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Abstract We present a novel approach to nonlinear large-signal FET model parameter extraction
for GaAs MESFET devices measured under large-signal conditions. Powerful nonlinear adjoint-
based optimization, which employs the harmonic balance method as the nonlinear circuit
simulation technique, simultaneously processes multi-bias, multi-power-input, multi-fundamen-
tal-frequency excitations and multi-harmonic measurements to uniquely reveal the parameters
of the intrinsic FET. Different from other methods by which the model parameters are
extracted using DC and small-signal measurements, our new approach can provide more accurate
and reliable large-signal model parameters extracted under actual operating conditions. The
modified Materka and Kacprzak FET model serves as an example. Numerical results verify that
our approach can effectively determine the parameters of this model. Including harmonics in
parameter extraction results in a reliable large-signal model. Real data provided by Texas
Instruments has also been employed. The technique has been implemented in a new program

called HarPE (Harmonic balance driven model Parameter Extractor).
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I. INTRODUCTION

An accurate nonlinear large-signal FET model is critical to nonlinear microwave CAD.
Various approaches to FET modeling have been proposed, e.g., [1-4]. The dominant nonlinear
bias-dependent current source, namely, the drain-to-source current source, in these models is
commonly determined by fitting static or dynamic DC I-V characteristics only [1, 2, 4-6], or
by matching DC characteristics and small-signal S-parameters simultaneously [3]. Other nonlinear
elements in the model are either determined by applying special DC biases such as to determine
the parameters of the gate-to-source nonlinear current source in the Materka and Kacprzak
model [2], or by using small-signal S-parameters such as to determine the gate-to-source
nonlinear capacitor [3].

The FET models obtained by those methods may provide accurate results under DC
and/or small-signal operating conditions. They may not, however, be accurate enough for high-
frequency large-signal applications [7], since they are determined under small-signal conditions
and then used to predict the behaviour for large-signal operations.

In this paper, we present, for the first time, a truly nonlinear large-signal FET para-
meter extraction procedure which utilizes spectrum measurements, including DC bias information
and power output at different harmonics under practical working conditions [8]. Besides multi-
bias and multi-frequency excitations, multi-power-input is introduced for large-signal parameter
extraction. The harmonic balance method [9] is employed for fast nonlinear frequency domain
simulation in conjunction with ¢, and £, optimization for extracting the parameters of the
nonlinear elements in the large-signal FET model. Powerful nonlinear adjoint analysis for
sensitivity computation [10] is implemented with attendant advantages in computation time.

Numerical experiments show that all the parameters can be identified under practical
large-signal conditions, and that including higher harmonics in large-signal parameter extraction
is crucial to the reliability of the model. Numerical results are also obtained in processing actual

measurement data provided by Texas Instruments. Good agreement between the measurements



and the model responses is reached, demonstrating the feasibility of our new parameter extrac-
tion approach.

In Section II, the formulation of the large-signal parameter extraction optimization
problem is presented. Section III describes the applications of the harmonic balance technique
to model response simulations and nonlinear adjoint sensitivity analysis to gradient calculations.
An automatic weight assignment algorithm enhancing parameter extraction optimization is given
in Section IV. Numerical examples are discussed in Section V, where we use the modified
Materka and Kacprzak FET model [11], which has 21 parameters characterizing the nonlinear

intrinsic part of this large-signal FET model.

II. OPTIMIZATION FOR LARGE-SIGNAL PARAMETER EXTRACTION

Consider the FET model and its measurement environment shown in Fig. 1, where Yin
and Y, are input and output 2-ports, Yg and Y, are gate and drain bias 2-ports, respectively.
A large-signal power input P, is applied to the circuit. The responses including DC and several
harmonic components are measured.

