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Abstract

In this paper, a novel theory for exact sensitivity analysis of non-
linear circuits based on harmonic balance simulation is derived. A framework
unifying many existing concepts of frequency domain simulation and sensitivity
analysis of linear/nonlinear circuits is established. The proposed sensitivity
analysis is verified by a MESFET mixer example exhibiting 98% saving of CPU

time over the prevailing perturbation method.
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SUMMARY
Introduction

In this paper, we present a unified approach to the simulation and
sensitivity analysis of linear/nonlinear circuits in the frequency domain. The
linear part of the circuit can be large and can be hierarchically decomposed,
highly suited to modern microwave CAD. Analysis of the nonlinear part is
performed in the time domain and the large signal steady-state periodic ana-
lysis of the overall circuit is carried out by means of the harmonic balance
(HB) method.

The HB method has become an important tool for the analysis of
nonlinear circuits. The work of Rizzoli et al. [1], Curtice and Ettenberg [2],
Curtice [3], Gilmore and Rosenbaum [4], Gilmore [5], Camacho-Penalosa and
Aitchison [6] stimulated work on HB in the microwave CAD community. The
excellent paper of Kundert and Sangiovanni-Vincentelli [7] provided systematic
insight into the HB method. Many others, e.g., [8-14], have also contributed
substantially to the state-of-the-art of the HB technique. The first step to-
wards design optimization was made by Rizzoli et al. [1] who used the pertur-
bation method to approximate the gradients.

In our paper, we extend to nonlinear circuits the powerful adjoint
network concept, a standard sensitivity analysis approach in linear circuits.
The concept involves solving a set of linear equations whose coefficient matrix
is available in many existing HB programs. The solution of a single adjoint
system is sufficient for the computation of sensitivities w.r.t. all parameters in
both the linear and nonlinear subnetworks, as well as in bias, driving sources
and terminations. No parameter perturbation or iterative simulations are re-
quired.

The sensitivities we propose are exact in terms of the harmonic ba-
lance method itself. Our exact adjoint sensitivity analysis can be used with
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various existing HB simulation techniques, e.g., the basic HB [7], the modified

HB [5] and the APFT HB [14]. Computational effort includes solving the

adjoint linear equations and calculating the Fourier transforms of all time-

domain derivatives at the nonlinear element level. Significant CPU time sa-

vings are achieved over the perturbation method.

A MESFET mixer example is used to verify our theory.
Notation and Definition

We follow the notation of [7]. Let v(t) or i(t) (V(k) or I(k)) be
real (complex) vectors containing all nodal voltages or currents at time t (har-
monic k). A bar denotes the split real and imaginary parts of a complex vec-
tor. The hat distinguishes quantities of the adjoint system. In particular, V
or I are real vectors containing the real and the imaginary parts of V(k) or
I(k) for all harmonics k, k = 0, 1, ..., H-1. A detailed definition of the nota-
tion is available in Table I.

Hierarchical Simulation of the Linear Network

Consider the arbitrary circuit hierarchy of Fig. 1. A typical sub-
network containing internal and external nodes is shown in Fig. 2. A general
representation of a terminated circuit is depicted in Fig. 3. An unpartitioned
or nonhierarchical approach is a special case of Fig. 1 when only one level
exists. In any case, however, we consider an unterminated N-port circuit at
the highest level of hierarchy because of the importance of the reference
plane in microwave circuits. On the other hand the N-port description is
needed for the harmonic balance equations.

