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Abstract
We present a novel approach to large-signal nonlinear parameter extraction
of GaAs MESFET devices measured under harmonic conditions. Powerful nonlinear
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uniquely reveal the parameters of the intrinsic FET. One test successfully processed
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SUMMARY
Introduction

An accurate nonlinear large-signal FET model is critical to nonlinear
microwave CAD. Various approaches to FET modeling have been proposed, e.g.,
[1]-[4]. The dominant nonlinear bias-dependent current source, namely, the drain-
to-source current source, in these models is commonly determined by fitting static
or dynamic DC I-V characteristics only [1, 2, 4, 5, 6], or by matching DC
characteristics and small-signal S-parameters simultaneously [3]. Other nonlinear
elements in the model are either determined by applying special DC biases so as
to determine the parameters of the gate-to-source nonlinear current source in the
Materka and Kacprzak model [2], or by using small-signal S-parameters.

The FET models obtained by these methods may provide accurate results
under DC and/or small-signal conditions. They may not, however, be accurate
enough for high-frequency large-signal applications [7], since they are determined
under small-signal conditions and then used to predict the behaviour for large-signal
operation.

For the first time, a truly nonlinear large-signal FET parameter extraction
procedure is proposed which utilizes spectrum measurements, including DC bias
information and power output at different harmonics under practical working
conditions [8]. The harmonic balance method [9] is employed for fast nonlinear
frequency domain simulation in conjunction with ¢, and &, optimization for
extracting the parameters of the nonlinear elements in the large-signal FET model.

Numerical experiments have shown that all the parameters can be uniquely
identified under actual high-frequency large-signal working conditions, demonstrating
the importance of higher harmonics in large-signal parameter extraction. In

addition, powerful nonlinear adjoint analysis for sensitivity computation [10] has been



implemented with attendant advantages in computation time.
Formulation

Nonlinear intrinsic FET parameters are to be determined using large signal
data. All linear FET model elements such as parasitics are extracted using small-
signal data.

The FET and its measurement environment are shown in Fig. 1, where Y;,
and Y, are input and output 2-ports, Y‘ and Y, are gate and drain bias 2-ports,
respectively. We apply a large signal power input P, to the circuit. DC voltages
and output power P_ , at several harmonics [8] are measured.

In addition to the multi-bias, multi-frequency concept we pioneered for
small-signal parameter extraction, we allow the circuit to be excited at several input
power levels. Various combinations of bias points, fundamental frequencies and
input levels result in a variety of measurement information needed for parameter
extraction. Assume for the jth bias-input-frequency combination, j=1, 2, ... M, the
measurement is

S; = [S;(0) S(wy) Sjwp) ... SiwlT, (1)
where Sj(O) is the DC component of the measurement, and Sj(wk), k=1, ..., H, are
the kth harmonic components. Correspondingly, the model response Fj(¢) can be
expressed as

F(#) = [F($.0) Fdw) Fdw,) .. Fduwpl™ @)
where ¢ stands for the parameters of the model to be determined.

The parameter extraction optimization problem can then be formulated as

M H
min ), (Wjdc | Fj(¢a0) - Sj(O) | P Y Wik I Fj(¢,wk) - Sj(wk) | P), (3)
¢ i=1 k=1
where wj,. and w;, are weighting factors, and p=1 or 2 corresponds to £, or £,

optimization, respectively.



Model responses Fj(¢) are computed using the harmonic balance method [9].
The powerful nonlinear adjoint sensitivity analysis [10] is implemented to provide
gradients for optimization. This significantly accelerates the optimization and makes
our parameter extraction approach computationally practical.

An automatic weight assignment algorithm has been developed, improving
robustness and enhancing convergence speed. Also, by converting measured powers
to voltages, we achieve a well-conditioned optimization problem.

The FET Model Used in Qur Experiment

In our numerical experiments, we used the Microwave Harmonica [11]

modified Materka and Kacprzak FET model as the intrinsic FET, as shown in Fig.

