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design and modeling problems, addressing such concepts as physical tolerances and model
uncertainties. A unified hierarchical treatment of circuit models forms the basis of the pre-
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generalized €, centering algorithm is proposed and discussed. Multi-circuit optimization
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[. INTRODUCTION

Computer-aided circuit optimization is certainly one of the most active areas of
interest. Its advances continue, hence the subject deserves regular review from time to time.
The classic paper by Temes and Calahan in 1967 [102] was one of the earliest to formally
advocate the use of iterative optimization in circuit design. Techniques that were popular at
the time, such as one-dimensional (single-parameter) search, the Fletcher-Powell procedure
and the Remez method for Chebyshev approximation, were described in detail and well-
illustrated by circuit examples. Pioneering papers by Lasdon, Suchman and Waren
[73,74,108] demonstrated optimal design of linear arrays and filters using the penalty
function approach. Two papers in 1969 by Director and Rohrer [48,49] originated the adjoint
network approach to sensitivity calculations, greatly facilitating the use of powerful gradient-
based optimization methods. In the same period, the work by Bandler [4,5] systematically
treated the formulation of error functions, the least pth objective, nonlinear constraints,
optimization methods and circuit sensitivity analysis.

Since then, advances have been made in several major directions. The development of
large-scale network simulation and optimization techniques has been motivated by the
requirements of the VLSI era. Approaches to realistic circuit design where design parameter
tolerances and yield are taken into account have been pioneered by Elias [52] and Karafin
[68] and furthered by many authors over the ensuing years. Optimization methods have
evolved from simple, low-dimension-oriented algorithms into sophisticated and powerful
ones. Highly effective and efficient solutions have been found for a large number of
specialized applications. The surveys by Calahan [37], Charalambous [39], Bandler and Rizk
[26], Hachtel and Sangiovanni-Vincentelli [63], and Brayton et al. [32] are especially relevant
to circuit designers.

In the present paper, we concentrate on aspects that are relevant to and necessary for
the continuing move to optimization of increasingly more complex microwave circuits, in

particular to MMIC circuit modeling and design. Consequently, we emphasize optimization



oriented approaches to deal more explicitly with process imprecision, manufacturing
tolerances, model uncertainties, measurement errors, and so on. Such realistic considerations
arise from design problems in which a large volume of production is envisaged, e.g.,
integrated circuits. They also arise from modeling problems in which consistent awn.. reliable
results are expected despite measurement errors, structural limitations such as physically
inaccessible nodes, and model approximations and simplifications. The effort to formulate
and solve these problems represents one of the driving forces of theoretical study in the
mathematics of circuit CAD. Another important impetus is provided by progress in computer
hardware, resulting in drastic reduction in the cost of mass computation Finally, the
continuing development of gradient-based optimization techniques has provided us with
powerful tools.

In this context, we review the following concepts: realistic representations of a circuit
design and modeling problem, nominal (single) circuit optimization, statistical circuit design
and multi-circuit modeling, as well as recent gradient-based optimization methods

Nominal design and modeling are the conventional approaches used by 7 rowave
engineers. Here, we seek a single point in the space of variables selected for optimization
which best meets a given set of performance specifications (in design) or best matches a given
set of response measurements (in modeling). A suitable scalar measure of the deviation
between responses and specifications which forms the objective function to be minimized is
the ubiquitous least squares measure (see, for example, Morrison [83]), the more esoteric
generalized £;, objective (Charalambous [41]) or the minimax objective (Madsen et al. [80]).
We observe here that the performance driven (single circuit) least squares approach that
circuit design engineers have traditionally chosen has proved unsuccessful both in addressing
design yield as well as in serious device modeling.

Recognition that an actual realization of a nominal design is subject to fluctuation or
deviation led, in the past, to the so-called sensitivity minimization approach (see, for example,

Schoeffler [94] and Laker et al. [71]. Employed by filter designers, the approach involves



measures of performance sensitivity, typically first-order, and including it in the objective
function.

In reality, uncertainties which deteriorate performance may be due to physical
(manufacturing, operating) tolerances as well as parasitic effects such as electromagnetic
coupling between elements, dissipation and dispersion (Bandler [6], Tromp [107]). In the
design of substantially untunable circuits these phenomena lead to two important classes of
problems: worst-case design and statistical design. The main objective is the reduction of cost
or the maximization of production yield.

Worst-cast design (Bandler et al. [23,24]), in general, requires that all units meet the
design specifications under all circumstances (i.e., a 100% yield), with or without tuning,
depending on what is practical. In statistical design [1,26,30,47,97,98,100,101] it is
recognized that a yield of less than 100% is likely and therefore, with respect to an assumed
probability distribution function, yield is estimated and enhanced by optimization. Typically,
we either attempt to center the design with fixed assumed tolerances or we attempt to
optimally assign tolerances and/or design tunable elements to reduce production cost.

What distinguishes all these problems from nominal designs or sensitivity
minimization is the fact that a single design point is no longer of interest: a (tolerance) region
of multiple possible outcomes is to be optimally located with respect to the acceptable
(feasible, constraint) region.

Modeling, often unjustifiably treated as if it were a special case of design, is
particularly affected by uncertainties and errors at many levels. Unavoidable measurement
errors, limited accessibility to measurement points, approximate equivalent circuits, etc.,
result in nonunique and frequently inconsistent solutions. To overcome these frustrations,
we advocate a properly constituted multi-circuit approach (Bandler et al. [12]).

Our presentation is outlined as follows.

In Section II, in relation to a physical engineering system of interest, a typical

hierarchy of simulation models and corresponding response and performance functions are



introduced. Error functions arising from given specifications and a vector of optimization
variables are defined. Performance measures such as £, objective functions (¢, norms and
generalized ¢, functions) are introduced and their properties discussed.

We devote to Section III a brief review of the relatively well-known and successful
approach of nominal circuit design optimization.

In Section IV, uncertainties that exist in the physical system and at different levels of
the model hierarchy are discussed and illustrated by a practical example. Different cases of
multi-circuit design, namely centering, tolerancing (optimal tolerance assignment) and
tuning at the design stage, are identified. A multi-circuit modeling approach and several
possible applications are described.

Some important and representative techniques in worst-case and statistical design
are reviewed in Section V. These include the nonlinear programming approach to worst-case
design (Bandler et al. [24], Polak [89]), simplicial (Director and Hachtel [47]) and multi-
dimensional (Bandler and Abdel-Malek [7]) approximations of the acceptable region, the
gravity method (Soin and Spence [98]) and the parametric sampling method (Singhal and
Pinel [97]). A generalized £, centering algorithm is proposed as a natural extension to ¢,
nominal design. It provides a unified formulation of yield enchancement for both the worst-
case and the case where yield is less than 100%.

Illustrations of statistical design are given in Section VI

The studies in the last two decades on the theoretical and algorithmic aspects of
optimization techniques have produced a great deal of results. Especially, gradient-based
optimization methods have gained increasing popularity in recent years for their effective-
ness and efficiency. The essence of gradient-based ¢, optimization methods is reviewed in
Section VII. Emphasis is given to the trust region Gauss-Newton and the quasi-Newton
algorithms (Madsen [78], Moré [82], Dennis and Moré [46]).

The subject of gradient calculation and approximation is briefly discussed in Section

VIIL



II. VARIABLES AND FUNCTIONS
In this section, we review some basic concepts of practical circuit optimization. In
particular, we identify a physical system and its simulation models. We discuss a typical
hierarchy of models and the associated designable parameters and response functions. We
also define specifications, error functions, optimization variables and objective functions.

The Physical System

The physical engineering system under consideration can be a network, a device, a
process, and so on, which has both a fixed structure and given element types. We manipulate
the system through some adjustable parameters contained in the column vector M. The
superscript M identifies concepts related to the physical system. Geometrical dimensions
such as the width of a strip and the length of a waveguide section are examples of adjustable
parameters.

In the production of integrated circuits, $M may include some fundamental variables
which control, say, a doping or photomasking process and, consequently, determine the
geometrical and electrical parameters of a chip. External controls, such as the biasing
voltages applied to aﬁ active device, are also possible candidates for pM.

The performance and characteristics of the system are described in terms of some
measurable quantities. The usual frequency and transient responses are typical examples.
These measured responses, or simply measurements, are denoted by FM(¢M).

The Simulation Models

In circuit optimization, some suitable models are used to simulate the physical
system. Actually, models can be usefully defined at many levels. Tromp [106,107] has
considered an arbitrary number of levels (also see Bandler et al. [19]). Here, for simplicity, we

consider a hierarchy of models consisting of four typical levels as



F! = FEh,
FL = Fio™), 1)
o" = o"@".

dL is a set of low-level model parameters. It is supposed to represent, as closely as
possible, the adjustable parameters in the actual system, i.e., M. ¢H defines a higher-level
model, typically an equivalent circuit, with respect to a fixed topology. Usually, we use an
equivalent circuit for the convenience of its analysis. The relationship between ¢L and ¢H is
either derived from theory or given by a set of empirical formulas.

Next on the hierarchy we define the model responses at two possible levels. The low-
level external representation, denoted by FL, can be the frequency-dependent complex
scattering parameters, unterminated y-parameters, transfer function coefficients, etc.
Although these quantities may or may not be directly measurable, they are very often used to
represent a subsystem. The high-level responses FH directly correspond to the actual
measured responses, namely FM, which may be, for example, frequency responses such as
return loss, insertion loss and group delay of a suitably terminated circuit

A realistic example of a one-section transformer on stripline was originally considered
by Bandler et al. [25]. The circuits and parameters, physical as well as model, are shown 1n
Fig. 1. The physical parameters $M (and the low-level model ¢L) include strip widths, section
lengths, dielectric constants, strip and substrate thicknesses. The equivalent circuit has six
parameters, considered as ¢H, including the effective linewidths, junction parasitic
inductances and effective section length. The scattering matrix of the circuit with respect to
idealized (matched) terminations is a candidate for a low-level external representation (FL).
The reflection coefficient by taking into account the actual complex terminations could be a
high-level response of interest (FH).

For a particular case, we may choose a certain section of this hierarchy to form a

design problem. We can choose either ¢L or ¢pH as the designable parameters. Either FL or



FH or a suitable combination of the both may be selected as the response functions. Bearing
this in mind, we simplify the notation by using ¢ for the designable parameters and F for the
response functions.

Specifications and Error Functions

The following discussion on specifications and error functions is based on
presentations by Bandler [5], and Bandler and Rizk [26], where more exhaustive illustrations
can be found.

We express the desirable performance of the system by a set of specifications which
are usually functions of certain independent variable(s) such as frequency, time, temperature,
etc. In practice, we have to consider a discrete set of samples of the independent variable(s)
such that satisfying the specifications at these points implies satisfying them almost every-
where. Also, we may consider simultaneously more than one kind of response. Thus, without
loss of generality, we denote a set of sampled specifications and the corresponding set of

calculated response functions by, respectively,

S., j=1,2,...,m,
! (2)

F@@), j=12.,m.

Error functions arise from the difference between the given specifications and the
calculated responses. In order to formulate the error functions properly, we may wish to
distinguish between having upper and lower specifications (windows) and having single
specifications, as illustrated in Figs. 2-a and 3-a. Sometimes the one-sidedness of upper and
lower specifications is quite obvious such as in the case of designing a bandpass filter. On
other occasions the distinction is more subtle, since a single specification may as well be
interpreted as a window having zero v;/idth.

In the case of having single specifications, we define the error functions by
ej(q>)=wlej(¢)—sj|, ji=1,2,..,m, 3)

where wj is a nonnegative weighting factor.



We may also have an upper specification Syj and a lower specification S 'In this case

we define the error functions as

e @ =w F@®-S), jeI,

* (4)
eej(tl)) = Wej(Fj(@—Sej) ) J&d,.
where wyj and we; are nonnegative weighting factors. The index sets as defined by
J ={,igs it
u 1792 k (5)

Jo= G rirdirerint

are not necessarily disjoint (i.e., we may have simultaneous specifications). Inorder to havea

set of uniformly indexed error functions, we let

ei=euj(¢), i=i, 1=1,2,..k, ®

e = _eej@)), j=ji, i=k+1,k+2,...,m.

The responses corresponding to the single specifications can be real or complex,
whereas upper and lower specifications are applicable to real responses only. Notice that, in
either case, the error functions are real. Clearly, a positive (nonpositive) error function
indicates a violation (satisfaction) of the corresponding specification. Figures 2-b and 3-b
depict the concept of error functions.

Optimization Variables and Objective Functions

Mathematically, we abstract a circuit optimization problem by the following

statement

min;mize U(x) ™

where x is a set of optimization variables and U(x) a scalar objective function.

Optimization variables and model parameters are two separate concepts. As will be
elaborated on later in this paper, x may contain a subset of ¢ which may have been
normalized or transformed, it may include some statistical variables of interest, several

parameters in ¢ may be tied to one variable in x, and so on.
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Typically, the objective function U(x) is closely related to an £, norm or a generalized
¢, function of e(p). We shall review the definitions of such €, functions and discuss their
appropriate use in different contexts.

The €, Norms

The €, norm (Temes and Zai[103]) of e is defined as

m
- p
lel, = [leejl
J:

It provides a scalar measure of the deviations of the model responses from the

1/p
(8)

specifications. Least-squares (€3) is perhaps the most well-known and widely used norm

(Morrison [83]), which is

112
9)

m

2

lel, = [Z el
=1

The €9 objective function is differentiable and its gradient can be easily obtained from
the partial derivatives of e. Partly due to this property, a large variety of f3 optimization
techniques have been developed and popularly implemented. For example, the earlier
versions of the commercial CAD packages TOUCHSTONE [104] and SUPER-COMPACT [99]
have provided designers soley the least-squares objective.

The parameter p has an important implication. By choosing a large (small) value for
p, we in effect place more emphasis on those error functions (ej's) that have larger (smaller)

values. By letting p = « we have the minimax norm

lel, = max |ej| (10)

J
which directs all the attention to the worst case and the other errors are in effect ignored.

Minimax optimization is extensively employed in circuit design where we wish to satisfy the
specifications in an optimal equal-ripple manner [3,13,14,21,40,42,65,67,80,85].

On the other hand, the use of the £; norm,as defined by

m

11

lel, = > lejl, ()
j=1
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implies attaching more importance to the error functions that are closer to zero. This
property has led to the application of ¢; to data-fitting in the presence of gross errors
[22,29,66,86] and, more recently, to fault location [8,9,27] and robust device modelling [12].
Notice that neither |lef» nor |e]; is differentiable in the ordinary sense. Therefore,
their minimization requires algorithms that are much more sophisticated than those for the

{9 optimization.

