YIELD OPTIMIZATION: THE GOAL OF THE NEXT GENERATION MICROWAVE CAD SOFTWARE

OSA-88-OS-16-V

September 15, 1988

Presented at the MIMIC meeting, Dallas, TX, September 7, 1988

YIELD OPTIMIZATION: THE GOAL OF THE NEXT GENERATION MICROWAVE CAD SOFTWARE

Optimization Systems Associates Inc. Dundas, Ontario, Canada

Milestones in Yield Optimization

Bandler begins formal exploitation of parameter tolerances in circuit optimization in 1969-70

cost-driven worst-case design with optimized tolerances (1972)

optimal centering and tolerance assignment integrated with tuning at the design stage (1974)

integrated approach to microwave design with parameter tolerances, model uncertainties, mismatches and reference plane uncertainties (1975)

yield-driven optimization using general statistical distributions (1976)

optimal tuning and alignment at the production stage (1980)

foundation of multi-circuit ℓ_1 yield optimization (1987)

world's first yield-driven design features for Super-Compact (1987)

Statistical Analysis and Yield-Driven Design Input File Example

```
*
* DESIGN CENTERING EXAMPLE: FILE CEN01.DAT
BLK
 CAP 1
         0 C 4PF
                       #ND 5%#
 IND 1
RES 2
            L ?8NH?
                       #UD 15%#
            R 550
 TWO 2
         3
            4 O1
 PRC 4
            R 5
                       #ND 5%# C ?14PF?
 SRL 2
         3
            R ?154?
                       #ND 10%# L ?24NH?
 RES 3
            R 300
A:2POR1
         3
END
FREQ
 10MHZ STEP 250MHZ 1000MHZ 250MHZ
END
OPT
 A MS11 -8.0DB LT MS22 -8.0DB LT MS21 9DB 10DB
+W2
END
STAT
 A MS11 -8.0DB LT MS22 -8.0DB LT MS21 9DB 10DB
END
(data section for Q1)
```


Statistical Analysis and Yield-Driven Design Command Level Example

CMD > CEN

Number of outcomes $\langle 20 \rangle : \underline{15}$

Gradient, Random or Quit? $(\overline{G/R/Q})$: \underline{G}

Initial Variables and Gradients

Variables Gradients
(1): 8.0000 NH (1): 2.2392

(2): 14.000 PF (2): 24.992

(3): 154.00 (3): -203.40

(4): 24.000 NH (4): 72.516

Obj. F.= 7.00000 Yield Est.= 53.33%

Number of iterations? (x/<0>): 50 N

CMD > STAT NH

Number of trials? (n/<0>): 300

Number of additional trials? (n/<0>): <RET>

Statistical Analysis and Yield-Driven Design Results of Optimization

```
(1): 9.6931 NH (1): 65.828

(2): 5.1598 PF (2): -33.352

(3): 311.56 (3): -119.50

(4): 59.748 NH (4): -163.99

...

(15/50) Obj. F. = 29.4900 Yield Est. = 80.50%
```

Local minimum -- gradient search cannot improve CPU time = 2261.85 Secs. 28000 Function evaluations

MS21

dВ

Hierarchical Statistical Modeling

correlated

device response (e.g., S parameters of a FET)

correlated

equivalent circuit model parameters

independent

abstract variables

process/ geometrical variables

process disturbances

Hierarchical Treatment of Device Statistics

device statistical model includes the overall effect of device statistics, chip statistics and wafer statistics

inter-device correlations originate from chip and wafer statistics

inter-chip correlations originate from wafer statistics

device statistics

chip statistics

wafer statistics

Major Approaches to Statistical Modeling

process / geometrical based approach

small number of statistically independent variables normal distribution generally applicable physical / empirical formulas required

equivalent circuit based approach

models are generally available
distribution functions may not be simple, for
example bimodal
parameter correlations may be complicated and
meaningless

number of statistical variables may be large

Nonlinear Parameter Extraction

accurate large signal device models are vital to nonlinear analysis / optimization

such device models should be extracted from measurements at DC, fundamental frequency and higher harmonics

efficient nonlinear parameter extraction using harmonic balance technique and adjoint network concepts