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Abstract

In this paper, a unified theory for frequency domain simulation and
sensitivity analysis of linear and nonlinear circuits is presented. An elegant
derivation expands the harmonic balance technique from nonlinear simulation
to nonlinear adjoint sensitivity analysis. This provides an efficient tool for
the otherwise expensive but essential gradient calculations in design optimiza-
tion. The hierarchical approach, widely used for circuit simulation, is genera-
lized to sensitivity analysis and to computing responses in any subnetwork at
any level of the hierarchy. Therefore, important aspects of frequency domain
circuit CAD such as simulation and sensitivity analysis, linear and nonlinear
circuits, hierarchical and nonhierarchical approaches, voltage and current exci-
tations, or open and short circuit terminations are unified in this general
framework. Our theory provides a key for the coming generation of micro-
wave CAD software. It will take advantage of the many existing and mature
techniques such as the syntax-oriented hierarchical analysis, optimization and
yield driven design, to handle nonlinear as well as linear circuits. Our novel
sensitivity analysis approach has been verified by a MESFET mixer example

exhibiting 98% saving of CPU time over the prevailing perturbation method.
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I. INTRODUCTION

In this paper, we present a unified approach to the simulation and
sensitivity analysis of linear/nonlinear circuits in the frequency domain. The
linear part of the circuit can be large and can be hierarchically decomposed,
highly suited to modern microwave CAD. Analysis of the nonlinear part is
performed in the time domain and the large signal steady-state periodic ana-
lysis of the overall circuit is carried out by means of the harmonic balance
(HB) method.

The HB method has become an important tool for the analysis of
nonlinear circuits. The work of Rizzoli et al. [1], Curtice and Ettenberg [2],
Curtice [3,4], Gilmore and Rosenbaum [5], Gilmore [6], Camacho-Penalosa and
Aitchison [7] stimulated work on HB in the microwave CAD community. The
excellent paper of Kundert and Sangiovanni-Vincentelli [8] provided systematic
insight into the HB method. Many others, e.g., [9-15], have also contributed
substantially to the state-of-the-art of the HB technique. The first step to-
wards design optimization was made by Rizzoli et al. [1] who used the pertur-
bation method to approximate the gradients. A recent review of this area was
given by Rizzoli and Neri [16].

In our paper, we extend to nonlinear circuits the powerful adjoint
network concept, a standard sensitivity analysis approach in linear circuits.
The concept involves solving a set of linear equations whose coefficient matrix
is available in many existing HB programs. The solution of a single adjoint
system is sufficient for the computation of sensitivities w.r.t. all parameters in
both the linear and nonlinear subnetworks, in the bias circuit, driving sources
and terminations. @ No parameter perturbation or iterative simulations are re-

quired.



To make our theory highly suitable for microwave oriented CAD pro-
grams, we have also developed a hierarchical treatment of the adjoint system
analysis.  Preferred by leading experts, e.g., Jansen [17], and used in circuit
simulators such as Super-Compact and Touchstone, the syntax-oriented hierar-
chical approach has proven very convenient and efficient in analyzing linear
circuits. Our theory further extends such an approach to adjoint sensitivity
analysis.

The sensitivities we propose are exact in terms of the harmonic ba-
lance method itself. Our exact adjoint sensitivity analysis can be used with

various existing HB simulation techniques, e.g., the basic HB [8], the modified

HB [6] and the APFT HB [15]. The only computational effort includes solving
the adjoint linear equations and calculating the Fourier transforms of all time-
domain derivatives at the nonlinear element level. Significant CPU time sa-

vings are achieved over the perturbation method.

In Section II, we define the notation used throughout this paper. In
Section III, the simulation of linear and nonlinear circuits is reviewed under a
general circuit hierarchy. In Section IV, a new and unified treatment to ad-
joint systems for linear and nonlinear circuits is introduced. Novel sensitivity
formulas for nonlinear circuits are derived in Section V. Finally, in Section

VI, a MESFET mixer example is used to verify our theory.

