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Abstract A highly efficient approach to quadratic approximation of circuit responses is
presented. Because it uses a fixed pattern of base points, this approach requires
extremely small amounts of CPU time and storage space. Using this approach, a major
obstacle for the traditional quadratic approximation to deal with large problems, namely,
the prohibitive requirement for storage and computational effort, is effectively
eliminated. The accuracy and efficiency of this quadratic approximation approach are

strongly demonstrated by results of two statistical circuit design examples.
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I. INTRODUCTION

In order to make existing statistical circuit design methods more practically
usable, many approaches have been devised to reduce very costly computational effort
by approximating acceptable regions or circuit responses. Quadratic approximation has
proven suitable and successful [1-4]. However, the determination of a quadratic model
itself for a problem with a larger number of variables may be too expensive.

For a circuit with 50 elements, the number of coefficients in the quadratic
model is 1326. The calculation of the coefficients in a traditional manner involves
1326 circuit simulations and solving a linear system with 1326 equations. Besides all
coefficients, the matrix of the linear system requires storage of a 1326 by 1326 array.
Determining a quadratic approximation to the response of this circuit creates quite a
large problem in the terms of computer time and storage, although the circuit itself may
be of a moderate scale. Therefore, for large scale problems the traditional approaches
that aim to obtain unique quadratic models do not effectively reduce computational
costs.

Biernacki and Styblinski [4] introduced the concept of the maximally flat
interpolation and presented an updating algorithm. The most significant property of
their approach is that the method allows the number of actual circuit simulations
required for an accurate model to be much less than that needed for a full unique
quadratic approximation. However, the computational requirement of the method,
especially storage space, is still high.

In this paper we substantially enhance the maximally flat quadratic
interpolation. Our approach makes use of a fixed pattern of points at which simulation
is performed, resulting in very low computational requirements for both CPU time and
storage. The basic concept is reviewed in Section II. Our new approach is described in
Section III. Two examples of circuit statistical design are given in Section IV. Finally,

Section V contains the conclusions.



II. THE BASIC CONCEPT OF THE MAXIMALLY FLAT
QUADRATIC APPROXIMATION

A quadratic model in polynomial form to be used to approximate a given

function f(x), x = [x; X, . . . x,]T, can be written as
n n
a(x) =32y + Y ax; - 1) + 3, a(x; - r)(x; - 1)), (1)
i=1 j,i=1
j2i
where r = [r; 1, . . . 1,]T is a known reference point. The form of the quadratic

function used is similar to that of [4]. However, q(x) is defined here w.r.t. the
reference point r rather than w.r.t. the origin. Note that the subscript notation is such
that each coefficient can be easily identified with its corresponding x term, e.g., ay; is
the coefficient of (x; - r)(x; - r;)). Determining a quadratic model is equivalent to
determining all its coefficients, which are now unknowns in (1).

Suppose that m (m > n + 1) evaluations of f(x) are performed at some points
xi, i=1,2,... m These points are called the base points. Using f(x!), we set up a

system of linear equations

Qi Qu2 a f,
= , ()

Q21 Qz v f,
where a and v are arranged to have the following orders: a = [ag a; a, . . . a,]T and v
= [aj; a3 . . . 2y, 355 233 . . . an_l'n]T, respectively. The vectors f; and f, are of

dimensions (n + 1) and (m - (n + 1)), respectively. They contain function values f(x%).

The matrix Qj;, i, j = 1, 2, is determined by the coordinates of the base points and of

r.
Similarly to [4], the reduced system with variables v is obtained as
Cv=e, 3)
where
C = Qy; - Q;;Qi1Qy, “4)
and
e = f, - QQiif;. (5)
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If m < (n+ 1)(n + 2)/2, the above system is under-determined.
When the least squares constraint is applied to v, the unique solution to (3)
can be found as
v = CT(cCT) e (6)
and a is readily obtained as
a = Qjif; - QiiQy,. Q)
Then v, called the minimal Euclidean norm solution of (3), and a give the maximally flat
quadratic interpolation in the form of (1) to f(x). The term of the maximally flat
quadratic approximation comes from the mechanism of the least squares constraint that

forces the second order derivatives to be as small as possible.