The One-sided and Generalized £, Functions

By using an ¢, norm, we try to minimize the errors towards a zero value. In cases
where we have upper and lower specifications, a negative value of ej simply indicates that the
specification is exceeded at that point which is, in a sense, better than having e; = 0. This fact
leads to the one-sided £, function defined by
I/p

(12)

’

Hp+(e) = Z Iejlp

j€d

where J = {j| e; = 0}. Actually, if we define e;* = max {ej, 0}, then Hy+(e) = [le || .
Bandler and Charalambous [10,41] have proposed the use of a generalized ¢, function

defined by

H;(e) ifthe set J isnot empty
Hp(e) =
Hp‘(e) otherwise

(13)

where

m e 14)
H () = —{ D (—e)7?

i=1

In other words, when at least one of the ej is nonnegative we use Hp +, and H™ is defined if all
the error functions have become negative.

Compared to (12), the generalized €, function has an advantage in the fact that it is
meaningfully defined for the case where all the ej are negative. This permits its minimization
to proceed even after all the specifications have been met, so that the specifications may be

further exceeded.
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A classical example is the design of Chebyshev type bandpass filters, where we have

to minimize the generalized minimax function

H_(e) = max {ej} ) (15)

J
The current Version 1.5 of TOUCHSTONE [105] offers the generalized ¢,

optimization techniques, including minimax.
The Acceptable Region

We use H(e) as a generic notation for [ef ,, Hy+(e) and Hy(e). The sign of H(e())
indicates whether or not all the specifications are satisfied by ¢. An acceptable region is

defined as

R, = {®|H (@) =0}, (18)

Figures 2-c, 2-d, 3-c and 3-d depict the £, functions and the acceptable regions.

[II. NOMINAL CIRCUIT OPTIMIZATION

In a nominal design, without considering tolerances (i.e., assuming that modeling and
manufacturing can be done with absolute accuracy), we seek a single set of parameters, called
a nominal point and denoted by ¢9, which satisfies the specifications Furthermore, if we
consider the functional relationship of @H = ¢H(dL) to be precise, then it does not really
matter at which level the design is conceived. In fact, traditionally it is often oriented to an
equivalent circuit. A classical case is network synthesis where ¢H.0 is obtained through the
use of an equivalent circuit and/or a transfer function. A low-level model ¢L.0 is thén
calculated from ¢H.0, typically with the help of an empirical formula (e.g., the number of
turns of a coil is calculated for a given inductance). Finally, we try to realize $L.0 by its
physical counterpart ¢M.0.

With the tool of mathematical optimization, the nominal point ¢0 (at a chosen level) is
obtained through the minimization of U(x), where the objective function is typically defined
as an €, function H(e). The vector x contains all the elements of or a subset of the elements of

0. It is a common practice to have some of the variables normalized. It is also common to
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have several model parameters tied to a single variable. This is true, e.g., for symmetrical
circuit structures but, most importantly, it is a fact of life in integrated circuits. Indeed, such
dependencies should be taken into account both in design and modeling to reduce the
dimensionality. The minimax optimization of manifold multiplexers as described by Bandler
et al. [18,22,28] provides an excellent illustration of large-scale nominal design of microwave
circuits.

Traditionally, the approach of nominal design has been extended to solving modeling
problems. A set of measurements made on the physical system serves as single specifications.
Error functions are created from the differences between the calculated responses F(¢$0) and
the measured responses FM. By minimizing an €, norm of the error functions, we attempt to
identify a set of model parameters ¢0 such that F(¢0) best matches FM. This is known as data
fitting or parameter identification.

Such a casual treatment of modeling as if it were a special case of design is often
unjustifiable, due to the lack of consideration to the uniqueness of the solution. In design, one
satisfactory nominal point, possibly out of many feasible solutions, may suffice. In modeling,
however, the uniqueness of the solution is almost always essential to the problem. Affected
by uncertainties at many levels, unavoidable measurement errors and limited accessibility to
measurement points, the model obtained by a nominal optimization is often nonunique and
unreliable. To overcome these frustrations, a recent multi-circuit approach will be described

in Section IV.

IV. AMULTI-CIRCUIT APPROACH
The approach of nominal circuit optimization, which we have described in Section III,
focuses attention on a certain kind of idealized situation. In reality, unfortunately, there are
many uncertainties to be accounted for. For the physical system, without going into too many

details, consider



14

M = FY %) + aFY, ,
an

o' = o0+ 29",

where AFM represents measurement errors, $M.0 a nominal value for $M and ApM some
physical (manufacturing, operating) tolerances.
For simulation purposes, we may consider a realistic representation of the hierarchy

of possible models as

F = pOFY + AFH

L _ L0 ,H L
F-=F"¢")+ AF", 1s)

o = o™ UPN+ 20",

o= o™+ ao".
where ¢L.0, $pH,0, FL.0 and FH.0 are nominal models applicable at different levels. AL, AdH,
AFL and AFH represent uncertainties or inaccuracies associated with the respective models.
AL corresponds to the tolerances ApM. ApH may 'be due to the approximate nature of an
empirical formula. Parasitic effects which are not adequately modeled in $H will contribute
to AFL, and finally we attribute anything else that causes a mismatch between FH.0 and FM.0
to AFH,

These concepts can be illustrated by the one-section stripline transformer example

[25] which we have considered in Section II. Tolerances may be imposed on the physical
A parameters including the strip widths and thicknesses, the dielectric constants, the section
length and substrate thicknesses (see Fig. 1). Such tolerances correspond to AdM and are
represented in the model by A$pL. We may also use AdH to represent uncertainties associated
with the empirical formulas which relate the physical parameters to the equivalent circuit
parameters (the effective linewidths, the junction inductances and the effective section
length). Mismatches in the terminations at different frequencies may be estimated by AFH

(FH being the actual reflection coefficient; see [25] for more details).
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The distinction between different levels of model uncertainties can be quite subtle. As
an example, consider the parasitic resistance r associated with an inductor whose inductance
is L. Both L and r are functions of the number of turns of a coil (which is a physical
parameter). Depending on whether or not r is modeled by the equivalent circuit (i.e., whether
or not r is included in $H), the uncertainty associated with r may appear in A¢H or in AFL,

When such uncertainties are present‘;, a single nominal model often fails to represent
satisfactorily the physical reality. One effective solution to the problem is to simultaneously
consider multiple circuits. We discuss the consequences for design and modeling separately.
Multi-Circuit Design

Our primary concern is to improve production yield and reduce cost in the presence of
tolerances AL and model uncertainties ApH. First of all, we represent a realistic situation

by multiple circuits as

¥ =9+,  k=1,2,.,K, (19)
where ¢0, ¢k and sk are generic notation for the nominal parameters, the kth set of
parameters and a deviate due to the uncertainties, respectively. A more elaborate definition
is developed as we proceed.

For each circuit, we define an acceptance index by

1, if Hie@) =0
Ia<¢)={ :

0, otherwise

(20)

where H(e) < 0, defined in (13), indicates satisfaction of the specifications by ¢. An estimate
of the yield is given by the percentage of acceptable samples out of the total, as

K
Z Ia@k)]/K' (21)
k=1

Y =

The merit of a design can then be judged more realistically according to the yield it promises,

as illustrated in Fig. 4. Now we shall have a closer look at the definition of multiple circuits.
In the Monte Carlo method the deviates sk are constructed by generating random

numbers using a physical process or arithmetical algorithms. Typically, we assume a

statistical distribution for AL, denoted by DL(eL) where €L is a vector of tolerance variables.
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For example, we may consider a mulitidimensional uniform distribution on [—¢L, gL].
Similarly, we assume a DH(gH) for A¢H. The uniform and Gaussian (normal) distributions
are illustrated in Fig. 5.

At the low level, consider
ol = M0 +sbk k=1,2,. K", (22)
where sL.k are samples from DL. At the higher level, we have, for each k,
q)ﬂ,k; =¢H,O e i=1,2,.., KH, (23)

where

HO _ 3 HOg4L,
M0 = ™Y, o0

SHI = pHOpLK) _ §HO@LO) | gk

with 8k.i being samples from DH.

One might propose a distribution for sH.k.i which presumably encompasses the effect
of distribution DL and distribution DH. But, while we may reasonably assume simple and
independent distributions for A¢L and A¢pH, the compound distribution is likely to be
complicated and correlated and, therefore, much less desirable.

Centering, Tolerancing and Tuning

Again, in order to simplify the notation, we use 0 for the nominal circuit and ¢ for
the tolerance variables.

An important problem involves design centering with fixed tolerances, usually
relative to corresponding nominal values. We call this the fixed tolerance problem (FTP).
The optimization variables are elements of $0, the elements of € are constant or dependent on
the variables, and the objective is to improve the yield. Incidentally, the nominal
optimization problem, i.e., the traditional design problem, is sometimes referred to as the zero
tolerance problem (ZTP).

Since imposing tight tolerances on the parameters will increase the cost of the com-
ponent fabrication or process operation, we may attempt to maximize the allowable tolerances

subject to an acceptable yield. In this case both ¢0 and € may be considered as variables.
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Such a problem is referred to as optimal tolerancing, optimal tolerance assignment, or the
variable tolerance problem (VTP).

Tuning some components of $M after production, whether by the manufacturer or by
a customer, is quite commonly used as a means of improving the yield. This process can also
be simulated using the model by introducing a vector of designable tuning adjustments tk for

each circuit, as

o° =" +s5 +1F, k=1,2,.,K. (25)

We have to determine, through optimization, the value of t& such that the specifications will
be satisfied at ¢k which may otherwise be unacceptable, as depicted in Figs. 6 and 7. The
introduction of tuning, on the other hand, also increases design complexity and
manufacturing cost. We seek a suitable compromise by solving an optimization problem in
which tk are treated as part of the variables.

From nominal design, centering, optimal tolerancing to optimal tuning, we have
defined a range of problems which lead to increasingly improved yield but, on the other hand,
correspond to increasing complexity. Some specific formulations are discussed in Section V.
Analogously to ZTP, FTP and VTP we can define zero tuning, fixed tuning and variable
tuning problems [20].

Multi-Circuit Modeling

The uncertainties that affect circuit modeling can be discussed under the following

categories.

1) Measurement errors will inevitably exist in practice, as represented by AFM in (17):
FM = FM0(¢pM) + AFM,

2) Even without measurement errors, the calculatea response FH.0 may never be able to
match FM.0 perfectly, due to, for example, the use of a model of insufficient order or
inadequate complexity. Such an inherent mismbatch is accounted for in (18) by

FH = FHO + AFH.



18

3) Even if neither AFM nor AFH exists so that FH.0 = FM,| we may still not be able to
uniquely identify ¢ from the set of measurements that has been selected. This
happens when the systefn of (generally nonlinear) equations FH.0(¢)— FM = 0, where
FM is the data, is underdetermined. Typically, this problem occurs when, for any
reason, many internal nodes are inaccessible to direct measurement. An over

. complicated equivalent circuit, including unknown parasitic elements is frequently at
the heart of this phenomenon.

4) The parasitic effects that are not adequately modeled by ¢ contribute to the
uncertainty AFL. This is another source of interference with the modeling process.
First we consider the case in which modeling is applied to obtain a suitable ¢ such

that FH($) approximates FM. The nominal circuit approach may be able to cope with the

uncertainties in 1) and 2), and comes up with a ¢ which minimizes the errors AFM and AFH in

a certain sense. But it will not be able to overcome the problem of uniqueness. In practice, we

are often unable to determine unambiguously the identifiability of a system, because all these

uncertainties can be present at the same time. There will be, typically, a family of solutions
which produce reasonable and similar matches between the measured and the calculated
responses.v We can not, therefore, rely on any particular set of parameters.

The approach of multi-circuit modeling by Bandler et al. [12] can be used to overcome
these difficulties. Multiple circuits are created by making deliberate adjustments on the
physical parameters $M. For example, we can change the biasing conditions for an active
device and obtain multiple sets of measurements. By doing so, we introduce perturbations to
the model which cause some parameters in ¢ to change by an unknown amount. For this
approach to be successful, each physical adjustment should produce changes in only a few
parameters in ¢.

Although we do not know the changes in ¢ quantitatively, it is often possible to
identify which model parameters may have been affected by the physical adjustments. Such a

qualitative knowledge may be apparent from the definition of the model or it may come from
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practical experience. In the attempt to process multiple circuits simultaneously, we define
those model parameters that are not supposed to change as common variables and, at the
same time, allow the others to vary between different circuits. By doing so, we force the solu-
tion to exhibit the desired consistency and, therefore, improve the reliability of the result. In
other words, from a family of possible solutions we select the one that conforms to the topo-
logical constraints. Bandler et al. have shown an example ([12], Section III.A) in which ¢ can
not be uniquely identified due to inaccessible nodes. The problem was effectively addressed
using the multi-circuit approach.

To formulate this mathematically, let

¢ (26)

where ¢k, contains the common variables and ¢k, contains the variables which are allowed

to vary between the kth circuit and the reference circuit $0. We then define the optimization

variables by
x =17 (@7 .. @O, @7
and state the optimization problem as to
minimize UGx) = | f] , (28)
X
where
f=(eT@% eT@hH ... "I . (29)

Although any €, norm may be used, the unique property of €; discussed in detail by
Bandler et al. [12] can be exploited to great advantage. The concept of common and
independent variables is depicted in Fig. 8.

Now, suppose that we do not have a clear idea about which model parameters may
have been affected by the adjustment on $M. In this case, we let

x =1@"T (oHT ... @717, (30)

and change the objective function to an £, norm of

f=(e"@% .. T@ a,@'-9"" .. a, @ -0NT, B1)
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where ay, ag,..., ag are nonnegative multipliers (weights).

Using this formulation, while minimizing the errors e, we penalize the objective
function for any deviates between ¢k and ¢, since our only available knowledge is that only
a few parameters in ¢k should have any significant changes. To be effective, an ¢; norm
should be used. A similar principle has been successfully applied to the analog circuit fault
location problem [9,27].

A practical application to FET modeling has been described by Bandler et al. [16]
where multiple circuits were created by taking three sets of actual measurements under
different biasing conditions.

Another important application of multi-circuit modeling is to create analytical
formulas which link the model ¢ to the actual physical parameters $M. Such formulas will
become extremely useful in guiding an actual production alignment or tuning procedure. A
sequence of adjustments on ¢$M can be systematically made and multiple sets of measure-
ments are taken. By nominal circuit optimization, these measurements would be processed
separately to obtain a set of static models. In the presence of uncertainties, a single change in
&M may seem to cause fluctuations in all the model parameters. Obviously, such results are
of very little use. In contrast, multi-circuit modeling is more likely to produce models that are
consistent and reliable. Since the measurements are made systematically, it certainly makes
sense to process them simultaneously. Actually, the variables need not be equivalent circuit
model parameters. They can include coefficients of a proposed formula as well.