By unifying various existing approaches, we have derived a compre-
hensive set of formulas, systematically computing voltage responses at any
nodes (internal or external) for any subnetwork at any level. For example, to
compute all (both internal and external) nodal voltages Vi (k) of a subnetwork
using the result of a higher level simulation, i.e., using the external voltages
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V(k), we solve

V. (k) 0
w [ 101
I(k) V(k)

where the matrix A(k) contains the nodal admittance matrix of the subnetwork
and some 0’s and 1’s as defined in Table 1.
Simulation of Nonlinear Circuits [7]
The simulation of a nonlinear circuit is to find a V such that
F(V) £ T (W) + T (W) = 0, @)
where the vectors I and Iy are defined as the currents into the linear and
nonlinear parts at the nodes of their connection. The Newton update for
solving (2) is
View = Voia - 3 F (Vo) (3)
where J is the Jacobian matrix.
Adjoint System for Linear Networks
At the highest level of the hierarchy, the adjoint system is excited

at the output port. At other levels, the circuit equation is
A

Vi(k) 0
AT(k) [ A ] = [ A ] 4)
-I(k) -Vk)

Notice that the LU factors of A(k) are already available from (1). This equa-
tion is used iteratively for the 2nd, 3rd, ... levels of the hierarchy until all
desired adjoint voltages are found.

Adjoint System for Nonlinear Networks

Suppose  V,,, is the real or imaginary part of output voltage Vout

and can be selected from the voltage vector v by a vector e as

— —T—-—
VOllt =€ V. (5)
The adjoint system is the linear equation
_T_A —
J'V=e, (6)

where J is the Jacobian at the solution of (2). Notice that the LU factors of
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J is available from the last iteration of (3). Therefore, to obtain AV from (6),
we need only the forward and backward substitutions. The adjoint voltages at
other nodes (internal nodes of the linear part) can be obtained using (4).

The adjoint voltages can be computed even if the output port is
suppressed from the harmonic equation (2). In this case we first compute the
adjoint voltages at the external nodes of the linear subnetwork. This can be
done by disconnecting the nonlinear part and then solving the linear part for
individual harmonics separately. The resulting vector, denoted by %L, is then
transformed to the actual adjoint excitations of the overall circuit (including
both linear and nonlinear parts) to be incorporated in (6) instead of e. The
final equation takes the form
TV =YV, . )
Sensitivity Expressions

Suppose a variable x belongs to branch b. We have derived the foll-

owing formula for computing the exact sensitivity of V , w.r.t. x,

A
[ -y Real [Vi(k)Vi(K)Gy(K)] if x € linear subnetwork (82)
k
aVout; A "
= {4 -).Real [V (k)Gy(k)] if x € nonlinear VCCS or non-
ax k linear resistor or real part (8b)
of a complex driving source
A
-Y Imag [Vb(k)G:,(k)] if X € nonlinear capacitor
k or imaginary part of a (8¢c)
L complex driving source,

A
where * denotes the complex conjugate. Complex quantities Vy(k) and Vy(k)

are the voltages of branch b at harmonic k and are obtained from vectors V
A

and V, respectively. Gy(k) denotes the sensitivity expression of the element
containing variable x. For example, if x is the conductance of a linear resis-
tor, Gy(k) = 1. If x belongs to a nonlinear resistor represented by i = i(v(t),
x), Gp(k) is the kth Fourier coefficient of 8i/dx. A list of various cases of

Gy(k) is given in Table II.



Our sensitivity formula (8) has no restrictions on the selection of
harmonic frequencies or the time samples. In a multi-tone case, the index k
in (8) corresponds to all the harmonics used in the harmonic equation (2).
When the multidimensional Fourier transform is used, we simply place a multi-
dimensional summation in (8).

Comparison with the Perturbation Method

To approximate the sensitivities using the traditional perturbation
method, one needs a circuit simulation for each variable. The best possible
situation for this method is that all simulations finish in one iteration. For
our exact adjoint sensitivity analysis, the major computation, i.e., solving the
adjoint equations, is done only once for all variables. A detailed comparison
reveals that the worst case for our approach takes less computation than the
best situation of the perturbation method. In our experiment, we used only
1.6% of the CPU time required by the perturbation method to obtain all sen-
sitivities.