II. NOTATION AND DEFINITION
We follow the notation of [8]. Real vectors containing voltages and
currents at time t are denoted by v(t) and i(t). Capitals V(k) and I(k) are
used to indicate complex vectors of voltages and currents at harmonic k. A
subscript t at Vy(k) indicates that the vector contains the nodal voltage at all
N; nodes (both internal and external) of a linear subnetwork. If there is no
subscript, then the vector corresponds to the port voltages (currents) at all N
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ports of the reduced subnetwork. A bar denotes the split real and imaginary
parts of a complex vector. In particular, V or I are real vectors containing
the real and the imaginary parts of V(k) or I(k), respectively, for all harmo-
nics k, k = 0, 1, .., H-1. The total number of harmonics taken into con-
sideration, including DC, is H. The hat distinguishes quantities of the adjoint
system. For example, gt(k) represents adjoint voltages at internal and exter-

nal nodes of a subnetwork at harmonic k. A detailed definition of the nota-

tion is given in Table I.

III. LINEAR AND NONLINEAR SIMULATION
Circuit Structure

Our exact adjoint sensitivity analysis can be used for hierarchically
structured linear subcircuits.  Consider the arbitrary circuit hierarchy of Fig.
1. A typical subnetwork containing internal and external nodes is shown in
Fig. 2. A general representation of a terminated circuit is depicted in Fig. 3.
An unpartitioned or nonhierarchical approach is a special case of Fig. 1 when
only one level exists.

For a completely linear circuit, the sources and loads are applied at
the highest level of the hierarchy, as depicted in Fig. 3. For a nonlinear
circuit, the linear part of the overall circuit can have an arbitrary hierarchy
as illustrated by Fig. 1 while the nonlinear part is connected directly at the
highest level to the linear part. Therefore, in any case we consider an unter-
minated N-port circuit at the highest level of hierarchy. Such an approach
simultaneously facilitates both the effect of the reference plane in microwave

circuits and the need for the harmonic balance equations.



Hierarchical Simulation of the Linear Network

Hierarchical simulation of linear circuits has been successfully used in
many microwave CAD packages. It is summarized and expanded here into a set
of formulas, enabling voltage responses at any nodes (internal or external) for
any subnetwork at any level to be systematically computed. Firstly, we solve

the terminated circuit at the highest level of the hierarchy using

1 0 Z,k) 0 V (k)
{[ ][ ]Y<k>}v<k>=[ ]
0 Y,k 0 1 I,(k)

where the overall quantity in the curly bracket is an N by N matrix linking

(1)

-

the port voltages V(k) with the external sources for the terminated circuit.
As defined in Table I, Yy (k) and Z (k) are diagonal matrices containing ter-
minating admittances or impedances, respectively, of the circuit shown in Fig.
3. Y(k) is the admittance matrix of the unterminated circuit. Vi (k) and I(k)
denote the voltage and current excitations of the circuit, respectively.  The
solution vector V(k) contains external voltages of the circuit block under con-
sideration. Then, all (both internal and external) nodal voltages Vi) of this

subnetwork can be obtained from the equation

V,(K) 0
A(k) [ ] = [ ] , (2)
1(k) V(k)

where A(k) is the modified nodal admittance matrix of the subnetwork as de-
fined in Table I. I(k) represents currents into the subcircuit through its ex-
ternal ports.

The solution of (2), ie., Vy(k) provides external voltages of all the
subnetworks at the next level down the hierarchy. Therefore, (2) is used
iteratively for the 1Ist, 2nd, ..., levels of the hierarchy until all desired nodal
voltages are found.

Our formulas can directly accommodate both open and short circuit
terminations. For example, a short circuit termination at port 1 simply means
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Z, = 0 in the matrix Z; in (1). An open circuit termination at port ng+2
simply means Y, = 0 in the matrix Y, in (1).
Simulation of Nonlinear Circuits
The frequency domain simulation of a nonlinear circuit is done effec-
tively by the harmonic balance technique [1-16]. The problem is to find a V
such that
FV) S Ty(M) + I V) =0, 3)
where the vectors fL and fNL are defined as the currents into the linear and
nonlinear parts at the ports of their connection. V contains the split real
and imaginary parts of voltages as defined in Table I. The Newton update for
solving (3) is
Voew = Voia = 3 F(Via) , (4)
where J is the Jacobian matrix defined by
T £ (OFT/V)T . ()
The (i, j)th entry of the Jacobian matrix J is the derivative of the ith entry
of F w.r.t. the jth entry of V.
In the context of the overall hierarchical structure, the solution of
(3) provides the external voltages V(k), k = 0, 1, .., H-1 at the highest level
of the linear part. The desired internal and external voltages at all levels of

the hierarchy can be solved by using (2) iteratively.

