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Abstract This paper presents a robust approach to model parameter extraction. The
approach not only attempts to match dc and ac measurements under different bias con-
ditions simultaneously, but also employs the dc characteristics of the device as con-
straints on bias-dependent parameters, hence improving the uniqueness and reliability
of the solution. The approach is an expansion of the hierarchical modeling techniques
recently proposed by Bandler and Chen. Based on Bandler and Zhang’s automatic
decomposition concepts for large-scale optimization, a sequential model building method
is proposed which, combined with powerful £, optimization techniques, can be used to
establish a model with simple topology and sufficient accuracy.

Practical FET models proposed by Materka and Kacprzak and by Curtice and
Ettenberg are used to illustrate our formulation. A detailed numerical example based on
the Materka and Kacprzak model is presented which has up to 28 optimization variables
and 414 nonlinear error functions. The results show that a unique solution can be
reached even after perturbing the original starting point (initial model parameter values)
by 20 to 200 percent. The results have also shown the effectiveness of applying the

sequential model building method to the FET modeling problem.
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I. INTRODUCTION

Model parameter extraction, i.e., the determination of equivalent circuit para-
meters from dc, rf, and microwave measurements on devices (such as FETs), is of fun-
damental importance to microwave circuit designers. Conventionally, we seek a set of
model parameters which minimizes the difference between the model responses and the
measurements. To alleviate indeterminacy as well as for simplicity, techniques have
been implemented (e.g., [1-3]) which separate the dc, low frequency and high frequency
measurements and divide the model parameters into corresponding subsets. This defines
a set of subproblems to be solved sequentially. Such a sequentially decoupled solution,
however, may not be reliable: a parameter determined solely from dc measurements may
not be suitable for the purpose of microwave simulation, and the information contained
in ac measurements is not fully utilized.

The multi-circuit algorithm [4,5] can improve the uniqueness of the solution by
simultaneously processing multiple sets of S-parameter measurements made under dif-
ferent bias conditions. However, the authors [4,5] assumed for computational purposes
that the model parameters were either completely bias-independent or arbitrarily bias-
dependent.

The approach presented in this paper not only attempts to match dc and ac
measurements simultaneously, but also employs the dc characteristics of the device as
constraints on the bias-dependent parameters. This enables us to use more efficiently
the information contained in dc and non-zero frequency measurements and reduce the
degrees of freedom by imposing constraints on bias-dependent parameters. In this way
we aim at improving the uniqueness and reliability of the solution.

Bandler and Zhang [6] have proposed a decomposition dictionary to reveal the
interdependency between functions and their variables. In this paper, such a dictionary
and the powerful ¢, optimization algorithm [7] are integrated to explore the relations
between the model responses and model parameters during the modeling process, so
that possible model defects could be overcome sequentially. In other words, we start
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the modeling process with the simplest model structure, subsequently adding elements
according to the ¢; optimization result and the dictionary for a better match between
the model responses and the measurements.

In Section II, through a simple circuit example we demonstrate the feasibility
and usefulness of integrating dc and ac modeling in one optimization problem. In Sec-
tion III, general and abstract definitions for the model parameters are given. The def-
initions are illustrated by examples of significant interest, namely the Materka and
Kacprzak FET model [2] and the Curtice and Ettenberg FET model [8]. The modeling
optimization problem with both dc and ac responses is formulated in Section IV. In
Section V, we present the sequential model building approach. In Section VI, a FET
modeling example using the Materka and Kacprzak model is described in detail to demo-

nstrate our new approach.

II. A SIMPLE CIRCUIT EXAMPLE

As a simple example to illustrate that combining dc and ac modeling is both
feasible and useful, let us examine the linear RC circuit shown in Fig. 1. The unknown
parameters are @ = [R; R, C]T. R, is assumed to be a known resistor. We also assume
the responses to be the dc current I, under dc excitation V; = V4, as

Vac
R, + R,
and ac (complex) voltage V,, under ac excitation V, = V,_, as
Va.R;Rgs C

Vz = ’ (2)
SC(R;R,+R;R3+R,R3)+R+R,

where s denotes the complex frequency variable.

It is obvious that we cannot distinguish R; and R, if only the dc response I is
used. It can also be verified that if only the ac response V, is taken, we cannot uni-
quely determine ¢ either, no matter how many frequency points are applied.