An example of establishing an experimental relationship between the physical and
model parameters for a multi-cavity filter using multiple sets of actual measurements has
been described by Daijavad [44].

The multi-circuit approach can also be applied to model verification. This is typically
related to cases where the parasitic uncertainty AFL has put the validity of a model in doubt.
Instead of defining common and independent variables explicitly, we use the formulation of

(30) and (31). If consistent results are obtained, then our confidence in the model is
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strengthened. Otherwise we should probably reject the current model and consider
representing the parasitics more adequately. A convincing example has been demonstrated
by Bandler et al. ([12], section V, Test 2).

The commercial packages TOUCHSTONE [104,105] and SUPER-COMPACT [99]
allow a hierarchy of circuit blocks and permit the use of variable labels. Multiple circuits and

common variables can be easily defined utilizing these features.

V. TECHNIQUES FOR STATISTICAL DESIGN

In Section IV we have generally discussed uncertainties at different levels and, in
particular, we have expressed our desire to maximize yield in the presence of uncertainties.
Optimal tolerancing and tuning have also been identified as means to further reduce cost in
the actual production.

We begin this section with a review of some existing techniques for statistical design.
Some of the earliest work in this area came from Karafin [68], Pinel and Roberts [87], Butler
[36], Elias [52], Bandler, Liu and Tromp (24]. During the years, significant contributions
have been made by, among others, Director and Hachtel [47] (the simplicial method), Soin
and Spence [98] (the gravity method), Bandler and Abdel-Malek [1,2,7] (multi-dimensional
approximation), Biernacki and Styblinski [30] (dynamic constraint approximation), Polak
and Sangiovanni-Vincentelli [90] (a method using outer approximation), as well as Singhal
and Pinel [97] (the parametric sampling method). Following the review, we propose a
generalized ¢, centering algorithm.

A commonly assumed cost versus yield curve [97] is shown in Fig. 9. Actually, hard
data is difficult to obtain and, as we shall see, rather abstract objective functions are often
selected for the tolerance-yield design problem. Figure 10 shows a design with a 100% yield

and a second design corresponding to the minimum cost.
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Worst-case Design

By this approach, we attempt to achieve a 100% yield. Since it means that the
specifications have to be satisfied for all the possible outcomes, we need to consider only the

worst cases.

Bandler et al. [23,24] have formulated it as a nonlinear programming problem as

minixmize Cx® (32)

subject to e(¢pk) = 0, forallk,

where C(x) is a suitable cost function and the points ¢k are the worst cases. For instance, we
may have
a.
Cx = > j+ Dbt (33)
iEIe i iEIt

where [ and I; are index sets identifying the toleranced and tunable parameters, respectively.
¢; and t; are the tolerance and the tuning range, respectively, associated with the ith
parameter. a; and b; are nonnegative weights. A cost function can also be defined for relative
tolerances and tuning by including cpoi into (33). A critical part of this approach is the
determination of the worst cases. Vertices of the tolerance region, for example, are possible
candidates for the worst cases by assuming one-dimensional convexity. The yield function
does not enter (32) explicitly, instead, a 100% yield is implied by a feasible solution.

Bandler and Charalambous [11] have demonstrated a solution to (32) by minimax
optimization. Polak and Sangiovanni-Vincentelli [90] have proposed a different but
equivalent formulation which involves a nondifferentiable optimization.

A worst-case design is not always appropriate. While attempting to obtain a 100%
yield, the worst-case approach may necessitate unrealistically tight tolerances, or demand

excessive tuning. In either case, the cost may be too high. A perfect 100% yield may not even

be realizable.
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Methods of Approximating the Acceptable Region

Since yield is given by the percentage of model outcomes that fall into the acceptable
region, we may wish to find an approximation to that region. The acceptable region has been
defined in (16) as Ry = {¢ | H(e(d)) = 0}.

Director and Hachtel [47] have devised a simplicial approximation approach. It
begins by determining points ¢k on the boundary of R, which is given by
Q. = {&| H(e(d)) = 0}. The convex hull of these points forms a polyhedron. The largest
hypersphere inscribed within the polyhedron gives an approximation to R, and is found by
solving a linear programming problem. Using line searches more points on the boundary are
located and the polyhedron is expanded. The process thus provides a monotone increasing
lower bound on the yield. The center and radius of the hypersphere can be used to determine
the centered nominal point and the tolerances, respectively. The application of this method
is, however, severely limited by the assumption of a convex acceptable region.

Bandler and Abdel-Malek [1,2,7] have presented a method which approximates each
ej(¢) by a low-order multi-dimensional polynomials. Model simulations are performed at
some ¢k selected around a reference point. From the values of ej(dk) the coefficients of the
approximating polynomial are determined by solving a linear system of equations.
Appropriate linear cuts are constructed to approximate the boundary Q,. The yield is
estimated through evaluation of the hypervolumes that lie outside R, but inside the tolerance
region. In critical regions these polynomial approximations are updated during optimization.
The one-dimensional convexity assumption for this method is much less restrictive than the
multi-dimensional convexity required by the simplicial approach. Sensitivities for the
estimated yield are also available.

Recently, Biernacki and Styblinski [30] have extended the work on multi-
dimensional polynomial approximation by considering a dynamic constraint approximation
scheme. It avoids the large number of base points required for a full quadratic interpolation

by selecting a maximally flat interpolation. During optimization, whenever a new base point
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is added the approximation is updated. It shows improved accuracy compared with a linear
model as well as reduced computational effort compared with a full quadratic model.

The Gravity Method

Soin and Spence [98] proposed a statistical exploration approach. Based on a Monte
Carlo analysis, the centers of gravity of the failed and passed samples are determined as,

respectively,

/ Kfail ’

o' = [ > o
k€ J
(34)

[ k
¢ —[Z o }/Km,

ké¢d
where J is the index set identifying the failed samples. Kgaj) and Kpags are the numbers of
failed and passed samples, respectively. The nominal point ¢0 is then adjusted along the
direction s = ¢P — ¢f using a line search. This algorithm is simple but also heuristic. It is not
clear as how the gravity centers are related to the yield in a general multi-dimensional

problem.

The Parametric Sampling Method

The parametric sampling approach by Singhal and Pinel [97] has provided another
promising direction. A continuous estimate of yield (as opposed to the Monte Carlo estimate

using discrete samples) is given by the following integral

+ o

Y(x) = J (@) ¢, dd,

— 00

(35)

where I,(¢) is the acceptance index defined in (20) and I'(¢,x) the parameter distribution
density function which depends on the design variables xv(e.g., the nominal point specifies the
mean value and the tolerances control the standard deviations). Normally, in order to
estimate the yield, we generate samples ¢k, k = 1, 2,..., K, from the component density T,
perform K circuit analyses and then take the average of [,(¢k). For each new set of variables
x we would have a new density function and, therefore, the sampling and circuit analyses

have to be repeated.
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The parametric sampling method is based on the concept of importance sampling as

@ I'(p,x) (36)
Yx) = J_m (@) h@) h(d)do ,

where h(®) is called the sampling density function. The samples ¢k are generated from h(¢)

instead of T'(¢,x). An estimate of the yield is made as

k K
" ,x) Z 37

K
1
Ya) = = > 169 L% W@*, ).

1
Ko h@Y K o
The weights W(dk,x) compensate for the use of a sampling density different from the
component density.

This approach has two clear advantages. Firstly, once the indices I,(¢k) are
calculated, no more model simulations are required when x is changed. Furthermoré, iflisa
differentiable density function, then gradients of the estimated yield are readily available.
Hence, powerful optimization techniques may be employed. In practice the algorithm starts
with a large number of base points sampled from h(¢) to construct the initial da}taban~k. To
maintain a sufficient accurary, the databank needs to be updated by adding new samples
during optimization.

This approach, however, can not be applied to non-differentiable density functions
such as uniform, discrete and truncated distributions. It can be extended to include some
tunable parameters if the tuning ranges are fixed or practically unlimited. In this case the
acceptance index [;(¢k) is defined as 1 if ¢k is acceptable after tuning. If ¢k is unacceptable
before tuning, then whether it can be tuned and, if so, by how much may have to be deter-
mined through optimization. Variable tuning range (in order to minimize cost) can not be
accommodated by the parametric sampling method.

Generalized £, Centering

Here, we propose a generalized ¢, centering algorithm which encompasses, in a

unified formulation, problems of 100% yield (worst-case design) and less than 100% yield.

First we consider the centering problem where we have fixed tolerances and no

tuning. Only the nominal point ¢ is to be optimized. Define
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38
f=(e @Y ..e @] 39

as the set of multi-circuit error functions. We can achieve a worst-case minimax design by

o e . —_ —_ k
mm;mlze Ux) =H_(H = mljx m;lx {e(@™}, (39)

where the multiple circuits ¢k are related to 0 according to (19).

If a 100% yield is not attainable, we would naturally look for a solution where the
specifications are met by as many points (out of K circuits) as possible. For this purpose
minimax is not a proper choice, since unless and until the worst case is dealt with nothing else
seems to matter. We may attempt to use a generalized €3 or €; function (i.e., Ho(f) or H{(f))
instead of Hu(f) in (39), hoping to reduce the emphésis given to the worst case.

In order to gain more insight into the problem, we define, for each ¢k, a scalar
function which will indicate directly whether ¢k satisfies or violates the specifications and by
how much. For this purpose, we choose a set of generalized ¢ functions as

40
v@=HE@, k=12 K (40

The sign of vy indicates the acceptability of ¢k while the magnitude of vy measures, so to
speak, the distance between ¢k and the boundary of the acceptable region. For example, with
p = = the distance is measured in the worst-case sense whereas for p = 2 it will be closer to a
Euclidean norm.

We can define a generalized ¢, centering as

minimize U(x) = Hp(u(x)), “4D)
X
where
i av, ] [ alHq(e(tl)I)) ]
a(x) = . _ (42)
K
‘-O‘KVK_ _aKHq(e(¢ ))-

and ay, as,..., ag are a set of positive multipliers. With different p and q it leads to a variety of
algorithms for yield enchancement. We discuss separately the case where a nonpositive U(x)

exists and the case where we always have U(x) > 0.
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In the first case, the existence of a U(x) < 0 indicates that a 100% yield is attainable.
We should point out that for a given x the sign of U(x) does not depend on p, q or any ai.
However, the optimal solution x at which U(x) attains its minimum is dependent on p, q and
a. This means that using any values of p, q and a we will be able to achieve a U(x) = 0 (i.e,, to
achieve a 100% yield). Furthermore, by using different p, q and a, we influence the centering
of 0. Interestingly, the worst-case centering (39) becomes a special case by letting both
P, q = ® and using unit multipliers.

Now consider the case where the optimal yield is less than 100%. In this case we
propose the use of p = 1 and q = 1in (41). Also, given a starting point xq, we define the set of

multipliers by
a, = 1/|vk(x0)| , k=1,2,.,K (43)
Our proposition is based on the following reasoning (a more complete theoretical justification

is reserved for a future paper).

Consider the £, sum given by

> &P (44)
k€ J

where J = {k | uxy > 0}. As p — 0 (44) approaches the total number of unacceptable circuits
which we wish to minimize. The smallest p that gives a convex approximation is 1. This leads

to the generalized £, objective function given by

U= > u®=2 av®. (45)
ked ked
With the multipliers defined by (43), the value of the objective function at the starting

point, namely U(xg), is precisely the count of unacceptable circuits. Also, notice that the
magnitude of vy measures the closeness of ¢k to the acceptable region. A small |vi| indicates
that ¢k is close to be satisfying or violating the specifications. Therefore, we assign a large
multiplier to it so that more emphasis will be given to ¢k during optimization. On the other
hand, we deemphasize those points that are far away from the boundary of the acceptable

region because their contributions to the yield are less likely to change.
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One important feature of this approach is its capability of accommodating arbitrary
tolerance distributions, since they only influence the generation of ¢k. The numerical results
" we have obtained are very promising. The generalized £, centering algorithm can also be

extended to including variable tolerances and tuning.

VI. EXAMPLES OF STATISTICAL DESIGN
Example 1
The classical two-section 10:1 transmission line transformer, originally proposed by
Bandler et al. [23] to test minimax optimizers, is a good example to illustrate graphically the
basic ideas of centering and tolerancing. An upper specification on the reflection coefficient
as |p| = 0.55 and 11 frequencies {0.5, 0.6,..., 1.5 GHz} are considered. The lengths of the
transmission lines are fixed at the quarter-wave length while the characteristic impedances
Z; and Zg are to be toleranced and optimized. Fig. 11 shows the minimax contours, the
minimax nominal solution, as well as the worst-case solutions [23] for
PO: minimize C| = Z%e + ZJe, subjecttoY = 100%,
P1. minimize C2 = 1/e, + /g, subjectto Y = 100% ,

where g1, €9 denote tolerances on Z; and Zy (assuming independent uniform distributions),
and Y is the yield. The cost functions C; and Cy correspond to, respectively, relative and
absolute tolerancing problems. Two problems of less than 100% yield have also been
considered by Bandler and Abdel-Malek [7] as

P2: minimize Cy subjectto Y = 90%,

P3: minimize Co/Y.

The optimal tolerance regions and nominal values for P2 and P3 are shown in Fig. 12.
For more details see the original paper [7].
Example 2

The statistical design of a Chebyshev lowpass filter (Singhal and Pinel [97]) is used as

the second example. Fifty-one frequencies {0.02, 0.04,..., 1.0, 1.3 Hz} are considered. An
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upper specification of 0.32dB on the insertion loss is defined for frequencies from 0.02 to
1.0 Hz. A lower specification of 52 dB on the insertion loss is defined at 1.3 Hz.

Singhal and Pinel [97] have applied the parametric sampling method to the same
circuit assuming normal distributions for the toleranced elements. But, as we have pointed
out earlier in this paper, the parametric sampling method can not be applied to non-
differentiable (such as uniform) distributions. Here, we consider a uniformly distributed
1.5% relative tolerance for each component. The generalized ¢, centering algorithm
described in section V is used with p = 1. The nominal solution by standard synthesis as
given in [97] was used as starting point which has a 49% yield (w.r.t. the tolerances specified).
A 84% yield is achieved at the solution which involves a sequence of three design cycles with

a total CPU time of 66 seconds on the VAX 8600. Some details are provided in Table I.