Gradient Vector for Optimization

The novel formula (8) can be used as a key to formulate the gradient
vectors for design optimization and yield maximization of nonlinear circuits.
Table III lists the gradients of a FET mixer conversion gain w.r.t. various
variables, expressed as simple functions of 3V ,,/dx.

A MESFET Mixer Example

The MESFET mixer example reported in [6] was used to verify our
theory. Figs. 4 and 5 show the large-signal MESFET model and the DC char-
acteristics of the device. The frequencies are fy o = 11 GHz, fgp = 12 GHz
and fip = 1 GHz. The DC bias voltages are Vgg = -0.9 V and Vpg = 3.0 V.
With LO power Ppo = 7 dBm and RF power Pgp = -15 dBm, the conversion
gain was 6.4 dB. 26 variables were considered including all parameters in the
linear as well as the nonlinear parts, DC bias, LO power, RF power, IF, LO
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and RF terminations. Exact sensitivities of the conversion gain w.r.t. all the
variables are computed using our novel theory. The results were in excellent
agreement with those from the perturbation method, as shown in Table IV.
The circuit was solved in 22 seconds on a VAX 8600. The CPU time for sen-
sitivity analysis using our method and the perturbation method are 3.7 seconds
and 240 seconds, respectively.

The dangling node between the nonlinear elements C, and R;, a case
which could cause trouble in HB programs, is directly accommodated in our
approach.

We have plotted selected sensitivities vs. LO power in Fig. 6. For
example, as LO power is increased, conversion gain becomes less sensitive to
changes in gate bias Vgg.

Conclusion

Our formula (8a) encompasses the adjoint network approach in the
frequency domain [15], a standard for exact sensitivity analysis of linear cir-
cuits, as a special case. Since the simulation of nonlinear circuits is expen-
sive, gradient approximations for nonlinear circuits using repeated simulation is
very costly. Consequently, the adjoint sensitivity analysis becomes far more
significant for nonlinear circuits than for linear ones. Our theory will greatly

facilitate the design optimization and yield maximization of nonlinear circuits.
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TABLE I

NOTATION AND DEFINITION

Notation Definition

N, total number of nodes (internal and external) of a
linear subnetwork.

N number of circuit nodes (or ports) used in harmonic
analysis. Also, it is the number of external nodes
for a typical subnetwork of Fig. 2.

H number of harmonics, including DC.

k harmonic index. k = 0 for DC, k = 1 for the
fundamental harmonic, k = 2, 3, ..., H-1 for other
harmonics.

Ve (k), Iy (k)

V(k), I(k)

<l
i

Y, (k)

Y(k)

=

A(k)

complex N, -vectors indicating kth harmonic voltages
or currents at all nodes (both internal and
external) of a linear subnetwork.

complex N-vectors indicating kth harmonic voltages
or currents at all external nodes of any linear
subnetwork (at the highest level of hierarchy the
nodes at which the harmonic balance equations are
formulated).

real 2HN-vectors containing real and imaginary
parts of V(k) or I(k) at all harmonics k, k =0, 1,
., H-1.

N, by N, matrix representing the unreduced nodal
admittance matrix of a 1linear subnetwork at
harmonic k.
N by N matrix representing the reduced nodal
admittance matrix of a 1linear subnetwork at
harmonic k.
2HN by 2HN real matrix obtained by splitting the
real and imaginary parts of Y(k) for all harmonics
k, k=0, 1, ..., B-1.

Y, (k) -U where U is 0

Ut 0 1

and 1 is an N by N identity matrix.




SENSITIVITY

TABLE II

EXPRESSIONS AT THE ELEMENT LEVEL

Type of Element” Expression for G, (k) Applicable
Equation

linear conductor G 1 (8a)

linear resistor R -1/R? (8a)

linear capacitor C Joy (8a)

linear inductor L -1/(jw L?) (8a)

nonlinear VCCS or [kth Fourier coefficient (8b)

nonlinear resistor of 3i/adx]

described by

1= 1i(v(t),x)

nonlinear capacitor w, [kth Fourier coefficient (8c)

described by
q = q(v(t),x)

current driving
source

voltage driving
source

of 8q/9x]

1/(source impedance)

(8b) or (8c)*

(8b) or (8c)*

the element is located in branch b and contains the variable x.