2. The nonlinear elements of the model are described by [11]
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where Ipgs, Vpgs 75 E, Kg, S;, Kg, 7, Sg, Ige. @G, Iggs 2> Vpeos Rygs Kgs Cyps Ky
C,s» Cro» and K are the parameters to be determined. Since only one of Iy, and
Vpc is independent, we fix Vg and let
¢ = [Ipss Vpo 7 E Kg §; Kg 7§, I g Ipg @ Ryg Ky
Cio K; Cis Cpo Kgl™ (5)
The parasitics of the FET are illustrated in Fig. 1 and their values are listed
in Table I [3].
Test 1: Robustness of the Parameter Extraction Approach
Assume that the solution of the model is [3]
¢ = [0.1888 -4.3453 -0.3958 2 0 0.0972 -0.1678 3.654 0 0.5x107° 20
0.5x107° 1 4.4302 0 0.6137 0.7686 0 0.0416 0]T. (6)
The circuit is simulated at three bias points: (Vgg=0, Vpp=5), (Vgg=-1.5, Vpg=5)
and (Vgp=-3, Vpp=5). P, ;=5 and 10dBm are applied at (Vgg=0, Vpg=5), and P; =5,
10 and 15dBm at the other two bias points, respectively. At each bias point two
fundamental frequencies (1 and 2GHz) are used, respectively. There are 16 bias-
input-frequency combinations in total. Six harmonics are considered in the harmonic
balance simulation. The output power at the first 3 harmonics are measured and
used in the objective function, i.e., H=3 in (3). Therefore we have 20 variables and
64 error functions.
To examine uniqueness of the solution we uniformly perturbed the solution
in (6) by 20 to 40 percent, and re-optimized with the £, norm, i.., p=1 in (3).
Several starting points were tested and all of them converged to the known solution
exactly. This verifies the strong identifiability induced by the higher harmonics.
Table II demonstrates the significance of the nonlinear adjoint sensitivity
analysis, where we compare the CPU execution time for two different starting points

with and without nonlinear adjoint analysis for gradient computation. With the



adjoint analysis, the program runs approximately 10 times faster than that without
adjoint analysis.
Test 2: Parameter Extraction with Measurement Errors

In this test, we added 10% normally distributed random noise to the
simulated measurements used in Test 1. We used the same bias-input-frequency
combinations and the same starting points as those in Test 1. We applied ¢,
optimization, i.e., p=2 in (3). Measurements at the first 4 harmonics are used, i.e.,
H=4 in (3). Any signal below -35dBm was discarded. After optimization, all points
converged to virtually one solution quite close to (6) except for Ig, and ap because
of their relatively low sensitivities to the response functions. Still, Iz, and ap
converged to their respective order.
Test 3: Fitting to the Curtice Model

Here we use set of data generated by the Curtice model [4,11]. The circuit
is similar to that of Fig. 1 except that the intrinsic FET is replaced by the intrinsic
part of the Curtice model. Some of the parameters of the Curtice model are taken
from Fig. 13 of [4]. See Table III.

We selected 32 bias-input-frequency combinations, as shown in Table IV.
The first 3 harmonics were assumed as measurement data. Any signal below
-30dBm was discarded. There were 111 error functions in total.

¢, optimization was applied to extract the model parameters, resulting in

¢ = [0.05208 -1.267 -0.08774 1.269 -0.3224 0.07312 -0.6482 5.322

4.462x107° 8.782x107° 34.04 5.96x107*% 4.245 0.03610 9.892x10°% 1.066

1.531 0.03141 1.321 1.638]T.

Fig. 3 illustrates the modeling results at a bias point other than those considered in
the optimization. Excellent agreement is observed.

As for Test 1, parameters at the solution were perturbed uniformly by 20



to 40 percent and re-optimized. Of six starting points, four converged to the same
solution with little variances in R,; and Kg. The other two converged to different
points with different final objective function values.

Fig. 4 shows the characteristics of drain-to-source nonlinear current sources
of the Curtice model and the modified Materka and Kacprzak model, and again we
have reached an excellent match. Notice that only 6 bias points are used in the
optimization which is even less than the total number of parameters for this current
source. However, since we modeled under actual large-signal conditions, employing
higher harmonic measurements, a much larger range of information has been covered
than single individual points on the DC I-V curve can provide.

Conclusions

In this paper an accurate and truly nonlinear large-signal parameter
extraction approach has been presented, where not only DC bias and fundamental
frequency, but also higher harmonic responses have been used. Such information
effectively reflects the nonlinearities of the model. The harmonic balance method
for nonlinear circuit simulation, adjoint analysis for nonlinear circuit sensitivity
calculation and optimization methods have been applied. Numerical results
demonstrate that the method can uniquely and efficiently determine the parameters
of the nonlinear elements of the GaAs MESFET model under actual large-signal
operating conditions.

Consideration of the parameter extraction problem under two-tone
measurements is planned.
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TABLE 1

LINEAR PARASITIC PARAMETER VALUES OF
THE FET MODEL (FIG. 1) USED IN ALL NUMERICAL TESTS

Parameter Value Unit
R, 0.0119 0
L, 0.1257 nH
R, 0.3740 0
L, 0.0107 nH
Ry 0.0006 9]
Ly 0.0719 nH
Cas 0.1927 pF
R,, 440 0
Cye 1.5 pF
TABLE II

CPU TIME WITH AND WITHOUT NONLINEAR
ADJOINT GRADIENT CALCULATIONS IN TEST 1

Without Adjoint Ana.’

With Adjoint Ana.