VII. GRADIENT-BASED OPTIMIZATION METHODS

So far we have concentrated on translating our practical concerns into mathematical
expressions. Now we turn our attention to the solution methods for optimization problems.

The studies in the last two decades on the theoretical and algorithmic aspects of
optimization techniques have produced a great deal of results. Modern state-of-the-art
methods have largely replaced the primitive trial-and-error approach. Especially, gradient-
based optimization methods have gained increasing popularity in recent years for their
effectiveness and efficiency.

The majority of gradient-based methods belong to the Gauss-Newton, quasi-Newton
and conjugate gradient families. All these are iterative algorithms which, from a given
starting point x¢, generate a sequence of points {Xx}. The success of an algorithm depends on
whether {xy} will converge to a point x* and if so, whether x* will be a stationary point. An
iterative algorithm is described largely by one of its iterations as how to obtain xy 4 from x.

We use the notation U(x) for the objective function and VU for the gradient vector of

U. When U(x) is defined by an ¢, function, we use f to denote the set of individual error
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functions so that U = H(f). We also use fj' for the first-order derivatives of fj and G for the

Jacobian matrix of f.

£p Optimization and Mathematical Programming

21, €2 and £, are the most distinctive and by far the most useful members of the ¢,
family. Apart from their unique theoretical properties, it is very important from the
algorithmic point of view that linear €1, €3 and €, problems can be solved exactly using linear
or quadratic programming techniques. Besides, all the other members of the €, family have a
continuously differentiable objective function and, therefore, can be treated similarly to the {2
case.

An £y, €9 or £, optimization problem can be converted into a mathematical program.
The concepts of local linearization and optimality conditions are often clarified by the
equivalent formulation.

For instance, the minimization of ||f]; is equivalent to
m
minimize .
PIY
X,y j=1

(46)

subject to
yj = fj(x), yj = —fj(x), j=1,2,..,m

Other equivalent formulations are summarized in Table II. For the convenience of
presentation, we denote these mathematical programming problems by P(x,f). One
important feature of P(x,f) is that it has a linear or quadratic objective function. If fis a set of
linear functions, then P(x,f) becomes a linear or quadratic program which can be solved using
standard techniques. Equally importantly, linear constraints can be easily incorporated into
the problem. Let P(x,f,D) be the problem of P(x,f) subject to a set of linear constraints of the

form

T — —
aex+be—-0, ¢€=1,2,..,L
D:

eq’ (47

Jx+mzo ¢=L +1,.,L,
eq
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where a, and by are constants. If P(x,f) is a linear or quadratic program, so is P(x,f,D). In
other words, unconstrained and linearly constrained linear f;, €2 and f» problems can be

solved using standard linear or quadratic programming techniques.

Gauss-Newton Methods Using Trust Regions

For a general problem, we may, at each iteration, substitute f with a linearized model
fsothat P(x,?). can be solved.

For a Gauss-Newton type method, at a given point xy, a linearization of f is made as
£() = fix) + Gxh, (48)

where G is the Jacobian matrix. We then solve the linear or quadratic program P(h,-t:;D),

where

Akzhj, i=1,2,...,n,
D: )
Akz—hj, ji=1,2,..,n.
These additional constraints define a trust region in which the linearized model fis believed

(49)

to be a good approximation to f.

Another way to look at it is that we have applied a semi-linearization (Madsen [78]) to

U(x) = H(f) resulting in

U ) = H(f ). (50)
It is important to point out that (50) is quite different from a normal linearization as U(h) =
U(xg) + [VU(x)ITh which corresponds to a steepest descent method. In fact VU may not
even exist.

Denote the solution of P(h,ED) by hy. If xi+hy reduces the original objective
function we take it as the next iterate, i.e., if U(xgx+hy) < U(xg) then x4+ = xi+hy.
Otherwise we let X +1 = Xi. In the latter case, the trust region is apparently too large and,
consequently, should be reduced. At each iteration, the local bound Ay in (49) is adjusted
according to the goodness of the linearized model.

The above describes the essence of a class of algorithms due to Madsen who has called

it Method 1. Madsen [78] has shown that the algorithm provides global convergence in which
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the proper use of trust regions constitutes a critical part. Such a method has been
implemented as an important element in the minimax and €, algorithm of Hald and Madsen
[65,66]. In some other earlier work by Osborne and Watson [85,86] the problem P(h,?') was
solved without incorporating a trust region and the solution hy was used as the direction for a
line search. For their methods no convergence can be guaranteed and {xy} may even
converge to a non-stationary point.

Normally for the least-squares we have to solve a quadratic program at each iteration,
which can be a time-consuming process. A remarkable alternative is the Levenberg-
Marquardt [76,81] method. Given xy, it solves

minimize h'(G'G + 8, Dh + 2f"Gh + f'f , 51)
h

where G = G(xy), f = f(xy) and 1 is an identity matrix. The minimizer hy is obtained simply
by solving the linear system

G'G+6,Dh =G'f (52)
using, for example, LU factorization. The Levenberg-Marquardt parameter 8y is very critical
for this method. First of all, it is made to guarantee the positive definiteness of (52).
Furthermore, it plays, roughly speaking, an inversed role of Ay to control the size of a trust
region. When 0y — ®, hy gives an infinitesimal steepest descent step. When 8 = 0, hy
becomes the solution to P(h,-f.') without bounds, which is equivalent to having Ay — .

The concept of trust region has been discussed in a broader context by Moré in a recent

survey [82].

Quasi-Newton Methods

Quasi-Newton methods (also known as variable metric methods) are originated in and
steadily upgraded from the work of Davidon [45], Broyden [33,34] as well as Fletcher and
Powell [55].

For a differentiable U(x), a quasi-Newton step is given by

— -1 53
h = -a B "VUkx), (53)
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where By is an approximation to the Hessian of U(x) and the step size controlling parameter
ay is to be determined through a line search. However, on some occasions such as in the ¢y or
minimax case, the gradient VU may not exist, much less the Hessian.

We can gain more insight to the general case by examining the optimality conditions.
Applying the Kuhn-Tucker conditions for nonlinear programming [70] to the equivalent
problem P(x,f), we shall find a set of optimality equations

Rx)=0. (54)

Since a local optimum x* must satisfy these equations, we are naturally motivated to
solve (54), as a means of finding the minimizer of U(x). A quasi-Newton step for solving
nonlinear equations (54) is given by |

(55)
_ -1
h -—aka R(xk),

k
where Jy is an approximate Jacobian of R(x). Only when U(x) is differentiable will we have
the optimality equations as R(x) = VU(x) = 0 and (55) reverts to (53).

Hald and Madsen [65,66] and Bandler et al. [21,22] have described the
implementation of a quasi-Newton method for the minimax and ¢; optimization in which the
objective functions are not differentiable. Clarke [43] has introduced the concept of
generalized gradient with which optimality conditions can be derived for a broad range of
problems.

Quasi-Newton methods, whether in (53) or (55), all require updates of certain
approximate Hessians. Many formulas have been proposed over the years. The most well-
known are the Powell Symmetric Broyden (PSB) update [91], the Davidon-Fletcher-Powell
(DFP) update [45,55] and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update
(35,53,60,95]. The merits of these formulas and a great many other variations are often
compared in terms of their preservation of positive definiteness, convergence to the true
Hessian and numerical performance (see for instance Fletcher [54], Gill and Murray [59)).

Another important point to be considered is the line search. Ideally, ay is chosen as

the minimizer of U in the direction of line search so that hyTVU(xx +hy) = 0. If exact line
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searches are executed, Dixon [50] has shown that theoretically all members of the Broyden
family [34,53] would have the same performance. In practice, however, exact line search is
deemed too expensive and therefore replaced by other methods. An inexact line search
usually limits the evaluation of U and VU to only a few points. Interpolation and
extrapolation techniques b(such as a quadratic or cubic fit) are then incorporated.

Combined Methods

The distinguished advantage of a quasi-Newton method is that it enjoys fast rate of
convergence near a solution. However, like the Newton method for nonlinear equations, the
quasi-Newton method is not always reliable from a bad starting point.

Hald and Madsen [65,66,78] have suggested a class of 2-stage algorithms. A first-
order method of the Gauss-Newton type is employed in Stage 1 to provide global convergence
to a neighbourhood of a solution. When the solution is singular, Method 1 suffers from a very
slow rate of convergence and a switch is made to a quasi-Newton method (Stage 2). Several
switches between the two methods may take place and the switching criteria ensure the
global convergence of the combined algorithm. Numerical examples of circuit applications
have demonstrated a very strong performance of the approach [21,22,79,80].

Powell [92] has extended the Levenberg method and suggested a trust-region strategy
which interpolates between a steepest descent step and a Newton step. When far away from
the solution, the step is biased toward the steepest descent direction to make sure that it is
downhill. Once close to the solution, taking a full Newton step will provide rapid final
convergence.

Conjugate Gradient Methods

Some extremely large-scale engineering applications involve hundreds of variables
and functions. Although the rapid advances in computer technology have enabled us to solve
increasingly large problems, there may be cases in which even the storage of a Hessian

matrix and the solution of an n by n linear system become unmanageable.
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Conjugate gradient methods [56,75,88] provide an alternative for such problems. A
distinct advantage of conjugate gradient methods is the minimal requirement of storage.
Typically three to six vectors of length n are needed, which is substantially less than the
requirement by the Gauss-Newton or quasi-Newton methods. However, proper scaling or
preconditioning, near-perfect line searches and appropriate restart criteria are usually
necessary to ensure convergence. In general, we have to pay the price for the reduced storage

by enduring a longer computation time.

VIII. GRADIENT CALCULATION AND APPROXIMATION

The application of gradient-based €, optimization methods requires the first-ordér
derivatives of the error functions with respect to the variables.

In circuit optimization, these derivatives are usually obtained from a sensitivity
analysis of the network under consideration. For linear circuits in the frequency domain, it is
often possible to calculate the exact sensitivies by the adjoint network approach [5,31,48].

However, we ought to recognize that an explicit and elegant sensitivity expression is
not always available. For time-domain responses and nonlinear circuits an exact formula
may not exist. Even for linear circuits in the frequency domain, large-scale networks present
new problems which need to be addressed.

Often, a large-scale network can be described through compounded and
interconnected subnetworks. Many commercial CAD packages such as SUPER-COMPACT
[99] and TOUCHSTONE [104,105] have facilitated such a block structure. In this case, one
possible approach would be to assemble the overall nodal matrix and solve the system of
equations using sparse techniques (see, e.g., Duff [51], Gustavson [61], Hachtel et al. [62]).
Another possibility is to rearrange the overall nodal matrix into a bordered block structure
which is then solved using the Sherman-Morrison-Woodbury formula [63,96]. Sometimes it
is also possible to develop efficient formulas for a special structure, such as the approach of

Bandler et al. [17] for branched cascaded networks.
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In practice, perhaps the most perplexing and time-consuming part of the task is to
devise an index scheme through which pieces of lower-level information can be brought into
the overall sensitivity expression. It may also require a large amount of memory storage for
the various intermediate results. Partly due to these difficulties, methods of exact sensitivity
calculations have yet to find their way into general-purpose CAD software packages,
although the concept of adjoint network has been in existence for nearly two decades and has
had success in many specialized applications.

In cases where either exact sensitivities do not exist or they are too difficult to
calculate, we can utilize gradient approximations [15,16,77,109]. A recent approach to circuit
optimization with integrated gradient approximations has been described by Bandler et al.
[16]. It has been shown to be very effective and efficient in practical applications including

FET modeling amd multiplexer optimization.

IX. CONCLUSIONS

In this review, we have formulated realistic circuit design and modeling problems and
described their solution methods. Models, variables and functions at different levels, as well
as the associated tolerances and uncertainties have been identified. The concepts of design
centering, tolerancing and tuning have been discussed. Recent advances in statistical design,
yield enchancement and robust modeling techniques suitable for microwave CAD have been
exposed in detail. State-of-the-art optimization techniques have been addressed from both
the theoretical and algorithmic points of view.

We have concentrated on aspects that are felt to be immediately relevant to and
necessary for modern microwave CAD. There are, of course, other related subjects that have
not or not adequately been treated in this paper. Notably among these are special techniques
for very large systems (Geoffrion [57, 58], Haimes [64], Lasdon [72]), third generation simu-
lation techniques (Hachtel and Sangiovanni-Vincentelli [63]), fault diagnosis (Bandler and

Salama [27]), supercomputer-aided CAD (Rizzoli et al. [93]), the simulated annealing and
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combinatorial optimization methods and their application to integrated circuit layout
problems [38,69,84], and the new automated decomposition approach to large scale
optimization (Bandler and Zhang [28]).

This paper is particularly timely as software, based on techniques which we have
described, is being integrated by Optimization Systems Associates Inc. into SUPER-

COMPACT by arrangement with Compact Software Inc.
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TABLE I
STATISTICAL DESIGN OF A LOW-PASS FILTER USING

GENERALIZED ¢; CENTERING TECHNIQUE

Component Nominal Design Casel Case 2 Case 3

i $30.0 $;0.1 $i0-2 $i0:3
X1 0.2251 0.21954 0.21705 0.21530
X2 0.2494 0.25157 0.24677 0.23838
X3 0.2523 0.25529 0.24784 0.24120
X4 0.2494 0.24807 0.24019 0.23687
X5 0.2251 0.22042 0.21753 0.21335
Xg 0.2149 0.22627 0.23565 0.23093
X7 0.3636 0.36739 0.37212 0.38225
Xg 0.3761 0.36929 0.38012 0.39023
Xg 0.3761 0.37341 0.38371 0.39378
X190 0.3636 0.36732 0.37716 0.38248
X11 0.2149 0.22575 0.22127 0.23129

Yield 49% 77.67% 79.67% 83.67%

Number of samples 50 100 100

used for design

Starting point $0.0 0.1 0.2

Number of iterations 16 18 13

CPU time (VAX 8600) 10 sec. 30 sec. 26 sec.