In addition to the multi-bias, multi-frequency concept we pioneered for small-signal
parameter extraction [3,12], we allow the circuit to be excited at several input power levels.
Various combinations of bias points, fundamental frequencies and input power levels together
with multi-harmonic measurements contribute to the information needed for real large-signal
parameter extraction. In the following discussion we use the term bias-input-frequency com-
bination to indicate the modeling circuit working at a bias point with a particular input power
level and at a particular fundamental frequency.

Assume for the jth bias-input-frequency combination, j=1, 2, ... M, the measurement is

S; = [5;(0) S8y(w;y) S;(@;1T, (1)
where M is the number of bias-input-frequency combinations, Sj(O) is the DC component of the

measurement, Sj(wjk), k=1, 2, ..., H, are the kth harmonic components at the jth bias-input-



frequency combination, and H is the number of harmonics contained in the measurement. Sj(O)
can be taken as the bias-related DC voltage or current, which varies at different fundamental
frequencies and input levels even at a fixed bias point. Sj(wjk) is usually the output power
[13]. (The equivalent output voltage with phase information might also be employed [8]).
Corresponding to (1), the model response Fj(¢) can be expressed as
Fi(#) = [F{$,0) F$w;) .. Fibol", (2)
=1, 2, .. M,
where ¢ stands for the parameters of the model to be determined. The parameter extraction
problem can be formulated as the following optimization problem
M H
min J (Wjq. | F(4,0) - S;(0) [P+ ¥ wy | Fi(dwp) - Si(wy) [P, 3)
¢ i=t k=1
where Wide and wj, are weighting factors, and p=1 or 2 corresponds to ¢, or £, optimization,
respectively. The criterion of the above optimization is to match the model responses to the
measurements at DC and several harmonics. It is clear that the practical usefulness of this
parameter extraction approach depends on the effectiveness of calculating the model responses
Fj(¢), j=1, 2, ..., M, and their derivatives. (In the next section we will show that the numerical
computation of F j(4;5) and its derivatives is not a trivial task.)

The magnitude of the circuit responses varies widely at different bias-input-frequency
combinations and different harmonics. An automatic weight assignment algorithm has been
developed to improve robustness and enhance convergence speed. If the harmonic measurement
is made in the form of output power, the conditioning of the optimization problem can be

further improved by converting the output power to its equivalent output voltage.

III. NONLINEAR CIRCUIT SIMULATION AND GRADIENT CALCULATION
For a nonlinear large-signal FET model, the circuit model in Fig. 1 is nonlinear. This

means that the model response Fj(¢) in (2) must be obtained by solving a dynamic nonlinear



circuit, and the gradient of the objective function in (3) involves calculation of the derivatives
of the dynamic nonlinear circuit response.

To solve these two difficult problems, we have employed the efficient harmonic balance
method [9] for fast nonlinear circuit simulation in the frequency domain. Powerful nonlinear
adjoint sensitivity analysis technique [10] has been implemented to calculate the derivatives of
the model response and therefore the gradient of the objective function in (3) with respect to
¢. In this section we discuss the applications of the harmonic balance technique to model
response simulation, and nonlinear adjoint sensitivity analysis to gradient calculations.

Let the nonlinear circuit model be partitioned into linear and nonlinear subcircuits, as
illustrated in Fig. 2. Assume that the multi-port Y matrix of the linear subcircuit can be
established, all the nonlinear elements are voltage-controlled, and there is no nonlinear inductor
inside the intrinsic FET model. Also, for simplicity, we assume that the parameters in the linear
subcircuits are known. In the rest of this section, we will focus our discussions on the jth bias-
input-frequency combination, therefore the corresponding subscript j will be omitted to simplify
the notation. Other bias-input-frequency combinations can be treated similarly.