IV. ADJOINT SYSTEM SIMULATION
Efficient and exact sensitivity analysis can be achieved via solving an
adjoint system. In this section, a new and unified formulation of adjoint sys-

tems for hierarchically structured linear/nonlinear circuits is presented.



Adjoint System for Linear Networks
At the highest level of the hierarchy, the adjoint systems is excited
by a unit source at the output port. Suppose the output voltage Vout can be
selected from V(k) by an N-vector e as
Vout = €TV(K) . 6)
For example, if V., is chosen as the voltage at the first port then the vector
e contains 1 as the first entry and zeros everywhere else. By solving

1 0 Zk) 0 A
{[ :l+[ ]YT(k)}Wk)=e, )]
0 Y,k 0 1

A
we obtain adjoint voltages Wk) at external ports at the highest level of the
hierarchy.  Y(k), Z (k) and Y(k) are the same matrices as used in (1). In

A
order to obtain adjoint voltages Vi(k) at all (both internal and external) nodes

of the circuit block, we solve the equation

A
Vi(k) 0

AT(k)l:A ] = I:A ] 8)
-I(k) -V(k)

where AT(k) is the transpose of the modified nodal admittance matrix of the
subnetwork as used in (2). The solution vector /\\’t(k) provides external
adjoint voltages for all subnetworks at the next level down the hierarchy.
Therefore, (8) can be used iteratively for the lIst, 2nd, ..., levels of the hie-
rarchy until all desired adjoint voltages are found.

Notice that (8) is a convenient formulation of the adjoint system
since the LU factors of A(k) can already be available from solving (2).
Adjoint System for Nonlinear Networks

Suppose V., is the real or imaginary part of output voltage VYout

and can be selected from the voltage vector V by a vector e as
— _T—
Vour =€ V. %)

The adjoint system is the linear equation



A
J'V=e, (10)

where J is the Jacobian at the solution of (3). Notice that V and % are both
2HN-vectors containing the split real and imaginary parts of voltages at the
connection ports of the linear and nonlinear subcircuits. According to our
notation V is defined for the original network and %'— is defined for the ad-
joint network. Also notice that the LU factors of J can be available from
the last iteration of (4). Therefore, to obtain % from (10), we need only the
forward and backward substitutions.

The adjoint voltages can be computed even if the output port is
suppressed from the harmonic equation (3). Although the theoretical derivation
for this case is rather involved, as given in Appendix A, we found a very
logical and easy-to-implement method to handle this situation. First, we com-
pute the adjoint voltages at the external ports of the linear subnetwork. This
can be done by disconnecting the nonlinear part and then solving the linear
part for individual harmonics separately. The resulting vector, denoted by %L,
is then transformed to the actual adjoint excitations of the overall circuit

(including both linear and nonlinear parts) to be incorporated to (10) in place

of e. The final equation takes the form
A A
I v, .

J'V=Y (11)
A

In (11), V and VL have exactly the same dimensions and both repre-

>

sent the split real and imaginary parts of adjoint voltages at the connection
ports of the linear and nonlinear subcircuits. The former is computed from
the overall circuit and the latter is computed from the linear subcircuit only.
Equations (10) or (11) provide adjoint voltages at external ports at
the highest level of the hierarchy. We then use (8) iteratively for the Ist,
2nd, ..., levels of the hierarchy to obtain adjoint voltages at both internal and

external nodes of all subnetworks.



V. SENSITIVITY ANALYSIS
Adjoint System Approach to Sensitivity Evaluation
Let x be a design variable of the nonlinear circuit. Differentiating
(3) w.r.t. x gives
(8F T/aV)T(8V /3x) + (3F /3x) = 0 (12)
or
aV/ax = -J 1(9F /9x) . (13)

where J has been defined in (5). Premultiplying (13) by eT results in

oV, ,/0x = —eTJ (3F /3x)

A
-VT(3F /3x) . (14)

This expression is further simplified by considering the locations of x in F.
Notice that each entry of vector F  corresponds to a port and to a harmonic
of the circuit. Take, for instance, a nonlinear resistor described by i(t) =
i(v(t), x) and connected across the jth port. x enters F at the positions
relating to port j and harmonic k, k = 0, 1, .., H-1, by the Fourier transfofm
of i(v(t), x). In this case, (14) is simplified to