It can be proved, however, that ¢ will be uniquely determined when we utilize
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both dc and ac measurements simultaneously, i.e., to match the dc response and ac
response to the corresponding measurements at the same time. (The detailed proof of

this observation is provided in Appendix A.)

III. CLASSIFICATION OF MODEL PARAMETERS
A. The general case

In general, consider a device model with its equivalent circuit. The model
parameters can be classified as bias-independent, unconstrained bias-dependent, and
constrained bias-dependent. We also separate the parameters that appear in both dc
and ac (small-signal) models from those appearing only in the ac model. Therefore, we
define six subsets of model parameters denoted by @,, ¢, @., P4, @, and ¢y, respective-
ly, where ¢, and ¢, are bias-independent, ¢, and ¢4 are unconstrained bias-dependent,
and ¢, and ¢; are constrained bias-dependent. ¢, and ¢. appear in both the dc and ac
models, whereas ¢, and ¢4 affect only the ac small-signal equivalent circuit.

We use superscript k to indicate a different bias point and the corresponding
device model. Therefore, ¢X ¢%, @k and ¢f belong to the model under the kth bias,
whereas ¢, and ¢, remain unchanged for different bias points.

We express the functional dependency of ¢, and ¢; on the bias condition by ¢§
= ¢ (a,v%) and ¢f = ¢(a,B,v¥), where a and B are the coefficients of the constraints,
and vk = v(¢,,¢% a) denotes the dc state variables (such as the voltages and currents). &
affects the dc equivalent circuit but 8 does not.

Table I summarizes the foregoing definitions.

This categorization stems from the consideration of the physical device and a
feasible model. It is clear that we need ¢, and ¢, to represent the parameters which
do not or almost not vary with the bias conditions, such as package capacitance and
lead inductance of an FET. We need ¢lc‘ and ¢§ to represent those bias-dependent para-
meters whose functional bias dependency expressions may not be known or available; on
the other hand ¢¥ and ¢}§ may be used to test or investigate the functional bias-depen-
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dent properties of the model parameters.

Introducing @.(a,v) and ¢a,B,v¥) allows us to describe other bias-dependent
parameters whose bias-dependent properties can be expressed by functions or, as we
refer to them, constraints. Such constraints may be derived from physical characteris-
tics of the device. They may be introduced empirically to simulate the pattern of the
dc characteristic curves. They may also include mathematical expressions, such as poly-
nomials. These constraints reduce the degrees of freedom in modeling, since the number
of variables in this group, namely & and B, does not increase when more bias points are
used, so that the uniqueness of the solution can be improved.

Our classification of the model parameters is consistent with the hierarchical
parameter descriptions of Bandler and Chen [5]. From the definitions presented above,
for example, we can see that for the ac responses, @ and B are low level parameters
compared with @,, ¢y, @., ¢4, . and ¢, However, we should notice that a parameter
can appear as a low level and high level parameter simultaneously. For example, ¢, is
at same level as ¢, but it depends on ¢, as well.

B. Two practical FET device examples

To illustrate the definitions presented in the previous subsection, we consider
a typical nonlinear FET model proposed by Materka and Kacprzak [2]. The model and
its corresponding small-signal equivalent circuit are shown in Figs. 2(a) and 2(b), respe-
ctively.

In the Materka and Kacprzak model, there are three bias-dependent current
sources iz, i, and iy, (see Fig. 2(a)), which are defined as [2]

iy = 1, [exp(a,vy) - 1],

i=1I, [exp(agvgg) - 11,

(3)
Vg advd
id = Idss (l - _—)2 tanh( )a
Vo vg-Vp
where
Vo = Voo + g,



and where I, o, L, o, I, @g, V,, and 7 are parameters to be determined. Three

po

other bias-dependent parameters Gg,, 8, and Ces (see also Fig. 2(b)) are constrained by

(2]

diy

Gda = ’
avd
dig

8m = , 4)
<9vg

Ve

Cgs = Cgo(l - )-0‘5, for Vg < 0°8Vbi9
Vii

where C,, and Vy,; are also parameters to be determined.

Table II gives clear classifications for all the parameters of the Materka and
Kacprzak model.

