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ABSTRACT

In this paper we demonstrate for the first time the feasibility of yield optimization
of large scale microwave circuits. A combined strategy to attack this difficult problem is
proposed, which includes the use of supercomputers, efficient approximation to the circuit
responses, and the use of fast, dedicated simulation techniques. We have successfully
accomplished the yield optimization of a 5 channel multiplexer with 75 design and
toleranced variables, 124 constraints and up to 200 statistically perturbed circuits. No
microwave circuit design of this type and on this scale has ever been reported.

INTRODUCTION

Due to various kinds of fluctuations inherent in the manufacturing process, any
circuit outcome can not be guaranteed to have exact nominal parameter values. The
outcomes will present variations of responses from one another. The merit of a design is
no longer measured by the performance of the circuit with nominal values. Thus, yield
driven design is becoming an indispensible tool in the microwave CAD area [1].

Yield optimization takes a variety of fluctuations into account, aiming at a circuit
design with satisfactory yield. Unlike digital circuits, microwave circuits often have a very
large number of independent parameters, thus creating very large problems. Application of
the concepts of yield optimization to large scale circuits is of primary importance. There
are two major difficulties faced by existing circuit design methods: (1) the cost and time of
simulation increases with the size of the circuit, and (2) algorithms capable of handling
large optimization problems are needed.

In this paper we discuss yield optimization of large scale microwave circuits, both
tunable and nontunable. We attack this difficult problem here by: (1) the use of
supercomputers, (2) efficient approximation to the circuit responses, and (3) the use of
fast, dedicated simulation techniques.

An example of a 5 channel multiplexer with 75 design and toleranced variables, 124
constraints and up to 200 statistically perturbed outcomes, is used to demonstrate the
feasibility of yield optimization of large scale problems using our combined strategy.

STATISTICAL DESIGN

Manufacturing yield is simply the ratio

Npasa/N¢ 5 (1)

where N .., is the number of circuit outcomes meeting the design specifications and N, is
the total number of circuit outcomes. If tuning is involved, an outcome may be
considered before or after tuning. The purpose of tuning is to increase yield.

Let x° denote the nominal design parameter vector. The kth tunable outcome xk
may be described by
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xE=x0+rk rk-gkyitkask k=1,2,...,N, )

where sk represents deviations due to the model uncertainties and tolerances, t¢ denotes
possible postproduction tuning adjustments, and s{‘ represents tuning imprecisions, which
may remain after actual tuning. For ideally accurate tuning (s = 0) we can obtain r* = 0
provided that the tuning ranges are large enough to accommodate the spreads due to the
manufacturing tolerances. Then, for realistic (imprecise) tuning we obtain r¥ = sk
Outcomes of nontunable circuits can be considered as a special case of (2), where rk = sk,

For both tunable and nontunable circuit design, each sample circuit is associated
with an acceptance index given by

1, if x¥ satisfies the specifications
L(xK) = 3)
0, otherwise.
Then, yield is estimated by
N
Y [ £ 1,(x¥) ] /K. @)
k=1

In this paper we focus our attention on the case of fixed manufacturing tolerances
and assumed tuning tolerances. Consequently, our problem of circuit optimization is stated
as

maximize Y. )
x0

The design of tunable circuits using (5) has two goals. One is to drive up the
probability of obtaining circuits that exhibit good initial responses for the tuning process.
The other is to increase the possibility of the circuit outcomes satisfying specifications
after tuning easy-to-tune elements. In this case we assign larger tuning tolerances to
more difficult-to-tune elements. This should have an impact on the overall effort of
tuning.

Most approaches to yield optimization proposed in the literature have difficulties
dealing with large scale problems. Our approach to yield optimization follows a novel
multi-circuit approach [2]. A number of circuits are sampled according to probability
density functions of tolerances [3], and then they are simultaneously forced to meet
design specifications. Several successive optimizations can be used if necessary, each of
which may use different numbers of outcomes. The one-sided £; objective function is used
to perform the centering of these circuit outcomes.

APPROXIMATION TO CIRCUIT RESPONSES

For a large scale circuit and due to repeated simulations required for multiple
circuits, the computational cost of yield optimization can be prohibitively high, and the
CPU time can be unacceptably long. In order to speed up the design we use quadratic
approximation to the circuit responses as proposed in [4].