Nonlinear Circuit Simulation Using Harmonic Balance Method

Following [9], the harmonic balance equation for our model can be expressed as
L, V().w) + jUw)Q(P,V($),wy) + Y(wp)V(,w,) + I(w) = 0, (4)
k=0, 1, ..., H’,

where k represents the kth harmonic, wy=0 corresponds to the DC component, V(¢) = [VT(¢,O)
VT(¢,w1) VT(¢,wH,)]T is the voltage vector to be solved for, Y stands for the multi-port ad-
mittance matrix of the linear subcircuit, I, is the equivalent current excitation from the external
excitations, I corresponds to the current from the nonlinear current sources, Nw,) is a diagonal
matrix with w, as diagonal elements, and Q corresponds to the charge from the nonlinear
capacitors. For example, I; may contain the drain-to-source and drain-to-gate nonlinear current

sources, and Q may include the gate-to-source nonlinear capacitor, etc.



In (4) ¢ represents the optimization variables, i.e., the parameters to be determined, and

H’ the number of harmonics considered in the harmonic balance simulation.

It should be

noticed that H > H (the number of measured harmonics used), and H’ can be different for

different bias-input-frequency combinations.

We solve (4) by organizing it into a scalar form

For higher accuracy H’ could be greater than H.

_IRd(¢,V(¢)9O) ] [ -()(0) ] _QR(¢9V(¢)9O)
14(6.V(9).0) -(w;) QR(.V($).0,)
’(6,V(P).wgp) | + wg) | | QN V(B),05)
15(6,V(9),0) 0(0) Q(4,V(4).0)
14(6.V(9).0)) Aw,) Q(4.V(¢).w)
LG V@e) | L ) | Qv |
©YR(0) -Y/(0) 1[0 7[5O ]
YR(wl) 'Yl(wl) VR(¢sw1) I s(wl)
+ YR Ywg) | | Vi) |+ |Bwg) |-o,
Y{(0) YX(0) Vi($,0) 1'(0)
Yl(wl) YR(wl) VI(¢,“)1) I s(wl)
i Yi(wg) Yowg) | | Vidwg) | | Twg)
or, simply

T48.V(9) + AQ@V(9) + YV($) + 1, = 0,

(5)

where superscripts R and I represent real and imaginary parts of the corresponding component,
respectively. Note that in solving the harmonic balance equation (5), ¢ is constant and V(¢)
is the variable. Powell’s algorithm for solving nonlinear equations [14] is used, where in order
to save computation time and provide higher accuracy the exact Jacobian matrix is calculated
in our program, i.e.,

ATHVE) 1T [ QT V() _ T

T(¢,v_(¢))=[ — |+ Q — | + Y.
L v ) L v )

The detailed calculations of the entries of 3-(¢,\7(¢)) are discussed in [9].

(6)



When the solution \7(¢) is reached, the model response F(¢) can be easily obtained,
F($,w) = a™ (@) V() + bT(W)EWw,) ™
k=0, 1, ..., H,
where a(w,) and b(w,) are constant vectors determined by the linear subcircuit, and E(w,) cor-
responds to the external excitations including power input source and bias sources.

Gradient Calculation by Nonlinear Adjoint Sensitivity Analysis

Let N be an index set indicating interfacing ports between linear and nonlinear parts,
and e ;(k) and e ,(k) be such unit vectors that V (¢,w,) = (e,,(k)+ jenz(k))T\T(tﬁ), neN. The

circuit response F(¢,w,) in (7) can be rewritten as

F(pw) = Y. Ie\x},,(wk)(emao + je,(kNTV(9) + bT(w)Ew,). (8)
ne

The derivative of F($,w,) w.r.t. ¢, is then

8F(,wy) av (¢) av(¢) )
=Y ay(w) | e,fk)— + je J(k)—| . )
89, neN 89, o )
To realize the above derivative, we first derive from (5) that
v _ A BV _ Q@Y )
—=-JVe) | —— a0 —— | (10)
99, 9¢; 8¢ J

where :I—(¢,\7(¢)) is defined in (6) and is available at the solution of the harmonic balance
equation. Then by multiplying both sides of equation (10) by en'lr(k), we get
v (9) A [ A4,V (9)) _ 36(¢,|\7(¢» )
+ 0

e f(k) — = - VI(¢)
9¢; QTS 9¢;