Independent uniform distributions are assumed for each component with fixed tolerances

g; = 1.5% ¢;0. The yield is estimated based on 300 samples.
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TABLEII
MATHEMATICAL PROGRAMMING EQUIVALENT FORMULATIONS

FOR ¢y, €2 and €= OPTIMIZATION

The original problem: minimize H(f)
X
The equivalent problem: minimize V(x,y) subject to the constraints as defined below
xy
H() V(x,y) constraints (forj = 1,2, ..., m)
m
£, 2 v y,=f, v,z —f,
=1
T -
£, y y=f,y=-f
m
+
H1 ) Z ¥ yJij’ yJZO
=1
+ T > -
H, ® y'y y;zf,y,=0
HI® y y=zf,y=0
H ) y y=f

Note: A generalized €, function Hy(f) is defined through Hp+(ﬂ and Hy,7(f). Hy7is a

continuously differentiable function for all p < .
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A microwave stripline transformer showing (a) the physical structure and (b) the
equivalent circuit model [25]. The physical parameters are

dM =[w; wy w3 € Ve Ve Veg by b by ter tsg tealT

where w is the strip width, ¢ the length of the middle section, e, the dielectric
constant, b the substrate thickness and tg the strip thickness. ¢M is represented in
the simulation model by ¢L. The high-level parameters of the equivalent circuit
are

¢H =[D; Dg D3 Ly Lg &JT

where D is the effective linewidth, L the junction parasitic inductance and € the
effective section length. Suitable empirical formulas that relate ¢L to ¢pH can be
found in [25].
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Fig. 2 Illustrations of (a) upper specifications, lower specifications and the responses of

circuits a and b, (b) error functions corresponding to circuits a and b, (c¢) the
acceptable region and (d) generalized ¢, objective functions defined in (13).
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Fig. 3 [llustrations of (a) a discretized single specification and two discrete single

specifications (e.g., expected parameter values to be matched), as well as the
responses of circuits a and b, (b) error functions related to circuits a and b, (c) the
(empty) acceptable region (i.e., a perfect match is not possible) and (d) the
corresponding £, norms.
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Fig. 4 Three nominal points and the related yield.
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Fig.5 Typical tolerance distributions: uniform and Gaussian (normal).
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An illustration of multi-circuit modeling. Three circuits are created by making
two physical adjustments. Assume that we know that ¢; should not be affected by

the physical adjustments.
corresponding to the three circuits.

CO, C! and C2 are contours of the error functions

(a) By treating the three circuits separately, we obtain ¢0, $1 and $2. 1%, ¢1! and
12 turn out to have different values (which is inconsistent with our knowledge)

because of uncertainties.

(b) Consistent results can be obtained by defining ¢; as a common variable and

processing three circuits simultaneously.
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Fig. 9 A typical cost-versus-yield curve [97].
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Fig. 10 A maximum yield design and a minimum cost design.
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Cq:

Contours of max |pj| with respect to Z; and Zs for the two-section transformer
indicating the minimax nominal solution a, the centered design with relative
tolerances b and the centered design with absolute tolerances c. The values in
brackets are the optimized tolerances (as percentages of the nominal values). The
specification is |p| = 0.55.
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Fig. 12  The optimized tolerance regions and nominal values for the worst case design P1,
90% yield design P2 and minimum cost design P3 of the two-section transformer.
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Abstract

We present a novel and general technique applicable to the optimization of large
microwave systems. Using sensitivity information obtained from a suitable Monte-Carlo
analysis, we extract possible decomposition properties which could otherwise be deduced only
through a detailed physical and topological investigation. The overall problem is
automatically separated into a sequence of subproblems, each being characterized by the
optimization of a subset of circuit functions w.r.t. variables which are sensitive to the selected
responses. A heuristic algorithm for automatic decomposition is develuped. The
decomposition patterns are dynamically updated until a satisfactory solution is re: ched. The
partitioning approach proposed by Kondoh for FET modelling problems is verified The
technique was successfully tested on large scale optimizations of microwave multiplexers

involving 16 channels, 399 nonlinear functions and 240 variables.
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I. INTRODUCTION

A serious challenge to researchers in microwave CAD areas is due to the size of
practical microwave systems. Existing CAD techniques, mature enough to handle systems of
ordinary size, generally balk at large circuits. The reasons for their failure include
prohibitive computer storage and CPU times required. A frequent frustration with large
scale optimization is the increased likelihood of stoppping at an undesired local optimum.
Other difficulties, especially in prototype and production tuning, are due to human inability
to cope with problems involving large numbers of independent variables to be adjusted
simultaneously to meet a specified response pattern over a wide frequency range.

Recently, FET modelling [1] and manifold multiplexer design [2] problems were
solved using appropriate decomposition schemes. The success of these efforts motivated us to
pursue the generalization and automation of decomposition approaches for microwave
optimization problems.

The concept of decomposition has been a traditional mathematically based vehicle for
approaching large scale problems, e.g., in mathematical programming [3-6], in circuit
analysis [7-13], design [3] and fault diagnosis [14] and in optimal power flow [15,16], state
estimation[17] and real and reactive power optimization problems [18].

Microwave engineers have their own special concerns with decomposition, as exposed
in [1, 2, 19]. Thorough laboratory experimentation has to be performed before using certain
function structures assumed in mathematical programming theory. They do not take
advantage of topological analysis often exploited in the areas of circuits and systems since
microwave device models are oriented more to physical than topological analysis. Unlike
power systems, most microwave responses are much more complicated and highly nonlinear.
It is often difficult for microwave engineers to analytically indicate possible decomposition
patterns. To our knowledge, there does not exist a general and abstract theory describing a
decomposition approach to microwave circuit optimization not requiring particular physical

or topological knowledge of the system.



In this paper, we present a novel technique applicable to the optimization of large
microwave systems. Using sensitivity information obtained from a suitable Monte-Carlo
analysis, we extract possible decomposition properties which could otherwise be deduced only
through a physical and topological investigation. The overall problem is automatically
separated into a sequence of subproblems, each being characterized by the optimization of a
subset of circuit functions w.r.t. variables which are sensitive to the selected responses. Our
suggested technique has been successfully tested on microwave multiplexers involving up to
16 channels and 240 variables.

In Section II, we describe the basic concepts of decomposition for circuit optimization
problems. Using these concepts, the partitioning approach for FET modelling problems
suggested by Kondoh[1] is verified. Section III illustrates the automatic determination of
suboptimiztion problems. An automated decomposition algorithm for large scale microwave
optimization is presented in Section IV. In Section V, the method is applied to the
optimization of microwave multiplexers. Interesting results demonstrating the procedure of
automated decomposition for a 5-channel multiplexer are depicted in illustrative graphs. The

results of optimizing a 16-channel multiplexer using our approach are provided.

II. THE DECOMPOSITION APPROACH

Circuit Optimization Problems

Let ¢ = [d1 b2 ... ©,IT represent the system parameters. The circuit responses,
denoted as Fi(¢, w), k=1, 2, ..., np, are functions of variables ¢ and frequency . In an
optimization problem for circuit design, the objective function usually involves a set of
nonlinear error functions fi(¢), j=1,2, ..., m. Typically, the error functions represent the
weighted differences between circuit responses and given specifications in the form

wyk(@)(F(d, ®) — Syk(w))
— wpk(@)(Fr(d, @) — Spk(w)) (1)

k€{1,2,..,nf},



where Syx and Spy are upper and lower specifications, respectively. wyk and wpg are
weighting factors.

Suppose sets [ and J are defined as

1212, ..,0}, 2)
JA{1,2, .., m) 3)
The overall optimization problem, e.g., a minimax optimization, is
minimize max fj(). (4)
oy, i€l j€d

Description of the Decomposition Approach

In a decomposition approach, one attempts to reach the overall solution by solving a

sequence of subproblems. A typical subproblem is characterized by

minimize max fj(¢), (5)
b, i€ jeds

where IS and J® are subsets of I and J, respectively.

The basic idea for decomposition is to decouple a variable ¢; from a function fj if the
interaction between them is weak. A subproblem contains only the sensitively related
variables and functions. A proper arrangement of the sequence of different subproblems to be

solved is often important to ensure convergence and efficiency.

Sensitivity Analysis

We perform sensitivity analysis at a set of randomly chosen points ¢, £ = 1,2, ... A

measure of the interaction between ¢; and fj is defined as

2

4 0
g & Z <afj(d>) (b—l) (6)
AN

where ¢;0and f;0 are used for scaling. All the Si,i=1,2,..,nand j = 1,2, .., m, constitute a

nxm sensitivity matrix S. It is reasonable to conclude that ¢; and fj can be decoupled if S; is

very small.



Grouping of Variables and Functions

The examination of various interaction patterns between ¢;, i € I, and fj, j € J, results
in the breakdown of all variables ¢ into p groups identified by index sets Iy, I, ..., Ip, and all
functions finto g groups identified by sets Jq, Jo, ..., 4. We have

I=Uulp U.. Ul N
and
J=J1UdsU..Udgq . (8)

The partitioning of ¢ or f can be achieved either manually or automatically. The
manual procedure corresponds to the manual determination of variable groups and function
groups using a priori knowledge. Such knowledge is typically obtained through extensive
laboratory experiment and an excellent understanding of the particular device. The
automatic procedure corresponds to the computerized partitioning of ¢ or f based upon the
sensitivity matrix S.

As an example for manual partitioning of f, we consider a N-channel multiplexer.
The common port return loss and channel insertion loss responses associated with the same
channel can be grouped together since their behavior is similarly affected by variables ¢.
Therefore, we have N groups of functions, i.e., g=N. J, contains indices of error functions

related tochannel ¢, £ =1,2,...,N.

Automatic Partitioning of Variables &

Suppose the function groups have been determined, i.e., J has been decomposed into

Je,€=1,2,...,q. Wedefine a nxq matrix C whose (i, {)th component is

A
C.2 2 S, 9
jEJe

A very small value of an entry in the C matrix, say, Cie, implies that the ith variable and the

€th function group are weakly interconnected.



Let Caye represent the average value of all components in the C matrix. For a given
factor A, A = 0, the matrix is made sparse such that Cj¢ is set to zero if it is less than AC,ve. By
making C sparse, insensitive variables are eliminated and weak interactions between
variables and function groups are decoupled.

Two variables ¢; and ¢; belong to the same group if they interact only with the same
groups of functions, i.e., if the ith and the jth rows of C have the same zero/nonzero pattern. A
thorough computerized checking of the C matrix results in the automatic determination of

indexsets I, k=1,2,...,p.

Example of Matrix C

Consider the fictitious relations between variables and function groups shown in Fig.

1(a). The functions f have been arranged into 5 groups. The C matrix (already made sparse)

is
— =N
22. 100. 32. 0. 0.
0. 100. 0. 0. 0.
0. 100. 0. 0. 0.
0 0 83. 100 0
0. 0. 0. 0. 100. . 10)
0. 0. 100. 86. 0.
0. 0. 100. 0. 0.
0. 78. 100. 55. 0.
100. 0. 0. 0. 0.
~ vy

As seen from Fig. 1(a), 2 and ¢3 both affect only the 2nd function group. In the C
matrix, rows 2 and 3 both have only one nonzero located at the 2nd column. Therefore,
variables ¢9 and ¢3 are grouped together. Similarly, variables ¢4 and ¢g belong to the same
group. The resulting index sets for variable groups are Iy = {9}, Iz = {2, 3}, I3 = {7}, I4 = {5},

I5 = {4, 6}, I = {1} and I; = {8}. The index sets have been ordered such that the kth variable



group correlates with no more function groups than the (k+ 1)th variable group does, k = 1,

2, ..., 6. Such an arrangement is made to keep subsequent description simple.

Decomposition Dictionary

To manipulate directly with groups of variables and groups of functions, we construct

a pxq dictionary decomposition matrix D. Define the (k, ©)th component of D as

A
Dke - Z Z Sij an
i€l jeJ,

> C,-

iEIk

If Dy is zero, variables in the kth group are decoupled from functions in the fth group.
Otherwise if Dgp = 0, we say that ¢;, i€ly, and fj, j€Je, are correlated. The decomposition
dictionary gives a clear picture of the correlation patterns between groups of variables and
funptions, facilitating the automatic determination of suboptimization problems. The ideal
dictionary is a diagonal matrix where a subproblem simply corresponds to a diagonal
element. In this case, only one variable group and one function group is involved in a
subproblem. If a diagonal dictionary can be obtained without artificially making C sparse
(i.e., using sparse factor A = 0),‘ then the system is completely decomposable[20]. For a

completely decomposable system, different subproblems can be calculated in parallel.

Example of the Decomposition Dictionary

Consider the previous example with the resulting C matrix defined in (10). According
to the index sets Iy, k = 1, 2, ..., 7, the decomposition dictionary D can be obtained from C by
adding rows 2 and 3, and adding rows 4 and 6, respectively. The relations between groups of

variables and functions are shown in Fig. 1(b). The resulting dictionary is



~ . 3
100. a. 0. a. 0.
0. 200. 0. 0. 0.
0. 0. 100. 0. 0.

0. 0. 0. 0. 100. , 12)

0. 0. 180. 180. 0.
20. 100. 30. 0. 0.
0. 70. 100. 50. 0.

- ~/

where each entry has been rounded to multiples of 10.

Decomposition for FET Device Models

Through extensive experiment on practical FET devices, Kondoh[1] summarized 8
suboptimization problems which can be repeatedly solved to yield a FET model with improved
accuracy. The equivalent circuit is shown in Fig. 2. We perform sensitivity analysis at 10
randomly chosen parameter points in the 10% neighborhood of §0, $0 representing the true
value listed in [1]. The function fj used in (6) is defined as the weighted difference between the
calculated and the measured values of the modulus or the phase of a particular S parameter.
The entire frequency band for calculating S is [1.5, 26.5] GHz. Functions associated with the
same S parameter are grouped together. Table I shows the C matrix of (9) before being made
sparse, indicating strong as well as weak interconnections between each individual
parameter and different groups of functions. In the table, each row has been scaled. Table II
provides an example of the decomposition dictionary calculated and normalized from Table I.
Table II yields 8 subproblems which agree with and further verify the decomposition scheme
proposed in [1]. When the C matrix is made sparse, certain entries, whose values are only
slightly less than the dominant ones, are also set to zero. Therefore, as mentioned in (1],
repeated cycling and careful ordering of the 8 suboptimizations are necessary. The feasibility

of computerized automatic decomposition is demonstrated by this example.



III. AUTOMATIC DETERMINATION OF SUBOPTIMIZATION PROBLEMS

Reference Function Group and Candidate Variable Group

Usually, the decomposition dictionary is not diagonal. A suboptimization often
involves several function groups and several variable groups. Among the function groups
involved, there is a key group which we call the reference group. Such a group typically con-
tains the worst error function. The reference function group is used to initiate a subproblem
as described in the subsequent text.

Suppose the index set J¢ indicates the reference function group. The candidate groups
of variables to be used for the suboptimization are those which affect f}, j € Je.

In the decomposition dictionary, the ¢th column associates with the reference function
group. Rows having a nonzero in the €th column are candidate rows, each corresponding to a
candidate variable group. Take Fig. 1(b) as an example. Suppose that the function group Js is
the reference group, i.e., £=2. The candidate groups of variables are I3, Ig and I7 since they
correlate with the reference function group. Correspondingly, in the D matrix of (12), rows 2,

6 and 7 are candidate rows since they all have a nonzero in the 2nd column.

