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ABSTRACT

A robust approach to model parameter extraction is pre-
sented. This approach utilizes multi-bias measurements and dc
device characteristics. Novel automatic decomposition concepts
for large-scale optimization are used to detect possible model
topology deficiencies. Powerful ¢, optimization is employed
with adjoint analyses for both dc and ac sensitivities.

INTRODUCTION

This paper describes a robust approach which substantially
expands the multi-circuit algorithm introduced in [1-2]. It also
exploits the automatic decomposition concepts for large-scale
optimization proposed in [3].

Conventionally, we seek a set of model parameters which
minimizes the difference between the model responses and the
measurements. To alleviate indeterminacy as well as for sim-
plicity, techniques have been implemented (e.g., [4-5]) which
separate the dc, low- and high-frequency measurements and
divide the model parameters into corresponding subsets. Such a
sequential decoupling approach may not be reliable: parameters
determined solely from dc measurements may not be suitable
for the purpose of microwave simulation, and the information
contained in rf measurements is not fully utilized.

The multi-circuit algorithm [1-2] can improve the unique-
ness of the solution by simultaneously processing multiple sets
of S-parameter measurements made under different bias condi-
tions. However, model parameters were assumed to be either
completely bias-independent or arbitrarily bias-dependent.

Our new approach not only attempts to match dc and ac
measurements simultaneously, but also employs the dc charac-
teristics of the device as constraints on the bias-dependent
parameters. These constraints reduce the degrees of freedom
in modeling, thus improving the uniqueness and reliability of
the solution.

Bandler and Zhang {3] have proposed a decomposition dic-
tionary to reveal the interdependency between model responses
and model parameters. We exploit such a dictionary to examine
a sequence of increasingly more complex models. We start with
the simplest model, subsequently adding elements according to
the dictionary for a better match between the model responses
and the measurements.
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¢, optimization is highly favored for device modeling [1].
We have integrated a powerful ¢, algorithm [6] into our new
approach. To provide gradients efficiently, adjoint analyses are
performed to obtaining both dc and ac sensitivities.

MULTI-BIAS FORMULATION WITH DC CONSTRAINTS

Consider a device model with its equivalent circuit. The
model parameters are classified as bias-independent, uncon-
strained bias-dependent, and constrained bias-dependent. We
also separate the parameters that appear in both dc and ac
(small-signal) models from those appearing only in the ac
model. Therefore, we define six subsets of model parameters
denoted by @,, @y, D, Dy, P, and @, respectively. @, and @,
are bias-independent; ¢. and ¢, are unconstrained bias-depen-
dent; ¢, and ¢; are bias-dependent and constrained by the dc
characteristics of the device. ¢, and ¢, appear in both the
dc and ac models, whereas ¢, and @4 affect only the ac small-
signal equivalent circuit.

We use superscript k to indicate a different bias point and
the corresponding model. Therefore, ¢¥, @%, @& and ¢¥ belong
to the model under the kth bias, whereas ¢, and ¢, remain
unchanged for the different bias points.

We express the functional dependency of ¢, and ¢; on the
bias by ¢k = ¢ (a,v%) and ¢f = @«B.v*), where a and B are
the coefficients of the constraints, and v¢ = vw(¢,, ¢% @)
denotes the dc state variables (such as the voltages and curr-
ents of the dc circuit). The constraints on ¢¥ and @¥ may be
derived from physical characteristics of the device. They may
be introduced empirically to simulate the dc characteristics.
These constraints reduce the degrees of freedom in modeling,
since the number of variables in this group, namely a and B,
does not increase when more bias points are used. @ is part of
the dc equivalent circuit but g is not.

Assume that the dc and ac measurements and the corres-
ponding model responses are S§. and Sk(w,), F% and
FX (w,), respectively, where

F& = Fa (@, 9% a), W
FX(wy) = Fo(@,, Bp, 05 @5, @a.v5), 0B wy),
and w,, n=1, 2, .., N, is a set of frequency points. Thus, the
error functions can be expressed as
ek = Whi(F5; - SKj), i=1.2,...MK, k=1,2,. K,
ek j(wy) = WE(FE (wy) - Skej(wy)) )

j=1,2,...M%, n=1,2,... N, k=1,2,.. K,
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where MY and MY, are the numbers of dc and ac measure-
ments taken at the kth bias point, respectively. K is the total
number of different bias points. w; and wk,; are weighting
factors.

To obtain a uniform set of error functions, we define

f; = ef;, i=1.2,..M%, k=1,2,..K, i€y, 3
f; = ek (@), j=1,...ME, n=1,..N, k=1,..K,ieJ,,

where Jy. and J,. are sets containing unique indices for f.
Then we can formulated the £, modeling optimization problem

(Y + 36D

i€l iel,e

minimize “)
®..01. 05 95.2.8
To calculate the model responses, we first solve the non-
linear dc circuit, and then, with known @.(a,vk) and @«(B,v¥),
solve the linear ac circuit. The derivatives of the error func-
tions can be obtained efficiently by adjoint analyses of both
the dc and ac circuits.