A quadratic polynomial to approximate a given response f(x), x = [x; X, ... xn]T,
can be written as

n n

ax) =ag + 3 a(xx)) + Y a;(x-xP)(x;-x), (6)
i=1 i,j=1
i>j
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where x0 is the reference point. The function f(x) is evaluated at m (m > n + 1) points,
xf, k=0,1,2,... (m - 1). These points are called base points. Using the function
values f(x¥), we set up a system of linear equations

Q Qp a f,
= , (7)
Q1 Qs v f,
where the vectors a and v contain a; and a;;, respectively, and the vectors f; and f,
contain f(x¥). The model coefficients can be solved as

v = CT(CCT)-1le (8a)
and
a = Qjif; - QiiQu,v, (8b)
where
C = Q3 - Q5:Qi1Q1;
and

e = f, - QxQjif;.
Here, we arrange the first (n + 1) base points as x? and
xi=x2+[00...080...0]T, i=1,2,...,n, 9)

where B; is a certain perturbation. This arrangement results in very simple forms of Q,;
and Qﬁle so that they do not have to be computed and stored. After these first (n + 1)
base points, a sequence of other base points follows with no particular restriction on their
locations. When x¥ (k > n) is added as a new point, the components of the (k - n)th row
of C are simply either

Chnyii) = (<F - x0)? - B(xk - x0) (10a)
or
Chnyij) = (XF - xD)(x¥ - x9), for i#j, (10b)

where (ii) and (ij) indicate the column indices, which correspond to the positions of a;
and a;; in v.

Using (10), the computational effort required by the original approach of [4] can be
substantially reduced, thus making this kind of approximation even more attractive.

YIELD OPTIMIZATION OF A 5-CHANNEL MULTIPLEXER

A 5-channel 12 GHz contiguous band microwave multiplexer, consisting of
multicavity filters distributed along a waveguide manifold, has been designed by applying
yield optimization techniques. The ultimate specifications, after complete tuning, are 20dB
for the common port return loss and 20dB for the individual channel stopband insertion
losses. At the frequency points considered, 124 nonlinear constraint functions are
composed. Design variables for each channel include 12 couplings, input and output
transformer ratios and the waveguide spacings.

Careful and time-consuming tuning is essential for multiplexers. Any adjustments
involving physical disconnection of the structure is particulary expensive. For the sake of
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illustration we focus attention in this example on the waveguide spacings as being
expensive adjustments to make. Therefore, the larger tuning tolerances could be assumed
for the spacings. We considered total tolerances of 5% for the spacings, and 0.5% for the
couplings and the transformer ratios.

In tunable circuit design, target specifications for yield optimization may be
different from those of tuning. In this example, we relaxed the specifications from 20dB
to 10dB for the return and stopband insertion losses. We use the term yield index to
denote the ratio of the number of circuits satisfying the relaxed specifications to the total
number of outcomes.

The starting point was the solution of the conventional minimax nominal design
w.r.t. the ultimate specifications. The corresponding responses are shown in Fig. 1, which
exhibit typical responses of a multiplexer. The yield index at this point was 75%.

Yield optimization was carried out on the CRAY X-MP/22 using the generalized £
centering algorithm [2], the approximation scheme described in this paper and utilizing a
dedicated multiplexer simulation program [5]. The entire process consisted of 4
optimization phases as shown in Table I. At the beginning of each phase a set of
quadratic models was constructed by exact simulation of the circuit at 151 base points.
Then the models were used in the entire phase to evaluate the approximate circuit res-
ponses and their gradients. This approach allowed us to handle this extremely large
optimization problem (75 toleranced variables, 124 constraints and up to 200 statistically
perturbed outcomes at each iteration) in acceptable cpu time.

After yield optimization the yield index increased to 90%. The statistical properties
at the final solution are well illustrated by two envelopes containing the return losses of
all 3000 statistically perturbed circuits and the acceptable circuits, shown in Figs. 2 and 3,
respectively.

CONCLUSIONS

Using supercomputers and very efficient approximation techniques we have
demonstrated the feasibility of yield optimization of large scale microwave circuits. The
problem of yield optimization for both tunable and nontunable circuits has been discussed.

We have successfully accomplished the yield optimization of a 5 channel multiplexer
with 75 design and toleranced variables, 124 constraints and up to 200 statistically
perturbed circuits. No microwave circuit design of this type and on this scale has ever
been reported.

For nonlinear microwave circuit design, yield optimization will face problems on an
even larger scale. Our approach using supercomputers, and accurate and efficient approxi-
mation techniques will make yield optimization of nonlinear circuits affordable.
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TABLE I

STATISTICAL DESIGN OF A 5-CHANNEL MULTIPLEXER
USING QUADRATIC APPROXIMATION

Phase 1 Phase 2 Phase 3 Phase 4

Initial Yield index * 75.00% (81.00%) (84.33%) (90.00%)
** 56.33% 69.00% 69.33% 92.00%

Final Yield Index * 81.00% 84.33% 90.00% 90.33%
** 77.33% 77.33% 91.33% 94.00%

No. of Outcomes in Design 50 100 150 200
No. of Iterations 4 6 6 4
CPU Time (CRAY X-MP/22) 16.5s 17.6s 17.8s 17.6s

CPU times do not include yield index estimation based on actual simulation.
All yield indices are estimated from 300 outcomes.

* The yield index is estimated by actual simulation.

** The yield index is estimated by maximally flat approximation.

Fig 1. Optimized return and insertion loss vs. frequency for the 5-channel multiplexer.



Fig 2. The envelope containing return loss responses of all 3000 Monte-Carlo samples.

Fig 3. The envelope containing return loss responses of acceptable circuits among 3000
Monte-Carlo samples.