We have also considered another typical nonlinear FET model proposed by
Curtice and Ettenberg [8], as shown in Fig. 3(a). Its small-signal equivalent circuit is
shown in Fig. 3(b). Following the considerations and the notation of [8], I is a func-
tion of {Ry, Vy;}, Iy, is a function of {R;, Ry, Vpg), Iy, 84, and g, are functions of

{Ag, A, Ay, Ag, 7, B, VO4), Cg is a function of {Vg;), and 7 is a function of {Ag).

g8
The classifications of the parameters are listed in the last column of Table II. (For

details of the Curtice and Ettenberg model, see [8].)

IV. MULTI-BIAS DC AND AC MODELING OPTIMIZATION
Assume that the dc and ac measurements are S, and SE(w,), respectively,
where w,, n = 1, 2, ..., N, is a set of frequency points. Correspondingly, we assume
Fc = Fa($a, ¢ @) (5)
as the dc model response, and
Fao(wn) = For(@s, Bp, 85 05, 0(@,V5), @(a,B.v%); wy) 6)

as the ac model response. Thus, the error functions corresponding to the dc model



responses can be expressed as
e8cj = Wiej (Flcj - Sej)» = 1, 2, ooy MY, k € Ky, (7
where wg; is the weighting factor, MY  is the number of dc measurements taken at
the kth bias point, and Ky, is the set of bias point at which dc measurements are
taken. The error functions corresponding to the ac model responses can be expressed
as
€5cj(Wn) = Whej [Faci(wn) - Ske;(wp)], ®)
i=1,2, ., M, n=1,2,.,N, keK,,
where wl;cj is the weighting factor, M‘;c is the number of ac measurements taken at
the kth bias point, and K,  is the set of bias point at which ac measurements are
taken.
If we use K to indicate the set of all bias points, then
K =Ky UK, = (1, 2, ..., Kping)- 9)
Usually M%_ could be the same for different k, k € Kg4,, such as the number of dc
current responses at different bias conditions. Similarly M‘;c could be the same for
different k, k € K, such as the number of S-parameter responses.
To obtain a uniform set of error functions, we define
fi=ef i=1,2, .., M, keKy, i€y, (10)
and
fi=ekjw), i=1,2, ., M, ,n=1,2.,N keK,,i€l,, (11)
where J3. = (1, 2, ..., M;}, M, is the total number of dc measurements, J,. = {M;+1,
M;+2, ..., My}, and M, is the total number of measurements. Then we can formulate
the ¢, modeling optimization problem
minimize { ) |f] + ). Ifj] }, (12)
i€)y, i€,
where the optimization variables are @, B, @,, ¢, ¢,’§ for k € K, and ¢}§ for k € K,
since @ is required for calculating both dc and ac responses, whereas ¢% is only

required for calculating ac responses.



In order to calculate the model responses, we first solve the nonlinear dc
circuit of the model for @,, ¢* and @, k € K, so that F, if k € K4, can be deter-
mined. If k € K,, ¢.(a,v%) and ¢{a,B,v*) are calculated with v€ obtained from the dc
solution. And then FX(w.), n = 1, 2, ..., N, can be determined.

The derivatives of the error functions required by the optimization can be
obtained by the perturbation method. However, since the equivalent circuit of the de-
vice model is usually not very complicated, it is both feasible and efficient to get them
analytically by adjoint analyses. The details of the analytic derivative calculations are

discussed in Appendix B.

V. SEQUENTIAL MODEL BUILDING

A device model, such as the FET model in Super-Compact [9], may have a
complicated topology and a comprehensive set of possible model parameters. In practice,
we prefer a simplified model, provided that the match between the model responses and
the measurements is satisfactory. It not only simplifies the computation, but also
increases the identifiability.

Approaches have been proposed (e.g., [10-11]) which optimize both the element
values and the model topology. However, the topology optimization part of these ap-
proaches is entirely by trial and error and quite often has no physical justification.

For sequential model building, we start with a simple basic model structure,
and sequentially add parameter(s) that would most effectively improve the match be-
tween the model responses and the measurements, where we assume that a comprehen-
sive model which is physically meaningful is available. The iterative process continues
until the match is satisfactory or no more parameter could be added. In order to find
out the relationship between the model responses and parameters, we have applied the
decomposition approach of Bandler and Zhang [6] to construct a decomposition diction-
ary to identify the interdependency between the model responses and parameters.