CPU""  Obj. fun. CPU™™  Obj. fun.
(sec.) value (sec.) value
Starting point 1 1800 1.158x10°3 230 1.013x10°3
2600 2.235x1074 260 1.734x1074
Starting point 2 2600 1.366x10°3 200 1.115x10°3
2900 5.479x1074 220 4.894x1074

*
* ¥k

The gradient is estimated by perturbations at every other iteration.

Fortran program run on a VAX 8650.




TABLE 1II

PARAMETERS OF THE CURTICE MODEL USED IN TEST 3

Parameter Value Unit
B, 0.04062 /v
A, 0.05185 A

A, 0.04036 A/V
A, -0.009478 A/V?
Ag -0.009058 A/V3
e 1.608 1/V
Vpso 4.0 \

Ig 1.05x107° A

N 1.0 -
Caso 1.1 pF
Capo 1.25 pF
Fg 0.5 -
Gumin 0.0 1/9
Vi 0.7 \4
Ver 20 v

T 5.0 ps

see [4] and [11]
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TABLE 1V

INPUT LEVELS USED WITH DIFFERENT FUNDAMENTAL
FREQUENCIES AND DIFFERENT BIASES IN TEST 3

P,, (dBm)
(Vess Vps)
f,=0.5GHZ f,=10GHZ f,=1.5GHZ f,=2.0GHZ

(-0.3, 3) 0, 4 0, 4 0, 4 0, 4

(-0.3, 7) 0, 4 0, 4 0, 4 0, 4

(-1.0, 3) 0 0 0 0

(-1.0, 7) 0 0, 4 0, 4 0

(-0.5, 3) -- 8 8 -

(-0.5, 7) 8 8 8 8

f, denotes the fundamental frequency
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Fig. 2 Intrinsic part of the modified Materka and Kacprzak FET model.
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Abstract
A comprehensive treatment of yield optimization of nonlinear microwave circuits
with statistically characterized devices is proposed. We fully exploit advanced techniques of one-
sided ¢, circuit centering with gradient approximations, and efficient harmonic balance simulation
with exact Jacobians. Multidimensional statistical distributions of the intrinsic and parasitic
parameters of FETs are fully handled. Yield is driven from 25% to 61% for a frequency

doubler design having 34 statistically toleranced parameters.
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SUMMARY
Introduction

Yield optimization [1,2] has been extensively explored in the literature. For linear
circuits, it is currently finding its way into commercial microwave CAD software. Yield
optimization of practical nonlinear microwave circuits remains unaddressed hitherto.

Requirements essential to yield optimization of nonlinear microwave circuits are:
(1) effective approaches to design centering, (2) highly efficient optimization techniques, (3) fast
and reliable simulation, (4) flexibility of handling various statistical representations of devices
and elements, and (5) low design costs and short design cycles.

In this paper, we offer an approach for efficient yield-driven optimization of
nonlinear microwave circuits with statistically characterized devices. The formulation of the
yield problem for nonlinear circuits is described. A very powerful and robust one-sided ¢,
optimization algorithm for design centering recently proposed by Bandler et al. [3] is adopted.
An effective gradient approximation technique presented by Bandler et al. [4] is integrated with
the one-sided ¢, algorithm to handle inexact gradients. The harmonic balance method is
implemented with exact Jacobian matrices for fast convergence and improved robustness.
Independent and/or correlated normal distributions and uniform distributions describing large-
signal FET model parameters and passive elements are fully accommodated.

Modern supercomputers have found applications in microwave CAD [5, 6] with
attractive performance-to-cost ratios. Our software has been developed for possible use on
supercomputers. The computational performance on the Cray X-MP/44 will be reported in the
full paper.

The yield optimization of a microwave frequency doubler with a large-signal
statistically simulated FET model is successfully carried out. The performance yield was
increased from 25% to 61%.

We believe that this is the first demonstration of yield optimization of nonlinear



circuits operating under large-signal steady-state periodic or almost periodic conditions.
Formulation of the Yield Problem for Nonlinear Circuits
In yield estimation and statistical circuit design, a set of outcomes around the
given nominal design ¢° is considered. These outcomes are sampled according to the element
statistics including possible correlations and are denoted by $,i=12, .., N.
Suppose that the number of harmonics considered in simulation is H.
Specifications are given at the DC level and/or several harmonics. Suppose that specifications
are applied to circuit responses at the kth harmonic. The set of specifications and the
corresponding set of calculated response functions of the outcome, ¢i, are denoted by
Sjk), 0< k< H, j=12, ., M (1
and
F(¢, k), 0<ks<H j=12 .,M, )
where M is the number of specifications. The error functions for the ith outcome, e(¢i),
comprise the entries
Fi(¢', k) - S,(k), (3)
and/or
S)(k) - Fy(4', k), (4)
where Suj(k) and Slj(k) are upper and lower specifications. More than one harmonic index can
be introduced to these functions to cope with responses such as conversion gain or power added
efficiency, etc.
An outcome ¢' represents an acceptable circuit if all entries in e(¢i) are negative.
Yield can be estimated by
Y = Np,/N, (5)
where N . is the number of acceptable circuits and N is the total number of circuit outcomes.
Yield Optimization

