simultaneously. Hence, the statistical description of a



nonlinear device consists of a model in the form of the equivalent circuit, parameter
distributions and correlations among parameters. In either yield estimation or yield optimization,
statistical outcomes are generated using an arithmetical algorithm called a random number
generator. To reflect the most commonly met statistical distributions, a desirable random number
generator is capable of generating outcomes from the independent and multidimensional
correlated normal distributions and from uniform distributions.

Purviance et al. [14] treated the statistical characterization of the small-signal FET model.
Our proposed yield optimization requires the statistical description of the large-signal FET
model, which includes a large-signal model, statistical distributions and correlations of
parameters.

Parameters of nonlinear large-signal models have certain physical limits. Within these
limits, models are well characterized to simulate actual physical behaviour. It should be noticed
that a normal distribution random number generator may generate outcomes far beyond these
limits. These outcomes may cause two problems. Firstly, the simulation results of these
outcomes are physically meaningless, and therefore mislead optimization. Secondly, unlike the
linear circuit case, these outcomes will create extreme difficulties for the nonlinear simulator.

Such outcomes must be carefully detected and eliminated during optimization.

VI. THE FREQUENCY DOUBLER EXAMPLE
Consider the FET frequency doubler example shown in Fig. 1 used by Microwave
Harmonica [15]. It consists of a common-source FET with a lumped input matching network
and a microstrip output matching and filter section. The fundamental frequency is 5GHz. Let
the first response be the conversion gain between the input power at fundamental frequency

and the output power at the second harmonic, i.e.
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Fi(¢, f, h, p)

CG(¢, 5GHz, h, p)

power of the second harmonic at the output port

104og
power of the fundamental frequency at the input port

Let the second response be the spectral purity of the output port at the second harmonic, i.e.

F2(¢9 f, h9 p)

SP(¢, 5SGHz, h, p)

power of the second harmonic at the output port

10£0g

total power of all other harmonics at the output port
The design specifications are 2.5 dB for the conversion gain and 19 dB for the spectral purity.
The error functions are
e,(4) = 2.5 - CG(¢, 5GHz, h, p)
and
e,(4) = 19 - SP(¢, 5GHz, h, p).
The optimization variables include the input inductance L, and the microstrip lengths /; and /,.
The operating condition of a frequency doubler is essential for its performance. Therefore,
two bias voltages Vg and Vpp and the driving power level Py are also considered as
optimization variables.
Independent uniform distributions are assumed with fixed tolerances of 3% for Py, Vg,
Vpgs Ly, /; and [,. Independent uniform distributions are assumed with fixed tolerances of 5%
for L,, Lg, C,, C,, w, and w,. The intrinsic large-signal FET model is the modified Materka
and Kaéprzak model [15]. Normal distributions are assumed for all FET intrinsic and extrinsic
parameters. The standard deviations of these distributions are listed in Table I. The correlation
parameters are assumed based on [14]. Certain modifications have been made to adjust the
correlations of our large-signal FET model parameters to be consistent with that of the small-
signal FET model dealt with in [14]. The correlation coefficients are given in Table II.
The starting point for yield optimization is the solution of the conventional nominal

design w.r.t. the same specifications, using L,, !, and /, as optimization variables. The initial
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yield based on 500 outcomes is 24.8%. This shows that the traditional nominal design cannot
give a satisfactory yield.

In the yield optimization, 50 statistically selected outcomes are used. The solution found
by our approach improves the yield to 57%. Then another set of 50 outcomes is selected and
optimization restarted. After this, the final yield is 61.4%. Computational details are given in
Table III. Figs. 2 (a) and (b) show histograms of the conversion gain before and after yield
optimization. The improvement is very clearly illustrated by two histograms. Before yield
optimization, the center of the distribution is on the left-hand side of the design specification
of 2.5 dB, indicating that most outcomes are unacceptable. After yield optimization, the center
of the distribution is shifted to the right-hand side of the 2.5 dB specification. Most outcomes
then satisfy the specification. The statistical properties of the spectral purity performance are
demonstrated by their scattered distributions in Fig. 3 (a) and (b) for 500 outcomes before and

after yield optimization, respectively.

VII. A FET AMPLIFIER EXAMPLE

We consider the small-signal amplifier shown in Fig. 4. The conventional design is to
optimize the linear elements of the circuit under fixed bias conditions. The effect of bias on
the equivalent linear elements representing the nonlinear elements is generally neglected. Such
a design has obvious shortcomings. Employing both the DC and fundamental frequency, the
harmonic balance method not only solves the small-signal linearized circuit, but also simulates
the DC bias condition. We perform a yield optimization allowing the bias voltages to vary
during optimization. This enables us to study the effects of operating conditions on performance
yield of a linear circuit.