Consider a function f j(x) and a parameter x;. A measure of the degree of
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interdependency between x; and f ; can be defined, following [6], as

L afj(xr)
Cij= 21
r=1

xP P (13)
ox;

1
where L is the number of points randomly chosen around x, x{is a scaling factor, and p
can be 1 or 2. (In the example discussed in the next section we will choose p = 1.)

The decomposition dictionary is constructed by further grouping closely related functions

Dy =3 C; (14)
i€l

where J; U J, U ... U J; = J4. U J,., and q is the number of function groups. For ins-
tance, we may designate all the error functions related to the complex S parameter S;;
to one function group. The relative magnitude of D;, indicates the relative degree of
interdependency between parameter x; and the t-th function group.

By virtue of the ¢; optimization algorithm [7], which has the very desireable
feature of isolating large errors among all the error functions, the sequential model
building procedure can practically be implemented: during the modeling process the £,
solution and the corresponding decomposition dictionary at a specific model structure
can indicate the most appropriate element(s) to be included in the model if the match
has not been satisfactory. (See Case 2 of the example in the next section.)

The decomposition dictionary may reveal parameters that are impossible or very
difficult to be identified from the available measurements, i.e, if the dictionary entries
corresponding to a parameter are very small, this parameter may be very insensitive to
any functions. Such parameters could be kept fixed at standard values. They may even
be eliminated from the model if they have little effect on the match between the model

responses and the measurements.

VI. A FET EXAMPLE
Consider again the Materka and Kacprzak model discussed in Section III-B. The

FET equivalent circuit model is shown in Fig. 2(a) and the corresponding small-signal
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equivalent circuit is shown in Fig. 2(b). We use measurements made under three dif-
ferent bias conditions (the same data has been considered by Bandler et al. [12]).

Following the assumptions in [12], we will use the classification of the parame-
ters under Model 1* in Table II, however, we ignore the package parasitics Lpgs Lpas
Cpg and C,4. Since there are three bias points, altogether we have 28 optimization
variables in @,, @, ¢§ and ¢§ for k =1, 2, 3, @ and B. The units of the related para-
meters are listed in Table III.

The error functions are defined according to (7) and (8), where K4, = K, = {1,
2, 3} for three different bias points; Mﬁc = 2 corresponding to the dc measurements on
the gate and source currents; M‘;c = 8 representing the real and imaginary parts of the
S-parameters; and N = 17 representing 17 frequency points from 2GHz to 18GHz, 1GHz
apart. The weighting factors wgcj and w‘;cj are properly chosen to balance the dc and
ac error functions. The total number of nonlinear error functions for this example is
414,

At each bias point, we use Powell’s algorithm [13] to solve the nonlinear dc
equivalent circuit. The adjoint network analysis technique is applied to efficiently cal-
culate the sensitivities of both dc and ac equivalent circuits.

Three cases are discussed as follows. In Case 1, we will show the robustness of
the modeling approach proposed in Section IV. In Case 2, an experiment will be shown
to demonstrate the feasibility of the sequential model building procedure in Section V.
A similar experiment will be discussed briefly in Case 3 with a different scaling factor
in (13).

Case 1: At the starting point, we construct the decomposition dictionary. The scaling
factor x? in (13) for this dictionary is chosen to be x{ which corresponds to the ex-
ponential transformation on the variables used by the optimization. This dictionary
shows very small entries for I, o, I, and a,. An ¢, optimization is performed, fixing
I, = I = 0.5nA, o, = 20V-! and o, = 1V-1, The resulting parameter values are listed
in Table IV. Table V shows the dc responses, and Fig. 4 depicts the ac responses at
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the solution for one bias point.

To check whether we should consider I,, o, I, and o, as variables, we set up
the dictionary at the solution, as shown in Table VI. The fact that the entries for I,
oy, I and o, remain very small confirms the validity of eliminating them as optimiza-
tion variables. As a further verification, we attempted another optimization which in-
cluded all possible variables. As expected, it did not improve the match between the
model responses and the measurements.

The insensitivity of I, a,, I, and a, is, in fact, expected, since it is known
that special bias conditions are needed in order to effectively determine the forward-
biasing and break-down properties of the FET [2].