8V 4,/0x = -zk Real [/\\’j(k)G*(k)] , (15)

A
where Vi(k) is the adjoint voltage at the jth port, G(k) is the kth Fourier

coefficient of 8i/8x and superscript * denotes the complex conjugate.
Sensitivity Expressions
Suppose a variable x belongs to branch b. We have derived the

following general formula for computing the exact sensitivity of Vout W.I.L. X,



A
[ -Y Real [V (k) Vi(K)Gp(K)] if x € linear subnetwork (16a)
k
3V°ut A * . .
= 1 -Y.Real [V (k)Gy(k)] if x € nonlinear VCCS or non-
ax k linear resistor or real part (16b)
of a complex driving source
A
-Y Imag [Vi(k)Gy(K)] if x € nonlinear capacitor
k or imaginary part of a (16¢)
L complex driving source.
A
Complex quantities Vy(k) and Vi (k) are the voltages of branch b at harmonic
A

k and are obtained from vectors V. (k) and V(k), respectively. Gy(k) deno-
tes the sensitivity expression of the element containing variable x. For ex-
ample, if x is the conductance of a linear resistor, Gy(k) = 1. If x belongs
to a nonlinear resistor represented by i = i(v(t), x), Gy(k) is the kth Fourier
coefficient of 8i/8x. A list of various cases of Gy(k) is given in Table II.

Our sensitivity formula (16) has no restrictions on the selection of
harmonic frequencies or the time samples. In a multi-tone case, the index k
in (16) corresponds to all the harmonics used in the harmonic equation (3).
When the multidimensional Fourier transform is used, we simply place a multi-
dimensional summation in (16).

Notice that our sensitivity formulas permit variable x to appear in
any subcircuit at any level of the hierarchy since all required voltages can be
calculated as needed.

Comparison with the Perturbation Method

To approximate the sensitivities using the traditional perturbation
method, one needs a circuit simulation for each variable. The best possible
situation for this method is that all simulations finish in one iteration. For
our exact adjoint sensitivity analysis, the major computation, i.e., solving the
adjoint equations, is done only once for all variables. A detailed comparison
reveals that the worst case for our approach takes less computation than the

best situation of the perturbation method. In our experiment, we used only
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1.6% of the CPU time required by the perturbation method to obtain all sen-
sitivities.
Gradient Vector for Optimization

The novel formula (16) can be used as a key to formulate the gra-
dient vectors for design optimization and yield maximization of nonlinear cir-
cuits. Table III lists the gradients of a FET mixer conversion gain w.r.t. vari-

ous variables, expressed as simple functions of dV,,./dx.

VI. EXAMPLES

Example 1: Hierarchical Circuit Description

Many researchers, e.g., [3, 7] have used FET mixer examples to test
harmonic balance simulators. Here, we describe a mixer under the framework
of hierarchical analysis. Such a description fits in with existing commercial
software such as Super-Compact. The overall nonlinear circuit with its biasing
and driving sources is described by a Super-Compact like circuit file as

follows.

* HIERARCHICAL ANALYSIS OF A MESFET MIXER
BLOCK
* INPUT MATCHING AND GATE BIAS SUBNETWORK
IND 3 4 L=15NH
IND 2 3 L=.5NH
CAP 3 0 C=2.2PF
CAP 1 2 C=2.2PF
IND 2 5 L=.55NH
* DEFINE THE SUBCIRCUIT AS A 3-PORT
CKT1: 3PORT 1 4 5
END
BLOCK
* OUTPUT MATCHING AND DRAIN BIAS SUBNETWORK
IND 2 3 L=15NH
IND 1 2 L=1INH
CAP 2 0 C=20PF
CAP 1 4 C=20PF
* DEFINE THE SUBCIRCUIT AS A 3-PORT
CKT2: 3PORT 1 4 3
END
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BLOCK

* THE HIGHEST HIERARCHY
CKT1 1 3 5
CKT2 7 2 4

CAP 6 C=2PF
* A TRANSMISSION LINE BETWEEN PORT 6 0 AND PORT 7 0
MIC 6 7

*  BIAS SOURCES
BIAS 3 V=-.9
BIAS 4 V=8.