The formulation of the objective function for our yield optimization approach



consists of two steps. First, the generalized ¢, function v(e(¢')) can be calculated from e(é).
Then, the one-sided ¢, objective function for yield optimization [3] is defined by

u(¢?) = £ o;v(e(d), (6)
=)

where J = (i |v(e(¢i)) >0,i=1,2, .., N} and o; are properly chosen non-zero multipliers.
Only positive error functions of individual outcomes contribute to the overall objective function.
The highly efficient optimization algorithm of [3] is used to minimize u(¢%), achieving a centered
design with improved yield.

Since the one-sided ¢, algorithm requires gradients, the flexible and effective
gradient apbroximation algorithm proposed in [4] is modified here to address the fact that
analytical gradients are traditionally not produced by general purpose large-scale simulators of
nonlinear circuits.

Harmonic Balance Method as Simulation Tool

Responses of nonlinear circuits operating in a periodic steady-state regime are
calculated by the harmonic balance method. In statistical design, the circuit simulation accounts
for an extremely large portion of the overall computational effoft, because of the large number
of outcomes simulated individually. The notable difference between linear and nonlinear
simulations is that the harmonic balance method is an iterative process. To achieve fast
convergence and reliable solutions, our program calculates exact Jacobian matrices.

Statistical Outcomes

Purviance et. al. [7] treated the statistical characterization of small-signal FET
models. Our proposed yield optimization requires statistically described large-signal FET models.
We use a random number generator capable of generating statistical outcomes from the
independent and multidimensional correlated normal distributions and from uniform distributions.

Unlike linear FET models, the nonlinear large-signal models employed are valid

only in certain regions. A normal distribution random generator may generate outcomes far



beyond the valid region. Such outcomes must be carefully detected and eliminated.

A FET Frequency Doubler Example

Consider the FET frequency doubler example (Fig. 1) used by Microwave
Harmonica [8]. It consists of a common-source FET with a lumped input matching network and
a microstrip output matching and filter section. The fundamental frequency is SGHz. Let
CG(¢,2,1) be the conversion gain between input port at fundamental frequency and the output
port at the second harmonic. Let SP(¢,2) be the spectral purity of the output port at the second
harmonic. The design specifications are 2.5 dB for the conversion gain and 19 dB for the
spectral purity. The error functions are

e,(¢) = 2.5 - CG(¢,2,1)
and
e,(¢) = 19 - SP(4,2).

The optimization variables include the input inductance L, and the microstrip lengths /; and
l,. The operating condition of a frequency doubler is essential for its performance. Therefore,
two bias voltages, Vgg and Vpg, and the driving power level, Py are also considered as
optimization variables.

The intrinsic large-signal FET model is the modified Materka and Kacprzak model
[8]. The model is shown in Fig. 2. Independent uniform distributions with fixed tolerances of
3% are assumed for all design variables. Normal distributions are assumed for all FET intrinsic
and extrinsic parameters. The standard deviations of these distributions are listed in Table I.
The statistical correlations of the nonlinear intrinsic FET are based on [7]. The assumed
correlation parameters are shown in Table II.

The starting point for yield optimization is the solution of the conventional
nominal design w.r.t. the same specifications, using L,, /; and [/, as optimization variables.
The initial yield based on 500 outcomes is 24.8%. 50 statistically selected oufcomes were used

in the yield optimization process. The solution found by our approach improves the yield to



57%. Then another set of 50 outcomes was selected and optimization restarted. After this, the
final yield was 61.4%. Computational details are given in Table III.

Run charts for the conversion gain and the spectral purity before and after yield
optimization are shown in Figs. 3, 4, 5 and 6, respectively. The statistical properties of these
two responses can be seen from the run charts. Figs. 7 and 8 show histograms of the conversion
gain before and after yield optimization. Before yield optimization, the center of the
distribution is on the left-hand side of the design specification of 2.5 dB, indicating that most
outcomes are unacceptable. After yield optimization, the center of the distribution is shifted
to the right-hand side of the 2.5 dB specification. Most outcomes then satisfy the specifications.
A FET Amplifier Example

By considering the DC and fundamental frequency, the harmonic balance method
not only solves the small-signal linearized circuit, but also simulates the DC bias condition.
We have exploited this in the design of a FET amplifier.

Performance specifications were imposed on small-signal S-parameter responses.
The modified Materka and Kacprzak large-signal FET model [9] was used. We performed a
yield optimization allowing the bias voltages to vary during optimization. This enables us to
study the effects of operating conditions on performance yield of a linear circuit.