To test the robustness of our approach, we randomly perturbed the starting point

by 20 to 200 percent and restarted the optimization. All the variables converged to
virtually the same solution.
Case 2: Similar to Case 1, the decomposition dictionaries in this case are constructed by
choosing the scaling factor x? in (13) to be x{ which corresponds to the exponential
transformation on the variables used by the optimization. To demonstrate the feasibility
of the sequential model building procedure, we restart the modeling process with a
simplified model which does not include L, and Ly. Also, Ry, Ry, R;, I, a, I, and o,
are kept constant according to their relatively small entries in the decomposition dic-
tionary. Fig. 5 depicts the model responses and the measurements at one bias point
after the ¢, optimization using this simplified model.

It is obvious from Fig. 5 that the worst match is for S;;. According to the
decomposition dictionary at this stage, as shown in Table VII, the most effective can-
didates for improving the match in S;; are R, and L, because of their larger entries
under S;;. The result of a subsequent optimization which includes Rg and L, as varia-
bles is shown in Fig. 6, from which a significant improvement on the match of S;; can
be observed.

Further steps of sequential model building based on the decomposition dictionary

12



include adding Ry and L4 to improve S;, and eventually converge to the same solution
as in Case 1.

By such a sequential model building, we have obtained a clear view of the rela-
tionship between a model parameter and the model responses, and we have the ability to
avoid possible redundant model parameters. If the match between the model responses
and measurements are sufficiently good, we do not have to include more optimizable
parameters even if there are still some left.

Case 3: We also conducted an experiment where the decomposition dictionary was con-
structed by setting the Scaling factor x? in (13) to 1, which corresponds to the sen-
sitivities of the error functions w.r.t. the actual parameters.

At the starting point, we construct the dictionary with respect to all the possi-
ble variables. The actual variables used first in the optimization are those whose en-
tries in the dictionary are relatively large, and other variables are kept constant. Then
each time when an optimization is completed but the result is not satisfactory, we
check the match between the model responses and measurements, and select new vari-
able(s) according to the updated dictionary which would most effectively improve the
match.

Following such a procedure, results similar to Case 2 were clearly observed.
However, also observed from this experiment is that the parameters first chosen as
optimization variables, i.e., the parameters whose entries are dominant in the decompos-
ition dictionary, appeared to stay quite close to the first solution in the subsequent
optimizations. Therefore, alternative decompositions for the optimization problem could

be investigated.

VII. CONCLUSIONS
By introducing dc constraints and formulating the modeling process as a complete
and integrated optimization problem, i.e., including simultaneously the dc and ac respon-
ses, we have improved the uniqueness and reliability of the extracted model parameters.
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A sequential model building approach has been proposed based on a decomposition dic-
tionary. It can be used to arrive at a suitable compromise between the simplicity and
adequacy of the model.

A powerful ¢, optimization technique, which is essential to the implementation of
the sequential model building, has been employed in our algorithm. All the required
gradients have been provided through efficient adjoint analyses.

Practical FET models have been considered. A FET modeling example using the
Materka and Kacprzak model has been described in detail which clearly demonstrates the
advantages of the new approach.

It should be noted, however, that when dc characteristics are used as constrain-
ts, they should be compatible with the actual device to be modeled, otherwise inappro-
priate dc constraints could cause large intrinsic discrepancies between the model respon-
ses and measurements.

As to the prospects of the approach proposed in this paper, we can see that
¢)) The model parameters extracted can be used directly by the harmonic balance

analysis.

) We can establish a more reliable small-signal model with dc constraints consi-
dered.

3) The approach is applicable to other device modeling problems since it is quite
general.

4 The sequential model building procedure is particulary promising.
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APPENDIX A

VERIFICATION OF THE IDENTIFIABILITY OF THE RC CIRCUIT

The RC circuit under consideration is shown in Fig. 1. Similar to the deriva-
tions in [4], we use the concept of analog circuit fault diagnosis [14] to verify the
identifiability of R;, R, and C in the circuit. Briefly, given a complex-valued vector of
responses h(@) = [hy(®) ... h(@)]T, where ¢ = [¢; ... $,]T, the measure of identifiability
of ¢ is determined by testing the rank of the mxn Jacobian matrix

J = [VhT(@)], (A1)
where V is the partial derivative operator 8/8¢. If the rank of matrix J is less than n,
then ¢ will not be uniquely identifiable from h.
A. Only a dc response: The dc response I is
Vae

I= . (A2)
R; + R,

The corresponding Jacobian matrix is
Jac = [ -Vao/(R1+Rp)?  -V4 /(R1+R,)? ]. (A3)
It is clear that rank J4. = 1. Therefore, R; and R, are not identifiable from
the dc response I. This result is also straightforward intuitively.