SEQUENTIAL MODEL BUILDING

A device model, such as the FET model in Super-Compact
[8], may have complicated topology and a comprehensive set of
possible model parameters. In practice, we prefer a simplified
model, provided the match between the model responses and
the measurements is satisfactory. It not only simplifies the
computation, but also increases the identifiability.

Approaches have been proposed (e.g., [9]) which optimize
both the element values and the model topology. However, the
topology optimization part of these approaches is entirely by
trial and error and quite often has no physical justification.

For sequential model building, we apply the approach of
Bandler and Zhang [3] to construct a decomposition dictionary
to identify the interdependency between the model responses
and parameters.

We start with a basic model structure, and sequentially
add parameter(s) that according to the decomposition diction-
ary would most effectively improve the match between the
model responses and the measurements. The decomposition
dictionary may also reveal parameters that are impossible or
very difficult to be identified from the available measurements.
Such parameters could be kept fixed at standard values. They
may even be eliminated from the model if they have little
effect on the match between the model responses and the
measurements.

Consider a function f j(x) and a parameter X;, A measure
of the degree of interdependency between x; and f; can be
defined, following [3], as

L a3fy(x")
=l
r=1

C

xf [P

%)
ax;
where L is the number of points randomly chosen around x,
x] is a scaling factor, and p can be 1 or 2. (In the example
discussed in the next section we choose p=1.) The decomposi-
tion dictionary is constructed by further grouping closely
related functions

D, = ¥ G ©

jely

where J; U J, U .. U J, =J4 U J,, and q is the number of
function groups. For instance, we may designate all the error
functions related to S;; to one function group. The relative
magnitude of D;, indicates the relative degree of interdepen-
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dency between parameter x; and the t-th function group.
A FET EXAMPLE

The FET equivalent circuit model is shown in Fig. 1(a).
The corresponding small-signal equivalent circuit is shown in
Fig. 1(b). We use measurements made under three different
biasing conditions (the same data has been considered by
Bandler et al. [7]).

Following our earlier discussions and the assumptions in
[7], we define bias-independent parameters as

¢, =Ry RyJT, @, =[Lg Ly L, 7T, M
unconstrained bias-dependent parameters as
#c = [RF RO, ¢k =[CY C&IT k=1,2,3, ®
and constrained bias-dependent parameters as
ok = [GY, g&IT, #k=[CKl k=123 ©)

The dc constraints imposed on Gy,, 8, and C, are des-
cribed by Materka and Kacprzak [5]:

if = Llexp(agvy) - 1],

ir = ]sr[exD(aang) - l]’

iq = Iyl - vl;/Vp)2 tanh(egvy/(vg - V), (10)
Vo=V, +7 Vg,
Cge = Cyoll = v/ V)05, for v, < 0.8V,
of which the optimizable coefficients are given by
a=[l o I, o Iy, a9 Vp, 17, o

B = [Cgo Vbi]T'

Altogether there are 28 parameters in @,, ¢, X and ¢§
for k=1, 2, 3, @ and B.

The error functions are defined according to (2), where
K=3 for three different bias points; M§.=2 corresponding to
the dc measurements on the gate and source currents; ME =8
representing the real and imaginary parts of the S-parameters;
and N=17 representing 17 frequency points from 2GHz to
18GHz, 1GHz apart. The weighting factors w¥; and wk; are
properly chosen to balance the dc and ac error functions. The
total number of error functions for this example is 414.

Case 1 At the starting point, we construct the decomposition
dictionary which showed very small entries for I, a,, I,, and
ag.. An £ optimization is performed, fixing I,=I,=0.5nA, a =20
and a,~=1. The resulting parameter values are listed in Table
I. Table II shows the dc responses, and Fig. 2 depicts the ac
responses at the solution for one bias point.

To check whether we should consider I, o, I, and o
as variables, we set up the dictionary at the solution, as
shown in Table III. The fact that the entries for I, o, I,
and o, remain very small confirms the validity of eliminating
them as optimization variables. As a further verification, we
attempted another optimization which included all possible
variables. As expected, it did not improve the match between
the model responses and the measurements.