Performance specifications are imposed as |S;;| < -6dB, |S,,| < -6dB and 18dB <
| S51] < 20dB. Totally 9 frequency points were selected from the interval of 3.8GHz ~ 4.2GHz.

The FET model and statistics used for this example are the same as those used in the doubler

12



example. The starting point for yield optimization is the solution of conventional nominal design
in which two bias voltages are held constant. Estimated yield at this point is 31%.

In yield optimization, besides two bias voltages, the inductor L,, characteristic impedances
and electrical lengths of the transmission line and of the open stubs in the input and output
matching networks are also chosen as optimization variables. Independent uniform distributions
with 3% tolerances are assumed for Vgp, Vpg, Ly, Zy, 1y, Zy, 1y, Zg, I3, C;, C,, Cqy Cy, L,
and L,.

In the first design, 50 statistical outcomes are used. Each outcome has four error
functions and 9 frequency points. This results in 1800 individual functions at a time. The
yield at the solution point of this design is 64%. Optimization is restarted with 50 outcomes.
Yield is improved to 71%.

After yield optimization the bias voltages, Vgp and Vpg, have been changed from -0.95
and 4 to -0.9394 and 3.733, respectively. The computational details are listed in Table IV.

Figs. 5 (a) and (b) show response curves of |Su| for 50 statistical outcomes before and
after yield optimization, respectively. From Figs. 5 (a) and (b), it can be seen that the dense
band at the lower frequency end is pushed towards the specification. This indicates that, after
yield optimization, more circuit outcomes satisfy the specification on |Sn| .

The response distributions of statistical outcomes can also be revealed by the curve of
yield versus different specifications. Fig. 6 (a) shows how yield changes with different
specifications on either |S;;| or |S,,| while keeping the remaining specifications fixed. Fig.
6 (b) shows how yield changes with different upper or lower specifications on |821| while
keeping the remaining ones fixed. The steeper a segment of the curve is, the more outcomes
fall into the corresponding response interval shown on the horizontal axis.

Fig. 7 vividly illustrates the effects of the bias voltages Vgg and Vpp on the
performance of the circuit. The acceptable region is clearly exposed. Our yield optimized

solution is very close to the center of this region.
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VIII. CONCLUSIONS

This paper presents a generalized description of yield optimization for nonlinear circuits
operating within the harmonic balance simulation environment. The first comprehensive
demonstration of yield optimization of statistically characterized nonlinear microwave circuits
has been made. Important aspects of our approach have been addressed. The formulation of
the objective function for yield optimization has been given. At the core of the optimization
process, an advanced one-sided ¢, algorithm with gradient approximations was exploited. The
harmonic balance method has been used to efficiently simulate circuits. Generation of statistical
outcomes for yield-driven design of nonlinear circuits should allow different statistical
distributions and correlations. Large-signal FET parameter statistics are fully facilitated.
Comprehensive numerical experiments directed at yield-driven optimization of a FET frequency
doubler and a small-signal amplifier verify our approach. Our approach provides a powerful
tool to meet the very pressing need for microwave nonlinear circuit design. This success should
strongly motivate the development of statistical modeling of microwave devices for large-signal

applications.
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TABLE 1

ASSUMED STATISTICAL DISTRIBUTIONS
FOR THE FET PARAMETERS

FET Nominal Standard FET Nominal Standard
Parameter Value Deviation Parameter Value Deviation
Lg(nH)  0.16 5% S 0.676x10™!  0.65%
Rp(1) 2.153 3% IZG 1.1 0.65%
Lg(nH) 0.07 5% 7(pS) 7.0 6%
Rg(02) 1.144 5% Ss 1.666x1073  0.65%
Rpg(Q) 440 14% Igo(A)  0.713x107° 3%
Cpg(PF) 115 3% ag 38.46 3%
Cps(PF)  0.12 4.5% Igo(A)  -0.713x107° 3%
Ipgs(A)  6.0x1072 5% ap -38.46 3%
Voo(V)  -1.906 0.65% R,4() 3.5 8%
v -15x1072  0.65% C,o(PF) 042  4.16%
E 1.8 0.65% Cro(PF) 0.02  6.64%

The following parameters are considered as deterministic:
Kg = 0.0, Ky = L.111, K, = 1.282, C;g = 0.0, and Ky = 1.282.
For definitions of the FET parameters, see [16].
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TABLE II

FET MODEL PARAMETER CORRELATIONS [14]