B. Only an ac response: The ac response V, is calculate as

Va..R3R3s C
Vz = . (A4)
The corresponding Jacobian matrix
-H[s;C(Ry+R3)+1] H[R,(s;CR3+1)/R,] H[(R;+R,)/C]
Jo= : : : (A5)

-H[s,,C(Ry+Rg)+1]  H[R,(s,,CR3+1)/R,]  H[(R;+R,)/C]
where s;, i = 1, ..., m, indicate different frequencies, and

V..R3R3s C
H =

[SC(R;Ry+R;R3+R,R3)+R +R,
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Denoting the three columns of J,. by J;, J, and J3, we can obtain

(Ry+Rg) Rg C
'———J2+—J1"—_—J3=0 (A6)
R, R, (Ry+R,)
which means that the rank of J,_ is less than 3, no matter how many frequency points
are used. Hence we can not uniquely determine ¢ from the response V,.

C. Combined dc and ac responses: When we consider both dc and ac responses simul-

taneously then, combining (A3) and (AS5), the Jacobian matrix becomes

-Va./(R1+R,)? -V4./(Rj#R,)? 0

J= | -H[s;C(Ry+Rg)+1]  H[R,(s,CRg+1)/R;]  H[(R+R,)/C] (A7)

-H[s,,C(Ry+Rg)+1] H[R,(s,,CRg+1)/R,]  H[(R;+R,)/C]
which is of full column rank. This indicates that ¢ is identifiable from the response h
= [I($) Vy(@.5) ... Va(@.s)IT.

All the three situations discussed above have been numerically proved.
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APPENDIX B

DERIVATIVE COMPUTATIONS OF THE MODEL RESPONSES

For j € Jg. f; is a function of @, ¢lc‘ and @, k € Ky.. The corresponding
of;/0¢,, of j/8¢}§, and of;/0a can be derived by nonlinear dc adjoint analysis [15].
For j € J,., we know that
fj = £(@qr Prr DL BK, D (@,v5), B@,B,¥9), k € K, (B1)

where the true variables are ¢,, ¢, ¢% @K, @ and B, and vk was defined in Section III-

A. Therefore, we can use the chain rule to obtain the required derivatives

of; of; ovkT agkT of;  ovkT agfT of;

—_— — — —_—— — —
0¢y Ody Op, OvE Ok 3¢, vk apk
(B2)
of;  of;
9y Oy
kT kT kT KT
afJ ~ afJ . av 6¢e af'l N v 3¢f 8fj
3¢5 Ot Ofy ovk Oopr agk ovk of
(B3)
of; . of;
agk  99%;
of; opkTof; ovkT agkT of;  o¢fT of;  AvkT agfT of;
—_—= —+ — —_—t— — ¢ — — —
doy Oa; O@X Aoy OvE Ok Aoy APF Ao, OvE g
(B4)

KT
of; 9¢KT of;

9; 9B OPf
where the superscript T stands for transposition, the derivative of f f with respect to ¢,
®p> Do, P;, DX and @Y for k € K, on the right hand side of (B2)-(B4) can be obtained
by standard ac adjoint analysis, while the derivative of vk with respect to @, B, ¢, and

gkfor k € K, can be obtained by nonlinear dc adjoint analysis [15].

18



TABLE 1

DEFINITIONS OF THE MODEL PARAMETERS

Category Notation Brief definition
Bias-independent b, affect dc and ac circuits
(N affect ac circuit
Unconstrained o affect dc and ac circuits on
bias-dependent the kth bias condition
ok affect ac circuit on the kth

bias condition

Constrained o.(a,vk) a affects dc and ac circuits
bias-dependent
o{a,B,v) B affects ac circuit only

vk = v(¢a,¢',§,a) denotes the dc state variables (such as the voltages
and currents) under the kth bias condition.
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PARAMETER DEFINITIONS FOR FET MODELS

TABLE 11

Parameters

Category Subset "