Conclusions

The first comprehensive demonstration of yield optimization of statistically
characterized nonlinear microwave circuits operating within the harmonic balance simulation
environment has been made. Advanced one-sided ¢, design centering combined with efficient
harmonic balance simulation using exact Jacobians are exploited. Large-signal FET parameter
statistics are fully facilitated. Comprehensive numerical experiments directed at yield-driven
optimization of a FET frequency doubler support our confidence. It lends significant credence
to the necessity of statistical modeling of nonlinear microwave devices for large-signal

applications.



References

(1]
(2]

(31

[4]

(3]

(6]

(71

(8]
9]

A.J. Strojwas, Statistical Design of Integrated Circuits. New York, NY: IEEE Press, 1987.

E. Wehrhahn and R. Spence, "The performance of some design centering methods", Proc.
IEEE Int. Symp. Circuits Syst. (Montreal, Canada), 1984, pp. 1424-1438.

J.W. Bandler, S.H. Chen and K. Madsen, "An algorithm for one-sided £, optimization
with application to circuit design centering", IEEE Int. Symp. Circuits Syst. (Espoo,
Finland), 1988, pp. 1795-1798.

J.W. Bandler, S.H. Chen, S. Daijavad and K. Madsen, "Efficient optimization with
integrated gradient approximations", IEEE Trans. Microwave Theory Tech., vol. MTT-36,
1988, pp. 444-454.

V. Rizzoli, M. Ferlito and A. Neri, "Vectorized program architectures for supercomputer-
aided circuit design", IEEE Trans. Microwave Theory Tech., vol. MTT-34, 1986, pp. 135-
141’

J.W. Bandler, R.M. Biernacki, S.H. Chen, M.L. Renault, J. Song and Q.J. Zhang, "Yield
optimization of large scale microwave circuits", Proc. 18th European Microwave Conf.
(Stockholm, Sweden), 1988, pp. 255-260.

J. Purviance, D. Criss and D. Monteith, "FET model statistical and their effects on
design centering and yield prediction for microwave amplifiers", IEEE Int. Microwave
Symp. Dig. (New York, NY), 1988, pp. 315-318.

Microwave Harmonica User’s Manual, Compact Software Inc., Paterson, NJ, 07504, 1987.

A. Materka and T. Kacprzak, "Computer calculation of large-signal GaAs FET amplifier
characteristics", IEEE Trans. Microwave Theory Tech., vol. MTT-33, 1985, pp. 129-135.



TABLE 1

ASSUMED STATISTICAL DISTRIBUTIONS FOR THE FREQUENCY DOUBLER

Element and Nominal Type of Relative Tolerance
FET Parameter Value Distribution or Standard Deviation

Ve optimized uniform 3%
Vb optimized uniform 3%
Pin optimized uniform 3%
ly optimized uniform 3%
ly optimized uniform 3%
L, optimized uniform 3%
L, 15nH uniform 5%
Lg 15nH uniform 5%
C, 20pF uniform : 5%
C, 20pF uniform 5%
W, 0.1x1073m uniform 5%
W, 0.635x1073m uniform 5%
Lg 0.16nH normal 5%
Rp 2.1530 normal 3%
Lg 0.07nH normal 5%
Rg 1.144Q normal 5%
Rpg 4400 normal 14%
Coe 1.15pF normal 3%
Cps 0.12pF normal 4.5%
Ipss 6.0x1072 normal 5%

p0 -1.906 normal 0.65%
~ -15.x1072 normal 0.65%
E 1.8 normal 0.65%
S 0.676x107? normal 0.65%
IJG 1.1 normal 0.65%
T 7.0pS normal 6%
Ss 1.666x1073 normal 0.65%
Ico 0.713x107® normal 3%
ag 38.46 normal 3%
Igo -0.713x107® normal 3%
ag -38.46 normal 3%
Ryo 3.50 normal 8%
Cio 0.42pF normal 4.16%
Cro 0.02pF normal 6.64%

The following parameters are considered as deterministic:
Kg = 0.0, Kg = L.111, K, = 1.282, C;g = 0.0, and Ky = 1.282.

Vgp and Vpg are bias voltages, and Py is the driving power level.
For the definitions of the FET parameters listed here, see [9].