III. APPROACH USING A FIXED PATTERN OF BASE POINTS

In the original scheme of [4] all base points are randomly selected. This type
of selection allows certain freedom. However, matrices Q;1Q,, and C have to be stored
in two arrays with dimensions (n + 1) x n(n + 1)/2 and (m - (n + 1)) x n(n + 1)/2,
respectively. For a circuit with 50 variables and an m equal to 500, the required
storage consists of two arrays of 51 by 1275 and 449 by 1275. Meanwhile, some fairly
complicated calculations are required, as shown in (4)-(7) where matrix multiplication
and matrix inversion, or equivalent calculations, are involved. Here, we shall propose a
new approach which is based on a fixed pattern of base points. The regularity of the
pattern will greatly reduce storage and simplify the calculation of coefficients.

In our approach, only m (n + 1 < m < 2n + 1) base points are used. The
reference point r is selected as the first base point x!. The next n base points are
determined by perturbing one variable at a time around r, i.e.,

xX*l=r+[0...080...0]T, i=1,2,...n, 8)
where B; is a predetermined perturbation. It can be shown that the first (n + 1) base

points lead to very simple forms of matrices Q;! and Q;1Q,,. They are



1 0 .. 0

“1/8y 1/By
Qit=| - -0 ©)
. 0 .
-l/ﬁn l/ﬂn
and
o . . . 0|
8y |
Qifep=| " ol (10)
0 |
Ba |

Because of this simple pattern they need not be stored in matrix form.

After the first (n + 1) base points, the remaining (m - (n + 1)) points follow
to provide the second order information on the function. Similar to the base points
defined in (8), the consecutive base points are selected by also perturbing one variable
at a time. For simplicity, these base points are determined by perturbing r
consecutively, that is

XM =4 [00...00...0T, i=1,2,... k, (11)
where 7; is another perturbation of r;, which must not equal B;, and k equals (m - (n
+ 1)). Under this arrangement matrices Q,; and Q,, have very regular structures.

Substituting Q,; and Q,, into (4), the matrix C takes a concise analytical form

_('11"/91)'71

|
|
|

c= (=B : 0 (12)
' |
|
|

B ('Yk':ﬁk)’Yk

and the vector e can be expressed by



[ 1-71,/B1 11/B1 | ]
1-7,/B, Y2/ B |
. . 0 |
|

e=1, - l"y.i/ﬂi 'y;/ﬂi : 0 |f,. (13)

. . |
. 0 .

| 1-7/Bx Mo/ By | _

Substituting (12) and (13) into (6), the coefficients are determined by
3 = ([fx™1) - f(xN)]/; - () - £xDY/BY/ (% - B),i=1,2,.. ..k, (142)
3; =0, i=k+1,...,n, (14b)
and
a;=0, i#j, ,j=1,2,...,n (14¢)
The coefficients a; and a; are easily obtained as
ag = f(x1), (15a)
and
a; = [f(x*1) - f(x1)1/8; - B, i=1,2, ..., n (15b)

In our approach storage is reduced to a minimum. Only the (m - 1) perturba-
tions and the m function values need be stored. Our approach does not require any
matrix manipulations. All calculations are simplified to (14) and (15). The operational
count to calculate all coefficients using this pattern can be merely (n + 3k). This
varies linearly with the number of variables. For a circuit with 50 elements and m
chosen to be 101, only 200 multiplications are needed.