Le Ry Lg Rpg Cps 8, T Rin  Cgs Cop

Lg 1.00 -0.16 0.11 -0.22 -0.20 0.15 0.06 0.15 025 0.04
Rg -0.16 1.00 -0.28 0.02 0.06 -0.09 -0.16 0.12 -0.24 0.26
Lg 0.11 -0.28 1.00 0.11 -026 0.53 041 -0.52 0.78 -0.12
Rpg -022 002 0.11 1.00 -044 0.03 0.04 -0.54 0.02 -0.14
Cps -0.20 0.06 -0.26 -0.44 1.00 -0.13 -0.14 0.23 -0.24 -0.04
g, 015 -009 0.53 0.03 -0.13 1.00 -0.08 -0.26 0.78 0.38
T 0.06 -0.16 041 0.04 -0.14 -0.08 1.00 -0.19 0.27 -0.46
Ry 0.5 0.2 -0.52 -0.54 0.23 -0.26 -0.19 1.00 -0.35 0.05
Cgs 025 -024 0.78 0.02 -0.24 0.78 0.27 -0.35 1.00 0.15
Cgp 0.04 026 -0.12 -0.14 -0.04 0.38 -046 0.05 0.15 1.00

Certain modifications have been made to adjust these small-signal parameter
correlations to be consistent with the large-signal FET model.

17



TABLE III

YIELD OPTIMIZATION

OF THE FET FREQUENCY DOUBLER

Variable Starting Nominal Solution I Solution II
Point Design

Pin(W) 2.0000x107%"  2.0000x10%  2.5000x1073  2.4219x1073
Vep(V) -1.9060, -1.9060 -1.9010 -1.9011
Vpe(V) 5.0000 5.0000 4.9950 4.9949
L,(nH) 1.0000 5.4620 5.4670 5.4670
I,(m) 1.0000x107%  1.4828x107>  1.6306x1073  1.7088x1073
I,(m) 5.0000x107®  5.7705x107®  5.7545x1073  5.7466x1073
Yield 24.8% 57.0% 61.4%
No. of Optimization Iterations 11 8
No. of Function Evaluations 41 26

Not considered as variables in nominal design.

The yield is estimated from 500 outcomes.
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TABLE 1V

YIELD OPTIMIZATION
OF THE FET SMALL-SIGNAL AMPLIFIER

Variable Starting Nominal Solution I Solution II
Point Design
Ve(Y) -0.9500: -0.9500 -0.9485 -0.9394
Vpe(V) 4.000 4.000 3.824 3.733
L,(nH) * 3973 4.066 4.086
Z,() 50.00 77.15 77.32 77.38
L(®) 50.00 63.02 63.21 63.27
Z,() 50.00 90.76 90.85 90.87
1,(°) 50.00 31.37 31.38 31.36
Z4(0) 50.00 49.45 49.54 49.60
13(°) 50.00 74.11 74.21 74.30
Yield 31.0% 64.2% 71.4%
No. of Optimization Iterations 17 10
No. of Function Evaluations 72 40

* . . . . .
Not considered as variables in nominal design.

The yield is estimated from 500 outcomes.
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Fig. 1 Circuit diagram of the FET microwave frequency doubler example. The nominal values
ISnH C, = 20pF C, = 20pF, w,

for non- optlmlzatnon vanables are: L, lSnH L,
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Fig. 2 Histogram of conversion gains of the frequency doubler based on 500 statistical outcomes,
(a) before and (b) after yield optimization. The center of the distribution is moved from
the left hand side of the specification shown by a vertical line to the right hand side.
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Fig. 3 Run charts for spectral purity based on 500 statistical outcomes

for the frequenc
doubler, (a) before and (b) after yield optimization. Y
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Fig. 4 Circuit diagram of the FET small-signal amplifier example. The nominal values for
non-optimization variables are: C;, = C, = C3 = 25pF, L, = L, = 100nH, RpoAD=
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Fig. 5 Response curves of |S11| for 50 statistical outcomes of the small-signal amplifier, (a)
before and (b) after yield optimization.
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(a)

(b)

Fig. 6 Yield versus specification curves for the small-signal amplifier. (a) The solid line shows
yield variation with different specifications on |S,;|, the dashed line with different
specifications on |S,,|. (b) The solid line shows yield variation with different upper
specifications on |S,,|, the dashed line with different lower specifications on |S,,].
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Fig. 7 The effect of bias variation on the performance of the small-signal amplifier. The
circuit is simulated for different bias combinations while remaining element values are
held at nominal values of the solution. The crosses form the acceptable region and the
small dot identifies the solution values of Vg and Vg, The solution of Vgp and Vg
after optimization is obviously close to the center of the acceptable region.
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