Determination of a Suboptimization Problem

An automatic procedure for the determination of I® and J*® for the suboptimzation of
(5) has been developed. Suppose J¢ indicates the reference function group. For a selected
candidate variable group, e.g., the one corresponding to set Ii, the index set J° indicates the
union of all function groups which correlate with variable group k. I® identifies variables in
the kth group, as well as all other variables which correlate with functions only within fj, j €
JS. Also, IS excludes variables not correlating with any active functions in f}, j € J°. A function

fis said to be active if

f> 0.8Mf when Mg>0
(13)
f>125Mf when Mg<O0,
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where

A
M. = max fj' (14)
jeds

Priority of Candidate Variable Groups

It can be seen that a pair of (I%, J%) associate with a pair of (Ix, J¢). For a selected
feference function group, each candidate variable group leads to a subproblem. The sequence
of subproblems used to penalize fj, j € J¢, is determined by the priority of all resulting
candidates.

Since each candidate determines the function set J° for a suboptimization, the priority
of the candidate is based upon the pattern of error functions it will affect, i.e. patterns of fj,
j € J5. Firstly, the fewer the number of function groups in J%, the higher the priority.
Secondly, the worse the overall error functions in J°, the higher the priority. The overall error
functions in J® are ranked by an appropriate measure, e.g., the generalized leas_t pth function
(GLP)[21].

The priority of candidate variable groups can be similarly determined in the
decomposition dictionary. The fewer the number of nonzeros that exist in a candidate row,
the higher the priority. For two candidate rows containing an equal number of nonzeros, a
higher priority is given to the candidate having a larger value in its generalized least pth

function.

Example

For the example of Fig. 1, suppose that the maximum error functions within each of
the 5 function groups are [3.8 4. 1. -1. 2.]. Suppose that we choose the worst group, i.e.,
group 2, as the reference function group. According to our previous discussions, the candidate
variable groups are 9, [g and [7. I3 has the highest priority since it affects fewer (i.e. only one)

function groups than Ig or I7 does. The functions affected by variables in Ig (or I7) are fj,
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j€JS = J1UdaU d3(or 5 = Jo U J3 U dy). Ig has a higher priority than I7 since the overall
error functions in J1 U Jo U J3 are worse than thatinJg U J3 U J4.

Correspondingly, in the decomposition dictionary of (12), rows 2, 6 and 7 are
candidates. Row 2 has the highest priority since it contains fewer nonzeros than others. Row
6 has the second highest priority since its GLP value is larger than the GLP value for row 7.

To formulate a suboptimization problem, i.e., to decide I and J%, we choose a pair of
(Ix, Jo), e.g., candidate variable group Ig and reference function group J2. The index set J° =
J1 U dg U J3. The variable index set I® includes Ig (indicating the candidate variable group),
as well as Iy, Iy and I3 (indicating all other variables affecting functions only within J9).
Further, I3 can be excluded from I° since variables in I3 do not affect active functions in J5.

Therefore, we have IS = [ U I; U Is.

Circuit Responses and Sample Frequencies

When a subset of error functions fi(¢), j € J%, are included in a subproblem, the
necessary circuit response functions F,(¢, wy), a € {1, 2, ..., np} and frequency points wy,
b € {1, 2, ..., ny,}, should be selected for circuit simulation programs. This is accomplished
using a coding scheme representing the one-to-one correspondence between j and (a, b). We
define weighting factor matrices Wy (for upper specification) and Wy, (for lower specification).
Both matrices are ng by n,. The (a, b)th component of Wy and Wy, are the weighting factors
wyalwp) and wia(wy), respectively, as defined in (1). wy,(wy) or wia(wy) is zero if no upper or
lower specification is imposed on F,(¢, wp). The coding scheme relating the index of f; to the
indices of nonzeros in Wy and Wy, are constructed by systematically scanning through Wy

and then Wy, respectively.

IV.AN AUTOMATIC DECOMPOSITION ALGORITHM
An automatic decomposition algorithm for optimization of microwave systems has

been developed and implemented. The algorithm heuristically decides when to update the
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sensitivity matrix and the decomposition dictionary. The formulation and the sequence of

suboptimization problems are dynamically determined. The degree of decomposition is

reduced as the system converges to its overall solution. As a special case, if all variables

interact with all functions, our approach solves only one subproblem, this being identical to

the original overall optimization.

Step 1

Comment

Comment

Step 3

Comment

Comment

Step 5

Initialize sparse factor A. Calculate the sensitivity matrix S and the
decomposition dictionary D. Calculate f.

The initial sensitivity matrix can be obtained from a suitable Monte-Carlo
sensitivity analysis performed off-line. All error functions are calculated in this
step.

Define € such that
fworst = max fj = max fj.

j€de j€d
The ¢th function group contains the worst response. Such a function group will
be frequently chosen as the reference group to be penalized.
For the given ¢, determine the sequence of candidate rows in D. Rank the
candidates in decreasing priority. Setk = 0.
The ¢th function group is the reference group to be penalized. All variable groups
correlating with the €th function group are considered as candidates.
If k = O then set k to the row index of the first candidate, otherwise set k to the
row index of the next candidate. If such a candidate does not exist then go to
Step 8.
The candidate groups of variables are sequentially selected. Each entry into this
step results in a selection of a candidate with a lower priority than the current
one.
Define I® and JS using the current k, €. If IS and J° are identical with their

previous values then go to Step 4. Solve the suboptimization problem of (5).



Comment

Step 6

Comment

Step 7

Comment

Comment:

13

Terminate the optimization if’

max f; > X' fyorst -
j€ds

A subproblem is formulated and solved in this step. By checking the functions
not covered in the present suboptimization, any significant deterioration in the
overall objective function is prevented. The factor A'can be, e.g., 1.2.

IfI8 = I and J° = J then stop.

The program terminates following the completion of an overall optimization
which is considered as the last subproblem.

Calculate f. Calculate

fworst = max fj .
j€d

Go to Step 5.

An overall simulation is performed. By going to Step 5, the current reference
function group can be continuously penalized in the next subproblem even if this
group does not include the worst error functions.

If

max fj < max f
jE€JS j€d

then go to Step 2. If A = O then stop otherwise, update S, reduce A, update
dictionary D and go to Step 3.

When the selection of a candidate fails, a new sequence of candidates will be
defined by going to Steps 2 or 3. By reducing the sparse factor A, the degree of
decomposition is reduced as the overall solution is being approached. The
reference function group will be readjusted if the existing one does not contain
the maximum error function. For completely decomposable problems, the
terminating conditions in Step 6 will not be satisfied and the program will exit

from Step 8.
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While the theory in the previous sections is applicable to general optimization
problems such as the least pth optimization, the algorithm described in this section is
particularly suitable for the minimax optimization defined by (4). Both variables and
functions are allowed to overlap between different subproblems. Convergence of the

algorithm is not theoretically guaranteed.

V. LARGE SCALE OPTIMIZATION OF MULTIPLEXERS

The automatic decomposition technique was tested on the optimization of microwave
multiplexers used in satellite communications. Specifications were imposed on the common
port return loss and individual channel insertion loss functions. Each suboptimization was
solved using a recent minimax algorithm(22]. Until our recent paper on multiplexers[2], the
reported design and manufacturing of these devices were limited to 12 channels[23-27].

A contiguous band 5-channel multiplexer was specifically optimized to illustrate the
novel process of automatic decomposition, as shown in Fig. 3. Functions associated with the
same channel are grouped together. Variables for each channel include 6 coupling
parameters, 6 cavity resonances, input and output transformer ratios (n; and ng) and the
distance measure from the channel filter to the short circuit main cascade termination. The
overall problem involved 75 variables and 124 nonlinear functions. Figs. 3(a)-(d) show the
multiplexer responses for the first 3 suboptimizations. Eleven suboptimizations were used
reaching the optimal solution shown in Fig. 3(e). The final subproblem was the overall
optimization.

We also tested our approach on a 16-channel multiplexer involving 240 variables and
399 nonlinear functions. The responses at the starting point is shown in Fig. 4. Only 10
suboptimizations were performed before reaching the response of Fig. 5. Then a full optimi-
zation was activated resulting in all responses satisfying their specifications as shown in Fig.
6. A comparison between the optimal design with and without decomposition is provided in

Table III. When used to obtain a good starting point for subsequent optimization, the
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decomposition approach offers considerable reductions in both CPU time and storage. The
feasibility of obtaining a near optimum for large problems using computers with memory
limitations is observed from the table. Such a near optimum is obtained at the cost of
increased CPU time. When close to the desired solution, the sizes of the subproblems may
approach that of the overall problem. In this case, the performance of optimization does not
differ significantly with or without decomposition, unless the original problem is almost

completely decomposable.

V1. CONCLUSION

We have presented an automated decomposition approach for optimization of large
microwave systems. Compared with the existing decomposition methods, the novelty of our
approach lies in its generality in terms of device independency and its automation.
Advantages of the approach are 1) a very significant saving of CPU time and/or computer
storage and 2) efficient decomposition by automation. By partitioning the overall problem
into smaller ones, the approach promises to provide a basis for computer-assisted tuning. It
contributes positively towards future general computer software for large-scale optimization

of microwave systems.
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TABLE I

THE C MATRIX FOR THE FET MODEL

Function Groups

Frequency Band Variables Si1 So1 S12 Sa9
gm 18.55 100.00 87.55 68.33
Cgs 100.00 89.74 67.98 62.25
entire Cas 4.88 67.74 45.73 100.00
band Cag 4.24 48.88 100.00 81.27
Rq 35.53 37.14 100.00 5.88
Ras 17.44 97.68 70.51 100.00
T 31.91 100.00 36.61 59.31
Rg 100.00 50.67 24.87 29.89
upper R4 34.65 74.31 85.85 100.00
half R; 100.00 65.63 88.43 39.53
band Lg 100.00 87.85 57.16 37.44
Lg 9.99 97.88 61.78 100.00
Lg 62.94 31.31 100.00 21.99
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TABLE II

NORMALIZED DECOMPOSITION DICTIONARY D

Function Groups

Frequency Band Variable Groups S11 So1 S12 So9
Rgs, Cys 0.00 0.00 0.00 1.00

entire Ces 1.00 0.00 0.00 0.00
band Cyg, R 0.00 0.00 1.00 0.00

gm 0.00 1.00 0.00 0.00

upper Rg, Lg 0.00 0.00 0.00 1.00

half Rg, Ri, Lg 1.00 0.00 0.00 0.00

band Lg 0.00 0.00 1.00 0.00

T 0.00 1.00 0.00 0.00
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TABLE III

COMPARISON OF 16-CHANNEL MULTIPLEXER OPTIMIZATION
WITH AND WITHOUT DECOMPOSITION

Purpose Reduction in Criteria for With Without
of Objective Comparison Decomp. Decomp.
Optimization+  Function

to provide a from CPU time * 99 250

good starting 13.46

point for to working space 2,197 483,036

further opti- 2.4 needed’

mization

to obtain a from CPU time * 651 553

near optimum 13.46

solution to working space 73,972 483,036

0.32 needed’

to obtain from CPU time * 1045 1289

optimum 13.46

solution to working space 483,036 483,036
-0.09 needed’

different sparse factors A have been used to control the degree of decomposition for the
three different purposes.

seconds on the FPS-264 mainframe.

of machine memory units (one unit per real number) required by the minimax
optimization package[22].
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Return and insertion loss responses of the 5-channel multiplexer for each
suboptimization. The 20 dB specification line indicates which channel(s) is to be
optimized in the next subproblem. The variables to be selected are indicated,
e.g., 35 representing coupling M35, d representing the distance of the
corresponding channel filter from the short circuit main cascade termination.
The previously optimized channels are highlighted by thick response curves.

(a)
(b)
()
(d)
(e)

Responses at the starting point.
Responses after the 1st suboptimization.
Responses after the 2nd suboptimization.
Responses after the 3rd suboptimization.
Responses at the optimum solution.
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EFFICIENT OPTIMIZATION WITH INTEGRATED
GRADIENT APPROXIMATIONS
J.W. Bandler, Fellow, IEEE, S.H. Chen, Student Member, IEEE,

S. Daijavad, Member, IEEE, and K. Madsen

Abstract A flexible and effective algorithm is proposed for efficient optimization
with integrated gradient approximations. It combines the techniques of perturba-
tions, the Broyden update and the special iterations of Powell. Perturbations are
used to provide an initial approximation as well as regular corrections. The ap-
proximate gradient is updated using Broyden’s formula in conjunction with the
special iterations of Powell. A modification to the Broyden update is introduced
to exploit possible sparsity of the Jacobian. Utilizing this algorithm, powerful
gradient-based nonlinear optimization tools for circuit CAD can be employed
without the effort of calculating exact derivatives. Applications of practical
significance are demonstrated. The examples include robust small signal FET
modeling using the ¢, techniques and simultaneous processing of multiple circuits,
worst-case design of a microwave amplifier as well as minimax optimization of a
5-channel manifold multiplexer. Computational efficiency is greatly improved as

compared to estimating derivatives entirely by pertirbations.
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I. INTRODUCTION

Many powerful gradient-based algorithms have been developed in recent
years for nonlinear optimization and applied to circuit CAD problems. For exam-
ple, Bandler, Kellermann and Madsen have described algorithms for linearly cons-
trained minimax and ¢, optimization [1], [2]. However, the effort to extend their
application to a wide range of practical problems has been frustrated by the
requirement of exact gradients of all functions with respect to all variables. For
some applications, either an explicit sensitivity expression is not available, e.g.,
when time-domain analysis and nonlinear circuits are involved, or the actual
evaluation of such an expression is very tedious and time-consuming, e.g., for
large-scale networks. Partly due to these difficulties, exact sensitivity calculati-
ons have not been implemented in many general-purpose CAD software packages,
although the concept of adjoint network has been in existence for nearly two
decades and has had success in many specialized applications. The inability or
inconvenience in calculating the exact derivatives has created a gap between
the theoretical advances in gradient-based nonlinear optimization techniques and
their actual implementation.

With only the function values available, as is the case for many CAD pack-
ages on the market, one usually resorts to the method of perturbations (finite
differences) for gradients. However, this seemingly simple alternative becomes
extremely inefficient when large-scale problems have to be dealt with.

In this paper, we propose a flexible and effective approach to optimization
with integrated gradient approximations. It is a hybrid approach which incorpo-
rates the use of perturbations, the Broyden update [3] and the special iterations
of Powell [4]. The proposed algorithm extends the previous work by Madsen [5]
and Zuberek [6] in two aspects. Perturbations are integrated in a flexible manner

to allow regular corrections to the approximate gradients. Therefore, a suitable



compromise between accuracy and computational labor may be achieved for va-
rious applications, especially for large-scale circuit optimization. We also propose
a modified Broydenv update to take advantage of a possible sparse structure of
the problem.