TABLE 11

FET MODEL PARAMETER CORRELATIONS [7]

Le¢ Rg Lg Rpe Cps 8m 7 Rn Ces Coep

Lg 1.00 -0.16 0.11 -0.22 -0.20 0.15 0.06 0.15 0.25 0.04
Rg -0.16 1.00 -0.28 0.02 0.06 -0.09 -0.16 0.12 -0.24 0.26
Lg 0.11 -0.28 1.00 0.11 -026 053 041 -0.52 0.78 -0.12
Rpg -0.22  0.02 0.11 1.00 -0.44 0.03 0.04 -0.54 0.02 -0.14
Cps -020 0.06 -0.26 -0.44 1.00 -0.13 -0.14 0.23 -0.24 -0.04
gm 0.15 -0.09 0.53 0.03 -0.13 1.00 -0.08 -0.26 0.78 0.38
T 0.06 -0.16 0.4l 0.04 -0.14 -0.08 1.00 -0.19 0.27 -0.46
Rin 0.15 0.12 -0.52 -0.54 0.23 -0.26 -0.19 1.00 -0.35 0.05
Cqs 0.25 -0.24 0.78 0.02 -0.24 0.78 0.27 -0.35 1.00 0.15
Cep 0.04 026 -0.12 -0.14 -0.04 038 -046 0.05 0.15 1.00

Certain modifications have been made to adjust these small-signal parameter
correlations to be consistent with the large-signal FET model.




TABLE III

YIELD OPTIMIZATION OF THE FET FREQUENCY DOUBLER

Variable Starting Nominal Solution I Solution II
Point Design

PN 2.0000x107%" 2.0000x10"  2.5000x10°% 2.4219x10°3

\ -1.9060°  -1.9060 -1.9010 -1.9011

VB 5.0000" 5.0000 4.9950 4.9949

L, 1.0000 5.4620 5.4670 5.4670

1 1.0000x107®  1.4828x10°3 1.6306x10™3 1.7088x1073

l 5.0000x107% 5.7705x107® 5.7545x107%  5.7466x1073

Yield 24.8% 57.0% 61.4%

Number of Optimization 11 8

Iterations

Number of Function 4] 26

Evaluations

Not considered as variables in nominal design.

Variable Definitions:

P;y Driving power level in watts

Vgp Gate bias in volts

Vpp Drain bias in volts

L; Inductor in the input matching network in nH

L Length of the microstrip section in meters

Iy Length of the open-circuited microstrip stub in meters

The yield is estimated from 500 outcomes.
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Abstract
We introduce a powerful computational concept which we name the future
adjoint sensitivity technique (FAST). FAST combines the efficiency of the exact
adjoint sensitivity technique with the simplicity of the conventional perturbation
technique. The same concept carries over to a practically implementable Jacobian
for fast harmonic balance simulation. Our result promises high speed gradient
evaluation essential for yield optimization of nonlinear MMIC circuits by general
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SUMMARY

Introduction

Recent years have witnessed a resurgence of interest in harmonic balance
(HB) simulation methods in the microwave industry. A growing number of
microwave engineers are using HB simulators to design nonlinear circuits. Extensive
number crunching currently required by available HB simulators have inhibited fast
optimization of nonlinear circuits and its extension to yield driven design. Another
significant drawback of current implementations is due to inaccurate sensitivity and
gradient calculations.

For researchers in the HB area, improving HB efficiency and robustness has
always been a serious task. Kundert and Sangiovanni-Vincentelli [1] and Rizzoli et
al. [2, 3] have already suggested an exact Jacobian approach. Rizzoli et al. [4]
combined both optimization and solving nonlinear equations at a single level,
affording certain advantages. Its most serious disadvantage is its incompatibility with
established yield optimization formulations.

Recently Bandler, Zhang and Biernacki developed the exact adjoint
sensitivity technique (EAST) for the HB technique [5, 6]. The EAST has been
implemented in a nonlinear HB-based parameter extraction program and
demonstrated to be extremely powerful [7].

Motivated by the potential impact of the adjoint sensitivity approach on
general purpose CAD programs we have studied its implementation aspects. We have
discovered a practically implementable technique which we name FAST (future
adjoint sensitivity technique). It retains most of the efficiency and accuracy of the
EAST while accommodating the simplicity of the conventional perturbation method,
which we name PAST (perturbation approximate sensitivity technique).

FAST is directly applicable not only to the node/port formulation of the



HB equations [1, 5, 6] but also to the state variable formulation [2-4], both within
the framework of general purpose software.

The FAST concept has also been implemented in computation of Jacobians
for high speed HB simulation. By avoiding the analytical differentiation of device
equations, our approach easily accommodates complicated and piecewise device
descriptions.

The features of FAST and its Jacobian extensions are exposed by a mixer
example and a frequency doubler example, respectively.