(an

where

A A A A A A A
Vi) = (VE.0)T (VR )T ... (VR@wp)T (VI,0NT (Vigw )T ... (Viwp)T]

and is determined by solving the adjoint system

— _ A
ITPV () V($) = e (k). (12)

It can be proved that if ¢, is a parameter of a nonlinear element at branch b, then



: & A

_ -y Real[Vb(cﬁ,we)G’,:n(ct,wg)], if be{nonlinear current sources)
av (§) =0
enq (k) '; = (13)
. H’ A
' -y Imag[Vb(¢,w£)G;Qi(¢,w£)], if be{nonlinear capacitors}
£=0

where the superscript * stands for complex conjugate, and Gyp(¢,wy) and GbQi(qS,wz) are the £th
Fourier coefficients of the partial derivatives of the current iy(¢,v(t)) and charge q(4,v(t)) w.r.t.
¢;, respectively. See [10]. For example, if branch b is the gate-to-source diode with character-
istics

ip($,v(1)) = Igglexp(agvy(t)) - 11,
and ¢;=a;, we will have

Fiy(4,v(1))

a¢,

= Igovp(tlexplagvy(t))

and
1 Ni-1 8i(¢,v(mT,))
Gui(dwy) =— Y ~ ————  exp(-jém2n/Nyp),
where discrete Fourier transformation is used, Np>(2H+1) is the number of samples in the

time domain within one period T, T,=T/Nrt, and T=1/(fundamental frequency).

The same derivations can be applied to

Hence, dF(¢,w,)/3¢; in (9) can be obtained. Consequently, the gradient of the objective function
in (3) can be obtained.

Summing up, we can see that the gradient of the nonlinear circuit response F(¢) w.r.t.
¢ can be calculated by nonlinear adjoint analysis which utilizes the existing Jacobian matrix from

the solution of the harmonic balance equation to complete all the adjoint analysis. The equi-



valent conductances at the nonlinear element level, i.e., Gyp(¢.wp) or GbQi(¢,w£), are the same
for different adjoint systems, and therefore only need to be calculated once. Compared with
the perturbation method for gradient computations which requires solving one nonlinear circuit
for each optimization variable, the nonlinear adjoint analysis not only provides the exact gradient
of the objective function, but more importantly, it significantly reduces the computation time

and makes our parameter extraction approach computationally practical [10,15].

IV. WEIGHT ASSIGNMENT PROCEDURE

In the large-signal parameter extraction approach presented in Section II, the model
response is optimized to match several harmonics at various bias-input—fre‘quency combinations.
Two difficulties must be overcome to optimize the objective function in (3): the magnitude
differences between different harmonic measurements, and the differences between different
bias-input-frequency combinations. Suitably chosen weighting factors can balance these differ-
ences and improve the convergence of the optimization. This weight assignment procedure
assumes that (a) the possibility of having large measurement errors is small, (b) the power
measurement has been converted to the magnitude of the output voltage and (c) we want one
harmonic in a bias-input-frequency combination to have the same opportunity in the objective
function as the same harmonic in another bias-input-frequency combination.

Balance of a Harmonic Between Different Bias-Input-Frequency Combinations

In (1) of Section II, we have defined the kth harmonic measurement Sj(wjk), where j=1,
2, ..., M corresponds to the jth bias-input-frequency combination. Let §k be the mean value

of the kth harmonic measurement over M combinations

1M
M j=1
k=0, 1, ..., H.