Model 1 Model 1 Model 2

bias- ¢a Rg’ Rd’ Rs, Ri Rg’ Rd Rg’ Rd, l{s

independent

(% Lg, Ly, L. Lpg Lg, Ly, L, Lpg Rins Cys
Lpd’ sz’ de Lpd’ Cpg’ de
Cdg’ dss T T
unconstrained ¢k Rk RE RE,
bias-dependent
¢ Cle. K, ke
constrained b, Gyes 8m Gges 8m 8ds> 8m
bias-dependent
b¢ Ces Ces Cger T
a I, ag, I, o I, o I, @ Ag, Al, A,y Ag
Idss’ g, Vpo’ 9 Idsp ds Vpo’ v Y, ﬂ9 Out
Ry, Ry, Vpo
bi» RF
p CSO’ Vbi Cgo, Vbi VBI’ A5

Notes:

(1) The parameters under Model 1 are defined according to Materka and
Kacprzak [2].

(2) The parameters under Model 1* are the same as those in Model 1 except
that we assume R;, R,, Cd and C4 to be bias-dependent but we do not
enforce their bias- dependent characteristics.

(3) The parameters under Model 2 are defined following the considerations and
the notation of Curtice and Ettenberg [8].

(4) The dc state variables are v = [v, v4 Vig ]JT for the Materka and Kacprzak

model and v = [V;, V., Vdg] for the Curtlce and Ettenberg model.
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TABLE III

UNITS OF THE FET MODEL PARAMETERS

Parameter Unit Parameter Unit
R, 9] I, A
R; 0 a 1/VvV
R4 0 I, A
R, 0 Qg 1/V
Gy 1/9 s A
gm 1 / 0 ad -

Lg nH Vo \'
Ld nH v -
L, nH Ceo pF
Cdg pF Vbl \'
Cds pF

gs pF
T ps
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TABLE IV

PARAMETER VALUES OF THE FET MODEL

Bias 1 Bias 2 Bias 3
Parameter
start  solution start  solution start  solution

Rg’r 1.0 0.0119 1.0 0.0119 1.0 0.0119

Rgt 1.0 0.0006 1.0 0.0006 1.0 0.0006

Gy * 0.0049 * 0.0058 * 0.0063

R; 1.0 3.4731 1.0 42221 1.0 5.5954

R, 1.0 0.5234 1.0 0.3675 1.0 0.2312

L, 0.02 0.0107 0.02 0.0107 0.02 0.0107

Ces * 0.5929 * 0.3992 * 0.3333

Cag 0.07 0.0287 0.07 0.0428 0.07 0.0533

Cas 0.04 0.1958 0.04 0.1917 0.04 0.1905

gm * 0.0569 * 0.0437 * 0.0302

T 7.0 3.6540 7.0 3.6540 7.0 3.6540

Lg 0.01 0.1257 0.01 0.1257 0.01 0.1257

L4 0.01 0.0719 0.01 0.0719 0.01 0.0719
Parameter start  solution

Ties 0.2 0.1888

aq 4.0 3.0523

Vo -4.0 -4.3453

¥ -0.2 -0.3958

Ceo 1.0 0.6137

Vi 1.0 1.3011

See bias conditions in Table V.

+ values may not be reliable as the decomposition dictionary shows weak
identifiability.

* values determined by @, B and dc solution.
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TABLE V

DC RESPONSES AND MEASUREMENTS

Bias 1 Bias 2 Bias 3
DC current
vV, =0V V., =-1.74V V., =-3.10V
gs
Vs, = 4V Vg, = 4V Vo = 4V
Ig, assumed 0.0A 0.0A 0.0A
igs calculated -2.7x10"8A -1.5x10"7A -6.1x10"7A
I3, measured 0.177A 0.092A 0.037A
igs calculated 0.177A 0.092A 0.043A
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TABLE VI