The maximally flat quadratic interpolation, using a fixed pattern of base points
defined here, has an interesting property. All the coefficients of the mixed terms, aj;
for i # j, are conveniently forced to be zero because no related information can be
extracted from the fixed pattern. Any of the a;’s in (14a), i < k, can be nonzero be-
cause double perturbations are made along a straight line parallel to the ith axis. If a
third perturbation is made along the same line, it can be shown that the C matrix will
not have full row rank, and, therefore, the third perturbation does not provide any
extra useful information for the quadratic model.
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IV. EXAMPLES
A. Design of an 11 Element Low-Pass Filter

We have tested our method within the framework of a circuit design program,
which uses a general-purpose simulator and the generalized 4 centering approach [5] to
perform statistical design. For the quadratic approximation, the individual circuit
responses are chosen as the functions to be approximated. The reference point is
defined as the nominal point. At each iteration of optimization, a set of quadratic
models is built. The models are evaluated for all outcomes, namely, the statistically
sampled circuits. The objective function is calculated from the resulting approximate
error functions.

A low-pass ladder filter with 11 elements [6,7], shown in Fig.l, was used as an
example. The upper specification was 0.32 dB at (0.02, 0.04, ..., 1 Hz), and the lower
specification 52dB at 1.3 Hz, on the insertion loss. A tolerance of 1.5% was assumed
for all elements. Outcomes were uniformly distributed between tolerance extremes. The
starting point was the result of a synthesis procedure [6].

Results and comparisons are given in Table I. Two approaches to calculate
circuit responses, namely actual circuit simulation and our approximation method, were
utilized in the two designs. Each design consisted of two successive centering processes
shown as phase 1 and phase 2 in Table I. Two phases of design with actual simulation
took approximately 96.2 and 62.4 minutes on the VAX 8600 and required 48000 and 31200
circuit simulations, respectively. Achieved yields were 61.7% and 63.7%, respectively.
Two phases of design with our approximation method used only 2.5 and 3.9 minutes on
the VAX 8600 to reach 70.2% and 79.7% yields, respectively. Only 529 and 828 actual
circuit simulations were required. For this example, our method not only presented
greatly reduced computational effort as compared with the actual simulation approach,

but also reached a higher final yield.



B. Design of a 5 Channel Microwave Multiplexer

This example is a 5-channel 12 GHz contiguous band microwave multiplexer
consisting of multi-cavity filters distributed along a waveguide manifold [8]. Fig. 2
illustrates the equivalent circuit of the multiplexer. Tuning is essential and expensive
for multiplexers to satisfy the ultimate specifications. The goal of this design is to
ease the tuning process.

In order to take the appropriate tolerances into account, specifications were
chosen to be 10dB for the common port return loss and for the individual channel
stopband insertion losses, resulting in 124 nonlinear constraint functions. Design
variables included 60 couplings, 10 input and output transformer ratios and 5 waveguide
spacings. Tolerances of 5% were assumed for the spacings, and tolerances of 0.5% for
the remaining variables. The starting point was the solution of the conventional
minimax nominal design w.r.t. specifications of 20dB. The corresponding responses are
shown in Fig. 3. The estimated yield w.r.t. specifications of 10dB at this point was
75%.

Yield optimization was carried out on the CRAY X-MP/22 using the generalized
¢, centering algorithm [5], our approximation scheme and utilizing a multiplexer
simulation program [8]. The process consisted of 4 phases as shown in Table II. At
the beginning of each phase, a set of quadratic models corresponding to 124 responses
was constructed. These models were used for all outcomes in the phase. This is
different from the first example where the quadratic models were rebuilt at each
optimization iteration.

Four phases took totally 69.5 seconds on the CRAY X-MP/22 to reach a 90%
estimated yield. This approach allowed us to handle this large optimization problem
(with 75 toleranced variables, 124 constraints and up to 200 statistically perturbed
circuits) in acceptable CPU time. At the solution, the return losses of 3000 outcomes
and of satisfactory outcomes are contained within the envelopes in Figs. 4 and 5,

respectively.