The practical usefulness of the new algorithm is demonstrated through three
diverse applications. The subjects are of primary interest to microwave circuit
engineers: robust small signal modeling of FET devices, worst-case fixed tole-
rance design of a microwave amplifier and large-scale optimization of manifold
multiplexers. Applying an approach to robust device modeling proposed by the
authors [7] which employs the £, optimization techniques and a novel concept of
simultaneous processing of multiple circuits, we have obtained self-consistent
models of a FET device using real measurement data. By integrating gradient
approximations with a powerful minimax algorithm [1], we are able to optimize a
5-channel‘ noncontiguous band multiplexer efficiently and without exact deriva-

tives. The multiplexer problem involves 75 nonlinear variables.

II. GRADIENT APPROXIMATIONS
A. Estimating the Gradient by Perturbations
The first-order derivative of fj(x) with respect to x; can be estimated by
of ;(x) fi(x+hu;) - f;(x)

~ , (1
9x; h

where x = [X; X, .. x,]T is the vector of variables, and u; is a column vector

n
which has 1 in the ith position and zeros elsewhere. The accuracy of such an
estimate may be improved by using a smaller h as well as by averaging the res-
ults of a two-sided approximation (using both positive and negative perturba-

tions). This method is straight forward and reliable. However, the computational

labor involved grows in proportion to the dimension of the problem.



In the new algorithm described in this chapter, perturbations are used to
obtain an initial approximation to the gradient at the starting point of an opti-
mization process. During the optimization, we may also incorporate a regular use
of perturbations to maintain the accuracy of gradient approximations at a desira-

ble level.

B. The Broyden Update
The Broyden update refers to a rank-one formula proposed by Broyden [3]
as
f(x+hy) - f(x,) - Gehy

Gis1 =Gy + Y hg , @)
i

where Gy is an approximation of the Jacobian [8fT/dx]T at x,, h, is an incre-
ment vector and Gy, provides an updated Jacobian. The values of the function f
at x, and (x,+hy) are assumed available. If the two points (x, and (x,+hy)) are
iterates of the optimization process, then the Broyden update requires no addi-
tional function evaluations, regardless of the dimension of the problem.

Apparently, the approximate Jacobians generated by the Broyden update are
in general less accurate as compared with those obtained from perturbations.
Hence, the optimization may require more steps to reach the solution or may not
reach the correct solution at all. Broyden [3] has shown that for quadratic func-
tions the Broyden update will converge and will reduce the overall computational
effort. Although such properties can not be proved for a general nonlinear prob-
lem, the Broyden update still provides an efficient alternative for approximating
derivatives.

The updated approximation Gy, satisfies the following equation

f(x, +hy) - f(xy) = Gy, hy . 3)

In other words, Gy,; provides a perfect linear interpolation between the two



points x, and (xy+hy).

Some difficulties in the application of the Broyden update have been obser-
ved by many researchers (see, for example, [4], [5] and [6]).

(1) If some functions are linear in some variables and if the corresponding
components of h, are nonzero, then the approximation of constant derivatives
are updated by nonzero values. Consider a simple example. Let fj = x% + 2x3 be
a function in f. Denote the variables by x = [x; X, Xg]T and the gradient by
f;(x) = [g; 8 ga]T. Two components of the gradient, namely g, = 0 and gz = 2,
are constants and can be found accurately by perturbations. g; is the only com-
ponent that needs to be updated. Suppose that x, = [1 1 l]T, h, = [0.5 0.5 0.5]T
and a perfect estimation of f;(xk) is available as [2 0 2]T. The approximation to
f;(xk+hk), as given by the Broyden update, would be [2.167 0.167 2.167]T (the
true value is [3 0 2]T).

(2) Along directions orthogonal to hy the Jacobian is not updated:

Gy,1P = Gyp, for pThy = 0. (4)

To overcome these difficulties, we implement a weighted update and the

special iterations of Powell [4].

C. Weighted Broyden Update

The weighted update is to be applied to the Jacobian matrix on a row-by-
row basis. The jth row vector of the approximate Jacobian, denoted by (gj)k, is
an approximation to f;(xk), the gradient of fj. Suppose that the Hessian of fj is
available to us and denoted by Hj, then

f(xrhy) ~ £{x) + Hy(xy) by (5)

Analogously to (5), we devise an updating formula to obtain an approximation to
f;(xk+hk) as

(8j)k+1 = (85 + @ Hj(xy) hy. (6)



If we choose the coefficient a as

£(xicthy) - £(x) - (87 hy
o , (7)

then the linear model as given by (3) will be preserved, namely
fi(x+hy) - f5(x) = (gj)ff“hk. (8)
In practice we are very unlikely to have access to the Hessian of any f;.
Even so, two basic facts are obvious: the Hessian of a quadratic function is
constant, and if f; is linear in x; then the ith row and the ith column of the
Hessian contain only zeros. Hence, we propose the use of a constant diagonal
matrix
W; = diag[wy; ... W], wy; 20, i=1,.,n, %)
This leads to a weighted Broyden update as follows.
fj(xk"'hk) = fj(xk) - (gj)’lfhk

(gj)k+1 = (gj)k + T 9k »
qjx hy

(10)
A = Wj hy = [wjihy ... wjnhkn]T-

The weights w;; provide a measure of the linearity of fj. If fj is linear in
X;, we set w;=0, and if f; is nearly linear in x;, we assign a small value to wj.
It should be clear from (10) that only the relative magnitude of the weights is
important, not their absolute values.

Consider the simple example we have used in the previous section, namely
f= x} + 2x,. Since fj is independent of x, and linear in X3, we set wj, = wjz =
0 and wy; = 1. The approximate gradient given by (10) is [2.5 0 21T, compared to
the result given by the Broyden update as [2.167 0.167 2.167]T, and the true
gradient [3 0 2]T.

The assignment of weights requires some knowledge of the functional rela-

tionship of fj(x). Such a knowledge may come from experience or may be gained

from sensitivity analyses by performing a few perturbations. For instance, for a



particular circuit, it may be known that some designable parameters have little
influence on the performance function over some frequency or time intervals.
Using an adaptive method to find W; might be of some theoretical interest. But
it was felt to be unnecessary and too complicated to be practical at the present

time.

D. Powell’s Special Iterations

The Broyden update is a rank-one method. As has been shown in (4), along
directions orthogonal to h, the approximate Jacobian is not updated. If some
consecutive steps of optimization happen to be collinear, the updating procedure
may not converge. Powell [4] suggested a method which produces strictly linearly
independent directions. For this purpose, special iterations are introduced which
intervene between the ordinary iterations of optimization. The increment vector
of such a special iteration is not calculated to minimize the error functions,
instead it serves the purpose of improving the accuracy of gradient approxima-
tions. The algorithm for computing the increment vector for a special iteration,

as derived by Powell, is given in the Appendix.

III. A HYBRID APPROXIMATION ALGORITHM

Our hybrid algorithm for gradient approximations consists of an initial
approximation, the Broyden update, Powell’s special iterations and regular correc-
tions provided by perturbations.

At the starting point of optimization, the initial approximate Jacobian Gy is
usually computed by perturbations. However, G, may be already available, for
example, it méy have been stored from a previous optimization, and can be utili-
zed to avoid unnecessary computations. This option would be useful if similar

problems are being solved repetitively (e.g., the same circuit is optimized with



respect to different specifications). The accuracy of G, is not very critical to
the overall approximation. We have observed for some examples that convergence
was achieved despite the erroneous estimates of Gy.

There is little hard evidence as to how frequently the special iterations
should be used. Numerical experience, ours as well as other authors’, has sugge-
sted the use of a special iteration between every two ordinary ones (i.e., every
third iteration is a special iteration). Also, in our implementation, a special iter-
ation is skipped provided that the changes in the functions agree fairly well with
the linear prediction by the approximate gradient. This is considered to be true
if

I £;(xi+hy) = £i(xi) = Gyhy || < 0.1 || £i(xp+hy) - £5(x) || (11)
The purpose of this provision is to avoid unnecessary computations.

Whether perturbations should be wused during optimization _depends on the
application. For small or mildly nonlinear problems, the ’Broyden update may
suffice. For large-scale problems, especially in circuit applications where highly
nonlinear functions are involved, the correction provided by perturbations is
likely to be necessary. We have incorporated in our algorithm the use of pertur-
bations with prescribed regularity, say, at every kth optimization iteration.

The Broyden update with or without weights, depending on whether the
necessary knowledge of f(x) is available, is employed between perturbations.

Software for gradient-based optimization typically requires a user-defined
routine which accepts a set of values for x as input and returns the values of
f(x) as well as the first-order derivatives. We have implemented an interface
which integrates gradient approximations with optimization. Taking a set of val-
ues for x from an optimizer, it calls a user-defined routine for the function
values, carries out necessary operations for gradient approximations, and then

returns to the optimizer the values of f(x) as well as the approximate Jacobian.



The interface is transparent to both the optimizer and the user-defined simula-
tion routine. The optimizer is provided with the required gradients, and the user-
defined routine (typically a circuit simulation module) works as if the optimizer
did not require gradients.

We have integrated our gradient approximation algorithm with two recent

optimization methods [1], [2], for the minimax problems as

minimize max {f ()}, (12)
x j
and the ¢; problems as
m
minimize ) |f eI (13)
b's j=1

respectively. The methods described in [1] and [2] are 2-stage algorithms. The
second stage is to be employed near the solution to accelerate the rate of con-
vergence, for which the accuracy of the approximate gradient may become criti-
cal. Hence, our implementation allows a more frequent use of perturbations in
the second stage.

The effectiveness and efficiency of the new approach are clearly shown
from the results of solving a large variety of problems. The results on some

mathematical test problems can be found in [8], [9] and [10].

IV. A TWO-SECTION TRANSMISSION-LINE TRANSFORMER EXAMPLE

Consider the ‘classical two-section 10:1 transmission-line transformer shown
in Fig. 1. Originally proposed by Bandler and Macdonald [11], this problem has
been widely used to test minimax algorithms. The error functions (f;) are given
by the reflection coefficient sampled at 11 frequencies normalized with respect
to 1GHz: {0.5, 0.6, .., 1.5}. Madsen and Schjaer-Jacobsen [I12] have shown that

when we take the characteristic impedances Z, and Z, as variables and keep the
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lengths ¢, and ¢, constant at their optimal values (the quarter wavelength at the
center frequency), the minimax problem is singular. Fig. 2 shows the minimax
contours and illustrates the solution obtained using exact derivatives. If the
derivatives were to be estimated by perturbations, 24 function evaluations would
have to be performed. Using our gradient approximation, we obtained the solu-
tion, as shown in Fig. 3, after 18 function evaluations.

For the same transformer, we also formulate an ¢, problem. The reflection
coefficient at the minimax optimum was taken as a measurement from which we
attempt to identify the values of Z, and Z,. The solutions obtained with the
gradients estimated entirely by perturbations and by our new algorithm are illus-
trated in Figs. 4 and 5, respectively.

A comparison between Figs. 2 to 5 reveals that the solutions obtained using
approximate gradients require more iterations of the optimization but overall

fewer function evaluations, which is expected.

V. FET MODELING USING ¢, OPTIMIZATION
WITH APPROXIMATE GRADIENTS

A. Introductory Remarks

The use of ¢, optimization, based on its theoretical properties, has been
recommended for nonlinear data-fitting and device modeling [1], [7], [13]. Jansen
and Koster [14] have investigated the use of generalized 4, optimization in the
modeling of microwave transistors, and they concluded that values of p around
unity would lead to relatively stable solutions with good convergence properties.
A novel approach to robust modeling of microwave devices has been presented by
the authors [7] which exploits the unique properties of the ¢, norm and employs
the concept of simultaneous processing of multiple circuits. It has the advantage

of establishing not only a good equivalent circuit model but also a reliable mea-



11

sure of the self-consistency of the model. In the context of this paper, an exam-
ple of FET modeling is given to illustrate the ¢; optimization with integrated
gradient approximations.

One of the concerns in practical modeling of FET devices is the uniqueness
of the solution. A family of solutions may exist which all exhibit a reasonable
match between the calculated and measured responses. The approach described in
[7] is intended to improve the chance of unique identification of the model para-
meters by processing simultaneously multiple circuits. In the case of FET model-
ing, we create multiple circuits by taking measurements on the scattering para-
meters under several different biasing conditions. From the physical characteris-
tics of the device we know that with respect to different biasing conditions
some model parameters should remain almost unchanged while the others should
vary smoothly. Therefore, from a family of possible solutions we give preference
to the one that exhibits the desired consistency. Such a self-consistent model
can be achieved automatically by using the ¢; optimization and choosing those

model parameters that are insensitive to bias as common variables.

B. The Model and the Measurements

The small signal equivalent circuit model for the FET is shown in Fig. 6
which is widely used by commercial programs such as TOUCHSTONE [15] and
SUPER-COMPACT [16]. The model has 11 parameters that we will consider as
optimization variables:

{Rg, Ry, Lgs 7, Ryq Ry, Ry, Coqy Cygs Cogs 81}

The first four parameters are considered to be bias insensitive.

Three sets of measurements on scattering parameters of a FET device which
were taken at 17 frequency points from 2GHz to 18GHz, 1GHz apart, under the

following biasing conditions were made available by R.A. Pucel [17].
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. Vg =4V, V= 0.00V, I, = 177mA.

2. Vg =4V, V,=-174V, I, = 92mA.

37mA.

3. Vg =4V, Vg = -3.10V, Iy,

C. Formulation of the Problem
Microwave device modeling utilizing multiple circuits has been formulated in
general as an ¢, optimization problem by the authors [7]. The following are for-

mulas (12) to (14) in [2]:

nc kt
minimize Y. Y. |ff], (14)
X t=1 i=1
where
ff = wi [Fi(x*) - (F)" (15)
and
[
x2
X = . s (16)
Eal

with superscript and index t identifying the t-th circuit. n. is the number of
circuits and k, is the number of functions arising from the t-th circuit. x* rep-
resents the vector of parameters of the t-th circuit. Vectors x%, t = 1, .., ng

contain only those parameters that vary between different circuits. They do not

include the common variables, i.e., those parameters that assume the same values

£

for all circuits. For each circuit, we combine the common variables and x;

to
form the vector xt.
For the FET modeling problem under consideration, which has three sets of

measurements, we specialize the formulas as follows:
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3 17 2 2
minimize }, Y 3 ) (Re[ff(w)] + Im[ff (w1}, 17
X t=1 i=1 j=1 k=1
where
f}k(wi) = ng(xt,wi) - Sgk(wi)‘ (18)

In (18), f"k and Sk are the calculated and measured scattering parameters, res-
pectively, with superscript identifying three different biasing conditions. Having
17 frequency points with real and imaginary parts of the complex S-parameters
being treated separately, we have a total of 408 error functions. The variables to

be optimized in (17) are defined as

x = |2, (19)

The vector x! actually has two parts as x! = [x° xI]T, where x° consists of the
common variables as
=[Rg Ry L, 7] . (20)
These are the parameters we expect not to change with respect to different bias.
The vector x! contains the remaining parameters of model t, namely
= [Rg, RER; Cg, Chg Ch, 8RI" 1)

The total number of variables is 25.