Notation and Definitions

We follow the notation of [5]. The overall nonlinear circuit is divided into
linear and nonlinear parts. The voltage and the current waveforms at the linear-
nonlinear connection ports are represented by real vectors v(t) and i(t), respectively.
The kth harmonic of these voltage and current spectrums are represented by capital
letters V(k) or I(k), respectively. Y(k) is the port (linear-nonlinear connection ports)
admittance matrix of the linear part. A bar denotes the split real and imaginary
parts of a complex quantity. The hat distinguishes quantities of the adjoint system.
In particular, V or T are real vectors containing the real and the imaginary parts
of V(k) or I(k) for all harmonics k, k =0, 1, ..., H. Y is a real matrix containing
the real and the imaginary parts of Y(k) for all harmonics k, k =0, 1, ..., H.
Basics of the HB Technique

Let T; and Iy represent the current into the linear and the nonlinear
parts, respectively. The harmonic balance equation is

F(V) =Ty + Iy, =0. 1)
A simple Newton’s update for solving (1) is

Vaew = Voua = T F(Vg) )

new

where J is the Jacobian matrix.



Gradient Analysis Using FAST

Suppose the output voltage V_ , can be computed from V as

V. =&V 3)

>

The adjoint voltage V is the solution from the linear equation
—TA .
IV - e. 4)
Suppose ¢ is a generic circuit design variable. For a given value of ¢, we

first solve the harmonic balance equation (1) to obtain the solution ie.,

solution?®

F(#, Vyorution) = 0- (5)

Then the approximate sensitivity of output voltage Vout w.r.t. variable ¢ can be
computed as

0V, /06 = - VIF($+A$, V,uion)/ A. (6)

This formula is much easier to implement than our previously published
EAST [5, 6]. The function F in (6) is evaluated by perturbation and can be readily
implemented. The effort for solving the linear equations (4) is small since the LU
factors of the Jacobian matrix are available from the final iteration of (2).
Comparison of FAST with PAST

Suppose there are 10 design variables in the nonlinear circuit. Using PAST
to calculate circuit sensitivities, one needs to perturb all design variables and to solve
the entire nonlinear circuit for each perturbation, i.e., 10 times. The best possible
situation for this approach is that all 10 simulations use the same Jacobian and all
converge in one iteration.

Using FAST, we also need to perturb all variables. But instead of
completely solving 10 nonlinear circuits, we only evaluate 10 error functions in the
form of (1). The solution of adjoint equation (4) is accomplished in 2
forward/backward substitutions.

A detailed comparison reveals that FAST always requires less computation



than that of the best possible situation of PAST. In our numerical experiment,
FAST is 23 times faster than PAST.

Accuracy is a particularly important feature of FAST. In our numerical
experiment, gradients from FAST are about 100 times more accurate than those from
PAST. This means that HB optimizati'on will be more robust by using FAST.
Comparison of FAST with EAST

The generic EAST is accepted by all circuit theoreticians as the most
powerful tool. However, to implement it, we have to keep track of all arbitrary
locations of variables and to compute branch voltages at all these locations. This
requirement, in general, is so involved that microwave software engineers virtually
abandoned hope of generally implementing the EAST.

In FAST, we completely eliminate the need of track variable locations.
We only need to identify the output port which is the simplest step in adjoint
sensitivity theory.

High Performance FAST

Like any numerical techniques, the performance of the FAST can be
enhanced to deal with ill-conditioned or large scale problems. The choice of the
step length has a significant effect on accuracy. An optimal step length adjustment
scheme will be presented.

FAST Analysis of a FET Mixer

Consider the mixer example used in [5, 6, 8]. Figs. 1 and 2 show the
large-signal MESFET model and the DC characteristics of the device. The
frequencies are fy, = 11 GHz, fgp = 12 GHz and fjz = 1 GHz. The DC bias
voltages are Vgg = -0.9 V and Vg = 3.0 V. With LO power Py, = 8 dBm and RF
power Ppp = -15 dBm, the conversion gain was 6.9 dB. 26 variables were

considered including all parameters in the linear as well as in the nonlinear part, DC



bias, LO power, RF power, IF, LO and RF terminations. We used FAST theory
to compute the sensitivities of the conversion gain w.r.t. all variables. The same
sensitivities were also evaluated by the EAST and PAST. Excellent agreement
between the three approaches is shown in Table I.

From Table I, we notice that the FAST sensitivities are almost identical to
the exact sensitivities. But the PAST sensitivities are typically 1 to 2 percent
different from their exact values. This fact reveals that the FAST is much more
reliable than PAST.

The circuit was solved in 22 seconds on a VAX 8600. The CPU time for
the FAST, the EAST and the PAST were 10.7, 3.7 and 240 seconds, respectively.
FAST is 3 times slower than EAST but 23 times faster than PAST.

Simple and Efficient Approach to Computation of Jacobian

Kundert and Sangiovanni-Vincentelli [1] and Rizzoli et. al. [2, 3] have
investigated exact Jacobians for accelerating the HB procedure. However, as
observed by Rizzoli et. al. [3], differentiating complicated or piecewise device
equations may be very annoying from a programmer’s view point. The perturbation
(or incremental) approach is often used in practice.