* NONLINEAR FET

* NODE NUMBERS REFER TO GATE, DRAIN AND SOURCE
NFET 5 6 0

END

FREQUENCIES

* DEFINE LO FREQUENCY
TONE 1
11GHZ

* DEFINE RF FREQUENCY
TONE 2
12GHZ

END

SOURCES

* DEFINE LO DRIVING SOURCE
TONE 1

POWER 1 0 P=7DBM
* DEFINE RF DRIVING SOURCE
TONE 2
POWER 1 0 P=-15DBM
END

The LO and RF input matching and the gate bias circuits are analyzed separa-
tely in subnetwork CKTI. The IF output matching and drain bias circuits are
analyzed in subnetwork CKT2. These subnetworks are then connected to a
higher level of the hierarchy formulating an unterminated circuit block. This
circuit block is then connected to nonlinear device ports. Using formulas
developed in Sections III and IV, we are able to hierarchically simulate the
original circuit as well as the adjoint circuit. This is a direct realization of
the syntax-oriented step-by-step topological description [17], permitting the
sensitivity analysis of a large circuit to be performed by solving a set of small

original and adjoint systems.
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Example 2: Simulation and Sensitivity Analysis of a MESFET Mixer

The MESFET mixer example reported in [7] was used to verify our
theory. Figs. 4 and 5 show the large-signal MESFET model and the DC chara-
cteristics of the device. The frequencies are fy o = 11 GHz, fgp = 12 GHz
and fip = 1 GHz. The DC bias voltages are Vgg = -0.9 V and Vpg = 3.0 V.
With LO power Po = 7 dBm and RF power Pgr = -15 dBm, the conversion
gain was 6.4 dB. 26 variables were considered including all parameters in the
linear as well as the nonlinear parts, DC bias, LO power, RF power, IF, LO
and RF terminations. [Exact sensitivities of the conversion gain w.r.t. all the
variables are computed using our novel theory. The results were in excellent
agreement with those from the perturbation method, as shown in Table IV.
The circuit was solved in 22 seconds on a VAX 8600. The CPU time for sen-
sitivity analysis using our method and the perturbation method are 3.7 seconds
and 240 seconds, respectively.

The dangling node between the nonlinear elements Cgs and R;, a case
which could cause trouble in HB programs, is directly accommodated in our
approach.

We have plotted selected sensitivities vs. LO power in Fig. 6. For
example, as LO power is increased, conversion gain becomes less sensitive to

changes in gate bias Vgg.

VII. CONCLUSIONS
This paper presents a unified theory for frequency domain simulation
and sensitivity analysis of linear and nonlinear circuits. Our formula (16a)
encompasses the adjoint network approach in the frequency domain [18,19], a
standard for exact sensitivity analysis of linear circuits, as a special case.
Since the simulation of nonlinear circuits is expensive, gradient approximations
for nonlinear circuits using repeated simulation is very costly. Consequently,
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the adjoint sensitivity analysis becomes far more significant for nonlinear
circuits than for linear ones.

The hierarchical approach widely used for circuit simulation is gene-
ralized for sensitivity analysis and for computing responses in any subnetwork
at any level of the hierarchy. Therefore, important aspects of frequency do-
main circuit CAD such as simulation and sensitivity analysis, linear and non-
linear circuits, hierarchical and nonhierarchical approaches, voltage and current
excitations, or open and short circuit terminations are unified in this general
framework.

Our theory provides a key for the coming generation of microwave
CAD software. It can take advantage of many existing and mature techniques
such as the syntax-oriented hierarchical analysis, optimization and yield driven
design, to handle linear as well as nonlinear circuits.

Our novel sensitivity analysis approach has been verified by a
MESFET mixer example exhibiting 98% saving of CPU time over the prevailing

perturbation method.
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APPENDIX A

Derivation of Equation (11)

Suppose

Vo =e.V,. (A1)
The harmonic balance equations can be formulated w.r.t. all nodes of the cir-
cuit, i.e., without suppressing the internal nodes in a single level description
of the circuit. In such a case the Jacobian matrix J, can be defined similarly
to (5), and
J,=Y,+ QDTPT (A2)
where D is a 2HN x 2HN matrix representing the contribution to J from non-
linear components, i.e.,
J=Y+DT, (A3)
Matrices P and Q are 2HN; x 2HN incidence matrices containing 0’s and #1’s.
Let
T=Y,. (A4)
Similarly to (9) and (10), based on (Al) the adjoint voltages at both internal

and external nodes can be computed as

AVt £A0) %, = (T + PDQT) %G, . (A5)
Applying the Householder formula [20] to (A5) we have
%t =T %, - TP 0"+ QT 'p) 1QTT %, . (A6)
Notice that
X )y'=QTrlp. (A7)
Let
X=Y", (A8)
V.- Q' s, . (A9)