Since the measurement will not be zero, we can balance the kth harmonic by

10



Sy
Wi = —. (15)
S;(w;)
Minimum and maximum bounds can be imposed on w'jk, i.e., simple interpolation adjustment
can be used within the kth harmonic if some w’jk, j=1, ..., M, lies outside the bound(s).
Balance Between Different Harmonics
In practice we may want to emphasize some harmonics over the others, e.g., the lower
harmonic measurements may be emphasized due to their larger magnitudes and therefore higher
measurement accuracy. This requires adjustment between different harmonics. Let K, be the

weight adjustment factor for the kth harmonic. Then the weighting factors for the optimization

problem (3) can be expressed as

S,

Wik = Ky Wi —, (16)
Sk

k=1, 2, .., H
and

Ss

Wide = Ko Wio —» (17)
So

where we take the mean value of the first harmonic measurement as a reference. As an
example, if we want to have equal emphasis on the DC and fundamental harmonic measurements
and lower emphasis on higher harmonic measurement, we can choose K,=1 for k=0 and 1, and

Kk=B'k for k=2, ..., H where B>1.

V. NUMERICAL EXAMPLES
In the numerical examples, we use the Microwave Harmonica [11] modified Materka
and Kacprzak FET model as the intrinsic FET, as shown in Fig. 3. All the linear FET model

parameters such as the parasitics in Fig. 1 are extracted using small-signal measurement data.
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The nonlinear elements of the model are described by [11]

A%
ip = Flvg(t - 1), vp(t)] (1 + Sg )s
Ipss
Va ](E *+ Ke¥o) ( S1vp ]
F(vg,vp)=Ipgg |1 - — |+tanh | ——8— |,
Voo + Wp J l Ipss(! - Kgvg))

ig = Igo [exp(agvg) - 11,
ig = I explag(vp - vy - Vgl
R,
L.
{ C, = Cpol - Kyvg) % 4+ Cyq,

(18)

0, if Kgvg 2> 1,

and
Cp = Croll - Kg(v; - vp)I™'/2,
{ Cp = Cpgv5, if Kg(v; - vp) > 0.8,

where Ipgg, Vpgs 7, E, Kg, S1, Kg, 7, Sg, Igo @65 Ipos @> VBer Ripr Kgs» Cips Ky, Cige Cros
and Ky are the parameters to be determined. Since only one of Igo and Vg is independent,
we fix Vpo and let

¢ = [Ipss Vo 7 E Kg S; K 7§, Igg ag Ipg @p Ryg Kg Cyo Ky Cp5 Cpg Kgl™. (19)

During the optimization the nonlinear circuit is solved using harmonic balance method,
where the excitation of the circuit is the available input power P, which can be converted to
an equivalent input voltage source V; by

|Vin|2
P. =

n

: (20)
8:R,
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Three cases are discussed as follows. In Case 1, we will show the theoretical aspects of
the proposed approach, i.e., the robustness, reliability and efficiency of our parameter extraction
approach if there is no model deficiency. Case 2 gives a numerical experiment of matching the
modified Materka and Kacprzak model to the Curtice model. In Case 3, we will discuss
practical large-signal FET model parameter extraction for the measurement data provided by
Texas Instruments.

Case 1: Robustness and Efficiency of the Parameter Extraction Approach

We use the values of the FET parasitics from [3]
[Rg Ly Ry Ly Ry Ly Cyy Ry, Cy] = [0.01190 0.1257nH
0.37400 0.0107nH 0.0006€2 0.0719nH 0.1927pF 440Q 1.5pF],

and assume that the solution of the model is also from [3] which is listed in Table I. The
circuit is simulated at four bias points: (Vgg=-0.5V, Vpp=2V), (Vgp=-2V, Vpp=2V),
(Vgp=-0.5V, Vpp=5V), and (Vgg=-2V, V5=5V). At each bias point three input power levels
(P,,=5, 10, and 15dBm), and two fundamental frequencies (f ;=1 and 2GHz) are applied, respec-
tively. There are 24 bias-input-frequency combinations in total. Six harmonics are considered
in the harmonic balance simulation. The output power P_ .t and the DC voltage V., see Fig.
1, of the simulation results are then used as the simulated measurements. This corresponds to
the situation of no model deficiencies.