D. Results

To solve the problem we have formulated, the ¢, optimizer described in [2]
was employed. The gradient required was provided by the approach proposed in
this paper. We should point out that in this case the evaluation of exact sensiti-
vities is actually possible using the scheme outlined in [7]. However, it involves
lengthy and complicated programming. First of all, two adjoint solutions are

needed to evaluate the sensitivity expressions for the admittance matrix. From
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these expressions the sensitivities of the S-parameters are derived. Since multiple
circuits are processed simultaneously, a complex coding scheme 1is needed to
associate functions arising from different circuits with the appropriate variables.
It is then very difficult to modify the software when needed. Comparatively, the
calculation of the function values alone requires much simpler effort. This, from
the view point of reducing software complexity, justifies the pursuit of gradient
approximation.

Three experiments were conducted which have wused different schemes for
gradient approximation. From the starting point given in Table I, they have rea-
ched practically the same solution, which is also given in Table I. The match
between the calculated and measured responses for the first circuit, at both the
starting point and the solution, are shown in Figs. 7 and 8. The match for the
other two biasing conditions is similar and hence omitted.

The first experiment corresponds to the conventional approach, in which
the gradients were estimated solely by perturbations. A total of 468 circuit simu-
lations were required to reach the solution.

In the second case, the Broyden update without weights was used. Regular
corrections were also provided by perturbations for every five iterations. Only
128 circuit simulations were needed for this solution. |

For the third experiment, we took advantage of an inherent decomposition
in the multi-circuit formulation. Notice that the responses (and error functions)
of one circuit are absolutely uncorrelated to the independent parameters (xt) of
any other circuits. Obviously, the derivatives corresponding to such decoupled
functions and variables are always equal to zero. However, when we use the
Broyden update without weights, these derivatives may be changed to some non-
zero values, thus introducing apparent errors to the approximation. We can avoid

this by using the weighted update. By assigning zero weights to decoupled func-
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tions and variables, we can keep the zero derivatives undisturbed throughout the
optimization process. The application of this concept has reduced the use of
perturbations and led to the solution after only 79 circuit simulations. This rep-
resents less than 1/5 of the simulations required by the first experiment as well

as a 38% saving in computational effort as compared to the second experiment.

V1. WORST-CASE DESIGN OF A MICROWAVE AMPLIFIER
Worst-case design using optimization techniques in general has been discus-

sed in [18]. Consider a vector of nominal designable parameters

g0 =40 $OTT, (22)
a vector of associated tolerances
€ =[e ... 1T, (23)
and a tolerance region defined by
R =(¢|¢°-€<p<e’+e) (24)

We seek an optimally centered design such that the specifications are satis-
fied over the tolerance region. It can be formulated as a minimax problem, as

minimize max max {fj(qb)}, (25)
#° i #eR,

where f;, j = 1, .., m, are a set of error functions derived from the design
specifications. In practice, we usually consider as candidates for the worst case
the vertices of the tolerance region defined by
R,={(¢|¢ =68 ¢p, p,€(-1,1),i=1, .., n). (26)
Consider the worst-case fixed tolerance design of a microwave amplifier. As
shown in Fig. 9, the amplifier consists of a NEC70000 FET and five transmission-
lines [15]. The FET is characterized by tabulated scattering parameters provided
by the manufacturer. The design variables are the characteristic impedance Z and

the lengths ¢ of the transmission-lines. For each length ¢4 we assume a five
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percent tolerance. The design specifications are given by

7.05dB < 20log|S,,| < 8.2dB, for w; = 6, 7,..., 18GHz.
A total of 26 error functions (fj) arise from the upper and lower specifications
at 13 frequencies.

The worst-case design was accomplished by two phases of optimization. In
the first one, we predicted an initial set of worst-case vertices by first-order
changes. For each f j» a vertex ¢ was selected by

¢l =0+ pi ¢, pi=sign(of;/84), i=1,..,n, (27)
where the derivatives afj/aqﬁi were estimated at the nominal point at the start of
the optimization by perturbations. Consequently, 26 vertices (one for each f j)
were considered for the minimax problem

minimize max (f;(¢})}. (28)
¢° i

At the solution, by using (27) with respect to the new nominal point, we
found that 10 of the worst-case vertices had changed (i.e., the signs of some
afj/a¢i had changed). The new vertices were added to the worst-case set. The
corresponding old vertices were kept, instead of replaced, in order to stabilize
the algorithm. We had, therefore, a total of 36 worst-case vertices. A second
optimization was performed and at its solution the worst-case set was found to
be complete (i.e., no more sign change in (27)).

The nominal parameter values at the starting point and the final solution
are given in Table II. The total number of function evaluations is 280, opposed
to 585 required if perturbations were used throughout the optimization. Fig. 10

depicts the worst-case envelope at the solution.
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VII. PRACTICAL DESIGN OF A 5-CHANNEL MULTIPLEXER
A. Introductory Remarks

A minimax solution of a 5-channel 11GHz noncontiguoué band multiplexer
was given in detail by Bandler et al. [1]. In order to provide the exact sensitivi-
ties required, the theory due to Bandler et al. [19] was implemented in a com-
puter program which has taken months of effort to develop and test. Further-
more, because the sensitivity expressions depend highly on the circuit structure
and vary from component to component, every change to the problem, such as
assigning different variables, requires expert modification to the software. In
fact, the sensitivities with respect to all possible variables were computed even
though some of them have not been actually used, otherwise the coding scheme
would have become unmanageable. Large amounts of computer memory were requ-
ired to store various adjoint solutions and intermediate expressions. By utilizing
our gradient approximation, it is possible to efficiently design a multiplexer
without all these troubles associated with computing the exact sensitivities. The
complexity and size of the program can therefore be considerably reduced.

The 5-channel multiplexer provides an excellent illustration of efficient
gradient approximations for two reasons. First, it involves 75 wvariables and,
therefore, to rely on perturbations would be prohibitively expensive. To be more
specific, suppose that we wuse the initial parameter values and specifications
suggested by Bandler et al. [1]. The multiplexer responses at the starting point
are shown in Fig. 11. We have reached a result similar to the one reported in
[1] after 50 iterations of optimization using exact derivatives. To rely on pertur-
bations for the gradients, we would have to compute multiplexer responses 3800
times (50 x 76). We will show that efficient gradient approximations reduce the
number of response evaluations significantly.

Also, this example is naturally suited for the use of the weighted Broyden
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update described earlier in this paper. From Fig. 11 it is intuitively obvious that
the response functions at lower frequencies should be almost independent of the
variables that are related to the filters of channels 1 and 2 (channel 1 has the
highest center frequency). Similarly, the responses at higher frequencies are
almost independent of the variables related to the filters of channels 3, 4 and 5.

We will demonstrate the advantage of using the weighted update.

B. Results

Details of the 5-channel multiplexer structure, such as the channel center
frequencies, bandwidths and coupling matrices, can be found in [l1]. The channel
filters are assumed lossy. Frequency dispersion and nonideal junctions are also
taken into account. For all the results that follow, we have used the same spec-
ifications and starting point as given in [l]. Three experiments were performed
each using a different method for gradient approximation.

In the first experiment, perturbations were used only at the starting point
but not during the optimization. The approximation of gradients relied on the
Broyden update in conjunction with the special iterations, which was similar to
the methods of Madsen [5] and Zuberek [6]. The optimization stopped after 266
response evaluations, of which 75 were used for the initial perturbations. The
responses at this solution as depicted in Fig. 12 are considerably inferior to the
result reported in [1]. The optimization has stopped prematurely. This experiment
has demonstrated that the Broyden update may not be sufficient for large-scale
nonlinear problems.

In a second experiment, regular corrections were provided during the opti-
mization by perturbations for every 20 iterations. After 500 response evaluations,
of which 375 were used for perturbations, we obtained the responses shown in

Fig. 13. Continuing the process for another 500 response evaluations the respon-



19

ses shown in Fig. 14 were achieved, which are as good as the ones in [1]. From
the starting point, a total of 1000 response evaluations was performed. Recall
that 3800 response evaluations would be required if the gradient -calculations
were simply replaced by perturbations.

The third experiment is intended to demonstrate the weighted update propo-
sed in this paper. To apply this updating formula, a weight Wi is set to zero if
we know that a function f; is almost independent of a variable x;. For instance,
the insertion loss of channels 3, 4 and 5 and the common port return loss over
the passbands of these channels are almost independent of the filter couplings in
channels 1 and 2. Similarly, the responses within the frequencies of channels 1
and 2 are almost independent of the filter couplings in channels 3, 4 and 5.
Therefore, we set the corresponding weights to zero.

Utilizing the weighted update, we optimize the multiplexer without any
regular correction by perturbations. After 500 response evaluations we obtained
the responses shown in Fig. 15. By comparing this result with experiment 1 we
can clearly see that the use of appropriate weights has prevented the optimiza-
tion from stopping prematurely. We can also conclude from a comparison between

experiments 2 and 3 (also, between Figs. 13 and 15) that the application of the

weighted update has effectively reduced the use of time-consuming perturbations.

VIII. CONCLUSIONS
A new algorithm for gradient approximations has been presented. Integration
of this algorithm with powerful gradient-based optimization techniques has been
described and illustrated by the minimax and ¢, implementations. The effective-
ness and efficiency of the proposed approach has been demonstrated through
diverse examples of practical significance, including FET modeling, worst-case

centering and multiplexer design. A weighted update has also been proposed



20

which exploits possible sparsity and decoupled structures to further reduce the
computations involved in estimating gradients. The new approach is very useful
when analytical evaluation of partial derivatives is unavailable or tedious. The
prospect of integrating our method with existiﬁg CAD packages and thus bringing
the full power of advanced optimization techniques into practical microwave

applications is especially promising. .
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APPENDIX
FORMULAS FOR POWELL’S SPECIAL ITERATIONS

The formulas for computing the increment vector for a special iteration, as
derived by Powell [4], are as follows.

An n by n (n being the dimension of x) orthogonal matrix D, is construc-
ted at each iteration. Denote the rows of D, by d;r, i=1, 2,., n. At a special
iteration, the increment vector is set to a multiple of the first row vector of
Dy, as

hy = A dy, (A.1)
where Ay is a parameter controlling the step size of hy. Usually it is set to the
step size of the latest ordinary iteration.

At the starting point D; is set to an identity matrix. At the kth iteration
D, is revised to produce D, ;. We use yI for the rows of D,,;. For a special
iteration, we simply let

Y; = di+l’ 1= l, 2,..., n-],

(A.2)
Yo = dy.
For an ordinary iteration, the following steps take place.
Step 1 Compute o; = dThy, i = I, 2,..., n.
Step 2 Find t which is the greatest integer such that o, # 0.
Step 3 Let ay = 0 and z;, = 0. For i = t-1, t-2, ..., 1, compute
Z; = 2, + 01y,
& = &y + 0F g, (A.3)

Vi = (oqd; - 0;z)/[oy(ey + D).

Step 4 Lety; =d;,p, i=t, t+l,.., n-1. Let y, = hy/(hTh )
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TABLE I

PARAMETER VALUES OF THE FET MODELS

Solution

Parameter Starting Point

Case 1 Case 2 Case 3
R, (OH) Vl.O 2.6025 2.6025 2.6025
R4 (OH) 1.0 3.7630 3.7630 3.7630
R4, (KOH) 0.143 0.1992 0.1638 0.1632
R; (OH) 1.0 0.0099 0.0999 0.3891
R, (OH) 1.0 1.0016 0.9220 0.6482
L, (nH) 0.02 0.0039 .0.0039 0.0039
Cgs (PF) 1.4 0.7181 0.4417 0.3454
Cyg (PF) 0.07 0.0306 0.0475 0.0609
Cas (PF) 0.4 0.2228 0.2229 0.2151
gn (/OH) 0.09 0.0696 0.0521 0.0410
T (ps) 7.0 3.9558 3.9558 3.9558

Biasing Conditions
Case I Vg4=4V  V_=0.00V I4=177mA
Case 2! Vg=4V  V_ =-174V  I;=92mA
Case 31 Vg=4V  V_=-3.10V  I4=37mA

The starting points for the three circuits are identical.
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TABLE II

PARAMETER VALUES OF THE MICROWAVE AMPLIFIER

Parameter Starting Point Solution
4 52.96 69.01
¢, 148.13 152.01
£y 26.80 18.48
I 24.01 5.10
£ 46.63 36.49
Z 81.27 126.39

The starting point is a minimax nominal design
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Fig. 1 Two-section, 10:1 transmission-line transformer.
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Fig. 2 Minimax contours for the two-dimensional singular minimax problem
arising from optimization of the two-section transmission-line transform-
er. Eight iterations using exact gradients are illustrated.
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Fig. 3 Minimax optimization of the two-section transmission-line transformer.
Ten iterations using approximate gradients are illustrated.
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Fig. 4 ¢, contours for problem arising from parameter identification of the
two-section transmission-line transformer. Using perturbations for the
gradients, the solution required 14 iterations (42 function evaluations).
The first 7 iterations are illustrated.
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Fig. 5 Parameter identification of the two-section transmission-line transformer
using £, optimization with approximate gradients. The solution has re-
quired 19 iterations and 27 function evaluations. The first 9 iterations
are illustrated.
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Fig. 7 The scattering parameter match between the FET model and the measu-
rements at the starting point, for V4, = 4V, V. = 0V and I3, = 177mA.
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Fig. 10 Worst-case envelope for the amplifier response at the centered solution.
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Fig. 12 Responses of the 5-channel multiplexer obtained using only the Broyden
update and special iterations for gradient approximations. The optimiza-
tion has stopped prematurely.
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Fig. 13 Responses of the 5-channel multiplexer obtained after 500 response eval-
uations. Regular corrections to the approximate gradient by perturbations
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