Also from the dictionary we can see that the entries for
Ry and Ry are very small, therefore their optimized values
may not be reliable.
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Fig. 1 (a) FET equivalent circuit model
(b) the corresponding small-signal equivalent circuit

TABLE I PARAMETER VALUES OF THE FET MODEL
Bias 1 Bias 2 Bias 3

Para.

start  solution start  solution start  solution
R.* 1.0 0.0119 1.0 0.0119 1.0 0.0119
Ryt 1.0 0.0006 1.0 0.0006 1.0 0.0006
Gy * 0.0049 * 0.0058 * 0.0063
R; 1.0 3.4731 1.0 42221 1.0 5.5954
R, 1.0 0.5234 1.0 0.3675 1.0 0.2312
L, 0.02 0.0107 0.02 0.0107 0.02 0.0107
Cge * 0.5929 * 0.3992 * 0.3333
Cyg 0.07 0.0287 0.07 0.0428 0.07 0.0533
Cas 0.04 0.1958 0.04 0.1917 0.04 0.1905
8m * 0.0569 * 0.0437 * 0.0302
T 7.0 3.6540 7.0 3.6540 7.0 3.6540
Lg 0.01 0.1257 0.01  0.1257 0.01 0.1257
Lg 0.01 0.0719 0.01 0.0719 0.01 0.0719
Coef. start solution Coef. start solution
Tges 0.2 0.1888 q -0.2  -0.3958
aq 4.0 3.0523 C, 1.0 0.6137
Vo, -40 -43453 Vi 1.0 13011

See biasing conditions in Table II.
+  values may not be reliable as the decomposition dictionary
shows weak identifiability

*  values determined by @, B and dc solution

To test the robustness of our approach, we randomly
perturb the starting point by 20 to 200 percent and restart
the optimization. All the variables converged to virtually the
same solution.
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TABLE II DC RESPONSES AND MEASUREMENTS
Bias 1 Bias 2 Bias 3
\'Z ov V., =-1.74V Vg = -3.1V
[ g
V: 4v Vg = 4V Vge = 4V
I, assumed 0.0A 0.0A 0.0A
igs response -2.7x107°8A -1.5x107A -6.1x10"7A
Ig measured 0.177A 0.092A 0.037A
igg response  0.177A 0.092A 0.043A

MS11 MS21 MS12 Msa22

AS11 As2y As12 AS22

1ig. 2 The S-parameter match at the solution of Case 1 tor
Vgs =4V and Vg, = 0V.

Case 2 To demonstrate the feasibility of sequential model
building, we restart the modeling process with a simplified
model which does not include L and Lg. Also, Ry, Ry, R;, I,
@, I, and a, are kept constant according to their relatively
small entries in the decomposition dictionary. Fig. 3 depicts
the model responses and the measurements at one bias point
after the £, optimization using this simplified model.

It is obvious from Fig. 3 that the worst match is for
S;;. Our decomposition dictionary indicates that the most
effective candidates for improving the match in S;; are Ry
and L, because of their larger entries under S;;. The result
of a subsequent optimization which includes R, and L, as
variables is shown in Fig. 4, from which a signilxlcant impro-
vement on the match of S;; can be observed.

Further steps of sequential model building based on the
decomposition dictionary include adding Ly to improve S,,
and eventually converge to the same solution as in Case 1. All
the intermediate results were exactly what we expected.

CONCLUSIONS

By introducing dc constraints and formulating the model-
ing process as a complete and integrated optimization problem,
we have improved the uniqueness and reliability of the extrac-
ted model parameters. A sequential model building approach
has been proposed based on a decomposition dictionary. It can
be used to arrive at a suitable compromise between the simp-
licity and adequacy of the model.

A powerful ¢; optimization technique has been employed in
our algorithm, and all the required gradients have been provi-
ded through efficient adjoint analyses.

A FET modeling example has been described in detail to
demonstrate the new approach.



TABLE II1

DECOMPOSITION DICTIONARY

Para. I Tae Siy Sy Si2 Sy
R, 0.00 000 002 001 001 000
L, - - 15. 3.8 10. L1
L4 - - 032 16 46 92
. - - 091 024 16.  0.89
Ry 000 000 000 000 000 000
T - - 1.0 6.3 15 2.6
Cl - - 1.7 1.7 28. 44
Cl, - - 036 4.1 9.8 16.
R} 0.00 000 14 0.54 35 0.16
R} 000 055 064 039 66 0.53
Ce - - 34 3.0 21. 6.6
C3, - - 080 44 9.3 16.
R? 0.00 000 1.6 060 2.1 0.24
R? 000 015 020 018 138 0.13
C - - 4.2 33 19. 6.9
C% - - 094 40 9.2 16.
R} 000 000 21 061 2.1 0.26
R} 000 003 007 008 074 0.9
I, 000 000 000 000 000 000
a, 0.00 000 000 000 000 000
I 000 000 000 000 000 000
e 0.00 000 000 000 000 0.0
Tds 0.00 29 4.2 33. 18. 42,
ay 0.00 2.8 1.2 12. 11 25.
Vo 0.00 13 2.8 26. 12. 28.
7 0.00 4.6 1.4 12. 7.1 19.
C, - - 40. 26. 49. 9.9
Vi - - 9.3 5.5 9.7 2.4

MS11

MS231

MS12

Ms22

AS11

As21

AS12

As22

L

Fig. 3 The S-parameter match at the solution of Case 2 using
a simplified model for V4, = 4V and Vg, = OV.
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4 The S-parameter match at the solution of Case 2 for
Vg, = 4V and V, = 0V. R, and L, were included as
optimization variables.
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