Premultiplying (A6) by QT gives
La 2 2 -1,..-1 -1-1S
VEQTv, =V, -X"' (D +X ) V. (A10)

Again, using the Householder formula [20],
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Ot+xHox-x+ X)X (A11)

and substituting (A3) and (A8) into (A10) we get

or

[1]

[2]

31

[4]

3]

[6]

(7]

(8]

9]

[10]

A A
V=0V, (Al12)

A
IV =Y, . (A13)
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TABLE I

NOTATION AND DEFINITION

Notation Definition

N, total number of nodes (internal and external) of a
linear subnetwork.

N number of circuit nodes (or ports) used in harmonic
analysis. Also, it is the number of external nodes
for a typical subnetwork of Fig. 2.

H number of harmonics, including DC.

k harmonic index. k = 0 for DC, k = 1 for the
fundamental harmonic, k = 2, 3, ..., H-1 for other
harmonics.

Ve (k), I (k)

V(k), I(k)

Y, (k)

Y(k)

complex N, -vectors indicating kth harmonic voltages
or currents at all nodes (both internal and
external) of a linear subnetwork.

complex N-vectors indicating kth harmonic voltages
or currents at all external nodes of any linear
subnetwork (at the highest level of hierarchy the
nodes or ports at which the harmonic balance equa-
tions are formulated).

real 2HN,-vectors containing real and imaginary
parts of V. (k) or I, (k) at all harmonics k, k = 0,
1, ..., BH-1.

real 2HN-vectors containing real and imaginary
parts of V(k) or I(k) at all harmonics k, k = 0, 1,
., H-1.

N, by N, matrix representing the unreduced nodal
admittance matrix of a 1linear subnetwork at
harmonic k.

N by N matrix representing the reduced nodal
admittance matrix of a 1linear subnetwork at
harmonic k.
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TABLE I (continued)

NOTATION AND DEFINITION

Notation Definition

?t 2HN, by 2HN, real matrix obtained by splitting the
real and imaginary parts of Y, (k) for all harmonics
k, k=0,1, ..., H-1.

Y 2HN by 2HN real matrix obtained by splitting the
real and imaginary parts of Y(k) for all harmonics
k, k=0,1, ..., H-1.

3; 2HN, by 2HN, real matrix representing the Jacobian
defined in (A2).

J 2HN by 2HN real matrix representing the Jacobian
defined by (5). The internal nodes of the linear
subcircuit are suppressed.

e, 2HN, real vector selecting the output voltage from
the vector V, .

e 2HN real vector selecting the output voltage from
the vector V.

A(k) Y, (k) -U where U is 0

Ut ] 1
and 1 is an N by N identity matrix.

Z, (k) ng by ng diagonal matrix whose diagonal entries are
the terminating impedances Z,, i =1, 2, ..., ng .

Y, (k) n; by n; diagonal matrix whose diagonal entries are
the terminating admittances Y,, 1 =1, 2, ., Np.

vV, (k) ng -vector containing voltage excitations E;, i =1,
2, ..., ng.

I, (k) ny -vector containing current excitations I ;, i =

1, 2, ..., n.
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TABLE II

SENSITIVITY EXPRESSIONS AT THE ELEMENT LEVEL

Type of Element” Expression for G, (k) Applicable

Equation
linear conductor G 1 (16a)
linear resistor R -1/R? (16a)
linear capacitor G Jw (l6a)
linear inductor L —1/(jkaF) (16a)
nonlinear VCCS or [kth Fourier coefficient (16b)
nonlinear resistor of 8i/98x]

described by
i=1i(v(t),x)

nonlinear capacitor w, [kth Fourier coefficient (l6c)
described by of dq/9x]

q = q(v(t),x)

current driving 1 (16b) or (l6c)?
source

voltage driving 1/(source impedance) (16b) or (léc)*
source

*

the element is located in branch b and contains the variable x.

+ (16b) is used if x is the real part of the driving source.