To examine the robustness of the approach, we generated several starting points by
uniformly perturbing the assumed solution by 20 to 40 percent and optimized them with the A
norm, i.e., p=1 in (3). The circuit response Fj(¢) in (2) was computed using six harmonics
(H’=6). In the case that there is no measurement error, i.e., the exact simulation results obtained
at the assumed solution are used as the measurement data, all the starting points converged to
the known solution exactly when we included the first three, two or one harmonics (plus DC)
in the objective function, i.e., H=3, 2, or 1 in (3), respectively. However, it has been observed

that the speed of convergence is usually faster when more harmonics are considered in the

13



optimization.

To simulate a real measurement environment we added 10% normally distributed random
noise to the simulated measurements. The same starting points were optimized with the £, norm,
i.e.,, p=2 in (3), and the same conditions were tested. When H=3 or 2 in (3), all the starting
points converged to virtually one solution which is close to the assumed solution and gave very
good match to the measurement with noise. When H=1, however, those different starting points
did not converge to a single solution close to the assumed solution. Though at these solutions,
the matches to the measurements with noise at DC and fundamental harmonic are better
compared with those achieved when H=3 or 2, poor matches at second, third and/or higher
harmonics exist. Table II shows the match errors at one of the bias-input-frequency combina-
tions at the solutions obtained when H=1, 2 and 3 in the objective function.

From these experiments, we can see that with our approach the nonlinear parameters can
theoretically be determined even when H=1 in (3). In practice when the model is not perfect
and the measurement contains error, it is necessary to include higher harmonic measurements
in the nonlinear large-signal model parameter extraction, for it not only improves convergence,
but more importantly, it results in a more reliable model.

Two different starting points were used to compare the CPU execution time with and
without nonlinear adjoint analysis for gradient computation. To reach the ¢, objective function
value around 1.0x1073 on another 16 bias-input-frequency combination parameter extraction case
with 20 variables and 64 error functions, the Fortran program with the adjoint analysis runs
approximately 10 times faster than that without adjoint analysis, (about 200 sec. vs 2000 sec. on
a VAX 8650 computer.)

Case 2: Fitting to the Curtice Model

Here we use a set of data generated by the Curtice model [4]. The circuit is similar
to that of Fig. 1 except that the intrinsic FET is replaced by the intrinsic part of the Curtice

model. Some of the parameters of the Curtice model are taken from Fig. 13 of [4]. See Table

14



III. The parameters in the linear part of the circuit is the same as those in Case 1.

We selected 32 bias-input-frequency combinations, as shown in Table IV. The first 3
harmonics were assumed as measurement data. Any signal below -30dBm was discarded. There
were 111 error functions in total.

£, optimization was applied to extract the model parameters and the result is listed under
column Case 2 in Table I. Fig. 4 illustrates the modeling results at a bias point other than those
considered in the optimization. Excellent agreement is observed.

As for Case 1, parameters at the solution were perturbed uniformly by 20 to 40 percent
and re-optimized. Of six starting points, four converged to the same solution with little
variances in R;; and K. The other two converged to different points with different final
objective function values.

Fig. 5 shows the characteristics of drain-to-source nonlinear current sources of the
Curtice model and the modified Materka and Kacprzak model, and again we have reached an
excellent match. Notice that only 6 bias points are used in the optimization which is even less
than the total number of parameters for this current source. However, since we modeled under
actual large-signal conditions, employing higher harmonic measurements, a much larger range
of information has been covered than individual points on the DC I-V curve can provide.

Case 3: Processing Measurement Data from Texas Instruments.

Actual GaAs FET measurement data was obtained from Texas Instruments [13] including
small-signal and large-signal measurements. We used the small-signal S-parameter measurement
data to extract the linear parameters of the model. Large-signal measurement taken at 36 bias-
input-frequency combinations was used for nonlinear parameter extraction. Table V illustrates
the bias-input-frequency combinations in detail. At each combination, DC bias current and up
to three RF harmonic output power measurements are available.