Such difficulties associated with the exact Jacobians can be eliminated by
extending the concept of FAST to the Jacobian calculation. We compute the time
domain derivatives Ji(t)/dv(t) at the device level using perturbations. These
derivatives are then converted to the frequency domain by a Fourier transform. The
Jacobian matrix is then assembled from these Fourier coefficients using the formulas
in [1, 3].

Approximate Jacobian for a Frequency Doubler
We have used our Jacobian approach in solving the FET frequency doubler

example from Microwave Harmonica [9]. The circuit consists of a common source



FET with a lumped input matching network and a microstrip output matching and
filtering section. The circuit diagram is shown in Fig. 3. The input frequency is
5GHz. The output is at 10GHz. 4 harmonics are considered. We have also used
the conventional perturbation approach to compute the Jacobian. The numerical
results from the two approaches agree very well. The CPU time for our approach
and the perturbation approach is .89 and 5.3 seconds, respectively, on Micro VAX
IL

Conclusion

Our FAST is an expedient tool for gradient calculation in the HB
environment. The advantages of FAST over PAST are its unmatched speed and
accuracy, and over the EAST is its implementational simplicity. FAST is directly
compatible with established formulations of yield optimization. FAST is particularly
suitable for implementation in general purpose microwave CAD software. We feel
that FAST provides a key to the new generation of yield optimizers for MMICs.
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TABLE 1

NUMERICAL VERIFICATION OF FAST FOR THE MIXER EXAMPLE

Var. Sensitivity Sensitivity Sensitivity Difference Difference
from from from between between

FAST EAST PAST FAST and - FAST and

EAST (%) PAST (%)

linear subnetwork

Cus -24.28082 -24.28081 -24.03669 0.00 1.01
Cea -32.16238 -32.16237 -32.33670 0.00 -0.54
Ce -8.8x10713 1.7x10713 0 120.21 100.00
Rg 10.00754 10.00756 9.89609 -0.00 1.11
R4 11.71325 11.71327 11.71338 -0.00 -0.00
R, -4.98829 -4.98827 -4.98861 0.00 -0.01
Rye -0.07171 -0.07171 -0.07115 0.00 0.79
L, -0.30238 -0.30238 -0.30054 0.00 0.61
Lg -0.87824 -0.87824 -0.87247 0.00 0.66
L, -0.33527 -0.33527 -0.33191 0.00 1.00

nonlinear subnetwork”

Ceso -5.43110 -5.43110 -5.38265 0.00 0.89

r 1.52983 1.52984 1.56057 -0.00 -2.01
v, -20.84224  -20.84223  -20.84308 0.00 -0.00
Vo -14.62206  -14.62206  -14.62469 0.00 -0.02
Voo 0.30209 0.30209 0.30210 -0.00 -0.00
Tiep 9.39335 9.39335 9.39338 -0.00 -0.00

bias and driving sources

Vas -4.94402 -4.94402 -4.94271 -0.00 0.03
Vps -0.67424 -0.67424 -0.67429 0.00 -0.01
Pio 2.02886 2.02885 2.02882 0.00 0.00
Pgr -0.09073 -0.09072 -0.09077 0.01 -0.05




TABLE I (continued)

NUMERICAL VERIFICATION OF FAST FOR THE MIXER EXAMPLE

Var. Sensitivity Sensitivity Sensitivity Difference Difference
from from from between between
FAST EAST PAST FAST and FAST and
EAST (%) PAST (%)
terminations®
R, (f10) 8.83598 8.83596 8.76244 0.00 0.83
Xg (f10) 2.20500 2.20496 2.16567 0.00 1.78
R, (fgr) 0.71282 0.71281 0.70568 0.00 1.00
Xy (£gr) 0.46410 0.46409 0.45702 0.00 1.53
Ry(f:p) 0.65950 0.65950 0.65272 -0.00 1.03
Xq(£15) 0.09024 0.09024 0.09207 -0.00 -2.02
* Nonlinear elements are characterized by
Css(vl) - Cgso /4 1 = vl/v¢ 4
and the function for i (v,, v;) is shown in Fig. 2, whose
mathematical expression is consistent with [8]. Vi, V,,, Vg
and Iy, are parameters in the function ij(v;, v3).
+ R and X represent the real and the imaginary parts of the

terminating ‘impedances, respectively. Subscripts g and d
represent the gate and the drain terminations, respectively.

10



‘[8] yiim judlsIsuU0d a1k sanjea
19)oweled (v -ojdwexd Jaxiw 3y) 1oj pasn [ppow JIFASIN jeudis-o81e] v | "31q

831N0S

1 Ea“ta)™

/

el = o

Py —— zq

My = ta == (*a)*®o

ulesp o—\Wr—onr \“ __ uau—W———o0 ajeb
Py P o, B9 by

11



im(V1,V2)

Fig. 2 The DC characteristics of the MESFET model in Fig. 1.
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