(l6c) is used if x is the imaginary part of the driving source.

wy 1s the kth harmonic frequency used in the harmonic equation (3)
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TABLE III

GRADIENTS OF MIXER CONVERSION GAIN

Variable x Gradient Expression
RF power ¢ Real{(dV,,:/3%)/Vo,e) — 1
R, (fxf) ¢ Real((dV,,/0%)/Vo,t} + ¢/(2R, (£f35))
Ry (f1g) c Real{(dV,,./0%)/V,,¢

- 1/(Ry(f15) + JX3(£15))) + /(2R (£1))
Xy (£15) ¢ Real{(8V,,+/8%)/Vy,¢

3/ Ry (frp) + jX3(£15)))

any parameter Real{(dV,,4/93%) /Vy¢ )

other than above

(¢]

c = 20/4nl0

R and X represent the real and the imaginary parts of the impedance
terminations, respectively. Subscripts g and d represent the gate and
the drain terminations, respectively.

complex quantity 48V,,,/8x is obtained by solving (9), (10) and (16)
twice, once for the real part and the other for the imaginary part.
The LU factors of J and the Fourier transforms of element sensitivi-
ties are common between the two operations.
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TABLE IV

NUMERICAL VERIFICATION OF SENSITIVITIES OF THE MIXER

Location of Variable Exact Numerical Difference
Variables Sensitivity Sensitivity (%)
linear Cyqs 2.23080 2.23042 0.02
subnetwork Cga —29.44595 -29.44659 0.00
Cqe 0.00000 0.00000 0.03
R, 3.17234 3.17214 0.01
R4 6.42682 6.42751 0.01
R, 11.50766 11.50805 0.00
Rye -0.02396 -0.02412 0.66
L, -0.50245 -0.50346 0.20
Ly -0.20664 -0.20679 0.07
L, 1.15334 1.15333 0.00
nonlinear Ceso -6.17770 -6.17786 0.00
subnetwork” T 0.49428 0.49414 0.03
v, -20.85730 -20.85758 0.00
Voo -26.48210 -26.48041 0.01
Viss 0.01064 0.01028 3.33
Iisp 9.93696 9.93680 0.00
bias and Ves -31.62080 -31.62423 0.01
driving Vps -2.17821 -2.17823 0.00
sources P o 2.76412 2.76412 0.00
-0.05401 -0.05392 0.16
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TABLE IV (continued)

NUMERICAL VERIFICATION OF SENSITIVITIES OF THE MIXER

Location of Variable Exact Numerical Difference
Variables Sensitivity Sensitivity (%)
termina- R, (£f10) 0.06671 0.06657 0.22
tions

X, (f10) 0.37855 0.37854 0.00
R, (fx¢) 0.78812 0.78798 0.02
Xg(fRF) 0.45120 0.45119 0.00
Ry (£15) 0.71451 0.71436 0.02
X4 (£15) 0.10886 0.10871 0.14

Nonlinear elements are characterized by
Ces (V1) = Cygo / J1-vy/V,,
Ri(vl)Css(vl) =7
and the function for i (v,, v,) is shown in Fig. 5, whose

mathematical expression is consistent with [7]. Voo Voo Vass
and I;,, are parameters in the function i (v,, v,).
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Z,
E, Y1 Ls1
Z,
E untermir!ated Y, I
2 circuit s2
ZnE
EnE Ynl Isn|
Fig. 3 A representation of a terminated subnetwork. Both current and

voltage sources can be accommodated. The overall port sequence is
such that ports 1, 2, .., ng correspond to voltage sources and ports
ng+l, ng+2, .., ng+np correspond to current sources. The total num-
ber of ports is N, i.e., N = ng+n;.
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The DC characteristics of the MESFET model.
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Fig. 6 Sensitivities of conversion gain w.r.t. bias voltages as functions of LO
power.

29



o |

O |

+ 0O

y —

— O

+ O



R Ld Lpd
+ +
v = Cds
WD i Id
<©w = OD@ 1 - HAUDQ Vds
Rs
Ls
o o

source



Lpg  Lg
T Cpg

sT Cds

|
Pr—
v
G)
Q.
i
|

MWTNM @3(@

—

source



gate o

o
source



qgate o——AN | VA
I_l
Vin | O3
2 <v N@%NE% Cds
TNED @a<5

Rs

source

o drain