DECOMPOSITION DICTIONARY AT THE SOLUTION

Parameter Igs Ids Sll SZI Slz Szz
Rg 0.00 0.00 0.02 0.01 0.01 0.02
L, - - 15. 3.8 10. .1
Ly - - 0.32 1.6 4.6 9.2
L, - - 091 0.24 16. 0.89
R4 0.00 0.00 0.00 0.00 0.00 0.00
T - - 1.0 6.3 1.5 2.6
Cle - - 1.7 1.7 28. 4.4
cl, . - 036 4. 9.8 16.
Ril 0.00 0.00 1.4 0.54 35 0.16
Rs1 0.00 0.55 0.64 0.39 6.6 0.53
2, - - 34 3.0 21, 6.6
3, - . 080 4.4 9.3 16.
Riz 0.00 0.00 1.6 0.60 2.1 0.24
Rf 0.00 0.15 0.20 0.18 1.8 0.13
ng - - 4.2 33 19. 6.9
Cgs - - 0.94 4.0 9.2 16.
R? 0.00 0.00 2.1 0.61 2.1 0.26
Rf 0.00 0.03 0.07 0.08 0.74 0.09

o]

0.00 0.00 0.00 0.00 0.00 0.00

a, 0.00 0.00 0.00 0.00 0.00 0.00
I, 0.00 0.00 0.00 0.00 0.00 0.00
o, 0.00 0.00 0.00 0.00 0.00 0.00
Iy 0.00 29. 42 33. 18. 42.
ag 0.00 2.8 1.2 12. 11. 25.
Voo 0.00 13. 2.8 26. 12. 28.
” 0.00 4.6 1.4 12. 7.1 19.
Cgo - - 40. 26. 49. 9.9
Vi - - 9.3 5.5 9.7 2.4

The dictionary was set up using 50 random points over a 25 percent range
around the solution point.
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TABLE VII

DECOMPOSITION DICTIONARY AT AN INTERMEDIATE STAGE

Parameter Sll SZI Slz Szz
R, 1.7 0.56 1.2 0.16
L, 1.1 0.27 0.84 0.08
Ly 0.05 0.19 0.65 1.2
Ry 0.07 0.70 1.1 29
Ril 0.48 0.16 0.98 0.05
R? 0.41 0.14 0.51 0.06
Ri3 0.41 0.10 0.39 0.05
I 0.00 0.00 0.00 0.00
a, 0.00 0.00 0.00 0.00
I, 0.00 0.00 0.00 0.00
a, 0.00 0.00 0.00 0.00

Notes:

(1) Only relevant function groups and possible
parameter candidates are listed.

(2) The dictionary is constructed by assuming an
initial value of 0.01nH for L, and L.

3) 50 points and a 25 percent range were used
to set up the dictionary.
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Figure captions:
Fig. 1 Simple RC linear circuit example.
Fig. 2 (a) The Materka and Kacprzak nonlinear FET model [2], (b) the correspond-
ing small-signal equivalent circuit.
Fig. 3 (a)The Curtice and Ettenberg nonlinear FET model [8], (b) the correspond-

ing small-signal equivalent circuit.

Fig. 4 The S-parameter match at the solution of Case 1 for V4, = 4V and V=
ov.

Fig. 5 The S-parameter match at the solution of Case 2 using a simplified model
for V4 = 4V and V= OV.

Fig. 6 The S-parameter match at the solution of Case 2 for V4, = 4V and V, =
0V. R, and L, were included as optimization variables.
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Fig. 1 Simple RC linear circuit example.
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Lpg Ly Rq - Vg Rq Lg Lpd
gate Y AN |- VVA—"Y YY1 gin
+°" N Ilcdg . Y
Vg T-Cys <
13 S l> = Cys
v
R Ve [
Vys = C,, - ;(: Cps Vas
R,
LS
o o
source
(a)
Ly Ly Rq Cag Rs L Lpa
thEmm‘NT_”— W —Y Y Y5 drain
*
- l G,, TC
Ri qnvq% ds ds
‘;: Cpq ;r de
R,
Ls
[ °J
source
(b)
Fig. 2

(a) The Materka and Kacprzak nonlinear FET model [2], (b) the corre-
sponding small-signal equivalent circuit.
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Rg Rd
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+ " +

Rs
source
(a)
R, Cus Ry
qate o Wae I} VVM———odrain

source

()

Fig. 3 (a)The Curtice and Ettenberg nonlinear FET model [8], (b) the corres-
ponding small-signal equivalent circuit.
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Fig. 4 The S-parameter match at the solution of Case 1 for V4, = 4V and Vs =
ov.
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Fig. 5 The S-parameter match at the solution of Case 2 using a simplified model

for V4, = 4V and V, = 0V,
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Fig. 6 The S-parameter match at the solution of Case 2 for V4, = 4V and Ve
ov. R, and L; were included as optimization variables.
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