(8b) is used if x is the real part of the driving source.
(8c) is used if x is the imaginary part of the driving source.

is the kth harmonic frequency used in the harmonic equation (2)
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TABLE III

GRADIENTS OF MIXER CONVERSION GAIN

Variable x

Gradient Expression

RF power

Rd(fIF)

Xd(fIF)

any parameter
other than above

Real{(dV,,,/0%)/Vyyp) — 1
Real{(8V,,, /%) /Voue) + ¢/ (2R, (fz§))
Real{(dV, . /3%)/V,

1/(Ry(£15) + §Xy(£16))) + ¢/ (2Ry (£1g))
Real{(8V,,/0%)/Vyuy

J/ Ry (£rp) + X4 (£15)))

Real{(8V,,/3%)/V,,¢ )

¢ = 20/4nl0

R and X represent the real and the imaginary parts of the impedance

terminations, respectively. Subscripts g and d represent the gate and

the drain terminations, respectively.

complex quantity 4avV,

/0% is obtained by solving (5) - (8) twice, once
for the real part and the other for the imaginary part.
factors of J and the Fourier transforms of element sensitivities are

common between the two operations.
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TABLE IV

NUMERICAL VERIFICATION OF SENSITIVITIES OF THE MIXER

Location of Variable Exact Numerical Difference
Variables Sensitivity Sensitivity (%)
linear Cqs 2.23080 2.23042 0.02
subnetwork Cga —29.44595 -29.44659 0.00
Cqe 0.00000 0.00000 0.03
R, 3.17234 3.17214 0.01
R4 6.42682 6.42751 0.01
R, 11.50766 11.50805 0.00
Rye -0.02396 -0.02412 0.66
L, -0.50245 -0.50346 0.20
Ly -0.20664 -0.20679 0.07
L, 1.15334 1.15333 0.00
nonlinear Ceso -6.17770 -6.17786 0.00
subnetwork” T 0.49428 0.49414 0.03
v, -20.85730 —-20.85758 0.00
Voo -26.48210 -26.48041 0.01
Viss 0.01064 0.01028 3.33
Tisp 9.93696 9.93680 0.00
bias and Vss -31.62080 -31.62423 0.01
driving Vps -2.17821 -2.17823 0.00
sources Pro 2.76412 2.76412 0.00
Prr -0.05401 -0.05392 0.16
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TABLE IV (continued)

NUMERICAL VERIFICATION OF SENSITIVITIES OF THE MIXER

Location of Variable Exact Numerical Difference
Variables Sensitivity Sensitivity (%)
termina- R, (£f10) 0.06671 0.06657 0.22
tions

Xg(fLo) 0.37855 0.37854 0.00
Rg(fRF) 0.78812 0.78798 0.02
Xg(fRF) 0.45120 0.45119 0.00
Ry (£15) 0.71451 0.71436 0.02
X4 (£15) 0.10886 0.10871 0.14

Nonlinear elements are characterized by
Css(vl) = CgsO / 4/1—v1/v¢9
Ri(vl)cgs(vl) =T

and the function for i (v,, v,) is shown in Fig. 5, whose
mathematical expression is consistent with [6]. \Y \Y

[ ) p0 Vdss
and I;,, are parameters in the function 1i,(v;, v;).
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Fig. 3 A representation of a terminated subnetwork. Both current and

voltage sources can be accommodated.
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The DC characteristics of the MESFET model.
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Fig. 6 Sensitivities of conversion gain w.r.t. bias voltages as functions of LO
power.
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