Optimization with the £, norm was performed where, depending on the scales of the

input and the corresponding output powers, the circuit was simulated using three to seven
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harmonics. There are 20 optimization variables and 113 error functions. Among ten different
starting points six converged to virtually one single solution with variations on Iq, Iy, ap and
R, because of their relatively low sensitivities to the response functions. One typical solution
is listed under the Case 3 column in Table I. Fig. 6 shows the match at the solution between
the model response and measurement at one of the bias points taken into account in the
optimization, while Fig. 7 shows the match at a bias point not included in the optimization.
Good agreement at both bias points is observed.

Fig. 8 depicts the I-V characteristics of the drain-to-source nonlinear current source at
the solution. Notice that this set of curves is obtained from large-signal parameter extraction,

not from typical DC I-V curve fitting.

VI. CONCLUSIONS

An accurate and truly nonlinear large-signal parameter extraction approach has been
presented, where not only DC bias and fundamental frequency, but also higher harmonic
responses have been used. The harmonic balance method for nonlinear circuit simulation,
adjoint analysis for nonlinear circuit sensitivity calculation and state-of-the-art optimization
methods have been applied. Improvements to the convergence of the optimization process have
been discussed. Numerical results have demonstrated that the method is both theoretically and
computationally feasible, i.e., the method can uniquely and efficiently determine the parameters
of the nonlinear elements of the GaAs MESFET model under actual large-signal operating condi-
tions. Numerical results have also shown that under multi-bias, multi-power-input and multi-
frequency excitations, spectrum measurements can effectively reflect the nonlinearities of the
model and improves model reliability when used in nonlinear large-signal model parameter
extraction.

Consideration of the parameter extraction problem under two-tone measurements is

planned.
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A computer program HarPE (Harmonic balance driven model Parameter Extractor) has

been developed by Optimization Systems Associates Inc. It offers the technique presented in this

paper to the microwave community through a user-friendly interface.
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TABLE 1

PARAMETER VALUES OF THE INTRINSIC PART OF

THE MODIFIED MATERKA AND KACPRZAK FET MODEL

Value
Name  Unit Case 1 Case 2 Case 3
Inss A 0.1888 0.0521 0.0740
Veo \4 -4.3453 -1.267 -3.185
0 - -0.3958 -0.0877 0.0177
E - 2.0 1.269 2.937
Kg 1/V 0.0 -0.3224 -0.9077
S, 1/0 0.0972 0.0731 0.1527
Kg 1/V. -0.1678 -0.6482 -0.4912
T pS 3.654 5.322 0.1011
S, /9 0.0 4.462x107°  0.0022
Ico A 0.5x107° 8.782x10°  4.965x1071
ag 1/V 20.0 34.04 20.32
Igo A 0.5x107° 5.960x10712  1.000x10"!2
ap /v 1.0, 4.245 2.000
Vee V 0.0 20.0 20.0
Ryo 9! 4.4302 0.0361 0.1243
Ky 1/V 0.0 9.892x10° 0.0
C1o pF 0.6137 1.066 1.170
K, 1/V 0.7686 1.531 1.201
Cs pF 0.0 0.0314 -0.5243
Cro pF 0.0416 1.321 0.0623
Kp 1/V 0.0 1.638 -0.0959

* the value is fixed during the optimization
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TABLE II

MATCH ERRORS BETWEEN THE MEASUREMENTS AND
MODEL RESPONSES IN CASE 1

P, matching errors in (%)

Harm. Match (H=1) (H=2)
First harm. -0.53 -0.84
Second harm. 21.32 7.58
Third harm. -37.48 -14.36

(H=3)

-1.08
6.77

-9.31

where H=1, 2, or 3 corresponds to the number of har-
monics included in the objective function (3), and the

comparisons here are made at bias point (Vgp=-2V,

Vpg=2V), available input power P, =10dBm and funda-
mental frequency f,=1GHz.