V. CONCLUSIONS

In this paper we have presented a highly efficient quadratic approximation
technique. The new approach takes advantage of the maximally flat interpolation and
of a fixed pattern of base points, thus substantially reducing the computational effort.
A set of extremely simple formulas to calculate model coefficients has been derived.
The elegance of this approach is its conciseness and applicability. The very strong
impact of our approach on the feasibility of statistical design of larger circuits should
not be underestimated. From the results of two examples of statistical design, very
high efficiency and the capability of handling large problems have been proven. It
should also be noted that our approach is suitable for a large variety of applications

where a large number of expensive simulations is involved.
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TABLE 1

COMPARISON OF STATISTICAL DESIGN OF A LOW-PASS

FILTER WITH AND WITHOUT QUADRATIC APPROXIMATION

Actual Circuit

Maximally Flat

Component Nominal Simulation Approximation
X; Design - === - e
x0 Phase 1 Phase 2 Phase 1 Phase 2
x! x2 x3 x?
Xy 0.22510 0.22572 0.22512 0.22266 0.21669
Xg 0.24940 0.24903 0.24944 0.25045 0.25131
Xg 0.25230 0.25269 0.25276 0.25268 0.25083
X4 0.24940 0.24908 0.24882 0.25028 0.24067
Xg 0.22510 0.22568 0.22594 0.22335 0.22120
Xg 0.21490 0.21589 0.21658 0.22163 0.23347
X7 0.36360 0.36313 0.36275 0.36291 0.37008
Xg © 0.37610 0.37625 0.37698 0.37938 0.37217
Xg 0.37610 0.37633 0.37561 0.37156 0.38529
X10 0.36360 0.36313 0.36305 0.36226 0.37232
X11 0.21490 0.21587 0.21674 0.22168 0.21893
Yield" 54.0% 61.7% 63.7% 70.2% 79.7%
Yield"™* 54.0% 74.0% 84.5%
No. of Outcomes 200 200 200 200
Used for Design
Starting Point x0 x! x0 x3
No. of Simulations 48000 31200 529 828
No. of Iterations 9 7 10 19
CPU Time(VAX 8600) 96.2min.* 62.4min.* 2.5min. 3.9min.
CPU Time(MircoVAX) 481min. 312min.  12.3min. 19.5min.*

CPU times do not include yield estimation based on actual simulation.

* The yield is estimated by actual simulation and using 1000 samples.

** The yield is estimated by maximally flat approximation and the
actual outcomes used for design.

+ The CPU time is approximately given by assuming that the speed
ratio of VAX 8600 to MicroVAX is 5.
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TABLE 11

STATISTICAL DESIGN OF A 5-CHANNEL MULTIPLEXER

USING QUADRATIC APPROXIMATION

Phase 1 Phase 2 Phase 3 Phase 4
Initial * 75.0% (81.0%) (84.3%) (90.0%)
Yield ** 56.3% 69.0% 69.3% 92.0%
Final * 81.0% 84.3% 90.0% 90.3%
Yield *#* 77.3% 77.3% 91.3% 94.0%
No. of Outcomes 50 100 150 200
Used for Design
No. of Iterations 4 6 6 4
CPU Time 16.5s 17.6s 17.8s 17.6s

(CRAY X-MP/22)

CPU times do not include yield estimation based on actual simulation.

All yields are estimated using 300 samples.
* The yield is estimated by actual simulation.
** The yield is estimated by maximally flat approximation.
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Figure Captions

Fig 1.

Fig 2.

Fig 3.
Fig 4.

Fig 5.

The LC low-pass filter [6,7].

The equivalent circuit of a 5-channel multiplexer. In the ith channel, V; is the
output, Z; denotes the multi-coupled cavity filter, I, symbolizes the 1mpedance
inverter, ni and nl are the input and output transformer ratios, Y, and Y}
represent the non-ideal series junction susceptances, and £ stands for the
waveguide spacing.

Optimized return and insertion loss vs. frequency for the 5-channel multiplexer.
The envelope containing return loss responses of all 3000 Monte-Carlo samples.

The envelope containing return loss responses of acceptable circuits among 3000
Monte-Carlo samples.
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Fig. 2
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Fig. 3
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