TABLE III

PARAMETERS OF THE CURTICE MODEL USED IN CASE 2

Parameter B, (1/V) A, (A) A, (A/Y)
Value 0.04062 0.05185 0.04036
Parameter A, (A/V3) 4 (1/V) Vpso (V)
Value -0.009058 1.608 4.0
Parameter N (-) Cgso (PF) Cgpo (PF)
Value 1.0 1.1 1.25
Parameter Gyn(1/9) Vg (V) Ver (V)
Value 0.0 0.7 20

see [4]
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TABLE IV

INPUT LEVELS USED WITH DIFFERENT FUNDAMENTAL
FREQUENCIES AND DIFFERENT BIASES IN CASE 2

(Vgps Vpp)

P,  (dBm)

f=0.5GHz f;=1.0GHz f=1.5GHz  f,=2.0GHz

3, 3)
3,7
.0, 3)
0
5
5

-

4 , 4
,4 ’4

OO O

.0, 7)
5, 3)
» 7)

H

00 00O OO O

oo

-

, 4
4

Lo N

k]

PO OOO
H
SO OO

oo

f, denotes the fundamental frequency

TABLE V

BIAS-INPUT-FREQUENCY MEASUREMENT COMBINATIONS
FOR THE NUMERICAL EXAMPLE OF CASE 3

P, = -15, -10, -5, 0, 5, 10 dBm

f,=0.2GHz f,=6.0GHz f,=10GHz
Bias 1 (-0.373,2) (-0.372,2) (-0.372,2)
Bias 2 (-1.072,6) (-1.073,6) (-1.069,6)

where f; means fundamental frequency and the number
pairs in the brackets are the bias voltages (V;p,Vpp)
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Intrinsic FET

Ro Rg Lg Ld  Rdq
Yin Yout
P _]l_ -_%Rde T FRu
1n CdS _]_Cde VDC
Yq Yd
Ls
e - L g
Rs

Fig. 1 Circuit setup for large-signal multi-harmonic FET measurement.

L o—| Nonlinear part | o |

(Intrinsic FET)
S | S

Cj) Linear part Sj?

Fig. 2 Block diagram for illustrating circuit simulation using the harmonic balance method.
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Fig. 3 Intrinsic part of the modified Materka and Kacprzak FET model.
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Fig. 4 Agreement between the (Materka) model response and the simulated measurements (using
the Curtice model) at Vep=-0.5 and Vpgp=5 in Case 2. Solid lines represent the
(Materka) computed model response. Circles denote the simulated measurements at
fundamental frequency 0.5GHz and triangles the simulated measurements at fundamental
frequency 1.5GHz. (a) Fundamental component, (b) second harmonic component, (c) third
harmonic component, and (d) DC component.
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Fig. 5 Agreement between the DC characteristics of the modified Materka and Kacprzak model
and the simulated measurements (from the Curtice model) in Case 2. Vg is from -1.75V
to 0.25V in steps of 0.25V, and Vy, is from 0 to 10V. (Curtice uses V, and V
tively.) Solid lines represent the (Materka) model, and the circles represent the measure-

ments.
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Fig. 6 Agreement between the (Materka) model responses and the measurements from Texas
Instruments at fundamental frequency 0.2GHz, and bias point Vap=-0.373V and Vpz=2V.
(This bias point has been included in the optimization.) Solid lines represent computed
Circles, triangles and squares denote fundamental, second and third

model responses
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harmonic measurements, respectively.
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Fig. 7 Agreement between the (Materka) model response and the measurements from Texas
Instruments at fundamental frequency 6GHz, and bias point V;5=-0.673V and Vp=4V.
(This bias point has not been included in the optimization.) Solid lines represent
computed model responses. Circles, triangles and squares denote fundamental, second and
third harmonic measurements, respectively.
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Fig. 8 DC characteristics of the drain-to-source nonlinear current source of the modified
Materka and Kacprzak model after the optimization to match the large-signal measure-

ment data provided by Texas Instruments. Vg is from -1.75V to 0.25V in steps of
0.25V, and Vy, is from 0 to 10V.
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